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We consider an anisotropic opinion formation process where the set of rules B, that

dictates what is the socially acceptable position, changes following the average voters'

opinion. As in the case of a constant B, conservative (agreement with B) and liberal

(agreement with neighbors) voters' attitudes are still represented by stable �xed

points in the phase space of the system; but with the di�erence that the conservative

�xed point is stable for all possible values of the inter-voter interaction. It has been

also observed that when the model is applied to su�ciently large populations, the

time needed to consolidate a position in agreement with B is �nite. We observed that

there is also a range of values of the interaction where the two stable points coexist,

opening the door for the modeling of bi-stability related phenomena, like stochastic

resonance and hysteresis.
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I. INTRODUCTION

Opinions are highly dynamical mental representations of the individual's beliefs, resulting from inference

processes frequently done with insu�cient information. They play a fundamental role in the individual's

reaction to social situations that can trigger collective responses. In this article we analyze a model of

anisotropic opinion formation in a community of interacting agents [1], where the social rule B, which

is the model's source of anisotropy, slowly changes with the average opinion of the population. As it is

presented in [1], we assume that the agents are adaptive in the sense that they learn to produce an opinion

from the available information, and that such learning process is in�uenced by B and by neighboring

agents. It has been observed that the dynamics that results from this process (and extended in [2]),

presents two stable points in the phase space of the system, one, dubbed conservative, for low values of

the inter-agent interaction, the other, dubbed liberal, for su�ciently high values of the interaction. These

two points do not coexist if B is constant. We will demonstrate in the following that if B adapts following

the average opinion of the population, the conservative �xed point becomes stable for all possible values

of the inter-agent interaction.

Following [1] we will represent social issues S ∈ {±1}N by binary strings of length N. These issues are

classi�ed as socially acceptable (or not) if σB(S) ≡ sgn(B · S) = 1 (−1), where B ∈ RN is the (internal

representation) vector associated to the perceptron B (for a clear de�nition of the perceptron network see

[3]), the function sign is de�ned as sgn(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0, and the inner product

is the usual one B · S ≡
∑N

i=1 BiSi. The agents, also represented by perceptrons, classify the social issues

according to their own internal representations Ja ∈ RN , according to σJa(S) ≡ sgn(Ja · S), where σJa(S)

is the opinion of agent a on issue S. In the current scenario we consider all vectors, i.e. B and all Ja, to be

plastic. Such plasticity is manifested through the way the agents' internal vectors get modi�ed through

the interaction with the society and their neighbors.

We represent the topology of the society by a directed graph G = {{a}, {ga,b}} where {a} is a set of

vertexes associated with the social agents and {ga,b} is a set of strengths ga,b that represent the in�uence

of agent b on agent a. The neighborhood of a is de�ned as Na = {c ∈ [M ] : ga,c > 0}. The total number

of vertexes (or agents) is M, and the average neighborhood size is de�ned as:

ν ≡ 1

M

M∑
a=1

|Na|, (1)

where |Na| is the cardinality of the set Na. We will consider graphs with ν ∼ O(1) only. We say a bond

(a, b) is active if ga,b > 0 and passive otherwise.

A. Update Algorithms

Assuming that the population of interacting agents receives information taken from the set S ≡

{(σB,n, σNa,n,Sn), n = 1, . . . , T}, where the issue Sn is presented at time n and then discarded, σB,n =
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sgn(Bn ·S) and σNa,n = {sgn(Jc,n ·Sn) : c ∈ Na} is the set form by the opinions of the agent a's neighbors,

the update equation for the internal representation of a is:

Ja,n+1 = Ja,n + ψa,n
σB,nSn√

N
, (2)

where σBS/
√
N is the (unit length) Hebb vector [4], that indicates the direction of the socially acceptable

position on Sn and ψa,n is the learning amplitude, that regulates how the information is incorporated

in the internal representation of a. The length of the opinion formation process T is considered to be

proportional to the number of issues presented to the agents. Based on social corroboration experiments

[5�7] and assuming that agent a is connected with the agents in Na, we propose ψa ≡ f |Ja|/
√
N Ψa where

f is a units constant, |Ja|/
√
N =

√∑N
j=1 J

2
a,j/N is a factor that has no impact on the learning e�ciency

of the algorithm [8] and it has been only considered for technical purposes and:

