
Accepted Manuscript

The CORTEX Cognitive Robotics Architecture: use cases

P. Bustos, L.J. Manso, A.J. Bandera, J.P. Bandera, I. García-Varea, J. Martínez-
Gómez

PII: S1389-0417(17)30034-7
DOI: https://doi.org/10.1016/j.cogsys.2019.01.003
Reference: COGSYS 811

To appear in: Cognitive Systems Research

Revised Date: 8 August 2018
Accepted Date: 6 January 2019

Please cite this article as: Bustos, P., Manso, L.J., Bandera, A.J., Bandera, J.P., García-Varea, I., Martínez-Gómez,
J., The CORTEX Cognitive Robotics Architecture: use cases, Cognitive Systems Research (2019), doi: https://
doi.org/10.1016/j.cogsys.2019.01.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cogsys.2019.01.003
https://doi.org/10.1016/j.cogsys.2019.01.003
https://doi.org/10.1016/j.cogsys.2019.01.003

The CORTEX Cognitive Robotics Architecture: use

cases

P. Bustosa, L.J. Mansob, A.J. Banderac, J.P. Banderac, I. Garćıa-Varead, J.
Mart́ınez-Gómezd

aUniversity of Extremadura, Spain
bAston University, United Kingdom

cUniversity of Málaga, Spain
dUniversity of Castilla-La Mancha, Spain

Abstract

CORTEX is a cognitive robotics architecture inspired by three key ideas:
modularity, internal modelling and graph representations. CORTEX is also
a computational framework designed to support early forms of intelligence
in real world, human interacting robots, by selecting an a priori functional
decomposition of the capabilities of the robot. This set of abilities was then
translated to computational modules or agents, each one built as a network
of software interconnected components. The nature of these agents can range
from pure reactive modules connected to sensors and/or actuators, to pure
deliberative ones, but they can only communicate with each other through
a graph structure called Deep State Representation (DSR). DSR is a short-
term dynamic representation of the space surrounding the robot, the objects
and the humans in it, and the robot itself. All these entities are perceived
and transformed into different levels of abstraction, ranging from geometric
data to high-level symbolic relations such as ”the person is talking and gaz-
ing at me”. The combination of symbolic and geometric information endows
the architecture with the potential to simulate and anticipate the outcome of
the actions executed by the robot. In this paper we present recent advances
in the CORTEX architecture and several real-world human-robot interaction
scenarios in which they have been tested. We describe our interpretation of
the ideas inspiring the architecture and the reasons why this specific com-
putational framework is a promising architecture for the social robots of
tomorrow.

Keywords: Cognitive Robotics, Robot Control Architectures

Preprint submitted to Cognitive Systems Research - Elsevier January 11, 2019

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

1. Introduction

Service robotics in professional and personal/domestic applications is ex-
periencing strong global growth. Future product visions point to service
robots of higher sophistication, capability and value, such as assistive robots
for supporting the elderly. Cognitive robotics is concerned with endowing
robots with the capacity to plan solutions for complex goals and to enact
those plans while being reactive to unexpected changes in their environment.
To pursue this goal, cognitive architectures for robotics attempt to provide a
reasonable structure where all the functionalities of a working cognitive robot
can be fitted. If the final goal is to implement these architectures within the
upcoming, new service robots, the structure designed will be forced to pro-
vide an adequate response to the demanding requirements imposed by the
human-robot interaction scenario.

Currently, robots working in real scenarios are not usually driven by a
cognitive architecture. In the exhaustive review by Kostseruba and Tsot-
sos [19], the authors that only a few architectures implement multiple skills
for complex scenarios. One of the cited architectures is CORTEX [31, 4].
The main feature of the CORTEX architecture is the existence of a unified,
dynamic working memory that can represent sensory data and high-level
symbols. This Deep State Representation (DSR) is a short-term dynamic
representation of the space surrounding the robot, the objects and humans
in it, and the robot itself. All these entities are perceived and internalized in
the DSR by transforming them into different levels of abstraction, ranging
from the raw data provided by the sensors to high-level symbolic relation-
ships. To be deployed in real scenarios, the DSR has been designed not to
be too demanding on the precision or updating requirements.

Over the last few years, CORTEX has been successfully implemented
within platforms equipped with different actuators and/or sensors, and has
been in charge of achieving different use cases such as attracting potential
consumers to a stand [31] or conducting geriatric tests on elderly people [35].
Although it has been updated over time, the overall structure remains the
same in all cases. This paper describes the global idea driving the successful
design of the CORTEX architecture, which can be summarized in the use of
predictive imagery in a robotics cognitive architecture. With memory being
represented as a shared repository of goals, problems and partial results, and

2

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

modifiable by all agents, our paradigm can resemble the blackboard model.
However, in CORTEX, the objective of this central representation is not only
to be a means for moving/sharing information, but also to give a response
to the three different meta-problems identified by S. Wintermute [36]: Phys-
ical symbol grounding, perceptual abstraction and irreducibility. To achieve
these goals, the DSR is also used to estimate how the current state changes
when something perturbs it. Thus, it can serve as an efficient predictive
mechanism [16], which allow the architecture to quickly look for alternative
courses of actions.

The rest of the paper is organised as follows: Section 2 describes the struc-
ture of the CORTEX architecture and of the DSR. The aim is to provide a
clear snapshot of CORTEX that allows the comparison with other black-
board or Global Workspace Theory (GWT)-based approaches in Section 3.
As mentioned above, the core of CORTEX is the existence of the DSR. This
graph representation is not only a blackboard, but a dynamic structure able
to integrate the multiple perceptions and facets of the same entity, and also
able to move this entity towards the close future. The previously mentioned
meta-problems that this inner world must address are also described in Sec-
tion 2. Section 4 introduces some of the most frequently used agents present
in the instantiations of CORTEX, which are briefly described in Section 5.
This Section describes our experimental validation of CORTEX and collects
results obtained in four scenarios of application. Based on these experiences,
Section 6 discusses the main properties of CORTEX. Conclusions and our
current on-going efforts to improve the architecture are detailed in Section 7.

2. The CORTEX Architecture

Briefly, we can describe CORTEX as a collection of agents that coop-
erate to achieve a goal. Thus, the deployment of a CORTEX architecture
within a specific use case and robot starts by selecting an a priori functional
decomposition of the capabilities of the robot. They are then translated
to computational modules or agents. These agents can be anywhere in the
reactive-deliberative spectrum, but each of them is in charge of a basic robotic
functionality affecting a specific domain. Some agents transform sensor in-
formation into internal objects. Other agents generate actions activating the
robot effectors and compute plans to satisfy the human requests or to react
to a goal. All of them interact through the DSR. This graph represents the
current state of the robot and its environment, and is created and updated

3

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

by the agents according partly to each agent’s internal dynamics and partly
to the current plan in execution. Figure 1 depicts the overall organization
of CORTEX. The domain-dependent modules might not necessarily be the
same as those shown in the figure. Moreover, the complexity of these mod-
ules typically means that they will be internally organised as networks of
software components. In the following sections, we provide further details
about the DSR structure, the degree of closeness that the DSR provides be-
tween abstraction and imagery, and how the DSR evolves to reach a goal.
Section 4 will provide a description of the most common agents employed in
CORTEX.

Figure 1: Overall organization of CORTEX. The architecture can be depicted as the
confluence of a set of agents that communicate through a shared representation of the
robot’s internal state and its environment. Each agent can contribute by adding, modifying
or removing elements in the DSR. Missions are processed into plans that are incorporated
as intentions in the robot’s node. Once in the DSR, all agents start working to make the
represented world match the pending intention.

