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Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study
complete and sublattice synchronization generated by resonance of two large time delays with a
specific ratio. As it is known for single delay networks, the number of synchronized sublattices is
determined by the Greatest Common Divisor (GCD) of the network loops lengths. We demonstrate
analytically the GCD condition in networks of iterated Bernouilli maps with multiple delay times and
complement our analytic results by numerical phase diagrams, providing parameter regions showing
complete and sublattice synchronization by resonance for Tent and Bernouilli maps. We compare
networks with the same GCD with single and multiple delays, and we investigate the sensitivity of
the correlation to a detuning between the delays in a network of coupled Stuart-Landau oscillators.
Moreover, the GCD condition also allows to detect time delay resonances leading to high correlations
in non-synchronizable networks. Specifically, GCD-induced resonances are observed both in a chaotic
asymmetric network and in doubly connected rings of delay-coupled noisy linear oscillators.

PACS numbers: 05.45.-a, 89.75.Hc

I. INTRODUCTION

Chaos synchronization appears in networks of inter-
acting non-linear units [1, 2]. Due to the finite velocity
of signal transmission, the couplings might be delayed.
Time delay may generate instability, therefore such a
network tends to become chaotic [3]. On the other side,
interaction enforces synchronization. Under certain cir-
cumstances, even when the time delay is much larger
than the internal time scale, the units lock to a common
chaotic trajectory without any time shift [4, 5]. The phe-
nomenon has been demonstrated both numerically and
experimentally in small networks of nonlinear oscillators
[6] and coupled semiconductor lasers [7–10], and is of
natural interest in the fields of neuroscience [11, 12] and
secure communication [13].

For any network of identical non-linear units with a
single time delay, the stability of chaos synchronization
is determined by the maximum Lyapunov exponent of a
single unit with delayed feedback, and the second largest
eigenvalue of the adjacency matrix. Firstly, two chaotic
regimes are possible depending on the scaling of the sin-
gle unit Lyapunov exponent, namely strong and weak
chaos. Synchronization is only possible in the regime of
weak chaos, where the exponent is positive and scales in-
versely with the delay time [14]. Secondly, the stability
of the synchronized trajectory is determined by the dif-
ference in magnitude between the largest and the second
largest eigenvalue [15]. If there is a gap, stable chaos
synchronization is possible, otherwise it is ruled out. For
example, a ring of nonlinear units with unidirectional
bonds has no eigenvalue gap, hence it cannot synchro-
nize [16, 17].

More specifically, the number of synchronized groups,
is determined by the greatest common divisor (GCD) of

the network loop lengths [18]. Complete synchronization
is linked with a non-zero eigenvalue gap and is possible
if GCD = 1. Additionally, for GCD = K, the network
shows a pattern of K synchronized groups, where units
belonging to the same group are not connected to each
other, only to units from other synchronization groups.
This is called sublattice synchronization [19].

The GCD condition is exact for networks with a sin-
gle large delay time and is related to mixing of informa-
tion between the units [18, 20]. However, it has been
argued that it is also true for networks with multiple
large delay times with a fixed ratio, as resonances be-
tween the delayed signals influence the stability of syn-
chronization. While the problem of 2 coupled units is
solved [21], an analytic proof is still not available for gen-
eral networks. Nontheless, the extended GCD condition
has been demonstrated in numerical simulations and in
experiments on semiconductor lasers: in [22], two lasers
interacting by transmitting their laser beams with a sin-
gle delay time, become chaotic but cannot synchronize
at zero lag. When a second, twice as long delay time
is added with beam splitters, the two lasers could syn-
chronize to a common chaotic intensity. Hence, adding
the second delay time produced synchronization. More
recently [23], the GCD condition correctly predicted the
number of phase synchronization clusters in networks of
up to 16 coupled lasers.

Our work extends the previous results to small net-
works with unidirectional bonds and two large delay
times. Our main contributions are two. Firstly, com-
plete and sublattice synchronization triggered by time
delay resonance, as predicted by the GCD condition, are
demonstrated analytically in networks of iterated maps.
Secondly, the scope of the GCD condition is investigated
beyond chaos synchronization showing that time delay
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resonances also trigger high correlations among units in
non-synchronizable networks. GCD-induced high corre-
lations are found in two cases, in an asymmetrical chaotic
network and in doubly connected rings of noisy linear os-
cillators.

