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Abstract 

Background: The glenoid component in reverse total shoulder arthroplasty is recommended to 

be positioned inferiorly or with a downward tilt with the intention of reducing scapular 

notching. However, it is still unclear whether modifying the position of the glenoid prosthesis 

affects implant stability. The aim of this study was to determine the association between 

implant positioning and glenoid prosthesis fixation using Grammont  reverse total shoulder 

arthroplasty.  

Methods: Four positions for the glenoid prosthesis were studied using the finite element 

method. The glenosphere was positioned as follows: 1) in the middle of the glenoid fossa, 2) 

flush with the inferior glenoid rim, 3) with an inferior overhang, 4) with a 15° inferior 

inclination. Bone-prosthesis micromotions and strain-induced bone adaptations were 

quantified during five daily activities.   

Findings: When the glenoid component was tilted inferiorly, the activities producing anterior-

posterior shear forces (e.g. standing up from an armchair) caused an increase in peak 

micromotions. In the lateral-middle glenoid, inferior positioning caused a 64.6% reduction in 

bone apparent density. In the lateral-inferior glenoid, central positioning led to the most 

severe bone resorption, reaching 43.9%. 

Interpretation: Reducing activities which generate anterior-posterior shear forces on the 

shoulder joint will increase bone formation and may improve the primary stability of the 

implant when fixed in the position with an inferior tilt. Postoperative bone resorption is highly 

dependent on implant positioning. Understanding the relationship between bone resorption 

and implant positioning will help surgeons improve the long-term stability of reverse total 

shoulder arthroplasty.
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1. Introduction 

Loosening of the glenoid is a common complication for Grammont reverse total shoulder 

arthroplasty (RSA), with an incidence rate of 3.5% to 9%, and often requires reintervention 

(Zumstein et al., 2010; Boileau, 2016). In addition to infection, there are many other factors 

leading to aseptic glenoid loosening, i.e. scapular notching, osseointegration, and strain-

induced bone loss (Pilliar et al., 1986; Huiskes et al., 1987; Chae et al., 2015; Boileau, 2016). 

Scapular notching is caused by mechanical impingement between the humeral component 

and the scapular neck during arm adduction and is hastened by bone osteolysis. It is reported 

to be present in approximately 50% to 96% of Grammont RSA (Sirveaux et al., 2004; 

Simovitch et al., 2007; Kempton et al., 2011). Inferior positioning and inferior tilting are 

recommended to minimise postoperative scapular notching in RSA (Nyffeler et al., 2005; 

Kelly II et al., 2008). The space between the glenoid bone and the inferior rim of the glenoid 

component is generally recommended to be maintained within the range of 2 mm to 6 mm 

(Kelly II et al., 2008; Kontaxis and  Johnson, 2009; Kempton et al., 2011). The recommended 

angle of inclination is between 10° and 15° (Nyffeler et al., 2005; Kempton et al., 2011). 

Osseointegration is the direct structural and functional connection between living bone 

and the surface of a load-bearing implant. Pilliar reported that the occurrence of bone 

ingrowth is closely correlated with the relative movement between the bone and the implant, 

which is also known as micromotion (Pilliar et al., 1986). Bone ingrowth occurs in the 

presence of micromotion within a threshold of 50 µm (Pilliar et al., 1986). However, when 

bone-implant micromotion exceeds 150 µm, mature fibrous connective tissues form a less 

stable connection with the implant (Pilliar et al., 1986). Finite element method has been used 

to calculate bone-prosthesis micromotion after RSA, and then to predict the occurrence of 
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postoperative integration utilizing the relationship between micromotion and bone ingrowth  

(Chae et al., 2016).  