4

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

2.1. Deep State Representation
Deep State Representation (DSR) is a multi-labelled directed graph which

holds symbolic and geometric information within the same structure. Sym-
bolic tokens are stated as logic attributes related by predicates that, within
the graph, are stored in nodes and edges respectively. Geometric information
is stored in special edges as 4 × 4 homogeneous matrices and in symbols as
properties. Figure 2 shows a simple example. The person and robot nodes
are geometrical entities, both linked to the room (a specific anchor providing
the origin of coordinates) by a rigid transformation. However, at the same
time as we can compute the geometrical relationship between both nodes
(RT−1×RT ′), the person can be located (is with) close to the robot. Further-
more, an agent can annotate that currently the robot is not speaking, so it is
also used to convey symbolic information. There is no a rigid format for the
data that can be stored on the nodes of the DSR. For instance, they can in-
clude pointers to images, point clouds, or complete sentences (text files). As
mentioned, it stores all the information that different agents need to provide
a coordinated response.

As a hybrid representation that stores information at both geometric and
symbolic levels, the nodes of the DSR store concepts that can be symbolic,
geometric or a mix of both. Metric elements describe numerical quantities
of objects in the world that can be structures, such as a three-dimensional
mesh, scalars, such as the mass of a link, or lists like revision dates, for
example. Edges represent relationships between symbols. Two symbols
may have several kinds of relationships but only one of them can be ge-
ometric. The geometric relationship is expressed with a fixed label called
RT . This label stores the transformation matrix (expressed as a Rotation-
Translation) between the two. Therefore, the DSR can be described as the
union of two quivers : the one associated with the symbolic part of the rep-
resentation, Γs = (V,Es, ss, rs), and the other related to the geometric part,
Γg = (Vg, Eg, sg, rg). A quiver is a quadruple, consisting of a set V of nodes, a
set E of edges, and two maps s, r : E → V . These maps associate with each
edge e ∈ E its starting node u = s(e) and ending node v = r(e). Sometimes
we denote by e = uv : u → v an edge with u = s(e) and v = r(e). Within
the DSR, both quivers will be finite, as both sets of nodes and edges are
finite sets. A path of length m is a finite sequence {e1, ...em} of edges such
that r(ek) = s(ek+1) for k = 1...m − 1. A path of length m ≥ 1 is called a
cycle if s(e1) and r(em) coincide. According to its nature, the properties of
the symbolic quiver Γs are:

5

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

room

person robot

speaking

RT ′
RT

RT−1 ×RT ′

is with

is not

Figure 2: Unified representation as a multi-labelled directed graph. Edges labelled as
is with and is not denote logic predicates between nodes. Edges starting at room and ending
at person and robot are geometric and they encode a rigid transformation (RT ′ and RT
respectively) between them. Geometric transformations can be chained or inverted to
compute changes in coordinate systems.

1. The set of symbolic nodes V contains the geometric set Vg (i.e., Vg ∈ V)

2. Within Γs there are no cycles of length one, that is, there are no loops

3. Given a symbolic edge e = uv ∈ Es, we cannot infer the inverse e−1 =
vu

4. The symbolic edge e = uv can store multiple values

According to its geometric nature and the properties of the transformation
matrix RT , the characteristics of the geometric quiver Γg are:

1. Within Γg there are no cycles (acyclic quiver)

2. For each pair of geometric nodes u and v, the geometric edge e = uv ∈
Eg is unique

3. Any two nodes u,v ∈ Vg can be connected by a unique simple path

4. For each geometric edge e = uv = RT , we can define the inverse of e
as e−1 = vu = RT−1

Thus, quiver Γg defines a directed rooted tree or rooted tree quiver [17]. The
kinematic chain C(u,v) is defined as the path between nodes u and v. The

6

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

equivalent transformation RT of C(u,v) can be computed by multiplying
all RT transformations associated to the edges on the paths from nodes
u and v to their closest common ancestor w. Note that the values from
u to the common ancestor w will be obtained by multiplying the inverse
transformations. One example of computing a kinematic chain is shown in
Figure 2.

2.2. Imagery within the DSR

It would be pretentious to say that the idea of integrating abstract and
concrete concepts into a unique representation is a novel contribution in
CORTEX. Apart from surveying previous work, Samuel Wintermute pro-
vided a meticulous analysis of the problems inherent to building an abstract
representation of real world entities [36]. Basically, these problems can be
summarised into (i) physical symbol grounding, (ii) perceptual abstraction,
and (iii) irreducibility. The first is related to how to ground symbol tokens to
real world entities, i.e. to percepts that can have a high dimensionality and,
unfortunately, can vary under different conditions and with time. The prob-
lem is even more complicated, as different tokens could refer to the same real
world entity. The perceptual abstraction problem is related to the difficulty
of developing a single perception system able to induce appropriate abstract
representations in any task the robot can address. Finally, the irreducibil-
ity problem is related to the resistance of some percepts being abstracted
at all. Figure 3 depicts the scheme proposed by S. Wintermute for dealing
with these problems. The architecture maintains two representations of the
problem state: the abstract one, denoted by Ra, and the concrete one, Rc. In
this architecture, the low-level perception, Pc, is provided to Rc. This Rc is
not a strict representation of Pc, as it can be manipulated. This is a central
issue in the architecture: the Rc representation can be manipulated through
high-level actions Aa and, then, transformed into Pa. In the architecture,
this happens regardless of whether the contents of Rc are real (from Pc) or
imagined (after Aa).

The architecture in Figure 3 introduces a non-symbolic layer of concrete
representations that involves the capacity to simulate the outcome of actions
as executed by the robot in the real world. This simulation involves the
generation of synthetic perceptive information that is fed back into the sys-
tem, and is referred to as imagery. This layer is accessed by the abstraction
layer and can provide geometric computations and continuous controllers that
would, otherwise, be too detailed in time and space for an abstract symbolic

7

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Figure 3: The imagery architecture by Samuel Wintermute [36].

representation. Imagery is used to compute pieces of information that are
naturally expressed in continuous, metric domains. It is important to note
here that alternate states are already imaged in the symbolic abstract domain
using, for instance, a planning algorithm. Conversely, imagery provides sim-
ulation in concrete representations and, in doing so, mitigates the perceptual
abstraction and irreducibility problems previously stated. Furthermore, it
provides the abstract symbolic representations with complementary expres-
sive power by linking task-independent symbols to task-dependent computa-
tions. The scheme depicted in the figure illustrates the typical organization of
a three-layer architecture: there exists a strict separation between the high
and low–level modules, which is interfaced by the concrete representation.
This requires an a priori definition of these two domains, a delimitation that
is not always easy to address. Moreover, this separation prevents a certain
module being able to access data that is not available at its own–level, i.e.
complex agents could require to access to both kinds of data.

Alternatively, Figure 1 shows the CORTEX proposal. Here, the DSR in-
cludes geometric data that can be accessed, such as kinematics chains or as a
complete tree, to obtain a concrete geometric representation of the problem
to be solved. This concrete representation can be updated and locally manip-
ulated by the agents in the architecture. For instance, the Grasping agent
(see Shelly robot at Section 5.4) has to plan safe trajectories toward the ob-
jects. While this task could be difficult to address without using a geometric
representation of the world, thanks to DSR, the Grasping agent can use a
local copy of the geometric data to simulate hundreds of possible courses of
actions in super real-time. The best trajectory is then selected and executed
using a generalised inverse kinematics algorithm. The Navigation agent is

8

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

another good example of the use of these geometric data. If the robot has to
move to a desired location, a path is required to safely drive to that target
location. The Navigation agent, again, uses a local copy of the DSR to plan
the motion of the robot, testing several candidate paths before selecting the
best one. Furthermore, the use of a DSR including data at different abstrac-
tion levels makes it possible to execute more complex predictions about the
world state. A planner working with a pure symbolic representation may be
aware of the connections between states and symbols to infer the expected
results of an action or to trace a plan. For instance, in the situation shown
in Figure 4, the robot wants to ask the patient a series of questions. It can
plan to move towards the patient and ask her to sit down on chair 2. How-
ever, as the DSR also includes lower levels of abstraction (all these nodes
store, among other attributes, the position of the corresponding real entities
on a bidimensional map), it can introduce physical constraints and relations
in these computations. When moving towards the patient, it will navigate
very close1 to person 1 and person 2. These entities can be accessed and
considered as ’obstacles’ by the Navigation agent without employing addi-
tional interfaces or simulation components. However, the representation also
informs that they are people. The response to an unexpected event such as
the sudden movement of a person is reactively provided by the agents in-
volved (e.g. the Navigation or the Person agents, see Section 4.5), which
maintain the direct contact with the outer world via sensors and actuators.
Simultaneously, this action is reflected in the DSR, generating, if needed, the
posterior response of the slower deliberative agents (e.g. by changing the tra-
jectory to avoid the person, or to politely ask her to move out of its way). If
the decision is to change the path, this response can now be simulated before
it is performed, as the imagery architecture by S. Wintermute proposes.

