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Abstract. This paper presents a mathematical model that calculates aldehyde emissions in the 

exhaust of a spark ignition engine fueled with ethanol. The numerical model for aldehyde 
emissions was developed using FORTRAN software, with the input data obtained from a 
dedicated engine cycle simulation software, AVL BOOST. The model calculates formaldehyde 
and acetaldehyde emissions, formed from the partial oxidation of methane, ethane and unburned 
ethanol. The calculated values were compared with experimental data obtained by Fourier 
Transform Infrared Spectroscopy (FTIR). The experiments were performed with a mid-size 
sedan powered by a 1.4-liter spark ignition engine on a chassis dynamometer. In general, the 
results demonstrate that the concentrations of aldehydes and the source elements increased with 
engine speed and exhaust gas temperature. A reasonable agreement between simulated and 
measured values was achieved. 

1. Introduction 
Ethanol is an attractive alternative fuel for spark ignition engines, from the viewpoint of regulated

emissions. The addition of ethanol to gasoline improves fuel economy and reduces emissions of CO, 
HC and NOX from spark ignition engines [1]. However, the incomplete combustion of ethyl alcohol in 
the engine exhaust produces high concentrations of aldehydes (RCHO). Aldehydes are highly reactive 
organic compounds that participate in complex chemical reactions in the atmosphere. Only the 
aldehydes encountered in the gaseous state are considered pollutants in internal combustion engines: 
formaldehyde (CH2O) and acetaldehyde (C2H4O). The emissions of aldehydes are higher for ethanol 
fuel due to the presence of the hydroxyl functional group (OH), absent in gasoline [2].  

The ethanol–gasoline blend fuel could improve emissions other species. Dynamometer tests 
conducted by [3] on a 1.4-liter, flexible fuel spark ignition engine showed that hydrous ethanol addition 

to gasoline with 25% v/v of anhydrous ethanol reduced CO and total HC, but increased carbon dioxide 
(CO2), aldehydes and unburned ethanol emissions. The concentrations were measured by a Fourier 

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032023 doi:10.1088/1742-6596/745/3/032023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



transform infrared (FTIR) analyzer.  
The results obtained by [4] on a spark ignition engine fueled with hydrous ethanol with up to 40% 

water content show that increasing load decreased HC, formaldehyde and acetaldehyde emissions. In 
[5] different percentages of alcohol blend and fumigation were summarized to get information about the 
effect of alcohol on regulated and unregulated emissions of IC engines. For unregulated emissions, it 
was seen an increase of unburned ethanol and methanol and total carbonyls in all tests. And, an increase 
of formaldehyde and acetaldehyde which are the predominant carbonyls in the exhaust for vehicles was 
recorded in most and major experiments, respectively for both modes. [6] show that benzaldehyde, 
acetaldehyde, formaldehyde and volatile organic compounds (VOCs) are the dominant emission 
products from bioethanol, similarly to ethanol–gasoline blends. From tests in a single cylinder spray 
guided direct-injection spark-ignition (DISI) engine, [7] observed much lower formaldehyde and 
acetaldehyde emissions for 2-Methylfuran (MF) and 2,5-dimethylfuran (DMF), compared to gasoline, 
ethanol and methanol. Formaldehyde emission from ethanol (155.7 ppm) was slightly lower than that 
from gasoline (179.4 ppm). However, acetaldehyde emission from ethanol (303.1 ppm) was much higher 
than that of gasoline (53.9 ppm).  

The study developed by [8] experiments were carried out in this spark ignition (SI) engine, which 
was fueled by gasohols (E5, E15, M5 and M15) for characterizing regulated and unregulated emissions. 
A Fourier transform infrared (FTIR) emission analyzer was used for unregulated emission 
measurements. For higher gasohol blends (E15), ethyl alcohol, formaldehyde, propane and iso-butylene 
emissions were present in relatively higher concentrations in the exhaust. M15 emitted higher 
concentrations of methanol, formaldehyde, propane, n-pentane, and toluene compared to other test fuels. 
Acetaldehyde was emitted by gasoline–ethanol blends however it was not detected in the emissions from 
gasoline and gasoline–methanol blends.  