Ψa ≡ 1−Θ(−σBσa)
∑
c∈Na

ga,c
f

Θ(σaσc), (3)

where Θ(x) = 1 if x > 0 and 0 otherwise is the Heaviside step function. The update algorithm (2) has

been introduced (and discussed) in [1]. Let us de�ne the unit vectors b ≡ |B|−1B in the direction of the

internal representation of B, ja ≡ |Ja|−1Ja in the direction of the internal representation of agent a and

ja,⊥ = [1− (ja · b)2]−1/2[ja − (ja · b)b] in the direction of the component of Ja perpendicular to B. Given

that an agent's opinion is obtained through information processing using the internal representation vector

Ja, and that any modi�cation to the vector B in the direction of B does not produce any change on B's

opinions, we will construct the update algorithm for B by considering the vector:

L ≡ 1

M

M∑
c=1

jc,⊥. (4)

which is the arithmetic average over all the components of the internal representations Jc perpendicular

to B. Observe that B · L = 0 and |L · L| ≤ 1. Then:

Bn+1 = Bn +
λ√
N
fLn, (5)

where λ/
√
N is a suitable scale factor. Observe that if λ ∼ O(1) the updates of B at each time step are

very small, thus λ/
√
N is a measure of the inverse social inertia (if the mass of B is in�nite we wouldn't

expect any change at all, thus λ = 0). Observe also that |Bn+1|2 = |Bn|2 +O(f 2N−1), which implies (see

below) that the length of the vector B does not change with the update.

To help describe the state of the system we de�ne the variables:

φa ≡ σBja · S (6)

β ≡ σBb · S (7)
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and parameters:

Ra ≡ ja · b (8)

Wa,b ≡ ja · jb (9)

Ya,b ≡ ja,⊥ · jb,⊥. (10)

The variables depend explicitly on the information {σB,S} whereas the parameters depend on the internal

representations {{Ja},B} only. The variable β ≥ 0 and the smaller the β(S) the higher the likelihood of

S to be a socially neutral issue. (An issue S0 is dubbed socially neutral if there is no socially accepted

position about it, i.e. B ·S0 = 0.) The variable φa(S) indicates how much the vector Ja has to be modi�ed

to agree with B. If φa � 0 the modi�cation needed is negligible, if φa ' 0 the modi�cation needed is

moderated and if φa � 0 the modi�cation needed is substantial. The parameter Ra represents the level

of agreement of agent a with the society B, Wa,b represents the level of agreement between agents a and b

and the parameter Ya,b represents the level of agreement between agents a and b on socially neutral issues.

Given thatWa,b = RaRb+Ya,b
√

(1−R2
a)(1−R2

b) we only need to know {Ra} and {Ya,b} to know the state

of the society.

B. Update Equations

Given a graph G = {{a}, {ga,b}} with vertexes {a} and bonds {ga,b}, the state of the society can be

described by the sets of parameters {Ra}, de�ned on the vertexes and {Ya,b}, de�ned on the bonds of

G. The data accessible to the agent a is (σB, φa, φNa ,S) where φNa ≡ {φc|c ∈ Na}. The length of such a

training set is T = αmaxN , which implies that αmax = T/N. For a given number 1 ≤ n < N of examples

presented to the perceptrons there is an 0 < α < αmax such that n = α(n)N . Observe that, given that

the minimum increment in the number of examples presented is 1, ∆α(n) ≡ α(n + 1)− α(n) = 1/N . By

de�ning ∆t ≡ f∆α = f/N and by using the update rules (2) and (5), we have that the equation for the

evolution of the parameters Ra and Ya,b are:

∆Ra

∆t
= Ψa (β −Raφa) + λ

√
1−R2

aY a +O(∆t) (11)

∆Ya,b
∆t

=
Ψa√

1−R2
a

[
φb −Rbβ√

1−R2
b

− Ya,b
φa −Raβ√

1−R2
a

]
− λRa√

1−R2
a

(
Y b − Ya,bY a

)
+

+ITb,a +O(∆t) (12)

where Y a ≡ M−1
∑

c Ya,c and ITb,a represents a set of terms, identical to the previous ones in (12) with

the indexes a and b interchanged.

C. Large System Size Limit: Di�erential Equations

For su�ciently large N and su�ciently small f , the divided di�erence equation (11) and (12) can be

transformed into di�erential equations. It also occurs that the components of a social issue S are i.i.d
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variables with P(S) =
∏N

j=1[1
2
δSj ,1 + 1

2
δSj ,−1] where δS,X = 1 if S = X and 0 otherwise is the Kronecker

delta. This stochastic character is inherited by the variables β and {φa}, whose joint probability, in the

large N limit can be estimated. In particular, for a society with only two voters we have that the joint

probability is given by:

