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ABSTRACT 

Bacteriophage therapy is a promising new treatment that may help overcome the threat posed 

by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalised 

patients. The development of biocompatible and sustainable vehicles for incorporation of 

viable bacterial viruses into a wound dressing is a promising alternative. This paper evaluates 

the anti-microbial efficacy of Bacteriophage K against Staphylococcus aureus over time, 

when stabilised and delivered via an oil-in-water nano-emulsion. Nano-emulsions were 

formulated via thermal phase inversion emulsification, and then bacterial growth was 

challenged with either native emulsion, or emulsion combined with Bacteriophage K. 

Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed 

by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K / nano-

emulsion formulations have greater anti-microbial activity than freely suspended 

bacteriophage. The phage loaded emulsions caused rapid and complete bacterial death of 

three different strains of Staphylococcus aureus. The same effect was observed for 

preparations that were either stored at room temperature (18 - 20°C), or chilled at 4°C, for up 

to 10 days of storage. A response surface design of experiments was used to gain insight on 

the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. 

More diluted emulsions had a less significant effect on bacterial growth, and diluted 

bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement 

of bacteriophage activity when delivered via nano-emulsions has yet to be reported. This 

prompts further investigation into the use of these formulations for the development of novel 

anti-microbial wound management strategies. 

 

Keywords: S. aureus infections, Phage therapy, oil-in-water nano-emulsion, burn wound 

related infections, responsive wound dressings. 
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INTRODUCTION 
 

The rise in antibiotic resistant bacteria such as methicillin resistant Staphylococcus aureus 

(MRSA) is widely reported1, but the rate of development of new antibiotics to treat these 

emerging ‘superbugs’ is low2. Only Linezolid has been approved for the treatment of acute 

skin infections since 20003, although Tedizolid is currently being developed4. Skin is the 

primary defence mechanism against infection5; hence injuries or burns constitute significant 

pathways for bacterial infection. Burns are especially susceptible to bacterial colonization 

with an estimated 10% of all burn injuries becoming infected6. Infection consequences 

include increased patient morbidity and mortality, and increased cost of treatment7,8 due to 

prolonged hospitalisation. Staphylococcus aureus (MRSA) is the most frequently detected 

antibiotic-resistant pathogen in hospitals worldwide9,10. The lack of effective new antibiotics 

has led to interest in alternative therapies11, including antimicrobial peptides12, microbial 

therapy, and the use of viruses that kill bacteria13,14. Such bacterial viruses, called 

bacteriophages or phages, attach to bacterial cell surfaces, use them as a host for their own 

replication, and eventually produce bacterial lysis. Bacteriophages therefore have potential 

for control of microbial infections15. 

Therapeutic use of bacteriophages dates from the 1930s and they are now being reconsidered 

as alternatives to antibiotics. The advantages of bacteriophage therapy include their capacity 

to infect bacterial cells, their abundance and ecological ‘friendliness’. They can be used as a 

‘phage-cocktail’, they multiply exponentially, and they do not affect human microflora and 

hence do not generate unwanted side-effects16. However, their broad diversity presents a 

challenge to our detailed understanding of their potential17. Bacteriophages have been used 

against skin and wound infections, with success rates up to 90% against Staphylococcus 

aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa14. Phage cocktails have been 

shown to increase survival significantly in mice with burn wound injuries18, and used in ear 



4 
 

infections of dogs19. Once a safe phage or ‘phage-cocktail’ has been identified, the aim is to 

deliver it to the point of infection without losing efficacy, either during delivery or storage.  

Surface burns are normally treated via cleaning to remove dead tissue, and covering the burn 

in a dressing to promote re-epithelisation and reduce or prevent infection. Various anti-

microbial wound dressings are available, including ActicoteTM, a silver-containing dressing. 

However, recent analysis of anti-microbial wound dressings has queried their effectiveness 

compared to passive alternatives20. 

Nano-emulsions provide enhanced biocompatibility compared to emulsions as they require 

less surfactant, which may affect the skin at high concentration21. Additionally the small 

droplet size allows greater penetration and distribution through the skin compared to 

emulsions22,23. A benefit of nano-emulsions as carriers of bacteriophage is prevention of 

aggregation24 which can result in precipitation and loss of biological activity. Nano-

emulsions can also provide stability in long-term phage storage without a significant decrease 

in infectivity25. Oil-in-water emulsions enhance transdermal penetration, and depending on 

the composition and the use of thickeners, numerous formulations can be achieved. However 

screening the wide variety of potential emulsion formulations is a challenge when looking for 

biocompatibility so careful design of experiments is essential. The efficacy of encapsulation 

for delivery and storage of bacteriophage has been demonstrated26,27. Nevertheless, phage 

infectivity and survival may be influenced by formulation composition28–35, which can 

damage phage structural components. Phage may be exposed to abnormal environmental 

conditions such as the emulsion components themselves. Furthermore, the compounds 

present in the nano-emulsion may influence bacterial growth itself, and thus mask the 

specific effect of the phage.  