Stress-shielding is another factor leading to erosion of the bone bed supporting the RSA 

(Ahir and  Walker, 2004). Finite element analysis has been used extensively for predicting 

stress distribution and strain-induced bone remodelling (Büchler et al., 2002; Sharma et al., 

2009; Sharma et al., 2010; Suárez et al., 2012). Suárez (2012) evaluated the effects of the 

assumption of bonding and unbonding conditions at the bone-prosthesis interface on bone 

adaptation in a finite element model. Sharma (2010) reported on the correlation between 

strain-induced bone adaptation and the design of total shoulder prostheses.    

Even though inferior positioning and inferior tilting have been proposed for minimizing 

scapular notching (Boileau, 2017), it is still unclear how this may affect bone ingrowth and 

bone adaptation during normal daily activities. It hypothesizes that the placement of glenoid 

component will relate to the implant fixation. This study is aimed to investigate the 

hypothesis using finite element analysis. 
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2. Methods 

2.1 Finite element (FE) modelling  

CT images (Voxel sizes: 0.48mm× 0.48mm× 0.33mm) of a 71-year-old cadaveric 

scapula without any previous shoulder surgeries and disease (Science Care, Phoenix, USA) 

were used to create the geometry of the bone in Avizo 5 (Mercury Systems, Andover, USA). 

The geometry of a Delta CTA RSA (Depuy Synthes Company, Warsaw,  USA) was inserted 

into the bone model according to the recommended surgical techniques for a Delta CTA 

implant (2005 version) (Depuy Synthes Company, Warsaw,  USA). Four positions of the 

glenoid component were simulated (Fig. 1): (a) glenoid prosthesis fixed in the middle of the 

glenoid fossa (FP1), (b) glenoid prosthesis positioned flush to the glenoid rim (FP2), (c) 

glenoid component moved inferiorly until the inferior locking screw protruded from the bone 

(FP3), (d) glenoid component inclined inferiorly by approximately 15° (FP4) (Nyffeler et al., 

2005). With a fixed angle of 17° from the inferior surgical screw to the middle peg of the 

implant, the distance between the bottom of the glenosphere and the inferior rim of the 

glenoid bone for FP3 was 3.9 mm, which is within the reported range of overhang of the 

glenoid component (2 to 4 mm) for a Delta CTA RSA (Nyffeler et al., 2005). With the 

intersection of the superoinferior and anteroposterior axes being a reference point (Nyffeler et 

al., 2005), determination of the entry point of the central peg for the four implant positions 

(Fig. 1) was 0 mm for FP1, 0.8 mm inferiorly for FP2, 4.7 mm inferiorly for FP3 and 0 mm 

for FP4. Inclinations for the four prosthesis positions (Fig. 1) were 0°(FP1), 0°(FP2), 0°(FP3) 

and 15°(FP4) respectively. In the FP4 model, the downward tilt of the glenoid implant 

required resection of the inferior glenoid pole. All the glenoid positions were guided by an 

experienced orthopaedic shoulder surgeon. For each placement, geometries of the scapula and 

the implant were imported into FE software. In this study, MSC. Marc Mentat (MSC 

Software Corporation, Santa Ana, USA) was utilized for creating resected surface on the 
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glenoid, meshing and FE analysis. All models were constructed from linear tetrahedral 

elements and assumed to be linearly elastic and isotropic. The material properties of bone in 

each FE model were calculated using the relationship introduced by Carter and Hays (1977) 

and were assigned element-by-element. The FE model of the scapula was validated against 

the cadaveric scapula in our previous work (Zhang, 2012). The glenoid head and baseplate of 

the implant, which are manufactured from cobalt-chrome, were modeled as linear isotropic 

materials with a Young’s modulus of 220 GPa. The four titanium screws used to secure the 

implant were modeled as linear isotropic materials with a Young’s modulus of 110 GPa.   

