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This thesis consists of three empirical essays on the Value-at-Risk (VaR) estimates. The first empirical study (Chapter 2) evaluates the performance of bank VaRs. The second empirical study (Chapter 3) investigates the predictive power of various VaR models using bank data. The third empirical study (Chapter 4) explores VaR estimates with high-frequency data. 
The first study examines the performance of VaR estimates at seven international banks from 2001 to 2012. Using statistical tests, we find that bank VaRs were conservatively estimated in pre-crisis and post-crisis periods. During financial crisis, while some banks continued to overstate their VaRs, the others significantly underestimated their risk. The potential causes of the poor performance of bank VaRs are also discussed. 
The second study investigates the predictive power of various VaR models using bank data. We find that the GARCH-based models are superior in estimating bank VaRs in both normal and crisis periods. We conclude that good VaR estimates at banks can be obtained using simple, accessible models rather than the complicated approach or banks’ internal model. Thus, we argue that VaR should not be blamed for misleading risk estimates during financial crisis. 
The third study evaluates VaR estimates using 5-minute sampling data of WTI Futures. First, we acknowledge the value of high-frequency data on the measure of volatility to characterize the quantile forecast of asset returns. Second, we find that quantile combination can improve the forecast accuracy. With the VaR implication, we show that VaR combination provides more accurate and robust results than individual VaR estimates.    
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Chapter 1: Introduction 
During the 1970s and 1980s, a number of financial institutions built internal 

models to measure, aggregate and manage exposures across their business lines. 
However, as the activities of financial institutions became more and more complex, 
aggregating exposures across business lines become increasingly difficult because 
of the high correlations amongst risk factors. Financial institutions also lacked the 
means to managing risk across progressively diverse positions. The absence of 
integrated risk management demanded tools that measure the probability of loss at 
institutions-wide level. This led to the development of Value-at-Risk (VaR). VaR is a 
comprehensive solution to the problem of how to measure the risk taken by an 
increasingly complicated global bank. 

 The first VaR model was developed in the early 1990s in the back-office of 
JP Morgan. Following an order from the CEO to develop a system that measures risk 
across different trading positions, a single risk measure was developed. Early in 
1994, JP Morgan introduced its Riskmetrics service − a simplified version of their 
internal VaR model.  Later that year, JP Morgan published Riskmetrics system, and 
gave free access to it on the internet. The promotion of Riskmetrics provided a major 
boost to the ideas surrounding VaR system. Indeed, the adoption of VaR was rapid, 
amongst security firms, investment and commercial banks and other financial 
institutions. The VaR concept became increasingly popular, and by the mid-1990s, 
it was regarded as the dominant measure of market risk (Down, 2005).  

VaR aims to capture the market risk of a trading portfolio. VaR is a numerical 
measure that determines the maximum potential loss on a portfolio within a given 
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time horizon, and using a given level of confidence (Jorion, 2006). The concept is 
attractive and transparent and is widely regarded as a benchmark for measuring 
market risk. Beside profitability, a manager only needs to worry about the 
regulatory boundary measured by VAR, at the tails of their profit and loss (P/L) 
distribution. At institutional level, VaR has been used for risk management, and in 
public disclosure and financial reporting, as well as in the computation of regulatory 
capital requirements. Accurate VaR estimates are crucial for financial institutions as 
misleading VaR estimates can lead to sub-optimal capital allocation.   

VaR is also used as a regulatory tool for ensuring the soundness of the financial 
systems. In 1996, the Basel Committee on Banking Supervision (BCBS) issued the 
Market Risk Amendment (MRA) to the first Basel Capital Accord, placing a 
milestone on the use of VaR. Indeed, the MRA allows financial institutions to use 
their internal VaR model to measure and disclose market risk. Following the BCBS 
support for VaR, regulators demanded that all financial institutions estimate and 
disclose their VaR measures in their financial reports.1 The first time VaR was 
recognised in financial regulation was in 1997, when the U.S. Securities and 
Exchange Commission ruled that public corporations must disclose quantitative 
information about their derivatives trading and derivatives position. Major banks 
and dealers implemented the ruling by including VaR information in the notes to 
their financial statements. The Basel II Accord, which came into effect in January 

                                                             1 In the first pillar of Basel II, for market risk measurement the preferred approach is VaR. 
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20072, also strongly promotes VaR estimates as the preferred market risk 
management approach.3  

VaR has some key drawbacks. Most VaR estimates rely on the normality 
assumption even if the observations from the empirical distribution is not normal. 
Risk is a matter of the behaviour in the extreme tails of a distribution. As Greenspan 
(1997) notes, that the biggest problem with risk management is the measurement 
of the fat-tailedness of a distribution. In fact, the occurrence of the recent financial 
crisis has partly been attributed to the failure to acknowledge the role of the fat-tails 
in VaR estimates (Triana, 2009). The use of VaR has also been blamed for providing 
little warning of the potential loss for banks during crisis periods (Nocera, 2009).   
Although details regarding the poor performance of bank VaRs is not new, it is 
surprising that VaR estimates of banks have received very little attention in 
empirical work. Therefore, this thesis aims to provide an empirical evaluation on 
the performance of VaR estimates provided by banks and the factors that affect the 
reliability of their VaR estimates. 

This thesis consists of three empirical essays on the VaR estimates at banks. 
Chapter 2 contributes to the VaR literature by investigating the performance of bank 
VaRs for a set of international banks. Our dataset includes the daily trading P/L and 
VaR of seven commercial banks from January 2001 to December 2012, covering the 
                                                             2 Basel II came into effect in the European Union on 1 January 2007 under the Capital Requirements Directive (CRD) and all lenders covered by the CRD have had to implement it from the beginning of 2008. The US delayed this date to January 2009. 3 The Basel II Capital Accord is a set of recommendations on banking regulation that is applicable to all banks in order to stimulate the improvement of risk management. Clients’ commitment to Basel II compliance can be demonstrated to regulators through their evidence of systematic VaR backtesting. In the first pillar of Basel II, for market risk the preferred approach is specified as Value at Risk. 
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pre-crisis, financial crisis and post-crisis periods. Using the coverage tests, we find 
that bank VaRs were conservatively estimated in pre-crisis and post-crisis periods. 
During financial crisis, while some banks continued to overstate their VaR, the 
others remarkably understated their risk. We quantify the VaR distortions for seven 
sample banks and find that the VaR overstatement/understatement levels at large 
banks are more serious than small banks. We also find evidence of extreme losses 
during financial crisis which probably exceed the market risk capital requirements 
of banks. We attribute the poor performance of bank VaRs to three main causes: the 
use of contaminated data, the choice of VaR model and the benefit of VaR 
overstatement. The distortions of bank VaRs, which are popular across banks, make 
VaR a poor risk management tool. 

The second empirical study (Chapter 3) investigates the forecasting power 
of VaR models using dataset of trading P/L of seven banks from January 2001 to 
December 2012. We compare the performance of internal VaR model at banks to 
alternative VaR approaches, including the Historical simulation (HS), the Variance-
Covariance (VCV) and the Extreme Value Theory (EVT) approaches. To compare 
model performance, we develop a two-stage backtesting that examines the absolute 
and comparative performance of VaR models. The empirical analysis shows two 
main points. First, we find that the alternative VaR models can easily outperform 
banks’ internal model in both normal and crisis periods. Second, we document the 
superiority of the GARCH-type models in providing good VaR estimates at banks. 
While the HS models perform inconsistently, none of the banks’ internal model 
accurately capture the bank risk. The EVT approach, which was shown to be 
superior in VaR estimation with market data, performs very poorly with bank data. 
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Thus, we argue that good bank VaRs can be obtained using simple and accessible 
models rather than other sophisticated models or internal VaR model at banks.  

The third empirical study (Chapter 4) explores VaR estimates with high-
frequency data. This chapter provides the first assessment of quantile combinations, 
using high-frequency data. In this study, we use the 5-minute sampling data of WTI 
Crude Oil Futures as oil market is important for desk level trading at banks. The 
findings of this study are twofold. First, we acknowledge the value of the high-
frequency data on the measure of volatility to characterize the quantile forecast of 
asset returns. Second, we find that the use of quantile combination can improve the 
accuracy of quantile forecasts. To find whether the use of high-frequency data can 
improve quantile forecast accuracy, we compare the performance of the 
GARCH(1,1) models to the Realized Volatility (RV) - based models, including the 
Heterogenous Autoregressive model (HAR-RV) of Corsi (2009), the High-
frEquency-bAsed VolatilitY (HEAVY) model of Shephard and Sheppard (2010) and 
the RV-based Linear quantile regression (LQR-RV) of Zikes and Barunik (2016). 
Evaluating their absolute and comparative performance, we find that the HEAVY 
and HAR-RV model outperform the GARCH(1,1) models across quantile levels and 
forecast horizons. To to examine the power of quantile combination in improving 
forecast accuracy, this chapter uses the Conditional quantile optimization method 
(CQOM) of Halbleib and Pohlmeier (2012) to combine individual quantile forecasts. 
We find that the combined forecasts are superior stand-alone forecasts in providing 
accurate and robust results, not only at 1%-quantile (VaR), but also across all 
quantile thresholds and forecast horizons.  



6 

 

The thesis proceeds with three empirical studies in Chapter 2, Chapter 3 and 
Chapter 4, while Chapter 5 summarizes the findings of the thesis.     
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Chapter 2: Value-at-Risk models  and commercial banks 
2.1 Introduction 

In the financial industry, Value-at-Risk (VaR) has become a standard risk 
measurement technique in finance. VaR specifically aims to capture the market risk 
of portfolios (Jorion, 2006), which is regarded as the maximum potential loss for a 
given period, normally one-day-ahead, using a certain level of confidence, typically 
the 95% or 99%. The VaR idea provided a comprehensive solution to identify an 
acceptable level of risk for an increasingly complicated global bank. In 1992, JP 
Morgan introduced its Riskmetrics service, in which it published the methodology 
and gave free access to the estimates of the necessary underlying parameter. Since 
then, the use of VaR has been promoted widely. However, only when the Basel 
Committee put forward the Market Risk Amendment (MRA) to the Capital Accord 
in 1996 made VaR become a benchmark for measuring market risk. VaR became a 
part of regulatory banking in 1997, when the U.S. Securities and Exchange 
Commission ruled that public corporations must disclose quantitative information 
about their derivatives trading activity. Major banks and dealers chose to 
implement the rule by disclosing VaR information on their financial statements.  

The requirement of VaR disclosure has some main objectives. Firstly, it 
presents an aggregated estimate of the market risk value under taken by a bank. 
VaR also presents asymmetric information about the bank to market participants 
and investors. Secondly, result of VaR estimates can be converted into a capital 
charge to provide an adequate cushion for cumulative losses caused by adverse 
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market conditions. More importantly, the disclosure of VaR estimates allows 
financial regulators to examine the validity of bank’s internal VaR models. An 
assessment of these internal VaR models is provided in this thesis, using a 
procedure called “backtesting”.  

Backtesting is a technique which aims to investigate the forecasting power of 
a VaR model by periodically comparing the VaR estimates generated by the model 
with the actual P/L (or “trading outcome”).4  Our test is performed using daily data. 
Backtesting therefore identifies situations where VaR is underestimated (or a VaR 
exception), meaning that the portfolio has experienced a loss greater than the 
estimated VaR. The comparison between the risk measures with trading outcome, 
simply means that the financial institution counts the number of VaR exceptions. 
That is, the number of occasions that losses exceed the estimated VaR. The 
frequency of VaR exceptions is then compared with the intended level of coverage 
to assess the performance of the risk model.  

An estimate of the number of VaR exception is asymmetric in nature. Recall 
that a VaR exception occurs only when the risk is underestimated. Therefore, simply 
over-estimating VaR can reduce the number of VaR exceptions. This creates an 
incentive to overstate VaR. Indeed, the current Basel backtesting framework relies 
on the number of VaR exception to evaluate the performance of internal VaR 
models.5 Specifically, banks are penalized if their VaR model produces too many 
                                                             4 BCBS, 1996b 6 A trading book consists of positions in financial instruments and commodities held either with trading intent or in order to hedge other elements of the trading book. To be eligible for trading book capital treatment, financial instruments must either be free of any restrictive covenants on their tradability or able to be hedged completely. In addition, positions should be frequently and accurately valued, and the portfolio should be actively managed (Basel Committee on Banking Supervision, 2004) 
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exceptions. However, there is no capital charge for banks that have no VaR 
exceptions. Therefore, even using the Basel backtesing framework incentivizes 
banks to overstate their VaR estimates. 

Investigating the accuracy of bank VaRs is an important area of academic 
research. It is obvious that VaR models are only useful when they accurately forecast 
risk. If not, an inaccurate VaR estimate can cause financial institutions to 
underestimate (or overestimate) their risk, thereby providing misleading 
indicators of risk. The performance of VaR models also has direct impacts on the 
calculation of the market capital risk. According to the MRA, the accuracy of VaR 
models results in the use of a multiplier to convert VaR estimates into the minimum 
capital requirement for market risk. Banking regulators only allow a bank’s internal 
VaR model to be used for regulatory capital computation, if the model provides 
satisfactory backtesting results. Specifically, a VaR model that fails a backtest will be 
reviewed and will either be disallowed in computing regulatory capital, or be 
subject to high capital multiplier. 

In the literature, bank VaRs perform variously. As Lucas (2001) notes, banks 
have incentives to under-report VaR estimates to lower their cost of capital, 
although this can lead to an increase in the probability of VaR exceptions. On the 
other hand, there are evidences showing that banks excessively overstate their VaR 
estimates (see Berkowitz and O’Brien, 2002; Perignon et al., 2008; Perignon and 
Smith, 2010; O’Brien and Szerszen, 2014) as they want to minimise the likelihood 
of having many VaR exceptions to avoid reputational costs. Bank VaRs are also 
controversial since they cannot outperform VaR forecasts produced by simple 
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econometric models, such as GARCH(1,1) (Berkowitz and O’Brien, 2002; Perignon 
et al., 2008; O’Brien and Szerszen, 2014).  

The recent global crisis raised a number of questions regarding to the 
reliability of VaR estimates at financial institutions. Indeed, VaR was blamed for the 
financial crisis, as it dangerously produces too low risk figures by borrowing the 
past data and using the improper probabilistic assumptions (Triana, 2009). 
Although the poor performance of bank VaRs is not new, there has been little 
empirical study on this topic, due to the proprietary nature of the P/L and VaR data. 
Indeed, the performance of bank VaRs in crisis period has only been examined by 
O’Brien and Szerszen (2014) with the empirical evidence of US banks. To the best 
of our knowledge, there has been no empirical study on the accuracy of bank VaRs 
on international level. Besides, the performance of bank VaRs in post-crisis period 
still has not been covered in the literature. 

Chapter 2 contributes to the literature as the first investigation on the 
performance of bank VaRs covering the pre-crisis, financial crisis and post-crisis 
periods. Our dataset includes the daily P/L and VaR of seven commercial banks from 
2001 to 2012. Instead of focusing on a specific country, this chapter investigates 
bank VaRs on international level. Our dataset includes Scotia Bank, Royal Bank of 
Canada (Canada), Banca Intesa (Italy), Banco Santander (Spain), Societe Generale 
(France), Deutsche Bank (Germany) and Bank of America (USA). Compared to prior 
studies, we use longer and more diversified dataset. The rich dataset not only 
increases the power of the statistical tests, but also allows us to have a 
comprehensive evaluation of bank VaRs in international perspective. Besides, this 
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study employs the innovative Multivariate Unconditional Coverage (MUC) test of 
Colletaz et al. (2013) to examine the presence of extreme losses that exceed VaR at 
very low coverage rates e.g. VaR(0.07%), VaR (0.03%) or even VaR(0.01%). To the 
best of our knowledge, the investigation of extreme losses during financial crisis has 
not been studied in the literature. 

Our empirical analysis shows the poor performance of bank VaRs. We find that 
bank VaRs tend to be conservatively estimated in normal periods. During financial 
crisis, while some banks continue to overstate their VaR, the others significantly 
underestimate their risk. In case of VaR understatement, the number of VaR 
exceptions are excessively high and tend to cluster together. We find evidence of 
extreme losses during financial crisis that can exceed VaR at very low coverage rates 
e.g. VaR(0.07%), VaR(0.03%) or even VaR(0.01%). We attribute the poor 
performance of bank VaRs to the use of contaminated data, the choice of VaR model 
and the benefit of VaR overstatement. Due to the fact that the performance of bank 
VaRs does not improve overtime, we argue that banks accept their inferior VaR 
models and conservatively estimate their risk to have the economic merit of VaR 
overstatement. The manipulations of bank VaRs, which are popular across banks, 
make VaR a poor risk management tool. 

Chapter 2 is presented as follows: Section 2.2 introduces background of VaR 
and their backtesting. Section 2.3 reports the preliminary analysis of sample banks 
and their daily trading P/L. Section 2.4 presents the empirical investigation of bank 
VaRs. Section 2.5 discusses the potential causes of the poor performance of bank 
VaRs, while Section 2.6 summarizes the main results of the chapter.  
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2.2 Value-at-risk and Backtesting Value-at-risk 
2.2.1 Value-at-risk background 

From an economic point of view, risk is uncertainty about future outcomes. 
Risk is a key element in the financial world, since firms usually make investment 
decision under uncertainty as they do not know whether predicted cash flows will 
materialize. From the 1970s, risk management has become one of the most 
important tasks of financial institutions since market volatility has increased 
remarkably after the collapse of Bretton Woods system. Besides, the unexpected 
catastrophes in 1990s, such as the demise of Barings Bank, Orange County, Long 
Term Capital Management after significant changes in market conditions, 
highlighted the demand of effective market risk management. The severity of the 
recent global financial crisis has also raised the importance of risk management. 

The idea of VaR was originated in the late 1970s, when a number of financial 
institutions developed their internal models to measure and aggregate risk across 
business lines as a whole. As institutions were becoming more global and complex, 
with the development of financial products, the aggregation of risks became more 
demanding when taking into account of how they correlate with each other. During 
the late 1980s, JP Morgan set up their firm-wide risk management system based on 
portfolio theory that could model several hundred risk factors and aggregate them 
into a single financial risk measure. Their measure named Value-at-Risk, the 
maximum value that can be lost over the next trading day, placed a milestone on the 
development of market risk measurement. In 1992, at a time of global concerns 
about leverage and derivatives, JP Morgan introduced their Riskmetrics service to 
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the public, comprising a detailed technical document and a covariance matrix for 
several hundred key factors, which was updated daily. With the launch of 
Riskmetrics, VaR was publicized and has been promoted widely. 

VaR was originally developed to measure the maximum expected loss caused 
by movements in the volatility of asset prices for a given portfolio of financial assets. 
As Linsmeier and Pearson (1996) note, VaR presents as the loss which is expected 
to be surpassed with the given percent of probability during the next t-day periods. 
According to Alexander (2009), VaR is the potential loss that will not be exceeded if 
the given portfolio is held over some periods of time. With a given significant level 
α and set p = 1- α as level of confidence, and denote qα as the α -quantile of the P/L 
of a portfolio over a holding period ht, then the VaRα,ht of the portfolio is defined as:  

                                VaRα,ht = qα                                         (2.1) 
The magnitude of VaR depends on two fundamental parameters: the 

significant level α (or 1- α level of confidence) and the holding horizon ht. For 
instance, suppose a bank discloses their VaR on trading portfolio is $50 million with 
99% level of confidence and the forecast horizon is one-day-ahead. It means that 
over the next working day, there is a 99% probability that if the bank suffers a loss, 
its magnitude will not exceed $50 million. In other words, there is only 1% 
probability that over the next working day, the loss will be greater than $50 million.   

The significance level α is usually set by an external body (banking regulator, 
credit agency). Under the Basel Accord, banks are required to use 1% significant 
level (or 99% level of confidence) to determine their market risk capital 
requirement. Besides, credit rating agencies may be stricter in setting their 
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significance level, which means a higher confidence level (e.g. 99.7% or 99.9%). In 
the absence of a regulated financial environment and external agencies, the 
confidence level for the VaR model can depend on the attitude to risk of managers. 
The more conservative the risk manager, the lower the value of α, i.e. the higher the 
level of confidence applied (Alexander, 2009). Dowd (1998) indicates that if 
investors want to validate a VaR model, the high level of confidence (such as 99% 
or 99.5%) should be avoided to be able to observe enough VaR exceptions. On the 
other hand, the risk appetite of senior management plays a significant role in 
selecting the level of confidence. Besides, the choice of risk horizon ht also depends 
on the nature of each asset’s volatility and degree of liquidity. For the investors who 
actively make money via trading in equity market, typically the 1-day risk horizon 
is appropriate, whereas institutional users and non-financial institutions may prefer 
longer risk horizon (Linsmeier and Pearson, 1996). 

One of the main attractions of VaR is that it is presented in a simplest way with 
most understood unit of measure. By simplifying the assumptions used in its 
computation, VaR aggregates the diversification effects, leverage effects and 
probabilities of adverse price movements to single dollar value that is suitable for 
application and communication with interested parties. Besides, VaR has number of 
attractions over traditional risk measures. Firstly, VaR can be universally applied to 
any types of portfolio. It allows us to compare the risks between two different 
portfolios. Secondly, VaR enables us to aggregate the risk of desk-level portfolios 
into an overall measure of portfolio risk while taking into account the way different 
risk factors interact with each other. This characteristic is especially important, as 
financial institutions are exposed to a variety of market risks. Besides, VaR is 
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probabilistic, which provides risk managers helpful information on the probability 
associated with specified loss. Thus, VaR is regarded as the most important 
quantitative risk measure used by financial institutions (Woods et al., 2008). 

VaR also has limitations. The main drawback is that as a measure of market 
risk, it tells you nothing about the potential loss that would break the VaR threshold 
when extreme event occurs. A VaR figure at 99% level of confidence has no 
information about how much the unexpected loss might be in the 1% tail of the P/L 
distribution. The omission of VaR in order to take into account the magnitude of 
exceeded loss makes it unable to differentiate between two positions being given 
the same VaR figure but have very different risk exposures. Besides, the dependency 
on the normality assumption is other serious limitation of VaR. In normal market 
condition, VaR works reasonably well. But VaR is not reliable when financial 
markets are excessively volatile and during financial crises (Dowd, 2005). 

VaR information can be used in various ways. First, senior risk managers can 
use VaR to set their overall risk target, and from that determine risk figures and 
position limits for each business line. If they want to increase the risk of financial 
institution, they would increase the overall VaR threshold or, vice versa. Secondly, 
VaR can be useful to calculate capital requirements, both at the institutional scale 
and business-unit level with the driving principle: the riskier the trading activity, 
the higher the VaR figure and the greater the capital requirement. Besides, VaR 
figures can be used for the purpose of reporting and disclosing financial risk, and 
financial institutions increasingly make a point of disclosing VaR information in 
their annual reports (Dowd, 2000; Jorion, 2002; Woods et al., 2008). VaR is also 
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informative not only for making decisions of investment, trading, hedging and 
portfolio management, but also setting limits on the rule that apply when rewarding 
managers in order to discourage excessive risk taking (Dowd, 1999; 2005).  
2.2.2 Basel Capital Accord and market risk management 

The Basel Committee on Banking Supervision (BSBS) was originated during 
the period of financial market turmoil after the breakdown of the Bretton Woods 
system in 1973. Aiming to improve financial stability by enhancing supervisory 
knowhow and the quality of global banking supervision, the Committee sets 
minimum standard of supervision and regulations of banks, where capital adequacy 
becomes the main focus. Backed by G10 Governors, the first Basel Capital Accord 
(Basel I) was published in 1988 to set up a minimum ratio of bank’s capital to risk-
weighted assets of 8% and has always been improved overtime to make it adapt to 
current financial situations. It is worth to emphasize that this framework only 
covers the credit risk in evaluating capital adequacy. Under this accord, all assets in 
bank’s balance sheet are given a judgemental risk classification with a fixed risk 
weight from 0 to 100 percent.  

Various amendments were made over years to extend the definition and 
effects of credit risk (in 1991 and 1995 Amendments), but the most important one 
was the MRA to the Capital Accord issued in 1996. These evolutions took place after 
the number of failures in risk management (e.g. Orange County, Procter and 
Gamble) that raised the concern about financial derivatives and called for effective 
regulation of financial market. During that period, industry also issued a number of 
best practice reports of how to manage the risk of financial derivatives, one of those 
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was appeared in G30 report in 1993. This influential report then became the 
handbook of financial risk management discipline, and its best practice guidelines 
were globally accepted by both industry and regulators, which were also presented 
in 1996 Amendment. In particular, the 1996 MRA specified banks’ exposure to 
interest rate related instruments and equities in the trading book6 and commodities 
risk and foreign exchange risk throughout the bank. In this Amendment, banks have 
option to choose either the standardised method or internal model based approach 
for meeting market risk capital requirements. The first option specifies the 
measurement of risk for each category from foreign exchange, equities, 
commodities and derivatives.  

In MRA, banks are allowed to use their internal VaR models to measure their 
market risk, which is subject to strict qualitative and quantitative standards. In 
internal model approach, banks are flexible in developing their own models, but 
required to follow minimum standards for the purpose of their capital charge. For 
some main points, VaR must be calculated on a daily basis with the minimum 
holding period of 10 trading days7 at 99th percentile and one-tailed confidence 
interval. A minimum length of one year for historical data is needed to compute VaR, 
which is also subject to the update and revision requirement no less frequently than 
once every three months. Banks that use internal model approach are also subject 
                                                             6 A trading book consists of positions in financial instruments and commodities held either with trading intent or in order to hedge other elements of the trading book. To be eligible for trading book capital treatment, financial instruments must either be free of any restrictive covenants on their tradability or able to be hedged completely. In addition, positions should be frequently and accurately valued, and the portfolio should be actively managed (Basel Committee on Banking Supervision, 2004) 7 Banks can use VaR numbers computed regarding to shorter holding periods scaled up to ten days by the square root of time (Basel Committee on Banking Supervision, 1996a) 
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to use comprehensive stress testing program to identify extreme events that could 
significantly impact banks. The issue of MRA to the Capital Accord made the 
popularity of VaR reach to its peak, where VaR model was globally accepted as a 
benchmark of market risk management and only few people could recognize its 
weaknesses. With the adoption of MRA, it was the signal that bank regulators 
accepted and stood on the principle of risk-based regulation.  

By second half of 1990s, banking activities were becoming more 
sophisticated and risk modelling was quickly evolving that called for a major 
advancement of Basel Accord. In 1999, the new capital adequacy framework was 
proposed to better capture bank’s risk taking and reflect the financial innovation.  
The Revised Capital Framework, generally known as Basel II, was officially released 
in 2004. Basel 2 consists of three pillars: (i) The first pillar: minimum capital 
requirements, which sought to develop and expand the standardised rules set out 
in the 1988 Capital Accord; (ii) The second pillar: supervisory review of capital 
adequacy and internal assessment process; and (iii) The third pillar: effective use of 
disclosure to enhance market discipline and encourage sound banking practices.  

Basel II made a major enhancement in credit risk modelling and for the first 
time, covered the operational risk within the first pillar of the accord, but for market 
risk measurement there was no noticeable changes from Basel I to Basel II. In Basel 
II, the market risk disclosure requirement was clearly presented in the third pillar 
in both qualitative and quantitative aspects. For banks using standardised 
approach, the disclosure of capital requirements for all sources of risk (e.g. interest 
rate risk, equity position risk, foreign exchange risk and commodity risk) is needed. 
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Banks using internal model approach are required to disclose their qualitative 
information about the features of models employed, the description of portfolio’s 
stress testing and the characteristics of backtesting process. In term of quantitative 
disclosure, they are required to present VaR values (e.g. high, mean and low VaR) 
over the reporting period and period-end, coming with the comparison of VaR 
estimates with actual P/L and the analysis of remarkable VaR exceptions.   

According to the Basel capital accord, VaR estimates are based on one of two 
theoretical assumptions about a trading portfolio. First, the trading portfolio is 
assumed to be rebalanced over the risk horizon to keep the risk factor sensitivities 
or asset weights constant. Second, the trading portfolio is assumed to be held static 
such that no trading occurs during the period. However, both assumptions are 
unrealistic. In practice, trading portfolios are actively managed, and the actual P/L 
on the trading portfolio is not equal to the hypothetical P/L, on which VaR estimates 
are based. Indeed, the hypothetical P/L is the mark-to-market P/L, while the actual 
P/L includes all the P/L amounts from intraday trading, fees and commissions 
(using actual prices). Therefore, it is important to regularly revise VaR models and 
their performance using backtesting. 
2.2.3 Value-at-Risk at commercial banks 

VaR has become the standard market risk measurement at commercial banks 
since the publication of the MRA.  Allowed to use internal models to estimate VaR, 
banks can be flexible in improving their existing models although they are required 
to follow minimum standard.  
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The MRA has no legal force. Instead, it formulates supervisory guidelines and 
standards. Corresponding to the international guidelines, domestic financial 
regulators require commercial banks to compute and publicly disclose their VaRs in 
annual reports. For example, the US commercial banks are required to publicly 
disclose their market risk under Financial Reporting Release Number 48, issued by 
SEC in 1997. In Canada, the Office of the Superintendent of Financial Institutions has 
required financial institutions to compute and publicly disclose their VaR since the 
late 1990s. The disclosure of VaR has some main targets. First, VaR provides a 
universal measure of amount of market risks suffered by a bank, aiming to reduce 
the asymmetric information between the bank and the public. Second, VaR can be 
translated into capital charge, which is supposed to be a cushion for cumulative 
losses. In addition, VaR disclosure allows financial regulator to evaluate the 
performance of bank’s internal VaR model through the process of “backtesting”.  
2.2.4 Backtesting Value-at-Risk 

It is obvious that VaR model is only useful when it forecasts risk reasonably 
well. If not, it can lead financial institutions to underestimate (or overestimate) their 
risk and hence provide misleading managerial guidelines. Therefore, after 
constructing VaR model, it is important to regularly evaluate the adequacy of the 
VaR model used.  

Backtesting is a technique which aims to investigate the forecasting power of 
the VaR model by comparing the risk estimates generated by the model against 
actual daily changes in portfolio value over longer periods of time. Backtesting 
therefore identifies situations where VaR has been underestimated, meaning a 
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portfolio has experienced a loss greater than the original estimated VaR. The 
comparison between the risk measures with trading outcome simply means that the 
financial institution counts the number of VaR exceptions, a situation when a loss is 
greater than the estimated VaR. The frequency of VaR exceptions is then compared 
with the intended level of coverage to assess the performance of the risk model. The 
results of the backtesting can be informative to refine the model used for the VaR 
predictions, making them more accurate and reducing the risk of unexpected losses. 

The backtesting framework recommended by Basel committee includes the 
use of one-day-ahead VaR estimates and one-day trading outcomes, excluding any 
intra-day revenues, fees and commissions. It is straightforward to implement the 
Basel backtest, simply by computing the frequency of VaR exceptions – the cases 
that the trading P/L are not covered by the VaR estimates. With approximately 250 
trading days in a fiscal year and 99% level of confidence, banks are expected to have 
about three VaR exceptions per year. Depending on the actual number of VaR 
exceptions, the backtest result can be classified into one of three zones. That is 
Green zone (0 to 4 exceptions), Yellow (5 to 9 exceptions) or Red (10 exceptions or 
above). Different zones are subject to different level of capital charge. Thus, the 
more VaR exceptions, the higher the charge. 

The three-zone backtesting approach of Basel committee has some 
drawbacks. First, it is specified for evaluating VaR models for one year, with 
approximately 250 observations. Second, it primarily assumes that each day’s test 
outcome is independent from each other’. This assumption is not realistic, due to 
the fact that VaR exceptions tend to cluster together, especially during crisis period. 
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Besides, the Basel framework does not penalize banks that overstate their VaRs to 
maintain low number of VaR exceptions. From risk management perspective, the 
estimated return at the lower tail defines the amount of capital that banks allocate 
to cover the possible loss, which is called the economic capital for market risk. The 
low number of VaR exceptions means that the tail is overestimated and therefore 
signals an excessive amount of allocated capital. 

