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Abstract: We demonstrate a multichannel fiber Bragg grating (MC-FBG) based distributed 
temperature field sensor with millimeter-order spatial resolution. The MC-FBG was designed 
by using the layer peeling (LP) algorithm with a tailored group delay characteristic and 
fabricated using seamless UV-inscription. We have achieved a 21-channel MC-FBG with 0.2 
nm bandwidth of each channel and 0.5 nm channel gap. The sensor was tested by using a 
temperature field distribution. Experimental results show that the sensor had a spatial 
resolution of 3 mm and could measure a maximum temperature gradient of 7.85 °C/mm. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Temperature field monitoring is commonly required in the chemical industry [1], for heat 
management in microprocessors [2], and in wearable devices [3]. The temperature gradient 
contains information about the working state of these devices and can be utilized to ensure 
optimal operation. In order to precisely map the physical parameters and gradients, the spatial 
resolution of the temperature sensor has to be as high as possible. There are two main 
temperature field mapping methods in use which can achieve a spatial resolution of less than 
a millimeter: thermometry based on nuclear magnetic resonance (NMR) [1] and electron 
backscatter diffraction [4]. However, they are not suitable for in situ measurement in many 
applications due to their large size and electromagnetic interference. 

Distributed optical fiber sensors, as an alternative solution for measuring temperature 
gradients, have the advantages of small size, a linear temperature response, low 
electromagnetic interference and ease of integration [5–7]. Traditional distributed optical 
fiber sensors are based on Rayleigh [8,9], Raman [10,11], or Brillouin [12,13] scattering 
processes. The spatial resolution of these distributed sensors is primarily determined by either 
the bandwidth or pulse width of the interrogating source signal which is typically a trade-off 
with the power of the detected signal [14]. Due to very weak back scattering signal, massive 
averaging and signal processing are usually required to provide sufficient signal-to-noise ratio 
(SNR). This significantly increases the demodulation time and the complexity and cost of the 
interrogation systems. 

A fiber Bragg grating (FBG) structure is an artificial scattering unit which produces a 
strong, directional back scattered signal. For distributed sensing applications, the most widely 
used scheme is a FBG array sensor using wavelength division multiplexing [15,16]. However, 
it is difficult to reach millimeter-order spatial resolution with this approach. Recently, 
researchers have achieved real time distributed sensing with a spatial resolution of several 
millimeters by combining a high density FBG array with optical frequency domain 
reflectometry (OFDR) [17–19]. The resolution of this technique is determined by the 
frequency sweep laser and grating interval. Another technique is the optical time domain 
reflectometry (OTDR) system by employing a long FBG sensor and an ultra-short pulsed 
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tunable laser, which has achieved distributed sensing with 1 mm spatial resolution [20]. To 
achieve such a high spatial resolution, both OFDR and OTDR system need very expensive 
light source, severely limiting their use in a wide range of applications [20]. 

In this paper, we propose and demonstrate for the first time a simple and low-cost 
distributed sensor with millimeter-order spatial resolution using a multichannel-FBG (MC-
FBG). The MC-FBG was designed using the layer peeling (LP) algorithm, in which each 
channel is spatially separated [21-24]. A 21-channel MC-FBG was fabricated using seamless 
UV-inscription with a uniform phase mask [25]. Real time temperature field mapping was 
demonstrated using a wavelength division multiplexing (WDM) technique to interrogate this 
device. 

2. Multichannel FBG design 

To achieve a high spatial resolution temperature field mapping, a multichannel grating needs 
to have a high density of sensing units. There are several methods to achieve this, including 
sampling gratings, Moiré grating structures, and using the layer peeling (LP) algorithm 
designed structures [26–28]. For sampled gratings, the channels are concentrated in the center 
of the grating and are not suitable for the point sensing or the distributed sensing [29]. Moiré 
grating designs lack of flexibility to design each channel of the grating independently [30]. In 
contrast, the layer peeling (LP) algorithm is a more ideal method to design a MC-FBG with 
the desired multichannel spectrum. 

The target reflectivity of a MC-FBG can be expressed as [31], 
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where R, N, neff and λB are the designed reflection, total channel number, effective refractive 
index and central wavelength of the full spectra, respectively; λj, dj, and aj, bj are the central 
wavelength, tailored group delay and the two parameters of super-Gaussian functions for 
channel j. To spatially separate the channels, we used staircase form tailored group delay dj 
for the grating design which is a function of the location of the channel given as 

 ( )02 1 , 1, 2,3...j sd L j L j N= × + − =    (2) 

where L0 is location of the first channel, Ls is spatial interval of channels. 

