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ABSTRACT: The design of topographically patterned surfaces is considered to be a preferable 

approach to influence cellular behavior in a controllable manner, in particular to improve the 

osteogenic ability in bone regeneration. In the present study, we fabricated nanolamellar tantalum 

(Ta) surfaces with lamella wall thicknesses of 40 nm and 70 nm. The cells attached onto 

nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as 

compared to the non-structured bulk Ta, which would facilitate the initial cell attachment and 

spreading. We thus as expected, observed a significantly enhanced osteoblast adhesion, growth, 

and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the enhancement effects 
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of nanolamellar structures on the osteogenesis were weakened as the lamella wall thickness 

increases. The interaction between cells and Ta surfaces is examined through adhesion forces using 

atomic force microscopy. Our findings indicate that Ta surface with a lamella wall thickness of 40 

nm possessed the highest stimulatory effect. The observed strongest adhesion force between cell-

attached tip and the Ta surface with 40 nm-thick lamella wall, encourages the much stronger 

binding of cells with the surface, and thus well- attached, stretched, and grown cells. We attributed 

this to the increase in available contact area of cells with the thinner-nanolamellar Ta surface. The 

increased contact area allows the enhancement of the cell-surface interaction strength, and thus the 

improved osteoblast adhesion. This study suggests that the thin-nanolamellar topography shows 

immense potential in improving the clinical performance of dental and orthopedic implants. 

 

1. INTRODUCTION 

Dental and orthopedic implants are hard tissue substitutes for impaired human bones in case 

of tumors, trauma, periodontal diseases and aging. Effective osteogenic reconstruction of bone lost 

is therefore becoming a major challenge.1,2 Bone reconstruction generally requires fabrication of 

biocompatible and osteoinductive artificial tissue implants, which act as a temporary matrix for 

cell proliferation, osteogenic differentiation, and extracellular matrix deposition with consequent 

bone growth until the new bone tissue is fully formed.3  

An early bone formation and strong binding between bone and implant are important for the 

long-term success of the orthopedic implants.4 It is noting that cells approaching a surface from a 

flowing carrier fluid, in many biomedical applications, will be attracted by the substratum surface 

with adhesion forces generated by the transport of biomolecules towards a surface.5,6 High 

adhesive characteristics of the implant substrate to osteogenic cells, is thus crucial for the cells’ 

capacity to proliferate and differentiate themselves on contact with the implant.2,7-9 The interaction 
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of cells with the surface depends on the surface topographical feature and chemical 

composition.3,10-12 Tantalum (Ta) is an elemental metal that has recently gained interests for a 

variety of applications in orthopedic implant contexts,7,12,13 because of the excellent corrosion 

resistance and exceptional biocompatibility, as well as the lower bacterial adherence, in 

comparison with titanium and stainless steel implants.14,15 To enhance the fixation between the Ta 

implant and bone, previous studies have focused on the modulation of cell-implant interactions by 

manipulating surface chemical compositions and topographical features. 

One feature influencing cell-implant interactions is the chemical composition of implant 

materials. Among the various surface modification techniques, the scaffolds surface treatment with 

natural materials, e.g., collagen, chitosan, N-succinyl-chitosan, used for tissue-engineered bone-

repair techniques is expected to increase osteoblast adhesion.16 TiO2 nanotubular implants 

modified by Ta coatings could enhance alkaline phosphatase activity, and promote a ~30% faster 

rate of matrix mineralization and bone-nodule formation. This enhanced activity and bone 

regeneration were attributed to distinctive physico-chemical properties induced by Ta surface 

chemistry and TiO2 architecture.17 A porous Ta surface with micro-arc oxidation and alkali 

treatment, formed an apatite layer after being soaked in simulated body fluid. On this modified 

porous Ta surface with NaOH pretreatment, the cell toxicity of the leach liquor can be eliminated 

and new bone ingrowth would be promoted.13 Additionally, surface modification by anodic 

oxidation was designed to enhance osseointegration of metal implants for anchorage of dental 

prostheses, hip arthroplasty femoral stems, and so on.18,19 Unfortunately, unexpected side effects 

are possible when using chemical strategies upon the bio-surfaces, such as weakening 

biomolecular responses,20 and enhanced susceptibility to biochemically relevant solutions.21,22 

The favorable physical strategy has fewer side effects on the surrounding environment. The 