The management of the DSR is performed using a software library which
provides the basic operations needed for all agents: adding or removing a
node, adding or removing an edge, and modifying the attributes on a node
or an edge. When an agent introduces or removes an item from the rep-
resentation, the DSR is considered to have suffered a structural change. If
this is not the case, the structure of the DSR remains unaltered and it has
only been updated. The predicates that can be represented on the DSR are

1This qualitative token could be added to the DSR by the Navigation agent, using
geometric information captured on-line

9

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Figure 4: A simplistic representation of a specific situation for the DSR. Only some rela-
tionships are considered (see text for details).

not restricted to a specific vocabulary. Depending on the use case, we have
chosen one or another database. For instance, when the robot must manip-
ulate objects, the physical aspects are more relevant and the descriptions
gain in details. Obviously, when the same agent is used within two different
scenarios, the terms and substructures employed to encode the information
are reused.

2.3. Reaching a goal within CORTEX

The execution of a task in CORTEX can be understood as a perturbation
of an otherwise resting situation. A rough description of the dynamics would
start when a new request enters the system such as, for example, a human
utterance. The Dialogue agent processes the raw data and builds an internal
object that is injected in the DSR as the robot’s new desire. The new state
of the DSR is propagated back to all agents but it is the Executive, a key
agent, that is in charge of the execution monitoring, the one that processes
the change as a new planning request. This request is usually interpreted
as the need to change the world from its current state to a new one (see
Figure 5 for a simple example showing the basic dynamics of goal pursuing).
To do this, the Executive uses the available domain theory and a planning
algorithm to explore possible sequences of actions and select the one that

10

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

ends with the world (and the robot) in the desired final state. The plan is
injected as a property of the symbol corresponding to the robot in the DSR
graph, and is propagated back to the agents. Each agent selects from the
updated graph the information it can interpret as a local goal, and starts
its activity. When the final state is reached, the task is accomplished and
the whole system goes back to its restful state. In pursuing their goals,
perceptual and behavioural agents can inject their own sub-goals in the DSR
for the Executive to compute a plan for them. The interleaving dynamics
facilitate for a reactive-deliberative behaviour, in which top-down plans and
bottom-up reactions to unforeseen situations can cooperate.

Figure 5: Example of the transition from an initial state triggered by a mission request.
The mission is transformed into a goal which is formally represented as a sub-graph that
shows the changes that have to be applied to the current state. In this case the required
change is the inclusion of the reach predicate between nodes 1 and 3, meaning that robot
1 should be in reaching distance of table 3. The planning agent transfors the goal into
an executable plan that is injected into the DSR. All agents are notified and the execu-
tion starts. If the new state (or states in case of a longer, more realistic plan) cannot be
reached, the planner activates and introduces a new plan overcoming the current limita-
tions. Finally, when the required state is reached, the mission is fulfilled and the current
state becomes the initial state again.

All agents are connected to the DSR through a specific component, which
includes the code required for sending modifications or updates, or for receiv-

11

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

ing changes in the global state. The internal execution of these components
can be summarised by Algorithm 1.

Input: action from the Executive core
while (1) do

subscribe to DSR updates;
process { action };
if DSR changes then

publish new DSR;
end

end
Algorithm 1: High-level execution loop of an agent within CORTEX

CORTEX has agents for navigation, manipulation, person perception,
conversation, planning, and monitoring, among others. The most relevant
ones are briefly presented in Section 4. These agents interact with the DSR
at different levels of abstraction, adding, removing or updating symbolic
concepts or low-level geometric details. One of the main benefits of using
cognitive architectures to program robots is the reuse of proven functionalities
and a well-defined method to express each new experimental situation. In
CORTEX, these functionalities are encoded in agents and they build on many
years of continuous effort in many of the different AI fields needed to build
a robot. We provide further details about this issue in Section 5.

3. Related work

To provide control and monitoring within a framework where several
agents interact to satisfy certain goals, the blackboard model proposes an
architecture consisting of:

• Independent agents, which work on their portion of the problem, deal-
ing with their data, and writing their results in the blackboard.

• A control module, in charge of choosing the agents whose responses
must be executed.

• The blackboard, the common solution space shared by the agents.

12

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

In this scheme, the blackboard represents a shared repository of goals, prob-
lems and partial results which can be accessed and modified by the agents
running in parallel. The paradigm has been modified for working well in
situations where many sources of information must be combined to solve
complex real-time tasks. In the AIS architecture [14], two levels are differ-
entiated: a cognitive and a physical level. The blackboard scheme is used
as an implementation of the cognitive layer with a central working memory,
where all behaviours (methods) write (perceptual inputs or previously exe-
cuted behaviours) and to which all behaviours are connected to be triggered
when certain conditions are fulfilled. The CERA-CRANIUM model [2] was
inspired by the Global Workspace Theory (GWT). CERA is an architecture
structured in layers, which uses the blackboard-based model provided by
CRANIUM. Within CRANIUM, global workspace dynamics are modelled as
an information processing system, whose input is the raw sensory data and
whose output is a stream of artificial qualia (integrated multimodal represen-
tation). The filtering and integration processes endowed within this system
are implemented as a service-oriented scheme. The processors in CERA use
the workspace for sharing messages. Each piece of content (percepts) sent to
the workspace is temporarily stored and accessible to any processor. Like
CERA-CRANIUM, the ARCADIA architecture [3] is internally organised to
drive attention (i.e., computational resources) to a specific focus of atten-
tion. It is also organised following the guidelines of the GWT. Low-level
processes are encapsulated in modules called components, which can be de-
signed without theoretical restrictions. Each component communicates its
accessible content and the focus of attention through interlingua, a reposi-
tory of structured elements organised into topics (worlds). These elements
are short pieces of information, consisting of a unique identifier, argument
lists, and a symbolic name for the collection of arguments. Within the GWT-
based architecture CHARISMA [9], the relatively small chunk of information
that is currently deemed most important is broadcast to a host of processes,
which work together to extract information, make associations, decompose
problems, etc. The knowledge shared by these processes is organised as a
semantic hyper network (SHYNE). SHYNE is composed of nodes (basic and
complex) and links, characterised by a unique identifier. These identifiers
are passed between processes. When a process updates a node and a certain
threshold is exceeded, a new process can be automatically triggered. Using
a different scheme, the CoSy proposal [33] divides the architecture into sub-
architectures, which have specific local, working memories at their disposal.

13

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Each sub-architecture contains a number of processing components which
share information via their internal working memory. These local working
memories are also writeable by an external single global process (the so-called
goal manager).