This work evaluates the in vitro anti-microbial efficacy of Bacteriophage K when stabilised 

in an oil-in-water nano-emulsion, compared to simple delivery as an aqueous dispersion. 
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Bacteriophage K is lytic for a wide range of S. aureus strains as well as other staphylococci – 

three strains are selected here. The emulsion / phage formulation will form the basis for 

development of a wound dressing or topical cream, containing stabilised phage.  

MATERIALS AND METHODS 

Chemicals 

Brij® O10 (Polyoxyethylene (10) oleyl ether), soybean oil, Tryptic soy broth (TSB), tryptic 

soy agar (TSA), NaCl, MgSO4·7H2O, Tris-Cl, and gelatine were purchased from Sigma-

Aldrich (Dorset, UK). Reverse Osmosis water was produced in the laboratory.  

Bacterial and bacteriophage strains 

Staphylococcus aureus strains H560, H325, and Btn766 (Bacteriophage K sensitive strains), 

and Bacteriophage K, were obtained from AmpliPhi Biosciences (Bedfordshire, UK). 

Emulsification method 

Thermal phase inversion emulsification was used36,37 to produce formulations containing 5% 

(w/w) soybean oil as the organic phase, 15% (w/w) Brij O10® as surfactant, and 80% (w/w) 

SM buffer (100 mM NaCl, 8 mM MgSO4·7H2O, 50 mM Tris-Cl, 0.002% (w/v) gelatin, pH 

7.5) as the aqueous phase. The relatively high concentration of emulsifier allowed the more 

pronounced effects on bacterial growth and bacteriophage infectivity to be detected during a 

shorter storage time. The presence of SM buffer as the aqueous phase resulted in smaller 

emulsion droplets (via the salting out effect) and stabilised pH to an appropriate value for 

bacteriophage storage. The emulsion components were initially sterilised by filtration, and 

formulation took place under aseptic conditions. Brij O10® was added to the corresponding 

amount of SM buffer under mixing, and the required amount of soybean oil was added. 

Stirring continued for at least one hour until a homogenous mixture was achieved (complete 

dissolution of emulsifier). The coarse emulsion was transferred into a round-bottom flask 

with a condenser and heated with a hot water bath until the Phase Inversion Temperature 
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(PIT, approximately 80°C) was reached, as indicated by the appearance of a clear or bluish 

colour. Finally the emulsion was cooled rapidly by immersion in an ice bath, while stirring, 

to avoid coalescence.  

Bacteriophage propagation and purification 

S. aureus H560 was used as a host for the propagation of Bacteriophage K. It was grown in 

10 ml TSB overnight with orbital agitation. 100 μl of actively growing culture was mixed 

with 40 μl of Bacteriophage K stock solution, i.e. suspended in SM buffer, and incubated for 

5 minutes at room temperature to allow bacteriophages to adsorb. 3 ml of top tryptic soy agar 

(TSB containing 1.5 % (w/w) of bacteriological agar) was added to the bacteria-

bacteriophage mixture and poured onto a TSA plate, which was incubated overnight. 3 ml of 

SM buffer were added to the resulting confluent lysis plate. This plate was incubated with 

gentle shaking for approximately 4 hours at room temperature (18-20°C). The phage-

containing liquid was removed, centrifuged and passed through a 0.22 μm filter to eliminate 

possible bacterial debris. The titre of the phage lysate was determined by plaque assay. 

Incorporation of bacteriophage into emulsions 

The introduction of Bacteriophage K into the emulsion required dilution of the phage lysate 

to a concentration that lead to a noticeable decrease in bacterial growth, as indicated by a 

reduction in optical absorbance. Dilutions were made using emulsion as both diluent and 

storage media. The final concentration of bacteriophage used for infectivity tests 

corresponded to a multiplicity of infection (MOI) of about 0.1. Bacteriophage-emulsion 

preparations were kept either at room temperature (18-20°C) or cold temperature (4°C) over 

ten days and their ability to infect bacteria was tested regularly. 