4 

 

topographical design of implant surfaces has a significant influence on fundamental cell behavior 

including proliferation and osseointegration via enhancing the cell-implant interactions.2,8,11,23 

Because surface micro-/nano-structures could maximize cell ingrowth and tissue integration by 

enhancing the cell-implant interactions during the implanting process.11,24 For example, Ta 

implants with a nanostructured surface (feature height < 5 nm), are able to influence cell-Ta 

interactions and thus the cell adhesion and proliferation.11 Hydroxyapatite bioceramics with 

hierarchical micro/nano- hybrid surface topographies via hydrothermal treatment, were found to 

result in the best ability for simultaneous enhancement of protein adsorption, osteoblast 

proliferation, and differentiation.3 Highly ordered, nanostructured Ta implants were fabricated 

using colloidal lithography and glancing angle deposition techniques to modulate cell-implant 

interactions, to further control adhesion, growth, and differentiation of human mesenchymal stem 

cells.25 Nanocrystalline surface layers with extremely small grains (average grain size of ≤20 nm) 

were fabricated on pure Ta. And the resulting drastically increased numbers of grain boundaries 

exhibited considerably enhanced osteogenic activity.26 Porous Ta was found to be able to promote 

enhanced biological fixation27,28 by enhancing in vitro cell-implant interactions, attributable to 

surface chemistry, high wettability28 and greater surface energy29 provided by porous structures.  

Typically, scaffolds consisting of aligned polymeric fibers were found to be osteoinductive, 

and be able to guide cell growth along the circumferential direction of the parallel fibers.2,30-32 It 

was reported previously that a multi-level lamellar structure33,34 consisting of unidirectional 

micro/macro-pores can support osteoblast attachment and spreading and thus promote the bone 

tissue regeneration.34 An oriented substrate can yield enhanced adhesion and growth of cells, e.g., 

uniformly aligned structures were able to direct and enhance the osteogenesis.2,34  

In a parallel to polymeric fibers which exhibit positive effects on osteogenesis, we investigate 
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in this work, the cellular effects of nano-topographical features in the form of nanolamellas created 

on Ta surface by rolling the bulk ultrafine grained Ta. Equal channel angular pressing (ECAP) is 

one of the most promising techniques in severe plastic deformation, to produce ultrafine grained 

materials (including our bulk Ta), in which a sample is pressed through a die with two columned 

channels intersecting at an angle of 90°.35 The cross-sectional dimensions remain unchanged with 

high dislocation density in the pressing operation, so it is possible to undertake repetitive pressings 

for a number of passes in order to achieve high cumulative strains. The dislocations are able to re-

arrange and result in grain sizes in the submicrometer range of 100-1000 nm or in the nanometer 

range of < 100 nm,36 which are well known as ultrafine grained materials.  

The deformation at low temperature, can result in a high density of defects, which could act 

as potential recrystallization sites37 to produce nanostructures. As a consequence, cryogenic 

deformation has been successfully employed to produce nanostructured materials and enable 

further decrease in the size of nanostructures.38 In our work, we thus rolled our bulk ultrafine 

grained Ta(B) at cryogenic temperature with liquid nitrogen cooling, to obtain nanolamellar Ta 

with a lamella wall thickness of ~ 40 nm (Ta40). We performed rolling process at room 

temperature to deform Ta(B), to obtain nanolamellar Ta with a thicker lamella wall thickness of 

~70 nm (Ta70). 

Atomic force microscopy (AFM) was employed to examine adhesion forces between cells 

and nanolamellar Ta, to permit the nanoscale understanding in the effect of the cell-Ta interaction 

strength on the osteoblast adhesion, proliferation and differentiation. The osteogenic properties of 

the nanolamellar Ta, as well as cell-Ta interactive strengths would be analyzed systematically 

using mouse osteoblastic cells, MC3T3-E1 subclone 14.  

2. EXPERIMENTAL SECTION 
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Preparation of nanolamellar tantalum. Our ECAP experiments were performed up to 8 

passes with route Bc, in which the sample were rotated about their longitudinal axes by 90° in the 

same direction between each pass. The grain size of Ta in our work was refined to ~500 nm by 

ECAP, and we defined the resultant porosity-free Ta as “bulk ultrafine grained Ta(B)” (see the 

TEM image shown later in Figure 1a). As shown in Scheme 1a, the ECAP processed bulk Ta(B) 

samples were rolled from 12 mm to 2 mm strips, at cryogenic temperature with liquid nitrogen 

cooling by two-roller mills with a diameter of 300 mm at a speed of 15 m/min. We performed 

rolling process at room temperature to deform Ta(B), to obtain nanolamellar Ta with a thicker 

lamella wall thickness of ~70 nm (Ta70).  