To overcome these shortcomings but still preserve the frequency-based 
approach of Basel framework, this chapter uses several coverage tests to evaluate 
the performance of bank VaRs, including: (i) the Unconditional Coverage (UC) test 
of Kupiec (1995); (ii) the Conditional Coverage (CC) test of Christoffersen (1998); 
and (iii) the Multivariate Unconditional Coverage (MUC) test of Colletaz et al. 
(2013). Each test has different power. The widely-used UC test aims to quantify and 
investigate the frequency of VaR exceptions, while the CC test additionally examines 
the assumption of independence of VaR exceptions. Besides, the MUC test allows us 
to jointly examine the coverage and comparative magnitude of extreme losses.  
2.2.4.1 The Unconditional Coverage test 

As the name suggests, the UC test examines the coverage of VaR exceptions 
based on the actual number of VaR exceptions. It is worth noting that the frequency 
of VaR exceptions plays a crucial role in validating the adequacy of VaR estimates. 
The Group of Thirty (G30) recommends that financial institutions carry out reality 
checks to evaluate the performance of their VaR models.8 Specifically, it is 
recommended that an institution’s VaR estimates are compared against actual 
                                                             9 BCBS, 1996b 
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portfolio outcomes. In line with the G30’s idea, the Basel Committee proposes a 
“traffic light” backtesting framework, which relies on the number of VaR exceptions, 
to verify the accuracy of  internal VaR models.9 

Let rt denote P/L of a given portfolio at time t and VaRt|t-1(α) the one-day ahead 
VaR forecast for a given α coverage rate conditional on an information set Ωt-1. If the 
VaR estimates are adequate, the UC property states that: 

Pr [rt< VaR t|t-1(α)] = α    (2.2) 
Let It(α) be a hit indicator variable associated with the VaR exception at time 

t, in which: 
It(α) = V  1  if rW < VaRW|WXY(α)0              otherwise    (2.3) 

The null hypothesis of UC property is that the observed frequency of VaR 
exceptions is consistent with the nominal frequency α, thus:  

H0: E [It(α)] = α     and       H1: E [It(α)] ≠ α    (2.4) 
To satisfy the UC property, the likelihood of which actual P/L on day t exceeds 

its corresponding VaRt|t-1(α) must be equal to α x 100%, or Pr [It(α) =1] = α. The 
null hypothesis is rejected if the difference between observed frequency of VaR 
exceptions and the expected rate α, is statistically significant. Therefore, there are 
two occasions when UC hypothesis can be rejected. The first is the case of 
overestimation, when the realized frequency of VaR exceptions is smaller than the 
nominal rate α, or Pr [It(α) = 1] < α. The second is when the VaR underestimation 

                                                             9 BCBS, 1996b 
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occurs and the realized frequency of VaR exceptions is higher than the nominal rate 
α, or Pr [It(α) = 1] > α. 

Let T0 and T1 be the number of zeros and ones corresponding to the hit 
indicator variable (2.3). Let T be the total number of observations, thus T = T0 + T1. 
The Log-likelihood ratio statistics of the UC hypothesis, denoted as LRUC, is given by: 

LRUC(α) = - 2ln[(1 − α)]^  α]_] + 2ln`(1 − ]_] )]^  (]_] )]_a →  χd (1)  (2.5) 
The LRUC converges to an asymptotically Chi-square distribution with one 

degree of freedom. Recall that UC text examines whether the empirical frequency of 
VaR exceptions N/T is sufficiently close to the predicted α. The null hypothesis H0 is 
not rejected if the empirical frequency of VaR exceptions is close enough to the 
coverage rate α. There are some examples of non-rejection regions for the UC test. 
If the sample size T = 250 (one year), for a 5% nominal size the UC assumption is 
not rejected if the total number of VaR(1%) violations is strictly from 1 to 6. In case 
T = 500, the total number of exceptions must range from 1 to 11 in order to satisfy 
the UC hypothesis. 
2.2.4.2 The Conditional Coverage test 

The CC test extends the UC test by jointly examining the IND and UC properties 
of VaR exceptions. As Christoffersen (1998) notes, the IND hypothesis holds when 
VaR exceptions occurring at two different times for the same coverage rate are 
independently distributed. In other words, the hit indicator {It(α) =1} 
corresponding to VaR exception at time t, at coverage rate α, is independent from 
hit process {It-k(α) =1} associated with the VaR exception at time t-k, ∀k ≠ 0. This 



25 

 

assumes that past exceptions do not hold information on current and future VaR 
exceptions. Thus, the rejection of the IND hypothesis may imply a clustering of VaR 
exceptions. 

The LR test statistic for IND hypothesis is given by: 
   LRIND = -2ln[(1 - ]_] )]^ (]_] )]_ ] + 2ln[(1 - πh01)]^^πhiY]^_  →  χd (1)  (2.6) 
where Ti,j, i, j =0, 1  is the number of observations with a j following a i in the 

hit indicator variable It, and πh01 = ]^_]^^j]^_. The LRIND follows Chi-square distribution 
with one degree of freedom.  

The CC test simultaneously examines the UC and CC hypotheses. The test 
statistic for CC hypothesis is presented as: 

LRCC = LRUC + LRIND    →  χd (2)                 (2.7) 
The LRCC test statistic converges to the Chi-square distribution with two 

degrees of freedom. The null hypothesis of CC holds when VaR model satisfies both 
UC and IND hypotheses. Therefore, the rejection of the CC hypothesis may come 
from the rejection of the UC and/or IND tests. The CC test allows us to test each 
hypothesis separately to see whether the model provides incorrect coverage or 
causes violation clustering.  

Although being widely applied by both academia and practitioners, the CC has 
the key drawback, as it does not account for the magnitude of excessive losses. 
Specifically, the CC test cannot identify and evaluate the presence of extreme loss, 
which is far beyond normal VaR. This drawback can be overcome with the use of 
MUC test. 
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2.2.4.3 The Multivariate Unconditional Coverage test 
The MUC test was proposed by Colletaz et al. (2013). The innovation of the 

MUC is that it gives another view to the performance of a risk model by jointly 
examining the number and magnitude of extreme losses, in case that an actual loss 
might not only violate the normal VaR defined with a coverage rate α (i.e. 1%), but 
also exceed VaR at lower probability α’ (i.e. 0.2%). 

In this approach, a VaR exception is the state when rt< VaRt(α), while a VaR 
super exception take places when rt< VaRt(α’), with α’ smaller than α. In other 
words, a super exception for VaR defines a situation of excessive losses which not 
only exceed normal VaR(α), but also break VaR at rare coverage rate, VaR(α’). 
Therefore, if the frequency of super exceptions is remarkably high, this means the 
magnitude of the losses associated with VaR(α) is too large. 
Estimation of VaR(α’) 

Firstly, we demean the P/L series by subtracting the unconditional mean µ 
from each observation to get the new return series ut, with E(ut) = 0. To estimate 
VaR(α’) of the P/L series, we firstly estimate VaR(α’) of the demeaned series ut. 
Then, the VaR(α’) of the P/L series is obtained by adding the unconditional mean µ 
to the VaR(α’) of the demeaned series ut. We present the method to estimate VaR(α’) 
of the zero-mean return series ut as following. 

As E(ut) = 0, the conditional VaR of the demeaned series ut can be presented 
as a function of the conditional variance of the return series, denoted as ht: 

VaRt|t-1(α,β) = -mℎo  F-1(α; β)     (2.8) 
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where F-1(α; β) is the α-quantile of a standardized conditional P/L distribution, 
which is assumed to be parametric associated with a set of parameters β. 

Colletaz et al. (2013) propose a method to extract VaR(α’) from VaR(α). Given 
the disclosed bank VaRs, VaR(α), an implied P/L conditional variance is defined as: 

phqW = - rstu|uv_(w)xv_(w; yz )        (2.9) 
With the idea of option pricing, VaR(α’) is now obtained by: 

VaRt|t-1(α’, βq) = -phqW FXY(α; βq) = VaRt|t-1(α) xv_(w’; yz) xv_(w;  yz)             (2.10) 
To implement this method, we need two ingredients: (i) the auxiliary model 

for the conditional volatility ht and (ii) the P/L distribution which is conditional on 
a set of parameters β. We follow Colletaz et al. (2013) to employ GARCH as auxiliary 
model and Student t distribution for FXY(α; βq). Therefore, the set of parameters β, 
which corresponds to the degree of freedom of the Student t distribution, can be 
obtained by Quasi-Maximum Likelihood estimation. This calibration procedure was 
shown to provide robust VaR(α’) estimates (Colletaz et al., 2013). 
The Log-likelihood ratio test of MUC hypothesis 

Colletaz et al. (2013) propose a LR test to examine the MUC hypothesis. Let It 
(α) be a hit indicator variable corresponding to the VaRt(α):   

It(α) = V  1  if rW < −VaRW|WXY (α)0              otherwise                 (2.11) 
and It (α’) denotes a hit indicator variable associated with VaRt(α’): 

It(α’) = V  1  if rW < −VaRW|WXY (α′)0              otherwise     with α’ < α               (2.12) 
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It is possible to jointly test the MUC null hypothesis of VaR exceptions and 
VaR super exceptions: 

H0: E[It(α)] = α    and     E[It(α’)] = α’               (2.13) 
  Denote J1,t and J2,t hit indicator variables, and J0,t = 1- J1,t - J2,t = 1 - It(α) where: 
J1,t= It(α) - It(α’)  = V  1  if −VaRW|WXY (α|) < rW < −VaRW|WXY (α)0              otherwise             (2.14) 
J2,t= It(α’)  = V  1  if rW < −VaRW|WXY (α′)0              otherwise                 (2.15) 
Now {J},W}}~id  are the Bernoulli random variables that take value of 1 with given 

probabilities 1-α, α-α’ and α’ respectively. Let Ni = ∑ J},W]W~Y  be the count variable 
corresponding to each Ji,t variable. The Log-likelihood ratio test statistics for MUC 
null hypothesis (LRMUC) is given by: 

LRMUC(α, α’) = - 2ln[(1- α)N0 (α- α’)N1(α’)N2]  
                                       + 2ln`( �]̂ )�^  (�_] )�_(��] )��a �→ χd (2)              (2.16) 

where T is the total number of VaR estimates. The LRMUC statistic converges to Chi-
square distribution with two degrees of freedom. 
2.3 Literature on the performance of bank VaRs 

Berkowitz and O’Brien (2002) provide the first evidence on the performance 
of VaR models at banks. Using private daily data of P/L and VaR of six large banking 
institutions from January 1998 to March 2000, they show that bank VaRs at the 99th 
percentile are conservative and in some cases, are extremely inaccurate. In 
particular, the average exception rate is less than a half of one percent across banks, 
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and in some cases VaR estimates were considerably removed from the lower bound 
of the P/L. Berkowitz and O’Brien (2002) attribute the cause of VaR overstatement 
to the method of aggregating VaRs across the entire trading portfolio. Indeed, of the 
banks whose VaRs are more conservative, the global VaR is simply the summation 
of sub-VaRs across sources of risk. Besides, the regulatory need of higher capital 
requirement when banks fail the backtest may motivate banks to overstate their 
VaR. When comparing with the performance of the ARMA and GARCH as the 
benchmark models, the banks’ VaR forecasts are not better because they could not 
adequately capture the changes in the volatility of P/L. In brief, Berkowitz and 
O’Brien (2002) argue that the reported VaR figures are not useful as measures of 
the actual risk of bank’s portfolio. 

Perignon et al. (2008) confirm the continuous conservativeness in VaR 
estimates of commercial banks.  With the use of non-anonymous daily data of the 
six largest Canadian banks, they provide evidence of systematic VaR overstatement. 
Some banks experienced one exceedance, while others even had no VaR exceptions 
during the 6-year period, from 1999 to 2005. This result contrasts to the common 
wisdom that banks intend to understate their VaR to lower the market risk capital 
requirement (Cuoco and Liu, 2006). The VaR conservativeness at Canadian banks is 
consistent with US evidence reported by Berkowitz and O’Brien (2002). Besides, 
when compared with the simple HS and GARCH(1,1) models, bank VaR models are 
not superior in producing accurate risk forecasts. Thus, the internal models used by 
commercial banks do not provide VaR estimates that are reliable to determine 
capital charges.  
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Instead of using time series of daily P/L and bank VaRs, Perignon and Smith 
(2010) collect the number of VaR exceptions disclosed on banks’ annual reports to 
evaluate the performance of bank VaRs. Using the dataset from 66 commercial 
banks, they confirm the systematic VaR overstatement at banks. Specifically, during 
the period of 1996-2005, US largest banks experienced only 10 actual exceptions in 
comparison to an expected exception of 68. In 2005, Canadian banks even 
overstated their VaR figures more seriously: only 1 exception over the expectation 
of 13, while in case of international banks, it is 3 over 53 respectively.  

O’Brien and Szerszen (2014) investigate the specifications and performance 
of the VaR estimates of five anonymous US banks before and during financial crisis. 
The dataset used in their study include daily P/L and bank VaRs reported to the 
Federal Reserve Board. Their bank data are standardized to keep the anonymity, 
hence some valuable information about the absolute magnitude of daily P/L and 
VaR are absent. Consistent with the prior studies, O’Brien and Szerszen (2014) 
show that bank VaRs were excessively conservative before financial crisis (with 
very few VaR exceptions). For the 2007-2008 period, bank VaRs were substantially 
underestimated and exhibited exception clustering. Besides, it is evident that 
standard GARCH and HS models can produce more accurate VaR estimates 
compared to those provided by the banks.   

It can be summarized that bank VaRs were conservative before financial crisis, 
but substantially underestimated during crisis period. Besides, prior studies mostly 
focus on the evaluation of bank VaRs in tranquil period, the condition that VaR 
normally works well. However, the recent financial crisis witnessed the failure of 
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VaR on unimaginable scale. Given that VaR has been widely criticised, it is surprising 
that the literature on the performance of bank VaRs during the financial crisis has 
only been investigated O’Brien and Szerszen (2014). This study provides empirical 
evidence for US banks. No study has examined the performance of bank VaR models 
during the post-crisis period. To fill the gap in the literature, this chapter aims to 
investigate the performance of bank VaRs for a set of banks across six countries. The 
analysis covers both crisis and post-crisis periods. Given that bank VaRs were 
intentionally and systematically overstated in the pre-crisis period, we do not 
expect that banks change their behaviour during and post-crisis period. The 
following sections investigate the performance of bank VaRs and present the 
results. 
2.4 Empirical analysis 
2.4.1 Data collection method and methodology 

It is important to note that the daily VaR and P/L data we are concerned with 
is from the trading book of the bank. Positions of commercial banks can be 
categorized into two books, which all exposed to market risk: the banking book, 
including on-balance sheet and off-balance sheet activities, and the trading book, 
covering positions of instruments in traded market. However, trading book is 
exposed to market risk in a more transparent way, as its instruments will hold some 
direct exposure to market risk (Woods et al., 2008). As the VaR figures disclosed by 
commercial banks are the risk measure of their trading activities, thus we 
particularly focus on the market risk exposures of the trading book of a bank. 
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To perform the evaluation of bank VaRs, we require time series data of daily 
VaR and P/L of banks. However, the P/L and VaR data are one of the most 
confidential data of banks, which only report to top managers and financial 
regulators. We find that the sources of assessible VaR information are bank’s annual 
reports and filings. Therefore, to obtain time series data from these sources, we 
decide to use the data extraction method, which allows us to convert the graph in 
banks’ annual reports into time series data. Our data collection strategy is inspired 
by Perignon et al. (2008). 

Initially we seek for these largest banks in North America and Europe 
countries. For each bank, we then look up whether they present a graph of daily VaR 
and trading revenues in their annual reports. We end up with a sample of banks that 
disclose VaR backtesting graph in their public documents. This includes seven 
commercial banks of six major countries: Royal Bank of Canada, Scotia Bank 
(Canada) Societe Generale (France), Bank of America (USA), Deutsche Bank 
(Germany), Intesa Sanpaolo (Italy) and Banco Santander (Spain). Their backtesting 
graphs are then put into our Matlab-based data extraction program. 

The technique we used to collect daily VaR and P/L from banks’ public data 
sources is simply the “Click and Collect” strategy. Firstly, the backtesting graphs are 
converted using Matlab to define the images as objects. The images are then re-
sharpened and re-scaled to make them visibly clear. Adding the vertical lines to the 
image, we then zoom in, look up and precisely click on each data point. After one 
“click”, we collect the two-dimensional Matlab coordinates of a data point, which are 
then converted into graph coordinates. Repeating this procedure, we obtain time-
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series of daily P/L and bank VaRs. In order to check the robustness of the data 
collection method, we plot the extracted data in Microsoft Excel and superimpose 
this graph with the original graph obtained from bank’s annual report. If two graphs 
match perfectly, this means that our extracted data are accurate. Any mismatches 
between the two graphs can be fixed by manually adjusting the extracted data until 
a complete match is achieved. 

We present the graphic example of our data collection method in Figure 2.1. 
The first is the original backtesting graph we collected from 2012 annual report of 
Scotia bank, including the series of daily P/L (red line) and daily VaR (yellow line), 
correspondingly. Using the Matlab-based data extraction program, the time-series 
of daily P/L and bank VaRs are generated from the upper graph. We then put the 
extracted data into Excel and plot the graph to compare with the former. 

The data extraction program helps us collect the dataset of seven commercial 
banks, starting from 2001 to 2012. However, we cannot get the full dataset of 
several banks due to the lack of the backtesting graphs in banks’ annual reports in 
some periods. This includes Intesa Sanpaolo (2001-2004), Banco Santander (2001-
2004), Scotia bank (2001) and Societe Generale (2001, 2010-2012). The sample is 
then divided into three sub-periods: pre-crisis, crisis and post-crisis periods. The 
pre-crisis period is from the start of the period to May 2007, while the global 
financial crisis period is from June 2007 to June 2009. The end of the financial crisis 
period is determined using the National Bureau of Economic Research indicator as 
the start of the economic recovery10.  The post-crisis period is after July 2009. 
                                                             10 Available at: http://www.nber.org/cycles.html 
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Prior studies focus on  VaR performance of banks in a single country. Our study 
uses the largest data set to date and covers six developed countries. However, there 
might be potential sources of bias in our data sample. First, market movements in 
major countries tend to be highly correlated. Second, the choice of banks may not 
be representatives of the behaviour of all the banks in a specific country. To resolve 
this bias, future studies should use a larger set of banks across developed and 
developing countries. 

It is also noteworthy that the disclosed bank VaR estimates are available in 
aggregate form from their financial reports. Constituents of the VaR estimates 
include interest rate, equity, foreign exchange, commodities and credit spread VaR. 
Although the nature of trading portfolio varies across banks, we find that interest 
rate changes is a major source of risk in VaR estimates, followed by equity, credit 
spread, commodities and foreign exchange rate changes. Commodities and foreign 
exchange VaR estimates become increasingly important to the aggregated bank VaR 
amount, especially during and after the financial crisis. Future studies should 
examine more closely the constituents of bank VaR estimates and simulate the 
trading portfolio, using market data. 
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Figure 2.1: Example of data collection method 
Notes: Figure 2.1 presents an example of our data collection method. The upper graph presents the daily VaR and P/L of Scotia bank in 2012, which was collected from bank’s annual report.  The time-series data of P/L and VaRs are generated from the original graph via our graphical data extraction program.  To check the robustness of the extracted data, we superimpose the graphic presentation of time-series data, displayed in lower graph, to the original graph. If two graphs are perfectly matched, the extracted time-series data are robust. Graphic presentation of trading P/L and VaRs in 2012 annual report of Scotia bank 

 
Graphic presentation of extracted trading P/L and daily VaR of Scotia bank 

 
2.4.2 Preliminary analysis of bank trading P/L 
2.4.2.1 Descriptive statistics of sample banks  

We present the descriptive statistics of seven commercial banks in Table 2.1. 
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market capitalization are collected from Datastream.  In Table 2.1, Panel A reports 
bank’s market capitalization, total assets, total revenue, trading assets and P/L on 
trading portfolio. Panel B presents Tier 1, Tier 2 and Total regulatory capital (equal 
to Tier 1 plus Tier 1 minus adjustment), total risk-weight assets and the capital 
adequacy ratio (total regulatory capital divided by total risk-weighted assets). Panel 
C presents the internal VaR model at banks, the type of P/L data used in backtesting, 
the size of historical window and confidence level used to estimate VaR. The start 
date, end date and number of observations are also presented in Panel C. 

Panel A reports the size of banks in our sample in some criteria: Market 
capitalization, total assets, total revenue, trading assets and trading P/L. These 
figures are presented in millions of local currencies, including US Dollar (Bank of 
America), Canadian Dollar (Royal Bank of Canada, Scotia Bank) and Euro (Deutsche 
Bank, Societe Generale, Intesa Sanpaolo, Banco Santander) and as of the end of fiscal 
year 2012. Based on the size of total assets, the largest banks in our sample are 
Deutsche Bank and Bank of America, while the smallest is Scotia Bank, after 
currency conversion. Besides, Deutsche Bank was also ranked fourth in the 2013 
Global Finance’s top 50 biggest banks in the world11, while the smallest bank in our 
sample was ranked 42th in the list. The trading assets and trading P/L varies across 
banks, which reflects the size of trading activities of banks. Panel B presents the 
regulatory capital of banks, including the Tier 1 and Tier 2 capital, their risk-
weighted assets and the total capital ratio. Complied with the minimum capital 

                                                             11 The report was based on the total assets as of the end of fiscal year 2012 
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requirement of Basel II12, all banks maintain a generous amount of regulatory 
capital ratio, ranging from Societe Generale (12.7%) to Deutsche Bank (17.1%).  

Panel C reports some brief descriptions of banks’ internal VaR models. 
Among seven banks in our sample, six banks use Historical Simulation (HS) as their 
internal model, except Deutsche Bank using Monte Carlo Simulation. This fact is 
consistent with the finding of Perignon and Smith (2010), confirming that 73% of 
commercial banks favour Historical Simulation to estimate VaR. In consistent with 
Basel guidelines on VaR backtesting, all sample banks estimate and disclose their 
one-day-ahead VaR with 99% level of confidence on a daily basis. The length of 
moving window of historical data varies across banks. There are some banks using 
short windows of less than 300 daily historical observations to estimate VaR13. 
While Banco Santander and Royal Bank of Canada estimate their VaR based on 2 
years of historical data, Bank of America use longest historical window as of 3 years. 
In HS approach, the length of historical window plays an important role to the 
accuracy of VaR estimates. Indeed, the small sample size could result in very few 
observations in the lower tail of the distribution and thus VaR. at 99% level of 
confidence, would be imprecise14.  

The time series of daily P/L and VaRs are mostly collected from January 2001 
to December 2012. It is worth noting that the fiscal year of Canadian banks begins 
on 1st October and ends on 30th September next year. Thus, the time series data of 
                                                             12 According to the Pillar 1 of Basel 2, minimum capital requirements are set at 8% of the sum of risk-weighted assets. 13 Intesa Sanpaolo and Deutsche Bank use one year of historical data (or 250 trading days equivalently). For Societe Generale and Scotia Bank, the window size is 260 and 300 respectively. 14 As Alexander (2009) notes, even four years of daily historical data are not enough for stable VaR estimates. 
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Canadian banks in a calendar year are partly merged between two continuous fiscal 
years.  For example, the time series trading P/L of Royal Bank of Canada in calendar 
year 2012 are the combination of the daily data from January 2012 to September 
2012 of the fiscal year 2012, and the daily data from October 2012 to December 
2012 of the fiscal year 2013. 

  Depending on each bank, the total number of trading days we collected 
range from 1,777 to 3,027, with the average of 2,525 daily observations per bank. 
Compared to prior studies in the literature (Berkowitz and O’Brien, 2002; Perignon 
et al., 2008; O’Brien and Szerszen, 2014), this study uses the longest dataset with 
the broadest sample of commercial banks investigated. This rich dataset gives us 
that advantage of rigorous backtesting VaR to demonstrate the power and accuracy 
of the statistical tests. 
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Table 2.1: Descriptive statistics of sample banks Notes: Table 2.1 presents some descriptive statistics for seven commercial banks collected on 31st December 2012. Panel A reports bank’s market capitalization, total assets, total revenue, trading assets and P/L on trading portfolio. Panel B presents Tier 1, Tier 2 and Total regulatory capital (equal to Tier 1 plus Tier 1 minus adjustment), total risk-weight assets and the capital adequacy ratio (total regulatory capital divided by total risk-weighted assets). Panel C presents the internal VaR model at banks, the type of P/L data used in backtesting, the size of historical window and confidence level to estimate VaR. The start date, end date and number of observations of banks are also presented in Panel C.  
  Intesa Sanpaolo Scotia Bank Banco Santander Bank of America Royal Bank of Canada Deutsche Bank Societe Generale 
Currency mil € mil C$ mil € mil $ mil C$ mil € mil € Panel A: Sample banks  Market capitalization 20,151.66 68,169.63 62,959.16 125,135.60 86,547.56 30,684.63 22,112.88 Total assets 673,472 668,225 1,282,880 2,209,974 825,100 2,012,329 1,250,696 Total revenue 17,881 19,646 44,553 83,334 29,772 21,490 23,110 Trading assets 63,546 87,596 177,917 465,836 120,783 245,538 484,206 Trading P/L 2,182 1,299 1,460 5,870 1,298 5,199 7,025 Panel B: Regulatory capital  Tier 1 capital 36,133 34,450 57,558 155,461 36,807 50,483 40,499 Tier 2 capital 3,255 7,853 15,378 41,219 5,565 6,532 7,738 Total regulatory capital 39,388 42,303 72,936 196,680 42,372 57,015 41,308 Risk-weighted assets 298,619 253,309 557,030 1,206,051 280,609 333,605 378,495 Total capital ratio 13.60% 16.70% 13.09% 16.31% 15.10% 17.10% 12.70% Panel C: Value-at-Risk  Internal VaR model Historical Simul. Historical Simul. Historical Simul. Historical Simul. Historical Simul. Monte Carlo Simul. Historical Simul. Type of P/L data Uncontaminated Contaminated Uncontaminated Contaminated Contaminated Contaminated Contaminated Moving window 250 days 300 days 2 years 3 years 2 years 1 year 260 days Confidence level 99% 99% 99% 99% 99% 99% 99% Start date Jan 2005 Jan 2002 Jan 2005 Jan 2001 Jan 2001 Jan 2001 Jan 2002 End date Dec 2012 Dec 2012 Dec 2011 Dec 2012 Dec 2012 Dec 2012 Dec 2009 Number of observations 2017 2785 1777 3027 3020 3012 2035 
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2.4.2.2 Analysis of trading P/L of commercial banks 
Recall that the trading P/L measures the daily gain or loss on the trading 

portfolio of a bank. As bank VaRs are relied on the assumption that the portfolio has 
no change during the holding period, the P/L presents the hypothetical changes in 
the trading portfolio assumed that end-of-day positions remain unchanged. Among 
seven commercial banks in our sample, six banks compute hypothetical P/L, except 
Scotia bank which report using actual P/L. As the use of different types of P/L can 
have impact on the backtesting result, therefore it is necessary to examine the 
properties of trading P/L disclosed by banks. 

We follow Fresard et al. (2011) to define two types of P/L. The first type is 
Clean (or uncontaminated) P/L, which presents the change in the value of trading 
portfolio arising from previous-day positions. The second type is Contaminated P/L, 
which measures the change in trading portfolio based on previous day positions 
plus intraday revenues and/or any fees and commissions. To classify whether banks 
use contaminated or uncontaminated data, we rely on banks’ annual report and 
carefully seek for any information related to trading P/L. Based on this information, 
we define bank as using uncontaminated P/L if they clearly state that fees, 
commissions and intraday revenues are excluded when generating trading P/L. 
Otherwise, the they are considered to be using contaminated data. Applying to 
seven banks in our sample, we find that there are only two banks reported using 
uncontaminated P/L. These include Intesa Sanpaolo and Banco Santander. The 
remaining five banks either reporting adding fees, incomes and intraday revenues 
or not mentioning these statements are considered as of using contaminated data.  
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The descriptive statistics of daily P/L of commercial banks are shown in Table 
2.2. In each case, we show the 1%-quantile of the P/L distribution and the ratio of 
number of negative P/L days over total observations. The summary statistics 
indicate that during pre-crisis period, all banks experienced positive average 
trading P/L. For the financial crisis and post-crisis period, six over seven banks 
continued to have positive trend, except Banco Santander reports negative average 
trading P/L. The P/L on trading portfolio varies across banks. For example, Intesa 
Sanpaolo and Banco Santander exhibit many hypothetical trading losses, with the 
ratio of losses approximate 50%, while other banks keep low loss rates over the 
whole period. Besides, the magnitude of losses differs across banks. It can be seen 
from Figure 2.3 that visually Royal Bank of Canada suffers a small number, but 
excessively huge losses, while other Canadian banks experience a high number of 
losses with moderate magnitude. 
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Table 2.2: Analysis of daily P/L of sample banks  
Notes: Table 2.2 presents the descriptive statistics of seven commercial banks from January 2001 to December 2012, divided into three sub-periods. The Jarque-Berra test statistics for normality are shown in the last column. 

 Date Mean Min Max Std Dev 0.01 quantile P/L < 0 Skewness Kurtosis JB test Pre-crisis           Intesa Sanpaolo Jan 2005 - May 2007 0.1048 -23.370 22.796 5.5406 -18.3865 0.4802 -0.1056 6.6124 364.63** Scotia Bank Jan 2002 - May 2007 3.6668 -13.568 16.959 3.0208 -3.7391 0.0869 0.0390 4.4596 121.86** Banco Santander Jan 2005 - May 2007 1.9705 -66.886 38.366 8.0447 -19.9544 0.3762 -1.2819 15.8284 4321.2** Bank of America Jan 2001 - May 2007 15.4258 -57.388 96.759 14.4822 -21.4695 0.1059 0.1899 5.2973 364.63** Royal Bank of Canada Jan 2001 - May 2007 6.4211 -18.383 56.961 4.6188 -1.7968 0.0355 2.7184 26.5186 38942.6** Deutsche Bank Jan 2001 - May 2007 47.1337 -63.290 318.28 30.5518 -16.9191 0.0370 1.0950 8.5577 2371.4** Societe Generale Jan 2002 - May 2007 13.2450 -35.005 80.110 12.5048 -12.5724 0.1259 0.6977 5.4367 454.01** Crisis           Intesa Sanpaolo June 2007 - June 2009 0.0509 -5.080 7.0252 1.7078 -3.7468 0.4838 0.3254 4.0149 31.975** Scotia Bank June 2007 - June 2009 5.2835 -36.936 36.5763 7.1991 -14.6100 0.1905 -0.0584 6.6055 284.66** Banco Santander June 2007 - June 2009 -1.1390 -89.445 61.0342 13.2276 -35.5109 0.5295 -0.5197 9.0367 820.79** Bank of America June 2007 - June 2009 22.239 -171.64 320.76 63.1064 -141.9280 0.3238 0.5986 5.3894 156.24** Royal Bank of Canada June 2007 - June 2009 5.3605 -730.00 296.00 55.2473 -281.6133 0.2514 -6.7171 76.4666 122014.8** Deutsche Bank June 2007 - June 2009 26.433 -360.69 571.746 86.9326 -272.9535 0.2781 -0.4254 7.8923 539.39** Societe Generale June 2007 - June 2009 3.1587 -275.22 128.44 43.5052 -160.5753 0.4343 -1.1347 9.3338 990.22** Post-crisis           Intesa Sanpaolo July 2009 - Dec 2012 0.0663 -6.3547 10.114 1.8116 -4.5536 0.5169 0.5782 5.4293 267.21** Scotia Bank July 2009 - Dec 2012 6.3029 -14.574 27.211 5.0684 -6.2871 0.0920 0.1901 4.5185 90.974** Banco Santander July 2009 - Dec 2011 -0.0746 -40.096 63.035 9.3675 -29.1801 0.4582 -0.1495 7.1068 456.38** Bank of America July 2009 - Dec 2012 67.953 -119.75 317.29 58.0780 -62.5096 0.0923 0.5442 4.3031 106.66** Royal Bank of Canada July 2009 - Dec 2012 12.480 -91.314 179.74 15.8587 -31.7899 0.1178 1.2119 24.7167 17726.8** Deutsche Bank July 2009 - Dec 2012 7.3383 -128.85 226.66 33.9413 -79.5686 0.4215 0.6298 6.6070 542.52** Societe Generale July 2009 - Dec 2009 11.375 -57.398 70.434 23.2439 -38.8821 0.3281 -0.1174 2.8261 0.4554               **: rejected at 95% level of confidence.  
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As presented in Table 2.2, the distribution of P/L is negatively skewed for 
financial crisis, while it is positively skewed in pre-crisis and post-crisis period. The 
high kurtosis of seven sample banks indicates that banks exhibit fat tails in their 
trading P/L distribution, which implies the presence of extreme losses. Moreover, 
the banks had higher mean and correspondingly low standard deviation in tranquil 
periods compared to those for the financial crisis. To visually present the volatility 
of daily P/L, we plot the absolute demeaned P/L series of seven commercial banks 
in Figure 2.2. 