Plaque assays and colony counting 

Standard colony counting was used to quantify bacterial concentration (colony forming units, 

CFU ml-1) and standard plaque assays were used to measure bacteriophage concentration 
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(plaque forming units, PFU ml-1) using overnight cultures of the tested strain with an initial 

optical density (O.D) of 1 – 1.5 absorbance units (a.u) at 600 nm, or about 108 CFU ml-1. 

Plaque assays could only be used for the quantification of bacteriophage infectivity in buffer, 

as the effect of the emulsion on the growth of the bacterial lawn was not measurable via this 

technique. Therefore, a fair comparison between free phage suspension and phage-emulsion 

formulations was not possible via standard PFU counting.  

Measurement of turbidity of bacterial samples 

Visual PFU counting may lead to errors and lack of reproducibility, hence optical density 

measurement was used as an alternative, as the turbidity of bacteria cultures in TSB should 

be reduced by the lytic action of bacteriophage. Variation of optical density with time was 

measured in triplicate via 96 multi-well plates, using a micro-plate reader (SPECTROstar 

Omega, BMG LABTECH). Measurements took place overnight for approximately 15 hours 

at 37°C and 600 nm, as a simulation of bacterial growth and phage infection in the incubator. 

Measurement of infectivity of bacteriophage preparations 

Bacteriophage infectivity was followed by the decrease in optical density of bacterial 

suspensions. Bacterial growth was challenged with either aqueous suspensions of 

bacteriophage in SM buffer, or bacteriophage-emulsion preparation, all in triplicate. The 

initial concentration of bacteriophage was the same in each case and equivalent to a MOI of 

0.1. The initial bacterial concentration was equivalent to 1 a.u., corresponding to about 108 

CFU ml-1. As samples comprised 100 μl of the appropriately diluted overnight bacterial 

culture, and 100 μl of the corresponding bacteriophage formulation, the MOI was preserved. 

The optical density of samples was measured at 600 nm for approximately 15 hours at 37°C. 

The bacteriophage-emulsion formulation was stored for a 10 day period, and infectivity was 

measured over time by taking samples and running growth curves and measuring the final 

bacterial concentration after the 15 hour treatment for each sample.  
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Characterisation of emulsions and stability 

Droplet size can determine the stability of emulsions as it influences the possibility of 

coalescence or creaming. This was measured using a ZETASIZER Nano Series (Malvern 

Instruments), based on the principle of dynamic light scattering (DLS) and Brownian motion 

of particles. Samples needed to be suitably diluted in water or buffer before being subjected 

to measurement. The stability of emulsions was also tracked via measurement of optical 

density over time38 using the micro-plate reader.  

Surface response experimental design to evaluate the influence of emulsion formulation 

on bacterial growth and bacteriophage infectivity 

A mixture containing emulsion droplets, bacteriophage, and bacteria could result in complex 

interactions between any pair of components, or all three. To understand the relative 

influence of these three components, experiments were designed using Response Surface 

Methodology (RSM). The main objective was to evaluate the effect of emulsion droplet 

concentration on bacterial growth under different growth conditions, and to detect variations 

in bacteriophage infectivity when emulsion was present. RSM was selected as the 

relationship between these variables was initially unknown. Experiments were designed using 

Minitab16® (Minitab Statistical Software), and experiments were randomised to meet the 

statistical assumptions and reduce the effects of other factors. Initial concentration of bacteria 

and the bacteria : emulsion droplet ratio were the factors used to study bacterial growth in 

emulsion for each of the bacterial strains and the different levels selected for each factor are 

presented in Table 1. Growth rate and carrying capacity were the response variables 

characterised in relation to bacterial growth. Values for these parameters were estimated from 

the Verhulst (logistic) model of population growth (Equation 1). 

           [1] 

where N(t) is the concentration of bacteria (CFU ml-1), t is time (h), a is the growth rate of the 
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bacterial population (h-1), and C is the carrying capacity or maximum population size (CFU 

ml-1). The logistic growth curve was preferred as it gives a reasonable fit despite its 

simplicity39. Bacterial growth was measured by turbidity assays (600 nm) at 37°C with 

orbital agitation for 20 hours, under the conditions specified by the experimental design, 

using six replicates. Optical density growth curves were used to estimate the parameters in 

the integrated form of the Vershulst model (Equation 2) using Origin 8 software (OriginLab, 

Northampton, MA)40.  