Here we defined three directions after rolling, rolling direction (RD), transverse direction (TD) 

and normal direction (ND). The nanolamellar structures can be observed in the cross sectional 

surfaces of the sample, e.g., RDS and TDS, as illustrated in Scheme 1(b), where RDS and TDS 

represent the surfaces normal to the rolling and transverse direction respectively. The rolling 

process at different cooling temperatures formed different thicknesses of nanolamellas that lie 

parallel to the sample surface (the surface normal to the normal direction, NDS). Electron 

backscatter diffraction (EBSD)39 orientation maps of in Figure S1 confirmed the rolling of bulk 

Ta could result in the formation of textured nanolamellar Ta with lamellas oriented in the direction 

of rolling. 
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(a)  (b)  

Scheme 1. Schematic illustration of (a) preparation of bulk and nanolamellar Ta (Ta(B), and 

Ta40, Ta70), (b) The dimension of the rolling Ta sample: RDS, TDS, NDS corresponding to the 

surfaces normal to the rolling, transverse and normal direction respectively. The nanolamellar 

structures can be observed in the cross sectional surfaces of the sample, e.g., RDS and TDS. 

 

It is noteworthy that surface damages of the as-prepared bulk and nanolamellar Ta samples 

need to be removed during subsequent mechanical grinding and polishing. Swab etching (Lactic 

Acid:HNO3:HF=3:1:1 in volume ratio) is further required as a chemical polish to make 

nanolamellar structures exposed for growing cells. The Ta surfaces were then ultrasonically 

cleaned in acetone (10 mins)-ethanol (10 mins), and this ultrasonic cleaning was repeated up to 3 

times, followed by high-quality deionized (DI) water cleaning for another 10 mins.  

Surface characterization. The tantalum morphology was evaluated by atomic force 

microscopy (AFM, Dimension Icon, Bruker, USA). The microstructure was observed by 

transmission electron microscopy (TEM, FEI, USA) using a TECNAI G2 20 LaB6 transmission 

electron microscope. Ta foil samples for TEM characterizations were prepared by a twin jet 

electropolishing technique. The technique employs a disk electrode (thickness = 0.1 mm, diameter 

http://www.baidu.com/link?url=AjONkJ7-OvCB-0uTpC7RXTWUoWJZCEc2Q4BlREKCVRENiS-FQe5n56ZDgys5QkCB3t_LBUvzkahmR0VgroLefrEbbloJzM4ySxdwbxUu4P7
http://www.baidu.com/link?url=AjONkJ7-OvCB-0uTpC7RXTWUoWJZCEc2Q4BlREKCVRENiS-FQe5n56ZDgys5QkCB3t_LBUvzkahmR0VgroLefrEbbloJzM4ySxdwbxUu4P7
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= 3 mm), with an electrolytic solution consisting of 12.5 vol% H2SO4 and 87.5 vol% CH3OH 

(applied voltage = 26 V, current = 100 mA) at -30 oC.  The crystal phase of tantalum samples was 

determined by powder X-ray diffraction (XRD, Cu Kα radiation, Bruker D8, USA). Static contact 

angle measurements were performed via a contact angle meter (JC2000D2, Shanghai Zhongchen 

Digital Technic Apparatus Co. Ltd., China) using a sessile drop technique. At three different 

locations, a 0.3 μL water droplet was dispensed on the substrate to measure the static contact angle. 

Here  our sample is small, ~2 mm in width, so that we employed a small water droplet. 

Cell culture, adhesion and proliferation. Pure cell culture without our tantalum samples 

acted as the blank control. The mouse osteoblastic cells, MC3T3-E1 subclone 14, were purchased 

from the Cell Bank of the Chinese Science Academy (Shanghai, China). The culture medium was 

supplemented with 10% fetal bovine serum (Hyclone), 1% streptomycin, and 1% penicillin 

(Beyotime, Shanghai, China) to make osteogenic medium. The MC3T3-E1 cells were cultured in 

at a humidified atmosphere of 95% air and 5% CO2 at 37 °C. Adherent cells were passaged at 

confluency of approximately 80%. Cells below passage 10 were used in our experiments. 

