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Abstract: we experimentally demonstrated a multiwavelength Er-doped fiber (EDF) ring laser 

system by employing an all-fiber Lyot filter (AFLF) and highly nonlinear fiber (HNLF). The 

AFLF was employed as a polarizing filter to generate nonlinear polarization rotation (NPR) 

effect and the highly dense and narrow bandwidth comb-like channels. 1 km long HNLF was 

used to enhance the nonlinearity of laser cavity and suppress the mode competition for 

multiwavelength operation. In the experiment, total 97 channels laser output within 3dB 

bandwidth simultaneously was excited under 224mW pump power. Power fluctuation of lasing 

channels was less than 0.182dB and wavelength shift was less than 0.04nm in 100 minutes, 

after treating AFLF in a thermostatic icebath. Meanwhile, output laser was highly polarized 

with degree of polarization (DOP) up to 99.9%. 
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1. Introduction 

Multiwavelength fiber laser has attached more interests in the field of fiber sensing, optical 

instrumentation and optical communication systems. Moreover, highly polarized fiber laser 

output is crucial in various occasions like magnetic field sensing, coherent beam combination 

and wavelength division multiplexing (WDM) systems. Based on different type of 

amplification gain, researchers have realized multiwavelength fiber laser working at different 

range, including: semiconductor optical amplifier (SOA) [1-3], Raman amplifier [4-6], random 

distributed feedback amplifier [7], Er-doped fiber amplifier[8] and Thulium doped fiber 

amplifier based laser system[9,10]. Among of them, the EDFA has the flatter gain spectra and 

higher saturation power. More important is that most of communication and sensing systems 

were working in the EDFA gain spectral wavelength range. However, the EDFA is type of 

homogeneous gain, which is difficult to achieve multiwavelength laser generation, due to very 

strong mode competition. There are several technique employed to suppressed the mode 

competition including cooling the EDF with liquid nitrogen [11], nonlinear optical loop mirror 

(NOLM) [12-13], nonlinear polarization rotation (NPR) [8], and hybrid gain media [14-16]. 

Except of the suppression mechanism of mode competition, the laser system also needs a 

channel selection mechanism to achieve multiwavelength operation. It has been reported a 

highly nonlinear fiber and a Fabry-Perot Filter (FPF) based EDF multi-wavelength laser system 

[17-18], in which the laser system has a relatively simple setup and flatter output spectrum but 

also random polarization output. Output laser usually have a random polarization output 

because two orthogonal polarization modes would compete with each other randomly due to 

the affection of various environmental conditions and resulting an unstable polarization output 

[19]. By employing a segment of polarization maintaining (PM) fiber and a polarizer into the 
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laser cavity, ratio of the two orthogonal polarized modes would be stabilized so that the output 

laser could be stable and highly polarized. In this paper, we experimentally demonstrated a 

highly polarized multiwavelength fiber laser using AFLF and HNLF. 

2. Experimental setup 
Lyot filter, invented by Bernard Lyot in 1933, was formed by sandwiching a birefringence 

medium between two polarizers [20]. Consequently, an AFLF could be formed by sandwiching 

a segment of PM fiber between two in-fiber polarizers. In our previous work, we have reported 

an in-fiber linear polarizer structured by UV-inscribing a 45° tilted fiber grating (TFG) into PM 

fiber [21]. We have successfully fabricated AFLFs by sandwiching two 45° TFGs and one 

segment of PM fiber, and examined their characteristics [22]. It turned out that due to its finer 

comb-like transmission spectrum, AFLF could be perfectly utilized as the wavelength selector 

for multiwavelength lasing operation. Except its wavelength selecting function, the AFLF also 

functionalized as a polarization selector, resulting highly polarized laser output at the same 

time. The free spectrum range (FSR) and bandwidth of the AFLF we employed in this 

experiment can be expressed as [22]:  
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Where, L (~46m) was the length of PM fiber cavity of the filter, n  (3.27×10-4) is the 

birefringence of PM fiber and λ (1550nm) is the working wavelength. Fig. 1 showed the 

transmission spectrum of the Lyot filter used in this paper (the inset is the basic structure of 

AFLF), which was obtained by an amplified spontaneous emission (ASE) source and an optical 

spectrum analyzer (OSA, YOKOGAWA, AQ6370D, resolution: 0.02nm). This Lyot filter has 

FSR of ~0.162nm, bandwidth of ~0.081nm and extinction ratio of ~14dB. 