In order to describe the chemical reactions occurring during ethanol combustion, detailed kinetic 
models were developed by authors such as [9], [10] and [11]. These models simulate the chemical 
reactions within reactors used for combustion studies. However, they exhibit great chemical complexity, 
requiring several hundreds of reactions to reach the results. A kinetic model, previously elaborated by 
[12], has been improved by building a complete sub-mechanism taking into account the formation and 
consumption of species involved in formaldehyde formation. The improved mechanism contains 107 
chemical species and 568 reactions in order to simulate formaldehyde formation accurately. The 
reliability of the kinetic model has been tested in ethanol flames.  

Viggiano and Maci [13] analyzed the emissions from an ethanol fueled homogeneous charge 
compression ignition (HCCI) engine through a multidimensional numerical solver coupled to a kinetic 
reaction mechanism. The model is made up of 235 reaction steps among 43 chemical species for ethanol 
oxidation, and a NOX kinetic reaction mechanism made up of 53 reaction steps among 14 chemical 
species. The combustion model accounts for the influence of turbulent time scale on the kinetic time 
scale. Several dynamic adaptive chemistry (DAC) computations have been performed by [14] using two 
kinetic reaction mechanisms of ethanol combustion in HCCI engines with different levels of detail that 
include 57 species and 135 species, respectively. The simulations show that very accurate results of 
pressure and heat release rate profiles and CO, CO2 and unburned HC emissions are obtained for both 
uniform fuel distribution and direct injection of liquid fuel in the combustion chamber. For the single-
zone computations, the use of DAC provides a speed-up the 135-species full mechanism more than 9 
times.  

Vuilleumier et al. [15] examines intermediate temperature heat release (ITHR) in HCCI engines using 

blends of ethanol and n-heptane. The simulation results were used to identify the dominant reaction pathways 

contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR 

in the experimental analysis. The detailed chemical kinetic mechanism for n-heptane was developed in a 

hierarchical manner, and therefore includes detailed chemistry for ethanol combustion. The ethanol sub-

mechanism is largely based on the original work of [9]. A previous work [16] has focused on building sub-

models to predict the gas dynamics, combustion and knock occurrence in alcohol engines. The building 

blocks are implemented in a quasi-dimensional engine simulation code, which is subsequently validated 

against measurements on two engines for various conditions.  
Vourliotakis et al. [17] utilized a single, in-house developed, detailed chemical kinetic mechanism to 

model and analyze five stoichiometric or near stoichiometric low-pressure laminar premixed flames of 
C1–C2 oxygenated fuels. Flames of the two smallest aldehydes (formaldehyde and acetaldehyde) and 
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the two smallest alcohols (methanol and ethanol) are considered. The mechanism is shown to 
satisfactorily reproduce fuel decay as well as major and intermediate species profiles. Reaction path 
analysis is extensively utilized in order to scrutinize the controlling elementary steps.  

This paper describes a model of formaldehyde and acetaldehyde formation in the engine exhaust 
from methane, ethane and unburned ethanol oxidation, formed as intermediate products of ethanol 
combustion. The chemical kinetic model developed in [18] presents aldehyde formation in internal 
combustion engines fueled by gasoline or ethanol and it was taken as a basis for this work. The results 
from the simulation are compared with experimental data from laboratory tests in a production vehicle, 
with exhaust aldehydes being measured by Fourier Transform Infrared (FTIR). 

2. Methodology 
The description of the methodology here applied is divided into the aldehyde formation model, model 
simulation and the experiments performed to compare with the model results. 