Figure 2.2 shows that from 2000s to June 2007, the trading P/L of t banks 
keeps stable. However, after June 2007 with the start of global financial crisis, the 
volatility of P/L increases significantly. We witness the visual evidence of extreme 
events which mostly occurred before the end of the financial crisis. Indeed, the 
extreme values are largest for Royal Bank of Canada, Deutsche Bank and Societe 
Generale. The crisis period also witnessed higher loss rates in trading portfolio 
compared with normal periods. Indeed, the average loss rate of seven sample banks 
in pre-crisis and post-crisis period are 0.1782 and 0.2895 respectively, while this 
ratio in crisis period roars to 0.3559. As a result, the 1%-quantile of trading P/L in 
crisis period is significantly higher than the tranquil periods in term of absolute 
value. Besides, the Jacque-Berra test statistics for normality of daily P/L are rejected 
at all cases. 
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Figure 2.2: Absolute demeaned P/L of sample banks   Notes: Figure 2.2 presents the absolute demeaned P/L of seven commercial banks from January 2001 to December 2012, which can be used as proxy of volatility of P/L. 
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2.5 Evaluation of bank VaRs 
2.5.1 Preliminary analysis of bank VaRs 

Figure 2.3: Daily trading P/L and VaRs of sample banks   Notes: Figure 2.3 presents the  daily trading P/L and VaRs of seven commercial banks from 2001 to 2012.  The blue line depicts the P/L and the orange line presents the VaR.  
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In Figure 2.3, we plot the daily one-day-ahead VaRs and daily P/L for seven 
commercial banks in our sample. In each graph, the blue line presents the daily P/L 
and the orange line depicts the VaR. We keep the same timeline, starting from 1st 
January 2001 and ending on 31st December 2012, for all banks for the ease of 
making comparison. The descriptive statistics of bank VaRs, the number of VaR 
exceptions and the exception rates of all sample banks are presented in Table 2.3. 

Table 2.3: Preliminary analysis of bank VaRs 
Notes: Table 2.3 presents the descriptive statistics of seven sample banks in three sub-periods: pre-crisis, crisis and post-crisis periods. Besides, we report the 1%-quantile of the P/L, the number of VaR exceptions and the total observations in the last three columns. 

 Min Max Mean 1%- quantile Number of exceptions Number of observations Pre-crisis period Intesa Sanpaolo -34.175 -3.5654 -15.4865 -18.3865 0 606 Scotia Bank -19.101 -4.0573 -8.7388 -3.7391 1 1369 Banco Santander -73.550 -17.241 -27.702 -19.9544 3 606 Bank of America -91.996 -11.384 -46.076 -21.4695 4 1614 Royal Bank of Canada -26.748 -6.5418 -13.328 -1.7968 0 1604 Deutsche Bank -99.090 -26.176 -57.318 -16.9191 0 1595 Societe Generale -54.434 -5.4932 -27.091 -12.5724 3 1382 Crisis period       Intesa Sanpaolo -8.6191 -1.9340 -4.9081 -3.7468 1 525 Scotia Bank -28.332 -10.350 -16.001 -14.6100 2 525 Banco Santander -98.667 -19.767 -36.489 -35.5109 3 525 Bank of America -319.21 -38.246 -120.318 -141.928 15 525 Royal Bank of Canada -97.208 -16.241 -51.383 -281.613 17 525 Deutsche Bank -172.98 -70.988 -118.134 -272.953 31 525 Societe Generale -95.901 -25.225 -46.659 -160.575 35 525 Post-crisis period       Intesa Sanpaolo -11.569 -1.4946 -4.441 -4.5536 10 886 Scotia Bank -31.616 -7.0771 -14.680 -6.2871 2 891 Banco Santander -42.623 -12.317 -28.658 -29.1801 4 646 Bank of America -382.92 -45.937 -168.514 -62.5096 0 888 Royal Bank of Canada -70.269 -33.372 -53.287 -31.7899 3 891 Deutsche Bank -136.20 -44.279 -81.463 -79.5686 7 892 Societe Generale -62.042 -20.547 -30.617 -38.8821 4 128 
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Figure 2.3 shows that the number of VaR exceptions is extremely low before 
the financial crisis. With 99% level of confidence and 8,776 daily observations of 
bank VaRs and P/L, we expect to have 88 VaR exceptions in pre-crisis period. 
However, the actual number we record in Table 2.3 is only 11 exceptions. There are 
several banks even experiencing no VaR exceptions during this period, including 
Intesa Sanpaolo, Royal Bank of Canada and Deutsche Bank, while other banks 
suffered very few VaR exceptions. We find that at six over seven banks, the absolute 
value of mean VaR is much higher than the 1%-quantile of the P/L distribution, 
which indicates the VaR overstatement in the pre-crisis period. 

Prior studies and empirical evidences suggest that banks are likely to have 
high number of VaR exceptions during financial crisis (see Nocera, 2009; O’Brien 
and Szerszen, 2014). However, Table 2.3 shows that not all banks in our sample 
underestimate their VaR in crisis period. With 525 trading days, the expected 
number of VaR exceptions is 5 for every bank. According to the actual number of 
VaR exceptions, we find that three over seven still overstated their VaRs during 
financial crisis. These are Intesa Sanpaolo, Scotia Bank and Banco Santander. 
Besides, there are banks that produced an excessive exception ratio, including Bank 
of America, Royal Bank of Canada, Deutsche Bank and Societe Generale. Their 
number of exceptions ranges from 15 (Bank of America) to 35 (Societe Generale). 
It is also worth to note that at these banks, the absolute value of mean VaR is 
significantly smaller than the actual 1%-quantile of the P/L distribution. 

Banks come back to VaR conservativeness in post-crisis period. Indeed, we 
record a low exception rate compared to the prior period. With total 5,222 
observations, the expected number of VaR exceptions is 52, while the actual number 
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is 30. It is worth to note that these four banks which understated VaR and 
experience excessive number of VaR exceptions during financial crisis now suffer a 
very rare (or even zero) VaR exceptions in post-crisis.  

Briefly, the preliminary analysis shows that bank VaRs were overstated in pre-
crisis and post-crisis periods. During financial crisis, it is evident that not all banks 
underestimated their VaR. Indeed, we find that even the VaR overstatement still 
occurs at three over seven banks in crisis period. Thus, we argue that the common 
knowledge of VaR underestimation during financial crisis might not be universally 
correct. 
2.5.2 The Coverage tests  First, we use the CC test to examine the UC and IND hypothesis of VaR 
exceptions. Recall that the UC hypothesis states that the observed frequency of VaR 
exceptions is equal to the expected rate. The null hypothesis of UC property is 
rejected if the difference between the realized and expected rates of VaR exceptions 
is statistically significant. Therefore, there are two cases under which the UC 
hypothesis can be rejected. If the realized frequency of VaR exceptions is smaller 
than the nominal rate of 1%, and the LRUC statistic is significant. This implies that 
the VaR amount is overstated. Similarly, if the realized frequency of VaR exceptions 
is higher than the nominal rate of 1% and the LRUC statistic is significant, the VaR 
estimate is now underestimated.  

The null hypothesis of IND property of VaR exceptions states that VaR 
exceptions should be independently distributed. Therefore, a significant value of 
LRIND, implies a rejection of the null hypothesis of IND and indicates the clustering 
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of VaR exceptions. The CC hypothesis, which jointly examines the UC and IND 
properties, is rejected either when LRUC or LRIND is statistically significant.  

In Table 2.4, we present the actual exception rate, the LRUC, LRIND, LRCC test 
statistics and the summary of the backtesting results. There are some blanks in the 
test statistics due to the problem of no VaR exception. Table 2.4 shows that Banco 
Santander is the only bank which successfully passes the UC during the pre-crisis 
period but fails the IND test. This implies that their number of VaR exceptions is 
adequate but not independently distributed, or in other words, tends to cluster 
together. Besides, we notice that the UC hypothesis is statistically rejected at six 
remaining banks, which also leads to the rejection of the CC hypothesis. The 
systematic rejection of the coverage tests at these banks is not unexpected, as we 
have noted a very low number of VaR exceptions during this period. This result is 
consistent with the findings of prior studies in pre-crisis period, which confirm the 
VaR overstatement of US banks (Berkowitz and O’Brien, 2002; O’Brien and 
Szerszen, 2014), Canadian banks (Perignon et al., 2008) or top 50 largest 
commercial banks globally (Perignon and Smith, 2010).  

We document the mixed performance of bank VaRs during financial crisis. It 
is interesting to note that some banks still overstate their VaR. This is a new finding 
since banks tended to  underestimate their VaR during the financial crisis period. 
Indeed, our tests reject the UC hypothesis for Intesa Sanpaolo, as they continue to 
overstate their VaRs. Scotia Bank and Banco Santander are two banks that 
successfully pass the UC test, although the IND test is rejected in the case of Banco 
Santander due to clustering of VAR exceptions. Noticeably, there are four banks that 
also fail the statistical tests, due to the problem of excess exception rates and 
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exception clustering. These include Bank of America, Royal Bank of Canada, Societe 
Geneale and Deutsche Bank. As seen in Table 2.4, their exceedance rates range from 
0.0285 to 0.0667, which are much higher than the expected rate of 0.01. Besides, the 
LRIND statistics show exceptions due to clustering at three (Bank of America, 
Deutsche Bank and Societe Generale) out of four banks, thereby overstating the VaR 
estimates. 
 Bank VaRs tend to be conservatively biased in post-crisis period. For banks 
experiencing VaR overstatement in the crisis period, they continue to inflate their 
VaRs in post-crisis period, from a moderate level (Banco Santander) to an 
excessively high level (Scotia Bank). While VaR understatement was very popular 
during financial crisis, it no longer appears in post-crisis period. Indeed, Bank of 
America and Royal Bank of Canada, which experienced an excessive number of VaR 
exceptions during financial crisis, surprisingly have very few number of VaR 
exceptions in post-crisis period.  Banco Santander and Deutsche Bank performed 
reasonably well using our test statistics. The validity of the VaR estimates for Societe 
Generale and Intesa Sanpaolo is rejected using our CC test due to excessive 
clustering.  
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Table 2.4: Backtesting results of bank VaRs  
Notes: The table shows the backtesting results of bank VaRs, including the test statistics of the Unconditional Coverage test (LRUC), the Independence test (LRIND) and the Conditional Coverage test (LRCC). The brief evaluation of bank VaRs are presented in the next column, followed by the VaR distortion coefficient �. ** denote statistical significance at a 5% level.  

 Exception ratio LRUC LRIND LRCC Pre-crisis period Intesa Sanpaolo 0    Scotia Bank 0.0007 20.246** 0.0015 20.247** Banco Santander 0.0049 1.9068 7.1839** 9.0908** Bank of America 0.0025 13.196** 0.0199 13.216** Royal Bank of Canada 0    Deutsche Bank 0    Societe Generale 0.0022 12.544** 0.0131 12.557**  Crisis period     Intesa Sanpaolo 0.0019 5.2019** 0.0038 5.2057** Scotia Bank 0.0038 2.6475 0.0153 2.6628 Banco Santander 0.0057 1.1434 6.8983** 8.0417** Bank of America 0.0285 12.216** 18.674** 30.981** Royal Bank of Canada 0.0323 16.763** 0.3183 17.081** Deutsche Bank 0.0590 59.996** 10.426** 70.422** Societe Generale 0.0667 75.152** 4.8693** 80.022**  Post-crisis period     Intesa Sanpaolo 0.0112 0.1449 8.4954** 8.6403** Scotia Bank 0.0022 7.8823** 0.0090 7.8913** Banco Santander 0.0062 1.0871 0.0499 1.1370 Bank of America 0    Royal Bank of Canada 0.0033 5.3148** 0.0203 5.3351 Deutsche Bank 0.0078 0.4464 4.1818 4.6282 Societe Generale 0.0312 3.7779 9.5472** 13.325**         
2.5.3 Measure of VaR distortions  

We follow Perignon et al. (2008) to compute the VaR distortion parameter of 
banks which failed the UC test in previous section. The idea of the VaR distortion 
parameter is to quantify the level of VaR overstatement or VaR understatement at 
banks. Through the VaR distortion parameter, we can simply answer the question: 
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How much bank VaRs were overstated/understated? The following presents the 
method to estimate the VaR distortion parameter �. 
The three-zone approach 

We develop the three-zone approach to estimate VaR distortion parameter. 
This approach is inspired by the Basel backtesting framework. Based on the number 
of VaR exceptions, we classify the results of the UC test into three zones: The Green 
zone, the Yellow zone and the Red zone. The Green zone is the interval of VaR 
exceptions that satisfy the UC test. The Yellow zone and Red zone cover the number 
of VaR exceptions that failed the UC test. Specifically, the Yellow zone is the interval 
of VaR exceptions corresponding to the VaR overstatement e.g. bank VaRs are 
rejected due to rare number of VaR exceptions. The Red zone covers the interval of 
VaR exceptions corresponding with VaR understatement. We graphically present 
our three-zone approach in Figure 2.4. 

Figure 2.4: The three-zone approach 
Notes: Figure 2.4 presents the three-zone approach based on the number of VaR exceptions. The Green zone covers the number of exceptions that satisfy the UC test. The Yellow zone is the interval of exceptions corresponding to the VaR overstatement, while the Red zone is for VaR understatement.  
 

 
 Recall that the UC test relies on the frequency of VaR exceptions to validate the 
performance of a VaR model. In order to satisfy the UC test, the number of VaR 
exceptions generated by a VaR model must be within the Green interval [L, U]. As 
shown in Figure 2,4, L is the lower bound of the Green zone, while U is the upper 

0 L U Number of VaR exceptions 

Yellow zone (VaR Overstatement) Green zone (Non-rejection area) Red zone(VaR Understatement) 



55 

 

bound. Thus, the Yellow interval corresponding to VaR overstatement is [0, L-1] 
while the Red zone is [U+1, ∞). For example, consider 2-year bank VaRs including 
504 VaR estimates. To be not rejected by the UC test, the number of VaR exceptions 
must be within the interval [2,10]. The Yellow zone is now [0,1], while the Red zone 
is [11, ∞).  

To estimate L and U, we base on the number of bank VaRs, denoted as N, the 
coverage rate α, and the simulated number of VaR exceptions, denoted as n. We start 
with n=0 and perform the UC test. We continue performing UC test with an 
increment of 1 in the value of n and save the results of the UC test. The select L as 
the first simulated value of n which satisfies the UC test, while U is the final 
simulated value of n that is not rejected by the UC test. 
Estimation of VaR distortion parameters 

Denote DVaRt as the disclosed bank VaRs with 1- α level of confidence and rt 
is the time series of daily trading P/L. To be in the Green zone, DVaRt must satisfy 
the UC hypothesis: 

    Pr (rt < DVaRt) = α                (2.17) 
If DVaRt generates too many VaR exceptions (higher than U), it will be in Red 

zone and (2.17) becomes: 
    Pr (rt < DVaRt) > α                (2.18) 
The risk distortion parameter � in this case is the multiplier that helps DVaRt 

satisfy the UC test. In other words, it places DVaRt in the Green zone: 
   Pr (rt < DVaRt x (1+ �)) = α             (2.19) 
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To satisfy (2.19), the number of VaR exceptions generated by DVaRt x (1+ �) 
must be from L to U. Thus, the VaR distortion parameter �� in this case is the one that 
makes DVaRt x (1+ ��) produce U number of exceptions. To estimate ��, we simulate 
a number of trials, each with 0.001 increment in the value of � and save the one that 
firstly deliver U number of exceptions.  

In case of VaR overstatement, we repeat the procedure above. However, the 
expected number of exceptions is now L (the lower bound of the Green zone) 
instead of U. It is important to note that the VaR distortion parameter in case of VaR 
overstatement receives negative value, while it is positive if DVaRt were 
understated.  

We report the estimation results of VaR distortion parameter in the last 
column of Table 2.5. Recall that we do not compute VaR distortion parameters for 
bank VaRs not rejected by the UC test. Table 2.5 shows that before financial crisis, 
bank VaRs were systematically overstated, from the moderate levels of 0.046 
(Intesa Sanpaolo) to extremely high level of 0.791 (Royal Bank of Canada). This 
result is consistent with the finding of Perignon et al. (2008) showing the significant 
VaR overstatement of Canadian banks in the pre-crisis period. In the post-crisis 
period, we document that three over seven banks exhibit significant VaR 
overstatement. The lowest VaR overstatement coefficient we record in this period 
is 0.054 for Royal Bank of Canada, while the highest is 0.451 for Bank of America. 
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Table 2.5: Measurement of VaR distortion coefficients  
Notes: Table 2.5 presents the measurement of VaR distortion coefficients of seven sample banks in three sub-periods.  For each bank, we report the actual number of exceptions, the green-zone interval and the classification of bank VaRs according to the number of exceptions. If the number of VaR exceptions is below the green zone, bank VaR will be placed in Yellow zone (VaR overstatement). The Red zone is for bank VaRs that have higher number of exception than the Green zone. The estimated VaR distortion coefficients are shown in the last column.   

 Number of exceptions Green zone Classification VaR distortion coefficient � Pre-crisis period Intesa Sanpaolo 0 [2   11] Yellow -0.046 Scotia Bank 1 [8   21] Yellow -0.514 Banco Santander 3 [2   11] Green - Bank of America 4 [9   24] Yellow -0.335 Royal Bank of Canada 0 [9   24] Yellow -0.791 Deutsche Bank 0 [9   24] Yellow -0.563 Societe Generale 3 [8   21] Yellow -0.345  Crisis period     Intesa Sanpaolo 1 [2   10] Yellow -0.068 Scotia Bank 2 [2   10] Green - Banco Santander 3 [2   10] Green - Bank of America 15 [2   10] Red 0.283 Royal Bank of Canada 17 [2   10] Red 1.263 Deutsche Bank 31 [2   10] Red 0.754 
Societe Generale 35 [2   10] Red 0.937  Post-crisis period     Intesa Sanpaolo 10 [4   15] Green - Scotia Bank 2 [4   15] Yellow -0.377 Banco Santander 4 [3   12] Green - Bank of America 0 [4   15] Yellow -0.451 
Royal Bank of Canada 3 [4   15] Yellow -0.054 Deutsche Bank 7 [4   15] Green - 
Societe Generale 4 [1     4] Green -  During financial crisis, it is evident that Banca Intesa still slightly overstated 

their VaR. Besides, the sign and the magnitude of the VaR under/overstatement 
show that four banks significantly underestimated their VaR. The level of VaR 
understatement ranges from moderate level of 0.283 (Bank of America) to the    
excessive level of 1.263 (Royal Bank of Canada). It is noticeable that Royal Bank of 
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Canada has the highest level of VaR understatement in crisis period, while they were 
the most conservative bank in VaR estimation in pre-crisis period.  We find that the 
level of VaR understatement does not depend on the number of VaR exceptions, but 
on the magnitude of exceeded losses. Indeed, the magnitude of VaR distortion 
parameter at Royal Bank of Canada is much higher than Deutsche Bank and Societe 
Generale, although they experience nearly a half of the number of VaR exceptions 
comparatively. This serious VaR understatement of Royal Bank of Canada is not 
unexpected, as we document an abnormally high kurtosis in the descriptive 
statistics of their daily trading P/L.  
2.5.4 The Multivariate Unconditional Coverage test 

We now apply the MUC test to all banks during financial crisis. In this sub-
section, we aim to identify and comparatively measure the magnitude of the 
extreme losses and its potential impact on the economic capital of banks.  

Recall that the MUC test is designed to jointly examine the likelihood of a loss 
which exceeds not only regulatory VaR(1%), but also VaR at lower coverage rate 
VaR(α’), with α’ < 1%. The consideration of coverage rate α’ plays a crucial role in 
the evaluation, as it defines the extreme level that a loss can exceed. Our choice of 
the rare coverage rate α’ is inspired by the 2011 McKinsey Market Risk Survey and 
Benchmarking15. Specifically, their report finds that 85% of global banks do not use 
discrete economic model to estimate their economic capital for market risk16. 
Instead, they base on VaR estimates at very high levels of confidence, typically from 
                                                             15 Managing market risk. Today and tomorrow - McKinsey Working Papers on Risk, Number 32. 16 Banks’ economic capital for market risk is designed to capture the potential for extreme events. 
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99.93% to 99.97%, to set up the level of economic capital. Therefore, we select the 
rare coverage rates α’ at 0.07%, 0.03% and 0.01% to capture the presence of 
extreme losses during financial crisis. Therefore, if an extreme loss exceeds VaR at 
these significant levels, this implies that bank might not put enough economic 
capital to cover this loss. 

Table 2.6: The MUC test of bank VaRs during financial crisis 
Notes: Table 2.6 presents the number of VaR exceptions and its corresponding LR test statistics (in parenthesis) of seven commercials banks in crisis period. The second column shows the number of exceptions and the LRUC test statistics at VaR(1%). The third, fourth and fifth column present the number of exceptions and the LRMUC test statistics at VaR(0.07%), VaR(0.03%) and VaR(0.01%) respectively. ** denote statistical significance at a 5% level. 
 VaR(1%) VaR(0.07%) VaR(0.03%) VaR(0.01%) Crisis period     Intesa Sanpaolo 1 (5.201**) 0 (3.1784) 0 (3.1784) 0 (3.1784) 

Scotia Bank 2 (2.647) 0 (1.4556) 0 (1.4556) 0 (1.4556) 
Banco Santander 3 (1.1434) 0 (0.4808) 0 (0.4808) 0 (0.4808) 
Bank of America 15 (12.216**) 5 (22.287**) 1 (14.282**) 0 (13.819**) 
Royal Bank of Canada 17 (16.763**) 6 (29.454**) 2 (21.034**) 2 (24.786**) 
Deutsche Bank 31 (59.996**) 6 (67.521**) 2 (63.561**) 1 (63.597**) 
Societe Generale 39 (75.132**) 8 (86.549**) 5 (85.988**) 3 (85.666**) Table 2.6 presents the MUC test bank VaRs during crisis period. We find the 

connection between the distortion parameter � and the results of the MUC test. 
First, we find that banks having negative distortion parameter � suffered no VaR 
super exceptions during financial crisis. These include Banco Santander, Intesa 
Sanpaolo and Scotia Bank. It can be explained that these banks with negative � 
intentionally overstated their VaR. Thus, it is not likely that they will experience 
excessive losses exceeding their inflated VaR.  
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Second, banks having positive distortion coefficient experienced VaR super 
exceptions and therefore are rejected by the LRMUC test statistics. These banks are 
Bank of America, Royal Bank of Canada, Deutsche Bank and Societe Generale. Table 
2.6 shows that at VaR(0.07%), the number of exceptions ranges from 5 for Bank of 
America to 8 for Societe Generale. At VaR(0.03%), Bank of America suffers one 
exception, while the corresponding numbers at Royal Bank of Canada, Deutsche 
Bank and Societe Generale are 2, 2 and 5 respectively. It is interesting that even at 
VaR(0.01%), three over four banks still experience VaR exceptions. These are Royal 
Bank of Canada, Deutsche Bank and Societe Generale which suffer two, one and 
three exceptions at VaR(0.01%) respectively. Recall that among four banks 
understating VaR in crisis period, Royal Bank of Canada and Societe Generale have 
the most serious VaR distortion parameters, followed by Deutsche Bank and Bank 
of America. This evidence shows a relation between VaR distortion parameter and 
the number of VaR super exceptions. We find that the higher the magnitude of VaR 
distortion parameter, the more number of VaR super exceptions at extreme 
coverage rates. 

 The MUC test implies the adequacy of the economic capital for market risk of 
banks. The economic capital models for market risk at banks are designed to deal 
with potential for extreme events. It is typical that the economic capital models aim 
to identify the maximum potential loss within a one-year horizon and level of 
confidence lies between 99.95% to 99.99% (Methta et al., 2012). In their research 
on the McKinsey working papers on risk, Methta et al. (2012) show that 85% of 
banks in their survey do not use a discrete economic capital model. Instead, banks 
use their VaR to compute economic capital for market risk, with the confidence 
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interval ranges from 99.91% to 99.97% for global banks. Recall that we still find 
extreme losses in crisis period that exceed VaR(0.07%), VaR(0.03%) and even 
VaR(0.01%). Therefore, we argue that during financial crisis, these banks might not 
put enough economic capital for market risk. 
2.6 Discussions 

The purpose of this section is to discuss about the systemic VaR overstatement 
of commercial banks in normal periods and the poor performance of bank VaRs in 
financial crisis. The systemic VaR overstatement can be attributed to: the use of 
contaminated data, the choice of VaR model and the benefit of VaR overstatement. 
The use of contaminated data 

Recall that the statistical tests were designed to help risk managers and 
banking regulators to evaluated bank VaRs and penalize banks with poorly 
performing VaR models. However, Fresard et al. (2013) show that the use of 
contaminated data can distort the number of VaR exceptions and thus the 
backtesting result of bank VaR. The contaminated terms, such as fees and 
commissions, are mostly risk-free and do not reflect the exposure to market risk of 
trading portfolio. We find that among seven sample banks, five banks are considered 
using contaminated data in their backtesting (see Panel C of Table 2.1). These banks 
are Scotia Bank, Bank of America, Royal Bank of Canada, Deutsche Bank and Societe 
Generale. The inclusion of the positive, risk-free incomes may inflate the trading P/L 
and as a result, lead to the problem of having low number of VaR exceptions.   
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The choice of internal VaR model 
The choice of VaR internal model might be the cause of the poor performance 

of bank VaRs in both normal and crisis period. Table 2.1 shows that among seven 
sample banks, six banks use Historical simulation (HS) as their internal VaR model, 
except Deutsche Bank uses Monte Carlo simulation. To examine whether the choice 
of VaR model leads to the poor performance of bank VaRs, we use the simplest Naïve 
HS as the benchmark model to compare the performance of bank VaRs. 

In the Naïve HS model, the VaR(1%) is simply the 0.01-quantile of the 
empirical return distribution of an portfolio. Denote rt as the P/L on trading 
portfolio on day t.  For time horizon T, we have the sequence of daily P/L {�o}�~Y� . The 
1-day VaR(1%) is defined as the α-quantile of the sequence of the historical returns: 

   VaRW(1%) = Quantile {{rWX}}}~Y] , α}              (2.20) 
We use rolling window technique to estimate one-day-ahead VaR. For the size 

of rolling window, we select T = 504 days (or two years of historical data, 
equivalently). The performance of bank VaRs and our benchmark model will be 
evaluated based on the out-of-sample forecasts. As we use the first 504 observations 
to start our forecast, hence the length of the forecast horizon for pre-crisis period 
will be shorten by 2 years, while the other sub-periods keep remained. We continue 
using CC test to evaluate the performance of bank VaRs and the benchmark model. 
The backtesting results are reported in Table 2.7. 

From the test results, we find two important points. The first is the failure of 
bank VaRs and the benchmark model in crisis period. Indeed, the Naïve HS cannot 
capture the change in market volatility during this period and hence generating too 
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many exceptions. As a result, its validity is rejected by the test statistics in six over 
seven banks. The second point is the superiority of our benchmark model to bank 
VaRs in providing accurate risk figures in normal periods. While bank VaRs tend to 
be overstated and thus produce very rare (even zero) number of VaR exceptions, 
the benchmark model delivers appropriate number of VaR exceptions according to 
the coverage tests. Although both using HS, the difference in the performance of 
banks’ internal model and our benchmark model can be explained that bank HS 
updates the historical window in daily frequency with current position exposures, 
while in case of Naïve HS, only the newest and oldest observations are updated.  

 This result shows evidence that even the simplest VaR model can outperform 
bank VaRs in providing good VaR estimates. Besides, it is the fact that the 
performance of bank VaRs does not improve over time. Therefore, we argue that 
banks are adopting their inferior model to overstate their VaRs. The intentional VaR 
overstatement can bring banks some economic merits, which will be discussed in 
the next section. 



64 

 

Table 2.7: Performance evaluation of bank VaRs and the benchmark model Notes: Table 2.7 presents the number of VaR exceptions and the LR test statistics of bank VaRs and the benchmark model in three sub-periods.  The benchmark model is the Naïve Historical Simulation, in which VaR is estimated using moving window of two years of historical data. 
 Total  observations Bank VaRs  Benchmark model  No of exceptions LRUC LRIND LRCC  No of exceptions LRUC LRIND LRCC Pre-crisis period           Intesa Sanpaolo 606 0 - - -  0 - - - Scotia Bank 1369 0 - - -  8 0.0490 0.1490 0.1980 Banco Santander 606 0 - - -  0 - - - Bank of America 1614 3 13.196** 0.0199 13.216**  6 2.8320 0.0650 2.8970 Royal Bank of Canada 1604 0 - - -  18 3.7970 1.0890 4.8770 Deutsche Bank 1595 0 - - -  12 0.1080 0.2670 0.3750 Societe Generale 1382 3 12.544** 0.0131 12.557**  11 0.5300 0.2790 0.8090 
Crisis period           Intesa Sanpaolo 525 1 5.2019** 0.0038 5.2057**  6 0.1060 3.8040 3.9100 Scotia Bank 525 2 2.6475 0.0153 2.6628  11 4.858** 5.719** 10.578** Banco Santander 525 3 1.1434 6.8983** 8.0417**  14 10.145** 20.292** 30.437** Bank of America 525 15 12.216** 18.674** 30.981**  17 16.763** 21.896** 38.659** Royal Bank of Canada 525 17 16.763** 0.3183 17.081**  21 27.268** 3.7980 31.067** Deutsche Bank 525 31 59.996** 10.426** 70.422**  18 19.222** 14.600** 33.822** Societe Generale 525 35 75.152** 4.8693** 80.022**  25 39.370** 16.327** 55.697** 
Post-crisis period           Intesa Sanpaolo 886 10 0.1449 8.4954 8.6403  9 0.0020 9.4070 9.4100 Scotia Bank 891 2 7.8823** 0.0090 7.8913**  3 5.314** 0.0203 5.335** Banco Santander 646 4 1.0871 0.0499 1.1370  3 2.3250 0.0280 2.3530 Bank of America 888 0 0.0000 0.0000 0.0000  5 2.0240 0.0560 2.0810 Royal Bank of Canada 891 3 5.3148** 0.0203 5.3351  5 2.0510 0.0560 2.1070 Deutsche Bank 892 7 0.4464 4.1818 4.6282  3 5.328** 0.0200 5.3480** Societe Generale 128 4 3.7779 9.5472** 13.325**  0 - - -                **: rejected at 95% confidence level 
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The benefits of VaR manipulation 
Banks may have benefits from both VaR overstatement and VaR 

understatement. Over-reporting VaR helps bank to have rare VaR exceptions, which 
looks attractive to investors and banking regulators. Besides, the Basel backtesting 
framework does not penalize bank that overstate their VaR, therefore it may signal 
that VaR overstatement is preferable to VaR understatement. However, there is a 
cost of overstating VaR. Under Basel framework17, banks are subjected to market 
risk capital requirements, which directly depends on the magnitude of its VaRs. 
Specifically, the capital requirements are computed by taking the higher value 
between previous day VaR and the average VaR of the preceding 60 business days, 
multiplied by the scaling factor of 3. Therefore, the more VaR overstatement, the 
higher the market risk charges to the bank.  

Understating VaR may cost banks more. According to the Basel backtesting 
framework, if a bank has an excessive number of VaR exceptions, their internal VaR 
model will be investigated to improve future backtesting outcomes. There will also 
be a capital fine for bank that does not meet the desired number of VaR exceptions, 
which is the multiplier adding to the scaling factor. More important, bank that 
suffers a number of VaR exceptions might put their reputation at risk. Having too 
many VaR exceptions may be considered as the signal of poor risk management. As 
a result, it is likely that the market will penalize bank which is unable to accurately 
manage its exposure to market risk. Besides, we find that the trading activities do 
                                                             17 Basel Committee on Banking Supervision, 1996b. 
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not account much in banking business. Indeed, Figure 2.5 shows that on average, 
most banks keep their trading portfolio account for less than 20% of their total 
assets. With the small contribution of trading activities, banks have more incentive 
to overstate their VaRs to avoid the reputational risk in the trade off with higher 
capital requirement associated with over-reporting VaRs. The manipulation in VaR 
backtesting results makes VaR itself less informative as a useful risk management 
tool. 