 

Fig. 1: Transmission spectrum of the AFLF. 

The configuration of fiber laser was shown in Fig. 2, a polarization independent isolator 

ensures the unidirectional operation of the ring cavity. The gain of the fiber laser was provided 

by a segment of 1.5m EDF (I25) pumped by a 980nm laser diode (LD). 1km highly nonlinear 

fiber (dispersion of -0.396ps/nm/km at 1545nm and nonlinear coefficient of 11/W/km) was 

used to reduce the competition among longitudinal modes and balanve the power at different 

channels by using the comb filtering characteristics of Lyot filter, to generate multi-wavelength 

laser output simultaneously. A polarization controller (PC) was employed to control the 

polarization state in the laser cavity and to achieve flatter output spectrum. The total laser cavity 

length is around 1059.5m which includes 1000m high nonlinear fiber, 1.5m I25 EDF, 46m 

PM1550 polarization maintaining fiber and 12m SM 28 single mode fiber. The net GVD is 



around -0.39ps2. The output light was extracted from the ring cavity by a 90/10 optical coupler 

(OC). 

 

Fig. 2: Schematic of the ring laser cavity associated with an AFLF and HNLF. 

3. Results and discussions 

In the experiment, we employed the NPR technique to suppress mode competition caused by 

the homogeneous line broadening property of the EDFA. Lots of works have proved that the 

mode competition would be suppressed by involving the high nonlinear effect in the laser 

cavity, such NPR and NOLM. The NPR can be used as fast saturable absorber in the ultrafast 

laser generation. And the polarizing element is the key to achieve NPR effect in the laser system. 

By employing an AFLF in the laser system, which is a polarizing functional multi-channel 

element, we have achieved several different numbers multi-wavelength laser outputs. By 

adjusting the pc and different pump power, we could also achieve different number multi-

wavelength output. However, Considering with channel quality and effective channels number 

in 3dB bandwidth, we have only achieved 50, 69, 80 and 97 channels laser output(see in Fig. 

3). And the 97 wavelengths laser output was generated at the 224mW pump power, which has 

0.044nm linewidth for each channel, ~19dB side-mode suppression ratio and 10.97mW output 

power, as shown in Fig. 3 (d).  

 



Fig. 3: output spectrums with different output channels: (a) 50 wavelength channels; (b) 69 wavelength channels; (c) 

80 wavelength channels; (d) 97 wavelength channels. 

Furthermore, we also investigated laser output characteristic by increasing the pump power. 

The pump power was firstly set at the threshold lowest around 58.42mW, and a fine 

multiwavelength laser output could be obtained by adjusting the PC. Then, as increasing the 

pump power, we have noticed gain-bandwidth was broadened and new lasing channels can be 

observed (see in Fig. 4 (a)), meanwhile, the line width of single channel became broader and 

the signal-noise ratio (SNR) was getting worse as shown in Fig. 4 (b). For a better illustration 

of this, we have also plotted the SNR, linewidth versus pump power, which have been shown 

in Fig. 4(c) and (d). Both lasing level and noise level were increasing as increasing the pump 

power at the same time, but noise level increased faster than the one of the lasing level, which 

induced the worse SNR. Besides, the linewidth of output laser became broad as well. As we 

known, fiber laser could readily oscillate at multiple longitudinal modes with frequency space 

of Lc 2/ , where L  is the optical length of the ring cavity and 𝑐 is the speed of light in 

vacuum. In our laser system, the frequency space of longitudinal modes is much smaller than 

the FSR of AFLF, which means that there are multiple longitudinal modes readily to excite in 

a single channel. According to the principle of laser, longitudinal modes with lower 

transmission loss would be excited, and the modes with higher transmission loss caused by the 