The paper is structured as follows. In Section II we
generalize the formalism of Master Stability Function
[24, 25] to networks with double time delay. We provide
analytic results for doubly connected rings of Bernouilli
maps. Complete and sublattice synchronization are ex-
plained by means of the master stability function symme-
tries and we give special time delay ratios for which com-
plete synchronization is not possible. In Section III we
study complete and sublattice synchronization induced
by different time delay resonances in doubly connected
rings of Tent and Bernoulli maps. We also discuss sen-
sitivity to detuning and compare with equivalent single-
delay networks with virtual units. Section IV investigates
the validity of the GCD argument in non-synchronizable
networks. We present an asymmetric chaotic network
showing high correlations for GCD = 1. We also study
doubly connected rings of noisy linear oscillators, for
which we find GCD-induced correlation peaks. Finally,
the results are summarized in Section V.

II. COUPLED CHAOTIC MAPS WITH
DOUBLE DELAYS

A. Master stability function

Generally, a network of iterated maps with two time
delays can be modeled as follows:

uit = (1− ε)f(uit−1)+

ε

N∑
j=1

[
(1− κ)G

(1)
ij f(ujt−τ1) + κG

(2)
ij f(ujt−τ2)

]
, (1)

where f(x) : [0, 1] → [0, 1] is a chaotic map, τ2 > τ1 are
the coupling delays and ε and κ are coupling strengths
ranging between 0 and 1. The adjacency matrices G(1)

and G(2) represent edges with time delays τ1 and τ2 re-

spectively. Both have unit row sum
∑
j G

(l)
ij = 1, ensur-

ing that any trajectory belonging to the synchronization
manifold (SM), uit = st, is a solution. To calculate the
stability of the SM, we can study the evolution of a small

perturbation around it ~ut = st + ~δt. If the matrices G(1)

and G(2) commute, there exists a common base of eigen-

vectors ~ωn with respective eigenvalues γ
(1)
n and γ

(2)
n , and

one can decompose the small perturbation into its eigen-

modes ~δt =
∑
n ξn,t~ωn. The linear stability of the syn-

chronized state st, is then determined by the evolution
of the amplitudes ξn,t of each mode

ξn,t = (1− ε)f ′(st−1)ξn,t−1 + ε(1− κ)γ(1)n f ′(st−τ1)ξn,t−τ1

+εκ γ(2)n f ′(st−τ2)ξn,t−τ2 . (2)

A generalized Master Stability Function(MSF) is then
calculated as

λ
(
γ(1)n , γ(2)n

)
= lim
t→∞

1

t
ln
|ξn,t|
|ξn,0|

. (3)

The unit row sum guarantees a common eigenvector

~ω0 = [1, 1, ..., 1] with eigenvalues γ
(1)
0 = γ

(2)
0 = 1. This

mode is parallel to the SM and preserves synchronization.
Every other mode n > 0 is perpendicular to the SM. If
the Lyapunov exponent along the parallel mode is posi-
tive, λ(1, 1) > 0, the synchronized trajectory is chaotic.
Aditionally, along the transverse modes ~ωn>0, the MSF

should be negative, λ(γ
(1)
n , γ

(2)
n ) < 0 for all n > 0, to

guarantee the stability of the synchronized state.
In this manuscript we consider networks of two differ-

ent kind of maps. Bernouilli maps, modeled by

f(x) = ax mod 1 ,

are chaotic for a > 1. Since the derivative f ′(xt) = a
is constant, their MSF can be calculated analytically.
Moreover, the analytic results are known to reproduce
qualitatively several features of more complex chaotic de-
lay systems [26]. For some properties, however, the fluc-
tuations of the derivative play a role [27]. Therefore, we
compare our results to Tent maps, modeled by

f(x) =


x
b if 0 ≤ x < b

1−x
1−b if 1 ≥ x ≥ b

.

For Bernouilli maps, Eq. (2) has constant coefficients and
we can assume an exponentially evolving perturbation
ξn,t = ξn,0z

t. Then, we find the characteristic polynomial

1 = a(1− ε)z−1 + aε
[
(1− κ)γ(1)n z−τ1 + κγ(2)n z−τ2

]
(4)

which has τ2 complex roots zr, with r = 1, . . . τ2 for

each set of eigenvalues γ
(1)
n , γ

(2)
n . The spectrum of Lya-

punov exponents along the eigenmode ~ωn is then given
by {λr} = {ln |zr|}. A perturbation mode is stable if all
the roots zr lie inside the unit circle. If a(1−ε) > 1 holds,
one immediately finds an unstable solution z ' a(1 − ε)
irrespective of γn. This corresponds to the strong chaos
regime where the two delay terms vanish in the limit
τ1 , τ2 → ∞ [14]. The condition for weak chaos is thus
given by

