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Soliton content in the standard optical OFDM signal
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Nonlinear Schrédinger equation (NLSE) is often used
as a master path-average model for fiber-optic transmis-
sion lines. In general, NLSE describes the co-existence
of dispersive waves and soliton pulses. Propagation of
signal in such a nonlinear channel is conceptually dif-
ferent from linear systems. We demonstrate here that
the conventional orthogonal frequency-division mul-
tiplexing (OFDM) input optical signal at powers typ-
ical for modern communication systems might have
soliton components statistically created by the ran-
dom process corresponding to the information con-
tent. Applying Zakharov-Shabat spectral problem to
a single OFDM symbol with multiple sub-carriers we
quantify the effect of statistical soliton occurrence in
such an information-bearing optical signal. Moreover,
we observe that at signal powers optimal for trans-
mission OFDM symbol incorporates multiple solitons
with high probability. The considered optical commu-
nication example is relevant to a more general physi-
cal problem of generation of coherent structures from
noise. © 2018 Optical Society of America

OCIS codes: (190.5530) Pulse propagation and temporal solitons;
060.2330 Fiber optics communications; (070.4340) Nonlinear optical signal
processing;
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1. INTRODUCTION

Optical fiber is a remarkable engineered physical medium im-
portant for a range of practical applications, including telecom-
munications, sensing, lasers, imaging and many others [1]. Light
trapped in silica waveguide can propagate with extremely low
field attenuation over long distances. Optical fiber medium can
also act as a nonlinear system when signal accumulates during
the propagation a noticeable (of the order of 7r) nonlinear phase
change due to the fiber Kerr effect. In some applications, such as
mode-locked fiber lasers, the nonlinear Kerr effect is used posi-
tively, providing conditions for mode-locking and pulse shaping

in laser. In modern telecommunication systems, nonlinearity is
typically considered as the factor limiting their performance at
high signal-to-noise ratio.

The nonlinear properties of the fiber communication links
create a number of unusual (compared to linear channels) chal-
lenges. However, channel nonlinearity also offers new in-
teresting opportunities. It is well known, that the nonlinear
Schrodinger equation (NLSE) describes under particular condi-
tions and within certain limits the propagation of a signal down
an optical fiber [1-5]. Written in the generic normalized form
(see for detail e.g. [1-3]) the NLS equation reads
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In the context of fiber-optic, we consider here the case of the
so-called anomalous dispersion, when general solutions of this
equation can include both the dispersive (linear-like) waves and
the coherent structures - solitons. Any initial field evolving
according to this master model can be presented as a nonlinear
superposition of dispersive waves and soliton(s).

In 1972, Zakharov and Shabat demonstrated that the NLSE
can be integrated by the inverse scattering transform (IST)
method [6], also known nowadays as the nonlinear Fourier trans-
form (NFT). The IST/NFT allows one to present field (with the
evolution along distance z governed by NLSE) at an arbitrary
distance using nonlinear spectrum of the initial (at z = 0) sig-
nal distribution. More specifically, nonlinear spectrum of the
initial field (¢, z = 0) can be found through the solution of the
Zakharov-Shabat spectral problem:

=011 +q(t,0)¢2 = iy
Opa +q"(t,0)py = iy

q(t,0) = qo(t) is the "potential" — initial distribution of the signal,
1 2 is a vector eigenfunction and ¢ - spectral parameter defined
on a complex plane.

In general, the nonlinear spectrum for the localized in time
domain optical signal go(t) has discrete eigenvalues and a con-
tinuous component corresponding to the spectrum of the sys-
tem (2). The continuous spectrum of the system (2) fills the
real axis of the {-plane and corresponds to the dispersive wave
component, which will not be our focus here.

(2)
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The discrete spectrum eigenvalues ¢, correspond to soliton
solutions of the NLSE. For some classes of initial initial pulse,
there are known analytical and numerical results concerning the
soliton content in the initial field gy (), see for detail e.g. [7-9].
In the case of a real-valued unmodulated (no temporal depen-
dence of the phase) rectangular pulse, the number of solitons N
containing in such field can be found as

N =int[1/2+ Ly(q)/ 7). (3)

Where int[...] means the integer part of the expression and
Li(q) = j;o |q(#)|dt is the (non-dimensional) signal L1 norm.