            [2] 

Here OD(t) is optical density of bacteria at time t (a.u.) – equivalent to N(t) in Equation 1, t is 

time (h), a is the growth rate of the bacterial population (h-1), B is an integration constant, and 

C is the carrying capacity or maximum population size (a.u.) as before. A non-linear least 

squares error minimisation algorithm was used to estimate the parameter values. 

Three parameters were considered for the factorial study of bacteriophage infectivity: the 

initial concentration of bacteria, the bacteria : emulsion droplet ratio, and the initial 

concentration of bacteriophage for each of the bacterial strains. The factor levels are listed in 

Table 1. The response variable was the final concentration of bacteria after contact with the 

bacteriophage-emulsion preparation (20 hours). 

RESULTS AND DISCUSSION 

Characterisation of emulsions 

Nano-emulsions prepared using the PIT method were transparent, with a droplet size of about 

20 nm, as previously reported for this formulation (5% (w/w) Soybean oil, 15% (w/w) Brij 

O10® surfactant, 80% (w/w) SM buffer)41. Nano-emulsions remained clear and transparent 

to the naked eye during the 10 day testing period, and optical density was also constant. No 

clouding, phase separation or coalescence was observed when stored at room or cold 
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temperature. Nano-emulsion stability is not only caused by the small droplet size, but also by 

the narrow droplet size distribution36. 

Influence of emulsion on bacterial growth 

The measurements of bacterial OD were all performed in triplicate, with average values 

being plotted in Figures 1 to 3. One in five of the error bars (representing standard deviation 

of the replicates) are presented for clarity. Nano-emulsion and TSB are virtually transparent 

at 600 nm; however, their baseline OD was subtracted from the raw data and appropriate 

propagation of errors was performed.  

S aureus H560 (Figure 1) grew at an initial high rate in both TSB and in 1: 10 diluted nano-

emulsion. When S aureus H560 was grown in more concentrated emulsion (1:1 dilution) the 

growth rate is slower, with a lag period in the first two or three hours. No noticeable 

difference in final bacterial concentration was observed for S. aureus H560 growing in TSB 

and 1:10 diluted nano-emulsion, but there was a decrease of about 25% in the final OD at the 

stationary phase when S. aureus H560 was grown in emulsion diluted 1:1. Figure 2 shows 

that growth of S. aureus H325 in both 1:1 and 1:10 diluted emulsion results in similar growth 

rates and final bacterial concentration. The OD in the stationary phase was reduced by 46% 

when emulsion was present, if compared with normal growth in TSB. Figure 3 shows that S. 

aureus Btn766 growth differed from H560 and H325 mainly in the 1:1 diluted emulsion, with 

lag period of almost 5 hours, a concentration peak at about 9 hours, and a slight decline 

before the stationary phase. When Btn766 was grown in 1:1 or 1:10 emulsion dilutions the 

final bacterial concentration was about the same, at almost 33% less than in TSB.  

To summarise, strains H560, H325, and Btn766 experienced the slowest growth when they 

were grown in 1:1 diluted emulsion. The maximum concentration of bacteria achieved was 

also affected, mainly being reduced for strains H325 and Btn766 growing in 1:10 and 1:1 

nano-emulsion dilutions (Figures 2 and 3). The slight decrease in bacterial concentration at 
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the end of the measurement period was attributed to the gravitational deposition of bacteria 

on the wells. The growth was generally slower in the presence of emulsion, but there was no 

apparent overall growth inhibition or antimicrobial effect, which is supported by the 

literature42–44. The distinctive growth patterns for the three bacterial strains suggest that 

variations in growth might be related to the specific metabolism of each strain. Bacteria tend 

to grow in the aqueous phase of food-related emulsion formulations, and the presence and 

concentration of emulsion droplets constitutes an important factor that can influence bacterial 

growth45,46. The observed decelerating effect of emulsions on bacterial growth is supported 

by published work, where E. coli is shown to grow slower when higher concentrations of 

emulsion were present in the growth medium47. These authors summarise possible 

explanations for this phenomenon as being impeded diffusion of nutrients through the 

organic phase, spatial limitations between bacteria and emulsion droplets, and facilitated 

accumulation of waste products, leading to growth inhibition. Interactions between emulsion 

droplets and bacteria have been shown to take place mainly due to electrostatic interactions48. 

