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Abstract

In order to make machines perceive their external environment coherently, multiple 
sources of sensory information derived from several different modalities can be used 
(e.g. cameras, LIDAR, stereo, RGB-D, and radars). All these different sources of informa-
tion can be efficiently merged to form a robust perception of the environment. Some of 
the mechanisms that underlie this merging of the sensor information are highlighted in 
this chapter, showing that depending on the type of information, different combination 
and integration strategies can be used and that prior knowledge are often required for 
interpreting the sensory signals efficiently. The notion that perception involves Bayesian 
inference is an increasingly popular position taken by a considerable number of research-
ers. Bayesian models have provided insights into many perceptual phenomena, showing 
that they are a valid approach to deal with real-world uncertainties and for robust clas-
sification, including classification in time-dependent problems. This chapter addresses 
the use of Bayesian networks applied to sensory perception in the following areas: mobile 
robotics, autonomous driving systems, advanced driver assistance systems, sensor fusion 
for object detection, and EEG-based mental states classification.

Keywords: Bayesian networks, machine learning, multimodal robotic perception

1. Introduction

Bayesian networks (BNs) allow a tractable graph-based representation for probabilistic rea-

soning (or inference), under uncertainty, about a given problem or domain. A recurrent prob-

lem in robotics is to reason about the class of an object in the environment, given evidence 
(from sensors, e.g. RGB-D cameras), and probabilistic models (e.g. probability outputs of a 
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classifier) in the domain that represents the problem. For example, a robot would be needed 
to detect and then recognise a particular type of object (such as a mug) in a given place (e.g. 
kitchen) [1]. Another example would be an autonomous vehicle that has to detect road users; 
hence, the object categories of interest would be pedestrian, cyclist, car and van, bus and 
truck, and motorised two-wheelers.

The topology, or structure, of a BN graph is the first step in solving the problem, and it should 
provide the relationship (dependencies represented by links) among the nodes (variables in 
the problem domain). The next step is to define the conditional probabilities for the nodes 
and, then, the joint probability of the BN has to be considered in order to allow computing the 
posterior probability of the form  P (Class | Evidences)  , i.e. a posteriori of the class, or category, given 

the evidences from a set of sensor-based models [1].

In this chapter, we will address BN with similar topologies to the one illustrated in Figure 1. 

The structure shown in Figure 1 is a ‘common effect’ chain [2], which means that all parent 

nodes contribute to the node C designated by the ‘class’. The node C is the label variable and 
takes values such as: C = {person, non-person}, or C = {1, 0}, or in multiple class case, C = {mug, 

spoon, knife, fork, plate, can} or C = {concentrated, relaxed, neutral}. The evidence nodes, as illus-

trated in Figure 1, provide probability values per class of interest; thus, such nodes are mod-

elled by a classifier (e.g. convolutional neural network [CNN], SVM, and Bayes classifier). 
The node called ‘context’ might represent evidence from the environment, or information 
shared by the infrastructure (e.g. cameras mounted on the scenario), or any other evidence 
not directly related to a given learning classifier using data/features from sensors onboard 
the robot.

The remainder of this chapter is organised as follows: Section 2 briefly describes the use of 
BNs for supervised classification problems. Use cases on object manipulation, pedestrian clas-

sification, and EEG-based Mental State Classification are described in Sections 3–5, respec-

tively. Finally, Section 6 presents a summary and remarks.

Figure 1. Topology of a BN where all the parent nodes {X
1
, X

2
, …, X

n
} contribute to a common effect, which is the set of 

classes (node C) of interest in a given robotic domain.
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2. Bayesian networks for supervised classification

In a more general and high-level perspective, a BN is characterised by nodes that represent a 

finite set of random variables, i.e. a variable/function whose outputs outcome from a random 
measured process (belonging to the domain of interest) and links (i.e. directed arcs) that repre-

sent the direct dependencies between the nodes. Hereafter, the link dependencies will assume 
the form of conditional probabilities. By examining Figure 1, we can see that each node   X  

i
  

, i = 1, … , n,  is conditionally independent of all the nodes, while the node C is conditionally depen-

dent of all its parent nodes   X  
1
  ,  X  

2
  , … ,  X  

n
   . This is a simple BN structure where the nodes represent 

learning model—in the form of supervised classifiers. On the other hand, which is common in 
some classification problems, the nodes may represent features as extracted from observed data.