Evidently, the L, norm givenby L, = [ j;o |(t)|2dt corresponds
to the signal energy. In the case of more complex initial signals
the analytical approaches are limited and analysis requires ex-
tensive statistical numerical modelling based on direct solving
of Zakharov-Shabat spectral problem (2). For instance, in [10]
generation of solitons from noise and noncoherent optical pulses
has been considered using L, norm as a measure. Analysis of
a soliton content in chirped Gaussian pulses was done in [11]
and in the optical speckle fields in [12]. In particular, it was
shown that modulation of a simple rectangular pulse leads to
significant decrease of the number of emerging solitons [10].

It is well known that an information-bearing signal can be
treated as a random process, in which signal characteristics, such
as power and phase, experience statistical variations that depend
on modulation formats and coding [13]. Here we study soliton
content in a standard optical orthogonal frequency-division mul-
tiplexing (OFDM) signal, in which digital data is encoded on
multiple carrier frequencies. We are interested here only in the
total number of the discrete eigenvalues, but not in their specific
parameters. Therefore, we apply the method described in [14],
which links the number of discrete eigenvalues to the total phase
shift of the coefficient 4(&) by the formula:

1 +oo
N = EArg(a(@’)) L @
the spectral parameter ¢ takes values from —oo to +co on the real
axis. The coefficient a({) is one of the coefficients characterizing
the scattering on the "potential” 4(t,0) in the Zakharov-Shabat
problem (2), see for detail e.g. [15] and also recent work [16].

We would like to stress that in the framework of the con-
sidered integrable NLS equation model, there is no need for
numerical simulations of initial signal propagation with dis-
tance z. The number of discrete eigenvalues will not be changed
during propagation governed by the NLS equation. Moreover,
parameters of continuous and discrete nonlinear spectrum will
be changed in a trivial manner [5]. Therefore, we focus in this
Letter on the analysis on the solutions of the Zakharov-Shabat
spectral problem, rather than on consideration of the propaga-
tion dynamics of the field.

2. SOLITON CONTENT IN THE CONVENTIONAL OFDM
OPTICAL SIGNAL

Orthogonal frequency-division multiplexing combines multi-
plexing and modulation. A single OFDM symbol (over time
interval with duration T) is presented as a sum of independent
sub-carriers:

M-1
s(t) = Y Xpe™/T o<t <T, (5)
k=0
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Fig. 1. Probability distribution of soliton occurrences in OFDM
symbol with QPSK modulation, 128 sub-carriers and with
average power of —18 dBm

here X corresponds to digital data, M is the number of sub-
carriers and T is the symbol interval. In practice, the number
of subcarriers is selected as M = 27 to use the Fast Fourier
Transform (FFT) algorithm. In the real world units, we examine
OFDM symbol with 10 ns symbol duration and QPSK or 16QAM
modulation. Full FFT size is 1024 and number of sub-carriers
M is changing from 16 to 1024. Average signal power is linked
to the L, norm (in dimension units) as following: Pspe = Ly /T,
and it varies (in the dimension units) from —21 to —8 dBm.

Without loss of generality, we focus here on two types of
popular modulation formats: quadrature amplitude modula-
tion (QAM) and phase-shift keying (PSK) and consider a single
OFDM symbol (i.e. assuming burst mode transmission with
well separated symbols). We analyze the probability of the ap-
pearance of solitons in the input OFDM symbol, depending on
the signal parameters: modulation type, L or L, norms and
number of sub-carriers M. We use in the numerical simulations
shown in Fig. 5 the following typical parameters: group velocity
dispersion parameter 8, = —21.5 (in ps®/km) and the nonlinear
Kerr coefficient ¢y = 1.27 (in W~ 1km~1). We accumulate statis-
tics on the number of occurred solitons for fixed system and
signal parameters by varying input digital data. Each graph
point corresponds to 160 statistical measurements. For example,
Fig. 1 shows the probability distributions for OFDM signal with
QPSK modulation at 128 subcarriers with P, = —18 dBm, and
also Poisson fit distribution (P(x;A) = e~* - AN/N!) for this
data (A is extracted from the data fitting), obtained by numerical
simulation (the number of events equals 1,000,000).