 

Fig. 1. (a) The target spectrum (red) and reconstructed spectrum (blue) of a 9-channel FBG. (b) 
The index modulation profile of the 9-channel FBG. 

To demonstrate this approach, we synthesized a 9-channel design, in which the 
wavelength separation between each channel is 0.5 nm, and L0, Ls are set as 3 mm, 7.4mm, 
respectively. We then reconstructed the spectrum from this design. The reconstructed 
spectrum is almost the same as the target spectrum, as shown in Fig. 1(a), in which the full 
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width half maximum (FWHM) of the channel is 0.2 nm and the channel gap is 0.5 nm. The 
index modulation profile of the 9-channel FBG clearly indicates that the 9 channels are 
evenly distributed along the grating, as illustrated in Fig. 1(b). The entire grating length L is 
71 mm and the spatial interval of the channels Ls is 7.4 mm which is the spatial resolution of 
MC-FBG. It is clear that the channels are separated spatially along the grating due to the
staircase group delay dj.

Fig. 2. The schematic of the channels overlap (the gradient of red represents the contribution to 
the channel spectrum). 

In the MC-FBG structure, each channel is spatially distributed along the entire grating, 
thus all channels are overlapping with each other. However, the main effective part of each 
channel, which contributes to the major portion of the spectral shape, is much shorter than the 
entire grating. This is depicted in Fig. 2, where the gradient shown in red represents the 
spatial contribution of an individual channel to the channel spectrum. When used in a non-
uniform temperature field, both the spectral interval and shape of the channel will change 
simultaneously due to the channel overlapping. The spatial interval and the channel gap will 
limit the maximum detectable temperature gradient, while, the spectral shape degradation 
decreases the signal noise ratio of the channel and affects the measurement accuracy. 

Fig. 3. (a) The index modulation profile of the channel (1-channel MC-FBG). (b) The spectral 
degradation under a non-uniform field (Lf, full length, L1, L2, and L3, are defined by the normal 
index modulation intensity of 10%, 50%, and 67%). 

In the design, the spatial interval Ls of the MC-FBG is a critical parameter, which is 
directly related to the sensing spatial resolution and the spectral shape degradation under a 
non-uniform temperature field. Because the MC-FBG is a continuously inscribed grating, the 
spatial interval of the MC-FBG is the effective length of each channel. To analyze and 
optimize the effective channel length Ls of the MC-FBG, we reconstructed 1-channel MC-
FBG and its refractive index modulation profile is showed in Fig. 3(a). In this design, the full 
length (Lf) of the channel is 71 mm. To analyze the spectral shape degradation under a non-
uniform temperature field, we chose three different effective channel lengths at three different 
index modulation intensity levels of 10%, 50%, and 67% with respect to the maximum index 
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modulation intensity, which were L1 (2.7 mm), L2 (3.0 mm) and L3 (6.9 mm) respectively, as 
shown in Fig. 3(a). Under a non-uniform temperature field, the MC-FBG is subjected to a 
temperature distribution along its length, which will cause the degradation of reflected spectra 
of the channel, resulting in more peaks appearing in the spectra, as shown in Fig. 3(b). From 
the figure, it can be clearly see that the grating with effective length L1 showed very weak 
spectral degradation; as reducing the effective length, the visibility of spectra of the channel 
becomes worse, causing the reflected peak split into three peaks. The intensity ratio between 
side peak and main peak reaches to 3 dB as the effective channel length is L3, which just 
matches the request of our interrogation system. 

 

Fig. 4. The measured reflection spectrum using real-time interrogation method for the MC-
FBG. 

The interrogation system was based on time domain spectral demodulation by monitoring 
the relative wavelength shift of each channel within 3 dB bandwidth, as shown in Fig. 4. The 
target spectral profile of each channel was fitted by applying the super-Gaussian function to 
improve the stability and accuracy of the measurement, and the visibility of reflected 
spectrum of each channel should be larger than 3 dB to eliminate the influence of the spectral 
shape degradation. According to the previous analysis, we choose 3 mm as the effective 
channel length of the MC-FBG, and have designed a 21-channel FBG as shown in Fig. 5. The 
total grating length is 71 mm and the total bandwidth is 11 nm. 

