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Abstract: All-optical platforms for recurrent neural networks can offer higher computational
speed and energy efficiency. To produce a major advance in comparison with currently available
digital signal processing methods, the new system would need to have high bandwidth and
operate both signal quadratures (power and phase). Here we propose a fiber echo state network
analogue (FESNA)— the first optical technology that provides both high (beyond previous limits)
bandwidth and dual-quadrature signal processing. We demonstrate applicability of the designed
system for prediction tasks and for the mitigation of distortions in optical communication systems
with multilevel dual-quadrature encoded signals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Machine learning, in particular neural networks (NNs), have recently attracted renewed and fast-
growing interest due to novel designs, advanced hardware implementations, and new applications.
The surge of interest in recurrent neural networks (RNNs) is due to the broad spectrum of
successful applications, which ranges from image analysis and classification, speech recognition,
and language translation to more specific tasks like solving inverse imaging problems or signal
processing in wireless and optical communications. In particular, in optical communications,
RNNs have been used to compensate for nonlinear signal distortions [1–3] and nonlinearity
mitigation for QPSK and 16-QAM modulation formats [4–6]. However, many applications are
limited because the typical scale of RNNs requires a significant amount of time for training and
processing, which represents a challenging computational burden. Various electronic and optical
hardware designs have been proposed and developed recently to enable faster implementation of
RNNs.

The first realistic silicon neuron was built in the 1990s [7] and there is now a silicon version of
the eye’s retina [8] and the Neurogrid network that simulates one million neurons [9]. Similarly,
developed within the EC Human Brain Project (HBP) advanced silica-wafer-based SpiNNaker
and BrainScaleS prototypes, also used external memory array. Also, in [10] silicon photonic
weight banks were used to solve a differential system predicting 294-fold acceleration against a
conventional computer. Only in semiconductor NN, the memory is achieved by optical delayed
feedback [11]. Fiber-based NN was demonstrated recently with gigabyte per second speed [12],
where memory was introduced by external electrical memory array - this imposed a limit on the
design, as the learning could not be done in real time.
One of the promising types of RNN is Echo State Network (ESN) [13], a specific type of

reservoir computing (RC), which relaxes training complexity. RC requires only output weights
to be trained and can be realized by randomly connected nonlinear nodes, "neurons," while the
training is achieved by collecting the signals at each state to compute optimum output weights,
moreover, ESN does not have limitations on the pulse shape. Non-linear equalization based on
RC has been proposed [14]. The "reservoir"-based approach makes it possible to demonstrate
network comprising only one nonlinear node and delay line. All-optical implementation of

                                                                                              Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 2387 

#352044  
Journal © 2019

https://doi.org/10.1364/OE.27.002387 
Received 15 Nov 2018; revised 30 Dec 2018; accepted 31 Dec 2018; published 25 Jan 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.002387&domain=pdf&date_stamp=2019-01-25


RC enables high-speed signal processing and can set the framework for a new generation of
hardware [11, 15] for computing and future optical networks. One of the first demonstrations
of an all-optical RC utilizing GHz bandwidth was based on a semiconductor laser [11], which
was also used recently for amplitude modulated-signal processing [16]. Yet, even the most
advanced realizations are fundamentally limited by the operation bandwidth of the order of a few
GHz [11,17] (due to the relaxation time of the media) and focus on signal power transformations,
while fiber can unlock processing of tens of THz order bandwidth and enables dual-quadrature
transformations.

Here we introduce a new approach to reservoir computing exploiting fiber nonlinearity, which
makes it possible to receive nonlinear "neuron" functionality via signal-pump beating. Thus,
memory is intrinsic to the process and is realized optically. We propose and demonstrate
through numerical modeling a novel design of fiber echo state network analogue (FESNA). The
advantages of the proposed setup include: (i) NN with intrinsic optical memory (does not require
an external memory as in [12]) and (ii) for the first time possibility of optical RNN is shown
for high-bandwidth (over 100 GHz compared to previous limits of a few GHz (e.g. [11])) and
dual-quadrature signal processing. These features are highly important for increasing the speed
and applicability of the optical neuromorphic technology. We demonstrate the feasibility of
the proposed system using the examples of two practical applications dealing with predictions
and distortion mitigation tasks. Our analysis reveals the device’s strong potential for signal
processing in high-speed optical communications. The presented all-optical RNN implementation
is transparent and flexible and can find a wide variety of applications, ranging from photonics
to medicine [18], in particular, RNN for self-tuning lasers [19, 20], smart fiber gratings [21],
off-the-shelf smart fiber couplers [22], and so on.