ε >
a− 1

a
. (5)

Assuming both delays to be large, we write τ1 = pτ and
τ2 = qτ and consider the limit τ → ∞. We introduce a
weak chaos ansatz, zr = exp[iφr + lr

τ ] and define Yr =
exp[−iφrτ − lr] = z−τr . In the limit of large delay for
weak chaos, we obtain exp(−lr/τ) → 1. Then, for each
eigenmode n, Eq. (4) becomes

1 = a(1− ε)e−iφr + aε
[
(1− κ)γ(1)r Y pr + κγ(2)r Y qr

]
. (6)
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Since for τ → ∞, the phases of the multipliers φr are
uniformly distributed between 0 and 2π, we can solve
for Y (φ), to obtain the so-called pseudo-continuous spec-
trum [28], on which the multipliers are densely located:
l(φ) = − ln |Y (φ)|. The generalized master stability func-
tion is then given by

λ(γ(1), γ(2)) =
1

τ
max
φ

(l(φ)). (7)

Eq. (6) and its symmetries are our main tools to study
the network synchronization properties.

B. Directed rings with multiple delays

We will now apply the previous formalism to study
directed rings with two time delays (Fig. 1a). This is
a paradigmatical system that cannot synchronize with
a single time-delay, but shows synchronization by time-
delay resonance. The simplest possible ring, consisting
on two mutually coupled units N = 2, was addressed in
[21]. There, it was shown that synchronization with mul-
tiple time delays was possible under certain conditions
for time delays values. It is immediate to check that the
provided τ1, τ2 values leading to zero lag synchronization
corresponded to network configurations with GCD = 1,
thus being coherent with our results. In this section we
generalize to the case of rings of N units with two time
delays and no self-feedback. We will study the symme-
tries of the MSF in order to re-derive the time-delay ra-
tios allowing either complete or sublattice synchroniza-
tion as predicted by the GCD condition.

The polynomial (6) allows us to study synchroniza-
tion stability analytically. N -unit doubly coupled unidi-
rectional rings translate to identical adjacency matrices

G(1) = G(2) with eigenvalues γ
(1)
n = γ

(2)
n ≡ γn = ei

2πn
N ,

where 0 ≤ n < N . Thus, the pseudo-continuous spec-
trum Eq. (6) becomes

1 = a(1− ε)e−iφ + γnaε [(1− κ)Y p + κY q] . (8)

Considering the case of single delay, κ = 0, we can easily
solve Eq. (8), and find a MSF

λ(γ) = −1

τ
ln

∣∣∣∣1− a(1− ε)
γnaε

∣∣∣∣ . (9)

For a single delay, the stability of a perturbation mode
only depends on the magnitude of its corresponding
eigenvalue |γn|, i.e. the master stability function is spher-
ically symmetric in the complex plane with respect to γn.
Consequently, the stability of all the eigenmodes, trans-
verse and parallel, is the same. Since λ(γ0) = λ(1) > 0
for chaotic dynamics, both complete and sublattice syn-
chronization are unstable in unidirectional rings of any
size with a single delay.

If we consider networks with two time delays, i.e.
κ 6= 0, this spherical symmetry can be broken, and the

transversal modes can be stabilized, depending on the
ratio of the delays. However, depending on the GCD the
MSF, λ(γ), still can have some symmetry. It is straight-
forward to check that the GCD of doubly connected rings
is GCD(Np, (N − 1)p+ q) = GCD(Np, q− p). Consider
p and q relatively prime and q − p = K. If the number
of elements in the ring N is a multiple of K, we find
GCD(Np, p − q) = K. Then, the spectrum contains K

eigenvalues of the form γ̂r ≡ e
i2πr
K , with r = 0, . . . ,K−1,

where the mode r = 0 is the parallel mode. It can be
shown that the master stability function λ(γ) is invariant

under a transformation γ → e
i2πr
K γ. Hence all the modes

γ̂r have the same Lyapunov exponent, λ(γ̂r) = λ(1).
Since the parallel mode is unstable, all of them are un-
stable as well.

To demonstrate this point, we can write p = r + lK
and q = r+ (l+ 1)K, for some integers l and 0 < r < K.
Since p and q are relatively prime, we find that r and K
are relatively prime as well. Then, the pseudo-continuous
spectrum Eq. (8) along the eigenmode with eigenvalue is

γ̂r = e
i2πr
K .