For proliferation examination, the cells were seeded in a 96-well plate at a density of 104 

cells/well and cultured in the MC3T3-E1 growth medium. At day 1, 3, 5, and 7, the cell viability 

was measured using cell counting kit-8 (CCK-8, Beyotime, Shanghai, China) according to the 

manufacturer’s instructions. The optical density (OD) at 450 nm was measured by an enzyme-

linked immunosorbent assay plate reader (Titertek, Helsinki, Finland). 

Alkaline phosphatase (ALP) activity assay. The level of ALP activity was assayed by 

measuring the transformation of p-nitrophenyl-phosphate (pNPP: Sigma, St. Louis, USA) into p-

nitrophenol (pNP) after cell culture at 8 × 104 cells/sample in osteogenic medium in 6-well plates 

for 7 and 14 days. ALP activity was determined by measuring absorbance at 405 nm using pNPP 

as the substrate. Each sample was respectively mixed with 1 mg/mL pNPP in 1 M diethanolamine 
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buffer and incubated at 37 °C for 15 min to allow cell attachment. The ALP activity was expressed 

as absorbance at 405 nm per milligram of total cellular proteins. All experiments were performed 

in triplicate. 

Statistical analysis. Quantitative data were expressed as means ± standard deviation (SD). 

Statistically significant differences (p) between groups were measured using the one-way analysis 

of the variance and Tukey's multiple comparison tests. The difference were considered statistically 

significant at p < 0.05. 

Cell morphology and distribution. Cell morphology of adhesion and spreading was 

observed and analyzed after culturing for 24 hours. The cell grown Ta specimens were carefully 

taken out, rinsed with 0.05 M PBS (pH=7.4) solution for three times in order to eliminate the 

loosely bound cells and stored at 4 ºC. Noting that the samples need to be analyzed within 2 days 

to insure cells still present on the surfaces. To evaluate the cell morphology and distribution by 

SEM, the samples were fixed in glutaraldehyde (2.5 %) for 12 hours at 4 ºC, washed with PBS 

solution (0.05 M, pH=7.4), dehydrated in sequence by 25, 50, 75, 100 vol % ethanol solution 

buffered by PBS (0.05 M, pH=7.4) for 10 mins, and finally air-dried. 

The morphologies of cells adhered to the Ta surfaces were visualized with the confocal laser 

scanning microscopy (CLSM; Zeiss-LSM710; Carl Zeiss, Inc., Jena, Germany) after 24 h culture. 

The cells were seeded in a 24-well plate at a density of 2 × 104 cells/well in triplicate. Before 

CLSM imaging, the samples were washed with PBS and fixed with 3.7% paraformaldehyde for 

30 min at room temperature, then permeated in 0.25% Triton X-100/PBS for 3 min, and 

sequentially blocked with 3% bovine serum albumin for 30 min. Following overnight incubation 

with the rabbit anti-integrin β1 antibody (β1, Abcamplc; 1:100 dilution) at 4 ºC, the samples were 

rinsed five times with PBS-Tween. Then cells were incubated with rhodamine phalloidin (1:200 
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dilution; Cytoskeleton, Inc., Denver, CO, USA) for 30 min and rinsed six times with PBS. After 

incubation with 4′,6-diamidino-2-phenylindole (DAPI, 1:2000 dilution, Beyotime) for 30 s in the 

dark at room temperature, samples were rinsed three times with PBS and observed by CLSM.  

Protein Adsorption. The fluorochrome labeling protein bovine serum albumin (BSA) was 

purchased from Solarbio life sciences (Beijing, China). The respective Ta samples were immersed 

in the mixed solution containing 50% BSA and 50% PBS solution for protein adsorption. After 

protein adsorption, the Ta substrates were washed with PBS, and observed by CLSM. 