2. Method

2.1. Reservoir computing concept

Reservoir computing is a type of recurrent network with randomly connected nonlinear nodes,
where only the output weights are updated via training. This significantly simplifies the structure
and training time. It has been shown that reservoir computing operation can be realized by a
single nonlinear element with a single feedback delay loop [23].
Similar to neural networks, here one operates with nodes, which mimic neurons. The virtual

neurons are obtained by sampling the input signal un. The samples are then combined with
random input weights W in. Consequently, each sample un is transformed into the weighted mix
of the sequence W inun, thus is performed the mapping of the signal into multidimensional space.
To introduce memory into the system, the signal is also mixed with the time-delayed feedback.
The signal from the feedback loop is the output of nonlinear element, which is also sampled
with the same sampling rate - this sequence represents the state of the virtual network xn−1,
which is also mixed through a different weight matrix W The feedback enables the memory in
the network, where each state is affected by previous one. The received signal W xn−1 +W inun
represents the signals processed by the neuron n, coming from adjunct synapses with different
weights (strength). The nonlinear response of the neuron is modeled by the nonlinear response
function y = f (x) (Fig. 1(b). Thus, one receives nonlinear neurons processing input signals.
Meanwhile, the output of the feedback loop is also gradually collected at the receiver

X = [...xn, xn+1, ...]. Here, the weights of the matrices W in and W were chosen randomly from
the [-0.5 0.5] interval, thus, having uniform distribution around zero on the given interval. While,
for processing the real part of the signal, one can use real-valued weight matrices, for processing
complex signals the weight matrices were chosen similarly but in the complex domain. Once the
weights are chosen, they remain fixed.
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Fig. 1. The proposed reservoir setup. (a) Reservoir computing basics; (b) Transfer
functions: ideal tanh-function (green squares) and approximations by sin-function (blue
circles), analytical approximation (violet squares) and FESNA-generated (red diamonds). (c)
1D-processing setup with parameters: 1W pump power (ξ = 1), nonlinear fiber parameters
|ξ |2γL = 2.2π, attenuation coefficient A = −22.5dB. A 3dB coupler is assumed. (d)
2D-processing setup with parameters: pump (ξ = 1 + 1i), nonlinear fiber parameters
|ξ |2/2γL = 2.2π, attenuation coefficients (A1 = −18.5dB, A2 = −6dB).

Overall, the governing equation of the network:

xn = f
(
W xn−1 +W inun

)
(1)

where xn is the N-dimensional reservoir state, f is a sigmoid function (usually the logistic
sigmoid or the tanh function), W is the N × N reservoir weight matrix, W in is the N × K input
weight matrix, un is the K-dimensional input signal. The training data u are mixed with the mask
W in and fed into the reservoir, where it is mixed with building up signal x mixed with a different
mask W (Fig. 1(a).
Here and throughout the paper, we focus on achieving nonlinear neural-resembling response

- that is, sigmoid activation function - which is typically used in RNNs; therefore, we assume
weights (W and W in to be applied electronically, similar to [16] or [24–26]). Note, while previous
configurations were limited fundamentally by a few orders of GHz [11] due to the relaxation time
of the medium, fiber-based technology enables processing of THz bandwidth signals. Therefore,
the proposed system is limited only by the electronic weight application, which currently enables
the order of hundred GHz signal bandwidth processing. Further work will include modeling
weights optically using physical effects in fiber. In the present study, however, we focus solely on
realizing nonlinear neural functionality via fiber, thus unveiling a new regime in fiber systems
that can be achieved under specific conditions described below and not accessible with traditional
techniques.
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The reservoir size N is a number of virtual nodes in the reservoir loop - optical feedback loop
implemented via fiber. This can be achieved by spatial multiplexing or temporal multiplexing.
One can use the temporal multiplexing approach of [11]. This causes the delay in the loop, as we
feed each symbol of un for each xn-vector with size of the reservoir. Overall, this realization
results in N/Ns-delay per symbol, where Ns-is the signal sampling rate. This can be avoided by
using spatial multiplexing; that is, a multi-core fiber where signals will be spread over N-core
fiber. Such an approach will make it possible to avoid delay loop. Further for simplicity we use
time delay reservoir with N = 256, which was found to be optimal number for the considered
two tasks of prediction and distortion mitigation (classification).

