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1 21    ABSTRACT      

 

2            
 

3 22           
 

4            
 

5            
 

6 23 This work presents a thermoeconomic analysis of a cogeneration system using 
 

7            
 

8 24 the exhaust gas from a natural gas-fueled diesel power generator as heat source for an 
 

9            
 

10            
 

11 25 ammonia-water absorption refrigeration system. The purpose of the analysis is to obtain 
 

12            
 

13 26 both unit exergetic and exergoeconomic costs of the cogeneration system at different 
 

14            
 

15 
27 load conditions and replacement rates of diesel oil by natural gas. A thermodynamic 

 

16 
 

17            
 

18 28 model of the absorption chiller was developed using the Engineering Equation Solver 
 

19            
 

20 29 (EES) software to simulate the exergetic and exergoeconomic cogeneration costs. The 
 

21            
 

22            
 

23 30 data entry for the simulation model included available experimental data from a dual- 
 

24            
 

25 31 fuel diesel power generator operating with replacement rates of diesel oil by natural gas 
 

26            
 

27            
 

28 32 of 25%, 50% and 75%, and varying engine load from 10 kW to 30 kW.  Other required 
 

29            
 

30 33 data was calculations using the GateCycle software, from the available experimental 
 

31            
 

32 
34 data.  The  results show that,  in general,  the  cogeneration  cold unit  exergetic and 

 

33 
 

34            
 

35 35 exergoeconomic costs increases with increasing engine load and decreases with 
 

36            
 

37 
36 increasing  replacement rate  of diesel oil  by natural gas  under the  conditions 

 

38 
 

39            
 

40 37 investigated. Operating with 3/4 of the rated engine power and replacing 50% of diesel 
 

41            
 

42 38 oil by natural gas, the exergoeconomic cost of the produced power is increased by 75%, 
 

43            
 

44            
 

45 39 and the exergoeconomic cost of the produced cold is decreased by 17%. The electric 
 

46            
 

47 40 power unit exergetic and exergoeconomic costs indicate that the replacement of diesel 
 

48            
 

49 
41 oil  by natural gas is  feasible  in the present  considerations for engine  operation at 

 

50 
 

51            
 

52 42 medium and high loads.         
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1 46 1.  INTRODUCTION       

 

2          
 

3 47         
 

4          
 

5          
 

6 48 Absorption cycles have emerged  as promising  alternatives for cooling  and 
 

7          
 

8 49 refrigeration applications in terms of emissions (zero ozone depletion fluids and zero 
 

9          
 

10          
 

11 50 global  warming fluids) and low electric energy  consumption [1]. Absorption 
 

12          
 

13 51 refrigeration systems are capable of using different energy sources such as fossil fuels, 
 

14          
 

15 
52 renewable energies and waste heat from other thermal systems, such as engine exhaust 

 

16 
 

17          
 

18 53 gas. Diesel engines deliver high amounts of easily recovered waste heat energy, but 
 

19          
 

20 54 requires single-effect absorption cycles to operate with low activation temperatures once 
 

21          
 

22          
 

23 55 the exhaust gas temperature is low [1].     
 

24          
 

25 56 Several authors [2-5] studied cogeneration plants with reciprocating engines. An 
 

26          
 

27          
 

28 57 absorption refrigeration system using waste heat from a 55-passenger bus engine could 
 

29          
 

30 58 completely meet the coach cooling demand of 30 kW when the vehicle operated over 
 

31          
 

32 
59 100 km/h [6]. A simulation analysis of an absorption refrigeration unit operating with 

 

33 
 

34          
 

35 60 the exhaust gas from a diesel engine showed that the overall system performance could 
 

36          
 

37 
61 be improved with precooling of the engine intake air charge to increase the pressure 

 

38 
 

39          
 

40 62 ratio, while maintaining low cycle temperature ratio [7]. A combined effect Lithium- 
 

41          
 

42 63 Bromide (LiBr) absorption chiller was shown to have higher coefficient of performance 
 

43          
 

44          
 

45 64 (COP) and cooling capacity than a single effect absorption chiller, both using waste heat 
 

46          
 

47 65 from the exhaust gas of an engine as energy source [8].   
 