Let  P (X | C)   be the outcome of a learning classifier given the observed/measured sensor data. 
The variable X can represent a learned model, using a probabilistic classifier, based on super-

vised and measured data from a camera, a LIDAR, an RGB-D sensor, or a combination of 
multimodality data. We could represent the conditional probability as  P (X, θ | C)   to explicitly 

show that the output also depends on a learning model (here represented by  θ ).

In a nutshell and considering the use cases described in the sequel, BNs are used to express 
the joint probability of events (represented by the nodes) that model a classification system 
where the relationships between events are expressed by conditional probabilities. Given the 
observations/measurements (evidence) and prior knowledge, statistical inference is accom-

plished using the Bayes' theorem. The goal is to calculate the posterior  P (C |  X  
i
  )   of the set of 

classes given the evidential nodes   X  
i
  , i = 1, … , n . So, inference in supervised classification appli-

cations aims to estimate the probability of the classes given the class-conditional probabilities, 
priors and observations.

In this work, in one of the approaches presented, we consider BN structures where the sen-

sory data are transformed to a feature space which is then feed into a trained classifier. The 
classifier is assumed to output a class-conditional probability which is then used to calculate 
the a posteriori. When multiple sensors are considered, the conditional independency property 

between sensors will be satisfied, for example:  P ( X  
sensor1

   |  X  
sensor2

  ,  X  
sensor3

  )  = P ( X  
sensor1

  )  . The following sec-

tions will present three different study cases where BN are employed as a supervised classifier.

3. Use case in object shape representation through in-hand 

exploration

Accurate modeling of the world (environment and its components) is important in autono-

mous robotics applications. More precisely, for grasping applications dealing with objects 
used in everyday tasks, the object information (intrinsic and extrinsic) acquired before the 
robot executes a task is crucial for grasp strategies. The object geometry (size and shape) plays 
an important role in such applications, where its representation is also valuable for classifica-

tion into a class of known objects and also for identification of regions on the object surface 
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proper for a stable grasp. Since the robotic end-effector usually relies on the knowledge of 
object geometry to plan or to estimate grasp candidates, the more accurate the geometry of 
the object, the higher is the likelihood of success when estimating the candidate’s grasp for 
that object. Many techniques can be used to reconstruct and represent an object using differ-

ent sensors, such as vision-based systems, laser range finders, etc., where the most common 
is through visual information.

Mapping techniques such as occupancy grid [3, 4] have been used in robotics to describe the 
environment of mobile robots. Two-dimensional grids have been used for static indoor mapping 
as shown in [5]. The idea is to estimate the probability of each cell to be occupied or empty after 
the sensors’ observation. Probabilistic volumetric maps are also useful in robotics by providing 
means of integrating different occupancy belief maps in order to update a central multimodal 
map using Bayesian filtering. A grid divides the workspace into equally sized voxels, and the 
edges are aligned with one of the axes of a reference coordinate frame. The coverage of each 
voxel given the sequence of batches of measurements is modelled through a probability density 
function. The probabilistic approach for building volumetric maps of unknown environments 
can also be based on information theory. Each sensor (e.g. vision, laser, etc.) can adopt an entropy 
gradient-based exploration strategy to define the occupied regions (most explored) in the map.

Object in-hand exploration is the procedure of exploring the shape of objects using tactile 
information and fingers motion around the object surface to reconstruct its shape [6]. In order 

to acquire the probabilistic representation of an object using a volumetric map, it is necessary 
to have an a priori estimation of the area, where the object is placed for mapping. There are 
two scenarios in which in-hand exploration can be applied: a static object placed at a specific 
location or an object being explored in-hand in constant motion (dynamic exploration with 
moving object). The sensors used for this task is a cyberglove that measures fingers flexure 
(0–255 range), with six electromagnetic motion sensors (Polhemus sensors), where each sen-

sor provides 6D information (x, y, z, yaw, pitch, and roll), and tactile sensors in each fingertip 
and palm (Tekscan pressure sensor) that measure the force (0–255 range). Figure 2 depicts the 

experimental setup and sensors used for object in-hand exploration.