At the final stage all the states of the reservoir are collected at matrix X . Then a simple linear
regression or pseudo-inversion can be used to obtain the optimum weights Wout ; this can be
done offline or online [27]. Thus, complex signal processing is reduced to linear operation, while
the complexity is transferred to optical domain.

Once the output weights have been identified, the reservoir is tailored for a specific task and can
be used in a straightforward manner. Here we will apply it in two examples: a standard prediction
task (Mackey-Glass test) and for optical communication processing. In the first instance we use
a single-quadrature 100 GHz-bandwidth signal and in the second case we consider multilevel
dual-quadrature encoded signals with typical for optical communications channel bandwidth
of 30 GHz. This will demonstrate the transparency of the technology to a different bandwidth
range. We will also show configurations for one-dimensional (amplitude) and two-dimensional
(both quadratures) signal processing (in Fig. 1, panels (c) and (d), respectively), while the
underlying principle is the same, using Kerr nonlinearity to achieve nonlinear transformation
and pump to select the required quadrature. Note, here we assume that weights and sampling
are applied electronically (see [11] for more information), focusing on the optical realization of
nonlinear functionality. Fiber dispersion can be used for mixing signals with weights optically in
a temporal-multiplexing scenario and fiber core coupling can be used in the spatial-multiplexing
case. However, here for the simplicity of presenting the concept, we consider all fibers to have
insignificant dispersion; for example, operating near the zero dispersion point. In modern fibers,
high nonlinearity and negligible dispersion coefficients can be achieved at the considered span
lengths.

2.2. Setup for single-quadrature signal processing

The nonlinear sigmoid functionality (function, f ) (Fig. 1(b) can be approximated using the sine
function. The latter can be achieved via Kerr nonlinearity in nonlinear fiber 1(c). By coupling the
signal with the modulated pump and carefully optimizing fiber parameters, sine transformation
can be achieved over the input signal.
For simplicity, let us assume a dispersionless nonlinear fiber, which will result in a strong

power-dependent phase shift due to self-phase modulation (SPM) effect. Using dispersionless
approximation, we can derive simple analytical expressions. After coupling of the weighted
signal and reservoir output,

x(1)
n+1 = W xn +W inun+1 (2)

the signal is attenuated (with attenuation coefficient A) to ensure the pump is much stronger than
the signal, even for reasonable pump powers. Higher pump power may result in higher-order
nonlinear effects; for example, Brillouin or Raman scattering Suppression of Raman and Brillouin
scattering (for methods to mitigate such effects, see [28–30]). Therefore, we attenuated the signal
to use 1W pump power. After the signal is coupled with a pump (ξ):

x(2)
n+1 =

√
Ax(1)

n+1 + ξ (3)

Then χ3-nonlinearity in dispersionless media will induce nonlinear phase shift, which is
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proportional to the selected quadrature of the signal

x(3)
n+1 = x(2)

n+1eiγL |x
(2)
n+1 |

2
(4)

here, γ, L are nonlinear coefficients and fiber length, respectively. In general, the signal might
be complex. By modulating the pump we can choose a quadrature of the desired signal. As an
example, if one aims to process the real part of the signal, then the pump needs to be modulated
as ξ = 1. Thus, in a limit of strong pump, in comparison to the signal, (which can be easily
achieved by varying the attenuation factor), we obtain a sine transformation of the signal. The
scheme is similar to [31, 32].
Overall, after nonlinear fiber, the output is

x(3)
n+1 = x(2)

n+1eiγL |x
(2)
n+1 |, =x(3)

n+1 ' sin(=x(2)
n+1), (5)