P (β, φa, φb) = N
(
β
∣∣Σa,bΛ(φa, φb),Σ

2
a,b

)
N
(
φb
∣∣Wa,bφa, 1−W 2

a,b

)
N (φa) (13)

where N (x|µ, σ2) ≡ exp (−(x− µ)2/2σ2) /
√

2πσ2 is a Gaussian distribution on x, centered at µ and with

variance σ2, N (x) = N (x|0, 1) and

Σ2
a,b ≡

(1−R2
a)(1−R2

b)(1− Y 2
a,b)

1−W 2
a,b

(14)

Λ(φa, φb) ≡
(Ra −Wa,bφb)φa + (Rb −Wa,bRa)φb√
(1−R2

a)(1−R2
b)(1− Y 2

a,b)(1−W 2
a,b)

. (15)

The full derivation of these expressions is presented in the appendix of [1]. For larger communities the

joint probability is much harder to obtain, but it can be estimated by considering an independent bond

approximation (also presented in [1]). Finally we have to consider the distribution of the parameters

{Ra} and {Ya,b}. Following [9], these parameters can be prove to be self-averaging in the large N limit, i.e.

limN→∞ 〈Ra〉 = Ra and limN→∞ 〈Ya,b〉 = Ya,b, where 〈x〉 =
´

dxP(x)x. This is a consequence from the fact

that for most cases the distribution of the parameters, inferred from the distribution of the issues S, is such

that the variances σ2
R ≡

〈
(Ra − 〈Ra〉)2〉 and σ2

Y ≡
〈
(Ya,b − 〈Ya,b〉)2〉 satisfy limN→∞ σ

2
R = limN→∞ σ

2
Y = 0.

1. Dimer

In the large N limit and for a population of only two voters we obtain the following equations:

Ṙa =
2− ηa,b

2
(1−R2

a) +
ηa,b
2

[
(1−R2

a)
arccos(Ya,b)

π
+ ρa,b (Rb −Wa,bRa)

]
+ λ
√

1−R2
a

1 + Ya,b
2

(16)

Ṙb =
2− ηb,a

2
(1−R2

b) +
ηb,a
2

[
(1−R2

b)
arccos(Ya,b)

π
+ ρb,a (Ra −Wa,bRb)

]
+ λ
√

1−R2
b

1 + Ya,b
2

(17)

Ẏa,b =
1− Y 2

a,b

2

[
2
√

1−R2
bηa,bρa,b − λRa√
1−R2

a

+ ITb,a

]
. (18)

where ηc,d ≡ limf→0 f
−1gc,d and

ρa,b ≡
1

2
− 1

π
arctan

 Ra −Wa,bRb√
(1−R2

a)(1−R2
b)(1− Y 2

a,b)

 . (19)

Supposing without loss of generality that ηa,b < ηb,a, we found that there are only two stable points in

the phase space of the system de�ned over the domain S ≡ {(Ra, Rb, Ya,b) : Ra, Rb, Ya,b ∈ [−1, 1]}, namely
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C? = (1, 1,−1), the conservative point, and L? = (−Rr,−Rv, 1), the liberal point, where:

Rr ≡

√
1−

(
2λ

ηa,b − 2

)2

(20)

Rv ≡
A
√
A2 + C2 − 4λ2 − 2λC

A2 + C2
(21)

and:

A ≡ ηb,a(1 +Rr)− 2 (22)

C ≡ 2ηb,aλ

ηa,b − 2
. (23)

For values of ηa,b ∈ [0, 2(λ+ 1)] and ηb,a > ηa,b we have that C
? is the only stable point and for 2(1 + λ) <

ηa,b < ηb,a both C? and L? are stable. To demonstrate this statement we �rst observe that for |Ya,b| ' 1

we can approximate:

ρa,b ' Θ

(
Ya,bRb

√
1−R2

a −Ra

√
1−R2

b

)
(24)

ρb,a ' Θ

(
Ya,bRa

√
1−R2

b −Rb

√
1−R2

a

)
. (25)

Close to the conservative point we can write Ra = cosα, Rb = cos β, and Ya,b = cos(π − y) for su�ciently

small α, β, y > 0. (Given that C? is a point in the border of the domain S, α, β, y > 0.) In such a case

Ya,bRa

√
1−R2

b − Rb

√
1−R2

a ' Ya,bRb

√
1−R2

a − Ra

√
1−R2

b ' −α − β and ρa,b ' ρb,a ' 0. Therefore

the system formed by the equations (16), (17) and (18) can be expressed as:

α̇ ' −α (26)

β̇ ' −β (27)

ẏ ' −λ
(

1

α
+

1

β

)
y2

2
. (28)

Thus α, β and y decay exponentially.