2.1. Aldehyde Formation 
The methodology used to simulate formaldehyde and acetaldehyde formation is based on the theory of 
chemical reaction kinetics applied to aldehyde formation from in-cylinder ethanol combustion. The 
aldehyde formation reactions start in the cylinder and propagate through the exhaust pipe. The 
differential equations of the chemical reactions in the cylinder and the exhaust pipe are time-integrated, 
obtaining algebraic expressions for the concentrations of formaldehyde, acetaldehyde, methane and 
ethane.  

The aldehyde simulation model considers that exhaust acetaldehyde (CH3CHO) is mainly formed in 
the intermediate phase of the post-flame oxidation of unburned ethanol (CH3CH2OH) in the combustion 
chamber and in the exhaust pipe, according to: 

  OHCHOCHOOHCHCH 2323      (1) 

Formaldehyde and acetaldehyde are also formed from the post-flame oxidation process of methane 
(CH4) and ethane (C2H6), respectively. These components are generated when the decomposition 
process of the unburned fuel in the exhaust gas is stopped at an intermediate stage of the chemical 
reaction. The interruption is mainly due to reduction of temperature and oxygen concentration. The first 
product of methane oxidation is methanol, which is immediately oxidized to formaldehyde in the 
presence of oxygen remaining in the general reaction: 

OHOCHOCH 2224         (2) 

The production of acetaldehyde from ethane oxidation is given by: 

OHOHCOHC 242262 
     (3) 

The aldehydes formed in the intermediate stages of the combustion process are immediately 
consumed by the flame front due to the high temperature attained in the combustion chamber. In order 
to calculate the exhaust aldehyde concentration, the oxidation reactions are considered separately, being 
the final concentration given by the sum of the parts produced in each reaction.  

Aldehyde formation is calculated from the combustion chamber to the sampling point in the exhaust 
pipe. While the concentration of unburned ethanol is given by the BOOST software, the concentrations 
of methane, ethane, formaldehyde and acetaldehyde are calculated by the aldehyde emission model from 
the reaction equations presented in [9] and [18]. The calculation is performed from the moment the 
exhaust valve opens until the end of the exhaust process. 

The exposure of methane to oxygen causes an oxidation process that forms formaldehyde and water 
molecules. The methanol formed in the intermediate phase of methane oxidation to formaldehyde is 
oxidized instantaneously, as shown by Eqs. (4) and (5) [18]: 

OHCHOCH 322
1

4 
    (4) 
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OHHCHOOOHCH 222
1

3 
  (5) 

Therefore, the formation rate of formaldehyde (HCHO) from methane (CH4) oxidation takes the form 

[18]: 
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      (6) 

Where 𝐴 is the pre-exponential factor of Arrhenius (6,461014 cm³/gmol.s) [10], 𝑇 the temperature 

(K), 𝑛 is the exponent of the temperature, 𝐸𝐴  the activation energy (179,9 kJ/gmol) [10] and 𝑅  the

universal gas constant (8,3143410-3 kJ/gmol.K) [18]. 

Acetaldehyde formation from ethane oxidation is given by [18]: 

OHHCOHC 5222
1

62 
     (7) 

OHOHCOOHHC 24222
1

52 
      (8) 

Following similar procedure to methane oxidation, the mathematical model that represents the rate 

of formation of acetaldehyde (C2H4O) from ethane (C2H6) oxidation of is so given [18]: 

 
][][

090.69
exp

7200
exp

][
62

2/1

22/1

42 HCO
TTRTR

E
TA

dt

OHCd An 






 

















 (9) 

Where constants 𝐴  and 𝐸𝐴  assume the values of 3,981013 cm³/gmol.s and 213,0 kJ/gmol,

respectively [18]. The unit of measure for acetaldehyde formation rate given by Eq. (8) is gmol/cm³.s. 