1 = a(1− ε)e−iφ + aεe
i2πr
K [(1− κ)Y p + κY q]⇔ (10)

1 = a(1− ε)e−iφ + aε
[
(1− κ)(e

i2π
K Y )p + κ(e

i2π
K Y )q

]
.

Since the MSF λ(γ) only depends on the magnitude
|Y (φ)|, we conclude that λ(1) = λ(γ̂r). The corre-
sponding eigenvectors ~ωr have K distinct entries ~ωr =
(γr, γ

2
r , . . . , γ

N
r ), with a phase difference of 2πr

K . These
unstable modes give thus rise to K different sublattices
corresponding to the K distinct entries of ~ωr.

Moreover, it is possible to rule out beforehand some
time delay ratios that do not allow complete synchro-
nization. The limit to stability is given by |z| = 1 for the
roots of the characteristic polynomial Eq. (4). Hence
z = eiψ, with ψ uniformly distributed along the unit cir-
cle if τ is sufficiently large. Choosing ψ = θ

τ , we get

aεκγne
−iqθ + aε(1− κ)γne

−ipθ + a(1− ε) = 1 , (11)

where we have considered z−1 = ei
θ
τ ≈ 1. For the parallel

mode, this reduces to

aεκe−iqθ + aε(1− κ)e−ipθ + (1− ε)a = 1 . (12)

But Eq. (12) also holds for a perpendicular mode n 6= 0
whenever both

γne
−iqθ = ei2πl and γne

−ipθ = ei2πm , (13)

hold at the same time. By substituting γn = ei2πn/N and
taking the quotient of the phases of Eqs. (13), we find
that mode n will be unstable for a delay ratio

τ1
τ2

=
p

q
=

n+ lN

n+mN
, (14)

where l, m are integers and l 6= m. Once an unstable
mode is found, the periodicity of its eigenvector deter-
mines the number of synchronized sublattices.
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We proved this result analytically for Bernouilli maps,
however this is a rather general phenomenon. The sym-
metry arguments of the master stability function and Eq.
(4) apply also to steady states and periodic orbits in gen-
eral since the derivatives along the trajectory are also
constant or periodic in this case. It can be argued that
these symmetry arguments can be extended to chaotic at-
tractors, as these consist of unstable periodic orbits [15],
but rigorous analytic proofs for chaotic systems other
than Bernouilli maps are difficult. We provide numer-
ical evidence for the generality of our analytic results in
Section III.

Τ

2Τ

Τ 2Τ

Τ

2Τ

1

2

3

(a) (b)

(c) (d)

FIG. 1: (color online). (a) Sketch of a 3 unit directed ring
with double time delay. (b) Complete synchronization re-
gions for directed rings of Bernouilli maps with τ2 = 2τ1 and
a = 1.05. Synchronization regions are nested ’tongues’ of
smaller area for increasing number of ring units: 2 (blue), 3
(red), 4 (green) and 5 (yellow). The color code and nested
structure is common to all subsequent subfigures. The maps
are obtained by solving Eq. (4) numerically for every perpen-
dicular mode n > 0 and then intersecting the stable regions.
(c) Complete synchronization maps for the same networks
after a detuning (τ1, τ2) → (τ1 − 1, τ2 − 1). (d) Equivalent
complete synchronization regions for rings of Tent maps with
equal local Lyapunov exponent: b = 0.008458, λL = log 1.05.
Squares indicate completely synchronized trajectory after a
small perturbation of magnitude 10−3 at the SM and 40000
map iterations.

III. COMPLETE AND SUBLATTICE
SYNCHRONIZATION IN DIRECTED RINGS

In this Section, we demonstrate both complete and
sublattice synchronization in rings with double delay, for
the cases p/q = 1/2 and p/q = 1/3, respectively. More-
over, we compare the synchronization regions with those
of equivalent single delay networks with the same loop
lengths. We investigate the sensitivity to a small detun-
ing of the two delays as well.

A. Complete synchronization in a directed ring
with two delays

If we choose p/q = 1/2, a ring of N nonlinear units
contains loops of all lengths (N + j)τ , with 0 ≤ j ≤
N . Thus, the GCD is always equal to one. Eq. (8) is
a second degree polynomial and can be solved for each
mode γn. The complete synchronization region in ε-κ
space is then the intersection of all the transverse modes’
stability regions.