If 2(1 + λ) < ηa,b < ηb,a the previous stability analysis is also valid and C? is still a stable point of

the system. For values of Ra and Rb su�ciently close to −Rr and −Rv we can propose Ya,b = cos y,

Ra = cos(π − θr + α) and Rb = cos(π − θv + β), where θr = arccos(Rr), θv = arccos(Rv), and with α, β, y

su�ciently small. Observe that ηa,b < ηb,a then Ra > Rb, Rv > Rr and θr > θv (see Appendix A). Then,

Ya,bRa

√
1−R2

b−Rb

√
1−R2

a ' −Rv

√
1−R2

r+Rr

√
1−R2

v = sin(θv−θr) and ρa,b ' 0. Similarly ρb,a ' 1,

thus:

α̇ ' −ηa,b − 2

2
Rrα (29)

β̇ ' ηb,a
2

cos(θr − θv)α−
[
ηb,a − 2

2
Rv +

ηb,a
2

cos(θr − θv)
]
β (30)

ẏ ' −

[
2

√
1−R2

r

1−R2
v

ηb,a + λ

(
Rv√

1−R2
v

+
Rr√

1−R2
r

)]
y2

2
. (31)
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Figure 1. Ṙ as a function of R when (a) 2λ > η − 2 and (b) 2λ < η − 2. In the �rst case there is only on stable

�xed point (R = 1) in the second there are two co-existing stable �xed points R = −Rr (equation (20)) and R = 1.

The coe�cient at the right hand side (RHS) of (29) is positive if ηa,b > 2. Rris well de�ned if ηa,b > 2(1+λ)

thus α→ 0 exponentially. The factor in the second term at the RHS of (30) is positive, then β also decays

exponentially. Finally the RHS of (31) is negative thus Ya,b → 1 from bellow.

These results can be condensed into an e�ective model de�ned by the following equations:

Ṙa = 1−R2
a +

1 + Y eff
a,b

2

[
−ηa,b

2
(1−R2

a) +
(ηa,b

2
Θ(Rb −Ra) sin(θa − θb) + λ

)√
1−R2

a

]
(32)

Ṙb = 1−R2
b +

1 + Y eff
a,b

2

[
−ηb,a

2
(1−R2

b) +
(ηb,a

2
Θ(Ra −Rb) sin(θb − θa) + λ

)√
1−R2

b

]
, (33)

where Y eff
a,b is completely determined by the values of the social strengths and the initial conditions. Let us

de�ne ηmin ≡ {ηa,b, ηb,a} and Rmin = Ra if ηmin = ηa,b and Rb otherwise. Then Y
eff
a,b = 1 if ηmin > 2(1 + λ)

and Rmin(0) < Rr. Observe that the presence of this e�ective bond Y eff
a,b is a direct consequence of B

adapting to the average position of the dimer. The stability of this e�ective system is illustrated in �gure

1. If ηmin < 2(1 + λ) then there is only one stable point (�gure 1 (a)), whereas if ηmin > 2(1 + λ) there are

two stable points (�gure 1 (b)).

Following the de�nitions introduced in [1], we will dub an agent a consensual if it is within the basin of

attraction of C? and polarizing if it is not. In term of the social strengths, an agent has an attitude that

is conservative if ηa,b < 2(1 + λ), and liberal otherwise.
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D. Beyond the dimer

Following [1] we obtain for the vertexes and bond variables of a given graph the following set of equations:

Ṙa =

(
1−

∑
c∈Na

ηa,c
2

)
(1−R2

a) +

+
∑
c∈Na

ηa,c
2

[
(1−R2

a)
ϕa,c
π

+ ρa,c (Rc −Wa,cRa)
]

+ λ
√

1−R2
aY a (34)

Ẏa,b = (1− Y 2
a,b)

√
1−R2

b

1−R2
a

ηa,bρa,b −
λRa√
1−R2

a

(
Y b − Ya,bY a

)
+ ITb,a. (35)

With the insight gained from the dimer case we assume that there exists at least two �xed points, one

conservative, present for all values of the social strengths if λ > 0 and characterized by a positive value of

the magnetization:

µ ≡ lim
t→∞

1

M

∑
a

Ra(t) (36)

and one liberal, present for su�ciently large values of the social strengths and characterized by a negative

value of the magnetization.

If we impose the homogeneity condition:

Y a = Y b = Y ≡ 1

M2

∑
a,b

Ya,b (37)

which we expect to be valid for su�ciently large societies (i.e. 1 � M) with low connectivity (i.e. if the

size of a typical neighborhood is a quantity of order 1) and considering that most of the terms in (37)

come from passive bonds (ηa,b = ηb,a = 0) :

Y =
1

M

∑
a

{
1

M

∑
b∈Na

Ya,b +
1

M

∑
b/∈Na

Ya,b

}

=
1

M2

∑
a

∑
b/∈Na

Ya,b +O(M−1),

we conclude that:

Ẏ = −2λK Y (1− Y ) +O(M−1), (38)

where:

K ≡ 1

M

∑
a

Ra√
1−R2

a

. (39)

Observe that there are two possible stable values for Y , satisfying Y
?

