
40

Education and Self Development. Volume 13, № 3, 2018

Creative Commons by the Authors is licenced under CC-BY

Teaching Computational Reasoning Through Construals

Errol Thompson
Aston University, Birmingham, UK
E-mail: errol@wisdom.nz

ORCID ID: http://orcid.org/0000-0002-6270-2791
DOI: 10.26907/esd13.3.05

Abstract
Can construals be used to teach computational reasoning? This paper outlines some of the issues of
teaching computational reasoning and then endeavours to show how it might be possible, through
using the principles of variation theory to design teaching sequences and consequently construals
that open the learner up to the computational reasoning ideas being considered.
Keywords: construal, computational thinking, invariant, Nim.

Обучение вычислительному мышлению
используя интерпретации (Construals)

Эррол Томпсон
Астонский университет, Бирмингем, Великобритания
E-mail: errol@wisdom.nz

ORCID ID: http://orcid.org/0000-0002-6270-2791
DOI: 10.26907/esd13.3.05

Аннотация
Могут ли интерпретации быть использованы для обучения вычислительному мышлению?
Эта статья рассматривает некоторые вопросы формирования вычислительного мышления
и демонстрирует, как использование принципов теории вариаций, а следовательно и интер-
претаций, для разработки последовательности обучения может раскрыть ученику идеи вы-
числительного мышления.
Ключевые слова: интерпретация, вычислительное мышление, инвариант, Ним.

Introduction
Computational thinking is a fundamental skill in computer science aimed at

developing models that use computation to solve problems. In this paper, we explore how
variation theory can be used to design teaching sequences that can then be used to create
construals, objects that help us “explore and record our emerging understanding” (Bey-
non et al., 2015, p 9) and to use these to aid in the teaching of the computational concept
of invariants. The emphasis is on the process by which an invariant might be discovered
rather than focusing on the outcome of the discovery process.

In the first section, we explore what is meant by computational thinking and why
we are using computational reasoning as an alternative description. This is followed
by a discussion of variation theory and its use to make visible the object of learning. A
discussion of constructionism and its relationship to programming and learning lays the
focus for looking at the computational concept of invariants. This is the concept that
the paper shows how through applying variation theory, a solution to two variants of
the game of Nim can be solved and the learner can be aided in developing a process for
discovering invariants in relevant problem spaces. It is envisaged that the process could
be extended to other games or real world problems that display similar characteristics.
We argue that the focus should be on making visible the process of discovery and not

41

Образование и саморазвитие. Том 13, № 3, 2018

Тип лицензирования авторов – лицензия творческого сообщества CC-BY

simply the conclusion of the process (i.e. the invariant). This is in line with the process as
content approach to curriculum development (Costa & Liebmann, 1996).

From exploring these games, we seek to draw some conclusions about what makes
a good construal and the features that are appropriate. We also seek to explore what
should be observable and how this impacts the variations that we should use to explore a
phenomenon such as computational reasoning.

Computational Reasoning
The common terminology when talking about the fundamental skill of computer

science is computational thinking. However, there is no clear agreement about what this
term actually means.

Aho (2011, p 7) argues that “Computation is a process that is defined in terms of an
underlying model of computation and computational thinking is the thought processes
involved in formulating problems so their solutions can be represented as computational
steps and algorithms”. Wing (2006, p 33) had previously argued that “Computational
thinking involves solving problems, designing systems, and understanding human
behaviour, by drawing on the concepts fundamental to computer science. Computational
thinking includes a range of mental tools that reflect the breadth of the field of computer
science.” Both of these definitions are based on developing computational solutions
although Wing accepts the possibility that there might be generic skills used to solve a
wider range of problems.

An alternative perspective is provided by Kowalski (2011) who uses computational
logic to review human instructions and to examine backward and forward reasoning. His
argument is that applying computational logic can help us as humans to understand the
reasoning process and to improve our approach to reasoning. Does the same apply to
computational thinking or reasoning or are we talking about understanding more generic
thinking skills and utilising a wider range of thinking skills?

It is Kowalski’s perspective that has influenced our use of the terminology
computational reasoning as opposed to computational thinking. We are arguing that
computational thinking that produces a computational model is inadequate and that we
need to foster an ability to reason about problems in such a way that we can verify the
logic that helped us arrive at our solution. Many of the problems (i.e. tower of Hanoi,
Nim, tic-tac-toe, mazes, …) that we use in computer science have solutions that are
readily accessible to learners. The issue is not whether they can find these solutions but
whether they can apply the process that discovered these solutions. We use our problems
not to teach solutions but to teach processes or the reasoning that helps create these
solutions. The skill being taught should be the problem solving process (computational
reasoning). The techniques (computational thinking) form part of the tool kit to aid the
computational reasoning process. The objective of our construals should be to endeavour
to help the learner understand why these games have the outcomes that they do and not
simply to be able to find or implement solutions. That is the learner should be able to
reason about their solution and the problem space.

Variation Theory
According to variation theory, for the learner to perceive the required object of

learning, the learner needs to be able to discern it from the background of other objects
and to be able to discern its internal characteristics. This means that the critical aspects of
the object must become visible to the learner. It is what is made visible that is possible to
be learnt and not what is believed to be taught. A possible sequence for achieving this is:

Instantiation – Contrast – Generalisation – Fusion (Marton, 2015, pp. 53-54, 220)

42

Education and Self Development. Volume 13, № 3, 2018

Creative Commons by the Authors is licenced under CC-BY

Instantiation is “the learner’s initial encounter with the object of learning, in the form
of a problem that captures holistic qualities of it” (p. 221). Contrast involves a pattern of
variance and invariance where the aspect to be discerned is varied against the invariance
of other aspects (p. 49-50). Generalisation applies the opposite principle of keeping the
aspect to be discerned constant while varying other aspects (p. 50-51). Fusion involves
putting the parts together to reform the whole. The learner needs to be able to discern the
aspect while all aspects vary (p. 51-52).

An example might be the learning of what the colour green means. Instantiation
would mean introducing the learner to a green object.

Instantiation is “the learner’s initial encounter with the object of learning, in the form of a
problem that captures holistic qualities of it” (p. 221). Contrast involves a pattern of variance
and invariance where the aspect to be discerned is varied against the invariance of other
aspects (p. 49-50). Generalisation applies the opposite principle of keeping the aspect to be
discerned constant while varying other aspects (p. 50-51). Fusion involves putting the parts
together to reform the whole. The learner needs to be able to discern the aspect while all
aspects vary (p. 51-52).
An example might be the learning of what the colour green means. Instantiation would mean
introducing the learner to a green object (see Ошибка! Источник ссылки не найден.).