We show the master stability function λ(γ) for a ring
of Bernouilli maps in Fig. 2. The spherical symmetry
is clearly broken; the closer the phase of the eigenvalues
γn to π, the smaller the corresponding Lyapunov expo-
nent λ(γn). Consequently, the stable parameter region
for γn = π is largest. It is hence easiest to stabilize zero-
lag synchronization for only two coupled elements, where
this is the only transverse eigenvalue. For our choice of
parameters, zero lag synchronization is stable for N = 2,
as λ(−1) < 0, as indicated by the square. Also for N = 3,
we find λ(e2πi/3) = λ(e−2πi/3) < 0 in the stable region
of the MSF, both eigenvalues are indicated by triangles.
For N = 4 the MSF is unstable for the modes γ = ±i,
and for N = 5 we find unstable transverse modes for
γ = e±2πi/5. Zero lag synchronization is hence unstable
in both cases for the chosen parameters.

For a different parameter choice, the phase maps show-
ing the parameter region for which zero lag synchroniza-
tion is stable in rings of N Bernouilli maps, are depicted
on Fig. 1b. The size of the synchronization regions
shrinks with increasing number of units, in agreement
with the shape of the master stability function. The an-
alytic phase diagrams have been confirmed by numerical
iterations of the chaotic network.

In order to demonstrate the GCD condition for other
chaotic units, for which analytic results are not available,
we simulated analogous networks of Tent maps. In or-
der to compare both dynamics, we picked the Tent and
Bernouilli maps parameters, a and b, laying the same
Lyapunov exponent for the single isolated maps without
delay, λL = log a = log bb(1− b)1−b. The resulting syn-
chronization regions are shown in Fig. 1d. We find a
similar structure of nested smaller regions for increasing
number of units, but due to the fluctuations of the deriva-
tive of the map, the corresponding coefficients of Eq. (6)
become time dependent, shrinking the regions of stable
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FIG. 2: (color online). Master stability function λ(γ, γ) for
a double delayed network as obtained by solving Eq. (4),
with 2τ1 = τ2 (left) and 3τ1 = τ2 (right). Parameters are
κ = ε = 0.5 and a = 1.1. The solid line marks the contour
λ = 0. Thus, the eigenmodes whose corresponding eigenvalue
lies inside the contour are stable and those staying outside are
unstable. The eigenvalues γn = exp(2πin/N) are indicated
for N = 3 (triangles), N = 4 (squares) and N = 5 (inverted
triangles). The eigenvalue γ0 = 1 along the synchronization
manifold is indicated with a circle.

chaos synchronization.

B. Sublattice synchronization

For a delay ratio of p/q = 1/3 the resulting network
contains loops of length (N+2j)τ . The GCD is equal to
2 for rings with an even number of units, and to 1 if the
number of nodes is odd. Hence, for even N , this time de-
lay ratio produces sublattice synchronization. As shown
in Fig. 2(b), the master stability function is symmetric
under a transformation γ → −γ. A transverse mode with
eigenvalue γn = −1 is thus always unstable for chaotic
dynamics. We provide an example by solving the spe-
cific case of a 4 unit doubly coupled ring (Fig. 3a). Here,
eigenmode ~ω2 = [1,−1, 1− 1] with eigenvalue λ1 = −1 is
unstable, generating two groups formed by units 1 and
3, and 2 and 4 respectively. The modes γ1,3 = ±i, which
do not allow sublattice synchronization, are both sta-
ble. Units belonging to the same group develop identical
chaotic trajectories, although they are not directly cou-
pled, but receive input from units of the other group.
The resulting parameter region showing stable sublattice
synchronization for Bernouill maps is shown in Fig. 3b.
In order to show that the phenomenon is not limited to
constant slope maps, we also provide the synchronization
region for an equivalent network of Tent maps. We ob-
serve again a shrinking of the synchronization region due
to time derivative fluctuations.