48          
 

49 
66 The generator is the component of an absorption refrigeration system with the 

 

50 
 

51          
 

52 67 highest exergy destruction, followed by the absorber, condenser and evaporator [9]. It 
 

53          
 

54 
68 was reported that the generator, evaporator, condenser and absorber temperatures, and 

 

55 
 

56          
 

57 69 the  solution  concentration affect  the absorption  refrigeration  system  COP  [10].  In 
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another work, it was found that the highest performance of an ammonia-water 

absorption refrigeration cycle integrated with a marine diesel engine was obtained at 

high generator and evaporator temperatures, and low condenser and absorber 

temperatures [11]. 

 
An experimental investigation of a solar thermal powered ammonia-water 

absorption refrigeration system indicated a chiller COP of 0.69 and cooling capacity of 10.1 

kW, with generator inlet temperature of 114°C, condenser/absorber inlet temperature of 

23°C, and evaporator outlet temperature of -2°C [12]. A hybrid absorption-compression 

refrigeration powered by mid-temperature waste heat reached a COP of 0.71, which is 

about 42% higher than that of a conventional ammonia-water absorption refrigeration 

system [13]. An energetic and exergetic study of a 10 RT (35.17 kW), single effect, indirect 

heated LiBr absorption chiller coupled to a 30 kW microturbine, cooling tower and a heat 

exchanger, using the Engineering Equation Solver (EES) software to evaluate the influence 

of the system parameters, reports a COP around 0.7 for microturbine operation between 

80% and 100% of the rated load [14]. The COP of a double effect LiBr absorption chiller, 

of 1.411, was higher than that of a single effect chiller, of 0.809, both operating with waste 

heat recovery from a boiler flue gas [15]. The exergetic efficiency of the absorption systems 

decreased with increasing flue gas temperature due to the rise of irreversibility in the low 

pressure generator. 

 
A thermoeconomic evaluation is important to improve absorption refrigeration 

systems, as they are less efficient than vapor compression systems [16,17]. An 

exergoeconomic analysis was performed for three classes of double-effect, lithium 

bromide-water absorption refrigeration systems, showing that lower investment costs 

are attained when the temperatures of the high-pressure generator and the evaporator are 
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high, the condenser temperature is low [16]. The exergoeconomic analysis of series flow 

double effect and combined ejector-double effect lithium bromide-water absorption 

refrigeration systems pointed out that, with similar operating conditions, the overall 

system investment cost and the product cost flow rate are lower for the combined cycle 

[17]. In another work, an exergoeconomic analysis of a 5 kW ammonia-water 

refrigeration cycle with hybrid storage system, with the solution properties determined 

by the EES software, showed that the system overall exergetic efficiency tends to a 

constant at temperatures higher than 120ºC, and decreases with evaporator temperature 

lower than -15°C [18]. A thermoeconomic analysis performed for an absorption 

refrigeration system using the exhaust gas of a hydrogen-fueled diesel engine as energy 

source showed that engine combustion is the process with the highest exergy 

destruction, and that it is feasible to operate the system at intermediate and high engine 

loads [19]. 

 
This work presents a thermoeconomic analysis of a cogeneration system 

consisted by a direct heated, single effect, ammonia-water absorption refrigeration 

system using as heat source the exhaust gas from a diesel power generator fueled by 

diesel oil and natural gas. The exergetic and exergoeconomic analysis uses a similar 

approach as that applied by [19]. The main aim is to study the performance parameters 

of the cogeneration system and to get both exergetic and exergoeconomic costs of 

power and cold production at different engine load conditions and replacement rates of 

diesel oil by natural gas. The absorption refrigeration system was modeled in the EES 

software, using as input data the experimental data available from a production, 

stationary diesel engine operating in dual fuel mode with replacement rates of diesel oil 

by natural gas of 25%, 50% and 75%, under variable load [20]. The experimental data 
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available was also used by the GateCycle software to calculate unmeasured exhaust gas 

properties required by the absorption chiller simulation model. 