Contrast would be using similar shapes but different colours (see Figure 2).

Generalisation would involve retaining the same colour but altering the shape (see Figure 3).

Fusion would mean varying colour and shape while getting the learner to identify the colour
(see Figure 4).

If we consider a computational thinking technique then we want the learner initially to be
exposed to the technique in a way that makes the technique visible and potentially enables the
learner to ask questions about what the learner has seen (instantiation). Keeping the nature of
the problem constant, the learner then needs to be exposed to variations in each critical aspect
of the technique so that they become aware of that technique and can identify it. This can be
verified by keeping that aspect constant while varying other aspects related to the technique.
Finally, they need to see all aspects of the technique varied together.

Radical Empiricism and Variation Theory
Empirical modelling that is the foundational theory for the construction of construals is based
on the radical empiricism proposed by James (1912). James framework is based on the
argument that our conclusions or understandings should be based on fact but that they should

Figure 4: Fusion

Figure 2: Contrasting colours

Figure 3: Generalisation

Figure 1: Instantiated Circle

Contrast would be using similar shapes but different colours (see Figure 2).

Instantiation is “the learner’s initial encounter with the object of learning, in the form of a
problem that captures holistic qualities of it” (p. 221). Contrast involves a pattern of variance
and invariance where the aspect to be discerned is varied against the invariance of other
aspects (p. 49-50). Generalisation applies the opposite principle of keeping the aspect to be
discerned constant while varying other aspects (p. 50-51). Fusion involves putting the parts
together to reform the whole. The learner needs to be able to discern the aspect while all
aspects vary (p. 51-52).
An example might be the learning of what the colour green means. Instantiation would mean
introducing the learner to a green object (see Ошибка! Источник ссылки не найден.).

Contrast would be using similar shapes but different colours (see Figure 2).

Generalisation would involve retaining the same colour but altering the shape (see Figure 3).

Fusion would mean varying colour and shape while getting the learner to identify the colour
(see Figure 4).

If we consider a computational thinking technique then we want the learner initially to be
exposed to the technique in a way that makes the technique visible and potentially enables the
learner to ask questions about what the learner has seen (instantiation). Keeping the nature of
the problem constant, the learner then needs to be exposed to variations in each critical aspect
of the technique so that they become aware of that technique and can identify it. This can be
verified by keeping that aspect constant while varying other aspects related to the technique.
Finally, they need to see all aspects of the technique varied together.

Radical Empiricism and Variation Theory
Empirical modelling that is the foundational theory for the construction of construals is based
on the radical empiricism proposed by James (1912). James framework is based on the
argument that our conclusions or understandings should be based on fact but that they should

Figure 4: Fusion

Figure 2: Contrasting colours

Figure 3: Generalisation

Figure 1: Instantiated Circle

Generalisation would involve retaining the same colour but altering the shape (see
Figure 3).

Instantiation is “the learner’s initial encounter with the object of learning, in the form of a
problem that captures holistic qualities of it” (p. 221). Contrast involves a pattern of variance
and invariance where the aspect to be discerned is varied against the invariance of other
aspects (p. 49-50). Generalisation applies the opposite principle of keeping the aspect to be
discerned constant while varying other aspects (p. 50-51). Fusion involves putting the parts
together to reform the whole. The learner needs to be able to discern the aspect while all
aspects vary (p. 51-52).
An example might be the learning of what the colour green means. Instantiation would mean
introducing the learner to a green object (see Ошибка! Источник ссылки не найден.).

Contrast would be using similar shapes but different colours (see Figure 2).

Generalisation would involve retaining the same colour but altering the shape (see Figure 3).

Fusion would mean varying colour and shape while getting the learner to identify the colour
(see Figure 4).

If we consider a computational thinking technique then we want the learner initially to be
exposed to the technique in a way that makes the technique visible and potentially enables the
learner to ask questions about what the learner has seen (instantiation). Keeping the nature of
the problem constant, the learner then needs to be exposed to variations in each critical aspect
of the technique so that they become aware of that technique and can identify it. This can be
verified by keeping that aspect constant while varying other aspects related to the technique.
Finally, they need to see all aspects of the technique varied together.

Radical Empiricism and Variation Theory
Empirical modelling that is the foundational theory for the construction of construals is based
on the radical empiricism proposed by James (1912). James framework is based on the
argument that our conclusions or understandings should be based on fact but that they should

Figure 4: Fusion

Figure 2: Contrasting colours

Figure 3: Generalisation

Figure 1: Instantiated Circle

Fusion would mean varying colour and shape while getting the learner to identify the
colour (see Figure 4).

Instantiation is “the learner’s initial encounter with the object of learning, in the form of a
problem that captures holistic qualities of it” (p. 221). Contrast involves a pattern of variance
and invariance where the aspect to be discerned is varied against the invariance of other
aspects (p. 49-50). Generalisation applies the opposite principle of keeping the aspect to be
discerned constant while varying other aspects (p. 50-51). Fusion involves putting the parts
together to reform the whole. The learner needs to be able to discern the aspect while all
aspects vary (p. 51-52).
An example might be the learning of what the colour green means. Instantiation would mean
introducing the learner to a green object (see Ошибка! Источник ссылки не найден.).

Contrast would be using similar shapes but different colours (see Figure 2).

Generalisation would involve retaining the same colour but altering the shape (see Figure 3).

Fusion would mean varying colour and shape while getting the learner to identify the colour
(see Figure 4).

If we consider a computational thinking technique then we want the learner initially to be
exposed to the technique in a way that makes the technique visible and potentially enables the
learner to ask questions about what the learner has seen (instantiation). Keeping the nature of
the problem constant, the learner then needs to be exposed to variations in each critical aspect
of the technique so that they become aware of that technique and can identify it. This can be
verified by keeping that aspect constant while varying other aspects related to the technique.
Finally, they need to see all aspects of the technique varied together.

Radical Empiricism and Variation Theory
Empirical modelling that is the foundational theory for the construction of construals is based
on the radical empiricism proposed by James (1912). James framework is based on the
argument that our conclusions or understandings should be based on fact but that they should

Figure 4: Fusion

Figure 2: Contrasting colours

Figure 3: Generalisation

Figure 1: Instantiated Circle

If we consider a computational thinking technique then we want the learner initially
to be exposed to the technique in a way that makes the technique visible and potentially
enables the learner to ask questions about what the learner has seen (instantiation).
Keeping the nature of the problem constant, the learner then needs to be exposed to
variations in each critical aspect of the technique so that they become aware of that
technique and can identify it. This can be verified by keeping that aspect constant while
varying other aspects related to the technique. Finally, they need to see all aspects of the
technique varied together.