Adhesion forces between MC3T3-E1 cells and Ta surfaces. Adhesion force measurements 

were performed on a Dimension Icon AFM in contact mode at room temperature with a relative 

humidity of ∼50% to avoid the influence of capillary condensation of water, and the attachment 

of suspended particulates to the tip.40 NSC35 tipless probes with Cr-Au coated cantilevers (A 

cantilever, spring constant of 8.9 N/m, Mikromasch, USA) were cultured in the osteogenic medium 

for 24 hours, and the cell attached tips were used for AFM force measurements immediately after 

preparation. It was observed that for a given sample the force data obtained under these conditions 

were stable and reproducible. The adhesion forces were measured using the force-distance curve 

approach, between a cell attached tip and the bare surface. 100 force-distance curves at the 

maximal adhesion force upon retraction were recorded at multiple randomly chosen spots and 

analyzed. 

3. RESULTS AND DISCUSSION 
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Surface characterization of bulk and nanolamellar Ta. TEM was used here to assess the 

microstructure, texture as well as grain orientations of bulk and naolamellar Ta in a non-destructive 

manner. As shown in Figure 1(a), we observed significant morphological differences between bulk 

‘Ta(B)’, and nanolamellar ‘Ta40’, ‘Ta70’. Bulk Ta surfaces displayed sub-micro-structural grains  

with a grain size of ~ 500 nm), which we defined as bulk ultrafine grained Ta(B). However, after 

subsequent rolling in liquid N2 environment, the microstructures of Ta(B) were elongated with an 

average lamella wall thickness of ~ 40 nm, i.e., Ta40. Thicker lamella wall thickness of ~ 70 nm 

(Ta70) were obtained through performing rolling process on bulk Ta(B) at room temperature. The 

TEM micrographs here clearly reveal that the nanolamellar structures in Ta40 and Ta70, with 

variations in lamella wall thicknesses which are marked as 40, 70 nm respectively in Figure 1(a). 

The nanolamellar structures observed in Ta40 and Ta70, were further evidenced by AFM studies. 

In Figure 1(b), thin-flat nanolamellar interfaces were revealed in Ta40, whereas thick nanolamellas 

in Ta70. Although the thickness of nanolamellas varied, there were no significant differences in 

the RMS roughness between Ta40 and Ta70 (~ 3.09 and 2.68 nm respectively). The nanolamella 

was observed to be oriented parallel to one another in both Ta40 and Ta70. And the depth of 

nanolamellas are 2~9 nm, as exhibited from height profiles in Figure 1(c).  

 

(a)    
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(b)    

(c)  

Figure 1. (a) TEM images of bulk tantalum ‘Ta(B)’, nanolamellar tantalum ‘Ta40’ and ‘Ta70’. 

Scale bars = 500 nm. (b) AFM detailed topographic images and (c) height profiles along lines 

T1T2, T3T4 in Ta40 and Ta70. 

 

Figure 2 shows the X-ray diffraction (XRD) patterns of the bulk Ta (Ta(B)), as well as the 

nanolamellar Ta with lamella wall thicknesses of ~ 40 and 70 nm (Ta40, Ta70). All major 

diffraction peaks in Ta(B), Ta40 and Ta70, match the standard peaks of tantalum phase well,41 

while weak peaks correspond to a Ta(200) plane were observed in Ta40 and Ta70, as compared to 

that in bulk Ta (see the inset in Figure 2). No peak shift was observed for both bulk and 

nanolamellar Ta, indicative of no influences on the composition from the repeated rolling process. 
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Figure 2. X-ray diffraction patterns detected on bulk tantalum ‘Ta(B)’, and nanolamellar 

tantalum ‘Ta40’ and ‘Ta70’, the inset showing a magnified XRD patterns for Ta(200) phase. 

 

Surface wettability is a key factor with respect to influencing the cell adhesion and protein 

adsorption.42,43 With a contact angle goniometer, we observed a wettability difference among our 

bulk Ta(B) (contact angle θ = 48 ± 2°) and nanolamellar Ta40 (θ = 87 ± 2°) and Ta70 (θ = 74 ± 3°) 

surfaces, as shown in Figure 3. As compared to the non-structured Ta(B), the observed increase in 

contact angles for Ta40 and Ta70 is due to “air” trapped44 in the grooves of nanolamellar surfaces, 

which decreased the water-surface contact. While Ta40 with a smaller lamella wall thickness 

exhibited a more ‘hydrophobic’ propensity, by offering more grooves than Ta70 for trapping air, 

and thus enlarging the contact angle. Surface hydrophobicity can positively influence the protein 

adherence through the exclusion of water molecules from the surface.45,46  
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Figure 3. Water contact angles on bulk Ta(B), and nanolamellar Ta40 and Ta70 surfaces. 