For parameters: {ξ = 1, γL |ξ |2 = 2π, 2
√

AξγL = 1}. Although the output is a complex signal,
using a modulated strong pump makes it possible to receive output F(x) dependent only on the
real value of the input signal. Thus, although x(n) is complex at each stage, it depends only on
the real part of the signal at the previous stage and the real part of the input signal. Note that,
here, all weight matrices W in,W,Wout are real-valued. So, at the next stage, the imaginary part
will be annihilated. While at the receiver where the states are collected, one selects only the real
component for the matrix X . The resulting curve is plotted in Fig. 1(b), while the transformation
from the numerical simulations of the standard off-shelf available highly nonlinear fiber [33],
with nonlinear, dispersion, and attenuation coefficients of 10.5 1/W/km, -1.5 ps/nm/km, and
0.8 dB/km, respectively, results in the FESNA-transfer function shown in Fig. 1(b). Here and
further in the paper, the numerical simulations were conducted using the standard split-step
Fourier method (to ensure high precision we used a variable step size with maximum phase
change 0.01). Note, to compensate for high losses in the fiber, the fiber length was optimized,
which resulted in the relation |ξ |2γL = 2.2π. Overall, the effect of dispersion was negligible, due
to low dispersion fiber and low signal power. Note that higher values of nonlinear coefficients are
also available, including some twice as high [34].

2.3. Setup for dual-quadrature signal processing

In the case of dual-quadrature operation, we use the same concept of the modulated pump to
select a quadrature and nonlinear fiber for nonlinear transformation (Fig. 1(d). This can be
achieved simultaneously by using the same piece of fiber in a loop configuration by coupling
signals with the pumps before they undergo nonlinear transformation.
After mixing, the signal is

x(1)
n+1 = W xn +W inun+1 (6)

in this case, matrices W,W in and later Wout are complex. The signal is then attenuated
x(2)
n+1 = x(1)

n+1
√

A1 and after a 3 dB coupler two copies of the signal are coupled with the pump.
The pump is much stronger than the signal and modulated here as ξ = 1 + i:

x(3)CW
n+1 = x(2)

n+1/
√

2 + ξ; x(3)CCW
n+1 = ix(2)

n+1/
√

2 + ξ (7)

here CW and CCW stands for clockwise and counterclockwise. After the dispersionless nonlinear
fiber, the output is

x(4)CW/CCW
n+1 = x(3)CW/CCW

n+1 eiγL |x
(3)CW /CCW
n+1 |2, (8)

after propagation both signals are coupled back and attenuated

xn+1 = f (x) =
√

A2/2(x(4)CW
n+1 + ix(4)CCW

n+1 ) (9)
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Fig. 2. FESNA for prediction tasks. The test signal is taken from a standard Mackey-
Glass test, where we could perform prediction for a signal with 100 GHz bandwidth. For
comparison, we plot (and as there is no significant difference visually, we show the mean
square error (MSE)) the predicted signal obtained with tanh-function (blue, solid, the
mean squared error of test-regime MSE = 4.8 × 10−9), with sin-function (green, squares,
MSE = 8 × 10−7), FESNA-generated function (red, diamonds, MSE = 6 × 10−7). Panel
(a) depicts one-step ahead prediction (i.e. for test-regime the previous target signal data
points are used to generate further one-step ahead prediction) and panel (b) depicts feedback
forcing or generation, (i.e. for test-regime the predicted data points are used to generate
further predictions). One can see that, in the considered interval, both cases result in highly
accurate performance comparable to that of ideal RC; bandwidth of (c) input signal and (d)
output signal after FESNA.

here A, γ, L are attenuation and nonlinear coefficients and fiber length; also, for convenience, we
chose γL = 2π.
Although the output is a complex signal, using the aforementioned transformation one can

receive sine-approximated transformation of both quadratures simultaneously, which is a close
approximation of ideal sigmoid transformation. Thus, at each stage, both quadratures of the
signal in the reservoir xn are processed, while the collected states, signal X , are processed at
the receiver side. We found that applying linear regression to augmented matrix X̂ = [X X∗]
facilitates the training process and makes it possible to reduce the size of the reservoir. This way,
the complex processing is conducted optically, while in the digital domain the complexity is
reduced to a simple matrix multiplication.

3. Results

3.1. Application for prediction

To study the performance of the received RC, we used it for the prediction tasks - benchmarking
task in machine learning is the Mackey-Glass chaotic time series. We use the Mackey-Glass
delay equation

dy
dt
=

αy(t − τ)
1 + yβ(t − τ) − γy(t) (10)