Radical Empiricism and Variation Theory
Empirical modelling that is the foundational theory for the construction of construals

is based on the radical empiricism proposed by James (1912). James framework is based
on the argument that our conclusions or understandings should be based on fact but

43

Образование и саморазвитие. Том 13, № 3, 2018

Тип лицензирования авторов – лицензия творческого сообщества CC-BY

that they should be open to change based on new experience (James, 1987, pp vii-viii).
The facts are our observations of the world and in particular how we draw together our
understanding of the parts to form and understanding of the whole (James, 1909, p 7-8).

This philosophic perspective aligns well with the approach in variation theory.
In variation theory and phenomenography, the variations that are discerned relate to
critical aspects that help understand the whole, the phenomenon. These critical aspects
are characteristics that aid the learner in understanding the object of learning. They could
relate to the internal parts of the object of learning or to characteristics that distinguish
the object of learning from its environment (Marton & Booth, 1997, pp 86-87). What
the learner discerns impacts their understanding of the object of learning. The learner’s
understanding may differ from that of the teacher because of the way that the learner has
experienced the object of learning.

Construals and Empirical Modelling
The objective in creating a construal is to enable the learner to observe the construal’s

internal workings and to form an understanding through experimentation. Beynon
(2009, p. 75) describes a construal in terms of observables, dependencies, and agents.
An observable reflects an internal value of the construal that can be seen as meaningful
in the external context. A dependency defines a relationship between observables. This
might be a formula for a calculation (i.e. in modelling movement, modifying the rate of
acceleration should cause a corresponding change in the speed) that is triggered by the
change of a value in an observable. Agents may be human or non-human. They are able to
recognise changes to observables and make appropriate responses. A non-human agent
may initiate a response automatically but differs from a dependency in that it is initiated
based on the detection of a specific state occurring rather than simply responding to the
change in value of an observable.

The learner constructs understanding through interaction with a model, a construal,
that aids them in developing their understanding the phenomena being studied. This
learning is achieved through observation of changes caused by dependencies between
observables and agent initiated actions (Beynon, 2009, p 75). The model developed for the
learner enables then to modify the values of observables and defined dependencies and
agents would cause related observables to change and be reflected to the user. The intent is
not to provide the learner with a blank sheet in which to construct a model but to provide
a model with which the learner can observe and experiment (Beynon et al., 2015).

In the case of the construal to be discussed later, the modeller has explicitly used
a visual representation of the state of the game. The learner can influence the state by
simply playing the game or through setting values in key observables. If the learner
wishes, they can observe some of the underlying values in the observables that are not
immediately visible and create their own expression to decide how many stones to
take. The environment also enables the learner to explore the underlying scripts what is
displayed and that define dependencies between observables.

The aim of this paper is not to describe the construal but to examine how this
environment can be used to implement a variation theory approach to learning.

Construals for computational reasoning
Applying the principles of variation theory to computational reasoning means trying

to expose the critical aspects of the computational techniques. Combining variation
theory with those of using observables, dependencies, and agency in construals, this
paper explores how we might construct a construal that enables the learner to develop a
computational understanding of the game and as a consequence a game playing strategies.

44

Education and Self Development. Volume 13, № 3, 2018

Creative Commons by the Authors is licenced under CC-BY

To illustrate these issues, we will use variants of the Nim game that have predictable
outcomes.

Invariants
Zingaro (2008) defines invariants as “properties of program segments that remain

true throughout the scope to which the invariant applies” (p 2). If we want learners to use
invariants to aid them in writing their code then we need to help them identify invariants
in the problems that they are trying to solve in the code segments that they are trying to
write.

Seven Stone Nim
Seven stone Nim is a game involving two players. Starting with a pile of seven stones

(Figure 5), each player, on their turn, takes one or two stones. They cannot pass on their
turn. The player who takes the last stone wins.

Zingaro (2008) defines invariants as “properties of program segments that remain true
throughout the scope to which the invariant applies” (p 2). If we want learners to use
invariants to aid them in writing their code then we need to help them identify invariants in
the problems that they are trying to solve in the code segments that they are trying to write.
Seven Stone Nim
Seven stone Nim is a game involving two players. Starting with a pile of seven stones (Figure
5), each player, on their turn, takes one or two stones. They cannot pass on their turn. The
player who takes the last stone wins.

This visual representation is intended to provide an interface that reflects what might be

expected for an implementation of the game. It is a visualisation of underlying observables
(i.e. the number of stones remaining (numStones). In the construal environment, the learner
could manipulate this value directly by using the statement numStones = 4; to see the impact
on the visual representation. An ability to influence the number of starting stones is provided
but this is only visible in the visualisation when a new game is started.
With this interface, two learners can play the game or the learner can play against the
computer. Using the “Show Prediction” button, the learner can see what the construal

predicts the outcome should be if the best playing strategy is used. The show game history
allows the learner to see the play sequence history and reflect on the game strategy. The
history for a best strategy game play is given in Figure 6.

We want the learner to develop a strategy for understanding the game through identifying the
winning game invariant. Applying the principles of variation theory and the sequence to
foster awareness and understanding of what an invariant is, we applied the following
sequence. This strategy was initially used in tutorials with students using toothpicks as the
stones.

Figure 5: Seven stone Nim start state.

Figure 6: A sample game showing the play history

This visual representation is intended to provide an interface that reflects what
might be expected for an implementation of the game. It is a visualisation of underlying
observables (i.e. the number of stones remaining (numStones). In the construal
environment, the learner could manipulate this value directly by using the statement
numStones = 4; to see the impact on the visual representation. An ability to influence the
number of starting stones is provided but this is only visible in the visualisation when a
new game is started.

With this interface, two learners can play the game or the learner can play against the
computer. Using the “Show Prediction” button, the learner can see what the construal
predicts the outcome should be if the best playing strategy is used. The show game history
allows the learner to see the play sequence history and reflect on the game strategy. The
history for a best strategy game play is given in Figure 6.

Zingaro (2008) defines invariants as “properties of program segments that remain true
throughout the scope to which the invariant applies” (p 2). If we want learners to use
invariants to aid them in writing their code then we need to help them identify invariants in
the problems that they are trying to solve in the code segments that they are trying to write.
Seven Stone Nim
Seven stone Nim is a game involving two players. Starting with a pile of seven stones (Figure
5), each player, on their turn, takes one or two stones. They cannot pass on their turn. The
player who takes the last stone wins.