This paper shows that emulsions formulated with non-ionic surfactants did not show changes 

in droplet size, and concludes that interactions bacteria and emulsion droplets did not affect 

emulsion stability. In our work, a non-ionic surfactant was used and the emulsion droplet size 

was in the range of nanometres. This explains the lack of variation in emulsion transparency 

when bacteria were present. However, it is clear that appropriate controls are required when 

bacteriophage and bacteriophage-emulsion formulations are tested against S. aureus, if they 

are to be effectively compared. When bacteriophage infectivity was tested, bacterial growth 

in TSB was selected as the control, whilst bacterial growth in emulsion was chosen as the 

control for bacteriophage-emulsion formulation testing. In this way the killing effects of 

phage, measured via reduction in bacterial OD, may be effectively compared. The influence 

of nano-emulsions on bacterial growth also prevented the use of standard plaque forming unit 
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assays for the quantification of bacteriophage infectivity. This restricted the CFU and PFU 

counting methods to the determination of initial concentrations of bacteria and bacteriophage. 

Efficacy of bacteriophage preparation 

Measurements were performed in triplicate, and one in five of the error bars, representing the 

standard deviation of triplicates, for the data are shown for clarity. When S. aureus H560, 

H325 and Btn766 were challenged with bacteriophage-emulsion preparations different 

responses were observed. Figures 4 to 6 show that for all strains, bacteriophage stored in SM 

buffer had no significant killing effect on bacteria after nine days of storage. The growth 

curves of S. aureus in TSB ( ) and in the presence of bacteriophage ( ) show almost 

identical shapes, and they reach the same final concentration after 15 hours. For S. aureus 

H560 and Btn766 (Figures 4 and 6), bacterial concentration was dramatically reduced after 

the first five hours of treatment with bacteriophage-emulsion formulation ( ), when 

compared with bacterial growth in emulsion ( ). From hour 7 the concentration is close to 

zero, indicating almost complete lysis of bacterial cells. In Figure 5, S. aureus H325 

continues growing to about 8 hours, but the subsequent decrease in concentration shows a 

significant killing effect by 15 hours. Enhanced lytic activity of bacteriophage has been 

demonstrated when stored in nano-emulsions for nine days. No similar effect has been 

reported in the literature, except for mention of a higher bacteriophage titre achieved within 

an emulsion49. Bacteriophages may be protected against inactivation due to electrostatic 

interactions between bacteriophage surface proteins and nano-emulsion droplets50. This 

shielding mechanism, which could preserve lytic activity, and combined with more 

favourable contact between bacteriophage and bacteria in the presence of emulsion, could 

result in an enhanced killing effect. The literature suggests that certain surfactants (e.g. 

emulsan) do not interfere with phage binding to bacterial surfaces; moreover the binding 

occurs at the emulsion interface51.  
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Surface response experimental design to evaluate the influence of emulsions on bacterial 

growth and bacteriophage infectivity 

Enhancement of infectivity of Bacteriophage K against S. aureus by nano-emulsion has been 

demonstrated (Figures 4 – 6), but the mechanisms of enhancement are not specifically 

understood. Factorial experimental design followed by RSM analysis was used to identify the 

most influential variables in the system on bacterial growth and bacteriophage infectivity. 

Normal probability plots show a normal distribution of the residuals between RSM 

predictions and experimental data for the three responses: bacterial growth rate, bacterial 

carrying capacity, and final concentration of bacteria in the presence of bacteriophage-

emulsion formulations. The residuals align to a straight line with R2 = 0.99. The random 

distribution of the residuals demonstrates agreement with the desired normal distribution, 

although some outliers were found. This statistical analysis gives an idea of the effectiveness 

of RSM for the evaluation of the responses as a function of the input factors (Table 1). 

Bacterial growth may be influenced by attachment of emulsion droplets to the outer cell 

membrane, causing a switch in metabolism, for instance inducing anaerobic behaviour due to 

the lack of available oxygen, or depriving bacteria of nutrients present in the medium. 

Emulsion droplets may also contribute to more effective bacteria-bacteriophage interaction, 

creating a framework that reduces adsorption distances. These effects may combine to 

influence both bacterial growth and phage-bacterial binding mechanisms. The significance of 

the experimental factors was determined by the Fisher test, which compares the p-values 

from the statistical software with a fixed value, α, at the desired confidence level. In this case 

95% confidence was selected (α = 0.05), and the influence of any factor was considered 

significant if its corresponding p-value was < 0.05.  

The most influential factors on bacterial growth rate were the initial concentration of bacteria 

(p-value=0.000) and the dilution factor of emulsion (p-value=0.000). The physical meaning 
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of these is understandable, and the relationships are confirmed in Figure 7.  