 

Protein adsorption. Protein adsorption suggests an important role in regulating the cell 

attachment to biomaterials.47-49 Bovine serum albumin, BSA was found to be able to modulate the 

proliferation state of the bound cells.49 We thus employed the confocal laser scanning microscopy 

to evaluate the nanolamella effect on the adsorption of the specific proteins, fluorochrome labeling 

BSA (Figure 4). An obviously more intense fluorescence intensity was observed in Ta40 and Ta70, 

as compared to the bulk Ta(B), suggesting higher amounts of BSA adsorbed on the nanolamellar 

surfaces. As expected, the relative ‘hydrophobic’ Ta40 exhibited the strongest fluorescence 

intensity, corresponding to a significantly greater adsorption amount of BSA, in an agreement with 

that a higher and stronger protein adsorption to hydrophobic surfaces compared to hydrophilic 

surfaces.45,46  

 

Figure 4. Fluorescence images of the fluorochrome labeling BSA adsorption on bulk Ta(B), 
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and nanolamellar Ta40 and Ta70 surfaces. Scale bars=20 μm 

 

Cell proliferation assay. Proliferation of cells MC3T3-E1 cultured onto Ta(B), Ta40 and 

Ta70 surfaces was quantitatively assessed by optical density using CCK-8 assays. Figure 5 shows 

a comparison of viable cell densities for bulk and nanolamellar Ta samples after 1, 3, 5 and 7 days 

of culture. An increment in cell numbers for all groups was observed during the initial culture days 

(day 1 and day 3). This reveals no apparent toxicity and good biocompatibility of Ta(B), Ta40 and 

Ta70 samples to MC3T3-E1.  

After culturing for 1 day, the proliferation of MC3T3-E1 on Ta40 is statistically higher 

(p<0.05) than that on Ta(B) and Ta70. We then observed a similar osteoblast proliferation among 

the different Ta surfaces by day 3. However, the osteoblast cells proliferated in greater numbers 

(p<0.05) on nanolamellar Ta surfaces, i.e., Ta40 and Ta70, in comparison with the non-structured 

Ta(B), when the culturing time is extended to 5 and 7 days. The greater number of adherent and 

proliferated cells on nanolamellar Ta40 and Ta70 surfaces is positively correlated with the more 

preadsorbed proteins.11,47,48 No significant differences of cell numbers were displayed on bulk 

Ta(B) by day 5 and day 7, indicative of decreased proliferation. The higher growth rate observed 

on Ta40 and Ta70 than that on bulk Ta(B), indicating that nanolamellar structures on Ta is more 

advantageous to promote MC3T3-E1 (MC cells) proliferation. 



16 

 

 

Figure 5. Proliferation of MC cells seeded on samples Ta(B), Ta40 and Ta70 measured using 

CCK-8 assays after 1, 3, 5, and 7 days. *(p < 0.05) when compared with Ta(B). 

 

Fluorescent labeling cells analysis. The proliferation studies were followed up by an 

investigation of the cell cytoskeleton and assembly of β1 integrins. Actin cytoskeletons were 

labeled to observe the morphology of seeded MC cells for 24 h on Ta surfaces, as shown in 

fluorescence images in Figure 6. The cells attached on the bulk Ta(B) surface spread slightly after 

24 h seeding, while Ta40 and Ta70 with nanolamellar structures exhibited a significantly better 

early cell attachment, with typical fibroblastic morphologies. It is noting that the actin cytoskeleton 

formation on nanolamellar Ta surfaces were distributed irregularly, in agreement with the 

isotropically grown cells shown later in SEM observations. This is because, the shallow 

nanolamellas (less than 12 nm, Figure 1b), cannot control the direction of cell growth.50 In contrast 

to the Ta70 surface with thicker nanolamellas, the MC cells prefer to spread on the Ta40 surface 

with more and apparent cytoplasmic extensions and filopodial attachments.  