We examine now the probability of occurrence of solitons in
the OFDM signal defined as the ratio of the number of symbols
containing discrete eigenvalues (corresponding to solitons) of
the Zakharov-Shabat spectral problem to the total number of
the considered OFDM symbols. In other words, we are not
interested in the exact number of solitons in the signal, but
rather in their existence in the given OFDM symbol. Our goal
here is to demonstrate that appearance of solitons in the OFDM
signal is not something exotic, but rather is a general situation
at certain practical power levels. We did verify that number of
solitons does not depend on increase of the computational grid
and the FFT size (temporal signal discretization).

Figure 2 shows the probability of the occurrence of solitons at
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Fig. 2. Average number of occurred solitons versus value of
L1 norm for OFDM signals with QPSK and 16QAM modula-
tions. The first threshold of L; norm value, calculated using
the formula (3), is 1.57 and lies on the left well outside the
boundaries of the graph

128 subcarriers versus the L1 norm value. Note that the probabil-
ity of the soliton appearance for signals with the same L; norm
value is higher for signals with 16QAM modulation compared
to QPSK. This trend is maintained for all numerical modeling
with various parameters. It is also seen that for such highly
modulated complex signals threshold of soliton occurrence is
much higher than the analytical results (3) obtained for real
unmodulated rectangular smooth functions.

Figures 3 and 4 show how the probability of occurrence of
the soliton content in the OFDM signal is growing with the
increase of the average power Pp.. One can see that in signals
with 128 subcarriers, solitons start to emerge at lower values of
the norm compared to signals with 1024 subcarriers. It is seen
that this effect depends on the number of subcarriers and signal
modulation format. The transition from random (depending
on the information content) appearance of solitons in certain
(relatively rare) OFDM signals to the regime where most of the
symbols contain discrete eigenvalues (soliton component) does
happen over the interval of 3 — 4 dBm increase of input signal
power. An interesting observation is that it does not require too
high signal power, for soliton component to become an inherent
part of the OFDM symbol. The soliton component arises at
rather practical levels of a signal power conventional for telecom
applications.

We would like to stress that solitons appear in the OFDM sig-
nal not at very high powers. As a matter of fact, a soliton content
is present in the OFDM signals at the powers optimal for trans-
mission. To illustrate this point, we considered a 1000 km and
2000 km transmission links based on ideal distributed Raman
amplification scheme with continuous amplified spontaneous
emission generation (see [4, 5] for detail). As an input, we used
16QAM-OFDM signal with 128 subcarriers and 10 ns symbol
duration. At the receiver, the chromatic dispersion was fully
compensated and an algorithm based on the 4th-power Viterbi-
Viterbi method was used for phase estimation. System per-
formance was evaluated using the parameter Q>-factor, which
measures the quality of an transmission signal. The Q?-factor

Fig. 3. Average number of solitons embedded into OFDM
symbol with 128 subcarriers and QPSK and 16QAM modula-
tions versus average signal power.

value has been extrapolated from the conventional error vector
magnitude (EVM) function [17] as Q? =1/EVM? using trans-
mission of 24 OFDM symbols per run. Results are shown in
Fig. 5. Optimal transmission is achieved with an average power
around —15 dBm, that according to Fig. 3 is well in the regime
where a soliton component in the OFDM symbol is highly likely.

In general, solitons and dispersive waves propagate in a
different manner down the optical fiber. The most noticeable
difference is that in the soliton, dispersive broadening is coun-
terbalanced by the nonlinear effects. Therefore, the presence
of solitons embedded into the conventional OFDM symbol po-
tentially should impact the transmission of the combined sig-
nal. Comprehension of this fact and its consequences for signal
coding, modulation and processing might be important for the
improvement of the performance of fibre-optic communication
systems. However, it should be pointed out that effect of the em-
bedded solitons does not lead to a drastic change of the symbol
propagation dynamics. Further study is required to understand
how the presence of solitons affects transmission and how it can
be used in practical terms. Note that even for quasi-linear sig-
nal propagation statistical fluctuations in the plane (z, t) might
be very nontrivial and are dependent on the information data,
format and modulation, see e.g. recent publication [18].