Figure 2.5: Contribution of trading portfolio to banks’ total assets 
Notes: Figure 2.5 presents the ratio of the value of bank’s trading portfolio over their total assets from 2002 to 2012 of seven commercial banks. There are some missing points in the graph due to lack of data. 

 
2.7 Concluding remarks 

Chapter 2 contributes to literature on the performance of bank VaRs before, 
during and after global financial crisis. Using non-anonymous daily data of seven 
commercial banks from early 2001 to 2012, we examine the accuracy of bank VaRs 
associating with their daily trading P/L. Our backtesting result shows evidence of 
systemic VaR overstatement in normal periods. During financial crisis, while some 
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banks continued to overstate their VaR, the others significantly underestimated 
their risk. The VaR exceptions at these banks were excessively high and tend to 
cluster together. We also find evidence of extreme losses during financial crisis, 
which were likely to exceed VaR at very low coverage rates. We attribute the poor 
performance of bank VaRs to several factors: (i) the use of contaminated data, as we 
find that banks do not exclude fees, commissions and intraday revenues from their 
trading P/L, (ii) the choice of VaR model, as the simplest Naïve HS can easily 
outperform internal VaR model at banks and (iii) the incentives of VaR 
manipulation, as banks tend to overstate their VaR to avoid reputational risk.  

This chapter finds that the systemic VaR overstatement at banks is intentional. 
We find evidence that banks continue using the inferior models to inflate their VaR 
estimates to get the economic merit of VaR overstatement. The distortions of bank 
VaRs, which are popular across banks, make VaR a poor risk management tool. 
Therefore, this chapter suggests several recommendations to banks, financial 
regulators and investors. For commercial banks, we suggest that banks’ risk 
managers should stop manipulating their VaR estimates, as these are the 
informative risk figures being used by both financial regulators and public 
investors. For investors, we recommend that the they should not rely on the 
disclosed VaR and backtesting results to make investment decision, as these figures 
are distorted and may result in misleading financial decisions. This chapter also has 
recommendation for financial regulators. To deal with the problem of VaR 
overstatement, we suggest that the financial authorities should treat VaR 
overstatement equal to VaR understatement. Therefore, bank having rare or no VaR 
exceptions should be penalized the same as having excessive VaR exceptions. 
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Chapter 3: 
The predictive power of VaR models 

at commercial banks 
  
3.1 Introduction 

In the financial industry, VaR has been widely used and regarded as a 
benchmark for measuring market risk (Jorion, 2006). VaR measures the maximum 
potential loss on a given period of time, commonly one-day or ten-day ahead, at a 
certain level of confidence (e.g. 95% or 99% typically). While the concept of VaR is 
attractive and simple, there is no unique methods that VaR computation adopts. 
Indeed, there are a number of alternative approaches that VaR can be implemented. 
VaR estimates are also sensitive to the choice of the risk model and the nature of the 
pre-sample data (Boucher et al., 2014). For that reason, evaluating the predictive 
power of VaR models has been increasingly of interest. 

The choice of the VaR model is important in estimating VaR. A good model 
should capture the true data generating process and therefore provide good VaR 
estimates. According to Cairns (2000), model risk is also an issue since the 
uncertainty in estimating risk arising from the choice of an inappropriate model (i.e. 
incorrect assumptions about the distributional form of the statistical model) and 
parameter uncertainty (i.e. estimation error in the parameters of the chosen 
model). This double uncertainty causes plausible risk forecasts (Beder, 1995) and 
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more generally, the inability to forecast risk with acceptable accuracy. These issues 
should be considered in future work. 

The literature on the performance of VaR models has traditionally devoted 
on the use of market data e.g. stock indices, simulated portfolios, commodity prices 
to estimate VaR. However, it is the fact that commercial banks, the primary users of 
VaR measurement and the main objects of regulatory framework of market risk 
management, do not use market data to estimate their VaRs. Indeed, they use their 
own P/L data on trading portfolios to obtain VaR estimates18. To the best of our 
knowledge, there has been very little empirical research on the performance of VaR 
models with the use of bank data. Using daily data of six US banks from January 1998 
through March 2000, Berkowitz and O’Brien (2002) show that the complicated 
structure models cannot outperform the ARMA-GARCH model with normal 
distribution in forecasting portfolio VaR.  Besides, they find that the simple GARCH 
produces less conservative VaR estimates than banks’ internal model. O’Brien and 
Szerszen (2014) extend the dataset with five US banks that covers the pre-crisis and 
crisis period. They compare the performance of bank VaRs to the Naïve and Filtered 
HS, the EVT approach and the GARCH models with alternative distributional 
assumptions and confirm the superiority of GARCH models.  

It is important to note that the literature on the performance of VaR models 
using bank data is limited to these studies above. This is because of the data 
availability, as most researchers cannot get access to P/L and VaR data of 
commercial banks.  As a result, to date there has been no study on bank VaRs that 
                                                             18 The information is available on bank’s annual reports under market risk management section. For example, Scotia bank disclose their information under the section “Risk measurement summary” on page 63 of their 2012 annual report. 
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covers the post-crisis period. Thus, the literature demands a comprehensive study 
on the predictive power of VaR models with the use of bank data that covers the 
pre-crisis, financial crisis and post-crisis period. This is the gap in the literature we 
want to fill. 

This chapter investigates the performance of various VaR models using the 
non-anonymous daily P/L and VaR data of seven commercial banks. The sample 
period starts from January 2001 and ends in December 2012, which is divided into 
three subperiods: pre-crisis, crisis and post-crisis. Compared to prior studies, this 
research uses wider and longer dataset. The rich dataset not only increases the 
power of the statistical test, but also gives us a more comprehensive evaluation on 
the performance of alternative VaR models in both normal and crisis periods. This 
chapter employs various VaR models, including the Naïve and Filtered HS, the 
Riskmetrics, the GARCH(1,1) and GJR-GARCH(1,1) models with alternative 
distributional assumptions and the Extreme Value Theory (EVT) approach. To 
compare model performance, we develop a two-stage backtesting framework. The 
first stage investigates the absolute performance of VaR estimates using the 
coverage tests. The second stage quantifies the comparative performance of VaR 
models using the magnitude loss function (LF). 

Our empirical analysis shows two main points. First, we find that the 
alternative VaR models can easily outperform banks’ internal model in both normal 
and crisis periods. Second, we acknowledge the superiority of the GARCH-type 
models in forecasting bank VaRs. Specifically, the unconditional models with 
Gaussian distribution outperform other models in normal periods, while 
incorporating Student t is by far the best in estimating VaR during financial crisis. 
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While the HS models perform inconsistently, none of the banks’ internal model 
accurately capture the bank risk. The EVT approach, which was shown to be 
superior in VaR estimation with market data, performs very poorly with bank data. 
Thus, we argue that good bank VaRs can be obtained using simple and accessible 
models rather than other sophisticated models.  

The outline of the chapter is as follows: Section 3.2 briefly introduces various 
VaR models used in this chapter. Section 3.3 gives overview of our two-stage 
backtesting procedure, followed by the empirical analysis in the Section 3.4. Finally, 
section 3.5 summarizes the findings of this chapter.  
3.2 Models to estimate VaR 

Chapter 3 employs three approaches with six VaR models to forecast VaR: 
The Naïve and Filtered HS models, the Riskmetrics model, the GARCH(1,1) 
specifications with normal distribution (GARCHn)  and with Student t distribution 
(GARCHt), the GJR-GARCH(1,1) specifications with normal distribution assumption 
(GJR-GARCHn) and Student t innovation (GJR-GARCHt) and the EVT approach. The 
CAViaR model of Engle and Manganelli (2004), although having been widely used 
in recent studies, will not be used in this chapter due to its incompatibility when 
working with the trading P/L data of banks. 
3.2.1 The Historical simulation models 

The HS approach is one of the simplest method to estimate VaR. It is also the 
most popular VaR approach used by commercial banks, as 73% of commercial 
banks that disclose using this method to estimate their VaRs (Perignon and Smith, 
2010b). Within this HS approach, the Naïve HS and the Filtered HS are the most 
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widely-used models to compute VaR. These model specifications are presented in 
the following. 
The Naïve historical simulation model 

The Naïve HS was initially introduced by Boudoukh et al. (1998) and Barone-
Adesi et al. (1998, 1999). In value terms, a 1-day historical VaR at coverage rate α is 
defined as the α-quantile of the empirical 1-day P&L distribution. Specifically, 
suppose we have the historical data from day 1 to day T, and denote rt the return of 
portfolio on day t, then we get a series of returns {�o}o~Y� . The 1-day VaR at coverage 
rate α is computed as the α-quantile of the sequence of the past portfolio returns: 

                           ���o  = Quantile {{�oX�}�~Y� , �}     (3.1) 
One of the main attractions of Naïve HS is that it does not require any 

parametric assumptions about the distribution of the risk factor. In historical 
simulation approach, the dependencies and dynamic evolutions of the risk factors 
are directly inferred from historical data. More specific, this method implicitly 
assumes that future outcomes have been mirrored in the past, and that the 
historically simulated returns distribution is identical to the empirical distribution 
over the forecast horizon. As it does not depend on parametric assumptions about 
the behaviour of market variables, historical VaR models can accommodate fat tails, 
skewness and any other non-normal features that cannot be properly fitted with 
parametric approaches. Thus, this model is ideal to assess the risk of complicated 
path-dependent financial products but still keep the dynamic behaviour or risk 
factors in realistic manner (Alexander, 2009). The popularity of historical VaR also 
comes from the ease-of-use, intuition and simplicity of the model itself. Historical 
simulation approach is fairly easy to implement and can accommodate any type of 



73 

 

portfolio position, in which historical data is readily accessible either in public or 
internal sources. 

The main drawback of the Naïve HS is that its results are significantly 
dependent on the input data set. It arises from the assumption of historical model 
that future outcomes will behave like the past. As a result, historical scenarios might 
not properly reflect the next cycle of the market if there is a significant change in 
market conditions. The second concern is data limitations, as we demand a 
considerable amount of historical observations to get risk forecasts at acceptable 
precision, particularly when applying this model to estimate VaR with high level of 
confidence (e.g. 99% or higher). On the other hand, there are also problems with 
long data set, as the longer the historical data, the more the problems with aged 
data. The long data set might include past events, which are unlikely to occur again, 
but can distort the risk estimates. Besides, innovations in current market 
observations are likely to be diluted by older events, making the forecasting results 
less responsive to current market conditions.  
The Filtered Historical Simulation  

The Filtered HS model was proposed by Hull and White (1998) and Barone-
Adesi et al. (1999) to remedy some of the shortcomings of the Naïve HS model. 
Indeed, it is the combination of the Naïve HS and the GARCH specifications. This 
semi-parametric approach holds the advantage of the Naïve HS method which does 
not make any distribution assumption of asset returns, while its variances are 
conditionally obtained via volatility models.  

In this approach, firstly we fit the normal GARCH process to the return series. 
The estimated model will be used to infer conditional variance ��dt for each day in 
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the sample. The second step is to obtain standardized return �� t by dividing the 
historical returns rt by the inferred conditional volatility ��t. The standardized 
returns {�� t} should be independent and identically distributed, thus they are 
suitable to be historically simulated. The next step is to use bootstrap technique for 
the dataset of standardized returns to get a large number of simulated standardized 
returns {�z t}. Each of simulated standardized returns is then multiplied by the 
today’s forecast of tomorrow’s volatility ��t+1|t obtained by previous GARCH model 
to get a large sample of simulated returns. Finally, a one-day-ahead VaR with � 
significant level will be estimated as a �th quantile of simulated return series: 

VaRt = Quantile {{�oX� }�~Y� , �}    (3.2) 
3.2.2 The conditional volatility models 
We present the data generating process of the VaR estimates using conditional 
volatility models: 

rt = µ + εt      (3.3) 
εt = zt σt ,    zt ~ D(0,1)     (3.4) 
VaRt = µ�t  + ϕ-1(α) * ��t     (3.5) 

where rt is the time series of daily P/L with constant mean µ, and ϕ-1(α) is the α-
quantile of the assumed distribution function. Equation (3.5) shows that there are 
two essential components to obtain VaR: (i) the assumption of probability 
distribution and (ii) the estimated parameters of the conditional mean and 
conditional volatility. The distributional assumption is used not to fit the whole 
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sample to, but to adjust the specific quantile for VaR19, following the equation (3.5). 
In order to obtain VaR, estimating conditional mean µt and conditional volatility σt 
is essential. There are several models that capture the dynamic of the conditional 
volatility, in which we employ the Exponential Weighted Moving Average (EWMA), 
the GARCH and GJR-GARCH models. 
The Riskmetrics model 

The Riskmetrics model was firstly proposed by JP Morgan in 1989, then 
became publicly accessible in 1992. It is one of the simplest ways to estimate VaR. 
In the Riskmetrics, the dynamic of σt follows the EWMA: 

                            �dt = λ�dt-1 + (1-λ) �dt-1                 (3.6) 
Regarding to the choice of decay factor λ, we select the value of 0.94 as 

recommended by Riskmetrics. The conditional volatility σt is now obtained as 
following: 

�dt = 0.94�dt-1 + 0.06 �dt-1                  (3.7) 
The GARCH(1,1) models 

The second model to conditionally estimate σt is the GARCH(p,q) model, which 
is designed to capture the change in market volatility including its clustering 
characteristics of financial time series (Engle, 1982; Bollerslev, 1986). In 
GARCH(p,q) model, the conditional variance ��dt is obtained as: 

 �do= ω + ∑ ���doXY ��~Y  + ∑ ���doXY ��~Y                   (3.8) 
We select the basic GARCH(1,1) model to estimate VaR, as Handen and Lunde 

(2005) note, there is no evidence that GARCH(1,1) is outperformed by other more 
                                                             
19 This is different to the approach used in Chapter 4, in which we assume the distributional assumption and adjust the whole sample to obtain the quantile forecasts.   
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sophisticated models in forecasting volatility of financial time series. The 
conditional volatility σt is now obtained as following: 

�do= ω +α�doXY  + ��doXY     (3.9) 
To complete GARCH specification, the first choice of distributional assumption 

is the Gaussian distribution, as studies have shown that the GARCHn is superior to 
banks’ internal model in providing accurate risk figures (Berkowitz and O’Brien, 
2002; Perignon et al., 2008). We also investigate the forecasting power of 
GARCH(1,1) model with Student t innovation  due to its ability to cope with fat-
tailed distribution. Besides, studies have shown that the GARCHt performs well in 
VaR estimates for both equity markets and currency returns (Angelidis et al., 2004; 
So and Yu, 2006). 
The GJR-GARCH(1,1) models 

The GJR-GARCH model was proposed by Glosten, Jagannathan and Runkle 
(1993) to take into account the leverage effect, in which past negative returns have 
more impact on today’s volatility than past positive returns. In the GJR-GARCH(1,1) 
specifications, the conditional volatility σt is now obtained as: 

�do= ω +αεdoXY  + ��doXY + ξ¡[ �oXY < 0] �doXY            (3.10) 
Similar to the GARCH(1,1) model, we incorporate the GJR-GARCH(1,1) 

specification with two distributional assumptions to estimate the conditional 
volatility σt, including the Gaussian distribution (GJR-GARCHn) and the Student t 
distribution (GJR-GARCHt). 
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3.2.3 The Extreme Value Theory approach 
Due to their ease of use and intuitive appeal, the conditional volatility models 

have been popularly used to compute VaR. However, the recent financial crises 
witnessed the failure of these conventional VaR models in capturing the extreme 
losses, especially during the 1997 Asian financial crisis and the 2007-2009 global 
crisis. This demands for an alternative approach that directly investigates the tail 
behaviour of the return distribution rather than the whole distribution. It leads to 
the popular application of EVT to estimate VaR in recent studies on risk modelling. 

EVT is a type of statistics which focuses on the tail behaviour of the asset 
returns and is designed to cope with events that are extreme in nature. In general, 
there are two approaches to identify extremes in return series. The first approach, 
which is called Block Maxima method, divides dataset into blocks and only takes 
into account the maxima of each block. The second approach, which is called Peak 
Over Threshold (POT), focuses only on the extreme observations that exceeds a 
given threshold. Between two approaches, the POT method uses data more 
efficiently and therefore has been widely used in the computation of extreme risk 
measures (Gilli and Kellezi, 2006). For that reason, we use POT method to estimate 
bank VaRs. 

The main idea of POT method is to extract extremes from a time series data, 
Xt, t=1, 2…n with a distribution function F(x) = Pr{X t≤ x} by taking all exceedances 
over a given threshold u. An exceedance occurs when Xt > u for any t in t=1, 2…n. 

In POT method, the critical step in estimating parameters of Generalized 
Pareto Distribution (GPD) is to determine threshold value u. Theories suggest that 
u should be high enough in order to make the conditional excess distribution 
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function converges to GPD (Pickands, 1975; Balkema and de Haan, 1974). However, 
the high threshold u will leave less observations for the estimation of the tail 
distribution function’s parameters. To date, there has been no automatic algorithm 
for the selection of the right threshold u, although this issue was discussed by 
Danielsson and de Vries (1997) and Dupuis (1998), Danielsson et al. (2001). 
Following the ideas of McNeil and Frey (2000) and Fernandez (2003), we select the 
threshold at the 10%- quantile of return distribution (or 10 percent of observations 
in the left tail) as the choice of u. We also test some different thresholds around the 
vicinity of 10% and found out that the estimation results did not change noticeably. 

Given the 10%-quantile threshold, the next step is to fit the exceedances above 
this threshold into GPD. In order to estimate the parameters of GPD, we employ the 
Maximum Likelihood Estimation (MLE). 

For a sample X = {x1, x2… xn}, the log-likelihood function L(ξ,σ|x) for the GPD 
is the logarithm of the joint density of the n observations:  

L(ξ,σ|x) = = ¥ −nlogσ − ¦ Y § + 1¨ ∑ log ¦1 +  § © x}¨ ª }~Y  if ξ ≠ 0
−nlogσ − Y © ∑ x} ª }~Y                                      if ξ = 0            (3.11) 

We obtain the values of ξ« and σh which maximize the log-likelihood function for 
the sample of exceedances over a given threshold u. Given the estimated 
coefficients, VaR using EVT approach is now computed as: 

 VaREVT,t(α) = u + §q  ©h ¬¦ ªª α¨X§q − 1®           (3.12) 
Since being applied to financial risk forecasting, EVT has gained a popular use. 

Indeed, there are number of studies which confirm the superiority of EVT approach 
in modelling extreme risk. With the dataset of emerging markets covering both 
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normal and crisis periods, Gencay and Selcuk (2004) find out that EVT approach 
outperforms a variety VaR models in estimating VaR at high quantile. Chan and Gray 
(2006) report the success of EVT-based model for the purpose of forecasting tail 
quantiles and estimating VaR for electricity spot prices. Using reality check to 
compare predictive power of VaR models, Bao et al. (2006) find evidence that EVT 
models do better than alternative VaR models in crisis period. The superiority of 
EVT-based models to conventional VaR models is consistently reported by Bekiros 
and Georgoutsos (2005); Aloui et al.  (2011), Schaumburg (2012) and Adrian and 
Shin (2014). 
3.3 Methods of evaluating VaR estimates 

In literature, there are two main approaches to examine the performance of 
a VaR model. The first is to conduct statistical hypothesis testing in order to find 
whether a VaR model outperforms others in fitting with theoretical statistical 
properties. The most popular tests of this approach are the UC, the IND and the CC 
test20. The second approach is to perform loss function (LF), which reflects the loss 
from a failure of VaR model in correspondent with their realized loss (Lopez, 
1998,1999; Sarma et al., 2003). As each type of test captures one type of potential 
misspecification of the VaR models, hence we design a two-stage evaluation to 
comprehensively examine the adequacy of VaR models when fitting with banks’ 
data. The first stage evaluates the absolute performance of VaR models by using the 
statistical tests. The second stage, which is designed for VaR estimates that pass the 
first stage backtesting, aims to assess the comparative performance of VaR models.    
                                                             20 See section 2.4 in chapter 2. 



80 

 

3.3.1 The evaluation of absolute performance 
In the first stage of the backtesting procedure, we aim to evaluate the 

absolute performance of VaR models by examining the behaviour of VaR exceptions.  
In line with the first study, we continue using the coverage tests to examine the UC, 
IND and CC hypothesis of the hit sequence of a VaR estimates.  

Recall that the UC test examines the coverage of VaR exceptions based on the 
actual number of VaR exceptions. The null hypothesis of UC test states that the 
observed frequency of VaR exceptions is consistent with the expected coverage 
rate.21 The CC test extends the UC test by jointly examining the IND and UC 
properties of VaR exceptions. The CC hypothesis holds when both UC and IND 
hypotheses are simultaneously satisfied. Specifically, a VaR model is not rejected by 
the CC test if its VaR exceptions are independently distributed and the actual 
frequency of VaR exceptions is not significantly different to the expected coverage 
rate.22 

The main shortcoming of the coverage tests is that their results are not 
comparable. Indeed, the CC test only shows us whether a VaR model satisfies the CC 
hypothesis.  It is clear that coverage test does take into account the magnitude of 
losses beyond VaR. Therefore, it does not allow us to compare the performance of 
two VaR models that both pass the statistical test. We show an example in Figure 
3.1, which shows the P/L and VaR of bank 1 and bank 2 presumably. According to 
the CC test, two banks perform equally since they have the same number of VaR 
exceptions with identical hit sequence. However, it can be seen that the excessive 
                                                             
21 See Section 2.2.4.1 
22 See Section 2.2.4.2 



81 

 

losses of bank 2 are more serious than bank 1, implying that the performance of two 
VaR models are not comparatively equal. To overcome this drawback, we employ 
the LF, which is the magnitude-based test, to evaluate the comparative performance 
of VaR models. 

Figure 3.1: Example of coverage evaluation 
Notes: Figure 3.1 shows example of two banks that have the same number of VaR exceptions but different excessive losses. The red columns present the trading P/L while the black line shows the corresponding VaR estimates. 

  
3.3.2 The evaluation of comparative performance 

According to the risk management perspective, both of the number of VaR 
exceptions and their magnitude are matters of concern. To deal with these specific 
concerns of the risk managers, Lopez (1998, 1999) proposes the LF approach to 
quantify the magnitude of excessive losses beyond VaR. The general form of the LF 
for VaR model i at time t is defined as: 
   Fi, t+1   = V  f(rWjY, VaR},W)   if rWjY < VaR},W  g(rWjY, VaR},W)   if rWjY ¯ VaR},W               (3.13) 
where rt+1 is the trading P/L on day t+1.  
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 To take into account the magnitude of VaR exceptions, we use the magnitude 
LF (Lopez, 1998), which is the quadratic form of the loss function:  
   LFi, t+1   = V  (rWjY − VaR},W)d   if rWjY < VaR},W 0              otherwise              (3.14) 

Suppose we have N observations. The single score to compare the 
performance between VaR models is computed as: 

LFS = Y � ∑   � }~Y LF(VaRt, rt+1)                 (3.15) 
 It is important to note that the quadratic loss function is not a statistical test 
of model adequacy but a procedure to rank models by their scores. The idea of the 
quadratic loss function is expressed in a negative orientation: the more serious the 
failure, the lower the score. Thus, the performance of VaR models are examined by 
comparing the values of the their LFS in which the preferred model is the one that 
minimizes the loss.  
 The LF also has the shortcoming. Recall that the LF measures the magnitude 
of losses beyond the VaR and prefers model that minimizes the losses. It is obvious 
that the best VaR model is the one generating no VaR exceptions. It is the one-sided 
nature of the LF, which only accounts for the magnitude of excessive losses but 
ignores the frequency of VaR exceptions. Therefore, the LF prefers the VaR 
overstatement to the VaR accuracy and VaR understatement. It may give banks 
incentive to overstate their VaRs to have some economic merits, which were 
discussed in Section 2.6 in previous chapter. To overcome the drawback of the LF, 
we combine the LF to these statistical tests presented above. Specifically, we only 
implement the LF for VaR models which successfully pass the coverage test in the 
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first stage. This will help us discard the case of highly-ranked LF score due to VaR 
overstatement.  
3.4 Empirical analysis 
3.4.1 Data description 
 We present the descriptive statistics of daily P/L of seven sample banks in 
Table 3.1, divided into three sub-periods.  The pre-crisis is from the start date of the 
series to May 2007, while the financial crisis is from June 2007 to June 2009, and 
the post-crisis is from July 2009 onward. At each bank, we present the mean, 
minimum value (min), maximum value (max), the standard deviation (Std dev), the 
ratio of negative trading days (P/L <0), the skewness, kurtosis and Jarque-Berra 
test statistics for normality of the P/L series. 

Table 3.1 shows that in pre-crisis period, for average all banks report to have 
good performance on their trading activities. In crisis and post-crisis period, most 
banks witness positive trend in their daily P/L, except Banco Santander which 
suffers a decrease in the trading revenues. Besides, the distribution of daily trading 
P/L of banks is highly skewed. In pre-crisis and post-crisis period, the P/L 
distribution tends to be positively skewed, but it is negatively skewed during 
financial crisis. The high kurtosis shows that banks have fat tails in their P/L 
distribution, in which the highest is recorded for Royal Bank of Canada. The fat-
tailed distribution indicates the sign of extreme losses on bank’s trading portfolio. 
The Jarque-Berra test for normality is rejected in most cases, except Societe 
Generale in post-crisis period due to the problem of short dataset. 
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Table 3.1: Descriptive statistics of daily P/L of sample banks  
Notes: Table 3.1 presents the descriptive statistics of seven commercial banks from January 2001 to December 2012, divided into three sub-periods. The Jarque-Berra test statistics for normality are shown in the last column. The sign ** indicates that the test statistics is rejected at 95% confidence level. 

 Date Mean Min Max Std Dev P/L < 0 Skewness Kurtosis JB test Pre-crisis period          Intesa Sanpaolo Jan 2005 - May 2007 0.1048 -23.370 22.796 5.5406 0.4802 -0.1056 6.6124 364.63** Scotia Bank Jan 2002 - May 2007 3.6668 -13.568 16.959 3.0208 0.0869 0.0390 4.4596 121.86** Banco Santander Jan 2005 - May 2007 1.9705 -66.886 38.366 8.0447 0.3762 -1.2819 15.8284 4321.2** Bank of America Jan 2001 - May 2007 15.4258 -57.388 96.759 14.4822 0.1059 0.1899 5.2973 364.63** Royal Bank of Canada Jan 2001 - May 2007 6.4211 -18.383 56.961 4.6188 0.0355 2.7184 26.5186 38942.6** Deutsche Bank Jan 2001 - May 2007 47.1337 -63.290 318.28 30.5518 0.0370 1.0950 8.5577 2371.4** Societe Generale Jan 2002 - May 2007 13.2450 -35.005 80.110 12.5048 0.1259 0.6977 5.4367 454.01** Crisis period          Intesa Sanpaolo June 2007 - June 2009 0.0509 -5.080 7.0252 1.7078 0.4838 0.3254 4.0149 31.975** Scotia Bank June 2007 - June 2009 5.2835 -36.936 36.5763 7.1991 0.1905 -0.0584 6.6055 284.66** Banco Santander June 2007 - June 2009 -1.1390 -89.445 61.0342 13.2276 0.5295 -0.5197 9.0367 820.79** Bank of America June 2007 - June 2009 22.239 -171.64 320.76 63.1064 0.3238 0.5986 5.3894 156.24** Royal Bank of Canada June 2007 - June 2009 5.3605 -730.00 296.00 55.2473 0.2514 -6.7171 76.4666 122014.8** Deutsche Bank June 2007 - June 2009 26.433 -360.69 571.746 86.9326 0.2781 -0.4254 7.8923 539.39** Societe Generale June 2007 - June 2009 3.1587 -275.22 128.44 43.5052 0.4343 -1.1347 9.3338 990.22** Post-crisis period          Intesa Sanpaolo July 2009 - Dec 2012 0.0663 -6.3547 10.114 1.8116 0.5169 0.5782 5.4293 267.21** Scotia Bank July 2009 - Dec 2012 6.3029 -14.574 27.211 5.0684 0.0920 0.1901 4.5185 90.974** Banco Santander July 2009 - Dec 2011 -0.0746 -40.096 63.035 9.3675 0.4582 -0.1495 7.1068 456.38** Bank of America July 2009 - Dec 2012 67.953 -119.75 317.29 58.0780 0.0923 0.5442 4.3031 106.66** Royal Bank of Canada July 2009 - Dec 2012 12.480 -91.314 179.74 15.8587 0.1178 1.2119 24.7167 17726.8** Deutsche Bank July 2009 - Dec 2012 7.3383 -128.85 226.66 33.9413 0.4215 0.6298 6.6070 542.52** Societe Generale July 2009 - Dec 2009 11.375 -57.398 70.434 23.2439 0.3281 -0.1174 2.8261 0.4554 
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It is important to note that the data used in this chapter is the daily P/L on 
trading portfolio of banks, which is in absolute value with currency unit. Recall that 
the literature on the performance of VaR models is entirely dependent on the use of 
daily returns of market indices, typically in percentage term. The banks’ P/L data 
has some specific properties over the market data. The first is the non-zero expected 
daily return of the trading portfolio, which is presented on Table 3.1. The second is 
the highly skewed P/L distribution. This is due to the fact that the likelihood of 
having positive daily P/L is much higher than negative P/L. Indeed, we count the 
number of days that banks record positive trading P/L from 2001 to 2012 and find 
that for average, 76% of trading days are reported to have positive P/L. This is 
remarkably higher than the likelihood of having positive daily returns on popular 
market indices. In comparison, from 2001 to 2012 the S&P 500 index is recorded to 
have a ratio of 53% positive trading days, while at FTSE 100 it is 51%.  
3.4.2 Forecasting methodology 

We evaluate the predictive performance of alternative VaR models based on 
their out-of-sample forecasts. As commercial banks are required to disclose their 
daily VaR at 99% level of confidence, we estimate VaR(1%) with one-day-ahead 
forecast horizon. This chapter adopts the moving window technique to estimate 
VaR. We select two sizes of moving window, which are 252 trading days (or one 
year of historical data) and 504 trading days (two year of historical data), as they 
are most popular at banks. The moving window technique is simply described as 
following. With a window size of 504, the first window is placed between the day 1 
and day 504. The estimation of VaR on day 505 is based on the first window, 
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including 504 historical observations. Next, the window is moved one-step-ahead, 
starting from day 2 through day 505, to form a new in-sample data. With the new 
dataset, we re-estimate VaR model to obtain the VaR on day 506. This procedure is 
repeated until getting the full out-of-sample forecasts. 
3.4.3 Preliminary analysis 
3.4.3.1 Unit root test  

First, we conduct the Augmented Dicky-Fuller test (ADF) to examine the 
existence of the unit root process in the time series of P/L. Recall that the ADF tests 
the existence of unit root in the time series, in which the null model: 

   rt = rt-1 + β1Δrt-1 + β2Δrt-2 + … + βnΔrt-n + εt              (3.16) 
against the alternative model: 

 rt = ϕrt-1 + β1Δrt-1 + β2Δrt-2 + … + βnΔrt-n + εt   with ϕ < 1            (3.17) 
We apply the ADF test firstly to the whole period (from 2001 to 2012) and 

then to all three sub-periods (pre-crisis, financial crisis and post-crisis period). The 
test results are presented in Table 3.2. 

Table 3.2 shows that there is sufficient evidence to reject the null hypothesis 
of unit root at all cases. In other words, the data exhibits no unit root process. This 
implies that all time series of trading P/L are stationary and can be modelled 
directly without making any further transforms.   
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Table 3.2: Unit root test of daily P/L of sample banks 
Notes: Table 3.2 presents the Augmented Dickey- Fuller test statistic and its corresponding p-value of seven sample banks. The second column shows the test result of the entire period, while the following columns report the test results of three sub-periods: pre-crisis, crisis and post-crisis. The p-value less than 0.001 is presented as 0.001.  