The baseplate of the Delta CTA RSA was press-fit to the bone. To evaluate micromotion 

at the bone-baseplate interface, the baseplate in the FE model was assumed to be unbounded 

and set with a frictional surface-to-surface contact with the bone. 0.4 was recommended for 

the friction coefficient at the baseplate-bone interface (Harman et al., 2005; Hopkins et al., 

2008). In addition, varying the coefficient of friction was found not significantly affect the 

predicted micromotions in our previous work (Zhang, 2012). In this current study, the four 

peripheral surgical screws in the RSA were assumed to be securely tightened. Thus, the 

interface between bone and screws was modelled as a rigidly bonded interface. Five 

physiological activities from daily life were simulated: 1) Combing hair, 2) Lifting a block 

higher than the shoulders, 3) Lifting a block to shoulder height, 4) Hands on the lower back, 5) 

Sit-to-stand from an armchair (Supplementary) (Kontaxis, 2010). Force magnitudes 

(Supplementary (d) (e)) and loading positions (Supplementary (f) (g)) in each activity were 

obtained from Kontaxis’ study, as well as the scapular reference coordinate (Kontaxis, 2010). 

In the intact bone model (Supplementary (b)), AI represents the inferior angle, AA is the 

posterior point of the acromion, and TS is the medial end of the scapular spine.The origin of 

the coordinate system in the FE model of the intact bone is on the point AA; Xs is on the line 

determined by AA and TS; Ys is vertical to Xs; Zs is vertical to the plane determined by AA, 
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TS and AI; The coordinate system of the implanted scapula was defined based on the resected 

surface (Supplementary (c)). The origin of the coordinate system in the FE model of the 

implanted scapula is on the middle point of the baseplate. X is vertical to the resected surface, 

Y is from the inferior to the superior, Z is from the posterior to the anterior. The medial ends 

of the scapula in each FE model were fixed to prevent movement and so as not to influence 

the motion of the glenoid. Bone-implant micromotions and strain-induced bone resorption 

were recorded for various fixation positions. The quality of the meshes was checked using a 

mesh convergence study, finding that a mesh size of 1.5 mm in the lateral scapula and 3.0 mm 

in the remaining bone offered a reliable prediction of interface micromotion and bone 

adaptation. 

2.2 Micromotion analysis 

The relative displacement of each pair of contacting nodes on the fixation interface after 

loading was calculated. This indicated the extent of micromotion of that pair of nodes. The 

micromotion of all the nodes at the bone-implant interface in each physiological activities 

shown in the supplementary (Kontaxis, 2010) was recorded for each implant position. The 

calculation method was validated by Harman and Hopkins (Harman et al., 2005; Hopkins et 

al., 2008). Our previous study investigated micromotion and post-operative stress variations 

in six FE models of cadaveric scapulae implanted with a Delta CTA RSA in the middle of the 

glenoid (Zhang, 2012). The results showed the same level of micromotion and bone density 

distribution across all models. Thus, this study used one of the scapulae for analyzing 

micromotion and bone remodelling with the Delta CTA RSA fixed in various positions.  

2.3 Bone adaptation analysis 

The strain-induced bone remodelling algorithm proposed by Weinans et al. was used in 

this study (Weinans et al., 1992). This algorithm was developed in accordance with ‘Wolff’s 
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Law’ and uses strain energy density as the feedback. It has been clinically validated using the 

adaptation of periprosthetic human bone by Kerner et al. (Kerner et al., 1999). For the purpose 

of investigating changes in bone density in this current study, only the internal structure was 

remodelled and the outer shape of the glenoid was assumed to be unchanged. Changes in bone 

apparent density were calculated on an element-by-element basis and expressed by Equation 1. 