 
Natural gas has clean burn features and produces lower levels of most pollutant 

emissions components, compared with gasoline and diesel oil [21-27]. In dual fuel 

operation with diesel oil, natural gas combustion increases heat release by about 27-

30%, compared to operation with diesel oil as a single fuel [28]. This results in reduced 

specific fuel consumption, especially at high engine load and intake air temperature [21-

23,29]. The use of different replacement rates of diesel fuel by natural gas affects 

combustion duration and exhaust gas temperature and, therefore, the energy available to 

be used by the absorption refrigeration system [20]. In this work, the replacement rates 

chosen allows for the analysis of a broad range of engine operation with equal 

increments of natural gas in the fuel. The investigation of a cogeneration system 

composed by an absorption refrigeration system and a diesel power generator operating 

with different replacement rates of diesel oil by natural gas finds no resemblance to 

previous works [5,9,11,14]. 

 

 

2.  DESCRIPTION OF THE COGENERATION SYSTEM 
 
 
 
 

A schematics of the absorption refrigeration system simulation coupled with the 

diesel power generator is shown in Fig. 1. The power generation unit features a four-

stroke, four-cylinders, naturally aspirated diesel engine, with direct fuel injection and 44 

kW rated power at 1800 rpm. The engine has a compression ratio of 17:1, 3.922 L total 

displacement, 120 mm bore and 120 mm stroke. The simulated absorption refrigeration 

system is direct heating, single effect, with ~17 kW (~ 4.8 TR) of capacity and COP ~ 

 

 
7 



 
1 142 0.6. The refrigeration system has a generator containing a double rectifying column with 

 

2   
 

3 143 a second heat exchanger and a binary mixture as a combination of refrigerant and 
 

4   
 

5   
 

6 144 absorbent. Ammonia is the refrigerant and water is the absorbent. 
 

7   
 

8 145 A strong liquid solution with a large concentration of ammonia refrigerant leaves 
 

9   
 

10   
 

11 146 the absorber at state 1 and is pumped to the condensing pressure, being preheated in the 
 

12   
 

13 147 heat exchanger to reduce heating at state 3 (Fig. 1). The heated strong solution enters 
 

14   
 

15 
148 into the generator, which produces a weak liquid solution with low concentration of 

 

16 
 

17   
 

18 149 ammonia refrigerant at the bottom, at state 4, and nearly pure ammonia (99.98%) vapor 
 

19   
 

20 150 at the top, at state 7. The weak solution enters the heat exchanger and flows through the 
 

21   
 

22   
 

23 151 pressure  reducing  valve  to  enter  the  absorber.  The  strong  solution  is  sent  to  the 
 

24   
 

25 152 condenser at state 7, then it condenses to sub-cooled liquid at state 8. The liquid enters 
 

26   
 

27   
 

28 153 the heat exchanger to cool at state 9 and, then, it enters the expansion valve. The 
 

29   
 

30 154 ammonia leaving the expansion valve at state 10 enters the evaporator, where the liquid 
 

31   
 

32 
155 phase vaporizes to absorb the refrigerant load in the system. The refrigerant is further 

 

33 
 

34   
 

35 156 heated in the heat exchanger prior to being absorbed in the weak-liquid solution in the 
 

36   
 

37 
157 absorber at state 12, and, then, it returns to state 1, thus restarting the refrigeration cycle. 
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39   
 

40 158  
 

41   
 

42 159 3.  METHODOLOGY 
 

43   
 

44   
 

45 160  
 

46   
 

47 161 Figure 2 presents the stages used in the methodology of the cogeneration system 
 

48   
 

49 
162 simulation:  processing  of  the  available  data  from  experimental  engine  testing  and 

 

50 
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52 163 calculation of exhaust gas related parameters by the GateCycle software, and simulation 
 

53   
 

54 
164 of  the  absorption  refrigeration  system  and  exergoeconomic  analysis  in  the  EES 
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57 165 software. The experimental data and the results from the GateCycle software are used as 
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input data for the EES software, and both softwares operate independently. The 

simulation does not aim to optimize the performance of the combined cogeneration 

system, but to produce the necessary information for an exergetic and exergoeconomic 

analysis of system operation with different replacement rates of diesel fuel by natural 

gas. 

 
The experimental data was available from tests in a production, four-stroke, 

four-cylinder, stationary diesel engine, model MWM D229-4, of 44 kW rated power 

operating at 1800 rev/min, compression ratio 17:1 and direct diesel fuel injection (Tab. 