This visual representation is intended to provide an interface that reflects what might be

expected for an implementation of the game. It is a visualisation of underlying observables
(i.e. the number of stones remaining (numStones). In the construal environment, the learner
could manipulate this value directly by using the statement numStones = 4; to see the impact
on the visual representation. An ability to influence the number of starting stones is provided
but this is only visible in the visualisation when a new game is started.
With this interface, two learners can play the game or the learner can play against the
computer. Using the “Show Prediction” button, the learner can see what the construal

predicts the outcome should be if the best playing strategy is used. The show game history
allows the learner to see the play sequence history and reflect on the game strategy. The
history for a best strategy game play is given in Figure 6.

We want the learner to develop a strategy for understanding the game through identifying the
winning game invariant. Applying the principles of variation theory and the sequence to
foster awareness and understanding of what an invariant is, we applied the following
sequence. This strategy was initially used in tutorials with students using toothpicks as the
stones.

Figure 5: Seven stone Nim start state.

Figure 6: A sample game showing the play history

45

Образование и саморазвитие. Том 13, № 3, 2018

Тип лицензирования авторов – лицензия творческого сообщества CC-BY

We want the learner to develop a strategy for understanding the game through
identifying the winning game invariant. Applying the principles of variation theory and
the sequence to foster awareness and understanding of what an invariant is, we applied
the following sequence. This strategy was initially used in tutorials with students using
toothpicks as the stones.

Note: There are other invariant possibilities with the game such as the number of
stones remaining is between the initial number of stones and zero stones but these are not
the focus of this exercise.

Instantiation
The first step is to have the students play the game having asked the question “is there

a way to ensure that you can win?” In many instances, the students will play the game and
one or other player will win. Can they determine who will win? Generally, not. Part of
the issue here is that the student often does not understand the nature of the game or the
mathematical principle that underlies the winning of the game.

Contrast
To show contrast, we want to vary the critical aspect while keeping the other aspects

constant. The problem with invariance is that we want to expose something that does not
change. However, there is a pattern of variance with respect to the game state that does
expose the invariance and this is the prediction of who will win in relation to the number
of stones remaining (see Figure 6). If we pause the game at critical points, can the players
determine who will win?

When there are just one or two stones left, the answer to who will win is relatively
obvious. If you pause at three stones, often the person whose turn it is realises they cannot
win but not always. At four stones left, can they now reason about how many stones they
should take if they want to win? Hopefully, they reason that it is one so they leave their
opponent with three. If they have that clear, can they reason about how many stones to
take if five stones are left? Can they now predict who is likely to win and why they are
likely to win? How general is their theory of prediction? Will it work with six stones and
seven stones? How do they word their rule for their prediction? Although the invariant
“number of stones left after my turn must be a multiple of 3 if I am to win” is important, it
is the reasoning that gets to that invariant that is important for computational reasoning.
The rule for my move is to take the maximum of 1 stone or the remainder of dividing the
number of stones by three.

An alternative here would be to have the learner to alter the number of stones
remaining and endeavour to predict the outcome. This would not require the viewing
of the history in the construal but the prediction could be used to confirm the learner’s
prediction.

It may take several times of playing the game with pauses or manipulating the number
of stones remaining and questions for them to come to this conclusion. As the facilitator
of their learning, you want to pause and challenge them to think at each stage of the
game so the invariant is exposed (multiple of three). The critical aspect from the variation
theory perspective is the number of stones remaining to predict a win.

Generalisation
Changing the number of stones at the start of the game confirms the invariant but

we contend that it is not exposing the process. In fact, our contrast sequence may not be
showing the process. Is there a variation of the game or a very similar game for which the
same process of deriving an invariant applies?

What happens if we change the win rule to the winner is the person who forces
the other player to take the last stone? When can we begin to predict a winner? Do the
learner’s follow the same process as for the previous version of Nim?

46

Education and Self Development. Volume 13, № 3, 2018

Creative Commons by the Authors is licenced under CC-BY

In terms of the process of revealing the concept of an invariant, we have begun
the process of generalisation but in terms of the computational reasoning process for
discerning invariants, we are still in contrast mode.

To generalise the process of discerning an invariant, we want a variation of the game
that still has an invariant but has greater complexity. This is possible using the generic
Nim game.

The seven stone Nim construal
The version of the game implemented by Thompson (2017) enables the learner to

play the game. It also provides the opportunity to observe the prediction of who will win
for each state, and the ability to view the history. To encourage the learner to try and
construct an invariant rule, it has the capability for the learner to create a formula for
deciding how many stones to take. There is also the option to change the winning rule so
that the player who takes the last stone loses. This changes the behaviour of the construal
while leaving the features of the game in place.

A return to generalisation
Nim is what is known as a mesére game (Siegel, 2008). The generic Nim game starts

with any number of piles of coins. In their turn, a player can take as many coins as
they want from a single pile. The person who takes the last stone wins. A pile can have
any number of coins at the start of the game. For our study of the game, we will use a
maximum of three piles.

Beynon (2017) implements this variant as a construal and uses a very similar strategy
to that described for seven stone Nim to help the learner understand how to win the
game. He instantiates the game so that the learner can play the game. He also raises some
questions and provides some sample starting points that try to encourage understanding
of the winning strategy invariant. What he makes visible is a number of key observables
and the Nim sum (exclusive or) calculation.

In Beynon’s construal (Figure 7), the
red dots represent coins while the grey dots
are empty locations. The states of the three
piles can be represented by three numbers
(i.e. [5, 9, 5] for Figure 7).

Following the strategy used for the
seven stone Nim game, the learner should be exposed to an initial state [n, 0, 0] that would
give a win. This establishes that in order to win, they need to be presented with a state
where only one pile has coins. The next starting state would be to start with two piles such
as [1, 1] which they would hopefully see as a losing state and then with [2, 1] followed
by [2, 2] to allows them to explore how they can leave their opposition in a losing state.
With [2, 1], they want to leave their opponent with [1, 1] which they know forces a loss.
But what of [2, 2], can they get their opposition to a guaranteed losing state? They cannot
get to [1, 1] so that means they need a state which might allow their opponent to make a
mistake. The only safe possibility is [2, 1].

Encouraging experimentation with [n, n] and [m, n] combinations will reinforce the
idea that if there are only two piles in play then you want to leave your opposition with
two piles with the same number of coins.

The strategy that we are encouraging for experimentation is to start with known
outcomes and then explore options that would enable them to reach those known
outcomes. Taking this approach, a step further would suggest that if you add another
column of coins then maybe you can predict what will happen if two columns have the
same number of coins (i.e. [n, n, m]). Do they see that removing the m coins from the
third column gives the opposition a losing state?