 

Equation 1 

Where i  relates to elements, S  is the bone remodelling stimulus ( /US  ), U  is the 

strain energy density,
nS  is the reference stimulus, τ is the time scale (the relationship between 

simulated time and real time), A (  ) is the free surface density  (Martin, 1984), t  is the 

time increment expressed in Equation 2,  and s is a constant for determining the extent of the 

stimulus range. In this study, s=0.75 was used (Kerner et al., 1999), as this value has been 

successfully validated with in-vitro tests by Kerner et al. (1999) and Bitsakos (2005). The 

reference stimulus ( nnn US / ) was calculated according to the strain energy ( nU ) and bone 

apparent density ( n ), which were obtained from an intact scapula bone. Five physiological 

daily activities were applied to the intact scapula (Supplementary) (Kontaxis, 2010). The 

stimulus was calculated for each loading condition and the average of the stimuli from all 

loading conditions represented the stimulus ( S ) in one iteration. In each iteration, the 

Young’s modulus was calculated using the relationship proposed by Carter and Hayes (1977) 

and was updated when the next iteration started. The Poisson’s ratio was assumed to be 

constant during the entire bone adaption process.     

  
Equation 2 
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Variations in distribution of bone apparent density in the frontal plane, which passes 

through the middle of the stem, were recorded and used to predict postoperative adaptive bone 

resorption in the scapula.  

Five regions of interest were chosen for statistical comparison of glenoid positioning (Fig. 

2). Three regions were in the lateral glenoid and two regions were in the medial glenoid (Fig. 

2). The bone apparent density in each region was averaged. A student’s t-test was applied to 

investigate the relationship between the position of the glenoid implant and strain-induced 

bone adaptation. A P value of less than 0.05 was considered significant. 
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3. Results 

Micromotion at the bone-prosthesis interface was recorded for the four glenoid implant 

positions under five loading conditions (Tasks 1 to 5) (Supplementary). The interface 

micromotion while standing up from an armchair (Task 5) was illustrated in Fig. 3. The 

results indicate that large interface micromotions were predominantly located at the tip of the 

central peg, as well as at the superior and inferior rims of the baseplate. In comparison with 

the other three positions, an inferior tilt of the glenoid prosthesis led to a considerable increase 

in micromotion at the inferior region of the baseplate.  

The maximum micromotion at the bone-prosthesis interface for each implant position (Fig. 

1) under the five loading conditions (tasks 1 to 5) (Supplementary) is illustrated in Fig. 4. It 

was found that the maximum micromotion in FP4 (inferior tilt of the glenoid implant) reached 

82.5 µm in Task 2 (Lifting a block to head height) and 137.4 µm in Task 5 (Standing up from 

an armchair). In Task 5, where the greatest micromotion was observed across all activities, 

micromotion of less than 50 µm (the threshold value for bone ingrowth) covered 73.5% of the 

baseplate. For the implant positions without any inferior tilting, the average peak micromotion 

for the five loading conditions (Supplementary) was 27.4 µm for FP1, 25.2 µm for FP2 and 

26.6 µm for FP3. However, for Task 5 alone, the peak micromotion reached 67.2 µm for FP1, 

63.5 µm for FP2 and 65.4 µm for FP3. 

Variations in the distribution of postoperative bone apparent density with time for the four 

glenoid implant positions were predicted with a bone remodelling algorithm. Results at four 

follow up stages are shown in Fig. 5. It was found that severe bone resorption occurred 

around the central peg and the back of the baseplate in all four models. Low apparent 

densities predominantly appeared above the central peg when the glenoid component was 
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located inferiorly (FP2 and FP3) and were distributed almost evenly around the central peg in 

FP1 and FP4.   

The percentage change in mean bone apparent density in the postoperative period of F4 in 

the five regions of interest is shown in Fig. 6. It is noticeable that the bone apparent density at 

the lateral-middle (2) region showed high strain-induced bone resorption for FP2 (64.1% (SD 

9.7%)) and FP3 (64.6% (SD 9.5%)). There were no lateral-middle values in the case of central 

positioning of the glenoid (FP1 and FP4), as this region just covered the hole for the implant 

stem. In the lateral-inferior region (3), central positioning of the glenoid component (FP1: 