Lyot filter would be suppressed, and contribute to the noise of the laser. In our experiment, the 

amplitude equalization effect induced by NPR has suppressed the mode competition, and as 

increasing of the pump power, the four-wave mixing caused by high nonlinear effect would 

become stronger, in which modes with higher power which contributed to lasing level would 

share their power to the other suppressed modes [17]. This has explained that the power of 

noise level increased faster than lasing level. Channels became dumpier with their SNR 

decreasing and linewidth increasing. As the pump power increased from 58.42mW to 

179.8mW, the line width was increased from 0.038nm to 0.062nm, and the SNR was decreased 

from 23.339dB to 12.675dB. 

 

 
Fig. 4: Output spectrum against the increase of the pump power: (a) the whole spectrum; (b) the single channel; 

Power of side mode and central mode (a), linewidth and side-mode suppression ratio (b) of output laser versus pump. 



For laser system, the wavelength stability of output laser is very important. Our previous 

work has shown that the Lyot filter is sensitive to temperature because the length and 

birefringence of PM fiber would be influenced by temperature [23]. The longer the cavity 

length is, the higher temperature sensitivity Lyot filter is. So, when the filter without any 

thermal management, we have captured the laser spectrum with a 2-minute interval for 40 mins, 

which was shown in Fig. 5 (a). Fig. 5(b) showed output laser at the central wavelength of 

1550.11nm, which was shifted almost 0.2nm within 40 minutes, To eliminate the fluctuation 

of environment temperature and improve the wavelength stability of output laser, the AFLF 

need to be kept in a stable temperature environment. In the experiment, we designed a 

thermostatic icebath to keep a constant temperature for the AFLF (see in Fig. 2). Under the 

temperature controlling, the wavelength stability was improved greatly, which was shown in 

Fig. 5 (c) and (d). As it is shown in the figure, the output spectrum captured with 5-minute 

interval for 40 minutes and the wavelength at 1549.96nm was only shifting 0.019nm within 40 

minutes which was very close to the wavelength repeatability of AQ6370D OSA. The slight 

shift towards longer wavelength is probably because the AFLF did not reach thermal 

equilibrium yet in the isothermal system, or the wavelength fluctuation of OSA.  

 
Fig. 5: Wavelength shifting without and with isothermal treatment (a), (b) and (c), (d) respectively. 

The power stability of five wavelengths we chose was plotted in Fig. 6, which have shown 

the maximum power fluctuation of each peak was less than 0.182dB. One of important benefits 

was the output laser would be highly polarized by using all fiber Lyot filter as wavelength 

selector. In the experiment, we have measured the DOP of output laser at three different 

wavelengths 1547.25nm, 1550.04nm and 1552.75nm, which were 99.95%, 99.89% and 

99.92%, respectively (data see in Tab. 1). In experiment, we only choose three wavelengths for 

DOP measurement, however, all laser channels have the same DOP value. 



 
Fig. 6: Power fluctuation of five lasing channels. 

 

Tab. 1: Measurement of DOP at 1547.25nm, 1550.04nm and 1552.75nm 

Wavelength (nm) Pmax (dBm) Pmin (dBm) DOP 

1547.25 -31.99 -67.76 99.95% 

1552.75 -28.99 -63.13 99.92% 

1550.04 -29.53 -62.32 99.89% 

  

4. Conclusions  

We have experimentally demonstrated a highly polarized multiwavelength Er-doped fiber laser 

using AFLF and HNLF. In the experiment, maximum 97 wavelengths lasing simultaneously 

was obtained. DOP of the lasing channels reached up to 99.9%. By introducing icebath based 

temperature managing system, wavelength stability of output laser could be greatly improved. 

The power fluctuation and wavelength shift of a single channel are less than 0.182dB and 

0.019nm, respectively. In general, it shows its great potential as a practical solution for 

multiwavelength fiber laser because of its simple setup and highly polarized laser output.  
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