= Θ(−K). We expect K > 0 (< 0) if

there is a su�cient number of consensual (polarizing) agents with Ra → 1(−1). This estimate implies that

if K > 0, we are in a conservative phase where the average position within a neighborhood of voters di�er

to the average position of a di�erent neighborhood on neutral social issues. Collectively, this adds up to a

Y = 0. If K < 0 we are in a liberal phase where di�erent neighborhoods agree on socially neutral issues,
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producing an e�ective Y = 1. In these circumstances the equation (35) for active bonds is transformed

into:

Ẏa,b '

[√
1−R2

b

1−R2
a

ηa,bρa,b(1 + Ya,b)− λ
Ra√

1−R2
a

Θ(−K) + ITb,a

]
(1− Ya,b). (40)

It is straight forward to conclude that if K > 0 or if K � 0 (where most of the agents are polarizing,

i.e. Rc < 0) Ya,b → 1. Equations (40) and the correspondent (34) become very di�cult to analyze for

intermediate values of K ∈ (−Kmin, 0), which occur for values of the social strengths such that νη '

2(1 + λ), where ν is the average neighborhood size (1) and η =
∑

ηa,b>0 ηa,b/
∑

ηa,b>0 1 is the average social

strength considering only active bonds. Preliminary numerical experiments suggest that for these values

of η the �nal states of the system are extremely sensitive to the initial conditions. Such an analysis will

be left for a future work.

By using that for the set of values of the social strengths for which the system is tractable the values of

Ya,b correspondent to active bonds converge to one, we propose the following equation for the set {Ra} :

Ṙa =

(
1−

∑
c∈Na

ηa,c
2

)
(1−R2

a) +

[∑
c∈Na

ηa,c
2

Θ(Rc −Ra) sin(θa − θc) + λ

]√
1−R2

a. (41)

Let us de�ne the e�ective social strength on a by its neighbors by the expression:

Ha ≡
∑
c∈Na

ηa,c. (42)

Let us assume that if Ha < Hb and after a su�ciently long time 0� t0 Ra ≥ Rb. With this assumption in

mind and without lose of generality, let us rearrange the labels in such a way that H1 < H2 < · · · < HM .

Then we have that for a time t > t0 there are a number of agents with equations of the form:

Ṙn =

(
1− Hn

2

)
(1−R2

n) + λ
√

1−R2
n (43)

where all agents (n), whose equations of motion do not depend on the variables associated to other agents,

are characterized by having constants Hn < Hni
where ni ∈ Nn, so n has a more conservative attitude than

its neighbors. We will call such agents the nucleating centers. The dynamic behavior of the nucleating

centers depends on the value of the constant Hn and (if Hn > 2(1 +λ)) of the value of Rn at time t0 where

the order Rn > Rn1 for all n1 ∈ Nn is established. To support this claim, let us integrate (43):

t− t0 = −2

ˆ θ

θ0

dx

2λ+ (2−Hn) sinx
. (44)

If H < 2(1 + λ) there is only one �xed point, R? = 1, reached from any initial condition θ0 ∈ (0, π). There

are three possible situations in this phase:

t−t0 =



4√
(2−Hn)2−4λ2

[
arctanh

(√
(2−Hn)2−4λ2

2−Hn

)
− arctanh

( √
(2−Hn)2−4λ2

2λ tan(θ0/2)+2−Hn

)]
Hn < 2(1− λ)

2
λ

tan(θ0/2)
tan(θ0/2)+1

Hn = 2(1− λ)

4√
4λ2−(2−Hn)2

[
arctan

(
2λ tan(θ0/2)+2−Hn√

4λ2−(2−Hn)2

)
− arctan

(
2−Hn√

4λ2−(2−Hn)2

)]
2(1− λ) < Hn < 2(1 + λ)

(45)
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but in all cases t−t0 <∞. At the critical point we have that Hn = 2(1+λ), in which case we have that the

stable points are R?
n = cos(θ?) with θ? = 0, π and basins of attraction (0, π/2) and (π/2, π) respectively:

t− t0 =


2
λ

tan(θ0/2)
tan(θ0/2)+1

θ0 ∈
(
0, π

2

)
limθ→0

1
θ

θ0 ∈
(
π
2
, π
)
.