43.9% (SD 17.1%) and FP4: 43.8% (SD 19.8%)) led to greater variation in bone apparent 

density than moving the glenoid component inferiorly (FP2: 25.9% (SD 21.1%) (p<0.05) and 

FP3: 25.0% (SD 16.7%) (p<0.05)). In addition, Fig. 6 also illustrates a greater reduction in 

bone apparent density in the lateral region (1, 2, 3) than in the medial region (4, 5). 
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4. Discussion 

This study simulated implantation of the glenoid components of an RSA in four different 

positions to analyse micromotion at the bone-prosthesis interface and bone adaptation. The 

most important findings were that (1) inferior tilting of the glenoid component lead to high 

levels of micromotion in the inferior glenoid, but this is activity-specific, and (2) 

postoperative bone resorption is highly dependent on implant positioning.     

The micromotion detailed in Fig. 4 shows that inferior positioning (FP3) of the implant 

did not result in different levels of micromotion than could be expected with a traditional 

implant position (FP1). For the positions with 0° tilt, the average peak micromotion for all the 

loading conditions (27.4 µm in FP1, 25.2 µm in FP2 and 26.6 µm in FP3) was lower than the 

upper limit of 50 µm, above which bone formation would not occur (Pilliar et al., 1986). This 

indicated a suitable initial stability of the glenoid prosthesis. This finding is consistent with 

radiological reports for successful RSAs (Roche et al., 2013; Boileau, 2016). Variations in 

peak micromotions for the different activities show that a patient’s lifestyle may affect the 

initial stability of the implant. The high peak micromotions observed for Task 5 (67.2 µm in 

FP1, 63.5 µm in FP2 and 65.4 µm in FP3) indicates that further studies into the relationship 

between lifestyle and micromotion could be beneficial for developing improved guidelines for 

postoperative recovery. 

Tilting the glenoid component inferiorly led to an increase in peak micromotions. 

Noticeably, the value was 82.5 µm in Task 2 (lifting a block to head height) and 137.4 µm in 

Task 5 (standing up from an armchair). This suggests that bone ingrowth would not occur in 

the inferior part of the glenoid because both values exceeded the upper limit of 50 µm for 

stimulating bone formation (Pilliar et al., 1986). Roberts et al. reported similar findings in an 

anteroposterior radiographic study, where serious inferior radiolucent lines were observed 
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with the use of an inferior-tilt configuration (Roberts et al., 2007). Using in-vitro testing and 

finite element simulations, Chae et al. also reported high micromotion in the inferior part of 

the glenoid (Chae et al., 2015; Chae et al., 2016). The greatest micromotion was observed in 

Task 5. However, micromotion below 50 µm covered 73.5% of the baseplate. This explains 

the initial stability of the glenoid component when fixed with an inferior tilt (Simovitch et al., 

2007). Variations in peak micromotion for position FP4 (inferior titling of baseplate) for the 

five loading conditions (Task 1: 16.1 µm, Task 2: 82.5 µm, Task 3: 19.8 µm, Task 4: 12.3 µm, 

Task 5: 137.4 µm) showed that the increase in micromotion induced by glenoid positioning is 

activity-specific. Reducing activities that produce high anterior-posterior shear forces (for 

example, Task 2 & 5) may improve the primary stability of the prosthesis when fixed with an 

inferior tilt. 

In comparison to positioning with a 0° inclination, tilting the implant inferiorly induced a 

superior shift in the glenohumeral resultant force on the glenosphere surface and increased 

bone loss around the inferior glenoid pole. The magnitude of the resultant glenohumeral (GH) 

force, which originates from the muscles surrounding the shoulder, is assumed not to be 

related to implant positioning. Changing the position of the loading point may reduce the 

shear forces on the implant and thus was not a factor for the increase of micromotions in FP4. 

Tilting the implant required the inferior scapular pole to be resected, leading to increased 

contact between trabecular bone and the implant. This weak bone supporting the implant may 

explain the high micromotions in the inferior region observed in our study (Chae et al., 2015). 

