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We present a simple approach to predict the main features of optical spectra affected by self-phase modulation 
(SPM), which is based on regarding the spectrum modification as an interference effect. A two-wave interference 
model is found sufficient to describe the SPM-broadened spectra of initially transform-limited or up-chirped 
pulses, whereas a third wave should be included in the model for initially down-chirped pulses. Simple analytical 
formulae are derived, which accurately predict the positions of the outermost peaks of the spectra. © 2018 Optical 
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1. INTRODUCTION 
Self-phase modulation (SPM) is one of those very fascinating effects 
discovered in the early days of nonlinear optics [1, 2] and among the 
first examples of nonlinear optical phenomena to which novices of the 
field are usually exposed [3, 4]. It refers to the phenomenon by which 
an intense optical beam propagating in a Kerr medium induces 
through the nonlinearity of the medium a modulation of its phase that 
is proportional to its own intensity profile. Fiber optics is a convenient 
testbed for the experimental study of nonlinear optical phenomena 
owing to the possibility for a propagating beam to undergo large 
amounts sof nonlinearity without suffering from spatial modifications 
or thermal effects [5]. The earliest observation of SPM in optical fibers 
was made in 1978 [6], and the phenomenon has been extensively 
studied since then. For an input pulsed beam, the time-dependent 
phase change induced by SPM is associated with a modification of the 
optical spectrum, which depends on the frequency modulation (chirp) 
of the pulse electric field: if the pulse is initially Fourier-transform-
limited or up-chirped SPM leads to spectral broadening, whereas an 
initially down-chirped pulse is spectrally compressed by the effects of 
SPM [6, 8]. For strong SPM, the optical spectrum can exhibit strong 
oscillations. It is worth noting that the spectrum modification induced 
by SPM can also be interpreted in terms of intra-pulse four-wave 
mixing [7].  

SPM is often regarded as being harmful for optical communication 
systems or high-power pulse generation [9]. However, when 
conveniently managed, SPM can be a precious ingredient that has 
stimulated a tremendous amount of applications, including the 
generation of ultra-short pulses [10, 11], the compensation of 
dispersion through solitonic effects [5, 12], the generation of 

wavelength-multiplexed sources [13], the frequency shifting of ultra-
short pulse sources [14], the contrast enhancement of ultra-short 
pulses [15], several applications in ultrafast optical signal processing 
[16, 17], and the characterization of optical pulses [18, 19] and 
waveguides [20]. 

In this paper, by extending an approach initially developed in the 
context of sinusoidally phase modulated continuous waves [21], we 
present a novel theoretical treatment of SPM based on a spectral 
interference model. The typical oscillatory character of optical spectra 
affected by SPM indeed originates from strong excursions of the 
instantaneous frequency, so that in general there are contributions 
from different times to the Fourier integral for a given frequency 
component. Depending on the exact frequency, these contributions 
may constructively add up or cancel each other [1]. After introducing 
the situation under investigation, we present the intuitive but accurate 
description of the SPM spectral patterns that is afforded by our 
proposed approach. Simple analytical formulae are derived, which 
accurately predict the positions of the outermost peaks of the spectra. 
In the last section, we discuss both qualitatively and quantitatively the 
different scenarios that are observed depending on the initial chirp of 
the pulses.  
 

2. PRINCIPLE AND SITUATION UNDER INVESTIGATION 
Pulse propagation in a single-mode optical fiber is modeled with the 
standard nonlinear Schrödinger equation [5]: 
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where (z,t) is the complex envelope of the pulse electric field, z is the 
propagation coordinate, t is the retarded time, 2 is the group-velocity 
dispersion (GVD) parameter, and  is the Kerr-nonlinearity coefficient 
accounting for both the nonlinear refractive index n2 and the fiber’s 
effective cross-sectional area. We consider an initial pulse having the 

waveform y 0,t( ) = P
0
I (t) exp -iC t2 / 2T

0

2( )( ) , where I(t) is the 

normalized temporal intensity profile of the pulse, P0 is the peak 
power, T0 is a characteristic time associated with the pulse, and C is  a 
chirp coefficient, which can be positive or negative. When the effects of 
Kerr nonlinearity are considered over those distances and power 
levels such that we can neglect dispersion  (i.e. when the condition 

1/ gP
0( )≪T0

2 / b
2

 is satisfied), the solution to Eq. (1) is simply  

  ( , ) (0, ) exp ( , ) ,NLz t t i z t    (2) 

where NL(z,t) = B I(t) is the SPM-induced nonlinear phase shift. Here, B 
= P0 z is the maximum phase shift that occurs at the pulse center 
located at t = 0 and is widely known as the B-integral. In the presence 
of loss or gain, the physical propagated length z is replaced with an 
effective length defined as Leff  = [1 − exp(−z)] / , where α > 0 (< 0) 
accounts for loss (gain). Equation (2) shows that SPM gives rise to an 
intensity-dependent phase shift but the pulse shape remains 
unaffected. The temporally varying nonlinear phase implies a time 
dependence of the instantaneous optical frequency NL(t) = –dNL/dt, 
which in turn translates into changes in the pulse spectrum. The shape 
of the spectrum S() is obtained by taking the  Fourier transform of  
Eq. (2): 
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In general, the spectrum depends on the pulse shape and the initial 
chirp imposed on the pulse. In the general case, S() cannot be 
calculated analytically.  However, for large values of the B-integral, 
many important insights into S() can be obtained using the method of 
stationary phase [22]. 