C. Comparison with analogous single delay
networks

The effect of time delay resonances cannot be explained
by the GCD condition alone. In reference [23], the effect

1-Κ, 3Τ

Κ, Τ

1-Κ, 3Τ

Κ, Τ

1-Κ, 3Τ

Κ, Τ

1-Κ, 3Τ

Κ, Τ

1

2

3

4

(a) (b)

FIG. 3: (color online). (a) 4 unit directed ring with 2 delay
times 3τ1 = τ2 = 100. Units 1 and 3, and 2 and 4 respectively,
belong to synchronized sublattices. (b) Sublattice synchro-
nization region for Bernouilli maps with a = 1.05 obtained
by solving Eq. 4 numerically for modes 2 and 3, γ2,3 = ±i,
and intersecting their stability regions. Squares mark stable
sublattice synchronization for equivalent Tent maps, obtained
by simulation as in Fig 1d.

of multiple time delay is studied by transforming the net-
work to an equivalent network with homogeneous delay
times. This is done by inserting imaginary units coupled
with a single time delay along the longer connections.
Here, we demonstrate how the resulting phase maps are
different, despite both networks being equivalent from
the GCD point of view. Take for instance a directed
ring of three units with p/q = 1/2. With respect to the
GCD condition, this network is completely analogous to
a single delay triangle where the longer links have been
substituted by a 2 link chain of simple delays mediated
by an auxiliary unit (see Fig. 4). The corresponding syn-
chronization region turns out to be smaller than that of
a directed triangle with double delay. Moreover, a single
delay network like this one does not suffer from detuning
effects.

D. Sensitivity to detuning

The synchronization properties of chaotic networks
with multiple time-delay depend on a precise ratio be-
tween the time delays. The synchronization phase maps
presented above are found to be very sensitive to detun-
ing. As it is shown in Fig. 1c, the parameter regions
showing synchronization stability shrink drastically af-
ter a small mismatch of the delays, τ1 → τ1 − 1 and
τ2 → τ2 − 1.

It is more natural to study the effect of detuning be-
tween the two delay times in continuous chaotic systems
with larger internal correlation time. Therefore, we con-
sider a doubly connected unidirectional ring of Stuart-
Landau oscillators, modeled by

żk(t) = zk(t)(1− |zk(t)|2) + iβzk(t)|zk(t)|2

+ κ1zk+1(t− τ1) + κ2zk+1(t− τ2) , (15)
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Κ

1-Κ

Κ

1-Κ Κ 1-Κ

1

23

4

5 6

(a) (b)

FIG. 4: (color online). (a) 3 unit ring with auxiliary units
analogous to the network depicted in Fig. 1a. The double de-
lay 2τ1 is substituted by two links of delay length τ1 mediated
by auxiliary units. (b) The synchronization region, in light
red, was obtained by solving Eq. (9) (a = 1.05). It is smaller
than the corresponding from the double delay case, in darker
red, identical to the one shown in Fig. 1b.

where the last unit, k = N − 1, is coupled to the first,
k = 0. Here β is the amplitude phase-coupling, κ1 and
κ2 are the coupling strengths and τ1 and τ2 are the cou-
pling delays. Without coupling, the oscillators are in
a stable periodic orbit z(t) = eiβt. In Fig. 5(a) we
show the unit-to-unit zero lag crosscorrelation, given by
〈zi(t)z∗i+1(t)〉/

√
〈|zi(t)|2|zi+1(t)|2〉t, as a function of the

ratio between the delay times τ2/τ1 in a ring of two os-
cillators. The unit-to-unit zero lag crosscorrelation in a
three-unit ring is shown in Fig. 5(b). Both ring con-
figurations show high correlations around delay ratios of
τ2/τ1 = 4/3, 3/2, 5/3 and 2, as predicted by the GCD-
argument. We observe, firstly, that the correlations are
higher for two than for three oscillators. For the ratio
τ2/τ1 = 2, this corresponds to the smaller transverse
eigenvalue found for two Bernoulli maps, represented in
Fig. 2. Secondly, we find higher correlations for simpler
ratios. The width of the delay resonance peaks depends
on the internal decay time of the oscillators: while the
Bernouilli maps are found to be very sensitive to detun-
ing of the two delay times, we find a considerable width of
the resonances for Stuart-Landau oscillators. Moreover,
the crosscorrelation between the oscillators is not always
positive, but has an oscillatory shape as the delay ratio
varies. This can be explained by phase effects: for two
coupled oscillators we find anti-synchrony z1(t) ≈ −z2(t)
for delay ratios pτ2 = qτ1 ± π/ω, with ω being the dom-
inant frequency of the chaotic motion. Indeed, having
z(t + π/ω) ≈ −z(t) one finds that for these delay ratios
the synchronization manifold is destabilized, as the two
delayed signals interfere destructively with each other.
The manifold z1(t) = −z2(t) is however not suppressed.
Therefore we observe anti-correlation between the oscil-
lators. Consequently, we find a frequency of pω at the
delay resonance τ2/τ1 = q/p, i.e. the first order reso-
nance at τ2 = 2τ1 has an oscillation frequency of ω ≈ β,
the second order resonance at 2τ2 = 3τ1 has a frequency

of approximately 2β, etc. Similar results can be found in
the ring of three doubly connected oscillators.
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FIG. 5: (color online). Correlation peaks corresponding to
time delay resonances for (a) 2 mutually coupled and (b) a
doubly coupled directed ring of 3 chaotic Stuart-Landau os-
cillators with τ1 = 50.