When the object exploration is in-hand and the object is moving, then it is needed to perform a 
registration to map the object displacements into a single frame of reference. We can consider 
that, for every motion of the object, a local map is built, so that all local maps should be inte-

grated into a global map to have the whole representation of the object shape exploration in the 
same frame of reference. Knowing the object initial position and the object displacements, we 
can compute the transformations to have all points in the same frame of reference. Given that 

the sensor attached to the object has six DoF (x, y, z, yaw, pitch, and roll), we can compute the 

rotation and translation of the object. We compute the rotation matrix of the object in a specific 
point in time using α = yaw (rotation in z axis), β = pitch (rotation in y), and φ = roll (rotation in x).

To map the point cloud in the same frame of reference, for all points, we find the translation 
of the fingertip sensor to the object sensor and then we apply the rotation to that point, p′ = 

R
o
t, where p′ is the new position of the 3D point that we are mapping to the same frame of 

reference of the object sensor; R
o
 is the rotation matrix 3 × 3 of the object sensor; and t the 

translation of the fingertip sensor to the object sensor.

Bayesian Networks4



The Bayesian volumetric map [6] is an occupancy grid, i.e. discrete random fields, wherein 
each cell has an assigned value, which represents the probability of the cell being occupied. 
The dimensions of the voxels define the spatial resolution of the representation. The edges of 
the grid are aligned with one of the axes of the world frame of reference W. In this work, the 

map is a 3D grid comprised of a set of cells c ∈ M, denoted as voxels, wherein each voxel is a 
cube with edge ε ∈ R. The voxels divide the workspace into equally sized cubes with volume 
ε

3. The occupancy of each individual voxel is assumed to be independent from the other vox-

els occupancy, and thus, Oc is a set of independent random variables as follows:

• c ∈ M: Index a cell on the Map;

• Oc ∈ [0, 1]: Probability describing if the cell c is empty or occupied;

• Zc: Measurement that influences the cell c. It represents the measurements acquired from 
five sensors, each one returns the 3D location of each finger movement in the map;

• P(Oc): Probability distribution of preliminary knowledge describing the occupancy of the 
cell c, initially as a uniform distribution (0.5 for each state: empty or occupied); and

• P(Zc|Oc): Probability density function corresponding to the set of measurements that 
influences the cell c taken from the in-hand exploration measurements. This distribution is 
computed from the in-hand exploration sensor model.

The knowledge about the occupancy of a voxel c in the map M, after Z measurements received 

at time t from the sensors, is represented by the probability density function P(Oc|Z
c

t). 

Updating the 3D probabilistic representation of the manipulated object shape upon a new 
measurement Zt means updating the probability distribution function P([Oc = 1]|Z

c

t) of the 

voxel c influenced by the measurement Z at time t. Voxels are influenced by a measurement 

Figure 2. Experimental setup: (a) workspace for mapping (grid 35 cm × 35 cm × 35 cm equally divided, where each 
voxel is sized with 0.5 cm); (b) Polhemus Liberty Motion Tracking System: magnetic sensors attached to the cyberglove 
(fingertips and back of the hand).
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Zt if the location associated with the sample computed from the sensor model P (Z
c

t|[Oc = 1]) 

is contained in that voxel location c. For each voxel c, the set of measurements Z
c

t contains n 

measurements Z
c
 influencing a voxel c along the time t. The probability density function of 

the object shape representation of voxel c given the Z
c
 measurements influencing such voxel 

is represented by P(Z
c

t |[Oc = 1]). To update the occupancy estimation of a cell in the map, the 
Bayes rule is applied:

  P ( [Oc = 1]  |  Z  
c
  t )  =   

 P ( Z  
c
  t  |  [Oc = 1] ) P ( [Oc = 1] ) 

   _________________________________________    
P ( Z  

c
  t  |  [Oc = 0] ) P (   [  Oc = 0 )   + P ( Z  

c
  t  |  [Oc = 1] ) P ( [Oc = 1] ) 

  ,  (1)

where P([Oc = 0]) = 1 − P([Oc = 1]); P(  Z  
c
  t    |[Oc = 1]) is given by the probability density function 

computed from the sensor model and P(  Z  
c
  t   |[Oc = 0]) is a uniform distribution.

Assuming that consecutive measurements Zt are independent given the cell occupancy, the 

following expression is obtained:

  P ( [Oc = 1]  |  Z  
c
  t )  = β × P (Oc)   ∏ 

t=1

  
T

    P ( Z  
c
  t  |  [Oc = 1] ) ,  (2)

where β is a constant representing a normalization, factor ensuring that the left side of the 
equation sums up to one over all Oc.