For an input pulse with a parabolic shape, the SPM-induced 
frequency chirp NL is a strictly monotonic function of time, so the 
pulse has a different instantaneous frequency at each point. In this case, 
no spectral interference occurs and, thus, the spectrum does not 
feature any oscillatory structure [23]. Conversely, for common 
transform-limited bell-shaped pulses, such as Gaussian or hyperbolic 
secant pulses, NL has a non-monotonic temporal variation; it reaches 
maximum positive and minimum negative values, m and min, and 
approaches zero as t becomes infinitely large. It has therefore been 
proposed to estimate the magnitude of SPM-induced spectral 
broadening by simply calculating  = m − min. A more accurate 
measure of spectral broadening is provided by the root-mean-square 
(rms) spectral width rms [24]. The typical time dependence of NL for 
these bell-like pulse waveforms also means that for min < NL < m 
the same chirp occurs at two values of t, showing that the pulse has the 
same instantaneous frequency at two distinct points. Qualitatively 
speaking, these two points represent two waves of the same frequency 
but different phases that can interfere constructively or destructively 
depending on their relative phase difference. The characteristic 
oscillatory structure in the pulse spectrum is a result of such 
interference [1]. Mathematically, the Fourier integral in Eq. (3) gets 
dominant contributions at the two values of t at which the chirp is the 
same. These contributions may add up in phase or out of phase. 
Indeed, it is possible to use the stationary phase method to obtain an 
approximate expression of S() that is valid for large values of B [22]. 
Note that for initially chirped pulses, in general the same chirp may 

occur at more than two values of t. The approach that we propose here 
is to evaluate the spectrum affected by SPM by calculating the intensity 
in the interference pattern associated with the different instants in the 
pulse that have the same instantaneous frequency.  A measure of the 
spectrum extent is then provided by the position of the outermost peak 
of intensity.  
 

3. SPM PATTERN PREDICTION OF INITIALLY 
TRANSFORM-LIMITED PULSE 

A. Analysis of the spectrum of a Gaussian pulse 

In order to introduce the basis of our discussion, we first consider the 
case of the widely used Fourier-transform-limited Gaussian pulse with 
the temporal intensity profile: I(t) = G(t) = exp(−(t/T0)2), where T0 is 
the half-width at 1/e intensity point. Given the evenness of the 
intensity function and the oddness of the chirp function, we can restrict 
our study to the positive times only. The chirp (t) = NL(t) for such 
a pulse [Fig. 1(b)] is  
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where Hn  is the nth-order Hermite polynomial.  The extrema of the 
chirp function can be easily found by solving the equation 
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which yields the following maximum value of  on the positive time 
tm:  
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Fig. 1. Temporal intensity and chirp profiles for a transform-limited 
Gaussian pulse after undergoing SPM at a B-integral of 20 rad. The 
extreme points of the chirp function and the solutions of the equation 
= 0 are indicated with red and blue lines, respectively. The cyan 
and yellow regions represent the phase difference D and the 
opposite of the total phase offset T, respectively. The approximation 
to the chirp function based on Eq. (15) and the corresponding 
approximation to the pulse profile are plotted with dashed green lines. 

 
As can be seen in Fig. 1(b), a given instantaneous frequency 0   

between 0 and m   is observed at two different instants, t1 and t2 (with 
t2> t1), whose separation t = t2 – t1 is a decreasing function of 0.  
These instants are the two roots of the equation (t) = 0: 
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where Wn is the Lambert W function, with n  = 0, −1 for the main and 
second branch, respectively. The total phase difference T between t1 
and t2 is the result of two contributions. The first contribution D is 
due to the time delay t:  

  0 0 .D t      (8) 

This quantity can be represented graphically in Fig. 1(b) as the area of 
the cyan rectangle, and is a non-monotonic function of 0 (Fig. 2). The 
second contribution NL to the total phase offset arises from SPM: 

        0 2 1 2 1( ) ( ) ,NL NL NLt t B G t G t         (9) 

and can be represented as the opposite of the area under the curve 
(t) between t = t1 and t = t2 in Fig. 1(b). It is apparent that NL is a 
negative and monotonically increasing function of 0 that has the 
maximum negative value of −B at 0 = 0 and is zero when 0 = m. The 
total phase difference between t2 and t1 is therefore  

  0 .T D NL        (10) 

It can be geometrically interpreted as the opposite of the area of the 
region in Fig. 1(b) that is bounded by the graph of and the 
horizontal line 0 (yellow region), and it is a negative and 
monotonically increasing function of 0 with the same extrema as NL 
(Fig. 2). 
 