Although the deep structure of the representation in the DSR may re-
semble the map models generated on the CoSy architecture [33], there are
significant differences. On the one hand, CORTEX maintains a unified rep-
resentation for all agents. Agents’ internal memories are only used locally
but all agents have access to the wider context representation created collab-
oratively among them. This point is important because if agents were to be
designed as informationally encapsulated modules, as is partially developed
in CoSy, then only the goal manager would have access to their outputs and
would be the only one able to generate all the behaviours that need infor-
mation coming from two (or more) different agents. CORTEX offers a more
flexible scheme, allowing a sort of porous modularity in which agents have
access to the representation maintained by all other agents working together.
On the other hand, the DSR does not present the strict separation between
layers (e.g., metric map, navigation map, topological map, conceptual map)
which characterises the CoSy architecture, and is also present in SHYNE. In
the DSR, geometric and symbolic links are established between any nodes
on the graphical model. In other words, there are not restrictions on linking
geometric or symbolic concepts related to different topics. For instance, a
person node can be linked to a location node, which is also linked to the robot
pose, being able to determine the geometric relative position, but it is also
possible to represent that the robot is not currently speaking (see Figure 2).

4. CORTEX agents

The outline of the current structure of CORTEX is illustrated in Fig-
ure 1. To facilitate the implementation of CORTEX instances, coding is
implemented on top of the RoboComp framework [24] which now includes a
powerful code generator based on DSL descriptions, including communication
parameters. The generated components are ready to run, and the generator
can create agents with all the auxiliary functionalities, such as communica-
tion with the DSR, logging, debugging, user interface, binary building and
documentation. The generated code is ready to be completed with the actual
agent-specific features.

14

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

This Section provides a brief description of several functionalities that
have been successfully implemented using CORTEX as agents. Other agents,
such as those involved in the recognition of human emotions [7] or those
more recently developed in charge of socially acceptable navigation policies
in presence of groups of people [34], are only mentioned. As we show in
Section 5, most of these agents have been reused in the different use cases.

4.1. Localization

Localization and mapping is the basic functionality that allows the robot
to keep itself situated with respect to a known representation (map) of the
environment. This agent combines two type of maps, an occupancy grid cre-
ated by the SLAM algorithm gmapping [12], and a continuous map holding
the geometric entities that exist in the environment. This second map is con-
tained in the DSR representation and updated every time an agent changes
it. The entities in this second map may belong to two different categories.
The first category include fixed entities such as walls or doors. They are
manually inserted by the users in an off-line process, defining a map with the
distribution of rooms. This map is put in correspondence with the occupancy
grid using a graphic tool created for this purpose. The second category of
entities in the map stored in the DSR includes common objects, robots, and
people. These entities are inserted into the specific deployment of CORTEX
by the different agents. For instance, people are inserted by the Person agent
(see Section 4.5). The ability to provide an intuitive framework for fusing ge-
ometrical information coming from different sources is one of the additional
advantages of the DSR.

4.2. Navigation

Navigation provides the capability of global and local path planning and
the robot displacement control. Whenever a step of the plan requires the
robot to move to some location in the world, this agent takes control. It
computes an obstacle-free path to the target and drives the robot through
it, handling unforeseen obstacles. To do this, the agent uses three internal
processes (components) that run concurrently. The first is a Probabilistic
Road Map (PRM) planner [18] that uses a learnt graph of the free space
to search for a path free of obstacles from the robot location to the target
(see Figure 6). If the graph has more than one connected region or does
not have a direct line of sight from the robot (or the target) to the graph,
this component uses a Rapidly-exploring Random Tree (RRT) planner [20]

15

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

to close the path. Once this raw path is found, it is shared with the other two
components. The second component is connected to a laser sensor and takes
the path to project it inside the laser field (reactive navigation). The aim is
to check that the path remains free as perceived in real-time by the range
sensor. It applies a variation of the elastic band algorithm [29] as explained
in [13]. The current path (elastic band) is deformed according to a set of
dynamic equations that generate a virtual force exerted by the objects.

Figure 6: Graphical representation of the Navigation agent showing the PRM, the selected
path and the projection of the path on the laser field.

Deviations from the map and dynamic obstacles can be easily avoided
using this technique. To guarantee the feasibility of the path, the robot is
virtually moved along the path checking whether its shape falls inside the
free laser area. The third component implements a controller that drives the
robot along the path. To achieve a smooth response it integrates a set of
coupled equations combining variables such as the perpendicular distance to
the path or the angle that the robot forms with the tangent to the path,
curvature or current speed (see [13] for details). This scheme resembles the

16

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

global CORTEX architecture, with the path (elastic band) taking the role of
the DSR. The interaction between local and global path planning relies on
a mental construction, the path, which is dynamically adapted to upcoming
circumstances in the world.

4.3. Dialogue

Dialogue refers to the capability of the robot to maintain conversations
with humans. Most of these conversations will be commonly limited to a
list of human commands the robot must understand and internalize. The
agent in charge of internalizing the dialogues can propose changes in the in-
ternal representation by means of the DSR. The robot must play an active
role in the conversation guided by symbolic edges concerning its interlocutor.
We can identify two stages involved in the speech recognition process: tran-
scription and comprehension. Transcription can be carried out using third
party services, like the Google speech recognition system, which allow input
speeches to be successfully transcribed in different languages. In order to in-
ternalize the information retrieved from these transcriptions, they are parsed
in order to extract elements such as entities, locations, or relevant semantic
terms, using Natural Language Processing (NLP) techniques, like semantic
role labelling, using toolkits like SENNA [8] or NLTK [21]. The versatility of
CORTEX allows the comprehension stages to be implemented using differ-
ent techniques. For instance, we may find a Bayesian classifier trained from
the relevant terms following a Bag-of-Words approach. Other rule-based ap-
proaches have also been used to obtain a semantic representation of the input
phrase, usually known as CFR (Command Frame Representation).

4.4. Manipulation

Manipulation is one of the most difficult skills in current social robots.
For a mobile manipulator, i.e., a mobile base with arms, the best approach
seems to be that of using whole body inverse kinematics and dynamics ap-
proach [10]. Although some initial work is being done in this direction, the
CORTEX’s Manipulation agent is separated from the previously described
Navigation agent. The coupling between the control of the robot’s base and
its arm(s) is done through the DSR structure and in some situations this
can be a source of problems. For example, in precise manoeuvres where the
robot has to grasp an object on a table, it might need to move the body
sideways in order to achieve a safe grasping orientation of the hand. With
a whole body, unified approach, inverse kinematics can compute a minimum

17

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

displacement of both the body and the arm, which solves the problem. With
separated controllers, it is easy to oscillate between small corrections coming
from the body and the arm, each triggered by a limiting situation of the
other. However, in the experimental situations we describe below, and in
many others of similar complexity, the current separation into two agents is
a good enough approach. Manipulation in CORTEX follows a similar schema
to Navigation. A trajectory planner computes a path free of collisions from
the current pose to a target position close to the object. This movement is
to be executed blindly, like a fast saccadic movement of the eye.

Figure 7: Graphical representation of the robot with the inverse kinematics grid. Each
point in the grid represents a Cartesian pose, translation and orientation, where the angle
values that correspond to this pose are stored.

The goal is to place the hand near the object and prepare it for a second
phase that is driven by visual feedback. To compute this first trajectory
the agent relies on an explicit, discrete representation of its arm’s inverse
kinematics. This function is stored as a grid in 3D space occupying the
reachable volume of the arm (see Figure 7). Each cell in the grid holds
a set of preferred orientations for the hand at that location, providing the
inverse kinematic map Cj = IK(ci, ok) where i runs through all the cells
and k through the orientations in each cell i. To guarantee an initial free
path, the agent uses its access to the robot’s RGBD camera to compute the
intersection between the grid and the cloud of 3D points provided by the
sensor. Cells in the grid intersecting with points in the cloud are assumed to
be in collision with objects in the world (a table, for instance) and are marked

18

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

as non-navigable. The agent now searches the grid for a free path and shares
it with a second module that drives the arm through the way points using a
generalised inverse kinematics algorithm based on the Levenberg-Marquardt
non-linear optimization method. Once the arm reaches the target position,
the agent visually localizes the hand and the target in the same image frame.
From this point, the agent starts a visual-servo approximation where arm
calibration and object estimation errors are cancelled out as both elements
get closer to each other [13]. When a final grabbing position is reached, the
fingers are closed around the object and the transfer concludes.