The cells occupancy in the map are probabilities that are updated over time as long as the 
sensors measurements are active. At the end of the in-hand exploration of the object, the cells 
are allowed to represent only two states: occupied or empty, Oc ∈ [0, 1], so that a threshold is 

used for each cell to consider one of the two states:

  Oc =  {0, P ( Z  
c
  t  )  < 0.5 1, P (Oc |  Z  

c
  t )  ≥ 0.5 } .  (3)

Figure 3 shows an example of the probabilistic volumetric map and its utility. The map can 
be used to represent the full model of the object as well as partial volume of the object and 
contact.

Each magnetic sensor attached to the fingertips returns the 3D coordinates of the finger loca-

tion based on the sensor frame of reference (source/emitter of the Polhemus Liberty tracking 
system). The frame rate of each sensor was defined to be up to 15 Hz. During data acquisi-
tion, a workspace (35 cm3) is defined in the experimental area for mapping. The grid space 
is divided into equally sized voxels (also denoted as cells) of 0.5 cm3. Due to the size of each 
cell, relative to the standard deviation of the magnetic tracking sensors measurements (up to 

3 mm), inside each cell a 3D isotropic Gaussian probability distribution is defined, P(  Z  
c
  t   |Oc), 

centred at the cell central point with the standard deviation 0.3 cm and mean value equal to 
the central point coordinates of the cell. In other words, this means that the model attempts 
to ensure that, upon receiving a measurement from the sensor attached to the fingertip, the 
closer the finger position is to the centre of a specific cell of the map, the more probable that 
cell is occupied. Furthermore, during the object surface exploration, the more often that the 
finger passes through that cell, the cell probability is updated with higher certainty in which 
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that given point position actually belongs to the object surface. The probability that a mea-

surement belongs to a cell is given by a normal distribution using the known sensor position 
error as the standard deviation and the sensors positions relative to the centre of each cell in 

the map as follows:

  P (Oc)  =   1 _____________ 
2  Π   3/2     | Σ |     

1/2

 
   e (−   1 __ 

2
     (x − μ)    T   Σ   −1  (x − μ) )  ,  (4)

where P(  Z  
c
  t   |Oc) represents the probability distribution of the sensor measurement given a 

specific cell Oc; |Σ| represents the determinant of Σ (sensor noise variation). It can also repre-

sent a scalar value. After normalization, it takes the form:

  P ( [Oc = 1] )  = exp  (−   
  (x −  u  

x
  )    2  +   (x −  u  

y
  )    

2  +   (x −  u  
z
  )    2 
  __________________  

2  σ   2 
  ) ,  (5)

where (x, y, z) are the coordinates of the 3D point on the object surface, and u is the central 

coordinate of the cell (for each axis). The in-hand exploration of objects can be performed by 
using the thumb and other fingers, i.e. the occupancy grid can be influenced by them over 
time, thus, expanding on the model for cell update, the contribution of the sensor on each 
finger through time can be made explicit on the decomposition as follows:

  P ( Z  
thumb

  t=0  , … ,  Z  
thumb,

  T    Z  
i
  t=0 , … ,  Z  

i
  T , Oc)  = P (Oc)   ∏ 

t=0
  

T

    P ( z  
thumb

  t   | Oc)   ∏ 
i=1

  
N

    P ( z  
i
   | Oc) ,  (6)

where T represents the current time instant and N = 4, the remaining four fingers of the hand. 
This process for updating the cell over time recursively (i.e. initially using the cell probability 
as a uniform distribution: empty or occupied, and later the cell probability—updated with the 
Bayes rule—is used as prior for the next update), represents a Bayesian network.