Ethanol oxidation to acetaldehyde, which begins in the region after the flame front in the combustion 

chamber and propagates along the exhaust pipe, is written as [18]: 

OHOHCOOHHC 24222
1

52 
 (10) 

Using a similar mechanism as that described for methane and ethane oxidation, ethanol oxidation is 

initiated by developing the rate of formation of the reaction products represented by Eq. (10). Thus, the 

rate of formation of acetaldehyde (C2H4O) from ethanol oxidation is given by [18]: 

 
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       (11) 

Where constants 𝐴  and 𝐸𝐴  assume the values of 1,121013 cm³/gmol.s and 127,3 kJ/gmol,

respectively [18]. The unit of measure for acetaldehyde formation rate given by Eq. (11) is gmol/cm³.s. 

2.2. Numerical Simulation 
The dedicated software AVL BOOST was used to simulate the cycle of an ethanol-fueled, four-stroke 
spark ignition engine, with main interest on combustion and exhaust emissions. The flow in the pipes is 
treated by the software as one-dimensional. This means that the pressures, temperatures and flow 
velocities obtained from the solution of the gas dynamic equations represent mean values over the cross-
section of the pipes [19]. The input data for the simulation correspond to the engine used in the 
experiments performed to compare with the model. 

The AVL BOOST software is not able to calculate aldehyde emissions. The calculated cylinder 
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temperature and pressure diagrams throughout the cycle and the exhaust concentrations of oxygen and 
unburned ethanol are used as input data for the aldehyde emissions model here developed in FORTRAN 
code. The routine developed in the FORTRAN software works with the chemical reaction equations to 
calculate the concentrations of aldehydes and their producers in the cylinder and exhaust pipe. The 
simulation was performed varying the engine crankshaft speed from 2000 rpm to 5000 rpm. 

2.3. Experiments 
The model results were compared with experimental data obtained from a 4 cylinder, 1.4 liters, 10.35:1 
compression ratio, 60 kW rated power, 121 N.m rated torque, FIAT FIRE 1.4 Flex spark ignition engine, 

operated in a bench test dynamometer, fueled with hydrous ethanol (6.8% wt./wt. of water). K-type 
thermocouples, with uncertainty of reading of ± 2°C, were installed in the engine to measure the intake 
air temperature and the exhaust gas temperature. The exhaust gas sample was taken from the exhaust 
pipe, close to the exhaust port, and driven through a heated sampling line, to avoid heavy component 
condensation, into a FTIR analyzer. The measurements were made with the engine operating at steady 
state condition, wide open throttle, air/fuel equivalence ratio 0.96, variable load and crankshaft speeds 

of 2000, 3000, and 4000 rpm, with corresponding ignition timings of 25.7BTDC, 29.3BTDC and 

27.9BTDC, respectively. The results shown in the following section are the average of three tests 
performed at each engine operating condition. 

3. Results
The results from the simulation are compared with experimental values measured by Fourier Transform 
Infrared spectroscopy (FTIR). The concentrations of formaldehyde, acetaldehyde and their main 
producers – methane, ethane and unburned ethanol – were measured. Acetaldehyde corresponds to the 
sum of the parts formed from the post-flame oxidation of unburned ethanol and ethane. All substances 
present a trend of increased concentration with increasing engine speed, as can be seen in Figures 1 to 
5. Model and experiments generally show qualitative agreement, while the proximity of the quantitative
values depends on the engine operating condition.  

The general trends obtained for formaldehyde and acetaldehyde, shown in Figures 1 and 2, are in 
agreement with [20] and [21] and [22], who also found increased aldehyde concentration with engine 
speed. It is observed that the concentrations of measured and simulated acetaldehyde are larger than 
those of formaldehyde, as found in [21], using ethanol as fuel, and in [22], [23], [24] and [25], for ethanol 
blends. The acetaldehyde concentration levels found in [20] and [21] are close to those found in the 
present work (Figure 2).   

The increase of formaldehyde (Figure 1) and acetaldehyde (Figure 2) concentrations with engine 
speed is due to the increase of exhaust gas temperature with engine speed [18], together with the increase 
of the concentrations of methane (Figure 3), ethane (Figure 4) and unburned ethanol (Figure 5). The 
increase of exhaust gas temperature with engine speed is due to the shorter time for the engine cycle to 
be complete, making combustion finish later in the cycle. Thus, when the exhaust valve opens it finds 
the burned gas in the cylinder at a higher temperature. The gas temperature and the concentrations of 
methane, ethane and unburned ethanol are the main factors to affect aldehyde formation in the model.  