The version of the game implemented by Thompson (2017) enables the learner to play the
game. It also provides the opportunity to observe the prediction of who will win for each
state, and the ability to view the history. To encourage the learner to try and construct an
invariant rule, it has the capability for the learner to create a formula for deciding how many
stones to take. There is also the option to change the winning rule so that the player who
takes the last stone loses. This changes the behaviour of the construal while leaving the
features of the game in place.
A return to generalisation
Nim is what is known as a mesére game (Siegel, 2008). The generic Nim game starts with
any number of piles of coins. In their turn, a player can take as many coins as they want from
a single pile. The person who takes the last stone wins. A pile can have any number of coins
at the start of the game. For our study of the game, we will use a maximum of three piles.
Beynon (2017) implements this variant as a construal and uses a very similar strategy to that
described for seven stone Nim to help the learner understand how to win the game. He
instantiates the game so that the learner can play the game. He also raises some questions and
provides some sample starting points that try to encourage understanding of the winning
strategy invariant. What he makes visible is a number of key observables and the Nim sum
(exclusive or) calculation.

In Beynon’s construal (Figure 7), the red dots
represent coins while the grey dots are empty
locations. The states of the three piles can be
represented by three numbers (i.e. [5, 9, 5] for
Figure 7).
Following the strategy used for the seven stone
Nim game, the learner should be exposed to an

initial state [n, 0, 0] that would give a win. This establishes that in order to win, they need to
be presented with a state where only one pile has coins. The next starting state would be to
start with two piles such as [1, 1] which they would hopefully see as a losing state and then
with [2, 1] followed by [2, 2] to allows them to explore how they can leave their opposition
in a losing state. With [2, 1], they want to leave their opponent with [1, 1] which they know
forces a loss. But what of [2, 2], can they get their opposition to a guaranteed losing state?
They cannot get to [1, 1] so that means they need a state which might allow their opponent to
make a mistake. The only safe possibility is [2, 1].
Encouraging experimentation with [n, n] and [m, n] combinations will reinforce the idea that
if there are only two piles in play then you want to leave your opposition with two piles with
the same number of coins.
The strategy that we are encouraging for experimentation is to start with known outcomes
and then explore options that would enable them to reach those known outcomes. Taking this
approach, a step further would suggest that if you add another column of coins then maybe
you can predict what will happen if two columns have the same number of coins (i.e. [n, n,
m]). Do they see that removing the m coins from the third column gives the opposition a
losing state?
Now, we are ready to look at cases where the number of coins in each column is different
(i.e. [3, 2, 1]). Regardless of what they do, they are going to end up with an [n, n, m] state
which is a potential win for the opposition. They might see that they cannot get to a state that
would force the opposition to lose.
Move to a maximum of 4 coins in a pile. They should be aware that [4, n, n] is a potentially
winning state since they can leave their opposition with [0, n, n]. What about combinations
where each pile has a different number of coins (i.e. [4, 2, 1], [4, 3, 1], and [4, 3, 2]). Can

Figure 7: Nim Coins

47

Образование и саморазвитие. Том 13, № 3, 2018

Тип лицензирования авторов – лицензия творческого сообщества CC-BY

Now, we are ready to look at cases where the number of coins in each column is
different (i.e. [3, 2, 1]). Regardless of what they do, they are going to end up with an [n, n,
m] state which is a potential win for the opposition. They might see that they cannot get
to a state that would force the opposition to lose.

Move to a maximum of 4 coins in a pile. They should be aware that [4, n, n] is a
potentially winning state since they can leave their opposition with [0, n, n]. What about
combinations where each pile has a different number of coins (i.e. [4, 2, 1], [4, 3, 1],
and [4, 3, 2]). Can they see that these all reduce to [3, 2, 1]? Can they see that when the
maximum number of stones in a pile is 4 that only [4, 4, 0] has the characteristics of a
losing position?

The table in the appendix was developed by the author to try and determine how
you arrive and the Nim sum conclusion that the numbers for a losing state when using
their binary representation exclusive or (

they see that these all reduce to [3, 2, 1]? Can they see that when the maximum number of
stones in a pile is 4 that only [4, 4, 0] has the characteristics of a losing position?
The table in the appendix was developed by the author to try and determine how you arrive
and the Nim sum conclusion that the numbers for a losing state when using their binary
representation exclusive or (⨁) to binary zero. It uses a similar strategy to that used for the
seven coin Nim described above. It starts with the easily predictable outcomes (i.e. [1, 0, 0]
and [1, 1, 0]) and builds up the number of coins used. It recognises consistent patterns to
avoid having to experiment with every option.
It may be possible that the learner may see that there is something unique about numbers that
are powers of 2 (i.e. 2, 4, 8, …) in that only the [n, n, 0] combination is a potentially losing
position. It is important that they also see that once in a losing position, it is difficult to force
the opposition into a losing position but from a potentially winning position, there is only one
unique reduction that will leave the opposition in a losing state. That is you can lose the game
but unless you know the losing states, you cannot force a win. What they are looking for is
the rule that will enable them to know how to determine those states. In seven stone Nim, this
was the multiple of 3. By exposing of the Nim sum as they play, does the learner determine
that a Nim sum of zero determines a losing state?
Having completed at least two variants of the game, we take some time to review the process
for coming to define the invariant through seeing whether the learner can describe the process
and why it worked?
Siegel (2008) says that the Nim sum applies to any number of columns. The next step is to
see whether the learner can determine that this is true for a version of the game with more
than three columns before moving to a different type of problem. At this point, we have not
conducted an experiment to see whether the learner can apply the process to another version
of the game.
Expanding the context – real generalisation and fusion
To this point, we have been using very similar games but we want our learners to be able to
apply the problem solving process to a much broader context including programming and real
world situations. This is what is missing from many of our strategies of using programming
to teach computational ideas.
There are other games with invariants such as tower of Hanoi, missionaries and cannibals,
jealous husbands, or getting soldiers across the river. Like the set of Nim games, these all
follow a particular pattern to arrive at a solution and have a very simple invariant rule.
Although we have used the strategy with some of these problems with some positive
outcomes, we are not yet convinced that the learners have developed a problem solving
strategy.
Discussion
For the transfer of the computational thinking technique, it is not simply discerning the
invariant concept in a particular type of problem space (i.e. the writing of a code segment)
but in a range of different problems possibly from different problem domains. We start with
games but transfer the concept to programming. We contend that we should include some
everyday real world problems to encourage transfer and to verify that transfer is occurring.
The construit environment is an attempt to apply the principles of Papert’s (1980)
constructivism theory. The learner constructs a model as a way of building an understanding
of a phenomenon. With the models discussed in this paper, we are not asking the learner to
start constructing a model from scratch. Rather, we are asking them to manipulate part of the
model to build an understanding of the problem that they are working with.
The construit language is designed to aid the learner build a model. Both Piaget and Papert
contend that a child constructs knowledge through interaction with their world (Ackermann,
2001). By endeavouring to ensure that the learner is exposed to the critical aspects of the

) to binary zero. It uses a similar strategy to
that used for the seven coin Nim described above. It starts with the easily predictable
outcomes (i.e. [1, 0, 0] and [1, 1, 0]) and builds up the number of coins used. It recognises
consistent patterns to avoid having to experiment with every option.