The BN representation of the formalism applied to the decomposition of the joint distribu-

tion in which the sensor model was used is shown in Figure 4. The plate notation relies on 
assumptions of duplicated subgraph as many times as the associated repetition number (in 

Figure 3. Examples of the Bayesian volumetric map. Left image: real object; middle image: partial volume of the object 
obtained during in-hand exploration; right image: map of the full object model and contact points overlaid on the object 
surface (red voxels representing the contact points and blue voxel representing the centroid of the object to define its 
frame of reference).
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this particular case the hand fingers); the variables in the subgraph are indexed according to 
the repetition number; the links that cross a plate boundary are replicated for each subgraph 
repetition; the distributions are in the joint distribution as an indexed product of the sequence 

Figure 6. Object shape representation by in-hand exploration of a spray bottle. The first image (left to right) is the raw data 
(point cloud), next three images are different views of the voxels representation of the object shape, and the last image 
is the occupancy representation of the cells, the darkest ones represent the lower probabilities (less explored regions).

Figure 5. Object representation using the probabilistic volumetric map: sponge and its computed map.

Figure 4. BN for object representation by in-hand exploration using occupancy grid. The left image shows the labels: 
prior, posterior, and respective distributions, yet not necessary in dynamic BN representations. The variables are 
defined in terms of their notation and conditional dependence. The instantiation is defined with their parameters and 
the random variables that support the model are fully described (i.e. their significance and measurable space). The right 
image shows the plate notation applied to the BN formalism to represent the in-hand exploration of objects, making 
explicit the contribution of the sensors over time.

Bayesian Networks8



of variables. Bayesian formalisms for probabilistic model construction and some BN examples 
of occupancy grid model can also be seen in [6, 7].

Figures 5 and 6 shows different household objects explored in-hand for shape retrieval.

4. Use case in pedestrian classification

A pedestrian detection system is one of the key components in Advanced Driver Assistance 

Systems (ADAS) and also in autonomous driving vehicles. Recently, pedestrian detection 
has regained particular attention from academia, automotive industry, and society [8]. In this 

chapter, pedestrian classification is studied based on a multimodal Bayesian network, where 
the BN’s structure has a node representing the binary class (pedestrian and nonpedestrian) 
and the parent nodes are represented by machine learning models in the form of supervised 
classifiers. In terms of sensory data, we will consider a LIDAR sensor as an intermodality 
technology, which provides range (distance) and reflectance (intensity return). In order to 
study multimodality between two sensor technologies, a colour (RGB) camera is also consid-

ered in the BN. The classifiers are modelled by a deep convolutional neural network (CNN). 
Data from a LIDAR enter into the CNN classifier in the form of high-resolution distance/
depth (DM) and reflectance maps (RMs). Distance and intensity (reflectance) raw data from 
the LIDAR are transformed to high-resolution (dense) maps as described in [9, 10].

A multimodal BN is then used to combine the likelihoods from CNN-classifiers learned using 
data from a LIDAR (based on DM and RM) and from a camera. Pedestrian recognition is 
evaluated on a ‘binary classification’ dataset created from the KITTI Vision Benchmark Suite, 
which provides data from a colour camera and from a Velodyne HDL-64E LIDAR. The perfor-

mance results using the BN are compared with the CNNs having a single modality as input, 

and against nonlearning rules, namely: minimum, maximum, and average.

We will formulate the classification problem in such a way that the class node ( C ) of the BN 

is inferred from the classification nodes (  X  
RGB

  ,  X  
DM

  ,  X  
RM

   ); therefore, the ‘full’ joint distribution is 
expressed by:

  P (C,  X  
RGB

  ,  X  
DM

  ,  X  
RM

  )  = P (C) P ( X  
RGB

   | C) P ( X  
DM

   |  X  
RGB

  , C) P ( X  
RM

   |  X  
DM

  ,  X  
RGB

  , C) ,  (7)

assuming each classifier node contributes independently to explain  C  and also assuming the 

classifiers are independent of each other but not independent of the class so, e.g.   P ( X  
DM

   |  X  
RGB

  , C)  = 

P (    X  
DM

  | C)  , we can express the class-conditional a posteriori as:

  P (C |  X  
RGB

  ,  X  
DM

  ,  X  
RM

  )  ∼ P (C) P ( X  
RGB

   | C) P ( X  
DM

  , C) P ( X  
RM

  , C) .  (8)

We will consider the class a-priori probability to be uniform and equally distributed; thus, the 
probability of being pedestrian or nonpedestrian ( P (C)  ) can be dropped out from the equation 
above. Therefore, the inference problem resumes to a product of the outputs probabilities 
from the CNN models.