1) [29]. For all tested operating conditions, the exhaust gas temperature at the outlet of 

the refrigeration system generator was 58°C ± 6°C lower than the inlet gas temperature. 

The engine was operated with varying load from 10 kW to 30 kW and with replacement 

rates of diesel oil by natural gas of 0%, 25%, 50% and 75% on energy basis. During the 

tests, the load power range was limited to 30 kW and the natural gas concentration was 

limited to 75% due to engine instability to operate with natural gas at higher loads and 

concentrations without major modifications. Additional details of the tests, including 

the uncertainties of the results, can be found in Ref [29]. 

 
The GateCycle software uses the experimental data from the engine tests 

varying the load applied and the replacement rate of diesel fuel by natural gas (Tab. 1) 

to calculate unmeasured parameters by bivariate interpolation. The motivation to use the 

GateCycle software was the possibility to use its internal libraries and adequately 

estimate the exhaust gas properties required by the simulation model of the absorption 

refrigeration system. 

 
The compositions of natural gas and diesel oil are presented in Table 2. For 

calculation of the total exergy of air, exhaust gas, diesel oil and natural gas, it was 
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considered steady state condition, negligible pressure drop and ambient at 30°C, 101.32 

kPa [20]. The exergetic efficiency of the diesel power generator ( ) is calculated by [19]: 

 
 
 
 
 
 
 
 

 

 Where is the output power from the diesel power generator (kW), is 

the  total  exergy supplied  with  the  fuel  (kW), is  the  diesel  oil  mass  flow rate 

(kg/s), is the natural gas mass flow rate (kg/s), is the diesel oil specific exergy 

(Table 2) (kJ/kg), and is the natural gas specific exergy (Table 2) (kJ/kg).  

 

The simulation model of the absorption refrigeration system, developed in the 

EES software, was validated against experimental data available from a commercial, 

Consul CQG22D model ammonia-water absorption refrigerator used for domestic 

application, of 215 L internal volume [2,31]. The refrigerator COP was kept nearly 

constant, varying from 0.60 to 0.61, for all engine load range investigated. The 

thermodynamic simulation of each system component calculates mass, energy, entropy 

and exergy balances at steady state condition and neglecting pressure drop. The 

 
exergetic efficiencies of the ammonia-water absorption refrigeration system ( ) and 

the system generator ( ) are calculated as [19]:  
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 Where  and are the total exergies of the produced cold and the engine 

exhaust gas, respectively (kW), and is the power consumed by the solution pump 

(kW). , ,  are pure ammonia specific exergies at the state 7, evaporator 

inlet and evaporator outlet, respectively (kJ/kg), and is the exhaust gas specific 

exergy variation from the generator inlet to outlet (kJ/kg). and are the binary 

solution specific exergies at the states 3 and 4, respectively (kJ/kg). and are the 

 
binary solution specific enthalpies at the pump inlet and outlet, respectively, in kJ/kg. 

 

is the exhaust gas flow rate at the generator inlet (kg/s); and are pure 

ammonia flow rates at the evaporator and state 7, respectively (kg/s). and are the 

 
binary solution flow rates at states 3 and 4, respectively (kg/s). 

 

Other results from the third stage of the simulation include component 

irreversibilities, generator efficiency, heat transfer in the condenser, evaporator, 

absorber and heat exchanger, pump power, COP, and the thermodynamic properties 

used in the exergoeconomic analysis (stage 5 in Fig. 2). The exergoeconomic analysis 

refers to the exergetic costs of system operation according to the physical structure of 

the cogeneration system (Fig. 1), using the streams thermodynamic properties and 

component parameters that were computed in the previous stages (Fig. 2). For the 

exergoeconomic analysis, the unit exergetic cost at the cogeneration system inlet was 

assumed as 1, the exergetic cost balance was applied for components and junctions, and 

the costs distribution in the bifurcations was performed proportionally to the exergy. 