3. CONCLUSIONS

Traditional signal modulation formats have been designed and
developed for linear communication channels. Transmission
in the nonlinear channel reveals rather unusual properties of
such conventional signals. Considering the NLSE as a master
channel model, we have shown here that a standard OFDM
signal statistically contains soliton components at powers of
practical interest. Using Zakharov-Shabat spectral problem, we
studied statistics of soliton occurrences in OFDM signal and
quantify how the number of solitons that are embedded into
the input OFDM signal increases with the L1 norm and signal
average power.

This observation indicates that transmission in a nonlinear
channel substantially changes the whole paradigm of signal
modulation and processing. Our results show that nonlinear
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Fig. 4. Average number of solitons embedded into OFDM
symbol with 1024 subcarriers and QPSK and 16QAM modula-
tions versus average signal power.

analysis might be useful not only to special inherently soliton-
based systems and signals [3], but also for conventional commu-
nication formats that traditionally are not linked to the soliton
concept and techniques. We believe that our results indicate that
application of the detection and processing methods developed
for linear channels might be not optimal for nonlinear commu-
nication channels. In this Letter our focus was on proving the
fact of occurrence of solitons in the OFDM signal ad study of
statistics of soliton component appearances. Impact of such low
energy solitons on signal dynamics and overall on transmission
will be examined elsewhere.

Note, that our work is also relevant to the recently restarted
studies of the so-called integrable turbulence (see e.g. [19-21]
and references therein), where a random initial signal g¢ (e.g.
amplified spontaneous emission) evolves in an intricate way
in the plane (z,t) according to (1). Statistical analysis of this
evolution presented in the nonlinear spectrum can provide new
insights in the complex dynamics of the optical field.

This work was supported by the Russian Science Foundation
(Grant No. 17-72-30006, all authors) and, partially, by the EP-
SRC grant TRANSNET (SKT) and RFBR grant No. 18-02-00042
(AAG).

REFERENCES
1. G. P. Agrawal, The Nonlinear Fiber Optics (Academic press, 2007), 4th
ed.

2. A.Hasegawa and Y. Kodama, Optics Lett. 15, 1443 (1990).

3. L. F. Mollenauer and J. Gordon, Solitons in optical fiber (Academic
Press, 2006).

4. J.D. Ania-Castaién, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang,
and S. K. Turitsyn, Phys. Rev. Lett. 96, 023902 (2006).

5. S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Ka-
malian, and S. A. Derevyanko, Optica 4, 307 (2017).

6. V. E. Zakharov and A. B. Shabat, Soviet Physics JETP 34, 62 (1972).

7. S. Manakov, Soviet Physics JETP 38, 693 (1974).

8. Y. S. Kivshar, Journal of Physics A: Mathematical and General 22, 337
(1989).

9. J. Burzlaff, Journal of Physics A: Mathematical and General 21, 561
(1988).

26
——— L=1000km
—O—— L=2000km
T

/yoﬂ
L LT
! Z \
2% !

Y4 22 20 18 16 14 12 10 -8
Input signal power, dBm

N
~

I\
N
T

Q*factor, dB
N
o
N

‘{

16

Fig. 5. The dependence of the Q?-factor on the average input
power of the signal.

10. S. K. Turitsyn and S. A. Derevyanko, Physical Review A 78, 063819
(2008).

11. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, JOSA B 24, 1254
(2007).

12. S. Derevyanko and E. Small, Physical Review A 85, 053816 (2012).

13. J. G. Proakis, Digital Communications (McGraw-Hill, New York, 2000),
4th ed.

14. S. Burtsev, R. Camassa, and |. Timofeyev, Journal of computational
physics 147, 166 (1998).

15. G. Boffetta and A. R. Osborne, Journal of computational physics 102,
252 (1992).

16. A. Vasylchenkova, J. E. Prilepsky, and S. K. Turitsyn, Optics Lett. 43,
3690 (2018).

17. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss,
S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker,
W. Freude, and J. Leuthold, IEEE Photonics Technology Letters 24, 61
(2012).