It may be possible that the learner may see that there is something unique about
numbers that are powers of 2 (i.e. 2, 4, 8, …) in that only the [n, n, 0] combination
is a potentially losing position. It is important that they also see that once in a losing
position, it is difficult to force the opposition into a losing position but from a potentially
winning position, there is only one unique reduction that will leave the opposition in
a losing state. That is you can lose the game but unless you know the losing states,
you cannot force a win. What they are looking for is the rule that will enable them to
know how to determine those states. In seven stone Nim, this was the multiple of 3. By
exposing of the Nim sum as they play, does the learner determine that a Nim sum of
zero determines a losing state?

Having completed at least two variants of the game, we take some time to review
the process for coming to define the invariant through seeing whether the learner can
describe the process and why it worked?

Siegel (2008) says that the Nim sum applies to any number of columns. The next step
is to see whether the learner can determine that this is true for a version of the game with
more than three columns before moving to a different type of problem. At this point, we
have not conducted an experiment to see whether the learner can apply the process to
another version of the game.

Expanding the context – real generalisation and fusion
To this point, we have been using very similar games but we want our learners to be able

to apply the problem solving process to a much broader context including programming
and real world situations. This is what is missing from many of our strategies of using
programming to teach computational ideas.

There are other games with invariants such as tower of Hanoi, missionaries and
cannibals, jealous husbands, or getting soldiers across the river. Like the set of Nim games,
these all follow a particular pattern to arrive at a solution and have a very simple invariant
rule. Although we have used the strategy with some of these problems with some positive
outcomes, we are not yet convinced that the learners have developed a problem solving
strategy.

Discussion
For the transfer of the computational thinking technique, it is not simply discerning

the invariant concept in a particular type of problem space (i.e. the writing of a code

48

Education and Self Development. Volume 13, № 3, 2018

Creative Commons by the Authors is licenced under CC-BY

segment) but in a range of different problems possibly from different problem domains.
We start with games but transfer the concept to programming. We contend that we
should include some everyday real world problems to encourage transfer and to verify
that transfer is occurring.

The construit environment is an attempt to apply the principles of Papert’s
(1980) constructivism theory. The learner constructs a model as a way of building an
understanding of a phenomenon. With the models discussed in this paper, we are not
asking the learner to start constructing a model from scratch. Rather, we are asking them
to manipulate part of the model to build an understanding of the problem that they are
working with.

The construit language is designed to aid the learner build a model. Both Piaget and
Papert contend that a child constructs knowledge through interaction with their world
(Ackermann, 2001). By endeavouring to ensure that the learner is exposed to the critical
aspects of the desired knowledge then we are exposing them to opportunities to construct
the desired knowledge. Variation theory (Marton, 2015) helps us identify those critical
aspects and guides us in how to expose them to the learner.

In the case of seven stone Nim, the variations used in the construal were developed
through interaction with learners in tutorials where they played the game using toothpicks.
It was observed that stopping the game at specific points and asking them to reason about
the outcome helped them develop an invariant rule to determine who would win and
then to a game play strategy to win the game. Similar strategies have been used with
noughts and crosses (tic-tac-toe) and tower of Hanoi. Beynon’s (2017) Nim coins utilises
a similar approach but instead of allowing the learner to draw their own conclusion as to
the winning strategy informs the learner of the invariant rule. We see it as important that
the learner develops their understanding of the invariant rule and the process to arrive
at a rule.

Conclusion
We argue that providing learners with construals that encourage them to focus on

experimentation around the critical aspects of the problem can aid their learning. Asking
the learner to develop a model of the problem space is problematic as the learner has to
learn the modelling environment and how to represent the problem in that environment
before they can focus on developing the knowledge to solve the problem. This is a major
difficulty with teaching programming.

This paper endeavours to reveal how we might be able to expose the computational
reasoning ideas through using variation theory and construals but the paper also attempts
show how we might use variation theory to teach computational reasoning ideas. The
work is still in preliminary form and needs further verification to ensure that the strategies
described produce the desired outcomes.

Appendix: Detailed Analysis of the Nim Game

Game
State

Nim
Sum Prediction Justification for prediction

[n, 0, 0] Win Simply take all n coins.
[n. n, 0] n

n
000
000

Lose [1, 1, 0] is losing position and all [n, n, 0] are reduced to an
[m, n, 0] followed by a new [n, n, 0] until it reaches [1, 1, 0].
Nim sum is always zero when two columns have the same
number of stones and the third column is empty.

49

Образование и саморазвитие. Том 13, № 3, 2018

Тип лицензирования авторов – лицензия творческого сообщества CC-BY

Game
State

Nim
Sum Prediction Justification for prediction

[n, n, m] n
n
m
m

Win Take all m coins reduces to [n, n, 0], a losing position for the
opposition. All other reductions lead to a potentially winning
position for the opposition although this needs further proof at
this point.
The Nim sum is always the binary representation of m since the
Nim sum of n