For bacterial carrying capacity, the most influential factors were emulsion concentration (p-

value=0.000), and the interaction between the initial concentration of bacteria and the 

emulsion concentration, i.e. bacteria : emulsion droplet ratio (p=0.001). A different growth 

pattern was observed for H560, H325 and Btn766 bacteria - see Figures 1, 2 and 3. Carrying 

capacity was not influenced by initial concentration (p-value=0.057), as time was sufficient 

for consumption of all nutrient resources - Figures 1 to 3 indicate the stationary phase. 

When final bacterial concentration was tested against varying bacteriophage-emulsion 

preparations, the most important factor was initial bacterial concentration (p-value=0000). 

The interaction of these factors is shown in Figures 4, 5 and 6 via different patterns of 

growth. Interaction between initial bacteria concentration and emulsion dilution factor was 

also significant (p-value=0.001), suggesting that bacterial growth is inhibited by emulsion.  

The results for the growth rate and carrying capacity response variables are shown in Figure 

7. The R2 values are closer to 1 for strains H560 and H325 than for Btn766. This means that 

Btn766 growth pattern differs from the logistic curve, see Figure 3. Maximum bacterial 

growth rates for strain H560 in Figure 7A are observed for lower concentrations of emulsions 

and for smaller initial concentrations of bacteria. Competition for resources is less acute 

when a reduced number of cells coexist during their initial growth phase. The maximum 

growth rate for H560 was 1.46 – 1.73 h-1 in 1:10 diluted emulsion. The most effective 

emulsion concentration (dilution factor of 1:10) was the same for all strains, see Figures 7C 

and 7E for strains H325 and Btn766. For the more concentrated emulsion (1:1 dilution) the 

large number of droplets could inhibit nutrient uptake by the bacteria.  However, the 

optimum growth rate varies from strain to strain depending on the initial bacterial 

concentration. For all initial concentrations of bacteria, growth in more dilute emulsions 

yielded higher growth rates. The dilution factor of emulsions had a slight effect on bacterial 
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carrying capacity, supporting a greater capacity for the most diluted emulsion. In Figure 7B, 

7D and 7F, H560 achieved the maximum number of bacteria with the higher dilution factor 

(1:100) leading to a higher carrying capacity. A less obvious effect is seen with Btn766. 

To summarise, emulsion formulations with least effect on bacterial growth were those that 

were diluted, supporting the hypothesis that droplets might inhibit the uptake of oxygen or 

nutrients by bacterial cells. If the killing effect of bacteriophage in dilute emulsions is high 

compared to the enhanced lytic activity seen with more concentrated emulsion (1:1 dilution), 

then dilute formulations would be selected as they affect bacterial growth less. 

Figure 8 shows the minimum final bacterial concentration (OD) values, corresponding to a 

maximum killing effect. For H560 (0.5 a.u.), Figure 8A shows minima at a bacteriophage 

concentration of about 1×10-3 PFU ml-1 for 1:100 diluted emulsion, and about 1×10-4 PFU 

ml-1 for 1:10 diluted emulsion and undiluted emulsion. For H325 (0.5 a.u.), Figure 8D shows 

a minimal final bacterial concentration at a bacteriophage concentration of 1×10-3 PFU ml-1 

for all dilution factors of emulsion. For Btn766 (0.5 a.u.), Figure 8G, the minima were found 

at the most diluted bacteriophage preparation in undiluted emulsion. For all diluted emulsions 

a concentration of 1×10-5 PFU ml-1 seems optimal. Similar patterns were observed for all 

initial concentrations of the three strains, although the figures are not shown. 

Figures 8B, 8E and 8H show similar patterns for the initial concentration of bacteriophage for 

H560, H325 and Btn766 respectively. For all initial concentrations of bacteria, highest initial 

concentrations of bacteriophage (1×10-3 PFU ml-1) seem to have the highest killing effect, 

except for Btn766 (Figure 8H) where the optimum can be seen between 1×10-4 and 1×10-5 

PFU ml-1. The same patterns were observed for all dilution factors of emulsion, although this 

data is not shown. For smaller initial concentrations of bacteria, in Figures 8D and 8E, there 

is a regrowth effect indicates a threshold below which active therapy of bacteriophage is not 

possible 52–54. 
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Figures 8C and 8I show that for an initial bacteriophage concentration of 1×10-4 PFU ml-1, 

diluted emulsions give greater killing effect for medium to high initial concentrations of 

H560, and medium initial concentrations of Btn766. The killing effect of H325 at medium to 

high initial concentrations of bacteria is not affected by the emulsion dilution factor (Figure 

8F).  The highest and medium initial concentrations of bacteria gave the lowest final bacteria 

concentration, so more concentrated emulsions generally give the highest killing effect. 