 
Fig. 2. Variation of the different phase differences between the two 
interfering times at the frequency 0, t1 and t2, with 0 for a transform-
limited Gaussian pulse after undergoing SPM at B = 20 rad. The phase 
differences D, NL and T as calculated from Eqs. (8), (9) and (10) 
are represented by red, blue and purple solid curves, respectively. 
Their simplified-model approximations 'D, 'NL and 'T based on 
Eq. (17) are represented by dash-dotted curves. The green and cyan 
horizontal lines represent the values of the total phase offset causing 
constructive and destructive interference, respectively [Eqs. (13) and 
(12)]. 

 
With the knowledge of the instants t1 and t2 and the total phase 

difference T between them, we can calculate the distribution of 
intensity I(0)  in the pattern associated with the interference between 
these two times: 
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Equation (11) indicates that there is destructive interference causing 
intensity minima at frequencies for which  

 (2 1) ,
2

T m


      (12) 

with m being a negative integer number (Fig. 2, cyan lines). From Eq. 
(12), one may obtain the convenient relationship between the number 
of minima k on one side of the spectrum and the value of B derived by 
Cubeddu et al. in [22]: B = (2k-1) . Intensity maxima or constructive 
interference occur when  

 2
2

T m


     (13) 

at negative integer m. In particular, the position ωM of the outermost 
peak of intensity corresponds to m = 0 in Eq. (13): 
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Fig. 3. (a) Spectral intensity distribution I(0) calculated from Eq. (11) 
(blue solid curve) compared to the spectrum S() obtained from Eq. 
(3)  (red solid curve) for a transform-limited Gaussian pulse after 
undergoing SPM at B = 20 rad. The green and cyan dotted lines 
represent the frequencies at which constructive and destructive 
interference occurs, as predicted by Eqs. (13) and (12), respectively. 
The red and purple vertical dash-dotted lines represent the maximum 
frequency m from Eq. (6) and the simplified-model prediction for the 
position of the outermost spectral peak ’M [Eq. (20)].  (b) Evolutions 
of the intensities of the two interfering waves at the frequency 0, I1 = 
G(t1) and I2 = G(t2), with 0 (purple and green curves, respectively).  

 
It is worth noting that T being not a linear function of 0, the 

frequencies for which constructive and destructive interference occurs 
are not equally spaced, and the outermost intensity peak is the widest 
[25]. Figure 3 compares the spectral intensity distribution I(0) given 
by Eq. (11) with the exact spectrum S() numerically calculated from 
Eq. (3) at a level of SPM corresponding to B = 20 rad, and apparently 
indicates excellent qualitative agreement between the two spectral 
patterns. The positions of the intensity extrema predicted by Eqs. (12) 
and (13) are in quantitative agreement with the actual positions. The 
evolutions of the intensities of the two interfering waves at the 
instantaneous frequency 0, I1 = G(t1) and I2 = G(t2), with 0 that are 
plotted in Fig. 2(b) highlight that the lower 0, the higher the intensity 
difference between these two waves. This brings about a decreasing 
contrast in the interference pattern I(0) with decreasing 0.  It is also 
noteworthy that our model is intrinsically unable to predict the outer 
decreasing wings of the spectrum. 
 

We have also compared the evolutions of I(0) and S() with the 
level of SPM accumulated in the fiber. The results shown in Fig. 4(a) 
confirm both the qualitative agreement between the spectral pattern 
predicted by Eq. (11) and the numerical evaluation of the spectrum 
from Eq. (3), and the accuracy of the analytical prediction for the 
positions of the spectrum’s extrema. It is also apparent from Fig. 4(a) 
that the maximum instantaneous frequency excursion contained in the 
spectrum m or the rms spectral width rms = rms,0 [1+ (0.877 B)2]1/2  

derived by Pinault et al. in [24] (rms,0 is the initial rms spectral width of 
the pulse) may not be the most intuitive quantities to describe the 
spectrum’s expansion generated by SPM and, especially, the position of 
the outermost spectral peak that is very relevant for many recent 
applications of SPM [14, 15]. Our approach is also able to describe the 
evolution of the spectral intensity at the central frequency 0 = 0, for 
which T = −B, with the B-integral. A simple sinusoidal function can 
indeed qualitatively explain the resulting pattern: I(B, 0=0)  1+ 

sin(B)/2 [Fig. 4(b)]. This can be of interest for nonlinear signal 
processing applications based on optical band-pass filtering at the 
central frequency [16, 17]. 
 