they see that these all reduce to [3, 2, 1]? Can they see that when the maximum number of
stones in a pile is 4 that only [4, 4, 0] has the characteristics of a losing position?
The table in the appendix was developed by the author to try and determine how you arrive
and the Nim sum conclusion that the numbers for a losing state when using their binary
representation exclusive or (⨁) to binary zero. It uses a similar strategy to that used for the
seven coin Nim described above. It starts with the easily predictable outcomes (i.e. [1, 0, 0]
and [1, 1, 0]) and builds up the number of coins used. It recognises consistent patterns to
avoid having to experiment with every option.
It may be possible that the learner may see that there is something unique about numbers that
are powers of 2 (i.e. 2, 4, 8, …) in that only the [n, n, 0] combination is a potentially losing
position. It is important that they also see that once in a losing position, it is difficult to force
the opposition into a losing position but from a potentially winning position, there is only one
unique reduction that will leave the opposition in a losing state. That is you can lose the game
but unless you know the losing states, you cannot force a win. What they are looking for is
the rule that will enable them to know how to determine those states. In seven stone Nim, this
was the multiple of 3. By exposing of the Nim sum as they play, does the learner determine
that a Nim sum of zero determines a losing state?
Having completed at least two variants of the game, we take some time to review the process
for coming to define the invariant through seeing whether the learner can describe the process
and why it worked?
Siegel (2008) says that the Nim sum applies to any number of columns. The next step is to
see whether the learner can determine that this is true for a version of the game with more
than three columns before moving to a different type of problem. At this point, we have not
conducted an experiment to see whether the learner can apply the process to another version
of the game.
Expanding the context – real generalisation and fusion
To this point, we have been using very similar games but we want our learners to be able to
apply the problem solving process to a much broader context including programming and real
world situations. This is what is missing from many of our strategies of using programming
to teach computational ideas.
There are other games with invariants such as tower of Hanoi, missionaries and cannibals,
jealous husbands, or getting soldiers across the river. Like the set of Nim games, these all
follow a particular pattern to arrive at a solution and have a very simple invariant rule.
Although we have used the strategy with some of these problems with some positive
outcomes, we are not yet convinced that the learners have developed a problem solving
strategy.
Discussion
For the transfer of the computational thinking technique, it is not simply discerning the
invariant concept in a particular type of problem space (i.e. the writing of a code segment)
but in a range of different problems possibly from different problem domains. We start with
games but transfer the concept to programming. We contend that we should include some
everyday real world problems to encourage transfer and to verify that transfer is occurring.
The construit environment is an attempt to apply the principles of Papert’s (1980)
constructivism theory. The learner constructs a model as a way of building an understanding
of a phenomenon. With the models discussed in this paper, we are not asking the learner to
start constructing a model from scratch. Rather, we are asking them to manipulate part of the
model to build an understanding of the problem that they are working with.
The construit language is designed to aid the learner build a model. Both Piaget and Papert
contend that a child constructs knowledge through interaction with their world (Ackermann,
2001). By endeavouring to ensure that the learner is exposed to the critical aspects of the

 n = 0.
[m, n, 0] Win n < m. Remove m – n stones from m pile and you have [n,

n, 0], a losing position for the opposition. Failure to give the
opposition an [n, n, 0] potentially puts you in a losing position.

[2, 2, 0] 10
10
00
00

Lose Note: Only [2, 2, 0] is a losing position where the maximum
number of coins is 2. The next state is either [2, 1, 0] or [2, 0, 0].
If your opponent knows how to play, they can keep you in
a losing state.

[3, 2, 1] 11
10
01
00

Lose All possible move combinations end with a possible winning
state for the opposition. All other combinations with a
maximum of 3 coins are covered by the previous cases.
For [3, 2, 1] this would be an [n, n, m] combination or an [m,
n, 0] combination.
For [3, 3, 0] it would be an [3, n, 0] combination where n is less
than 3.

[3, 3, 0] 11
11
00
00

[4, 4, 0] 100
100
000
000

Lose Note: Only [4, 4, 0] is a losing position where the maximum
number of coins is 4. No other number has a 1 in the most
significant column of its binary representation.

[4, 2, 1]  100
010
001
111

Win All can be reduced to [3, 2, 1] which is a losing position for
opposition. Other reductions potentially leave your opposition
in a winning position.

[4, 3, 2] 100
011
010
101

[4, 3, 1] 100
011
001
110

Note: 4 = 3 + 1 but we are in a losing state and not a winning
state so this refutes any rule based on decimal arithmetic. It
may be indicating that we should be looking at binary notation
since 4 requires 3 binary digits to represent while 3 requires 2
and 1 requires only 1.

[5, 4, 1] 101
100
001
000

Lose Reduce to [5, n, 1] where n < 4 or [4, n, 1] where n < 5 of [5, 4,
0] which are all win situations for the opposition.

[5, m, n] 101
0yy
0zz
1xx

Win Where m and n are less than 4 and n < m since they can be
reduced to [3, 2, 1], a losing position for the opposition. The
possible initial combinations are [5, 3, 2], [5, 3, 1], [5, 2, 1]. All
other possible reductions leave the opposition in a potentially
winning state.
The most significant digit on the Nim sum is always 1.

[5, 4, n] 101
100
01z
01x

Win Where n = 3 or 2. Reduces to [5, 4, 1] which are is a losing
position for the opposition. Other reductions leave the
opposition in a potentially winning state.
The middle digit of the Nim sum is always 1.

50

Education and Self Development. Volume 13, № 3, 2018

Creative Commons by the Authors is licenced under CC-BY

Game
State

Nim
Sum Prediction Justification for prediction

[6, 4, 2] 110
100
010
000

Lose All [4, 2, n] where n < 5, [6, 4, n] where n < 2, and [6, 2, n]
where n < 4 are win positions for the opposition.

[6, 5, 3] 110
101
011
000

All [6, 5, n] where n < 3, [6, 3, n] where n < 5, and [5, 3, n]
where n < 6 are win positions for the opposition.
Note: [6, 5, 3] is the first combination for a loss where the
decimal sum of the two smaller numbers does not equal the
larger number (i.e. 6 ≠ 5 +3).

[6, 6, 0] 110
110
000
000

[6, 4, 1] 110
100
001
011

Win Reduces to [5, 4, 1] which is a losing position for the
opposition. Note: This is the best play from this state
other options potentially led to a possible win state for the
opposition.

[6, m, n] 110
0yy
0zz
1xx

Win Where m and n are less than 4 and n < m since they can be
reduced to [3, 2, 1], a losing position for the opposition. All
other reductions leave the opposition in a potentially winning
position.
The most significant digit of the Nim sum is always 1.

[6, 4, n] 110
100
yyy
xxx

Win Where n = 3, 4, or 5 reduced to [6, 4, 2] which is a losing
position for the opposition. All other reductions leave the
opposition in a potentially winning position.
If n is 3 then the last digit of the Nim sum is 1. If n is 4 or 5
then first digit of the Nim sum is 1.

[6, 5, n] 110
101
yyy
xxx

Win Where n < 5 but not equal to 3.
Cases are [6, 5, 4] (Nim sum 111) -> [1, 5, 4], [6, 5, 2] (001) ->
[6, 4, 2],
[6, 5, 1] (010) -> [4, 5, 1]. All other reductions leave the
opposition in a potentially winning position.
yyy would need to be 3 [011] in order for the Nim sum to be
zero.

[7, 4, 3]  111
100
011
000

Lose All [4, 3, n] options are wins for the opposition .
All other [7, 4, n] and [7, 3, n] combinations that can be
reached from this starting position are covered below and are
potential win states for the opposition.