(46)

Finally, for Hn > 2(1 + λ) we have that the two stable points are R?
n = cos(θ?) with θ? = 0, π− θr , where

θr ≡ arccos

√1−
(

2λ

Hn − 2

)2
 , (47)

and basins of attraction (0, θr) and (θr, π) respectively:

t− t0 =


4√

(Hn−2)2−4λ2

[
arctanh

( √
(Hn−2)2−4λ2

Hn−2−2λ tan(θ0/2)

)
− arctanh

(√
(Hn−2)2−4λ2

Hn−2

)]
θ0 ∈ (0, θr)

limθ→0 ln
(

1
θ

)
θ0 ∈ (θr, π).

(48)

Those, we observe that for all initial conditions belonging to the basin of attraction of the conservative

point R?
n = 1 the duration of the opinion formation process is �nite. The time the process lasts to reach

the liberal position R?
n = cos(π − θr) when Hn > 2(1 + λ) and θ0 ∈ (θr, π) is in�nite.

Suppose agent (o) is a nucleating center, suppose also that the initial the condition Ro(t0) ∈ (cos θr, 1)

(conservative basin of attraction) and the current time t is su�ciently larger than t0 to ensure convergence

to R?
o = 1. The element of o1 ∈ No with the lowest e�ective social strength Ho1 , is ruled by the equation

Ṙo1 =

(
1− Ho1 − ηo1,o

2

)
(1−R2

o1
) + λ

√
1−R2

o1
(49)

which is identical to (43) and can be analyzed in the same way. Also observe that the presence of a

consensual agent increases the chances of producing new nucleating centers due to the reduction of the

e�ective social strength of its neighbors, as it is observed in the �rst term of the RHS of (49). This

nucleating e�ect has been observed previously, close to the critical value of the social strength, i.e. H ∼

2(1 + λ). If the e�ective strengths HoL of agents located at a distance L of the nucleating center are

su�ciently large, it may occur that R?
oL
< 0, and a border of polarizing agents emerge around a cluster of

consensual agents. Such clusters have been observed emerging in the numerical experiments presented in

[1]. In the following section we will explore the distribution of cluster sizes as a function of the strengths

{ηa,b} in the square lattice.

II. ESTIMATED OBSERVABLES AND EXPERIMENTS IN THE SQUARE LATTICE

We consider the case of the agents sitting in the vertexes of a square lattice and where the ηa,c are

drawn from a Gaussian distribution centered at η and with variance ∆2. η, the average social strength,

represents the average in�uence neighbors have on each other and, in an indirect form, it also represents a

level of discontent with B. The parameter ∆ controls the level of variation, or disorder, in the set of social
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strengths. In the following we present a theoretical analysis based on the distribution of social strengths,

disregarding the initial conditions of the variables {Ra(0)}.

On a square lattice each agent is linked to precisely four neighbors. The expression:

P0 :=

ˆ 2(1+λ)

−∞

dx√
2π(2∆)2

exp

{
−1

2

(
x− 4η

2∆

)2
}

= H
(

4η − 2(1 + λ)

2∆

)
, (50)

where H(x) ≡
´∞
x

dyN (y) is the Gardner error function, represents the probability that a vertex o has a

conservative attitude 2(1+λ) >
∑

c∈No
ηo,c, in which case, for times not smaller than a su�ciently large t0,

Ro > Rb for all b ∈ No. At a link away from o there are the neighbors No = {o1, o2, o3, o4}. The probability

that these sites have a conservative attitude is, in similar manner and given that the center o is consensual,

P1,0 := H
(

3η − 2(1 + λ)√
3∆

)
. (51)

The vertexes of the square that complete the �rst layer around o have only two neighbors each that may

not be consensual, thus

P1,1 := H
(

2η − 2(1 + λ)√
2∆

)
, (52)

thus the probability of having a consensual cluster with only one layer of agents around the nucleating

center is

P1 = P0P4
1,0P4

1,1. (53)

By repeating this process L times, the probability of having a consensual cluster with L layers is

PL(η,∆) = P0(η,∆)[P1,0(η,∆)]4L[P1,1(η,∆)]4L
2

. (54)

In order to measure the distribution of clusters in a square lattice of side
√
M, we propose the following

quantities:

〈L〉 ≡
∑√M

j=1 jPj(η,∆)∑√M
j=1 Pj(η,∆)

(55)

σL ≡
√
〈L2〉 − 〈L〉2 (56)

〈L〉 is the estimated size of the cluster for the given values of the social strength and the disorder parameter,

and σL its standard deviation.