β1 integrin as a link between the extracellular matrix and cytoskeleton proteins, facilitates 

cell attaching onto the biomaterial surface51 by the regulation of cell migration and intracellular 

cell adhesion. As shown in Figure 6, the expression of β1 integrin was higher in the cells attached 
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on nanolamellar Ta40 and Ta70 surfaces as compared to non-structured bulk Ta(B). The higher 

expression of β1 integrin would facilitate the cell attachment and spreading in the early stage,51,52 

which was confirmed by the SEM-observed higher MC cells adhesion on nanolamellar Ta as 

shown later in Figure 7(b). The highest β1 integrin expression was observed on the Ta40 with a 

smaller lamella wall thickness, indicating the integrin clustering was more pronounced11 on the 

nanolamellar surface with a thinner lamella. 

 

Figure 6. Confocal microscopic images for the nanolamellar structure effect on MC cells 

attachment after 24 h seeding, for different surfaces, Ta(B), Ta40, Ta70. Actin filament 

(cytoskeleton) is stained red, cell nuclei is stained blue, β1 integrin is stained green, and the right 

column represents merged images of the three fluorochromes for each sample. Scale bars=20 

μm. 

 

 ALP activity assay and the growth of seeded MC cells. Alkaline phosphatase (ALP), as 

an early marker for osteogenic differentiation, was used as an indicator for osteoblastic 
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mineralization.53 As shown in Figure 7(a), the ALP activity of the osteoblasts were evaluated at 

days 7 and 14 on Ta(B), Ta40 and Ta70 cultured with MC cells. The ALP activity on bulk Ta(B) 

at day 7, was lower than those of two nanolamellar Ta surfaces, and the activity on Ta70 was the 

highest. After 14 days of culture, the ALP activity on all groups has increased higher than that 

cultured at day 7. We note nanolamellar Ta surfaces exhibited better ALP activity than the bulk 

one at both day 7 and day 14, demonstrating nanolamellas played a key role on ALP expression. 

It has been reported that the nanostructure would be strongly favorable for osteogenic 

differentiation and bone formation54. The higher ALP activity observed in our nanolamellar Ta 

surfaces is probably because, new bones can be induced at nanolamellar structural interfaces by 

released calcium and phosphate ions during the bone regenerative process. Notably, the activity 

on thinner Ta40 was enhanced more significantly at day 14, as compared to the Ta70 with thicker 

nanolamella interfaces. This indicates the positive effect of nanolamellas in osteogenic 

differentiation is likely to be weakened as the thickness increases. 

(a)                    



19 

 

(b)  

Figure 7. (a) Alkaline phosphatase (ALP) activity of cells cultured on Ta(B), Ta40 and Ta70 at 

day 7 and 14, (b) SEM observation of MC cells adhesion on Ta(B), Ta40 and Ta70 after 24 h 

incubation. Scale bars=100 μm. 

 

The initial adhesion behavior and spreading activity of growing MC cells were monitored by 

SEM morphological examination.17,24,55 As shown in Figure 7(b), after 24 h of cells culture, it 

reveals different extensive filopodial activities and network formation on bulk and nanolamellar 

Ta surfaces. A common speculation is that finger-like filopodia are a cell-sensing and they would 

be used to detect both chemical and nanotopographical cues.56 The association of MC cells with 

surrounding filopodia were observed, i.e., cells attached, grew well on the Ta surfaces. 

Nanolamellar Ta40 and Ta70 appeared an increase in both number and length of the filopodia 

extension in comparison with the bulk Ta(B) surface. In addition, MC cells grew isotropical on 

nanolamellar Ta40 and Ta70, because the nanolamellas in both Ta40 and Ta70 are too shallow 

(less than 12 nm as shown in Figure 1b) to control the direction of cell growth.50  We note the MC 

cells attached and spread much better on nanolamellar Ta40 than those on Ta70. Occasionally, the 

observed length of the extension on Ta40 (marked by the red arrow) was even larger than the 

diameter of the cells. The filopodia extended probably along the valleys between the nanolamellas 

on Ta40, and cross over to the next nanostructure to form dense networks on the surface. The 

presence of much more and longer filopodials attached on Ta40 surfaces demonstrates that MC 

cells are activated more easily by the thinner nanolamellar architecture. This phenomenon was in 
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accordance with the experimental evidence reported previously on electrospun fiber meshes that, 

higher degree of proliferation and cell spreading occurred as the fiber diameter decreased.57 

 

Adhesion forces between the MC cell and Ta surfaces. The interaction of osteogenic cells 

with the implant substrate is crucial to enhance the adhesion and proliferation of osteogenic cells, 

and consequently promoting new bone formation at an early stage after implantation. The AFM 

was therefore employed herein to determine adhesion forces between cells and different Ta 

surfaces, to understand quantitatively at nanoscale, the effect of the cell-Ta interaction strength on 

the osteoblast adhesion, proliferation and differentiation. 