Multimodal Bayesian Network for Artificial Perception 9



To evaluate the multimodal BN described here, a pedestrian classification dataset was cre-

ated based on the 2D object-detection dataset of KITTI. The labelled classes are given in the 
form of 2D bounding box tracklets: ‘Pedestrian’, ‘Car’, ‘Truck’, ‘Tram’, ‘Van’, ‘Person (sit-
ting)’, ‘Cyclist’ and ‘Misc’. The classes were separated in two categories of interest: pedestrian 
and nonpedestrian, i.e. a binary problem. The number of positives examples is 4487 cropped 
images (labelled bounding boxes of type ‘Pedestrian’), while the negative class has 47,378 
cropped images (types: ‘Cyclist’. ‘Car’, ‘Person (sitting)’ and so on). It was considered 70% for 
the training set (10% of that for validation) and the remaining 30% for the testing set. Table 1 

gives a summary of the dataset used in this use case.

Among several convolutional neural networks, we opted to use AlexNet CNN architecture 

with batch normalization in the first two layers and the last layer, the softmax activation func-

tion with two classes and dropout of 50%. The network was trained from scratch for the 
pedestrian and nonpedestrian classes [10]. Through the bounding boxes provided by the 
KITTI dataset, we cropped the objects contained in the depth and reflectance maps images. 
All objects were resized to the size of 227 × 227 because this is the network input size. The 
network was trained with the following parameter settings: 30 epochs, batch size equal 64, 
stochastic gradient descent optimizer with lr = 0:001 (learning rate), decay = 10 − 6 (learning 
rate decay over each update), momentum = 0.9, and categorical cross-entropy as loss function.

Denoting  P ( X  
i
   | C)   the confidence (i.e. the class-conditional probability) yielded by deep models 

CNNi (i = 1, …, n), where n is the number of models, CNN1 and CNN2 denote CNN models 
learned from DM and RM (reflectance), respectively, while CNN3 denotes a model using 
RGB data. Three nonlearning fusion rules are considered: average (AVE), maximum (MAX), 
and minimum (MIN). The average rule calculates the simple mean of the CNN-classifiers 
outputs F-ave =    1 

__
 n    ∑ 

i=1
  n    P ( X  

i
   | C) .  The maximum rule outputs the maximum value over the classifier 

responses, F-max =  max  {P ( X  
i
   | C) }   , while the minimum rule is F-min =  min  {P ( X  

i
   | C) }   .

The pedestrian classification results are reported using Precision (Pre), Recall (Rec), and 
F-score (F1) performance measures, allowing a more detailed and accurate analysis of the 
results. The F-scores values were obtained considering a threshold of 0.5. A number of pedes-

trian and nonpedestrian examples are unbalanced, as shown in Table 1; thus, F-score is here 
considered because it is a suitable performance measure for unbalanced cases. The results 
obtained using the BN and the rules AVE, MAX, and MIN are shown in Figure 7.

Summary of dataset for pedestrian classification

Training set n# positives = 2827

n# negatives = 29,849

Validation set n# positives = 314

n# negatives = 3316

Testing set n# positives = 1346

n# negatives = 14,213

Table 1. Pedestrian dataset.
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Results show that decision rules like minimum and maximum tend to have poor results, in 

terms of F-score, compared to the average rule and the multimodal BN. However, the values 
of Precision and Recall (or True Positive rate) are very high for Min and Max, respectively. 
The Average and the BN achieved close classification performance in all measures, although 
the BN’s results were slightly better.

5. Use case in EEG-based mental states classification

AI-enabled wearable technology has the ability to enhance the capabilities of today’s user-
centred devices and analytics toward promoting humans’ quality of life and enabling an 
improved health care by monitoring humans’ complex bio-signals, reducing risks, detect-
ing anomalous situations, thus, optimising standards of care. A good example is the EEG-
based brain-controlled devices that can serve as powerful aids for severely disabled people 
in their daily life, especially to help them to move voluntarily. The EEG-based brain-machine 
interfaces are one of the many alternatives that can be used to interact with devices using 
the superficial brain activity signals. These signals, called electroencephalograms or EEG for 
short, convey information regarding the voltage measured by electrodes (dry or wet) placed 
around the scalp of an individual. Recently, new applications for restoring function to those 

with motor impairments using EEG-based brain machine interfaces for conveying messages 
and commands to devices such as robot arm, wheelchair, and any other devices using bio-
signals have been developed. A good example where EEG is employed is to detect mental 
states. The ability to autonomously detect mental states, whether cognitive or affective, is 
useful for multiple purposes in many domains such as robotics, health care, education, neu-

roscience, etc. The importance of efficient human-machine interaction mechanisms increases 
with the number of real life scenarios where smart devices, including autonomous robots, can 
be applied. One of the many alternatives that can be used to interact with machines is through 