4.5. Person detection and tracking

Person detection and tracking is a basic functionality for social robots.
This task may rely on RGB-D sensors, omnidirectional cameras, or even
external agents. In our case, we use Kinect or Xtion cameras placed in
the robots. The standard libraries used to detect human skeletons are not
sufficiently constrained and may produce some erroneous interpretations, as
Figure 8 shows. The Person agent uses a model-based approach that filters
the raw skeleton data through the kinematic model of a human torso. This
post processing step increases precision and removes false positives [6].

Figure 8: Person detection using a model-based approach. The skeleton obtained by the
OpenNI library fails to estimate the real length of the arm, which is corrected by the fitted
human model that is forced to respect kinematic constraints.

Once a person has been detected, the DSR is updated by a modification
proposal to the Executive agent. These structural modifications introduce
new elements in the graph, namely a node of type person for each human
detected and additional nodes and RT edges to complete each person’s parts.
Meanwhile the person remains within the field of view of the camera, the

19

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Person agent tracks his/her movements and a unique identifier is maintained
in the DSR. If the person is suddenly lost and redetected, a new identifier
will be assigned in the DSR. However, once a human is in the DSR, it is
visible by all the agents, and the Person agent can update the DSR with
an image of the face of the person. We have tested agents that use this
image for face emotion recognition, face-based gender and age estimation
[27] or face recognition [11]. When the Face recognition agent is present,
the identification of the human is based on the results that this agent inserts
in the DSR –a specific attribute associated to the node person. When the
Face emotion agent is present, the person node can be attributed with the
recognised emotion [7].

A case of special interest occurs in the relatively new area of social naviga-
tion, where the Navigation agent is required to interpret obstacles in a differ-
ent manner depending on wheter they are humans or inanimate objects[34].
In the first case, it must obey some additional rules that involve, for example,
stopping and asking for any commands, or performing an avoidance manoeu-
vre with extra clearance space. The human detected by this agent is visible
and accessible to the Navigation agent at a very low coding cost. This is
one of the main advantages of using a software architecture that provides,
among other things, a versatile communication mechanism.

4.6. Executive

Robots are often expected to be able to achieve more than a small set
of different missions. Generating and supervising the corresponding plans
using automated planning techniques is generally faster to develop and more
robust than embedding them in state machines. In CORTEX, these tasks
are handled by an Executive module in charge of invoking an automated
planner and monitoring the execution of the plans, ensuring that the rest of
the agents have access to the current plan. The current implementation uses
a graphical planning domain definition language named Active Graph Gram-
mar Language (AGGL) which can later be transformed to PDDL (Planning
Domain Definition Language) if desired. These domains are used to describe
the transformations that can be implemented in the world model (see Fig-
ure 9). The language and the planner used were proposed in [25].

Some of these transformations are associated to behavioural or perceptual
actions, but they can also be deliberative actions in which no physical action
is involved (e.g., the manipulation agent is in charge of marking the appro-
priate table to leave the objects in the robot’s gripper, an action that has no

20

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Figure 9: Transformations have left-hand and right-hand sides. The left-hand side de-
scribes the preconditions for the transformation to be executed, whereas the right-hand
side describes how the pattern in the left-hand side would change. The action at hand
describes how the world model is modified when the robot moves from one room to an-
other. Note that variable identifiers are used in rule definitions so that they can be used
with any set of symbols satisfying the conditions.

direct physical consequence). Such a domain is used by the planner to find a
sequence of actions that would take the world model from the current state
to another one in which the goal is satisfied. To avoid wasting computational
time, instead of finding a plan with every modification made to the world
model, before querying the planner for a new plan, the Executive checks
first wheter the current plan (or a version with the first actions removed) is
still valid.

5. Use cases with CORTEX

The success of a robotic architecture depends on its capability for pro-
viding robots with skills for performing complex and heterogeneous tasks. In
the following, we introduce some robotic developments relying on CORTEX.
One of the most promising features of CORTEX is its adaptation to differ-
ent robots and objectives. Indeed, three different research groups belonging
to different Universities (UMA, UNEX, and UCLM2) opted for CORTEX
as their architecture. These groups have actively collaborated in different
research projects, but they differ in their skills, and more significantly in
their physical platforms. Specifically, UMA and UNEX have traditionally
designed and assembled their own robots [7], while UCLM has historically
worked with standard platforms [26].

2Universities of Málaga (UMA), Extremadura (UEX) and Castilla La-Mancha (UCLM)

21

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

5.1. The welcome home situation

The objective of this use case [11] is to have a social robot capable of wel-
coming visitors in an indoor environment. This use case involves a standard
robotic platform (a PeopleBot), and an external Velodyne sensor. As soon
as a new visitor is identified by the Velodyne sensor, the robot approaches
and welcomes him or her. Then, the robots offers itself to accompany the
visitor to a staff employee or to find an object in the environment. After a
short dialogue, the robot performs the desired action and is ready to wel-
come a new visitor. The use case is shown in Figure 10. It must be noted
that it illustrates the ’good’ execution of the plan. Unexpected events (e.g.,
losing the person, low-battery detection) can occur during the execution of
any trial, but the robot adapts the plan to the new situation. Figure 12.a
shows the robot while performing this use case.

Figure 10: Overall scheme of the use case for the welcome home scenario.

The use of CORTEX was essential for the development of the welcome
home situation. The DSR was successfully used to integrate the data sensed
by the robot with those obtained from the Velodyne sensor. In addition to

22

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

a problem domain definition, the use case requested the inclusion of agents
for people detection, user recognition, localization and mapping, navigation,
and speech recognition and generation. Some of these were briefly presented
in Section 4.

5.2. The advertisement robot scenario

This experiment involves an advertisement robot, Gualzru, built to ap-
proach people, and try to convince them to visit a panel where new products
are exhibited for marketing purposes [31]. The conviction stage involves
recognising the age and gender of the interlocutor. This information is ex-
ploited to generate user-oriented dialogues, which would increase the proba-
bility of convincing the human to go to the panel.

The robot Gualzru (Figure 13.a) was specifically designed and built for
advertising purposes. In this case, some of the requested tasks were solved
using third-party libraries or SDKs. For instance, the speech recognition
relies on the Microsoft Speech SDK, which allows the use of grammars trained
from a specific corpus. These corpora can incorporate domain specific words
(e.g., the name of products to be advertised), which may be mandatory to
properly understand the human speech. The Microsoft Speech SDK was
integrated in Gualzru by adding a CORTEX agent running on a Windows
computer. This speech recognition agent, in conjunction with other agents for
skeleton detection and face identification, is directly connected to a Kinect
sensor, and helps to reduce the workload of the main computer thanks to
a distributed processing scheme. In any event, the Dialogue and Person

detection and tracking agents are those presented in Section 4. This
example shows that the adoption of the CORTEX architecture simplified
the overall integration of all the different modules, as well as the problem
definition thanks to the use of the DSR.