 Entire sample Pre-crisis Crisis period Post-crisis Intesa Sanpaolo -39.1477 -21.3698 -18.6206 -27.3719  0.001** 0.001** 0.001** 0.001** Scotia Bank -27.4614 -17.5409 -13.8356 -14.4249  0.001** 0.001** 0.001** 0.001** Banco Santander -33.1435 -20.5139 -17.1239 -20.7141  0.001** 0.001** 0.001** 0.001** Bank of America -20.9289 -19.4858 -11.9500 -9.3743  0.001** 0.001** 0.001** 0.001** Royal Bank of Canada -46.8952 -15.1763 -21.6421 -18.4330  0.001** 0.001** 0.001** 0.001** Deutsche Bank -28.0853 -11.9358 -15.7510 -18.9095  0.001** 0.001** 0.001** 0.001** Societe Generale -30.134 -17.0826 -17.5837 -7.4434  0.001** 0.001** 0.001** 0.001**             **: significant at 95% level of confidence 
3.4.3.2 Parameter estimation of GARCH-type models 

We report the parameter estimation of GARCH-type models in Table 3.3 to 
examine its specifications. Due to limitation in space, we only present the parameter 
estimation of the first 2-year moving window in three sub-periods. Table 3.3 shows 
that the estimated value of constant mean µ� are statistically significant for banks 
that experienced positive mean P/L. Besides, the estimated values of ARCH and 
GARCH parameters are statistically significant in most cases. The GARCH parameter 
�« ranges highly from 0.7 to 0.99, implying that the today’s volatility has significant 
memory of past day volatility. In GJR-GARCH(1,1) specifications, the leverage effect 
is positively significant at several banks, which shows that past negative return has 
more impact on today volatility than past positive return.   
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Table 3.3: Parameter estimation of GARCH-type models  Notes:  Table 3.3 presents the estimation results of GARCH-type models in three sub-periods. We report the estimated value of parameter and its associated t-statistics in parenthesis. The sign ** means that the estimated value of parameter is statistically significant at 95% level of confidence Pre-crisis period GARCHn   GJR-GARCHt  µ ω α β  µ ω α β ξ dof Intesa Sanpaolo 0.142 (1.413) 0.0305 (0.696) 0.1525 (6.169)** 0.848 (44.961)**  0.109 (0.998) 0.047 (0.7942) 0.132 (3.668)** 0.821 (30.376)** 0.093 (1.6735) 12.358 (1.991)** Scotia Bank 3.598 (44.153)** 0.448 (2.243)** 0.051 (3.225)** 0.899 (26.457)**  3.561 (44.314)** 0.426 (1.754) 0.042 (2.044)** 0.901 (22.723)** 0.019 (0.775) 12.382 (4.368)** Banco Santander  1.3897 (6.175)** 1.0891 (2.972)** 0.206 (6.653)** 0.783 (27.246)**  1.351 (6.124)** 0.865 (2.102)** 0.194 (3.600)** 0.804 (22.750)** -0.008 (-0.131) 10.233 (1.921) Bank of America 15.027 (39.931)** 41.506 (4.656)** 0.131 (7.272)** 0.676 (13.770)**  15.009 (44.191)** 26.440 (2.553)** 0.037 (2.218)** 0.804 (12.776)** 0.070 (2.024)** 15.009 (44.192)** Royal Bank of Canada 5.599 (66.072)** 0.066 (1.975) 0.049 (9.105)** 0.951 (150.02)**  5.620 (68.029)** 0.177 (2.071)** 0.039 (3.861)** 0.952 (79.124)** -0.009 (-0.709) 6.081 (7.778)** Deutsche Bank 43.156 (67.168)** 10.676 (3.485)** 0.054 (6.065)** 0.932 (81.343)**  42.364 (70.855)** 4.842 1.4645 0.056 (4.462)** 0.937 (68.646)** 0.008 (0.703) 6.710 (5.949)** Societe Generale 11.956 (36.229)** 4.127 (3.687)** 0.050 (6.049)** 0.922 (65.950)**  11.808 (37.851)** 4.549 (2.415)** 0.060 (3.679)** 0.917 (41.008)** -0.023 (-1.298) 9.210  (4.750)**   GJR-GARCHn    GARCHt  µ ω α β ξ  µ ω α β dof Intesa Sanpaolo 0.121 (1.126) 0.029 (0.635) 0.119 (4.703)** 0.836 (41.728)** 0.090 (1.981)  0.121 (1.119) 0.048 (0.822) 0.169 (4.735)** 0.830 (30.415)** 11.219 (2.134)** Scotia Bank 3.586 (43.470)** 0.479 (2.304)** 0.039 (2.311)** 0.892 (26.25)** 0.034 (1.911)  3.565 (44.895)** 0.402 (1.726)** 0.049 (2.641)** 0.906 (23.305)** 12.236 (4.615)** Banco Santander  1.377 (6.004)** 1.054 (2.895)** 0.194 (4.318)** 0.785 (26.558)** 0.021 (0.408)  1.347 (6.183)** 0.854 (2.120)** 0.189 (4.901)** 0.804 (23.149)** 10.321 (1.946) Bank of America 15.031 (39.870)** 38.666 (4.823)** 0.113  (6.767)** 0.692 (15.248)** 0.033 (1.252)  14.926 (43.955)** 50.457 (2.775)** 0.111 (3.652)** 0.650 (6.474)** 6.166 (6.001)** Royal Bank of Canada 5.635 (63.685)** 0.1605 (3.263)** 0.0541 (8.618)** 0.9512 (144.92)** -0.034 (-4.728)**  5.620 (68.1)** 0.147 (2.113)** 0.038 (3.957)** 0.953 (81.358)** 6.031 (8.042)** Deutsche Bank 43.161 (65.279)** 10.581 (3.487)** 0.054 (5.976)** 0.932 (81.240)** 0.001 (0.143)  42.337 (71.406)** 5.248 (1.569) 0.059 (4.607)** 0.938 (68.493)** 6.728 (5.920)** Societe Generale 11.933 (35.908)** 4.236 (4.211)** 0.049 (5.451)** 0.934 (79.685)** -0.031 (-3.444)**  11.820 (38.088)** 3.893 (2.231)** 0.057 (3.753)** 0.916 (39.973)** 8.892 (5.316)** 
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 Table 3.3: continued  Crisis period GARCHn   GJR-GARCHt  µ ω α β  µ ω α β ξ dof Intesa Sanpaolo 0.1421 (1.413) 0.030 (0.696) 0.152 (6.169)** 0.847 (44.961)**  0.108 (0.998) 0.046 (0.794) 0.132 (3.668)** 0.820 (30.376)** 0.093 (1.673) 12.358 (1.991)** Scotia Bank 4.865 (23.068)** 2.658 (5.214)** 0.204 (8.018)** 0.744 (25.707)**  4.902 (26.938)** 1.463 (2.382)** 0.177 (3.605)** 0.816 (20.390)** -0.033 (-0.657) 5.806 (4.665)** Banco Santander  0.141 (0.425) 4.937 (3.135)** 0.1717 (6.497)** 0.789 (23.028)**  0.229 (0.741) 2.503 (2.040)** 0.103 (2.946)** 0.840 (25.970)** 0.0779 (2.089)** 8.3388 (2.831)** Bank of America 22.815 (19.371)** 48.596 (4.705)** 0.228 (9.363)** 0.772 (44.493)**  21.167 (19.488)** 39.303 (2.652)** 0.243 (4.349)** 0.746 (21.201)** 0.021 (0.428) 6.403 (6.828)** Royal Bank of Canada 4.586 (0.8992 5.781 (0.588) 0.003 (2.536)** 0.997 (244.97)**  9.118 (19.732)** 24.437 (1.130) 0.006 (1.490) 0.994 (122.17)** -0.006  (-0.465) 2.043 (19.73)** Deutsche Bank 44.658 (21.191)** 166.728 (4.114)** 0.153 (6.557)** 0.829 (36.411)**  44.658 (22.899)** 167.657 (2.594)** 0.082 (2.532)** 0.851 (26.271)** 0.074 (2.099)** 4.953 (6.029)** Societe Generale 10.896 (10.399)** 17.158 (2.316)** 0.133 (7.172)** 0.863 (47.104)**  10.542 (10.745)** 27.692 (2.150)** 0.123 (3.485)** 0.841 (27.609)** 0.0467 (1.099) 6.1596 (4.165)**   GJR-GARCHn    GARCHt  µ ω α β ξ  µ ω α β dof Intesa Sanpaolo 0.121 (1.126) 0.029 (0.635) 0.118 (4.703)** 0.836 (41.728)** 0.090 (1.981)**  0.121 (1.119) 0.048 (0.822) 0.169 (4.735)** 0.830 (30.415)** 11.219 (2.134)** Scotia Bank 4.870 (22.955)** 2.737 (5.086)** 0.226 (5.536)** 0.738 (23.182)** -0.038 (-0.925)  4.900 (27.020)** 1.386 (2.363)** 0.1597 (4.189)** 0.821 (21.195)** 5.756 (4.656)** Banco Santander  0.061 (0.180) 4.961 (3.405)** 0.106 (3.496)** 0.800 (23.364)** 0.096 (2.742)**  0.285 (0.932) 2.470 (1.860) 0.158 (4.879)** 0.832 (25.479)** 7.896 (3.014)** Bank of America 22.704 (17.792)** 43.776 (3.555)** 0.197 (5.792)** 0.779 (36.624)** 0.048 1.4767  21.179 (19.796)** 40.293 (2.739)** 0.255 (5.709)** 0.745 (22.238)** 6.346 (6.888)** Royal Bank of Canada -0.410 (-0.125) 82.956 (2.700)** 0.1052 (2.605)** 0.947 (50.071)** -0.105 (-2.539)**  9.129 (19.711)** 24.858 (1.534) 0.028 (1.973)** 0.972 (90.203)** 2.075 (60.316)** Deutsche Bank 44.658 (18.516)** 243.276 (4.569)** 0.090 (4.112)** 0.823 (31.270)** 0.084 (3.310)**  44.658 (23.221)** 142.95 (2.293)** 0.147 (3.906)** 0.839 (24.283)** 4.770 (5.972)** Societe Generale 10.967 (9.792)** 17.722 (2.469)** 0.116 (6.387)** 0.863 (46.455)** 0.032 (1.406)  10.823 (10.76)** 25.626 (2.057)** 0.149 (4.340)** 0.843 (28.216)** 6.076 (4.124)** 
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Table 3.3: continued 
Post-crisis period GARCHn   GJR-GARCHt  µ ω α β  µ ω α β ξ dof Intesa Sanpaolo 0.101 (1.707) 0.023 (1.022) 0.109 (3.926)** 0.884 (31.568)**  0.082 (1.347) 0.012 (0.588) 0.067 (2.669)** 0.901 (36.213)** 0.061 (1.743) 200 (0.098) Scotia Bank 6.461 (40.263)** 1.727 (3.216)** 0.131 (5.472)** 0.797 (21.162)**  6.340 (40.138)** 1.152 (2.138)** 0.109 (3.085)** 0.841 (19.752)** 0.007 (0.176) 9.051 (2.855)** Banco Santander  0.249 (0.607) 6.460 (2.271)** 0.136 (4.011)** 0.799 (15.973)**  0.261 (0.638) 15.672 (2.753)** 0.025 (0.468) 0.687 (8.270)** 0.217 (2.705)** 30.867 (0.654) Bank of America 62.739 (29.932)** 93.668 (2.564)** 0.063 (4.616)** 0.911 (46.476)**  60.243 (31.310)** 63.071 (1.337) 0.088 (3.095)** 0.893 (28.37)** 0.017 (0.788) 7.061 (4.577)** Royal Bank of Canada 11.764 (27.562)** 2.048 (4.877)** 0.056 (7.617)** 0.943 (190.69)**  11.257 (14.855)** 10.175 (2.009)** 0.005 (0.087) 0.925 (29.831)** 0.0543 (2.285)** 3.067 (9.508)** Deutsche Bank 1.401 (1.618) 20.560 (3.343)** 0.085 (5.808)** 0.889 (45.762)**  0.946 (1.162) 15.978 (1.952) 0.086 (3.147)** 0.891 (32.712)** 0.015 (0.561) 5.257 (4.867)** Societe Generale 5.574 (3.513)** 100.266 (2.753)** 0.138 (4.735)** 0.808 (19.469)**  5.025 (3.369)** 128.172 (1.853) 0.157 (2.448)** 0.779 (11.085)** 0.015 (0.230) 4.644 (3.749)**   GJR-GARCHn   GARCHt  µ ω α β ξ  µ ω α β dof Intesa Sanpaolo 0.083 (1.368) 0.012 (0.605) 0.066 (2.712)** 0.902 (37.063)** 0.061 (1.793)  0.096 (1.616) 0.026 (1.011) 0.111 (3.726)** 0.880 (28.970)** 55.693 (0.373) Scotia Bank 6.439 (39.723)** 1.704 (3.106)** 0.112 (3.583)** 0.798 (20.441)** 0.041 (1.091)  6.342 (40.319)** 1.140 (2.133)** 0.112 (3.794)** 0.842 (19.92)** 8.993 (3.033)** Banco Santander  0.227 (0.551) 15.115 (3.021)** 0.019 (0.402) 0.694 (9.420)** 0.291 (3.199)**  0.293 (0.723) 7.262 (2.008)** 0.126 (3.190)** 0.799 (13.271)** 14.783 (1.494) Bank of America 62.866 (28.491)** 87.938 (2.132)** 0.061 (3.627)** 0.912 (40.575)** 0.007 (0.499)  59.963 (31.461)** 78.911 (1.659) 0.097 (3.515)** 0.887 (28.272)** 7.099 (4.552)** Royal Bank of Canada 11.714 (20.416)** 3.076 (5.653)** 0.032 (4.403)** 0.943 (173.40)** 0.039 (4.483)**  11.422 (31.013)** 9.416 (1.613) 0.021 (1.861) 0.9351 (28.453)** 2.975 (9.622)** Deutsche Bank 1.345 (1.463) 21.845 (3.275)** 0.079 (4.437)** 0.884 (42.580)** 0.019 (1.172)  0.919 (1.139) 15.333 (1.951) 0.090 (3.585)** 0.895 (34.041)** 5.231 (4.884)** Societe Generale 5.590 (3.303)** 96.3072 (2.768)** 0.148 (4.192)** 0.812 (20.138)** -0.021 (-0.659)  5.007 (3.364)** 124.907 (1.887) 0.164 (2.786)** 0.781 (11.440)** 4.645 (3.759)**   
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 3.4.4 Evaluating the predictive power of VaR models 
3.4.4.1 The evaluation of absolute performance 

In the first stage of our backtesting, we evaluate the absolute performance of 
VaR models. Specifically, we use the statistical tests to examine the UC, IND and CC 
hypotheses of the hit sequence corresponding to VaR estimates respectively. Recall 
that the UC test examines the coverage of VaR exceptions based on the actual 
number of VaR exceptions. The null hypothesis of UC test states that the observed 
frequency of VaR exceptions is consistent with the expected coverage rate23. The CC 
test extends the UC test by jointly examining the IND and UC properties of VaR 
exceptions. The CC hypothesis holds when both UC and IND hypotheses are 
simultaneously satisfied. A VaR model is not rejected by the CC test if the VaR 
exceptions are independently distributed and the actual frequency of VaR 
exceptions is not significantly different to the expected coverage rate24.  

The test results of the pre-crisis period are presented in Table 3.4, while Table 
3.5 and Table 3.6 report the evaluation of the crisis and post-crisis period. Although 
the performance of VaR models substantially varies across modelling approaches 
and distributional assumption, some clear points emerge. We first discuss the 
performance of banks’ internal modes, then the HS-based models, the GARCH-based 
models and finally the EVT-based model. 
 
  

                                                             
23 See Section 2.2.4.1 
24 See Section 2.2.4.2 



92 

 

Table 3.4: The absolute performance of VaR estimates in pre-crisis period 
Notes:  Table 3.4 presents the CC test results of VaR estimates in pre-crisis period. VaRs are estimated using 2-year moving window (504 trading days) and one-year moving window (252 trading days equivalently). At each sample bank, we present the actual exception rate (Ratio), the test statistics of the UC hypothesis (LRUC), the IND hypothesis (LRIND) and the CC hypothesis (LRCC).  We do not compute the test statistics for banks that experience no VaR exceptions.  

2-year moving window  Bank VaRs Naïve HS Filtered HS Riskmetrics GARCHn GARCHt GJR-GARCHn GJR-GARCHt EVT  Intesa Sanpaolo Ratio LRUC LRIND LRCC 
0 - - - 

0 - - - 
0 - - - 

0.0194 0.7429 0.0800 0.8229 
0.0097 0.0004 0.0198 0.0202 

0.0097 0.0004 0.0198 0.0202 
0.0097 0.0004 0.0198 0.0202 

0.0097 0.0004 0.0198 0.0202 
0 - - - Scotia bank Ratio LRUC LRIND LRCC 

0 - - - 
0.0092 0.0506 0.1494 0.2000 

0.0103 0.0141 0.1893 0.2034 
0.0080 0.3401 0.1142 0.4543 

0.0056 1.8343 0.0581 1.8925 
0.0023 7.4939** 0.0093 7.5031** 

0.046 3.1551 0.0372 3.1923 
0.023 7.4939** 0.0093 7.5031** 

- - - - Banco Santander Ratio LRUC LRIND LRCC 
0 - - - 

0 - - - 
0.029 2.5519 3.6828 6.2347 

0.0194 0.7429 0.0800 0.8229 
0.0194 0.7429 0.0800 0.8229 

0.0097 0.0004 0.0198 0.0202 
0.019 0.7429 0.0800 0.8229 

0.0097 0.0004 0.0198 0.0202 
0 - - - Bank of America Ratio LRUC LRIND LRCC 

0.0027 8.4096** 0.0163 8.4258** 
0.0054 2.8414 0.0652 2.9066 

0.0090 0.1139 0.1818 0.2957 
0.0126 0.7068 1.9219 2.6287 

0.0081 0.4290 3.5816 4.0107 
0.0018 11.420** 0.0072 11.427** 

0.0108 0.0718 2.4756 2.5474 
0.0027 8.4096** 0.0163 8.4258** 

0 - - - Royal Bank of Canada Ratio LRUC LRIND LRCC 
0 - - - 

0.0163 3.7742 1.0912 4.8654 
0.0172 4.8276** 0.9341 5.7617 

0.0127 0.7608 0.3610 1.1218 
0.0036 5.9521 0.0292 5.9813 

0.0018 11.255** 0.0073 11.262** 
0.0054 2.7493 0.0658 2.8151 

0.0018 11.255** 0.0073 11.262** 
0 - - - Deutsche Bank Ratio LRUC LRIND LRCC 

0 - - - 
0.0109 0.1065 0.2669 0.3735 

0.0128 0.8114 0.3640 1.1754 
0.0128 0.8114 0.3640 1.1754 

0.0045 4.0499** 0.0460 4.0959** 
0.0018 11.107** 0.0073 11.114** 

0.0045 4.0499** 0.0460 4.0959** 
0.0018 11.107** 0.0073 11.114** 

0 - - - Societe Generale Ratio LRUC LRIND LRCC 
0.0034 5.1552** 0.0206 5.1757 

0.0136 1.0703 0.3326 1.4028 
0.0204 1.7848 0.3908 2.1756 

0.0079 0.3917 0.0964 0.4881 
0.0045 3.2968 0.0366 3.3334 

0 - - - 
0.0045 3.2968 0.0366 3.3334 

0.0011 11.284** 0.0023 11.286** 
0 - - - **: significant at 95% confidence level 
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Table 3.4: continued 
1-year moving window  Bank VaRs Naïve HS Filtered HS Riskmetrics GARCHn GARCHt GJR-GARCHn GJR-GARCHt EVT  Intesa Sanpaolo Ratio LRUC LRIND LRCC 

0 - - - 
0.0112 0.0606 4.7843 4.8449 

0.0508 30.314** 3.4849 33.799** 
0.0141 0.5476 3.8140 4.3616 

0.0084 0.0847 0.0514 0.1361 
0.0028 2.5557 0.0057 2.5614 

0.0112 0.0606 0.0917 0.1523 
0.0056 0.7941 0.0228 0.8169 

0.0141 0.5476 3.8140 4.3616 Scotia bank Ratio LRUC LRIND LRCC 
0 - - - 

0.0125 0.6755 1.9310 2.6065 
0.0134 1.2048 6.0404 7.2452 

0.0134 1.2048 1.6944 2.8992 
0.0062 1.8057 0.0884 1.8941 

0.0044 4.3253 0.0450 4.3703 
0.0107 0.0623 0.2609 0.3232 

0.0071 1.0027 0.1155 1.1182 
0.0008 15.588** 0.0018 15.590** Banco Santander Ratio LRUC LRIND LRCC 

0 - - - 
0.0031 10.226** 9.1740** 19.399** 

0.0649 48.378** 13.765** 62.144** 
0.0225 4.2077** 1.9575 6.1653** 

0.0254 5.9927 1.5443 7.5370 
0.0169 1.4430 3.0607 4.5038 

0.0225 4.2077 1.9575 6.1653 
0.0169 1.4430 3.0607 4.5038 

0.0169 1.4430 3.0607 4.5038 Bank of America Ratio LRUC LRIND LRCC 
0.0027 8.4096** 0.0163 8.4258** 

0.0088 0.2004 2.8425   3.0428 
0.0095 0.0280 7.9431** 7.9711** 

0.0146 2.6475 1.0884 3.7359 
0.0110 0.1388   2.0267 2.1654 

0.0029 9.4923** 0.0236 9.5159** 
0.0168 5.4213** 3.5672 8.9885** 

0.0022 12.230** 0.0133 12.243** 
0 - - - Royal Bank of Canada Ratio LRUC LRIND LRCC 

0 - - - 
0.0155 3.5879 8.6907** 12.278** 

0.0155 3.5879 8.6907** 12.278** 
0.0110 0.1603 0.3368 0.4971 

0.0051 3.8464** 0.0729 3.9193 
0.0014 15.477** 0.0059 15.483** 

0.0081 0.5029 0.1806 0.6835 
0.0029 9.3504** 0.0238 9.3741** 

0 - - - Deutsche Bank Ratio LRUC LRIND LRCC 
0 - - - 

0.0013 1.4263 1.3914 2.8177 
0.0013 1.4263 1.3914 2.8177 

0.0016 4.6446** 3.8302 8.4748** 
0.0044 5.2215** 0.0539 5.2754 

0.0007 19.762** 0.0015 19.763** 
0.0044 5.2215** 0.0539 5.2754 

0.0007 19.7623** 0.0015 19.7637** 
0 - - - Societe Generale Ratio LRUC LRIND LRCC 

0.0034 5.1552** 0.0206 5.1757 
0.0106 0.0442 0.2578 0.3020 

0.0115 0.2494 0.3029 0.5523 
0.0123 0.6105 0.3263 0.9368 

0.0035 6.3265** 0.0284 6.3549** 
0.0009 15.826** 0.0018 15.828** 

0.0061 1.9043 0.0873 1.9917 
0.0026 8.6895** 0.0160 8.7055** 

0 - - -                **: significant at 95% confidence level  
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Table 3.5: The absolute performance of VaR estimates in crisis period 
Notes:  Table 3.5 presents the CC test results of VaR estimates in crisis period. VaRs are estimated using 2-year moving window (504 trading days) and one-year moving window (252 trading days equivalently). At each sample bank, we present the actual exception rate (Ratio), the test statistics of the UC hypothesis (LRUC), the IND hypothesis (LRIND) and the CC hypothesis (LRCC).  We do not compute the test statistics for banks that experience no VaR exceptions.  

2-year moving window  Bank VaRs Naïve HS Filtered HS Riskmetrics GARCHn GARCHt GJR-GARCHn GJR-GARCHt EVT  Intesa Sanpaolo Ratio LRUC LRIND LRCC 
0.0019 5.2019** 0.0038 5.2057** 

0.0114 0.1064 3.8041 3.9105 
0.0171 2.2436 14.1854 16.4289 

0.0095 0.0113 4.5747 4.5860 
0.0095 0.0113 0.0963 0.1076 

0.0057 1.1434 0.0345 1.1780 
0.0095 0.0113 0.0963 0.1076 

0.0057 1.1434 0.0345 1.1780 
0.0057 1.1434 6.8983 8.0417 Scotia bank Ratio LRUC LRIND LRCC 

0.0038 2.6475 0.0153 2.6628 
0.0209 4.8588** 5.7194** 10.5782** 

0.0304 14.425** 6.7405 21.165** 
0.0171 2.2436 0.3146 2.5582 

0.0152 1.2646 0.2481 1.5127 
0.0057 1.1434 0.0345 1.1780 

7/525 0.5402 0.1896 0.7298 
0.0095 0.0113 0.0963 0.1076 

0.0076 0.3227 5.5583 5.8811 Banco Santander Ratio LRUC LRIND LRCC 
0.0057 1.1434 6.8983** 8.0417** 

0.0266 10.145** 20.292** 30.437** 
0.0704 79.099** 24.368** 103.46** 

0.0438 33.137** 9.5964** 42.733** 
0.0438 33.137** 2.9338 36.070** 

0.0190 3.4491 1.8329 5.2820 
0.0361 21.796** 1.8368 23.633** 

0.0152 1.2646 0.2481 1.5127 
0.0171 2.2436 22.337** 24.581** Bank of America Ratio LRUC LRIND LRCC 

0.0285 12.216** 18.674** 30.981** 
0.0323 16.763** 21.896** 38.659** 

0.0971 144.74** 32.983** 177.72** 
0.0228 6.4545** 0.5626 7.0171** 

0.0419 30.155** 3.3476 33.502** 
0.0209 4.8588** 1.5070 6.3658** 

0.0495 42.614** 1.8921 44.506** 
0.0266 10.145** 0.7740 10.919** 

0.04 27.268** 11.385** 38.653** Royal Bank of Canada Ratio LRUC LRIND LRCC 
0.0323 16.763** 0.3183 17.081** 

0.04 27.268** 3.7988 31.067** 
0.0552 52.821** 5.4765** 58.298** 

0.0304 14.425** 2.9242 17.349** 
0.0304 14.425** 0.4444 14.869** 

0.0247 8.2210** 0.6615 8.8825**     
0.0304 14.425** 0.4444 14.869** 

0.0190 3.4491 0.3891 3.8382 
0.0342 19.222** 2.1619 21.3841 Deutsche Bank Ratio LRUC LRIND LRCC 

0.0590 59.996** 10.426** 70.422** 
0.0342 19.222** 14.600** 33.822** 

0.0514 45.939** 18.612** 64.551** 
0.0266 10.145** 3.8640** 14.009** 

0.0419 30.155** 6.5378** 36.692** 
0.0133 0.5402 0.1896 0.7298 

0.04 27.268** 0.0306 27.298** 
0.0152 1.2646 2.6544 3.9190 

0.0095 0.0113 0.0963 0.1076 Societe Generale Ratio LRUC LRIND LRCC 
0.0667 75.152** 4.8693** 80.022** 

0.0476 39.370** 16.327** 55.697** 
0.0933 135.35** 27.794** 163.15** 

0.0342 19.222** 2.1619 21.384** 
0.0323 16.763** 0.3183 17.081** 

0.0095 0.0113 0.0963 0.1076 
0.0323 16.763** 0.3183 17.081** 

0.0114 0.1064 0.1390 0.2454 
0.0247 8.2210** 9.2609** 17.481**               **: significant at 95% confidence level  
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Table 3.5: continued 
1-year moving window  Bank VaRs Naïve HS Filtered HS Riskmetrics GARCHn GARCHt GJR-GARCHn GJR-GARCHt EVT  Intesa Sanpaolo Ratio LRUC LRIND LRCC 

0.0019 5.2019** 0.0038 5.2057** 
0.0095 0.0113 12.840** 12.851** 

0.0247 8.2210** 0.9829 9.2039** 
0.0095 0.0113 4.5747** 4.5860 

0.0057 1.1434 0.0345 1.1780 
0.0057 1.1434 0.0345 1.1780 

0.0076 0.3227 0.0615 0.3843 
0.0076 0.3227 0.0615 0.3843 

0.0133 0.5402 27.884** 28.424** Scotia bank Ratio LRUC LRIND LRCC 
0.0038 2.6475 0.0153 2.6628 

0.0190 3.4491 1.8329 5.2820 
0.0247 8.2210** 0.9829 9.2039** 

0.0190 3.4491 0.3891 3.8382 
0.0209 4.8588** 0.4718 5.3306 

0.0076 0.3227 0.0615 0.3843 
0.0266 10.145** 0.7687 10.914** 

0.0095 0.0113 0.0963 0.1076 
0.0076 0.3227 5.5583** 5.8811 Banco Santander Ratio LRUC LRIND LRCC 

0.0057 1.1434 6.8983** 8.0417** 
0.0285 12.216** 7.5018** 19.718** 

0.0380 24.480** 23.199** 47.679** 
0.0419 30.155** 10.459** 40.614** 

0.0380 24.480** 1.5451 26.025** 
0.0209 4.8588** 5.7194** 10.578** 

0.0323 16.763** 0.3183 17.081** 
0.0171 2.2436 0.3146 2.5582 

0.0342 19.222** 9.6069** 28.829** Bank of America Ratio LRUC LRIND LRCC 
0.0285 12.216** 18.674** 30.981** 

0.0323 16.763** 15.846** 32.609** 
0.0647 71.2674** 18.9496** 90.2170** 

0.0209 4.8588** 0.4718 5.3306 
0.0380 24.480** 1.5451 26.025** 

0.0152 1.2646 2.6544 3.9190   
0.0380 24.480** 0.0727 24.553** 

0.0190 3.4491 1.8329 5.2820 
0.0342 19.222** 14.600** 33.822** Royal Bank of Canada Ratio LRUC LRIND LRCC 

0.0323 16.763** 0.3183 17.081** 
0.0209 4.8588** 1.5070 6.3658** 

0.0247 8.2210** 0.9829 9.2039** 
0.0304 14.425** 2.9242 17.349** 

0.0419 30.155** 0.0067 30.161** 
0.0133 0.5402 0.1896 0.7298 

0.0266 10.145** 0.7687 10.914** 
0.0133 0.5402 0.1896 0.7298 

0.0380 24.480** 1.5451 26.025** Deutsche Bank Ratio LRUC LRIND LRCC 
0.0590 59.996** 10.426** 70.422** 

0.0304 14.425** 11.548** 25.973** 
0.0380 24.480** 29.520** 54.001** 

0.0285 12.216** 3.3694 15.586** 
0.0266 10.145** 0.7740 10.919** 

0.0133 0.5402 0.1896 0.7298 
0.0304 14.425** 0.4444 14.869** 

0.0152 1.2646 0.2481 1.5127 
0.0114 0.1064 3.8041 3.9105 Societe Generale Ratio LRUC LRIND LRCC 

0.0667 75.152** 4.8693** 80.022** 
0.0380 24.480** 7.9548** 32.435** 

0.0533 49.343** 22.127** 71.470** 
0.0323 16.763** 2.5231 19.286** 

0.0304 14.425** 0.4444 14.869** 
0.0114 0.1064 0.1390 0.2454 

0.0361 21.796** 0.1339 21.930** 
0.0152 1.2646 2.6544 3.9190 

0.0209 4.8588 5.7194** 10.578**                **: significant at 95% confidence level  
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Table 3.6: The absolute performance of VaR estimates in post-crisis period 
Notes:  Table 3.6 presents the CC test results of VaR estimates in post-crisis period. VaRs are estimated using 2-year moving window (504 trading days) and one-year moving window (252 trading days equivalently). At each sample bank, we present the actual exception rate (Ratio), the test statistics of the UC hypothesis (LRUC), the IND hypothesis (LRIND) and the CC hypothesis (LRCC).  We do not compute the test statistics for banks that experience no VaR exceptions. 