Shelf-life of bacteriophage – emulsion preparations 

A relative killing effect was defined, Equation 3, to compare the lytic activity of 

bacteriophage in buffer suspension with bacteriophage-emulsion formulations. 

   [3] 

Optical density (OD) is equivalent to bacterial concentration. Hence, the relative killing 

effect is the difference in OD between normal bacterial growth (control) and bacterial growth 

in the presence of bacteriophage, normalised to 20 hours of treatment. The controls were 

different in the normal growth medium and in the emulsion environment. The relative killing 

effect will have values between 0 and 1, where 0 corresponds to no killing at all (for bacteria 

in the presence of bacteriophage or bacteriophage-emulsion preparation with or without 

bacteriophage), and a value of 1 means a total kill, irrespective of the treatment. 

Bacteriophage-emulsion formulations show enhanced antibacterial activity (relative killing 

effects close to 1) against the three strains of S. aureus when stored at room and cold 

temperatures. It has been shown that emulsion influenced bacterial growth, but this effect is 

eliminated by the use of bacterial growth in undiluted emulsion as an appropriate control. 

Figures 9A, B and C show no significant variations of bacteriophage-emulsion activity over a 

10 day period, while bacteriophage lytic activity shows oscillations, giving different results 

for every day of treatment, and for each temperature of storage.  
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CONCLUSIONS 

A novel approach for the efficient storage and delivery of Bacteriophage K for the treatment 

of Staphylococcus aureus infections is demonstrated. The nano-emulsion-bacteriophage 

preparations show enhanced antimicrobial activity, with reduced fluctuations in infectivity 

over time when compared to simple aqueous suspensions of bacteriophage. The nano-

emulsion-bacteriophage formulations were more stable and effective over time. The effects 

of emulsion and emulsion preparations on bacterial growth were used to indicate both more 

optimal formulations insight into key interactions. This work provides the basis for a viable 

product and prompts further research into the biological mechanisms within the system, and 

into formulations with enhanced biocompatibility and low cost.  

RSM analysis confirmed the influence of emulsion concentration on the growth patterns of S. 

aureus, and identified important system interactions. The interactions between emulsion 

droplets and bacteria require a better model than the logistic growth curve. RSM analysis of 

the final concentration of bacteria in the presence of bacteriophage-emulsion preparations 

shows the potential to optimise the concentration rations of the components to reach a 

balance between desired killing effect and stable emulsion formulation. 
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NOMENCLATURE 
 
A Bacterial growth rate (h-1) 

B Integration constant 

C Carrying capacity (CFU ml-1 or a.u.) 

CFU ml-1 Colony forming units per millilitre  

DLS Dynamic Light Scattering  
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MOI Multiplicity of infection 

MRSA Methicillin Resistant Staphylococcus aureus 

N(t) Concentration of bacteria (CFU ml-1) 

OD Optical Density (absorbance units, a.u.) 

PIT Phase Inversion Temperature (°C) 

PFU ml-1 Plaque forming units per millilitre 

RO Reverse Osmosis 

RSM Response Surface Methodology 

T Time 

TSA Tryptic soy agar 

TSB Tryptic soy broth 
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Table 1: Factors, Levels and Response for the RSM 

Factor Levels Response 

Initial bacterial 
concentration (Initial OD) 

1 High – 1 a.u. 
0 Medium – 0.5 a.u. 

-1 Low – 0.1 a.u. Bacterial growth rate, a (h-1) 
Carrying capacity, C (a.u.) Dilution factor of raw 

emulsion 

1 High – 1:1 
0 Medium – 1:10 
-1 Low – 1:100 

Initial bacterial 
concentration (Initial OD) 

1 High – 1 a.u. 
0 Medium – 0.5 a.u. 

-1 Low – 0.1 a.u. 
Final concentration of bacteria 
after 20 h, expressed as OD(t) 

(a.u.) 

Dilution factor of raw 
emulsion 

1 High – 1:1 
0 Medium – 1:10 
-1 Low – 1:100 

Dilution from 
bacteriophage stock 

1 High – 1:103 
0 Medium – 1:104 

-1 Low – 1:105 
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Figure Titles 
 
Figure 1: Concentration of S. aureus H560 over time, expressed as Optical Density at 600 

nm, at 37°C in TSB ( ), in undiluted emulsion ( ), and in diluted emulsion ( ). Data points 

are the mean value of triplicates, after discounting the OD of TSB and emulsion. Error bars 

are the standard deviation of experimental values; one in five error bars are shown. 