The execution of the use case in real scenarios was evaluated through
questionnaires administered to a representative group of people after inter-
acting with the robot. The questionnaire uses Likert scale items, although
it uses six levels, from 0 to 5, to remove the neutral option (middle point)
[30]. Table 1 shows the results for the questions related to the performance
of the cognitive architecture: Specifically it includes a collection of questions
arranged in three blocks (conversation, interaction and general sensations).
They consider the participation of Gualzru in two fairs in Madrid or Málaga
(Spain) in December 2014 and March 2015, respectively. Contrary to the

23

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Table 1: Questionnaire results (76 tests) for a subjective evaluation of a human-robot
interaction experiment

Question x̄ σ

Did you understand what the robot said? 4.31 1.17

Do you think the robot understood you? 3.76 1.23

Did the robot get blocked? 1.39 1.23

Was the interaction natural? 3.04 1.27

Was the conversation fluent? 3.11 1.21

Did the robot seem to be tele-operated? 1.23 1.49

Was the touch screen useful for the interaction? 4.17 1.28

Did you enjoy the experiment? 4.61 0.63

Would you like to repeat? 4.52 0.72

Would you recommend it to other people? 4.73 0.61

results reported in [30], these results were obtained using the CORTEX ar-
chitecture. As depicted in the Table 1, the subjective experience of people
interacting with the robot was satisfactory. The robot proved to be a good
added value to attract people to the advertising panel. In general, the overall
system usage was quite reliable and robust. The interaction was evaluated
as natural and fluent, despite there being more than 20 software components
running within CORTEX.

5.3. The CLARC scenario

Comprehensive Geriatric Assessment (CGA) procedures evaluate the de-
gree of autonomy of elderly people. CGA procedures involve subjective in-
terviews, but also include physical and cognitive tests, that could be au-
tonomously performed by a robot. The CLARC proposal3 was selected
within a challenge proposed by the ECHORD++ EU project to automatize
the execution of these tests. The software architecture of the platform is cur-
rently an implementation of CORTEX. This allows to encode the whole CGA
session using Automated Planning, which works over symbolic tokens in the

3http : //echord.eu/essential grid/clarc/

24

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

DSR to autonomously plan, drive, monitor and evaluate the session. Addi-
tionally, in parallel, the geometric information allows the robot to navigate,
detect people and track their movements, and to dialogue with the users.
The CLARC platform (Figure 13.b) was developed by Metralabs GmbH. For
localization and navigation, it uses the CogniDrive software running over
the MIRA middleware4. This is not a problem for CORTEX, and a specific
bridge has been coded to connect these external agents to the DSR. Figure
11 shows the instantiation of CORTEX on the CLARC robot. Surround-
ing the DSR, we can find seven agents and the WinKinectComp agent, the
same module presented in the Gualzru robot. Apart from the aforementioned
CogniDrive agent, the high-level planning is provided in CLARC by a sec-
ond external agent: the PELEA one [1]. Significantly, there is no Executive

agent in CLARC; being the deliberative response coordinated by the PELEA

agent through annotations in the DSR (see [35] for further details).
The CLARC robot is able to navigate to a specific room from the charg-

ing room when a doctor calls it on a dedicated web application. Once in the
room, the robot is able to introduce itself to the patient and their caregiver
and conduct the desired sequence of tests. Currently, CLARC is able to
autonomously perform three CGA tests: Barthel, Minimental, and GetUp-
and-Go [35]. The first ones are questionnaire-based tests, where the major
challenge is to design an interaction scheme that allows the engagement be-
tween the robot and the elderly person. The verbal channel has been aug-
mented with a touch-screen and an external tablet-based device. Responses
acquired from all these channels are easily fused using the DSR, as all of
them are attributes of the same conceptual entity. The GetUp-and-Go test
requires the robot to track the movement of the patient while performing
specific physical exercises. The sequence of tests and their parameters can
be adjusted on the fly for each user. Carefully designed robot-clinician in-
terfaces allow the expert to check sessions, analyse results or modify data
using a web-based application. Although the project is not yet finished, the
current evaluations are showing the robustness of the architecture [35].

5.4. The Bring me X scenario

This final use case is performed by the robot Shelly, who occupies an
apartment adapted for people with limited personal autonomy. The robot

4http://www.mira-project.org/joomla-mira/

25

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Figure 11: Instantiation of CORTEX on the CLARC robot [35]

attends requests from humans, who ask the robot to bring them objects
located on tables in the apartment (Figure 12.b).

The execution of this use case requires coordination across all agents in
the architecture: the Localization agent is required for the robot to know
the relative position of the objects from its point of view; the Navigation

agent makes the robot change rooms and approach the objects and the per-
sons with whom the robot needs to interact; the Dialogue agent is used
to interpret the commands from the humans; the Person detection agent
is required to detect the persons and obtain their pose; the Manipulation

agent is used to grasp the objects and transfer them to the humans. In a
public demonstration, on September 2016, Shelly was able to successfully
deliver the requested object to different persons 40 times in a row, prov-
ing the robustness and maturity of the underlying hardware and software
architecture.

26

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

(a) Welcoming (b) Bringing an object

Figure 12: Robots working in the welcoming and Bring Me(x) scenarios.

(a) (b)

Figure 13: (a) Gualzru and (b) CLARC working in their corresponding scenarios

27

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Table 2: Usage of the same agents in different scenarios

Agent Welcome Advertisement CGA-tests Bring me

Localization yes yes no yes

Navigation yes yes no yes

Dialogue yes yes yes yes

Manipulation no no no yes

Person detection & tracking yes yes yes yes

Executive yes yes no yes

6. Discussion

In the previous section, four use cases involving different robots and sce-
narios were described. The success of all four experiences was possible, de-
spite a limited amount of human and material resources, because of the
reusability provided by the CORTEX architecture. For instance, Table 2
provides a snapshot of the usage of the agents described in Section 4 in the
use cases presented in Section 5. As mentioned in the description of these
use cases, other agents that solve specific tasks that are not listed in this
table. Despite the use cases and hardware platforms (including sensors or
actuators) being very different, the algorithms built on the agents have been
reused. Obviously, this usage is conditioned by the platform itself and the
final needs of the robotic application. In this sense, it can be noted that the
Manipulation agent is only integrated in the Bring me scenario.

However, Table 2 shows that most of the code was reused. This allowed
the efforts to be directed to extend and modify the domain knowledge in
order to capture the specifics of each scenario. In this section we argue in
favour of using a cognitive architecture in real-world robotics, despite most
current robots being controlled by state machines. The reasons for avoid-
ing cognitive architectures might be related to the complexity and effort of
developing a new architecture or even of using an existing one. Although
new architectures tend to be built on top of well-proven and documented
frameworks (e.g., RoboComp, SmartSoft, Genom, OROCOS, etc.), the un-
avoidable complexity derived from very large code sets, maintenance effort,
diversity of involved research topics, variety of available theories and poten-
tial algorithms, hinders the development process and quickly exhausts the

28

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

groups’ resources. Another possible reason for roboticists to avoid using
advanced architectures is that they often focus on optimizing a single task
instead of developing a robot able to perform multiple missions that have not
been explicitly preprogrammed. Nevertheless, we believe that using, sharing
and comparing cognitive architectures is the way to advance in the develop-
ment of more complex autonomous robots that can operate with humans.

We will consider two reasons here to support our argument: reusability
and planning capability. Reusability concerns the structural aspects of the
architecture that are completely independent of the problem domain, namely:

• the libraries handling the DSR, which allows a hybrid, metric and sym-
bolic representation of the world model held by the robot;

• the Executive agent, which can be configured to use any planning
domain definition file, is completely domain-independent;

and also the elements that are domain-dependent but can be used by different
robots with different goals:

• the domains: to a large extent, the four robots presented here reused the
same domain (39 out of 53 actions), with the exception of some robot-
specific actions (i.e., only Shelly is able to grasp and deliver objects);

• the agents, which have been written and tested in many experimental
scenarios. In most cases agents depend on lower-level modules that are
dependent on the robot, but the agents themselves are often indepen-
dent.

Reusability is considered to be of great importance because it reduces the
time spent on developing the software and improves its robustness. A good
architecture should provide a set of agents implementing robotic function-
alities that are robust, efficient and, eventually, replaceable by improved
versions of themselves. CORTEX is based on a technology of distributed
software components that provides a reliable solution to the problem of con-
necting decoupled elements in a system using public interfaces [15]. Using
component-oriented technologies usually entails the additional effort of main-
taining the middleware-related code. As mentioned at the beginning of Sec-
tion 4, the current implementation of CORTEX is based on the RoboComp
framework, which offers tools to automatically generate such code, reduc-
ing the development time and the probability of programming errors [32].