An inferior inclination of the glenosphere requires the removal of cortical bone, which has 

been suggested to increase the risk of glenoid loosening (James et al., 2011; Kempton et al., 

2011; Roche et al., 2013). In addition, specific recommendations for reducing scapular 

notching by tilting the glenosphere are still controversial (Edwards et al., 2012; Li et al., 

2013).   
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Bone density distributions in the frontal plane for four glenoid positions under various 

loading conditions were predicted in this study. The results indicated the same tendency for 

strain-induced bone resorption in all four implant positions. Bone loss occurred initially in the 

area next to the bone-prosthesis interface, and then expanded to the peripheral regions. This 

finding is consistent with radiographic observations of bone loss in Grammont RSA (Roberts 

et al., 2007; Fávaro et al., 2015). 

This study also demonstrated that changing the position of the glenoid prosthesis induced 

different levels of strain-induced bone resorption. An inferior movement of the glenoid 

component led to greater bone resorption in the lateral-middle region, while central 

positioning of the glenoid component induced increased bone loss in the lateral-inferior 

region. These observations are corroborated by radiographic images (Roberts et al., 2007; 

Farshad and  Gerber, 2010; Fávaro et al., 2015). Farshad et al. reported that radiographic bone 

resorption at eight years after RSA was more severe than at three years, with the most 

noticeable region being above the central peg (Farshad and  Gerber, 2010). The distribution of 

bone resorption with inferior positioning of the glenoid prosthesis in RSA is possibly caused 

by the inferior movement of the glenohumeral force on the glenoid bone. The inferior 

movement was 1.8 mm for FP2 and 3.9 mm for FP3 . Thus the load above the middle peg 

(lateral-middle region) after implantation reduced significantly, leading to low postoperative 

strains and greater bone resorption.   

A limitation of this study is that the time constant used in the strain-induced bone 

remodelling algorithm has only been validated in studies on hip replacements for dogs 

(Kerner et al., 1999; Bitsakos, 2005). It is necessary to develop a time constant which could 

connect the predicted bone remodelling with clinical data obtained from patients with RSA. It 

would be beneficial to assess bone resorption in real time with different glenoid positions. 

Another limitation is that the bone-baseplate interface was assumed to be unbonded, which is 
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a worst case scenario. In a study evaluating the effect of various connection conditions at the 

bone-baseplate interface on the amount of bone resorption, Suárez et al. reported that bonding 

the interface (best case scenario) produced slightly less bone resorption than when the 

interface was unbonded (worst case scenario) (Suárez et al., 2012). This current study 

evaluated the amount of bone resorption when the glenoid component was fixed in various 

positions. Changing the position of the implant will lead to the same effects on results as long 

as the bone-baseplate interface connection conditions in the various FE models are the same. 
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5. Conclusions 

In conclusion, tilting the glenoid component inferiorly would lead to increased 

micromotion in the inferior glenoid, but the amount of micromotion depends on the activity 

being performed. Reducing activities with anterior-posterior shear forces will improve the 

primary stability of the bone-prosthesis interface when the prosthesis is fixed with an inferior 

tilt. Moving the glenoid component inferiorly led to a reduction in bone apparent density in 

the lateral-middle region. Central positioning of the glenoid component increased bone 

resorption in the lateral-inferior glenoid. Understanding the relationship between 

postoperative bone resorption and implant positioning is beneficial for improving the long-

term stability of RSA. 
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Highlights 

 Inferior tilting of implant leads to increased micromotion in the inferior glenoid 

 The amount of micromotion is activity-specific 

 Reducing activities with anteroposterior shear forces improves implant stability 

 Inferior positioning increases bone resorption in the lateral-middle glenoid 

 Central positioning increases bone resorption in the lateral-inferior region 

ACCEPTED MANUSCRIPT



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6