IV. NON-ZERO CORRELATIONS WITHOUT
SYNCHRONIZATION

The GCD argument provides information about the
possible number of synchronization groups. This holds
for networks where complete synchronization is a solu-
tion of the dynamical equations. But it was argued in
reference [14] that the GCD condition is applicable to
other networks as well. Even if chaos synchronization is
not a solution, the GCD determines how the information
about the trajectories mixes according to the network
topology. We demonstrate this in two different systems.
First we show how the GCD affects correlations among
the non-linear units in an asymmetrical network. Sec-
ondly, we study correlations in directed rings of coupled
linear oscillators with noise, identifying correlation peaks
for the time delay ratios predicted by the GCD condition.

A. Correlations in asymmetric network

When the network GCD is equal to K > 1, at each
time-step each unit is driven just by the units belong-
ing to one of the synchronized sublattices. On the other
hand, when the GCD is equal to 1, the graph is aperiodic
and after enough iterations of the dynamics each unit is
being driven by the initial state of every other unit. This
topological effect is able to induce correlations among the
network trajectories even when the system does not have
a synchronized solution. Consider the network depicted
in Fig. 6a. Here, we have a single coupling detour be-
tween two units with variable time delay qτ embedded in
a 3 unit ring with single a time delay τ . This network can-
not synchronize by construction. We have simulated the
dynamics of Bernouilli maps coupled with this topology
and computed time-correlations among each unit trajec-
tories. The results are shown in Fig. 6b. For integer
values of q, we can distinguish two situations. For values
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FIG. 6: (color online). (a) Non-synchronizable assymetric
network of Bernouilli maps. (b) Finite correlations among
units: C(1, 2) (green triangles), C(2, 3) (blue squares) and
C(1, 3) (red circles) for ε = κ = 0.85, τ = 50 after a transitory
of 40000 time-steps, averaged over 100 trials and over a time-
window of 10000 time-steps.

of q = 2, 3, 5, 6, 8, 9, we have GCD = 1. However, for
q = 1, 4, 7 we have GCD = 3 and the correlations are
practically zero.

B. Linear systems

It is useful to compare chaotic systems to linear sys-
tems with noise. By replacing the chaotic dynamics by
a linear system with white noise, one recovers proper-
ties that relate solely to network structure, and not to
the specific chaotic system. However, a major differ-
ence between deterministic chaotic systems and stochas-
tic linear systems is that the latter cannot synchronize,
as synchronization is a nonlinear phenomenon. Never-
theless, linear stochastic systems have been shown to
mimic several qualitative features of the auto- and cross-
correlation functions of delay-coupled chaotic elements.
In some cases one can even quantitatively model the
auto-correlation function of a chaotic delay-system with
a linear model [29]. We demonstrate here that also these
delay resonances can be explained by a stochastic linear
delay model.

We consider a ring of N oscillators, where each oscilla-
tor is characterized by a natural frequency ω0, an internal
decay rate α, and an internal white gaussian noise source
ξk(t), with zero mean (the variance is irrelevant, as the
whole system can be rescaled). We thus approximate the
chaotic signal by a linear response, which is captured by
the correlation functions, and a component which effec-
tively acts as a source of noise. Each node is coupled to
its neighbor with a strength κ1 over a first connection
with a delay τ1, and a second connection with a delay τ2
and a strength κ2. This system is modeled as

ẋk = (−α+ iω0)xk + ξk(t)

+κ1xk+1(t− τ1) + κ2xk+1(t− τ2) , (16)

with k = N ≡ 0. We can decompose the system into its

eigenmodes vn(t), given by

vn =
1√
N

N−1∑
k=0

einkθxk,

with θ = 2π/N . The dynamics is then modeled by

v̇n = (−α+ iω0)vn + ξn(t)

+κ1e
inθvn(t− τ1) + κ2e

inθvn(t− τ2) , (17)

with ξn(t) = 1/
√
N
∑
einkθξk(t). We can easily solve the

system in Fourier space, and find for F(vn(t)) = ṽn(ω)

ṽn(ω) =
ξ̃n(ω)

α+ i(ω − ω0)− κ1einθ−iωτ1 − κ2einθ−iωτ2
.