29

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

RoboComp is a distributed, component-based programming framework [24],
which was developed entirely by the groups involved in this paper and it is
now in a mature, usable state.

The planning capability concerns the mandatory cognitive feature of us-
ing an explicit knowledge representation of the problem domain, along with
a planning algorithm to create, in run-time, programs that, when executed,
drive the robot to complete the mission assigned by the human. Task plan-
ning is a more general solution than state-machines and a practical one if
there exists a cognitive architecture providing the underlying mechanisms
for it to work. As explained in Section 2, the execution flow in COR-
TEX is distributed among the intervening agents and has top-down and
bottom-up components. In designing the architecture there is a tension be-
tween centralized and distributed control. The mission or human request is
handled by the Dialogue agent and passed in a normalized format to the
Executive/Planning agent. This agent computes a plan that solves the re-
quested task and distributes it to the other agents. The complete plan is
propagated to the agents and it is their responsibility to choose the order in
which it is executed. Agents must attend the restrictions imposed by the set
of preconditions that precede each rule but if they perceive an opportunity
to jump to the final, desired state, they will do it. The classic example here
is the one in which the robot is commanded to fetch the butter inside the
fridge in the kitchen but it happens to be on a table by the entrance door.
Supposing it sees the butter when passing by, should it not pick the butter
up and deliver it to the human, prematurely ending the task? A reactive
agent monitoring all critical conditions in the plan does that. So, plan order
is not strictly controlled by the Executive, it is only suggested.

Another interesting consequence of having a formalized domain knowl-
edge is that the process of learning the external world can be filtered by
what can be interpreted by this knowledge. All agents with perceptive attri-
butions can inject information into the shared graph, opening the possibility
of degrading it. When an agent decides to introduce a structural change in
the graph, there should be a mechanism to guarantee that the new modified
graph is valid within the limits imposed by the grammar of transformation
rules5. Currently, the Executive validates all structural changes through

5No elephants in the kitchen could be hallucinated because there are no worlds derived
from the grammar that contain elephants.

30

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

a model checking procedure. This procedure is actually a planning opera-
tion of the sequence of valid transformations between the current state of
the world and the new state obtained after applying the structural change.
If there exists such a valid sequence of transformations then the change is
accepted and the new graph is propagated back to the agents. The alter-
native choice would be to translate the model checking responsibility to the
agents, eliminating the processing burden imposed by the model checking in
the Executive agent. This solution, tested in the CLARC scenario, is not
without its problems since now the agents would need access to the whole
domain knowledge and to a planning algorithm. Currently, we are actively
investigating this problem in order to endow CORTEX with a reasonable
option or set of options.

Another crucial feature of CORTEX being redesigned and extended is
its emulation capability. The central, hybrid representation that holds sym-
bolic and concrete information is used to emulate future courses of action
at different levels. At the agent level, the contents of the graph can be ex-
tracted as a local copy and used to emulate how a situation might evolve
when a series of actions are taken. This is the case of trajectory planning
for navigation paths, arm movements or objects grasping, where the repre-
sentation of both the external and internal world is used as a replacement
of the real measurements, and the forward and inverse algorithmic models
inside the agents are used to manipulate those representations and predict
realistic outcomes. Another level of difficulty arises if an emulation is re-
quested by the task-level deliberative agent that requires the intervening of
several agents. In fact, planning with symbolic tokens provides a real form
of emulation, but it is always restricted to the abstract domain defined by
the transformation rules. This kind of emulation does not alters the working
memory (DSR). However, what is needed and yet remains elusive is a global
emulation where all agents are involved over a temporally detached copy of
the working memory. This copy would evolve towards the future while the
original DSR remains synchronized with the external world. At some point
in the near future and after some insight has been extracted from the copy,
it is destroyed liberating the valuable resources. This functionality is part of
our current efforts to make CORTEX a fully predictive architecture.

31

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

7. Conclusions and future work

This paper introduces the theoretical foundations of CORTEX: the need
for a shared representation that can provide the functionalities of standard
blackboard models but which, at the same time, can integrate symbolic and
geometric representations. Furthermore, the paper evaluates the appropri-
ateness of this unified representation for solving real use cases. This evalu-
ation was carried out based on the adoption of the CORTEX architecture
in heterogeneous robotic projects. We consider that the generation of an ar-
chitecture suitable for use by different research groups is a highly important
contribution.

Apart from the previously mentioned emulation of complex tasks by a
set of agents, another interesting possibility that we are exploring is the idea
of giving more deliberative resources to traditional perceptive-action agents.
We have observed that for these agents to correctly interpret the actions and
state transitions that are stated in the plan, they have to reason about the
requested actions along with their local state and the global context provided
by the DSR. We have initiated research to provide all agents with domain
specific symbolic knowledge and a planning algorithm. With these resources,
agents will be able to reason about what the planned task level wants and
about how to achieve it, maintaining the necessary level of reactivity to
unforeseen events.

One of the most interesting problems in an agent-based architecture that
uses a common representation is how they communicate and get access to
the shared structure. The central, shared representation has two important
benefits: it decouples the interactions so agents do not need to directly com-
municate with each other (nor even know of their existence); and, given
a common naming system, the shared structure provides an extended con-
text for each agent to make better, more global, choices. However, global
sharing comes at a price and involves certain potential synchronization and
efficiency issues. DSR is currently implemented as a client-server architecture
in which one agent (usually the Executive, but a dedicated one could also
do the job) hosts the graph and receives requests from the agents to modify
the nodes’ attributes or to make structural changes. Nevertheless, we are
already working on other technologies borrowed from the field of computer
games and specially their online implementation as distributed networking
environments [22, 23, 28, 5]. There are many available technologies ranging
from networked-server to peer-to-peer architectures that can be used to im-

32

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

prove our current implementation. This kind of solution would take the form
of a distributed graph without a central, server-based, existence that would
exist as (partially) synchronized copies in all participating agents.

Finally, our view of CORTEX for the near future includes all the men-
tioned features under current research to provide a truly predictive archi-
tecture, capable of computing future courses of action at different levels of
abstraction and of using the outcome of those computations to improve the
choice of the next action.

Acknowledgments

This work was partially funded by FEDER funds and the Spanish Gov-
ernment (MINECO) through projects TIN2015-65686-C5; and by the ”Red
de Agentes F́ısicos” Excelence Network TIN2015-71693-REDT and Group
Consolidation Grants from the Regional Goverment of Extremadura, 2016
(GR1520). This work was partially funded by the European Union ECHORD++
project (FP7-ICT-601116). The authors warmly thank the members of the
”Amis du Living Lab” community for their participation in the CLARC re-
search.

8. References

[1] Vidal Alcázar, César Guzmán, David Prior, Daniel Borrajo, Luis
Castillo, and Eva Onaindia. pelea: Planning, learning and execution
architecture. In Proceedings of the 28th Workshop of the UK Planning
and Scheduling Special Interest Group (PlanSIG’10), pages 17–24, Bres-
cia (Italia), December 2010.

[2] R. Arrabales, A. Ledezma, and A. Sanchis. Simulating visual qualia
in the cera-cranium cognitive architecture. In From Brains to Sys-
tems: Brain-Inspired Cognitive Systems 2010, Advances in Experimental
Medicine and Biology, pages 223–238. Springer, 2011.

[3] P. Bello, W. Bridewell, and C. Wasylyshyn. Attentive and pre-attentive
processes in multiple object tracking: A computational investigation.
In Proc. 38th Annual Meeting of the Cognitive Science Society, pages
1517–1522, Philadelphia, PA, USA, 2016.