 

Figure 2: Concentration of S. aureus H325 over time, expressed as Optical Density at 600 

nm, at 37°C in TSB ( ), in undiluted emulsion ( ), and in diluted emulsion ( ).Data points 

are the mean value of triplicates, after discounting the OD of TSB and emulsion. Error bars 

are the standard deviation of experimental values; one in five error bars are shown. 

 

Figure 3: Concentration of S. aureus Btn766 over time, expressed as Optical Density at 600 

nm, at 37°C in TSB ( ), in undiluted emulsion ( ), and in diluted emulsion ( ). Data points 

are the mean value of triplicates, after discounting the OD of TSB and emulsion. Error bars 

are the standard deviation of experimental values; one in five error bars are shown. 

 

Figure 4: Concentration of S. aureus H560 over time, expressed as Optical Density at 600 

nm, in TSB ( ), in undiluted emulsion ( ), in the presence of bacteriophage K ( ), and in 

the presence of Bacteriophage K – emulsion preparation ( ). All preparations were stored at 

4°C and tested after 9 days of storage. Data points represent the mean value of triplicates, 

after discounting the OD of TSB and emulsion or SM buffer. Error bars are the standard 

deviation of experimental values; one in five error bars are shown. 

 

Figure 5: Concentration of S. aureus H325 over time, expressed as Optical Density at 600 

nm, in TSB ( ), in undiluted emulsion ( ), in the presence of bacteriophage K ( ), and in 
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the presence of bacteriophage K – emulsion preparation ( ). All preparations were stored at 

4°C and tested after 9 days of storage. Data points represent the mean value of triplicates, 

after discounting the OD of TSB and emulsion or SM buffer. Error bars are the standard 

deviation of experimental values; one in five error bars are shown. 

 

Figure 6: Concentration of S. aureus Btn766 over time, expressed as Optical Density at 600 

nm, in TSB ( ), in undiluted emulsion ( ), in the presence of bacteriophage K ( ), and in 

the presence of bacteriophage K – emulsion preparation ( ). All preparations were stored at 

cold temperature and tested after 9 days of storage. Data points represent the mean value of 

triplicates, after discounting the OD of TSB and emulsion or SM buffer. Error bars are the 

standard deviation of experimental values; one in five error bars are shown. 

 

Figure 7: RSM Contour Plots for bacterial growth rate and carrying capacity.  

Bacterial growth rate vs. dilution factor of emulsion and initial concentration of H560 (Panel 

A), H325 (Panel C) and Btn766 (Panel E). Carrying capacity vs. dilution factor of emulsion 

and initial concentration of H560 (Panel B), H325 (Panel D) and Btn766 (Panel F). Six 

replicates for each of the design combinations of factors were performed. 

 

Figure 8: RSM Contour Plots for final concentration of bacteria in the presence of 

bacteriophage-emulsion preparations. Final concentration of bacteria vs: Panel A: dilution 

factor of emulsion and bacteriophage for an initial concentration of H560 of 0.5 a.u.; Panel B: 

dilution factor of bacteriophage and initial concentration of H560 at a dilution factor of 

emulsion of 1:10; Panel C: dilution factor of emulsion and initial concentration of H560 at a 

dilution factor of bacteriophage of 1:104; Panel D: dilution factor of emulsion and 

bacteriophage for  an initial concentration of H325 of 0.5 a.u.; Panel E: dilution factor of 
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bacteriophage and initial concentration of H325 at a dilution factor of emulsion of 1:10; 

Panel F dilution factor of emulsion and initial concentration of H325 at a dilution factor of 

bacteriophage of 1:104; Panel G: dilution factor of emulsion and bacteriophage for an initial 

concentration of Btn766 of 0.5 a.u.; Panel H: dilution factor of bacteriophage and initial 

concentration of Btn766 at a dilution factor of emulsion of 1:10; and Panel I: dilution factor 

of emulsion and initial concentration of Btn766 at a dilution factor of bacteriophage of 1:104. 

Six replicates were performed for each of the factor combinations. 

 

Figure 9: Bacteriophage K infectivity against S. aureus over a period of ten days, expressed 

as Relative Killing Effect, when stored in SM buffer at 18-20°C ( ), in undiluted emulsion 

at 18-20°C ( ), in SM buffer at 4°C ( ), and in undiluted emulsion at 4°C ( ). Panels 

A to C correspond to H560, H325 and Btn766 respectively. The bar height is the mean value 

of triplicates; error bars are the standard deviation of replicates. 
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