18. 8. Derevyanko, A. Redyuk, S. Vergeles, and S. K. Turitsyn, APL Pho-
tonics 3, 060801 (2018).

19. V. E. Zakharov, Stud. Appl. Math. 122, 219 (2009).

20. S. Randoux, P. Suret, and G. El, Scientific Reports 6, 29238 (2016).

21. P. Suret, R. El-Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj,
and S. Bielawski, Nature Communications 7, 13136 (2016).



Letter ‘ Optics Letters 5

FULL REFERENCES

1. G. P. Agrawal, The Nonlinear Fiber Optics (Academic press, 2007), 4th
ed.

2. A.Hasegawa and Y. Kodama, “Guiding-center soliton in optical fibers,”
Optics Lett. 15, 1443—1445 (1990).

3. L. F. Mollenauer and J. Gordon, Solitons in optical fiber (Academic
Press, 2006).

4. J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang,
and S. K. Turitsyn, “Ultralong raman fibre lasers as virtually lossless
optical media,” Phys. Rev. Lett. 96, 023902 (2006).

5. S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Ka-
malian, and S. A. Derevyanko, “Nonlinear fourier transform for optical
data processing and transmission: advances and perspectives,” Optica
4, 307-322 (2017).

6. V. E.Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-
focusing and one-dimensional self-modulation of waves in nonlinear
media,” Soviet Physics JETP 34, 62 (1972).

7. S. Manakov, “Nonlinear fraunhofer diffraction,” Soviet Physics JETP 38,
693 (1974).

8. Y. S. Kivshar, “On the soliton generation in optical fibres,” Journal of
Physics A: Mathematical and General 22, 337 (1989).

9. J. Burzlaff, “The soliton number of optical soliton bound states for two
special families of input pulses,” Journal of Physics A: Mathematical
and General 21, 561 (1988).

10. S. K. Turitsyn and S. A. Derevyanko, “Soliton-based discriminator of
noncoherent optical pulses,” Physical Review A 78, 063819 (2008).

11. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Conversion of
a chirped gaussian pulse to a soliton or a bound multisoliton state in
quasi-lossless and lossy optical fiber spans,” JOSA B 24, 1254—1261
(2007).

12. S. Derevyanko and E. Small, “Nonlinear propagation of an optical
speckle field,” Physical Review A 85, 053816 (2012).

13. J. G. Proakis, Digital Communications (McGraw-Hill, New York, 2000),
4th ed.

14. S. Burtsev, R. Camassa, and I. Timofeyev, “Numerical algorithms for
the direct spectral transform with applications to nonlinear schrédinger
type systems,” Journal of computational physics 147, 166—186 (1998).

15. G. Boffetta and A. R. Osborne, “Computation of the direct scattering
transform for the nonlinear schroedinger equation,” Journal of compu-
tational physics 102, 252-264 (1992).

16. A. Vasylchenkova, J. E. Prilepsky, and S. K. Turitsyn, “Contour in-
tegrals for numerical computation of discrete eigenvalues in the za-
kharov—shabat problem,” Optics Lett. 43, 3690-3693 (2018).

17. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss,
S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker,
W. Freude, and J. Leuthold, “Error vector magnitude as a performance
measure for advanced modulation formats,” IEEE Photonics Technol-
ogy Letters 24, 61-63 (2012).

18. S. Derevyanko, A. Redyuk, S. Vergeles, and S. K. Turitsyn, “Visualisa-
tion of extreme value events in optical communications,” APL Photonics
3, 060801 (2018).

19. V. E. Zakharov, “Turbulence in integrable systems,” Stud. Appl. Math.
122, 219-234 (2009).

20. S. Randoux, P. Suret, and G. El, “Inverse scattering transform analysis
of rogue waves using local periodization procedure,” Scientific Reports
6, 29238 (2016).

21. P Suret, R. El-Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj,
and S. Bielawski, “Single-shot observation of optical rogue waves in
integrable turbulence using time microscopy,” Nature Communications
7, 13136 (2016).



	Introduction
	Soliton content in the conventional OFDM optical signal
	Conclusions