33

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

[4] P. Bustos, L.J. Manso, J.P. Bandera, A. Romero-Garcés, L.V. Calderita,
R. Marfil, and A. Bandera. A unified internal representation of the outer
world for social robotics. In ROBOT (2), volume 418 of Advances in
Intelligent Systems and Computing, pages 733–744. Springer, 2015.

[5] E. Buyukkaya, M. Abdallah, and G. Simon. A survey of peer-to-peer
overlay approaches for networked virtual environments. Peer-to-Peer
Networking and Applications, 8(2):276–300, 2015.

[6] L.V. Calderita, J.P. Bandera, P. Bustos, and A. Skiadopoulos. Model-
based reinforcement of Kinect depth data for human motion capture
applications. Sensors, 13(7):8835–8855, 2013.

[7] F. Cid, J. Moreno, P. Bustos, and P. Núnez. Muecas: a multi-sensor
robotic head for affective human robot interaction and imitation. Sen-
sors, 14(5):7711–7737, 2014.

[8] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural language processing (almost) from scratch. J. Mach.
Learn. Res., 12:2493–2537, 2011.

[9] M. Conforth and Y. Meng. Embodied intelligent agents with cognitive
conscious and unconscious reasoning. In Proc. of the Int. Conf. on Brain-
Mind, pages 15–20, Brain-Mind Institute, 2012.

[10] J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-
Wesley Longman Publishing Co., 1989.

[11] D. González-Medina, A. Villena, C. Romero-Gonzlez, J. Mart́ınez-
Gómez, L. Rodŕıguez-Ruiz, and I. Garćıa-Varea. The welcoming vis-
itors task in the apedros project. In WAF 2016 - Proceedings of the
XVII Workshop de Agentes F́ısicos, pages 17–25, 2016.

[12] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters. Informatica,
pages 1–12, 2007.

[13] M. Haut, L.J. Manso, D. Gallego, M. Paoletti, P. Bustos, A. Bandera,
and A. Romero-Garcés. A navigation agent for mobile manipulators. In
Robot 2015: Second Iberian Robotics Conference: Advances in Robotics,

34

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

Volume 2, pages 745–756, Cham, 2016. Springer International Publish-
ing.

[14] B. Hayes-Roth. A domain-specific software architecture for a class of
intelligent patient monitoring agents. J. Exp. Theor. Artif. Intell., 8(2),
1996.

[15] M Henning, M Spruiell, et al. Distributed programming with ice; zeroc.
Inc.: Jupiter, FL, USA, 2013.

[16] O. Holland and Goodman. R.B. Robots with internal models: A route
to machine consciousness? Journal of Consciousness Studies, 10(4):77–
109, 2003.

[17] V. Katter and N. Mahrt. Reduced representations of rooted trees. Jour-
nal of Algebra, 413:41 – 49, 2014.

[18] L. E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[19] I. Kotseruba, O.J. Avella Gonzalez, and J.K. Tsotsos. A review of 40
years of cognitive architecture research: Focus on perception, attention,
learning and applications. CoRR, abs/1610.08602, 2016.

[20] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[21] E. Loper and S. Bird. NLTK: The Natural Language Toolkit. In Proceed-
ings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics -
Volume 1, ETMTNLP ’02, pages 63–70. Association for Computational
Linguistics, 2002.

[22] M. Lozano, P. Morillo, J. M. Orduna, V. Cavero, and G. Vigueras. A
new system architecture for crowd simulation. Journal of Network and
Computer Applications, 32(2):474–482, 2009.

[23] M. R. Macedonia and M. J. Zyda. A taxonomy for networked virtual
environments. IEEE Multimedia, 4(1):48–56, 1997.

35

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

[24] L. J. Manso, P. Bachiller, P. Bustos, and L.V. Calderita. RoboComp: a
Tool-based Robotics Framework. In Proceeding of the 2nd International
Conference on Simulation, Modelling and Programming for Autonomous
Robots (SIMPAR), volume 6472, pages 251–262, Darmstadt, Germany,
2010.

[25] L.J. Manso, P. Bustos, P. Bachiller, and P. Núñez. A perception-aware
architecture for autonomous robots. International Journal of Advanced
Robotic Systems, 12(174):13, 2015.

[26] J. Mart́ınez-Gómez, J. A. Gámez, I. Garćıa-Varea, and V. Matellán.
Using genetic algorithms for real-time object detection. In Robot Soccer
World Cup, pages 215–227. Springer, 2009.

[27] J. Mart́ınez-Gómez, R. Marfil, L.V. Calderita, J.P. Bandera, L.J. Manso,
A. Bandera, A. Romero-Garcés, and P. Bustos. Toward Social Cognition
in Robotics : Extracting and Internalizing Meaning from Perception. In
Workshop of Physical Agents, pages 1–12, Leon, Spain, 2014.

[28] M. Naef, E. Lamboray, O. Staadt, and M. Gross. The blue-c distributed
scene graph. In Proceedings - Virtual Reality Annual International Sym-
posium, pages 275–276, 2003.

[29] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning
and control. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 802–807. IEEE, 1993.

[30] A. Romero-Garcés, L. V. Calderita, J. Mart́ınez-Gómez, J. P. Bandera,
R. Marfil, L. Manso, A. Bandera, and P. Bustos. Testing a fully au-
tonomous robotic salesman in real scenarios. In Procs. of the 9th IEEE
International Conference on Autonomous Robots Systems and Compe-
titions (ICARSC 2015), pages 124–130. IEEE, 2015.

[31] A. Romero-Garcés, L.V. Calderita, J. Mart́ınez-Gómez, J.P. Bandera,
R. Marfil, L. J. Manso, A. Bandera, and P. Bustos. The cognitive ar-
chitecture of a robotic salesman. In Procs. of the XVI Conferencia de
la Asociación Espaola para la Inteligencia Artificial (CAEPIA 2015),
Albacete, Spain, November 2015.

36

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

[32] A. Romero-Garcés, L.J. Manso, M.A. Gutiérrez, R. Cintas, and P. Bus-
tos. Improving the life cycle of robotics components using domain spe-
cific languages. In Proc. of Int. Workshop on Domain-Specific Languages
and models for ROBotic systems (DSLRob’2011), pages 1–9, 2011.

[33] K. Sjöö, H. Zender, P. Jensfelt, G. M. Kruijff, A. Pronobis, N. Hawes,
and M. Brenner. The Explorer system. In Henrik I. Christensen, Geert-
Jan M. Kruijff, and Jeremy L. Wyatt, editors, Cognitive Systems, vol-
ume 8 of Cognitive Systems Monographs, pages 395–421. Springer Berlin
Heidelberg, 2010.

[34] A. Vega, L.J. Manso, P. Bustos, P. Núñez, and D.G. Macharet. Socially
acceptable robot navigation over groups of people. In IEEE Confer-
ence on Robot and Human Interactive Communication, RO-MAN2017,
Portugal, 2017.

[35] D. Voilmy, C. Suarez, A. Romero-Garcés, C. Reuther, J.C. Pulido,
R. Marfil, L.J. Manso, K. Lan Hing Ting, A. Iglesias, J.C. González,
J. Garćıa, A. Garćıa Olaya, R. Fuentetaja, F. Fernández, A. Dueñas,
L.V. Calderita, P. Bustos, T. Barile, J.P. Bandera, and A. Bandera.
CLARC: A cognitive robot for helping geriatric doctors in real scenar-
ios. In ROBOT (1), volume 693 of Advances in Intelligent Systems and
Computing, pages 403–414. Springer, 2017.

[36] S. Wintermute. Imagery in cognitive architecture: Representation and
control at multiple levels of abstraction. Cognitive Systems Research,
19:1–29, 2012.

37

http://tracker-software.com/product/pdf-xchange-editor
http://tracker-software.com/product/pdf-xchange-editor