(18)
The spectrum ṽn(ω) has maxima at ωτ1 = 2mπ+nθ and
at ωτ2 = 2lπ+ nθ; the peaks are most pronounced when
those two conditions are both hold.

Clearly, the variances

〈|vn(t)|2〉 =

∫ +∞

−∞
dω|ṽn(ω)|

are maximal when the resonances due to the two delays
maximally overlap, and minimal when none of the res-
onances overlap. Consequently, the in-phase mode ṽ0
has a maximal variance for τ2/τ1 being rational; the
simpler this ratio, the larger the variance. The out-of-
phase modes n > 0 have a larger variance for τ2/τ1 =
(n+ lN)/(n+mN) and a minimal variance for rational
ratios for which this conditions does not hold.

We show the variances of the different modes in a
ring of N = 3 elements in Fig. 7a. The in-phase
mode has large maxima at τ2 = lτ1, and less pro-
nounced maxima at other rational ratios as τ2/τ1 =
6/5, 4/3, 3/2, 5/3, 7/4, 5/2, . . .. The out-of-phase mode
shows maxima if τ2/τ1 = (3l+1)/(3m+1), we see indeed
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FIG. 7: (color online). (a) Variances of the in-phase eigen-
mode 〈|v0(t)|2〉 (black curve) and the first out-of-phase eigen-
mode 〈|v1(t)|2〉 (pink curve) in a ring of 3 linear noisy oscil-
lators coupled with two delays (Eq. (16)) as function of the
ratio of the delays. (b) Node-to-node correlation in a ring of
three nodes with two delays, as a function of the ratio of the
delays. Parameters are κ1 = κ2 = 2.25, τ1 = 50, ω0 = 0 and
〈ξ2(t)〉 = 1.
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extrema at τ2/τ1 = 1, 5/2, 4 and minima for τ2 = 2τ1
and τ2 = 3τ1. The crosscorrelation between two nodes in
the ring, 〈x0(t)x∗k(t)〉t can be computed as a sum of the
eigenmodes:

〈x0(t)x∗k(t)〉t = F−1 (x̃0(ω)x̃∗k(ω))

=
1

N

∫ +∞

−∞
dω
∑
n

ṽn(ω)
∑
m

eimkθṽ∗m(ω)

=
1

N

∑
n

einkθ
∫ +∞

−∞
dω|ṽn(ω)|2 (19)

If all the eigenmodes vn(t) have the same variance the
sum cancels out and there will not be any zero lag corre-
lation between the two elements. This is the case if τ2/τ1
is irrational and if multiple eigenmodes have overlapping
resonances for the same delay ratio. This happens when-
ever

τ2
τ1

=
n+ lN

n+mN
, (20)

for a given mode 1 ≤ n < N , effectively recovering Eq.
14. For sublattice synchronization, it should hold for
all k, except for the distance K between the nodes of
the group. For a ring of N = 3 elements, we show the
magnitude of the zero-lag correlation in Fig. 7b.

V. SUMMARY

We have provided a formalism for studying the stabil-
ity of synchronization in networks with two or more time
delays. Some networks that do not synchronize with a
single time delay can be brought to synchrony with an

appropiate choice of the second time delay. Ultimately,
the relationship between both time delays determines
the available synchronization regime, as predicted by the
GCD condition. We exemplified this comprehensively in
the case of directed rings with two delay times. We were
able to provide certain time delay ratios that do not al-
low complete synchronization, as well as to identify the
unstable modes giving rise to synchronized sublattices.
The resulting synchronization stability regions are differ-
ent from those in GCD equivalent networks with single
time delay. Also, the synchronization properties can be
very sensitive to a detuning between the two time delays:
as one of the time delays varies, we observe positive or
negative correlations depending on the internal correla-
tion time and frequency of the chaotic units.

The global influence of network topology and time de-
lay resonance via the GCD argument is made evident not
only in synchronization phenomena. The network struc-
ture also induces high correlations among the units tra-
jectories in non-synchronizable systems. Moreover, the
GCD-induced time delay resonances observed in rings of
chaotic map are reproduced by networks of noisy linear
oscillators. Yet, a mathematically rigorous explanation of
the GCD argument in general chaotic networks remains
to be found.
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