 

Figure 8. Representative curves of MC cells-cultured AFM probe force during retraction versus 

the distance of separation on Ta(B), Ta40 and Ta70 surfaces. Inset in the right: schematic 

representation of how different Ta surfaces affect cells interaction strength.  

 

Cell attachment onto AFM probes must be realized as the first step. We obtained cell-

modified probes by culturing tipless AFM cantilevers in the osteogenic medium for 24 hours. And 

a cell attached probe was utilized to evaluate cell interactions with different Ta substrates, as 
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illustrated in the schematics in the inset of force-distance curves in Figure 8. MC cells exhibit 

higher adhesion forces towards nanolamellar Ta40 and Ta70 surfaces (436.1, 362.1 nN, 

respectively), than that towards the bulk Ta(B) surface (~170.7 nN). As expected, the adhesion 

force is the strongest between cell-tip and Ta40, which would show positive effects on the activity 

of cells. The strongest force between MC cells and Ta40, ensures the binding strength of cells with 

the surface, which resulted in well- attached, stretched, and grown cells on Ta40 as observed in 

Figures 6 and 7.  

We attributed this stronger force on Ta40 to the increase in available contact area of cells 

with the thinner-nanolamellar surface, as shown in the inset in Figure 8. In contrast, the decreased 

available contact area of MC cells with thicker-nanolamellar Ta70 and bulk Ta(B) surfaces, 

weakens the cell-surface interaction strength. The increased contact area31,58 allows the 

enhancement of the cell-surface interaction strength on Ta40. In addition, the thinner nanolamellar 

structures probably favor the diffusion of nutrients, metabolites, and waste products, and this is 

important for cell proliferation and bone regeneration.59 This indicates the thinner nanolamellar 

structure design is an effective approach, to enhance the osteogenic ability and facilitate the bone 

regeneration,55 by improving the cell-Ta adhesion, osteogenic proliferation and differentiation.  

The reported cellular behavior on electrospun fibers indicates that the diameter of fibers 

significantly influence cell adhesion. The previous findings in electrospun poly-L-lactic acid 

fibers,31 showed that small diameter fibers did not promote extensive cell extension, while larger 

ones promoted long, directed cell extension. However, the cellular behavior was found to be 

opposite on electrospun polyethersulfone fibers, i.e., higher adhesion and enhanced migratory 

ability of cells were revealed on smaller diameter fibers, as compared to the larger ones.57 And the 

packing density of fibers as well as the space between fibers may also influence cell extension.31 
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So our next step would be considering thinner lamellas by rolling the bulk ultrafine grained Ta(B) 

at cryogenic temperature with liquid helium cooling (much lower temperature than liquid nitrogen), 

to study if much thinner lamellas can improve the surface osteogenic ability. 

 

4. CONCLUSIONS  

Equal channel angular pressing with subsequent rolling at liquid N2 and room temperature 

respectively was employed to fabricate Ta surfaces with nanolamellar structures of different 

lamella wall thicknesses (40 and 70 nm, i.e., Ta40 and Ta70). Compared to the non-structured bulk 

Ta(B), the nanolamellar features on both Ta40 and Ta70 promoted more significantly the 

osteoblast attachment, spreading, and consequently proliferation and osteogenic differentiation. 

The cell adhesion and spreading on nanolamellar Ta surfaces in the early stage, were facilitated by 

the observed greater protein adsorption and higher expression of β1 integrin. Ta40 surface with 

thinner nanolamellas, in particular, achieved the best enhancement effect on cell proliferation and 

differentiation. This is attributed to the increase in available contact area of cells with Ta40 surface 

which possesses thinner lamella thickness. The increased contact area would result in the stronger 

binding strength of cells with the surface, which was confirmed by the strongest adhesion force 

between cell-attached tip and Ta40 surface measured by AFM. The enhanced cell-surface 

interaction strength, would thus improve osteoblast adhesion, leading to well- attached, stretched, 

and grown cells. This strategy to improve cell adhesion and growth by the nanolamellar structure 

design can open potential applications in implantology or tissue engineering through surface 

patterning of biomaterial interfaces. 
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