[7, 5, 2] 111
101
010
000

All [5, 2, n] options are wins for the opposition .
All other [7, 5, n] and [7, 2, n] combinations that can be
reached from this starting position are covered below and are
potential win states for the opposition.

[7, 6, 1] 111
110
001
000

All [6, 1, n] options are wins for the opposition.
All other [7, 6, n] and [7, 1, n] combinations that can be
reached from this starting position are covered below and are
potential win states for the opposition.

[7, 7, 0] 111
111
000
000

51

Образование и саморазвитие. Том 13, № 3, 2018

Тип лицензирования авторов – лицензия творческого сообщества CC-BY

Game
State

Nim
Sum Prediction Justification for prediction

[7, m, n] 111
0yy
0zz
1xx

Win Where m and n are less than 4 and n < m since they can be
reduced to [3, 2, 1], a losing position for the opposition. All other
reductions leave the opposition in a potentially winning position.
The most significant digit of the Nim sum is always 1.

[7, 4, 1] 111
100
001
010

Win [7, 4, 1] reduces to [5, 4, 1].  All other reductions leave the
opposition in a potentially winning position.

[7, 4, 2] 111
010
001
100

[7, 4, 2] reduces to [6, 4, 2].  All other reductions leave the
opposition in a potentially winning position.

[7, 5, 1] 111
101
001
011

[7, 5, 1] reduces to [5, 4, 1].  All other reductions leave the
opposition in a potentially winning position.

[7, 5, n] 111
101
yyy
xxx

[7, 5, n] where n > 2 reduce to [7, 5, 2]. All other reductions
leave the opposition in a potentially winning position.
Note: Only n = 2 will give a Nim sum of zero.

[7, 6, n] 111
110
yyy
xxx

 [7, 6, n] where n > 1 reduce to [7, 6, 1]. All other reductions
leave the opposition in a potentially winning position.
Note: Only n = 1 will give a Nim sum of zero.

[8, 8, 0] Lose Note: Only [8, 8, 0] is a losing position where the maximum
number of coins is 8

[8, 2, 1] Win [8, 2, 1] reduces to [3, 2, 1], a losing position for the opposition
[8, 3, n] [8, 3, 1] and [8, 3, 2] both reduce to [3, 2, 1]
[8, 4, n] [8, 4, 1] reduces to [5, 4, 1].

[8, 4, 2] reduces to [6, 4, 2].
[8, 4, 3] reduces to [7, 4, 3].

[8, 5, n] [8, 5, 1] reduces to [5, 4, 1].
[8, 5, 2] reduces to [7, 5, 2].
[8, 5, 3] reduces to [6, 5, 3].
[8, 5, 4] reduces to [5, 4, 1].

 [8, 6, n] [8, 6, 1] reduces to [7, 6, 1].
[8, 6, 2] reduces to [6, 4, 2].
[8, 6, 3] reduces to [6, 5, 3].
[8, 6, 4] reduces to [6, 4, 2].
[8, 6, 5] reduces to [6, 5, 3].

[8, 7, n] [8, 7, 1] reduces to [7, 6, 1].
[8, 7, 2] reduces to [7, 5, 2].
[8, 7, 3] reduces to [7, 4, 3].
[8, 7, 4] reduces to [7, 4, 3].
[8, 7, 5] reduces to [7, 5, 2].
[8, 7, 6] reduces to [7, 6, 1].

[9, 8, 1]
 [9, 9, 0]

Lose

[9, m, n] Win Where m and n are less than 8 and n < m since they can be
reduced to a losing position for the opposition

[9, 8, n] Win Where n > 1 and n < 8 reduce to [9, 8, 1]

52

Education and Self Development. Volume 13, № 3, 2018

Creative Commons by the Authors is licenced under CC-BY

References
Ackermann, E. (2001). Piaget's constructivism, Papert's constructionism: What's the difference? Paper

presented at the Constructivism: Uses and perspetives in education, Geneva. Retrieved from:
http://learning.media.mit.edu/content/publications/EA.Piaget _ Papert.pdf

Aho, A. V. (2011). Ubiquity symposium: Computation and Computational Thinking. Ubiquity,
2011(January). doi:10.1145/1922681.1922682

Beynon, M. (2017). Nim Coins. Construit!: University of Warwick. Retrieved from: http://jseden.
dcs.warwick.ac.uk/construit/?load=166

Beynon, M. (2009). Constructivist Computer Science Education Reconstructed. Innovation
in Teaching and Learning in Information and Computer Sciences, 8(2), 73–90. https://doi.
org/10.11120/ital.2009.08020073

Beynon, M., Foss, J., Hudnott, E., Russ, S., Hall, C., Boyatt, R., . . . Winczer, M. (2015). Making
Construals as a New Digital Skill: Dissolving the Program – and the Programmer – Interface. Paper
presented at the International Conference on Interactive Technologies and Games (ITAG). ht-
tps://doi.org/10.1109/iTAG.2015.10

Costa, A. L., & Liebmann, R. M. (1996). Envisioning process as content: Toward a renaissance
curriculum. Thopusand Oaks, CA: Corwin Press Inc.

James, W. (1897). The will to believe and other essays in popular philosophy (1912 / Project Gutenberg).
New York: Longmans, Green and Co. Retrieved from: http://www.gutenberg.org/ebooks/26659

James, W. (1909). A Pluralistic Universe Hibbert Lectures at Manchester College on the Present
Situation in Philosophy. London, Bombay, and Calcutta: Longmans, Green and Co. Retrieved
from: http://www.gutenberg.org/ebooks/11984

James, W. (1912). Essays in Radical Empiricism. (R. B. Perry, Ed.). New York: Longmans, Green, and
Co. Retrieved from: http://www.gutenberg.org/ebooks/32547

Kowalski, R. (2011). Computational logic and human thinking: how to be artificially intelligent.
Cambridge; New York: Cambridge University Press.

Marton, F. (2015). Necessary conditions of learning. New York and London: Routledge.
Marton, F., & Booth, S. A. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum

Associates.
Papert, S. (1980). Mindstorms: children, computers, and powerful ideas: Basic Books, Inc.
Siegel, A. N. (2008). Misére games and misére quotients. Course Notes. Weizmann Institute of

Science. Rehovot, Israel. Retrieved from: https://arxiv.org/pdf/math/0612616.pdf
Thompson, E. (2017). Seven Stone Nim. Construit!: University of Warwick. Retrieved from: http://

jseden.dcs.warwick.ac.uk/construit/?load=236
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. Retrieved

from: https://doi.org/10.1145/1118178.1118215
Zingaro, D. (2008). Invariants: A Generative approach to programming. London: College Publications.