Additionally, the negentropy was considered to be generated by dissipative equipment, 

such as the condenser and absorber, and the exhaust gas from the diesel power generator 

was taken as waste when assigning the costs. 
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Table 3 presents the fuel-product definition for each component of the 

cogeneration system, based on which the cogeneration plant productive structure was 

 
built (Fig. 3). Figure 3 shows that the negentropy ( ) related to heat dissipation in 

 

the condenser is located in the generator, heat exchanger, evaporator and expansion 

 

valve (streams 39 to 42), and related to heat dissipation in the absorber is located 

 

in the pressure reducing valve, generator, solution heat exchanger and solution pump 

(streams 35 to 38). The negentropy distribution adopted was based on the criteria that 

some components work with nearly pure ammonia (heat exchanger, expansion valve 

and evaporator) while others use ammonia-water solution (solution heat exchanger, 

pressure reducing valve and solution pump) or both (generator). For the generator, two 

negentropy streams were located (36 and 39) because it works with two fluid types: 

nearly pure ammonia (flow 7 in Fig. 1) and ammonia-water solution (flows 3 and 4 in 

Fig. 1). 

 
The diesel engine negentropy is due to dissipation of the chemical exergy of the 

exhaust gas flow to the ambient (ambient product in Tab. 3 and stream 47 in Fig. 3). 

From the 50 streams presented in Fig. 3 and the assumptions mentioned before, 50 

equations were written in the EES software to compute the unit exergetic cost for each 

 
stream, with the aim to calculate the unit exergetic cost (   , in dimensionless form) and 

 

the specific exergoeconomic cost ( ) of each stream in the productive structure. The 

main calculated costs were the net electrical power ( , in US$/kW.h) and cold produced 

( , in US$/RT.h, 1 RT = 3.517 kW) by the system at the different loads and fuel 

replacement rates simulated. The specific costs are calculated by the following 

equations [19]: 
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transfer and combustion processes increase the specific entropy generation, thus 

reducing the exergetic efficiency. It is also observed that, with increasing diesel oil 

replacement by natural gas at any load, the engine exergetic efficiency is enhanced due 

to improved combustion. The increase of natural gas fraction in the fuel also increases 

the pre-mixed combustion phase, which is a process more efficient than diffusive 

combustion. 

 
In Fig. 5, it is observed that the exergetic efficiency of the refrigeration system 

tends to decrease with increasing load, due to rise of heat transfer and irreversibility in 

the refrigeration system. When the engine load increases, the exhaust gas mass flowrate 

and temperature are also increased (Tab. 1). Thus, more heat is transferred to the 

refrigeration system, and the heat transfer process in the refrigeration system regenerator 

occurs with a higher temperature difference. For those reasons, both entropy generation 

and irreversibility are increased, causing a decrease of the exergetic efficiency of the 

absorption refrigeration system. Increasing the replacement rate of diesel oil by natural 

gas until 50% decreases the exhaust gas temperature (Tab. 1), which can improve the 

exergetic efficiency. 

 
Figure 6 shows a tendency of reducing generator exergetic efficiency when the 

engine load is increased, similarly to what was observed for the absorption refrigeration 

system (Fig. 5). This means that the exergetic efficiency of the absorption refrigeration 

system is strongly influenced by the generator exergetic efficiency. The generator 

exergetic efficiency decreases with increasing engine load because of higher entropy 

generation (or irreversibility) caused by high heat transfer rate and temperature 

difference between the engine exhaust gas and the refrigeration system working fluid. 
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Figure 7 shows that the produced cold unit exergetic cost is increased with 

increasing engine load, and is decreased with increasing replacement rate of diesel oil 

by natural gas. This means that more exergy is necessary to supply the refrigeration 

system for each unit of produced cold when increasing engine load. In Fig. 8, it is 

observed that the produced power unit exergetic cost decreases for medium and high 

loads while, for low and partial loads, the cost is higher. This means that less exergy is 

necessary to supply the engine for each unit of the produced power when increasing 

engine load or, in other words, it is more interesting to operate the engine at high loads 

to reduce the power generation cost. Increasing the replacement rate of diesel oil by 

natural gas also decreases unit exergetic cost of power generation. 