Figure 7. Classification performance, in terms of Pre, Rec, and F-1, considering a multimodal BN in comparison with 
deterministic rules (Min, Max, Average).
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superficial brain activity signals. A major challenge in brain-machine interface applications is 
inferring how momentary mental states are mapped into a particular pattern of brain activity. 
One of the main issues of classifying EEG signals is the amount of data needed to properly 
describe the different states, since the signals are complex. The signals are considered station-

ary only within short intervals, that is, why the best practice is to apply short-time windowing 
technique in order to detect local discriminative features to meet this requirement.

This section presents how Bayesian inference can be used to classify mental states. The framework 
consists of  (i) statistical and temporal features extraction using time window technique, (ii) attri-
butes selection to keep only the relevant information from the signals, and (iii) Bayesian classifica-

tion technique to categorise multiple mental states (e.g. relaxed, neutral, and highly concentrated).

5.1. Data acquisition

The sensor Muse Headband was used for data collection. The Muse is a commercial EEG sens-

ing device with five dry-application sensors, one used as a reference point (NZ, at the centre 
of the forehead) and four (at points TP9, AF7, AF8, TP10, i.e. around the forehead Figure 8) to 

record brain wave activity. To prevent the interference of electromyographic signals, nonver-

bal tasks that required little to no movement were set. Blinking, though providing interference 
to the AF7 and AF8 sensors, was neither encouraged nor discouraged to retain a natural state. 
This was due to the dynamicity of blink rate being linked to tasks requiring differing levels of 
concentration, and as such, the classification algorithms would take these patterns of signal 
spikes into account. In addition, subjects were asked not to close their eyes during any of the 
tasks. Three stimuli were devised to cover the three mental states available from the Muse 
Headband—relaxed, neutral, and concentrating. A dataset was created after five participants 
performing the three mental states, where each session lasted 1 minute. The relaxed task had 
the subjects listening to low-tempo music and sound effects designed to aid in meditation 
while being instructed on relaxing their muscles and resting. For a neutral mental, a similar 
test was carried out, but with no stimulus at all, this test was carried out prior to any others to 
prevent lasting effects of a relaxed or concentrative mental state. Finally, for concentration, the 
subjects were instructed to follow the ‘shell game’ in which a ball was hidden under one of the 
three cups, which were then switched, the task was to try and follow which cup hid the ball. 
After a short amount of time into the stimulus starting, as to not gather data with an inaccurate 

class, the EEG data from the Muse Headband were automatically recorded for 60 seconds. The 
data were observed to be streaming at a variable frequency within the range of 150–270 Hz.

5.2. Feature extraction

Feature extraction and classification of EEG signals are primary goals in brain–computer 
interface (BCI) applications. One challenging problem when it comes to EEG feature extrac-

tion is the complexity of the signal. Nonstationary signals can be observed during the change 
in alertness and wakefulness, during eye blinking, and also during transitions of mental 
states. Discriminative features rely on statistical techniques such as mean, standard devia-

tion, autocorrelation, statistical moments of third and fourth order (skewness and kurtosis 
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to measure the asymmetry of the data and also the peakedness of the probability distribu-

tion of the data), time-frequency based on fast Fourier transform (FFT), Shannon entropy, 
max-min features in temporal sequences, log-covariance given a set of statistical data, and 
derivatives of the features from different time instants. These features are computed in 
terms of the temporal distribution of the signal in a time window of 1 second, with overlap 
of half second between the sliding windows. Details about the modeling and implementa-

tion of the features can be found in [12]. Another important point to compute the features 

is the signals from the EEG Muse headband. Since it returns five types of signal frequencies 
(alpha, beta, theta, delta, and gamma), then, we compute all set of features for each signal. 
The aforementioned set of features for all signals are around 2100 feature values. In order to 
reduce and optimise the classification performance, feature selection is needed.