The trend obtained for methane measured by FTIR analysis (Figure 3) is not the same as that found 
for the measured formaldehyde (Figure 1), of which methane is the main producer. However, the 
simulated trends of methane and formaldehyde are similar (Figures 1 and 3). The simulated values of 
formaldehyde underestimates the measured values in the whole range investigated, showing larger 
discrepancies at 2000 rpm and 3000 rpm (Fig. 1). That is a direct consequence of the simulated values 
of methane also underestimating the measured values in the whole speed range (Fig. 3), once 
formaldehyde is formed during methane oxidation process. Both reaction rates of methane formation 
from ethanol oxidation and formaldehyde formation from methane oxidation requires further 
investigation. The simulated and measured values of ethane have a close resemblance (Figure 4). The 
exhaust methane concentration is always higher than ethane concentration at any engine speed (Figures 
3 and 4). 

From Figure 5 it is observed that the simulated ethanol concentrations are very high in comparison 
with the measured values obtained by FTIR. That is because of the intense oxidation of unburned ethanol 
that continues from the sampling point in the exhaust through the sampling line until reaching the 
analyzer, thus reducing unburned ethanol concentration. The simulation only takes into consideration 
variations on ethanol concentration from the combustion chamber until the sampling point. The trend 
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shown by exhaust unburned ethanol is clearly the same as that of acetaldehyde (Figure 2). The studies 
of [23] and [26] confirm these results: an increase in the concentration of unburned ethanol is associated 
with the increase of acetaldehyde concentration. With the increase of engine speed, the rate of fuel mass 
injected into the cylinder is increased, thus increasing the amount of unburned fuel remaining after 
combustion. 

Figure 1. Simulated and measured (FTIR) 
concentrations of exhaust formaldehyde.  

Figure 3. Simulated and measured (FTIR) 
concentrations of exhaust methane. 

Figure 2. Simulated and measured (FTIR) 
concentrations of exhaust acetaldehyde. 

Figure 4. Simulated and measured (FTIR) 
concentrations of exhaust ethane. 

Figure 5. Simulated and measured (FTIR) concentrations of exhaust unburned ethanol. 

In order to increase the engine speed a higher amount of fuel is injected in the engine and, at the same 
time, combustion becomes more inefficient because of the shorter period it is allowed to be completed 
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and the lesser amount of air admitted by cycle. That is the reason why the concentration of exhaust 
ethanol is increased with engine speed (Figure 5). As intermediate products of the post-flame oxidation 
of higher amounts of unburned ethanol in the presence of higher exhaust gas temperature, higher 
amounts of methane (Figure 3) and ethane (Figure 4) are also produced with increasing engine speed. 

4. Conclusions 
A new model for exhaust aldehyde formation in spark ignition engines has been presented and 
comparisons were made against experimental data. The simulated values of exhaust formaldehyde, 
acetaldehyde and their main producers – methane, ethane and unburned ethanol – show good qualitative 
agreement and reasonable quantitative agreement with the measured values by FTIR analysis. The 
highest discrepancies found between the simulated results and the measured data was for exhaust 
unburned ethanol. The simulation model was proved to be a useful tool to estimate exhaust 
formaldehyde and acetaldehyde from an engine operating with ethanol as fuel. The FTIR analysis was 
able to measure exhaust aldehyde concentration, even the low amounts presented by formaldehyde. Both 
the model and the experiments show increased concentrations of exhaust formaldehyde, acetaldehyde, 
methane, ethane and unburned ethanol with increasing engine speed. These results were attributed to, at 
higher engine speeds, the lower period allowed to complete the combustion process, making it more 
inefficient and increasing the exhaust gas temperature, which is a key parameter for aldehyde formation. 
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