2-year moving window  Bank VaRs Naïve HS Filtered HS Riskmetrics GARCHn GARCHt GJR-GARCHn GJR-GARCHt EVT  Intesa Sanpaolo Ratio LRUC LRIND LRCC 
0.0112 0.1449 8.4954** 8.6403** 

0.0101 0.0026 9.4077 9.4102   
0.0349 33.986** 16.813** 50.799** 

0.0124 0.4898 2.3949 2.8847 
0.0112 0.1449 0.2286 0.3734 

0.0056 2.0071 0.0568 2.0639 
0.0112 0.1449 0.2286 0.3734 

0.0067 1.0454 0.0819 1.1273 
0.0045 3.3738 17.284** 20.657** Scotia bank Ratio LRUC LRIND LRCC 

0.0022 7.8823** 0.0090 7.8913** 
0.0033 5.3148** 0.0203 5.3351 

0.0044 3.4291 0.0361 3.4653 
0.0101 0.0011 3.1687 3.1698 

0.0044 3.4291 0.0361 3.4653 
0.0011 11.498** 0.0022 11.500** 

0.0044 3.4291 0.0361 3.4653 
0.0011 11.498** 0.0022 11.500** 

0 - - - Banco Santander Ratio LRUC LRIND LRCC 
0.0062 1.0871 0.0499 1.1370 

0.0046 2.3258 0.0280 2.3538 
0.0263 12.025** 7.1462** 19.172** 

0.0154 1.6899 2.1888 3.8786   
0.0185 3.8482** 0.4550 4.3032 

0.0123 0.3495 0.2009 0.5505 
0.0154 1.6899 0.3150 2.0048 

0.0123 0.3495 0.2009 0.5505 
0.0015 7.2182** 0.0031 7.2213** Bank of America Ratio LRUC LRIND LRCC 

0 - - - 
0.0056 2.0247 0.0567 2.0814 

0.0045 3.3959 0.0362 3.4322 
0.0101 0.0019 0.1845 0.1864 

0.0056 2.0247 0.0567   2.0814 
0.0056 2.0247 0.0567   2.0814 

0.0067 1.0584 0.0817 1.1401 
0.0056 2.0247 0.0567 2.0814 

0 - - - Royal Bank of Canada Ratio LRUC LRIND LRCC 
0.0033 5.3148** 0.0203 5.3351 

0.0056 2.0511 0.0565 2.1076 
0.0011 11.498** 0.0022 11.500** 

0.0101 0.0011 0.1839 0.1850 
0.0067 1.0780 0.0814 1.1595 

0 - - - 
0.0101 0.0011 0.1839 0.1850 

0 - - - 
0 - - - Deutsche Bank Ratio LRUC LRIND LRCC 

0.0078 0.4464 4.1818 4.6282 
0.0033 5.3281** 0.0203 5.3484 

0.0011 11.516** 0.0022 11.518** 
0.0201 7.2291** 0.7423 7.9714** 

0.0123 0.4608 0.2750 0.7358 
0.0033 5.3281** 0.0203 5.3484 

0.0123 0.4608 0.2750 0.7358 
0.0033 5.3281** 0.0203 5.3484 

0 - - - Societe Generale Ratio LRUC LRIND LRCC 
0.0312 3.7779 9.5472** 13.325** 

0 - - - 
0 - - - 

0.0078 0.0625 0.0159 0.0784 
0.0078 0.0625 0.0159 0.0784 

0 - - - 
0.0078 0.0625 0.0159 0.0784 

0 - - - 
0 - - -                **: significant at 95% confidence level 



97 

 

Table 3.6: continued 
1-year moving window  Bank VaRs Naïve HS Filtered HS Riskmetrics GARCHn GARCHt GJR-GARCHn GJR-GARCHt EVT  Intesa Sanpaolo Ratio LRUC LRIND LRCC 

0.0112 0.1449 8.4954** 8.6403** 
0.0101 0.0026 3.1582 3.1608 

0.0383 41.953** 6.9201** 48.873** 
0.0124 0.4898 2.3949 2.8847 

0.0112 0.1449 0.2286 0.3734 
0.0079 0.4208 0.1116 0.5324 

10/886 0.1449 2.7519 2.8967 
0.0112 0.0026 3.1582   3.1608 

0.0079 0.4208 21.026** 21.447** Scotia bank Ratio LRUC LRIND LRCC 
0.0022 7.8823** 0.0090 7.8913** 

0.0078 0.4421 4.1796 4.6217 
0.0067 1.0780 0.0814 1.1595 

0.0112 0.1321 2.7621 2.8941 
0.0067 1.0780 4.8244** 5.9024 

0.0022 7.8823** 0.0090 7.8913** 
0.0067 1.0780 4.8244** 5.9024 

0.0022 7.8823** 0.0090 7.8913** 
0 - - - Banco Santander Ratio LRUC LRIND LRCC 

0.0062 1.0871 0.0499 1.1370 
0.0123 0.3495 3.0342 3.3837 

0.0232 8.3341** 0.7144 9.0485** 
0.0216 6.6890** 1.0628 7.7518** 

0.0201 5.1900** 0.5348 5.7249 
0.0139 0.9068 0.2547 1.1615 

0.0185 3.8482** 1.5511 5.3994 
0.0170 2.6764 0.3817 3.0582 

0.0139 0.9068 15.408** 16.315** Bank of America Ratio LRUC LRIND LRCC 
0 - - - 

0.0090 0.0891 0.1456 0.2348 
0.0078 0.4293 0.1114 0.5406 

0.0146 1.6986 0.3867 2.0853 
0.0135 1.0047 2.0830 3.0877 

0.0056 2.0247 0.0567 2.0814 
0.0157 2.5487 1.5519 4.1006 

0.0101 0.0019 0.1845 0.1864 
0 - - - Royal Bank of Canada Ratio LRUC LRIND LRCC 

0.0033 5.3148** 0.0203 5.3351 
0.0101 0.0011 3.1687 3.1698 

0.0078 0.4421 0.1110 0.5531 
0.0134 0.9834   0.3280 1.3115 

0.0089 0.0952 0.1451 0.2403 
0.0022 7.8823** 0.0090 7.8913** 

0.0157 2.5137 0.4475 2.9613 
0.0011 11.498** 0.0022 11.500** 

0.0022 7.8823** 0.0090 7.8913** Deutsche Bank Ratio LRUC LRIND LRCC 
0.0078 0.4464 4.1818 4.6282 

0.0179 4.6104** 15.570** 20.180** 
0.0179 4.6104** 15.570** 20.180** 

0.0190 5.8598** 0.6614 6.5211** 
0.0201 7.2291** 0.7974 8.0265** 

0.0033 5.3281** 0.0203 5.3484 
0.0179 4.6104** 4.7270** 9.3374** 

0.0044 3.4402 0.0361 3.4763 
0.0033 5.3281** 0.0203 5.3484 Societe Generale Ratio LRUC LRIND LRCC 

0.0312 3.7779 9.5472** 13.325** 
0 - - - 

0 - - - 
0.0156 0.3608 0.0640 0.4248 

0.0078 0.0625 0.0159 0.0784 
0.0078 0.0625 0.0159 0.0784 

0.0078 0.0625 0.0159 0.0784 
0.0078 0.0625 0.0159 0.0784 

0 - - -                **: significant at 95% confidence level   
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We first investigate the performance of bank’s internal VaR models. Among 
seven banks in the sample, while only Deutsche Bank employ Monte Carlo 
simulation, all the remaining banks use HS as the internal VaR model25. In pre-crisis 
period, Table 3.4 shows that bank VaRs were conservatively estimated and 
therefore produce very rare, even no VaR exceptions. As a result, the statistical tests 
strongly reject both the UC and CC hypothesis of all seven banks. In crisis period, the 
performance of bank VaRs varies. While the VaR overstatements still exhibit at some 
banks (Scotia Bank, Intesa Sanpaolo and Banco Santander), the others remarkably 
underestimate their VaRs and suffer high exception rates. Besides, the LRIND shows 
evidence of VaR violation clustering during crisis period. This is due to the fact that 
most banks use HS as their internal VaR model, which does not account for volatility 
clustering. In post-crisis period, bank VaRs still poorly perform. The statistical tests 
reject the validity of VaR models at four over seven banks due as they overstate VaR 
to keep small exception ratios.  

The HS models, including the Naïve HS and the Filtered HS models, perform 
reasonably well in normal periods. With 2-year moving window, both the Naïve HS 
and the Filtered HS provide good VaR estimates for most banks in pre-crisis period. 
However, when we shorten the moving window to 1-year, the predictive power of 
Filtered HS is much worse. Indeed, the semi-parametric model provides poor 
coverage with a number of non i.i.d VaR exceptions. In post-crisis period, while the 
Naïve HS performs substantially well, the Filtered HS continues to provide poor 
coverage rate. It is also noticed that with shorter window size, the performance of 
                                                             25 This information can be obtained on banks’ annual reports. 
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Naïve HS slightly improves, as it eliminates the impact of aged data in financial crisis 
to the VaR estimates in post-crisis period. 

The shortcoming of the unconditional models is clearly shown in crisis period. 
Indeed, both HS models produce very high exception ratios and fail the statistical 
tests at most banks. Their performance does not improve when we change the size 
of moving windows. The poor performance of the HS models can be explained that 
they are not able to incorporate with the changes in market volatility during 
financial crisis. To catch up with the market turbulence, there are two potential 
approaches. The first approach, used in this chapter, is to use the time-varying 
conditional volatility models e.g. the GARCH-type models to capture daily volatility. 
The second approach is to use the Markov-switching models to characterize the 
market behaviours in different regimes, and therefore better capture the changes in 
market volatility in crisis period. Within this approach, the requirement for real-
time indicator of when to switch regime is essential. We do not carry out the regime-
switching models in this study and suggest them for future work.  

The conditional volatility models with Gaussian assumption, including the 
Riskmetrics, GARCHn and GJR-GARCHn, seem to be the best forecasting models in 
normal market conditions. With 2-year moving window, the Gaussian-based models 
provide accurate VaR estimates and therefore pass the statistical tests in most cases. 
However, these models become much less accurate with shorter moving window. 
We find the similar results in post-crisis period, when they perform better with 
longer window size. During financial crisis, the Gaussian-based models produce 
very poor coverage rates. Table 3.5 documents their actual exception ratios, which 
are significantly larger than the nominal rate of 1%. The IND test indicates the 
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existence of the clustering of VaR exceptions in crisis period. As a result, the 
statistical tests reject the accuracy of the conditional models with Gaussian 
innovation in most cases. The poor performance of these models in crisis period can 
be attributed to the assumption of normal distribution, which is not able to capture 
the significant changes in market conditions during crisis period.   

We keep the same GARCH specifications but change the distributional 
assumption from Gaussian to Student t. Comparing the performance of these 
models, we find that incorporating the Student t significantly improves the 
predictive power of the GARCH-type models in crisis period. As having advantage of 
the fat-tailed distribution, the Student t-based conditional volatility models show 
their superiority in providing accurate and robust VaR estimates across banks and 
moving windows in crisis period, while the Gaussian-based models tend to 
underestimate the risk. Table 3.5 shows that the frequency of VaR exceptions 
produced by Student t-based models are close to the nominal rate of 1%, while it is 
remarkably higher than 1% in case of Gaussian-based models. Besides, the GARCH 
dynamics show their ability of dealing with volatility clustering. As a result, the 
performance of the Student t-based GARCH models are hardly rejected by any 
statistical tests.  

While performing well in financial crisis, both GARCHt and GJR-GARCHt 
produce poor VaR estimates in normal periods. Indeed, the statistical tests show 
that these models noticeably inflate VaR estimates and consequently produce very 
low exception ratios in both pre-crisis and post-crisis periods. This can be explained 
that compared to the Gaussian distribution, the Student t has heavier tails. 
Therefore, VaR estimates using Student t assumption tend to be more conservative 



101 

 

than using Gaussian assumption, which is appropriate in estimating VaR in 
turbulent period rather than in normal period. 
 The coverage tests show the poor performance of EVT model. In both pre-
crisis and post-crisis period, the EVT seriously overestimates VaR and therefore 
generates very rare or no VaR exceptions. This result is not surprising as EVT was 
designed to deal with extreme events, which normally happen during financial 
crisis. Thus, the normal market conditions are not the ideal environment for this 
approach. However, the EVT model still poorly perform in crisis period. Table 3.5 
shows that VaR estimates using EVT seem to be understated for most banks. By 
generating a high number of non i.i.d exceptions, VaR estimates using EVT are 
rejected across banks. Besides, the number of rejections increases when we shorten 
the size of moving window from two years to one year. The poor performance of the 
EVT in crisis period is inconsistent with the findings of prior studies, which show 
the superiority of EVT approach in estimating VaR using market returns (see 
Gencay and Selcuk, 2004; Chan and Gray, 2006, Aloui et al., 2011; Schaumburg, 
2012; Adrian and Shin, 2013). However, it is important to note that prior studies 
estimate VaR using market returns instead of bank’s data. Applying to the trading 
P/L data of commercial banks, we argue that good VaR estimates can be obtained 
by using more simple and accessible models rather than EVT approach or banks’ 
internal models.    
3.4.4.2 The comparative performance and the selection of VaR models 
 Using the magnitude LF, this section aims to compare the performance of VaR 
models that passes the first stage evaluation. Therefore, we do not compute the LF 
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for models that were rejected by the coverage tests. Recall that the magnitude LF 
scores models based on their quadratic magnitude of excessive losses. As the LF is 
negatively oriented, we rank model performance based on their LF: the lower the 
LF, the higher the rank. A model is ranked as number 1 if it has the lowest LF, 
indicating the best model in line. We present the LF ranking of VaR estimates using 
2-year moving window in Table 3.7, while the similar results using 1-year moving 
window are presented in Table 3.8.  
 Table 3.7 and Table 3.8 show that the comparative performance of VaR models 
varies across banks and the sizes of moving windows. In order to comprehensively 
compare and select the best VaR model in each period, we propose the model 
selection framework. Specifically, a VaR model is assessed following two criteria: (i) 
the number of accurate VaR estimates according to the coverage tests in the first 
stage evaluation and (ii) the ranking of the magnitude LF in the second stage 
evaluation. We argue that a good VaR model firstly has to provide VaR estimates 
that satisfy the coverage tests. Thus, we prefer VaR model that has higher number 
of accurate VaR estimates according to the statistical tests. If two VaR models have 
the same number of successful VaR estimates, we rely on their LF to select the more 
accurate model. As the LF is negatively oriendted, we compute the average LF 
ranking of a VaR model in each sub-period, in which the lower value is preferable26. 
We present the selection of VaR models in Table 3.9. 
 Table 3.9 documents the superiority of conditional volatility models in 
estimating VaR of commercial banks. In pre-crisis period, we find that the most 
                                                             
26 As model ranking is negatively oriented. 
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accurate VaR models are the conditional volatility models with Gaussian 
assumption. These models, including the Riskmetrics, GARCHn and GJR-GARCHn, 
dominate the top performance models in both moving window sizes. While the 
Naïve HS performs consistently, the Filtered HS shows their poor performance in 
pre-crisis period.  The worst performances in pre-crisis period are bank VaRs and 
EVT, as they significantly inflate VaR estimates.  In the post-crisis period, the 
performance of alternative models does not change significantly. While Gaussian-
based conditional models still perform best at 2-year moving window, we document 
the success of GARCHt, Riskmetrics and Naïve HS in VaR estimation using 1-year 
moving window. 
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Table 3.7: The ranking of magnitude LF of VaR estimates using 2-year moving window 
Notes: Table 3.7 presents the ranking of various VaR estimates using 2-year moving window based on their LF.  We do not compute LF for the cases that VaR model fails the statistical tests in the first stage.   The ranking of VaR models are based on the magnitude of LF, which the lower LF receives the higher rank. In each row, the number 1 indicates the best model which has the lowest LF. 

 Bank VaRs Naïve HS Filtered HS RM GARCH GARCHt GJR-GARCH GJR-GARCHt EVT Pre-crisis period          Intesa Sanpaolo - - - 5 3 1 4 2 - Scotia Bank - 3 4 5 1 - 2 - - Banco Santander - - 6 3 4 2 5 1 - Bank of America - 3 1 5 2 - 4 - - Royal Bank of Canada - 4 - 1 2 - 3 - - Deutsche Bank - 3 2 1 - - - - - Societe Generale - 4 5 2 1 - 3 - - Crisis period          Intesa Sanpaolo - 7 8 2 6 4 5 3 1 Scotia Bank 1 - - 7 5 2 6 3 4 Banco Santander - - - - - 2 - 1 - Bank of America - - - - - - - - - Royal Bank of Canada - - - - - - - 1 - Deutsche Bank - - - - - 2 - 1  Societe Generale  - - - - 2 - 1 - Post-crisis period          Intesa Sanpaolo - 5 - 6 3 2 4 1 - Scotia Bank - - 3 4 1 - 2 - - Banco Santander 2 1 - 6 - 3 5 4 - Bank of America - 4 1 7 5 2 6 3 - Royal Bank of Canada - 1 - 4 2 - 3 - - Deutsche Bank 1 - - - 2 - 3 - - Societe Generale - - - 3 2 - 1 - - 
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Table 3.8: The ranking of magnitude LF of VaR estimates using 1-year moving window 
Notes: Table 3.8 presents the ranking of various VaR estimates using 1-year moving window based on their LF.  We do not compute LF for the cases that VaR model fails the statistical tests in the first stage. The ranking of VaR models are based on the magnitude of LF, which the lower LF receives higher rank. In each row, the number 1 indicates the best model which has the lowest LF 

 Bank VaRs Naïve HS Filtered HS RM GARCH GARCHt GJR-GARCH GJR-GARCHt EVT Pre-crisis period          Intesa Sanpaolo - 6 - 5 4 1 3 2 - Scotia Bank - 5 6 8 3 2 7 4 1 Banco Santander - - - - 3 1 4 2 5 Bank of America - 2 - 3 1 - - - - Royal Bank of Canada - - - 1 - - 2 - - Deutsche Bank - 2 1 - - - - - - Societe Generale - 3 4 2 - - 1 - - Crisis period          Intesa Sanpaolo - - - - 2 1 4 3 - Scotia Bank 1 6 - 5 4 2 - 3 - Banco Santander - - - - - - - 1 - Bank of America - - - - - 2 - 1 - Royal Bank of Canada - - - - - 1 - 2 - Deutsche Bank - - - - - 1 - 2  Societe Generale - - - - - 1 - 2 - Post-crisis period          Intesa Sanpaolo - 6 - 5 2 1 4 3 - Scotia Bank - 3 1 2 - - - - - Banco Santander 1 4 - - - 2 - 3 - Bank of America - 4 3 6 5 1 7 2 - Royal Bank of Canada - 2 1 3 4 - 5 - - Deutsche Bank 2 - - - - - - 1 - Societe Generale - - - 1 5 3 4 2 - 
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    Table 3.9: Selection of VaR models 
Notes: Table 3.9 presents the selection of VaR models in three sub-periods using two moving window sizes. For each VaR model, we report the number of banks (N) that the VaR model can provide accurate VaR estimates that satisfy the statistical tests, the average value of LF ranking (ALF) and the overall ranking (Rank). We prefer VaR model that has the highest N. If two VaR models have the same N, we prefer the model that has lower ALF. 

 2-year moving window  1-year moving window  N ALF Rank  N ALF Rank Pre-crisis period        
Bank VaRs 0 - 8  0 - 9 Naïve HS 5 3.4 4  5 3.6 2 Filtered HS 5 3.6 5  3 3.67 7 Riskmetrics 7 3.14 1  5 3.8 3 GARCHn 6 2.17 2  4 2.75 4 GARCHt 2 1.5 6  3 1.33 5 GJR-GARCHn 6 3.5 3  5 3.4 1 GJR-GARCHt 2 1.5 6  3 2.33 6 EVT 0 - 8  2 3 8 Crisis period        Bank VaRs 1 1 7  1 1 4 Naïve HS 1 7 8  1 6 7 Filtered HS 1 8 9  0 - 8 Riskmetrics 2 4.5 4  1 5 6 GARCHn 2 5.5 5  2 3 3 GARCHt 5 2.4 2  6 1.33 2 GJR-GARCHn 2 5.5 5  1 4 5 GJR-GARCHt 6 1.67 1  7 2 1 EVT 2 2.5 3  0 1 8 Post-crisis period        Bank VaRs 2 1.5 7  1 2 8 Naïve HS 4 2.75 4  5 3.8 3 Filtered HS 2 2 8  3 1.67 7 Riskmetrics 6 5 3  5 3.4 2 GARCHn 6 2.5 2  4 4 35 GARCHt 3 2.33 5  4 1.75 4 GJR-GARCHn 7 3.43 1  4 5 6 GJR-GARCHt 3 2.33 5  5 2.2 1 EVT 0 - 9  0 - 9    We acknowledge the predictive power of GARCH-type models with Student t 

assumption in crisis period. While the GJR-GARCHt is the best VaR model in both 
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window sizes, the GARCHt is consistently the runner-up. Besides, it is important to 
note that the difference in the performance of conditional volatility models with 
Student t assumption and the other models is noticeable. Table 3.9 reports that using 
2-year moving window, the GARCHt can provide accurate VaR estimates for five over 
seven banks. The EVT model, ranked as number three, only succeeds in forecasting 
VaR of two banks. In case of 1-year moving window, the gap in performance is even 
more significant. 
 In brief, our empirical evaluation shows the superiority of conditional volatility 
models in estimating bank VaRs. Regarding to the choice of distributional 
assumption, we find that the conditional volatility models with Gaussian distribution 
perform well in normal periods, while incorporating Student t distribution 
significantly improves models’ performance in crisis period.  The EVT approach, 
which was shown to be powerful in literature, poorly perform in estimating bank 
VaRs. Coming with the poor performance of the bank VaRs, we argue that good VaR 
estimates at commercial banks can be obtained by using more simple and accessible 
models rather than the complicated approach or banks’ internal models.   
3.5 Concluding remarks 

This chapter investigates the forecasting power of various VaR models using 
daily trading P/L of seven commercial banks. Our dataset is from 2001 to 2012, 
covering the pre-crisis, crisis and post-crisis period. The competing VaR models used 
in this chapter are banks’ internal model, the Naïve and Filtered HS, the conditional 
volatility models27 with different distributional assumptions and the EVT approach. 
                                                             27 These include the Riskmetrics, GARCHn, GJR-GARCHn, GARCHt and GJR-GARCHt 
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To comprehensively evaluate VaR models, we develop a two-stage backtesting 
framework. In the first stage, we assess the absolute performance of VaR models 
using coverage tests. The second stage quantifies the magnitude LF in order to 
compare model performances. 

Our empirical evaluation shows the superiority of conditional volatility models 
in estimating bank VaRs. Regarding to the choice of distributional assumption, we 
find that the Gaussian distribution uniformly improves VaR predictive power in 
normal periods, while the Student t is by far the best in estimating VaR during 
financial crisis. While the HS models perform inconsistently, none of the banks’ 
internal model accurately capture bank risk. The EVT approach, which was 
documented to be superior in estimating in VaR in prior studies, performs very 
poorly with bank data. Thus, we argue that good VaR estimates at commercial banks 
can be obtained using simple and accessible models rather than other complicated 
models.  

The findings of this chapter leave a puzzle: what are banks doing and why? 
Banks rationally know the poor performance of their internal VaR models, and they 
are smart enough to find the alternative models to produce much better results. But 
as we witness, banks are still using their poorly performed VaR models, which 
generate poor VaR estimates. We assume that banks have incentives to use their 
inaccurate VaR models to get some economic merits of VaR overstatement, which 
were discuss in Section 2.6 of the previous chapter. Therefore, this study has several 
suggestions to the financial regulators and public investors. First, financial regulators 
should be concerned with the problem of VaR conservativeness by penalizing banks 
which inflate their VaRs. We suggest that the VaR overstatement should be treated 
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equally as the VaR understatement. Second, public investors should not look at the 
VaR figures and other market risk disclosure to infer the risk profile of a bank. As 
shown in this study, banks tend to overstate their VaR to have very rare, or even no 
VaR exceptions. By doing this, risk model at banks seems to perform well and 
therefore, banks seem to look safe to public investors. However, we find that the 
disclosed risk figures are intentionally manipulated and do not present the real risk 
profile of a bank. 
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Chapter 4: 
Improving quantile forecast accuracy 

 
4.1 Introduction 

Recent literature in financial econometrics has witnessed the wide range of 
parametric models that focus on density forecasting. This approach requires financial 
decisions to incorporate the estimation and simulation of the entire distribution of 
future changes in returns and volatility of financial assets. One of the prime 
applications in decision making is measuring and managing tail risk (Value-at-Risk). 
This can be defined as the specific quantile of forecasted density. However, the recent 
global crisis raised number of questions about the misleading results of quantile 
forecasts in general and VaR forecasts in particular. These criticisms have led to the 
growing interest in improving the accuracy of quantile forecast and especially, of 
Value-at-Risk estimates. 

 In the past decades, the predominant approach in estimating conditional 
return distribution was represented by the GARCH model proposed by Engle (1982) 
and Bollerslev (1986) and followed by a number of sophisticated specifications to the 
underlying model. The GARCH model proposes time variation in the return 
distribution mainly dependent on the conditional variance, and has received a great 
success in clarifying several empirical specifications of asset returns. However, the 
main drawback of the GARCH model is that its validity depends on the assumption of 
the dynamics of the underlying conditional distribution of returns. This problem of 
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parametric model specification has now been helped with the availability of high-
frequency data and the so-called realized volatility (RV) literature, an ex post 
measure of volatility. Andersen and Bollerslev (1998), Andersen et al. (2001a,b) use 
realized volatility extracted from high-frequency data as a proxy for the volatility of 
the low-frequency returns. The latent variance process in this approach is now 
observable and measurable, representing a model-free estimator of daily quadric 
variation of return dynamic. Correspondingly, a number of models have been 
proposed to incorporate with high-frequency data, including GARCHX-type models of 
Engle (2002), the Mixed data sampling regression model (MIDAS) proposed by 
Ghysels et al. (2004), the Multiplicative error model (MEM) of Engle and Gallo 
(2006), the Heterogeneous autoregressive model of realized volatility (HAR-RV) of 
Corsi (2009), the High-frEquency-bAsed VolatilitY (HEAVY) models of Shephard and 
Sheppard (2010), the RV-based bivariate models of Maheu and McCurdy (2011), the 
RV-based linear quantile regression (LQR-RV) model of Zikes and Barunik (2016).  

The literature on economic forecasting has traditionally devoted on the 
estimation and evaluation of point forecasts for the conditional mean of economic 
variables. For a given information set at specific time, forecasts can be obtained by 
using linear formulation or other specific functional forms, with time varying or time-
invariant coefficients, be sophisticated in dynamic specifications or using the simple 
ones. There are also a number of information sets available to be used in forecasting. 
Thus, there might be a variety of forecasts which can be obtained alternatively. 
Studies have suggested that a combination of alternative forecasts can improve the 
forecasts accuracy. A forecast combination can be considered as the way of pooling 
information from individual forecasts. The literature on forecast combination is not 
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novel. It is common that forecast combinations produce superior forecasts than 
methods based upon individual forecasting models (Granger and Ramanathan, 1984; 
Clemen, 1989; Makridakis and Hibon, 2000; Stock and Watson, 2004). 

Recent years have witnessed the growing interest of forecasting other 
characteristics of the forecast distribution rather than its conditional mean, such as 
specific conditional quantiles. A prime example of the increasing attention to quantile 
forecast is in risk management perspective with the popular application of VaR.  
Recall from Chapter 2 that VaR places a threshold of losses in sense that the amount 
of losses will exceed this threshold with a small target probability α. It is obvious that 
VaR(α%) is the α %-quantile forecast of the return distribution. Forecasting VaR is 
indeed forecasting the specific conditional quantile of the return distribution. 
Therefore, any methods to improve the accuracy of quantile forecasts can be 
applicable to increase the predictive power of VaR models. This chapter aims to 
examine potential methods to enhance the quantile forecast accuracy to extend the 
findings of the previous chapters, which focus on the evaluation of VaR estimates. 

There are number of approaches to estimate conditional quantiles in general 
and VaR in particular, varying from parametric (e.g. Danielsson and de Vries, 1997; 
Barone-Adesi, 1998; Diebold et al., 1998; Embrechts et al., 1999; McNeil and Frey, 
2000) to semi-parametric (Koenker and Zhao, 1996; Taylor, 1999; Christoffersen et 
al., 2000; Engle and Manganelli, 2004; Komunjer, 2005) to non-parametric 
(Bhattacharya and Gangopadhyay, 1990; White, 1992). Although there are number 
of studies on quantile forecasts, it is surprising that little empirical research has been 
conducted in the combination of conditional quantile forecasts. Timmermann (2005) 
studies the optimal combination of conditional mean forecasts at lengths and only 
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suggests the optimization of combining conditional quantile forecasts as a further 
implication of the principle of optimal combination. Giacomini and Komunjer (2005) 
use Generalized Method-of-Moment estimation to obtain the optimal combination 
weights of two forecasts and find that a linear combination (with intercept) of two 
forecasts outperform both individual components. Halbleib and Pohlmeier (2012) 
propose two VaR optimal combination methods based on the framework of 
Conditional coverage and Quantile regression approaches. Applying to stock data in 
crisis period, the combined forecasts are superior to the stand-alone forecasts.  
Although both combination methods perform well, Halbleib and Pohlmeier (2012) 
show that the quantile regression-based optimization is more stable and provides 
better results than the conditional coverage-based optimization. 

The contributions of this chapter to the literature are twofold. First, our 
empirical analysis acknowledges the value of the high-frequency data on the measure 
of volatility to characterize the quantile forecast of asset returns. Second, we find that 
the use of quantile combination can significantly improve the accuracy of quantile 
forecasts. To the best of our knowledge, this chapter is the first study investigating 
the quantile combination with the use of high-frequency data. 

This chapter uses the 5-minute sampling frequency of WTI Crude Oil Futures 
from 3rd Jan 1995 through on 30th June 2016. The reason we select the data of oil 
market to carry out the quantile forecasts is that oil market becomes increasingly 
important for desk-level trading at banks. In order to determine whether the use of 
high-frequency data improves the accuracy of quantile forecast, we compare the 
performance of RV-based forecasting models to the GARCH(1,1). These models 
include the Heterogeneous Autoregressive model of Realized Volatility (HAR-RV) of 



114 

 

Corsi (2009), the High-frequency-based volatility (HEAVY) model of Shephard and 
Sheppard (2010) and the RV-based Linear quantile regression (LQR-RV) model of 
Zikes and Barunik (2016). The performance of competing models is evaluated at the 
realized returns. In the first stage, we examine the absolute performance of each 
model by focusing on the dynamic of the hit process at each quantile level. The second 
stage quantifies the comparative performance of models using the Quantile Scores 
(QS). We find evidence that the HAR-RV and HEAVY models remarkably outperform 
the GARCH(1,1) at most quantile levels and at different forecast horizons, while the 
LQR-RV performs poorly. Thus, we acknowledge the value of high-frequency data in 
estimating conditional volatility and quantile forecasting. 

This study also examines whether the quantile combination can improve 
forecast accuracy. Using the Conditional quantile optimization method (CQOM) of 
Halbleib and Pohlmeier (2012), we find that the combined quantile forecasts 
remarkably outperform stand-alone forecasts across quantile levels and forecast 
horizons. With an VaR implication, we show that the VaR combinations are superior 
to individual VaR estimates in providing accurate and robust results. 

This chapter is organized as followed. Section 4.2 sets out the theoretical 
framework and models for the construction of quantile forecast. Section 4.3 discusses 
about the method of evaluation, while section 4.4 briefly describes the data. The 
empirical application is carried out in Section 4.5.  Section 4.6 presents some VaR 
implications, and Section 4.7 gives summary of the chapter. 
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4.2 Methodology 
This section presents the approaches to quantile forecasting and quantile 

combination.   The literature provided two approaches to quantile forecasting: the 
indirect forecasting and the direct forecasting. The first approach is commonly used 
in prior studies (Clements et al., 2007; Gallo and Brownless, 2010; Hua and Mazan, 
2013). Here, conditional volatility is used to estimate quantile forecasts. In the second 
approach, quantile forecasts are obtained directly through the quantile regression 
framework of Koenker and Basset (1978). In this chapter, we employ both 
approaches in order to forecast the quantiles of the return distribution. 
4.2.1 The indirect quantile forecasting approach 

In the indirect approach, quantile forecast is the output of two factors: the 
econometric model used to estimate conditional volatility, and the method used 
extract the conditional quantiles from the volatility forecasts. That is, the forecasted 
quantiles are inferred from the corresponding predictive densities, which are 
obtained either by assuming or simulating the return process based on the estimation 
of conditional volatility. The econometric models we adopt are the conditional 
volatility models, in which the return process is conditionally heteroskedastic, 
generated in the following way: 

rt = µ + zt σt,    zt �.�.±²⎯́ D(0,1)     (4.1) 
where D(0,1) is a probability distribution with zero mean and unit variance, and µ 
and σt are the estimated constant mean and conditional standard deviation of the 
return process at day t respectively. In empirical work, the estimated value of 
constant mean µ is very close to zero for daily data, thus the assumption of zero mean 
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is commonly used. Therefore, the return process is now only dependent on the 
estimated value of conditional volatility �oh . This raises the important role of 
appropriate and accurate volatility forecasting, which is vital to financial asset return 
modelling. Consequently, the predictive α-quantile of rt+h conditional on the 
information set at time t, denoted as qα(rt+h|Ωt), relies on the estimated conditional 
volatility �oh  and the method of obtaining quantile forecasts from estimated 
conditional volatility �oh . The literature on volatility measures, volatility forecasting 
and quantile extracting method will be presented in the following sections. 
4.2.1.1 Volatility measures 

One of the most popular measures of return variation is the variance, a 
mathematical expectation of the average deviation from the mean. For daily data, 
variance can be defined as squared return �do. This computation, although of interest, 
has been widely criticized as a noisy measure of variance (Andersen and Bollerslev, 
1998). 