 
Figure 9 shows that the exergoeconomic cost of the cogenerated cold is 

increased with increasing load and decreased with increasing replacement rate of diesel 

oil by natural gas. The decrease of the exergetic efficiency of the absorption 

refrigeration system with increasing engine load (Fig. 5) increases the irreversibility 

and, thus, the final cost of the cogenerated cold. On the other hand, the exergetic 

efficiency of the absorption refrigeration system is increased with increasing 

replacement of diesel oil by natural gas (Fig. 5), having a positive effect on the 

exergoeconomic cost of the cogenerated cold (Fig. 9). 

 
The variation of the exergoeconomic cost of electrical power production is 

shown by Fig. 10. Unlike cold cogeneration, in this case the trend of decreasing cost 

with increasing load is due to the increase of the engine exergetic efficiency (Fig. 4), 

which reduces the irreversibility of the power system. Increasing the replacement rate of 

diesel oil by natural gas increases the exergoeconomic cost of power production (Fig. 

10). Considering the prices of residential rates with taxes, both the use of diesel oil as a 
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single fuel or partially replacing it by natural gas can be competitive in the depicted 

scenario if the cost of electrical power is lower than the existing rate with taxes. When 

natural gas is used, the exergoeconomic cost of the produced power is below the 

existing rate with taxes only at intermediate and high loads. The gaseous fuel cost has a 

strong influence on the calculated results, playing a major role to make the cogeneration 

system economically viable. 

 
From comparison of the results of the present work with those when hydrogen 

was used as fuel in similar conditions [19], the same trends were observed for the 

produced cold and power exergoeconomic costs (Figs. 9 and 10). Nevertheless, 

considering the replacement rate of 50%, the reduction of the produced cold 

exergoeconomic cost is of about 26% when hydrogen replaces diesel oil [19], while, 

using natural gas instead, the reduction is of around 17% (Fig. 9). When analyzing the 

produced power exergoeconomic cost, the use of hydrogen is more viable for a slightly 

larger range of load power [19]. However, natural gas allows for a larger replacement 

rate of diesel oil, up to 75% without major engine modification, while the maximum 

replacement rate of diesel oil by hydrogen was 50% [19]. 

 

 

5.  CONCLUSIONS 
 
 
 
 

From the results obtained, the following conclusions can be drawn: 

 

 Increasing engine load reduces entropy generation and irreversibility in the engine 

and increases entropy generation and irreversibility in the absorption refrigeration 

system; 
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Table 1 – Experimental data from diesel power generator operating with natural gas 
 

(NG) used in the simulation [20]. 
 

 
 100% DIESEL OIL 75% DIESEL OIL + 25% NG 50% DIESEL OIL + 50% NG 25% DIESEL OIL + 75% NG 
  

 EXHAUST DIESEL  EXHAUST DIESEL  NG FLOW  EXHAUST DIESEL  NG FLOW  EXHAUST DIESEL  NG FLOW 
ENGINE           

 GAS OIL GAS OIL RATE GAS OIL RATE GAS OIL RATE 
LOAD           

 TEMP FLOW TEMP FLOW (kg/h) TEMP FLOW (kg/h) TEMP FLOW (kg/h) 
(kW)           

 (C) RATE (C) RATE  (C) RATE  (C) RATE  

  (kg/h)  (kg/h)   (kg/h)   (kg/h)  
            

 
0 143.01 1.91 145.00 1.86 - 138.63 1.93 - 148.41 1.32 - 

10 224.09 3.37 220.00 2.94 0.786 214.64 2.88 1.573 223.64 2.33 2.359 

20 324.17 5.17 312.00 4.50 1.171 307.11 4.10 2.341 313.99 3.48 3.511 

30 447.79 7.15 430.00 6.32 1.627 419.85 5.80 3.254 420.20 5.23 4.880 
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Table 2 – Natural gas and diesel data assumed for calculations. 

 

 

 Natural gas  Diesel  

     
 Component Molar fraction Component Mass fraction 

     
 Nitrogen 0.015 Carbon 0.8670 

 Carbon Dioxide 0.007 Hydrogen 0.1271 

 Methane 0.871 Oxygen 0.0032 

 Ethane 0.078 Nitrogen 0,0000 

 Propane 0.029 Sulfur 0.0020 

 Hexane 0.000 Wet 0.0005 

 Hydrogen 0.000 Ash 0.0002 

 Lower Heating Value, kJ/kg 47451 Lower Heating Value, kJ/kg 43000 

 Specific exergy, kJ/kg 49243 Specific exergy, kJ/kg 42145 
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Table 3 – Fuel – Product definition by component for the productive structure. 