Consider now the following observables:

µ(η,∆) ≡ 1

M

∑
a

Ra(tmax), (57)

the magnetization, which measures the average social agreement with B, and the correlations de�ned as:

C`(η,∆) =
1

M

1

8`

∑
a

∑
b∈Na(`)

Ra(tmax)Rb(tmax)− µ2(η,∆), (58)
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where Na(`) is the set of agents located in the `-th shell of agent a. The behavior of the correlation can

be modeled by the expression:

C`(η,∆) = C0(η,∆) exp

(
− `

ξ(η,∆)

)
, (59)

where ξ(η,∆) is the correlation length and C0(η,∆) is the susceptibility.

To better understand the behavior of a system described by the equation (41) we perform a number of

numerical experiments on a square grid, where we placed the member of a society of size M = 104, with

periodic boundary conditions. The agents are connected to their �rst neighbors only with social strengths

{ηab} extracted from a Gaussian distribution with η mean and variance ∆2. Observe that, although the

{ηa,b} so produced are allowed to have negative values, the values of η and ∆ used are such that the chances

of a negative social strength occurring are negligible. The social update constant was kept constant at

λ = 0.1. The evolution of the agents' agreement with B is obtained from the system (41), which was

numerically integrated using a second order Runge-Kutta method, for a maximum time tmax = 100 time

units, with initial conditions uniformly distributed in [−1, 1], and for a variety of values for the parameters

η and ∆. For each ∆ = 0.001, 0.01 in increments of 0.001 and from 0.01 to 0.09 in increments of 0.01 we

found the value of η?(∆) that satis�es the equation µ(η?,∆) = 0. For those values (η?(∆),∆) we computed

〈L〉 (55) and σL (56), and estimated ξ(η?(∆),∆) averaged over 10 independent runs of the Runge-Kutta

integration process. The results of these experiences are presented in �gure 2.

III. CONCLUSIONS

We proposed a model of opinion formation in societies of adaptive agents where there is a set of rules

B that determined what is socially acceptable. In the present work we allow B to adjust according to the

average position of the population with a constant of proportionality λ. By the application of statistical

mechanics techniques we constructed a description of the system's behavior based on a set of di�erential

equations ruling the evolution of the parameters {Ra}, that represent the agreement of the agents {a}

with B, and {Yab} that represent the agreement between two connected agents a and b on neutral issues

(i.e. issues for which B has no opinion). For the case of a society with only two individuals, the system

can be described by the equations (16), (17) and (18). For this system there are only two stable �xed

points, dubbed the conservative point C? with co-ordinates R?
a = R?

b = −Y ?
a,b = 1, and the liberal point

L? with co-ordinates R?
max = −Rr, R

?
min = −Rv and Y

?
a,b = 1, where Rmin(max) ≡ min(max){Ra, Rb}, and

Rr and Rv are given by (20) and (21) respectively. We observe that in the case of λ > 0 and opposite to

the case reported in [1] where λ = 0, consensual agents converge to the position of B, represented by C?,

with opposite positions on neutral issues. This e�ect is due to the action of B to adapt to the average

position of a and b. The vector obtained by averaging the internal representations of a and b is a coplanar

vector bisecting the angle subtended between Ja and Jb. If the internal representation of B is modi�ed,

it eventually position itself in between Ja and Jb and, given that the plane perpendicular to the internal
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Figure 2. Expected number of layers in the typical cluster 〈L〉±σL (full line) within one standard deviation (light

shadow), and correlation lengths ξ (full circles, averaged over 10 independent numerical integrations of (41)) as

functions of the disorder ∆, for values of the social strength η?(∆), λ = 0.1, for a society of M = 10000 agents

arranged on a square lattice with periodic boundary conditions. In the insets we have snapshots of the system at,

from left to right, ∆ = 0.001, 0.005, 0.06, and 0.09 respectively. The pixel at position (i, j), 1 ≤ i, j ≤ 100 in the

insets represents the value of Ri,j with values between -1 and 1 according to the provided scale.

representation B has also changed, Ja,⊥ and Jb,⊥ become collinear and opposite. Thus, the e�ective action

of B adapting to the average position of the voters favors a consensus constructed over the polarization of

the agents' positions on the plane of neutral issues. Only when the social strengths are su�ciently high,

both agents become polarized with respect to B and with equal positions on socially neutral issues. In

this case the adaptation of B is only su�cient to reduce the �nal position of a and b to −Rr > −Rv > −1

(remember that in the case λ = 0 Ra = Rb = −1).

For a larger population M > 2, the equations obtained by averaging the divided di�erence equations

(11) and (12) using the probability distribution from the independent bond approximation are equations

(34) and (35). We observed that, in the homogeneous approximation (37), the average Y is constructed

mostly with terms that correspond to passive bonds. Such a quantity is ruled by a di�erential equation

with two �xed points Y
?