The use of high-frequency data in modelling and forecasting volatility has 
been widely promoted (Andersen et al., 2009). The availability of the high-frequency 
financial data allows us to extract useful information for inferences (Engle and Gallo, 
2006; Brownlees and Gallo, 2010; Shephard and Sheppard, 2010; Maheu and 
McCurdy, 2011). Prior studies suggest that the inclusion of high-frequency data is 
beneficial as it enlarges the data set available for forecasting. Indeed, the tick-by-tick 
data contains detailed characterizations of the asset, including liquidity supply and 
demand, the trading dynamics, the dependence structure and contagion effects.    
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 As the rich source of information, the high-frequency data allows researchers 
to construct nonparametric estimators, called realized measures, to estimate the 
variation of the price path of a financial asset during the time when the asset is traded 
frequently. The literature of realized measures include realized volatility (Andersen 
et al., 2001a,b), realized absolute variation (Ghysels, Santa-Clara and Valkanov, 
2006), realized power variation (Forsberg and Ghysels, 2004), bi-power realized 
volatility (Barndoff-Nielsen and Shephard, 2004), two-scaled realized volatility 
(Zhang et al., 2005) and realized kernel (Barndorff-Nielsen et al., 2008). Among these 
measures, the realized volatility (Andersen et al., 2001) has been widely-used and is 
often the benchmark high-frequency volatility estimates. The realized volatility can 
simply be obtained by taking the sum of intraday squared returns. Denote realized 
volatility estimator on day t by RVt. The realized volatility on day t, RVt, can be 
computed as: 

RVt = ∑ �d�,o µ �~Y          (4.2) 
ri,t = ln(Pi,t) – ln(Pi-1,t)       (4.3) 

in which ri,t is the intraday return between time i and i-1 within day t, and n is the 
number of intraday returns in day t. In the absence of jumps and microstructure 
effects, as sampling frequency n increases to infinity, the realized volatility RVt 
converges to underlying integrated volatility, a natural volatility measure (Andersen 
and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002). For this reason, the 
choice of the sampling frequency n plays an important role in the construction of 
realized volatility. In our empirical analysis, we select a 5-minute sampling frequency, 
as it has been shown to provide a reasonably balance between the demand for finely 
sampled observations and the robustness to the contaminations of market 
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microstructure effects28 (Hua and Mazan, 2013). Besides, empirical studies have 
shown that 5-minute realized volatility is hardly outperformed by any other 
frequency measures (Liu et al., 2015). 
4.2.1.2 The GARCH(1,1) models 

In order to see whether the use of high-frequency data can improve the 
accuracy of quantile forecasts, we select the simplest GARCH(1,1) specification as a 
benchmark for the conditional volatility model using low-frequency data. The reason 
we choose the simplest GARCH(1,1) specification of  Bollerslev (1986) among 
hundreds of GARCH-type models is due to its popularity, simplicity, ease-of-use and 
efficiency. In particular, Hansen and Lunde (2005) extensively compare the out-of-
sample performance of 330 GARCH-type specifications in forecasting volatility of 
exchange rate and show that the simplest GARCH(1,1) outperforms other 
complicated specifications. 

Denote rt the close-to-close return on day t. Simply, rt can be obtained by: 
rt  = ln(Pt) – ln(Pt-1)        (4.4) 

in which Pt is the closing price of given asset on day t.  
We assume the return process follow a time-varying location-scale model with 

zero mean assumption: 
     rt = zt σt           (4.5) 

                                                             
28 Market microstructure effects includes order size, order arrival date, bid-ask spread, price impact, price resilience and market efficiency which vary across assets and across time (Kyle and Obizhaeva, 2016). 
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where zt is an i.i.d error term assumed to follow a distribution function with zero 
mean and unit variance, and σt denotes the conditional standard deviation on day t. 
The dynamic of the conditional variance, according to GARCH(1,1) specification, is as 
followed: 

�2ojY= ω +α�2o   + ��2o       (4.6) 
where ω, α, β are parameters. The estimated parameters ωh, αh, βq can be obtained by 
Maximum Likelihood Estimation to generate the forecast value of �ojY.  

To completely specify the GARCH(1,1) models, we need to make assumption 
about the distribution of error term zt. The first GARCH(1,1) model comes with the 
Gaussian distribution (denoted as GARCHn), as it has been the most widely-used 
statistical assumption and has become the benchmark in financial econometrics. We 
also investigate the forecasting power of GARCH(1,1) model with Student t 
innovation assumption (denoted as GARCHt) due to its ability to cope with fat-tailed 
distribution. Besides, the GARCHt model had confirmed its superiority in the previous 
chapters. 
4.2.1.3 The realized volatility models 

The high-frequency-based econometric models have been widely constructed 
in the studies of Andersen et al. (2003), Andersen et al. (2004), Koopman et al. 
(2005), Ghysels and Sinko (2006), Andersen et al. (2007), Clements et al. (2008), 
Corsi (2009), Shephard and Sheppard (2010), Brownlees and Gallo (2010), Maheu 
and McCurdy (2011), Zikes and Barunik (2016). One of the advantages of the RV is 
that it provides model-free estimates of volatility of returns of an asset, which do not 
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rely on the assumption of parametric models e.g. GARCH-type models. Empirically, it 
is evident that the forecasting models using realized measures significantly 
outperform the popular GARCH-type models and stochastic volatility models in terms 
of out-of-sample forecasting (Andersen et al., 2003).  

The literature on forecasting realized measures is not novel. One of the first 
works is from Andersen et al. (2001, 2003; 2007) who focus on applying least squares 
estimators of autoregressive specification of realized measures and their logarithm 
forms. Their papers provide support for long memory in the series of realized 
measures by calling the HAR-RV model. Engle (2002) develops a GARCHX-type model 
for return process by using realized variances based on 5-minute high-frequency 
data. His result shows that squared daily return is helpful in forecasting realized 
variance, although there might be some uncertainty over the statistical significance 
of this effect. This research was extended by Engle and Gallo (2006) who study 
multiple volatility measures in order to gather information across volatility 
indicators rather than concentrate on high-frequency based statistics solely. Their 
work develops the MEM which is shown to perform well in short to medium range 
forecast horizons. With the same model structure, Shephard and Sheppard (2010) 
extend the GARCH-X specification and propose HEAVY models incorporating the 
dynamic of both returns and realized measures. In literature, the HEAVY models are 
witnessed to perform systematically better than the GARCH model when apply to the 
comprehensive dataset of intraday data of stock indices worldwide. Because of its 
performance and is the comprehensive representative for the GARCH-type realized 
volatility models, it is selected to be one of the three high frequency-based models in 
this study. 
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Another popular approach to high-frequency data is the MIDAS model 
proposed by Ghysels et al. (2004). This model involves time series with different 
frequencies, which is shown to be more efficient than the traditional approach of 
aggregating all series with different frequency to the least frequent sampling. The 
favour of MIDAS regressions is also confirmed by Ghysels et al. (2006) when it 
outperforms other linear forecast (ARCH-type) models encompassing daily realized 
volatility in terms of both in-sample and out-of-sample forecasts of high-frequency 
exchange rate data. However, it is important to note that the MIDAS model is 
generally outperformed by the HAR-RV model in forecasting quantiles of the daily 
exchange rate returns of five pair of currencies (Clements et al., 2008). The 
superiority of HAR-RV model over other realized measure-based GARCH-type models 
is also confirmed in the recent studies (see Maheu and McCurdy, 2011; Hua and 
Mazan, 2013; Celik and Ergin, 2014; Vortelinos, 2015; Huang et al., 2016). Due to the 
its success in prior studies, we select the long-memory HAR-RV model as one of the 
high frequency-based conditional volatility models to use in this study, along with the 
HEAVY model. 
The HAR-RV model 

The HAR-RV model provides a method for volatility forecasting with different 
interval sizes. Inspired by the Heterogeneous Market Hypothesis (Muller et al., 1993), 
the HAR-RV model focuses on the heterogeneity generating from the difference in the 
time horizons, as financial market is combined as different participants with different 
trading frequency and volume. In particular, there are participants which have a huge 
spectrum of trading frequency, while institutional traders tend to trade less 
frequently but with higher volume. Participants with different time horizons react to, 
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and generate different sorts of volatility elements: the short-term participants with 
daily of intraday trading frequency; the medium-term traders who normally 
restructure their positions weekly and the long-term institutional investors with a 
typical time of one month or longer. Thus, Corsi (2009) proposes a model with three 
volatility components matching the time horizons of different market participants: 
one-day, one-week and one-month. The HAR-RV model in integrated form is 
expressed in the following way: 

rt = zt σt          (4.7) 
 σ�WjY= c + βd  RV�W + βw RV¶W + βm RV·W +  ν�WjY    (4.8) 

in which ��±o, ��¹o,  ��ºo are the daily, weekly and monthly observed realized 
volatilities respectively. Define  RV�W = RVt, where RVt is the realized volatility on 
day t. The past weekly and monthly observed realized volatilities are defined as: 

RV¶W = Y» ( RV�W +  RV�WXY +… +  RV�WX¼)     (4.9) 
RV·W = Ydd ( RV�W +  RV�WXY +… +  RV�WXdY)   (4.10) 

Besides,  �±ojY can be written as: 
 σ�WjY =  RV�WjY +  ν�WjY      (4.11) 

Thus, we obtain a time series presentation of the HAR-RV model: 
 RV�WjY= c + βd  RV�W + βw RV¶W + βm RV·W +  ν�WjY (4.12) 

At this point, the coefficients β(.) of HAR-RV model can be simply obtained by 
simple linear regression. This study uses the standard OLS regression estimators to 
obtain the estimated values of coefficients β(.) in the following section. 
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The HEAVY model 
Base on the structure of the GARCHX-type models of Engle (2002), Shephard 

and Sheppard (2010) develop the HEAVY model to harness high frequency data to 
conduct multistep-ahead forecasts of the volatility of financial returns.  

Suppose we have a data set of daily returns r1, r2, … rT. Let us denote the low-
frequency data set available at day t by ΩW½x. In the original GARCH(1,1) model of 
Engle (1982) and Bollerslev (1986), the conditional variance on day t+1, denoted as 
var(rt+1|ΩW½x),  can be written as (4.6). To extend the GARCH(1,1) specification, 
Shephard and Sheppard (2010) add features of daily realized measure to form the 
class of High-Frequency-Based Volatility (HEAVY) models. The HEAVY specification 
is made up of two pillars: the HEAVY-r model to estimate close-to-close conditional 
variance var(rt+1|ΩW¾x) and the HEAVY-RM model to estimate the conditional 
expectation of open-to-close variation E(RMt+1|ΩW¾x) 

HEAVY-r:    var(rt+1|ΩW¾x) =  hWjY = ω + αRVW  + βhW   (4.13) 
HEAVY-RM:    E(RMt+1|ΩW¾x) = µWjY = ω R +  αtRVW   +  βtµW  (4.14) 

The HEAVY-r equation can be estimated using standard quasi-likelihood: 
logQ1(ω,Ψ) = ∑ lÀW ] W~d   in which lÀW = - Yd(log hW + rdW/hW)   (4.15) 

and Ψ = (α, β)’ and the initial value hY  = TXY/d ∑ r2t |]|v_/� t=1     
Similarly, the HEAVY-RM can be solved using a normal quasi-likelihood: 

logQ2( ωt, Ψt)= ∑ ltÁW ] W~d  in which ltÁW = - Yd(log µW + RMW/µW)  (4.16) 
and ΨR = (αR, βR)’ where the initial value µY  = TXY/d ∑ RMt |]|v_/� t=1   
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4.2.1.4 Methods for computing quantile forecasts 
A quantile forecast is an output of two components: (i) the model used to 

estimate volatility and (ii) the method of generating quantile from the volatility 
forecast. In the first step, these models in previous section deliver the h-day forecasts 
of daily volatility. The next step is to compute the quantile forecasts from the 
estimated volatility ��t+h 

The simplest method to generate conditional quantile qα(rt+h|Ωt) is to assume 
the distribution for the daily returns with the distribution function: 

Ft (y) = Pr(rt+h ≤ r| Ωt)      (4.17) 
Assuming that the daily returns are unforecastable, the process of returns are 
described as: rt+h = εt+h, where εt+h = ��t+h zt+h and zt+h is i.i.d. Thus, the forecasted 
α-quantile is defined as:  

qα(rt+h|Ωt) = ��t+h FXYo(α)      (4.18) 
Another method to obtain the conditional quantile qα(rt+h|Ωt) from the 

estimated volatility ��t+h is to simulate the density of returns on day t+h, with the 
dynamic of return process is described as below: 

rt+h = εt+h  where εt+h = σt+h zt+h and zt+h ~D(0,1)    (4.19) 
where D(0,1) is the given choice of distributional assumption. The intuition 

here is that the simulated real-world density of rt+h is the combination of the 
forecasted conditional volatility on day t+h, ��t+h, plus the simulated values of zt+h. 
This is achieved by making a large number of independent draws from D(0,1). In line 
with previous chapters, we used the Gaussian and Student t distribution for D(0,1). 
In order to detect whether the forecast improvements emanate from the choice of 
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distribution rather than the choice of model, we use cross comparison. Specifically, 
we compare the performance of the GARCH(1,1) model with alternative 
distributional assumptions to see which choice of distribution provide better 
forecast. We also compare performance of different forecasting models but with the 
same Gaussian assumption to detect the better model specification. 

To obtain the density forecast of rt+h, in the first step we make 100,000 
random independent draws from D(0,1) and therefore simulate 100,000 random 
values of zt+1. Given the set of parameters �z and the conditional volatility ��t+1 
estimated from the forecasting models, we obtain 100,000 simulated values of rt+1 by 
repeating the process: rt+1 = zt+1 ��t+1. In the second step, each simulated value rt+1 
is then used to estimate  ��t+2 using the set of parameters �z and ��t+1. With a random 
drawn from D(0,1) and the estimated ��t+2, we obtain the simulated value of rt+2. We 
continue this procedure to generate 100,000 simulated values of rt+n. This defines 
the density forecast of rt+h, denoted as D(rt+h| Ωt). Then, the quantile forecast qα(r-
t+h|Ωt) is simply acquired by taking the quantile of the density forecast D(rt+h| Ωt). 
 4.2.2 The direct quantile forecasting model 

In the direct approach, the quantile forecasts are obtained directly through the 
quantile regression framework of Koenker and Basset (1978), in which the time 
series of specific quantiles q(α) is directly modelled using any information set 
claimed to be relevant. The basic idea of the quantile regression is that the α-quantiles 
qα(rt+1|Ωt) is modelled as a function of variables available at information set Ωt:  

qα(rt+1|Ωt) = gα(Xt, βα)      (4.20) 



126 

 

where function gα(Xt, βα) and parameter vector βα are explicitly dependent 
on quantile level α (Koenker and Basset, 1978). 

One of the most widely-used quantile regression-based models in finance is 
the Conditional Autoregressive Value at Risk (CAViaR) model proposed by Engle and 
Manganelli (2004). In particular, CAViaR specification is a dynamic non-linear 
quantile regression approach for quantiles of daily returns of an asset, in which the 
quantile forecast qα(rt+1|Ωt) is the function of past daily return and past quantile of 
daily returns. 

qα(rt+1|Ωt) = gα(Xt, βα) where Xt = {rt, qα(rt )}   (4.21) 
The CAViaR-based approach has gained popularity in the literature of financial 

econometrics and received great success in forecasting quantile of return 
distributions (Gourieroux and Jasiak, 2008; Ma and Pohlman, 2009; Huang et al., 
2009; Taylor, 2016). However, the estimation of CAViaR models with rolling window 
technique require high level of processing resource that makes it computationally 
expensive. Besides, CAViaR models do not perform very well in comparison with the 
Realized volatility-based linear quantile regression models of Zikes and Barunik 
(2016). For these reasons, we do not include the CAViaR-based models in this 
chapter. 

Zikes and Barunik (2016) suggest quantile regression models as a linear 
function of past-quadratic variation and exogenous variables. Taking advantage of 
high-frequency data, in their research the α-quantile qα(rt+1|Ωt) is expressed as a 
linear function of past realized measures: 

LQR1:    qα(rt+1|Ωt) = β0(α) + βÂ(α)’ ��Y/do  + βz(α)’zt    (4.22) 
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LQR2:    qα(rt+1|Ωt) = β0(α) + β1(α)’ ¡�Y/do  + β2(α)’ Ã�Y/do   
    + β3(α)’ �¡ÄY/do    + βz(α)’zt   (4.23) 

in which RVt, IVt, JVt, VIXt are Realized variance, Integrated variance, Jump 
variation and Implied volatility respectively. Applying to the 5-minute intraday data 
of S&P500 and WTI Crude Oil Futures, they show evidence that there is no 
remarkable difference between the performance of the LQR1 and LQR2 in out-of-
sample forecast. In addition, it is also worth to note that the Linear quantile 
regression models of Zikes and Barunik (2016) outperform the CAViaR model of 
Engle and Manganelli (2004) both in left and right tails of the return distributions in 
one-step-ahead forecast, although at longer horizons, the differences are not 
significant. Due to its performance and simplicity, we select the LQR1 specification 
(hereafter, denoted as LQR-RV) to use in this research. Specifically, the LQR-RV 
specification is presented as: 

qα(rt+1|Ωt) = β0(α) + βÂ(α)’ RVY/dW  + βz(α)’zt   (4.24) 
As Koenker and Bassett (1978) note, the parameters of linear quantile 

regression can be obtained by minimizing the objective function: 
QRT(β(α)) = Y] ∑ ρw]W~Y (rWjY-βi(α) - βÂ(α)’ RVt,M – βz(α)’ zt)   (4.25) 

where ρw(ϑ ) = (α-1{ ϑ <0})ϑ and β(α) = (β0, βÂ(α)’, βz(α)’)’  
4.2.3 The quantile combination 

The literature on the combination of conditional quantile forecasts is not as rich 
as of the conditional mean. In prior studies, the approaches to combining quantile 
forecasts are restricted as the linear combination function of two individual quantile 
forecasts. There are two main ways to estimate the weights of individual quantile 



128 

 

forecasts in the linear combination. The first method, considered by Giacomini and 
Komunjer (2005) and Halbleib and Pohlmeier (2012), is based on the Conditional 
coverage hypotheses of Christoffersen (1998). Specifically, the weights of the 
individual forecasts are optimized to produce forecast combination which optimally 
satisfies both UC and IND properties e.g. the sequence of hit process must be 
independently distributed and the actual coverage of the hits must be equal to the 
theoretical one. The second method to combine quantile forecasts is the conditional 
quantile optimization method (CQOM). This method, proposed by Halbleib and 
Pohlmeier (2012), relies on the quantile regression framework of Koenker and 
Basset (1978) to select the optimal combination weights of individual VaR forecasts. 
Taking advantage of the quantile regression approach, the CQOM does not require 
any assumptions for the return distribution. Thus, it allows for a flexible approach of 
VaR forecast combinations to minimize the distance between the population 
quantiles and the combined VaR. Furthermore, this second approach is shown to 
provide better forecast combinations than the traditional conditional coverage-based 
optimization approach (Halbleib and Pohlmeier, 2012). 

This chapter employs the CQOM of Halbleib and Pohlmeier (2012) to combine 
quantile forecasts. Suppose we have two individual quantile forecasts available at 
time t, denoted as qα,1(rt+1|Ωt) and qα,2(rt+1|Ωt). In general form, the CQOM defines the 
combined α-quantile, denoted as qα,12(rt+1|Ωt), as the linear function of a pair of 
stand-alone quantile forecasts: 

qα,12(rt+1|Ωt) = λ0 + λ1 qα,1(rt+1|Ωt) + λ2 qα,2(rt+1|Ωt)  (4.26) 
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Prior studies on optimal forecast combinations commonly set up the constrain 
to the sum of weights of individual forecasts to unity (Granger and Ramanathan, 
1984; Halbleib and Pohlmeier, 2012). However, we do not place any boundary 
constraints on the loadings to retain the flexibility of the model. Besides, it is possible 
to extend the quantile combination of more than two individual forecasts: 

qα,N(rt+1|Ωt) = λ0 + λ1 qα,1(rt+1|Ωt) + λ2 qα,2(rt+1|Ωt) + … + λn qα,n(rt+1|Ωt) 
= qα,N(λN)        (4.27) 

where qα,N = {1, qα,1(rt+1|Ωt), qα,2(rt+1|Ωt),… ,qα,n(rt+1|Ωt)} is the vector of 
individual quantile forecasts and λN = {λ0, λ1, …, λn}’  is the vector of optimal loadings 
of  and. Based on the quantile regression framework, the vector of optimal loadings 
is given by solving this minimization:  

λqt  = arg minÇÈ { ∑ α|rWjYÀuÉ_Ê ËÌ,È(ÀuÉ_|Íu) − qα,N(λN)| 
 + ∑ (1 − α)|rWjYÀuÉ_Î ËÌ,È(ÀuÉ_|Íu) − qα,N(λN)|}    (4.28) 

where α is the quantile level, rt+1 is the realized returns on day t+1. 
4.3 Methods of evaluation 

We evaluate the accuracy of quantile forecasts in two steps. First, we assess the 
absolute performance of alternative forecasting models by taking the hit test and 
examining the behavior of the hit process at every quantile level. Second, we quantify 
their relative performance by using the Tick loss function to find which model 
performs best at each quantile level. 

 



130 

 

4.3.1 Evaluation of absolute performance 
In the first stage, we evaluate the absolute performance of alternative models 

by calling the Dynamic Quantile (DQ) test of Engle and Manganelli (2004), a statistical 
test based on the properties of violations at a given quantile.  

Let rWjY be the realized cumulative return from day t to day t+1, and 
qw} (rt+1|Ωt) is the αth quantile forecast conditional on the information set available at 
time t. Statistically, the probability of a hit at given quantile is defined as: 

Pr[rt+h <qw} (rt+h|Ωt)] = α     (4.29) 
Let us denote It(α) the hit process associated with the ex-post observations at 

α-quantile forecast at time t: 
It(α) = V  1   if rWjY < qw} (rWjY|ΩW)   0              otherwise     (4.30) 

Theoretically, the quantile forecasts are valid if and only if the hit process It(α) 
satisfies two properties: The UC and the IND hypothesis (Christoffersen, 1998). The 
UC property, firstly proposed by Kupiec (1995), states that the probability of a 
realized return hitting the α quantile forecast must be equal to α:  

Pr[It(α)=1] = E[It(α)] = α.      (4.31) 
Furthermore, to satisfy the IND property, the hit process It(α) must be 

independently distributed. When both UC and IND properties are simultaneously 
satisfied, quantile forecasts are said to be valid with CC property, which is the basis 
of most of the backtests in the literature (Christoffersen, 1998; Engle and Manganelli, 
2004; Berkowitz et al., 2011; Colletaz et al., 2013). 

To test the absolute performance of alternative forecast models, we 
investigate seven quantiles: 0.01; 0.05; 0.1; 0.5; 0.9; 0.95; 0.99 and perform the hit 



131 

 

test at every quantile level. In particular, following the literature of Value at Risk 
(VaR), we consider each quantile as VaR(α), which α = {0.01; 0.05; 0.1; 0.5; 0.9; 0.95; 
0.99}, then examine the behaviour of the hit process at each quantile.  

Firstly, let Hitt(α) = It(α) - α be the demeaned process of hit function. Thus 
Hitt(α) will take the value 1- α if the realized return at day t is less than the forecasted 
value of quantile α: 

Hitt+1(α) = Ï  1 − α   if rWjY < qw(rWjY|ΩW) − α              otherwise    (4.32) 
If the quantile α is correctly specified, the conditional expectation of Hitt(α) 

given the set of information at time t-1 must be equal to zero. In addition, under the 
CC assumption, variable Hitt(α) must be uncorrelated with its own lagged values and 
lagged quantile qα(rt-1|Ωt-2). The CC hypothesis can be examined in the following 
linear regression model:  

Hitt+1(α) = β0+ β1 Hitt + β2 qα(rt|Ωt-1) + ut+1  (4.33) 
Hence testing the null hypothesis of CC assumption is equivalent to testing the joint 
null hypothesis that the coefficients β1, β2 and the intercept βo in the regression 
model are all equal to zero: 

H0: β0 = β1 = β2 = 0       (4.34) 
Indeed, at time t the hit process is not correlated with past violations and past 

quantile if β1 = β2 = 0 (implied by the independence hypothesis), while the null 
constant β0 will fulfil the UC hypothesis. If we denote by Ψ = (β0, β1, β2)’ the 
parameter vector and by Χ the matrix of explanatory variables in the regression 
model, the test statistics DQCC to test the null is defined as: 
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DQCC = Ñ’Ò Ó′ÓÔz   Õ(YXÕ)  �→Ö²⎯⎯́  ×d (3)     (4.35) 
It is important to note that the DQ test can only be suitable for one-step-ahead 

forecasts. This is because the sequence of hit process {Hitt|t+h} is h-dependent, which 
breaks the assumptions underlying the likelihood ratio test of the DQ test, in multi-
step-ahead forecasts. The literature does not seem to provide alternative, robust test 
for the multistep-ahead forecast of conditional quantiles. 
4.3.2 Evaluation of comparative performance 

Christoffersen (1998) and Diebold et al. (1998) early develop statistical tests 
to evaluate interval and density forecasts with null hypothesis that the forecasting 
model is specified correctly. Nevertheless, empirical models tend to be incorrectly 
specified, hence to a forecaster, their relative performance might be more interested 
rather than their absolute performance. 

There are several methods to evaluate the performance of interval and density 
forecast, in which the main difference among those approaches is represented by the 
loss function or score function assumed in the forecast comparison. Among the score 
function approaches, the Logarithmic Score (LS) of Gneiting and Raftery (2007) is the 
widely used one in the literature of forecasting. In computation, LS of model i is 
defined as LSWjØ}  = lnfWjØ} (rWjØ} | Ωt) in which fWjØ} (.| Ωt) is the density forecast of the h-
day return conditional on an information set available at day t and rWjØ}  is the realized 
cumulative return from day t to day t+h. The score function LSWjØ}  evaluates the 
density forecast at time t in comparison with the realized cumulative return at day 
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t+h. To relatively compare the performance between two models, suppose model A 
and model B, we take the difference in their log-score function: 

ΔLSWjØÙ,Ú  =LSWjØÙ  - LSWjØÚ      (4.36) 
ΔLS is positive orientation. Thus, positive value of ÛÜÝojÞß,à  means that model A 

is superior to model B and vice versa. Example of the application of this approach 
included Sheppard and Shephard (2010) and Maheu and McCurdy (2011) amongst 
others. Nevertheless, the use of LS has been criticized since it only captures the 
overall examination of the performance of a model but does not provide the 
evaluation of the specific intervals of the return distribution. Indeed, risk managers 
and forecasters might be interested in assessing models based on specific quantiles 
of the distribution e.g. VaR(1%). For this reason, the methods of evaluation based on 
the properties of the violation process at given quantile, assumed that the model is 
correctly specified, are of interest. Christoffersen (1998) propose an assessment of 
interval forecast using the unconditional and independence properties of the 
violation series, which is then considered in the studies of Kuester et al. (2006) and 
Brownless and Gallo (2010). Another approach to evaluate and compare quantile 
forecasts is the tick loss function (see Giacomini and Konmunjer, 2005; Gneiting and 
Raftery, 2007; Clements et al., 2008). The tick loss function is defined as:  

Lw,} = E((α-1{eWjØ} < 0})eWjØ}     (4.37) 
where eWjØ}  = rt+h - qw} (rt+h|Ωt) and qw} (rt+h|Ωt) is the αth quantile forecast of model i. 
The tick loss function penalizes quantile violations more strictly with the increase in 
the magnitude of the violation. Therefore, the tick loss function is negative 
orientation, in which we prefer model that has lower loss function value. 



134 

 

This chapter evaluates the relative performance of forecast models using 
Quantile Score (QS). Specifically, the QS incorporates the idea of the asymmetric 
absolute loss function obtained in quantile regression estimation to the context of 
out-of-sample assessment (Giacomini and Komunjer, 2005; Hua and Mazan, 201329). 
To illustrate, let q�ojÞ(α) denote conditional quantile forecasts of model i based on 
information set at time t and  r�ojÞ denote the h-period cumulative return, the QS at 
α-quantile is defined as: 

 QS� ojÞ(α) = [ r�ojÞ  -  q�ojÞ(α)] [I( r�ojÞ ≤ q�ojÞ(α)) - α]  (4.38) 
in which I(.) denotes the hit indicator which is equal to 1 if the argument is true and 
takes the value of 0 otherwise. Compared to the equation (4.37), it is clear that the QS 
function is the negative form of the tick loss function. Therefore, the QS is positively 
oriented, thus between two competing models, we prefer the one with higher QS. 
 To evaluate the performance of model of the certain area of the return 
distribution rather than single quantile, Gneiting and Ranjan (2011) propose the 
statistical evaluation which involves the integration of the QS across different 
quantile levels. The Weight Quantile Score (WQS) of model i, denoted as WQSi, is 
defined as: 
   WQS}WjØ(α) = á  QS}WjØ(α)Yi w(α)dα    (4.39) 
in which w(α) presents the weight function corresponding to each quantile. The 
choice of w(α) depends on the purpose of evaluation. To comprehensively evaluate 
the accuracy of quantile forecasts, we follow Hua and Manzan (2013) to select five 
                                                             29 In the paper of Hua and Mazan (2013), the QS function was presented incorrectly. Specifically, their QS equation is indeed the Tick loss function, which is shown to be negatively oriented. 



135 

 

types of the weight function. (i) w(α) = 1 that equally weights all quantiles to give 
the entire evaluation of the forecasted distribution. (ii) w(α) = α(1-α) that provides 
higher weights to the central quantile and lower weights to the tails. (iii) w(α) = 
(2α − 1)d to focus on the tails of the return distribution. (iv) w(α) =(1 − α)d which 
specifically focuses on the left tail and (v) w(α) = αd that gives higher weights to the 
right tail of the return distribution. 
4.4 Data specifications 

Our dataset includes daily settlement prices of WTI Crude Oil Futures traded 
at the New York Mercantile Exchange (NYMEX). Recall that 5-minute sampling 
frequency balances the demand for finely sampled observations and the robustness 
to the contaminations of market microstructure. Besides, the 5-minute realized 
volatility is shown to be hardly beaten by any other measures (Liu et al., 2015). For 
these reasons, we select the 5-minute sampling frequency to get 999,855 
observations of five-minute settlement prices of WTI Crude Oil Futures, starting from 
3rd Jan 1995 and ending on 30th June 2016. The data series is obtained from Tick Data. 

 The close-to-close daily return of day t, denoted by rt, is computed as equation 
(4.4), whereas the 5-minute intraday return at point i on day t is computed as 
equation (4.3). The realized volatility on day t can be simply obtained by taking the 
sum of squared intraday returns within this day following the equation (4.2). We 
report the summary statistics of the daily returns, daily squared returns and the 
realized volatility in Table 4.1 and their time-series are presented in Figure 4.1.  

It can be seen that the WTI Crude Oil Futures experience a positive trend in 
daily returns from Jan 1995 to June 2016. The distribution of rt is negatively skewed 
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and leptokurtic, implying the fat-tailed characteristics of the return distribution.  
Comparing two measures of variation, we find that the daily squared returns are 
more volatile and noisy than the realized measure. This evidence is also consistent 
with the literature of variance measures (Andersen and Bollerslev, 1997). Besides, 
the Jacque-Bera test for normality is also rejected at all series.  