5.3. Feature selection

There are various well-known algorithms for features selection in the state of the art. These 
types of algorithms aim at reducing the number of attributes present in a dataset while retain-

ing a model’s predictive accuracy. The following algorithms were used to compare the accuracy 
performance when used with a Naïve Bayes classifier (NB) and a Bayesian Network (BN): (i) 
OneR calculates error rate of each prediction based on one rule and selects the lowest risk clas-

sification [13]; (ii) Information Gain assigns a worth to each individual attribute by measuring 
the information gain with respect to the class (difference of entropy) [14]; and (iii) Evolutionary 

Figure 8. The International 10-20 EEG electrode placement standard [11]. The sensors of the Muse Headband are denoted 
in yellow. The NZ placement (green) is used as a reference for calibration.
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Algorithm creates a population of attribute subsets and ranks their effectiveness with a fitness 
function to measure their predictive ability of the class [15]. At each generation, solutions are 

bred to create offspring, and weakest solutions are killed off in a tournament of fitness.

5.4. Classification

Two models were trained on Bayes' theorem, a formula of conditional probability based on 
hypothesis H and evidence E. The theorem states that the probability of the hypothesis being 
true before evidence P(H) is related to the probability of the hypothesis after reading the evi-
dence P(H|E) and is given as follows:  P (H | E)  =   

P (E | H) P (H) 
 

_______________________________
  

 ∑  
j
   P (E | H) P (H) 

    . A simplistic Naive Bayes model has 

been used, which has a non-cosideration of the relationships between the features models. It 

uses the maximum a posteriori decision rule   y  ̂  =  argmax
k∈ {1,…,K} 

  
 

    P ( C   k )   ∏ 
i=1

  n    P ( x  
i
   |  C   k )  . A BN (Bayes Net) 

model was also trained. This method generates a probabilistic graphical model via represent-
ing probabilities of variables to classes on a directed acyclic graph (DAG) as follows:  P ( C   t−1:t−T  |  

X   t:t−T )  =   
1
 

__
 β    ∏ 

k=t
  T−t    P ( X   k  |  C   k ) P ( C   k ) .  The goal is to infer the current time value of Ct given the data Xt:t–T = {Xt, 

Xt−1, …, Xt–T} and the prior knowledge of the class, which is attained by the a-posteriori prob-
ability P(Ct|Ct−1:t–T, Xt:t–T). The superscript notation denotes the set of values over a time interval.

5.5. Experimental results

The five generated sets from the original dataset classified by NB and BN are shown in 
Table 1. The most effective model for this EEG dataset using Bayesian inference was the BN 
along with the OneR Attribute Selector, which had a high accuracy of 73.67% using around 
2% of the total of features extracted when classifying the data into one of the three men-

tal states. For each test, 10-fold cross-validation was used to train the model. The lowest 
performance is 54.2% (Information Gain dataset with a NB classifier). It is reasonable to 
assume that the naivety in not considering attribute relationships has led to poorer results. 
These preliminary results show that a BN can be considered for EEG data classification. 
However, other methods of classification can achieve better performance with the same 
set of features. In order to improve the performance, we can adopt the strategy of fusion of 

multiple classifiers using the Bayes' theorem for fusion as shown in [1, 16] Table 2 presents 

the result of Bayesian inference combined with feature selection algorithms. Better results 
are attained when using OneR algorithm for features selection followed by  classification 
via Bayesian networks.

Dataset Accuracy %

Naive Bayes Bayesian network Number of selected features (%)

OneR 56.30 73.67 44 (2.05)

Information gain 54.20 71.64 31 (1.44)

Evolutionary algorithm 55.04 70.31 99 (4.61)

Table 2. Accuracy of trained models.
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6. Summary

Approaches based on Bayesian network (BN) have been described considering three case 
studies: Bayesian volumetric map for object perception, pedestrian classification for auton-

omous-vehicles perception and for EEG-based mental states classification. BNs were formu-

lated and applied in supervised pattern classification problems. In all cases, the BNs assumed 
conditional independence between sensors’ modalities or feature models.

In summary, this chapter has addressed BN with examples, where other machine learning tech-

niques were employed and combined with BN to sensory perception in applications related to 
robotics (multimodal sensor fusion for object detection), advanced driver assistance systems 
for autonomous driving systems, and EEG-based mental states classification, which can be 
used to control devices (e.g. robots) or in health-related areas for mental health monitoring.
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