= 0, 1. The �xed point Y
?

= 0 appears for su�ciently low values of the social

strengths. In this phase is also observed that the connected bond parameters converge to Y ?
a,b = 1. Thus,

in this conservative phase, the e�ect of the adaptation of B to the average position of the population

produces an overall disagreement on socially neutral issues between neighborhoods that are mutually

disconnected, producing Y = 0. For large enough values of the social strengths we observe an overall

agreement amongst the agents that adds up to Y = 1. The model as it stands from (34) and (35) becomes

di�cult to analyze for intermediate values of the social strengths νη ∼ 2(1 + λ). This problem arises from
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the construction of the joint probability P(β, {φa,}), which is an approximation based on independent

bonds. In this approximation the e�ect of neighbors is overestimated, producing di�erential equations

with no stable steady points close to the boundary between the liberal and conservative phases. To

overcome this problem we considered the e�ective model presented in equation (41), where the values of

the {Ya,b} for active bonds is set to 1. Such an equation is not obtained by averaging (11) with a suitable

joint probability, but by generalizing the e�ective system of equations for the dimer ((32) and (33)).

The e�ective model presented in equation (41) also admits one stable point (conservative) for su�ciently

low values of the social strengths and two stable points (one conservative and one liberal) for su�ciently

large values of the social strengths. The main characteristic of this model probably is that the length of

the learning process (i.e. the time required to reach a �x point in the phase space) is �nite if the initial

conditions are in the conservative basin of attraction (equations (45 to 48)).

By considering the social strengths to be drawn from a Gaussian distribution with mean η and variance

∆2 for a population of interactive agents placed on a square lattice, we estimated the expected size of

the conservative clusters 〈L〉 and its standard deviation σL, equations (55) and (56), to be formed around

nucleating centers, as de�ned by (43). We contrasted this quantity with the correlation length (59) obtained

from numerical integrations of (41), at the point of transition between the conservative (low average social

strength) and liberal (high average social strength) phases, de�ned by µ(η,∆) = 0. The results, presented

in �gure 2, show that these quantities are strongly correlated.

The most relevant e�ect observed, the emergence of conservative clusters when the average importance

to the peers' opinions is increased, has a clear interpretation in the context of opinion formation. Let

us assume we live in a society where the status quo B is well established. Suppose there is evidence

in support of an action against the established order, and in consequence a policy is made to challenge

B. Such evidence may produce a change in attitude in the social members, trying to corroborate their

opinions by contrasting them with their peers (increase in η). Such corroboration is not sought when there

is general conformity with B. Members of the society that remain in agreement with B have the e�ect

of leaders [10] and conservative clusters emerge and remain, even if η is increased by the emergence of

more evidence in favor of the challenging policy. It has been observed that the e�ect of a positive λ for

large enough values of the social strengths is the stabilization of the conservative �xed point R = 1. The

analysis of a bi-stable system under periodic perturbations [11] has been left for a following article.

Appendix A: Demonstration of the order associated to the social strengths

Observe that our analysis is based on the supposition that if ηa,b < ηb,a then, at the stable point and in

a neighborhood of it we have that Rb < Ra. Observe that by the de�nitions of A and C (equations (22)

and (23) respectively) we have that:
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ηb,a > ηa,b > 2(1 + λ)

ηb,aRr + ηb,a − 2 > ηb,aRr + ηa,b − 2 > 0(
2λ

ηa,b − 2

)2

(ηb,aRr + ηb,a − 2)2 >

(
2λ

ηa,b − 2

)2

(ηb,aRr + ηa,b − 2)2

(
2λ

ηa,b − 2

)2

A2 > (CRr + 2λ)2

(
1−R2

r

)
A2 > C2R2

r + 4λCRr + 4λ2

(A2 + C2)A2 > (A2 + C2)
(
(A2 + C2)R2

r + 4λCRr + 4λ2
)

(A2 + C2 − 4λ2)A2 > (A2 + C2)2R2
r + 4(A2 + C2)λCRr + 4λ2C2

(A2 + C2 − 4λ2)A2 >
[
(A2 + C2)Rr + 2λC

]2√
A2(A2 + C2 − 4λ2) > (A2 + C2)Rr + 2λC

lim
t→∞

Ra(t) = −Rr >
2λC −

√
A2(A2 + C2 − 4λ2)

A2 + C2
= −Rv = lim

t→∞
Rb(t) 2.

Thus, for a su�ciently large t, we have that Ra(t) > Rb(t) due to the continuity of these functions.
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