Table 4.1: Summary statistics of daily returns and RV of WTI Crude Oil Futures 
Notes: Table 4.1 reports the summary statistics of daily returns, squared returns and realized volatility and the squared root of realized volatility.   Mean Stdev Skewness Kurtosis Min Max  JB stats p-value âã  1.649e-04 0.0213 -0.2295 6.8715 -0.1636 0.1382 3877 0.001** âäã  4.557e-04 0.0011 8.9314 137.001 0 0.0268 4662539 0.001** åæã 4.841e-04 9.082e-04 18.22 543.94 1.498e-06 0.0351 74992625 0.001** åæç/äã 0.0193 0.0107 3.1005 29.5525 0.0012 0.1874 189681 0.001**          **: significant at 95% level of confidence  Figure 4.1: Time series of Daily returns and Realized Volatility  

of WTI Crude Oil Futures  Notes: Figure 4.1 plots the time series of daily returns and daily RV of WTI Futures from January 1st, 1995 to June 30th, 2016.  
Daily returns Daily realized volatilitiy 

  



137 

 

 
 
4.5 Evaluation of Quantile forecasts 

We evaluate the predictive power of alternative models based on their out-of-
sample performance. The in-sample period is from 1st January 1995 and lasts to 31st 
December 2004, while we start the out-of-sample forecasting experiment on 3rd 
January 2005 and end on 30th June 2016, including 3,513 days. We continue using the 
rolling window technique with the window size of 10 years of historical data (or 
2,610 trading days, equivalently). In particular, the forecast on 3rd Jan 2005 will be 
obtained via an econometric model with parameters estimated from the historical 
data set It-1 starting from 1st Jan 1995 and ending on 31st Dec 200430. Then the 
window will move one-step ahead to produce the forecast on date 4th Jan 2005. This 
procedure is repeated continuously to get the out-of-sample forecasts. We consider 
the forecast horizons of 1-day, 5-day (or one-week-ahead forecast) and 22-day (or 
one-month-ahead forecast).  
4.5.1 Model estimation 

The first step of our empirical analysis is to estimate parameters of the 
conditional volatility models and coefficients of the LQR-RV model. Regarding to the 
choice of quantile levels, we focus on forecasting the 1%, 5%, 10%, 50%, 90%, 95% 
and 99% quantiles as these are the most interesting thresholds from economic point 
of view, especially in risk management. In addition, we employ the realized standard 
                                                             30 The last trading day before 3rd Jan 2005 
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deviation rather than variance, hence we take the square root of the realized variance 
RVt discussed in the previous session. We estimate the parameters of GARCH(1,1) 
models by using Maximum Likelihood Estimation, while the HEAVY parameters are 
obtained by (4.15) and (4.16). Besides, we use OLS to estimate the coefficients β(.) of 
HAR-RV model, while the estimation of LQR-RV coefficients in (4.24) is executed by 
using the interior point method of Portnoy and Koenker (1997) to solve the 
optimization function (4.25). Due to limit in space, we only present the estimation 
results of the first rolling window, with the in-sample period starting from 1st Jan 
1996 to 31st Dec 2005. The estimation results of the conditional volatility models are 
presented in Table 4.2, while Table 4.3 reports the estimated coefficients of the LQR-
RV models. 

Table 4.2: Parameter estimation of Conditional volatility models 
Notes: Table 4.2 reports the estimated parameters of the GARCH-type models with the sample period from 1st Jan 1995 until 31st Dec 2005. The associated t-statistics are shown in parenthesis.  

GARCHn  HEAVY ω α β  HEAVY-r HEAVY-RM 0.00001 0.0494 0.9477  ω α β ωt αt βt (1.908) (9.9697) (171.92)  0.0000 0.0566 0.9369 0.0000 0.2576 0.7187  
GARCHt  HAR-RV ω α β dof  ω βè βé βê 0.00004 0.0377 0.9534 5.902  0.0001 -0.2346 1.236 -0.0398 (2.101) (95.948) (4.8486) (8.877)  (0.7134) (-12.163) (30.219) (-0.696)  Table 4.3: Coefficient estimation of the LQR-RV model Notes: Table 4.3 presents the estimated coefficients of the LQR-RV specification as described in (4.24) at seven quantiles. The coefficients are estimated using the interior point method (Portnoy and Koenker, 1997) to minimize the objective function (4.25). The associated t-statistics are shown in parenthesis.  α 0.01 0.05 0.1 0.5 0.9 0.95 0.99 

Constant -0.0380 -0.0254 -0.0180 0.0015 0.0200 0.0253 0.0451 
(-4.705) (-7.009) (-6.528) (1.117) (8.978) (8.498) (7.009) 
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 RVY/dW -1.0538 -0.5150 -0.4034 -0.0436 0.3311 0.5013 0.3727 
(-1.988) (-2.445) (-2.820) (-0.623) (3.002) (3.265) (1.090) 

  Table 4.2 shows that the lagged conditional volatility parameters β of 
GARCH(1,1) models are close to one and statistically significant, indicating that the 
forecasted conditional volatility is significantly determined by its lagged value. In 
HAR-RV model, the estimated values of βd and βw are statistically significant, while 
the constant and βm are not. This implies that the future volatility is mostly driven by 
the past-week and past-day volatilities, but has little memory of the past month 
volatility. As one of GARCH-type models, the estimation of HEAVY parameters report 
future volatility has a very considerable memory of the past, which is consistent to 
the literature. Indeed, Shephard and Sheppard (2010) find that the momentum 
parameter β in the HEAVY-r model typically ranges from 0.6 to 0.75 for stock indexes, 
but there are exceptions with higher momentum, e.g. exchange rate. In case of LQR-
RV model, we find lagged realized volatility is statistically significant across different 
quantiles. The estimated coefficients also have the expected sign: the left-tail 
quantiles alter negatively with realized volatility, while the right-tail behaves 
positively. 
4.5.2 Evaluation of absolute performance 

We evaluate the forecasting power of alternative models based on the out-of-
sample performance at each quantile level: 1%, 5%, 10%, 50%, 90%, 95% and 99%. 
The reason we include the very low quantiles to the test (1%-quantile and 99%-
quantile) is that we stand on the risk management perspective, which concern most 
about the left tail of the return distribution. We adopt the rolling window approach 
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to forecast the one-day-ahead quantile and keep the window size fixed at 10-year 
historical data. The out-of-sample period is from 3rd Jan 2006 to 30th June 2016 
including 3,513 daily observations. Recall that our evaluation is based on the 
properties of the hit process at specific quantile. In particular, we test whether the hit 
process satisfy both UC and IND hypotheses by calling the DQ test. It is also important 
to recall that the DQ approach is only valid for one-step-ahead quantile forecasts. The 
test results are reported in Table 4.4. 

Table 4.4: Absolute performance of alternative forecasting models 
Notes: Table 4.4 presents the absolute performance of alternative models. At each model, αh presents the actual coverage rate, which is computed as the number of hits over total number of observations. The DQ stats report the test statistics of the DQ test, while the third row presents its corresponding p-value.  

 0.01 0.05 0.1 0.5 0.9 0.95 0.99 GARCHn        αh 0.0134 0.0421 0.0831 0.4944 0.9223 0.9556 0.9872 DQ stats 6.4681 6.8331 11.4218 3.9999 24.8381 4.4208 3.6431 p-value 0.0909 0.0774 0.0097 0.2615 0.0000 0.2195 0.3027 GARCHt        αh 0.0137 0.0444 0.0834 0.4942 0.9229 0.9553 0.9875 DQ stats 8.1104 3.2296 11.1543 5.7846 25.6538 4.0705 4.9679 p-value 0.0438 0.3576 0.0109 0.1226 0.0000 0.2539 0.1742 HEAVY        αh 0.0137 0.0461 0.0931 0.5050 0.9197 0.9562 0.9878 DQ stats 6.0855 2.3083 4.7381 3.6228 19.9759 5.5078 2.5525 p-value 0.1075 0.5109 0.1920 0.3052 0.0002 0.1382 0.4659 HAR-RV        αh 0.0148 0.0487 0.0939 0.4959 0.9061 0.9490 0.9858 DQ stats 13.3040 2.8102 2.3604 2.8926 3.3809 2.6777 6.5731 p-value 0.0040 0.4218 0.5010 0.4085 0.3365 0.4440 0.0868 LQR-RV        αh 0.0088 0.0430 0.0882 0.5107 0.9172 0.9593 0.9895 DQ stats 0.7302 3.6361 5.3365 4.5879 12.8378 8.9301 1.1304 p-value 0.6941 0.1623 0.0694 0.1009 0.0016 0.0115 0.5682  
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Across models and quantiles, we report the out-of-sample actual coverage rate 
��, the likelihood ratio test statistics and the p-value of the DQ test for the joint 
hypothesis of UC and IND properties. If a model passes the DQ test at a given quantile, 
it means that the sequence of hits at this quantile is not only quantitively adequate, 
but also independent from each other. Based on the DQ test, there are three main 
points emerged. First, we witness that the all models perform reasonably well across 
quantiles with the real coverage rate �� are very close to the nominal levels. There are 
some commonalities in the performance of the models. It can be seen that four over 
five models remarkably underestimate the 90%-quantile and fail the DQ test, while 
only HAR-RV is successful in capturing this quantile. Second, we find the asymmetries 
in the performance for the left tail versus the right tail across models. At 1-% quantile, 
four over five models seem to underestimate the left tail and produce high coverage 
rate, except LQR-RV which slightly overestimate left tail. The DQ test statistically 
rejects the validity of two over five forecasts at the 1%-quantile. At the right tail, we 
find that all models overestimate the 99%-quantile of the return distribution. 
However, the overestimation at the right tail is not significant, which has been 
statistically confirmed by the results of the DQ test.  

 Third, it can be seen that the RV-based models perform slightly better than 
the GARCH(1,1) models. Indeed, both GARCHn and GARCHt models perform fairly 
well at the middle and end-tails of the return distribution, but fails to accurately 
forecast  the 10% and 90% quantiles. In case of HAR-RV, HEAVY and LQR-RV, there 
is only one misspecification of each model over seven quantiles. While the long-
memory HAR-RV model seems to underestimate the 1%-quantile of the return 
distribution, the HEAVY and LQR-RV models fail to properly capture the 90%-
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quantile. Except these cases, the high frequency-based models perform accurately in 
forecasting quantiles of the return distribution.  
4.5.3 Evaluation of comparative performance 

This section aims to relatively evaluate the performance of the alternative 
forecasting models. To compare their performance, we select the GARCHn as the 
benchmark model, as it is the most popular GARCH-type specification and is also hard 
to beat by more sophisticated models (Hansen and Lunde, 2005). 

  As discussed in the previous section, we employ the QS approach to compare 
the out-of-sample predictive power of five models at seven quantile levels. Recall that 
the QS is positively oriented, which means that between two models, the one with 
higher QS is preferable. To compare the performance of model i with the benchmark 
model at α-quantile, we take the difference in their QS: 

ΔQSα} = QSα} - QSαëÙtì¾ª      (4.40) 
The positive value of ΔQSα} means that model i outperforms the benchmark 

GARCHn model and vice versa. Additionally, to provide a comprehensive evaluation 
the quantile forecasts, we employ the WQS which specifically focus on different 
characteristics of return distribution: the entire distribution, the middle, two tails, the 
left and the right tails of the return distribution. Similar to ΔQS, we compute the 
ΔWQS to compare model performance to the benchmark model  

ΔWQS} = WQS} - WQSëÙtì¾ª    (4.41) 
The positive ΔWQS} indicates that model i is superior to the GARCHn in providing 
good quantile forecasts. The ΔWQS} is also comparative, which means that model 
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with higher ΔWQS} has the better performance. The ΔQSα} and ΔWQS} results are 
reported in Panel A and Panel B of Table 4.5.  
 We document the diversification in the performance of alternative forecasting 
models across quantile levels and forecast horizons. There are some models perform 
well, but the others show the poor predictive power in comparison with the 
benchmark model. We find that the differences in model performance mostly come 
from the tails of the return distribution, whereas at the centre, they are not 
significant. We will discuss the performance of each forecasting model in the 
following. 
  Table 4.5 shows the weak predictive power of the GARCHt model in 
comparison to the GARCHn. The poor performance of GARCHt at one-day-ahead 
forecasts comes from the left tail and the center of return distribution, while at the 
right tail, it performs slightly better than the benchmark model. At five-day-ahead 
quantile forecasts, the GARCHt even performs worse, as it provides less accurate 
forecasts at all quantiles compared to the GARCHn. The predictive power of GARCHt 
only excels at 22-day forecast horizon, when it dominates the benchmark at seven 
quantiles of the return distribution. Therefore, we argue that the use of Gaussian 
distributional assumption in GARCH(1,1) specification provides better quantile 
forecasts than the use of Student t distribution.  

The worst performance in the comparative evaluation belongs to the LQR-RV 
model. Indeed, the direct quantile forecasting model is inferior to the GARCHn across 
quantiles and forecast horizons. It is also noticeable that the ΔQS and ΔWQS between 
the LQR-RV and GARCHn are remarkably higher than any other models, especially at 
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two tails of the return distribution.  Thus, the LQR-RV model might not be the good 
choice of model in application to risk management. 

Contrary to the direct quantile forecasting model, the indirect forecasting 
models with the use of RV exhibit the robust and accurate quantile forecasts. Indeed, 
the ΔQS and ΔWQS show that the HAR-RV and HEAVY models are hardly beaten by 
the GARCHn at any quantiles. We find that the superiority of the RV-based indirect 
quantile forecasting models is stable across the tails and center of return distribution, 
at different forecast horizons. While the HEAVY is the most accurate model in one-
day-head quantile forecasts, the HAR-RV excels its predictive power in longer 
forecasts horizons e.g. 5-day-ahead and 22-day-ahead. The superiority of HAR-RV 
model in quantile forecasts with long forecast horizon can be attributed to the use of 
long memory to capture the long-lag effects, which was previously confirmed in prior 
studies (see Clements et al., 2008; Hua and Mazan, 2013; Huang et al., 2016). 

Table 4.5 shows that the good performance of alternative models is primarily 
due to the ability of the alternative models to capture the observations in the tails of 
the forecasted distribution. Indeed, the magnitude of ΔWDS in the tails of the 
distribution is much larger than in the centre of the distribution. Furthermore, there 
are asymmetries in the left and right tail of the forecasted density.  We find that the 
HEAVY and HAR-RV models perform comparatively better in the left tail than in the 
right tail. These models dominate others on forecasting accurate quantiles. Therefore, 
it implies that the HAR-RV and HEAVY models are more suitable for measuring tail 
risks, especially VaR. 
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 Table 4.5: Relative performance of the alternative forecasting models 
Notes: Table 4.5 presents the comparative performance of the GARCHt, HEAVY, HAR-RV and LQR-RV to the benchmark GARCHn at seven quantiles and three forecast horizons. Panel A presents the difference in QS of a model to the benchmark GARCHn as shown in (4.40), while Panel B shows the difference in WQS as shown in (4.41).  Both ΔíÝÕ� and ΔîíÝ�  are comparative and positively oriented, which means we prefer model with higher ΔíÝÕ�  and ΔîíÝ� .  

 Panel A: ΔQS  Panel B: ΔWQS  0.01 0.05 0.1 0.5 0.9 0.95 0.99  Uniform Center Tails Left Right h=1              GARCHt -0.0031 -0.0269 -0.0198 -0.0013 0.0156 0.0038 -0.0046  -0.0363 -0.0019 -0.0288 -0.0473 0.0109 HEAVY 0.0479 0.1701 0.1552 -0.0170 0.0866 0.1407 0.0296  0.6132 0.0330 0.4810 0.3893 0.2239 HAR-RV -0.0109 0.1252 0.1301 0.0014 -0.0680 0.0304 -0.0080  0.2001 0.0131 0.1476 0.2337 -0.0336 LQR-RV -0.2832 -0.5534 -0.5027 0.0128 -0.3035 -0.2643 -0.1436  -2.0378 -0.1124 -1.5881 -1.4095 -0.6283 h=5              GARCHt -0.0184 -0.0277 -0.0034 0.0054 -0.0154 -0.0234 0.0248  -0.0580 -0.0027 -0.0473 -0.0500 -0.0080 HEAVY 0.1335 0.2521 0.2531 0.0007 0.1433 0.1696 0.0811  1.0334 0.0580 0.8014 0.6814 0.3520 HAR-RV 0.1350 0.2987 0.3112 -0.0003 0.1904 0.2024 0.0805  1.2179 0.0710 0.9338 0.7983 0.4195 LQR-RV 0.0402 -0.2424 -0.2648 0.0194 -0.3493 -0.3241 -0.1899  -1.3110 -0.0788 -0.9958 -0.5510 -0.7600 h=22              GARCHt 0.1099 0.0885 0.0296 -0.0007 0.0044 0.0221 0.0045  0.2583 0.0093 0.2212 0.2300 0.0283 HEAVY 0.1718 0.2426 0.2179 -0.0005 0.0517 0.1044 0.1000  0.8878 0.0433 0.7147 0.6511 0.2368 HAR-RV 0.2005 0.3287 0.2963 0.0050 0.2303 0.2154 0.1272  1.4034 0.0777 1.0924 0.8927 0.5106 LQR-RV 0.0790 -0.0426 -0.0629 0.0196 -0.3022 -0.3115 -0.0390  -0.6596 -0.0444 -0.4821 -0.0997 -0.5600 
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4.6 Evaluation of forecast combinations 
This section aims to investigate whether quantile combination can improve 

forecast accuracy. In the first sub-section, we combine quantile forecasts at all seven 
quantile levels to find whether the combined quantile forecasts outperform 
individual forecasts. In line with previous section, we continue using the QS 
framework to compare forecast accuracy. The second sub-section presents the VaR 
implication of this research. Specifically, we investigate whether the combination of 
stand-alone VaR(1%), or 1%-quantile, can improve the accuracy of VaR forecasts.  To 
evaluate VaR combinations, we employ the two-stage backtesting framework which 
were previously presented in Chapter 3. 
4.6.1 Evaluation of quantile combinations 

As mentioned in section 2.4, we employ the CQOM to combine a pair of one-day-
ahead stand-alone quantile forecasts with the combination function (4.27) and 
optimization function (4.28). Recall that the literature commonly sets unity sum 
constraint to the loadings of individual forecasts (see Granger and Ramanathan, 
1984; Halbleib and Pohlmeier, 2012). However, we set no constraints to the loadings 
to relax model flexibility. We also set no standard on the combination of quantile 
forecasts. Specifically, we combine models with different distributional assumptions, 
with both low-frequency and high-frequency models and with direct and indirect 
quantile forecasts. With five stand-alone models, we have 10 forecast combinations. 
At every quantile, we compute the QS and WQS of the combined forecasts and 
compare its value to the benchmark GARCHn. The comparative performance of 
combined quantile forecasts is presented in Table 4.6. 
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Table 4.6: Evaluation of combined quantile forecasts 
Notes: Table 4.6 presents the comparative performance of the combined quantile forecasts to the benchmark GARCHn at seven quantiles and three forecast horizons. Panel A presents the difference in QS of these four models to the benchmark GARCHn as shown in (4.40), while Panel B shows the difference in WQS as shown in (4.41).  Both ΔíÝÕ� and ΔîíÝ�  are comparative and positively oriented, which means we prefer model that has higher ΔíÝÕ�  and ΔîíÝ� .  

 Panel A: ΔQS  Panel B: ΔWQS 
 0.01 0.05 0.1 0.5 0.9 0.95 0.99  Uniform Centre Tails Left  Right 

h=1              GARCHt + HAR-RV 0.0544 0.1639 0.1636 0.0016 0.0970 0.0900 0.0279  0.5985 0.0367 0.4515 0.3353 0.1896 GARCHt + LQR-RV 0.0253 -0.0088 -0.0015 0.0039 0.1386 0.0963 0.0266  0.2806 0.0180 0.2086 0.0183 0.2263 HAR-RV + LQR-RV 0.0632 0.1232 0.1504 0.0097 0.0435 0.0848 0.0353  0.5102 0.0307 0.3872 0.2981 0.1506 HEAVY + HAR-RV 0.0643 0.1849 0.1767 0.0016 0.1108 0.1317 0.0407  0.7108 0.0424 0.5413 0.3749 0.2512 HEAVY + LQR-RV 0.0705 0.1605 0.1512 0.0039 0.1729 0.1761 0.0534  0.7886 0.0474 0.5991 0.3396 0.3543 GARCHt + HEAVY 0.0587 0.1272 0.1586 0.0017 0.1606 0.1337 0.0353  0.6758 0.0425 0.5059 0.3032 0.2877 GARCHn + HARRV 0.0541 0.1600 0.1659 0.0016 0.0875 0.0945 0.0307  0.5944 0.0361 0.4498 0.3333 0.1887 GARCHn + HEAVY 0.0588 0.1600 0.1429 0.0016 0.1533 0.1531 0.0348  0.7045 0.0429 0.5330 0.3201 0.2987 GARCHn + LQR-RV 0.0261 0.0108 0.0149 0.0039 0.1330 0.1115 0.0293  0.3296 0.0207 0.2469 0.0500 0.2382 GARCHn + GARCHt 0.0199 0.0015 0.0359 0.0017 0.0893 0.0270 0.0138  0.1891 0.0134 0.1356 0.0513 0.1110   
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The Panel A of Table 4.6 presents the difference in the QS and WQS of 
combined forecasts with the benchmark model, while Panel B reports the difference 
in the WQS. It is clear that the quantile combinations outperform the benchmark 
model in most cases. The only exception is the combination of LQR-RV and GARCHt, 
when it poorly performs at 5% and 10% quantile. Comparing the value of ΔQS and 
ΔWQS between Table 4.6 and Table 4.5, we find that the quantile combinations 
outperform the stand-alone models in producing accurate quantile forecasts. 
Compared to stand-alone forecasts, the combined quantile forecasts provide very 
good results, which remain robust in respect of the choices of model and 
distributional assumptions. 

We also find that the good combination does not necessarily come from two 
good stand-alone forecasts. Indeed, the optimal combination is between the HEAVY, 
the best stand-alone model, and LQR-RV, the worst one. It can be explained that 
different models have their own dynamics and use different sets of information. The 
forecast combination is to pool the information contained in individual components. 
Thus, the good combination comes from the diversification gains from the stand-
alone forecasts.  
4.6.2 Evaluation of Value-at-Risk combinations 

Recall that VaR measures the maximum amount of will not be exceeded with 
a specific time interval and level of confidence. Conditional on the information set 
at time t, denoted as Ωt, the next day VaR is defined as the negative α-quantile of the 
return distribution: 

VaR(α)t+1 = -qα(rt+1|Ωt)                    (4.42) 



149 

 

It is obvious that VaR(1%) is the 1%-quantile forecast of the return distribution. 
Therefore, the combined VaR(1%) is indeed the 1%-quantile combinations in 
previous section. To investigate whether VaR combination can improve forecast 
accuracy, we compare its performance to the stand-alone 1%-quantile forecasts. 

We continue using our two-stage backtesting framework in Chapter 3 to 
evaluate VaR combinations. Recall that our backtesting procedure uses the 
statistical tests to evaluate the absolute performance and the magnitude LF to 
compare the accuracy of VaR estimates. We do not use QS approach to evaluate VaR 
forecasts, as the QS quantifies the asymmetric loss  q�ojÞ(α| Ωt) -  r�ojÞ in both cases 
that  r�ojÞ ≤  q�ojÞ(α| Ωt) and  r�ojÞ >  q�ojÞ(α| Ωt) (see Equation 4.38). However, 
risk managers are only concerned with the losses that exceed the given quantile e.g. 
when  r�ojY <  q�ojY(α| Ωt), which is. Standing on the risk management perspective, 
we argue that magnitude LF is more appropriate to evaluate VaR estimates than the 
QS. We present the evaluation of VaR combinations in Table 4.7. 
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Table 4.7: Evaluation of VaR combinations 
Notes: Table 4.7 presents the evaluation of VaR forecasts, including actual exception ratio (αh), the test statistics of the UC hypothesis (LRUC), the IND hypothesis (LRIND), the CC hypothesis (LRCC) and the magnitude LF. Panel A presents the test results of stand-alone VaR estimates, while Panel B reports the evaluation of VaR combinations.  αh LRUC LRIND LRCC LF 

GARCHn 0.0134 3.6701 0.1913 3.8613 0.0108 GARCHt 0.0137 4.2811** 0.1602 4.4413 0.0111 HEAVY 0.0137 4.2811** 0.1602 4.4413 0.0094 HAR-RV 0.0148 7.1393** 1.4183 8.5575** 0.0098 LQR-RV 0.0088 0.5083 0.5521 1.0604 0.0129       
GARCHt + HAR-RV 0.0131 0.0782 0.1481 0.0745 0.0090 
GARCHt + LQR-RV 0.0097 0.8486 0.4149 0.7043 0.0099 
HAR-RV + LQR-RV 0.0134 0.0554 0.1607 0.0597 0.0088 
HEAVY + HAR-RV 0.0131 0.0782 0.1481 0.0745 0.0085 
HEAVY + LQR-RV 0.0097 0.8486 0.4149 0.7043 0.0083 
GARCHt + HEAVY 0.0105 0.7519 0.4081 0.6756 0.0080 
GARCHn + HARRV 0.0131 0.0782 0.1481 0.0745 0.0089 
GARCHn + HEAVY 0.0100 0.9838 0.3626 0.6606 0.0077 
GARCHn + LQR-RV 0.0094 0.7164 0.4288 0.6846 0.0091 
GARCHn + GARCHt 0.0097 0.8486 0.4149 0.7043 0.0088       **: significant at 95% confidence level  Table 4.7 shows the poor performance of stand-alone VaR(1%), as three 

over five estimates are rejected by the UC test due to VaR understatement. Besides, 
we witness the clustering of VaR exceptions in case of HAR-RV, which leads to the 
rejection of the CC test. The GARCHt and HEAVY models, although being marginally 
rejected by the UC test, still be able to pass the CC test. The magnitude LF shows that 
HEAVY is the best stand-alone VaR estimates, while the LQR-RV is less accurate in 
capturing the excessive losses.  

It is clear that VaR combinations are superior to the individual VaR forecasts. 
Indeed, the exception ratios of combined VaR forecasts are closer to the 1% nominal 
rate than the stand-alone estimates. From Table 4.6, the failure rate of stand-alone 
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VaR ranges from 0.0088 to 0.0148 with average value of 0.01264. After the 
combination, the actual coverage rate of VaR exceptions reduces to 0.01117, which 
is closer to the nominal rate of 0.01. Recall that the stand-alone VaR estimate from 
HAR-RV model fails the coverage tests at the 1%-quantile (see Table 4.4 and Table 
4.7) as the model underestimates the left tail. However, when combining with other 
stand-alone forecasts, its performance remarkably makes a progress. Indeed, there 
is no evidence that the combinations including HAR-RV forecasts fail the tests of UC 
and IND hypotheses. 

The LF results given in Table 4.7 confirm the value of VaR combination in 
improving forecast accuracy. Put aside the individual VaR forecasts, VaR 
combinations are noticeable superior in minimizing the magnitude of exceeded 
losses. Not only reduce the failure rate, we find that VaR combinations also generate 
lower LF than any of its components. Quantitatively, the average LF of fives 
individual forecasts is 0.0104, while the corresponding value of 10 VaR 
combinations reduces to 0.0087. Thus, we support the use of VaR combinations in 
improving the accuracy of VaR forecast. 
4.7 Concluding remarks 

This chapter examines the value of intraday return information on the 
accuracy of quantile forecasts by comparing the out-of-sample performance of high-
frequency-based models to the GARCH(1,1) models. The realized volatility-based 
models excelling in this chapter include HAR-RV, the HEAVY and the LQR-RV model. 
The quantile forecasts are obtained using indirect approach (including the 
GARCH(1,1), HAR-RV and HEAVY) and direct approach (the LQR-RV model) using 
the  5-minute intraday data of WTI Crude Oil Futures. To investigate the accuracy of 
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quantile forecasts, we employ the two-stage evaluation, including the DQ test and 
the QS method. In comparison with the GARCH(1,1), we find the HAR-RV and 
HEAVY provide better quantile forecasts across quantile levels and forecast 
horizons, while the LQR-RV performs poorly.  

Chapter 4 also examines the power of quantile combination in improving 
forecast accuracy. Using the CQOM method, we combine one-day-ahead quantile 
forecasts in pair. We find that quantile combinations noticeably improve the 
accuracy of individual forecasts. In line with previous chapter, this study has an VaR 
implication. It is evident that VaR combination not only helps individual forecasts 
satisfy the UC and CC hypothesis, but also improve the forecast accuracy. 
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Chapter 5: Conclusions 
This thesis consists of three empirical studies on the estimation of VaR at 

banks. In the first study, we aim to investigate the empirical performance of VaR 
estimates at commercial banks. While prior studies only focus on bank VaRs in 
specific market, this study contributes to the literature as the first investigating the 
performance of bank VaRs on international level. We also use much richer dataset, 
covering the pre-crisis, financial crisis and post-crisis periods. Our empirical 
analysis shows that banks were systematically conservative in estimating their VaR 
in the pre-crisis and post-crisis periods. During the global financial crisis, we 
witnessed different behaviours of bank VaRs. While some banks continued to 
overstate their VaRs, other banks remarkably understated their risk. Thus, the 
number of VaR exceptions for these banks are excessively high and tend to cluster 
together. We find evidence of extreme losses during financial crisis which likely 
exceeded the economic capital of banks. We attribute the causes of the poor 
performance of bank VaRs to the use of contaminated data, the choice of VaR model 
and the benefit of VaR manipulation. 

The second empirical study contributes to the literature as one of the very few 
studies investigating the forecasting power of VaR models using bank data. 
Compared to prior studies, our rich and international dataset helps increasing the 
power of the statistical tests, which allows us to have more comprehensive 
evaluation. In this chapter, we compare the performance of internal VaR model at 
banks and alternative VaR approaches, including the HS, VCV and EVT. Our two-
stage backtest shows the superiority of the GARCH-type models in estimating bank 
VaRs. Regarding to the choice of distributional assumption, we find that the 
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Gaussian distribution uniformly improves VaR predictive power in normal periods, 
while the Student t is by far the best in estimating VaR during financial crisis. While 
the HS models perform inconsistently, the worst performances in our empirical 
analysis belong to the banks’ internal model and the EVT. It is surprising that the 
EVT approach, which was shown to be superior in estimating in VaR in prior studies, 
performs very poorly with bank data. We argue that good bank VaRs can be 
obtained by the simple GARCH-type models rather than the internal model at banks 
or other complicated models.   

The third study focuses on the accuracy of VaR estimates with high-frequency 
data. Specifically, we answered two questions: (i) does the use of high-frequency 
data helps improving forecast accuracy and (ii) does the use of quantile 
combination enhance the performance of individual quantile forecasts.  Our dataset 
includes the time series of 5-minute sampling frequency of WTI Crude Oil Futures 
from Jan 1995 to June 2016. Comparing the performance of the GARCH(1,1) models 
with the RV-based models, we find that the use of high-frequency data can improve 
the accuracy of quantile forecasts. Besides, we examine the power of quantile 
combination in improving forecast accuracy. Using the CQOM method, we combine 
one-day-ahead quantile forecasts in pair. We find that the quantile combinations 
noticeably improve the accuracy of individual forecasts.  

We find that the daily P/L and bank VaRs are not integrated across the entire 
trading portfolio. Indeed, they are estimated for subgroup of positions, including 
foreign exchange, interest rate, equities, commodities and credit portfolio. The 
information about the decompositions of bank VaRs and the VaR diversification 
effect can be found on banks’ annual report in the market risk management section. 
Therefore, it is possible to quantitatively estimate the average contribution of each 
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subgroup of VaR estimates and the impact of portfolio diversification resulting from 
the aggregated bank VaR. Using market data as proxy for each subgroup and 
considering the diversification effect, one can simulate the trading portfolio to use 
as the input of VaR models. 

 We suggest that future research should use high-frequency data for quantile 
forecasting.  One of the limitations of the thesis is that we only implement the real-
world density forecasts. Therefore, it is possible to carry out a risk-neutral density 
forecast and compare its performance to the real-world density forecast. 
Furthermore, future  studies can examine the combination of stand-alone density 
forecasts and compare their accuracy to the performance of quantile combinations. 
Finally, future research should focus on a larger dataset comprise of banks in both 
developed and developing countries. 
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