 
COMPONENT FUEL PRODUCT 

 

Diesel engine 

 

Electric generator 

 

Ambient 

 

Generator 

 

Condenser 

 

Evaporator 

 

Absorber 

 

Solution pump 

 

Heat exchanger 

 

Solution heat exchanger 

 

Expansion valve 

 

Pressure reducing valve 
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 SIMULATION STAGES 
  

 1. Experimental data: 
Motor generator unit. 
• Diesel cycle, four stroke,  naturally 

 aspirated, direct injection, 4 cylinders, 
 internal combustion engine. Total 
 displacement of 3,922 liters. 

• 10 kW to 30 kW load  variation.  
• Blends from 0% to 75% of natural 

gas/diesel oil .  

 
 

 

2. Gate CycleTM calculation: 
The diesel power generator test variables and 

parameters are correlated in two tables of 

variable parameters, in which, for the 

different loads and fuel blends, there is a set 

of values for each test run. 
 
 
 
 
 
 
 

 
3. Ammonia water refrigeration system 

(ARS) simulation:  
The thermodynamic model simulation 
was developed in the EES see [16] for data 
details. 

 
 
 
 
 

 
4. Cogeneration plant characterization:  

For more information see Ref [16] 
 
 
 
 
 

 
5. Exergoeconomic assessment:  

Assumptions for exergoeconomic 

calculations of the investment costs were the 

same as the Herrera et al [16] 

 
MODEL INTEGRATION 

 

 

1.1 Results . Gate CycleTM input: 
• Cooling water:   

Inlet temperature/pressure  
Outlet temperature/pressure  

• Exhaust gas: temperature/mass flow   
• Heat Rate   
• Natural gas: mass flow   
Additional data used for the simulation were 
the same as that of Herrera et al. [16] 

 
 
 

2.1 Results . EES input:  
• Mass, energy and entropy balance   
• Exhaust gas chemical composition   
• Mechanical power   
• Electric power   
• Specific fuel consumption   
• Exergetic efficiency of the diesel engine  

 
 
 
 
 
 
3.1 Results:  
• Mass, energy and entropy balance  

 
• Thermodynamic properties of each 

ARS’s streams   
• Produced cold   
• Dissipative heat   
• Pump Power   
• COP  

 
• Exergetic efficiencies of ARS and 

ARS’s generator  

 
 
 
4.1 Results:  
• Diesel engine performance indexes   
• ARS performance indexes   
• Cogeneration plant products calculations  

 
 
 

 
5.1 Results:  
• Unit exergetic costs of cogeneration plant 

products  
 

• Specific exergoeconomic costs 
of cogeneration plant products  
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Figure 2 – Summary of the stages of the simulation model. 
 
 
 
 
 
 
 

31 



 
1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

12  

13  

14  

15  

16  

17  

18  

19  

20  

21  

22  

23  

24  

25  

26  

27 583 
28  

29 584 
30  

31 585 
32  

33  
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Cogeneration plant productive structure. 
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Figure 4 – Variation of engine exergetic efficiency with load power and natural gas 
 

concentration in the fuel. 
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Figure 5 – Variation of absorption refrigeration system exergetic efficiency with engine 

 
load power and natural gas concentration in the fuel. 
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595 Figure 6 – Variation of generator exergetic efficiency with engine load power and 

596 natural gas concentration in the fuel. 
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599 Figure 7 – Variation of produced cold unit exergetic cost with engine load power and 

600 natural gas concentration in the fuel. 
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603 Figure 8 – Variation of produced power unit exergetic cost with engine load power and 

604 natural gas concentration in the fuel. 
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Figure 9 – Variation of produced cold exergoeconomic cost with engine load power and 
 

natural gas concentration in the fuel. 
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Figure 10 – Variation of produced power exergoeconomic cost with engine load power 
 

and natural gas concentration in the fuel. 
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