Following the example of [11] we chose parameters as τ = 17, α = 0.2, β = 10, γ = 0.1,
an integration step of 0.17, downsampled to ts = 3 to obtain the discrete time series used for
processing. We used 1000 samples for training and 5000 for testing. The signal bandwidth
was chosen to be 100 GHz. The performance comparison is plotted in Fig. 2. One can see
that sigmoid, sine, and the generated functions give good performance. We compared the two
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Fig. 3. Fiber reservoir computing for 16-,64-, and 256-QAM signal processing. (a) Q2-factor
for a signal with varied input power for a transmission distance of 100 km, processed with a
linear equalizer (LE, which compensates dispersion and phase shift), digital back-propagation
(DBP, with 16 samples per symbol and 50 steps per span), and fiber reservoir computing
(FESNA, with four and 16 samples per symbol) with reservoir size 27 and training on
1000 symbols. Performance of ideal (sigmoid-based) RC is shown for comparison. (b)
Q2-improvement due to FESNA-processing over linear equalization. The reservoir and
signal parameters are the same as in Fig. 2 with a sampling rate of 16. (c) The corresponding
BER. (d) 16-, (e) 64-, and (f) 256-QAM modulated signal after linear equalization (blue)
and FESNA processing (red) for 10 dBm input power.

regimes and found that one-step prediction and feedback generation both demonstrate accurate
performance in the considered interval.

3.2. Application for distortion mitigation in fiber-optic communication systems.

Next, we study the performance of the designed FESNA for compensating nonlinear signal
distortions in fiber-optic communication systems. Performance of fiber-optic communication
systems is limited by the efficiency and speed of employed signal processing [35], while new
approaches are required beyond the state-of-the-art capabilities [36, 37]. We used a system with
conventional parameters: a single 30 GBaud channel modulated with root-raised cosine pulses
having 0.1 roll-off. Here we focus on single channel operation, leaving multichannel regime
to further research. To examine the performance of FESNA for compensating deterministic
nonlinear effects we study 100 km single span transmission with varied signal power (Fig. 3).
The fiber parameters are 17 ps/nm/km dispersion and 1.4 1/W/km nonlinear coefficient. Our
focus here is the nonlinear transmission regimes, so we use high input signal power.

We compare FESNA performance with DBP (50 steps per span and 16 samples per symbol) and
linear equalization (LE), which compensates for the circular phase shift and other linear distortions.
Note that digital back propagation is a standard technique for nonlinearity compensation in
optical communication systems; particularly, in the absence of amplifier noise, it enables
complete compensation of signal distortions, thus yielding the best performance. On the other
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hand, linear equalization represents the minimum distortion compensation technique that is
typically employed, thus presenting the lowest performance level compensation technique. We
compensate dispersion before FESNA (this can be achieved by dispersion-compensating fiber
or electronically). We use 1000 symbols for training and 215 QAM symbols for testing, taking
particular care to ensure random sequence of symbols [38]. To quantify the performance, we use
Q2-factor (Q2 = 1/EV M2, where the error vector magnitude (EVM) is defined as in [39]).

First, we compare performance of FESNA to linear equalizer in Fig. 3(a) for 16-QAM signal.
It can be see that the performance of FESNA depends strongly on sampling rate. In particular,
for a small sampling rate, such as 4, only linear effects are compensated. Increasing the sampling
rate to 16 enables a significant improvement in Q2-factor, which grows with signal power.

We then examine compensation of nonlinear effects for higher order QAM. The performance
comparison is plotted in Fig. 3(b), which shows that Q2-factor improvement is growing for higher
nonlinearity. While the value of Q2-factor changes for various QAM constellations, the gain
roughly remains the same until the nonlinearity is too high for FESNA and the gain decreases.
The peak in Q2-factor improvement has higher tolerance for higher levels of modulation formats
as they are more susceptible to nonlinearity, hence FESNA compensation results in higher
gains. Fig. 3(c) shows the corresponding BERs, while the constellation diagrams without
and with FESNA are depicted in Fig. 3(d)-(f)) for 16-, 64-, and 256-QAM correspondingly.
Overall, the figure illustrates that all-optical neural network realization based on FESNA enables
high-efficiency mitigation of linear and nonlinear distortions.

4. Conclusions

In conclusion, we have proposed a new fiber-optic reservoir computing scheme that for the first
time enables dual-quadrature signal processing with over 100 GHz bandwidth. The performance
of the reservoir operation with high bandwidth was demonstrated on the standard Mackey-
Glass prediction task. We also have shown that the designed FESNA scheme can be used
for compensation of nonlinear distortions in fiber-optic transmission systems and can operate
with various QAM signals. These presented results offer a novel type of photonic reservoir
computing implementation with vast bandwidth range and dual-quadrature signal processing,
which significantly broadens the application spectrum of technology.
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