 

Fig. 5. (a) The index modulation profile. (b) The reconstructed spectrum of the 21-channel 
FBG. 

3. Grating fabrication 

A 21-channel FBG was fabricated using a seamless UV-inscription technique with a beam 
profile (BP) pre-compensation mechanism, as shown in Fig. 6(a) [25]. The inscription system 
uses a frequency doubled argon ion CW laser producing a 244 nm beam, which is modulated 
using an acoustic optical modulator (AOM) and collimated to a 270 μm waist size to 
illuminate a 1071 nm period uniform phase mask (PM). A high precision air bearing linear 
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stage is used to scan the fiber. The modulation of the laser beam is controlled so that 
successive exposure points overlay each other coherently. The position of the fiber is used to 
control the AOM to provide the required apodization and localized wavelength for the 
resulting FBG. The wavelength chirp can be achieved by a small phase offset between 
successive exposures. The grating was fabricated in standard telecommunications fiber (SMF 
28) after hydrogenation for 2 days at 150 bar and 80 °C.

Fig. 6. (a) The schematic of the fabrication system. (b) The structure and spectrum of the 21-
channel FBG. 

After the grating inscription, the 21-channel FBG was annealed at 80 °C over 48 hours to 
stabilize its structure. Figure 6(b) shows the spectra of the MC-FBG, in which there are 21 
channels with spectrum covering the wavelength range from 1547.76 nm to 1555.89 nm. The 
total grating length is around 63 mm, and the channel gap is 3 mm. The FWHM of the 
individual channel spectrum is 0.2 nm and the channel wavelength separation is around 0.43 
nm. 

4. Temperature field monitoring

The experimental setup used for the temperature field distribution measurement is shown in 
Fig. 7. An amplified spontaneous emission (ASE) light source emits broad-band light ranging 
from 1510 nm to 1590 nm through an optical circulator (OC) onto the 21-channel FBG; the 
spectrum of the reflected light is measured using a tunable FP filter (TFF) and photo detector 
(PD) and sampled by the analog to digital converter (ADC). The temperature gradient is 
generated using two thermal electronic cooler (TEC) stages and a metal plate, of which each 
end is fixed on to the TEC stage. The 21-channel FBG is held at the center area of the metal 
plate. 

Fig. 7. Experimental setup for temperature field monitoring. 
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The temperature sensitivity of the 21-channel FBG was calibrated by varying the 
temperature of the two TEC stages simultaneously from 5 °C to 80 °C. The measured 
temperature responses of the 21 channels of the FBG are depicted in Fig. 8, where the curves 
with different colors represent the responses of different channels. The sensitivities of the 
channels varied from 9.428 pm/°C to 9.768 pm/°C, which is similar to normal FBGs, with all 
the adjusted R-square values>0.999. The maximum detectable temperature gradient of 7.85 
°C/mm is determined by the effective sensing bandwidth of 0.43 nm and the spatial resolution 
of 3 mm. 

Fig. 8. The temperature sensitivity of the 21-channel FBG. 

To produce a varying temperature field distribution in the experiment, the two TECs were 
set at different temperature levels. Initially, the two TEC stages were set to 25 °C, then over a 
time period of 175 s one had its temperature reduced to 10 °C while the other was increased 
to 85 °C to produce a final temperature gradient of 1.00 °C/mm. The real time measured 
results are shown in Fig. 9(a), in which different curves correspond to different channels. The 
monitoring map depicts the temperature field distribution of the metal plate varying from 
uniform distribution to gradient distribution, in which we can see the temperature field 
became stable after 150 s. Figure 9(b) shows the final temperature field distribution after 175 
s. The temperature ranged from 23.32 °C to 80.46 °C giving a temperature gradient of 0.97
°C/mm, which is similar to the actual temperature gradient. The temperature response curve
of the 21th channel dropped at 50 s because the TEC stage took less time to reach 10 °C than
85 °C. In addition, the slight non-linearity of the curve in Fig. 9(b) might be caused by the
imperfect thermal conduction of the heat device.

Fig. 9. (a) The real time monitoring of the temperature field variation (from uniform 
distribution to gradient distribution). (b) The temperature field monitored in the time of 175 s 
along the grating length. 

Moreover, to test the performance of the sensing system in non-uniform gradient 
temperature field, the 21-channel FBG attached to the metal plate was heated up at the center 
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millimeter-order spatial resolution. The MC-FBG sensor should be more suitable for practice 
temperature field monitoring applications. 
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