 

 Fig. 4. (a) Evolution of the spectrum of a transform-limited Gaussian 
pulse with the B-integral accumulated in the fiber. The spectral 
intensity distribution I(0) calculated from Eq. (11) (panel 1) is 
compared to the spectrum S() obtained from Eq. (3) (panel 2). The 
evolutions of the rms spectral width rms, the position of the outermost 
spectral peak M predicted by Eq. (14), and the value predicted by the 
simplified model ’M [Eq. (20)] are plotted with red, white and dark 
blue dash-dotted lines, respectively. The green and cyan dotted open 
circles represent the frequencies at which constructive and destructive 
interference occurs, as predicted by Eqs. (13) and (12), respectively. 
(b) Evolution of the spectral intensity at the central frequency with the 
accumulated B-integral as obtained by numerical evaluation of Eq. (3) 
(red curve) and by the relationship: I(B, 0=0)   1+sin(B)/2 stemming 
from Eq. (11) (blue curve).  

B. Simplified analysis 

One point of the analysis so far that could be slightly inconvenient is the 
use of the Lambert W function to determine the interfering instants t1 
and t2. While such a function is nowadays widely implemented in 
professional scientific software, it prevents the development of a fully 
analytical approach to the problem. Simplified but fully tractable 
expressions giving the main features of the spectral interference 
process can be obtained by expanding the chirp function (t)  in 
Taylor series about  t = tm  to second order:  
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As we can see in Fig. 1(b) (dashed green curve), this expansion 
provides a rather good approximation to the actual function in the 
vicinity of m. Within this approximation, the interfering instants t’1 
and t’2 are simply the roots of a quadratic equation, (t’) = 0, hence 
they are separated by 
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and the linear and nonlinear phase differences between them are 
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Here, the nonlinear phase contribution ’NL has been obtained by 
using a first-order Taylor expansion of the pulse intensity profile I(t) 
about tm: I(t) = I(tm) − m (t − tm)/B [Fig. 1(a), green dashed curve]. The 
predictions from Eq. (17) show fairly good agreement with the results 
obtained from Eqs. (8), (9) and (10) as long the instantaneous 
frequency remains close to its maximum value m (Fig. 2, dash-dotted 
curves). Accordingly, Eq. (14) giving the position of the outermost 
spectral peak simplifies to 
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This equation can be readily solved to yield 
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Using the relationship between m and T0 that can be derived from Eq. 
(6) for a Gaussian pulse, Eq. (19) takes the form 
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Therefore, our toy model explicitly predicts a B-dependent correction 
factor for the position of the outermost spectral peak relative to the 
maximum instantaneous frequency excursion. As can be seen in Figs. 3 
and 4 (purple dashed curves), the prediction based on Eq. (20) is 
entirely plausible, thereby being more convenient for practical 
applications than rms or m. 
 

C. Analysis of other pulse shapes  

We have also used our proposed method to describe the SPM-
broadened spectra of initially transform-limited pulses with hyperbolic 
secant, Lorentzian and super Gaussian temporal intensity profiles. In 
the case of a hyperbolic secant pulse with I(t) = sech2(t/T0), the chirp is 
given by (t) = 2 B I(t) tanh(t/T0), and attains a maximum value of 
m=3−3/2 / T0  at  tm = T0 atanh(3−1/2). The simplified model 
supplies the same expression for the position of the outermost spectral 
peak as that of Eq. (20). We note that for this pulse shape, an exact 
calculation of the optical spectrum affected by SPM is available [26]. 
However, this calculation remains quite technical and not fully 
intuitive.  

The Lorentzian profile I(t) = (1+(t/T0)2)−4  entails the chirp (t) = 
4 B (1+(t/T0)2)−3/T0 with a maximum value of m = 25 B / (54 tm) at tm 
= T0 5−1/2. The toy-model analysis leads to the following prediction of 
the position of the outermost spectral peak: 
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The results obtained for the hyperbolic secant and Lorentzian pulse 
shapes are summarized in Fig. 5, and demonstrate the excellent ability 
of our approach to reproduce the overall shape and the extreme points 
of the spectrum. However, similarly to the case of a Gaussian pulse, the 
amplitude of the outermost peak is underestimated. This stems from 
the fact that the lowest-order approximation to the integral in Eq. (3) 
provided by the method of stationary phase ceases to be valid in the 
vicinity of m [22]. Indeed, when ω = ωm, the main contribution to the 
integral would come from the point t = tm, where (dδωNL/dt)tm = 0. 
 
 

 
Fig. 5. SPM patterns of transform-limited hyperbolic secant (panels 1) 
and Lorentzian (panels 2) pulses. (a) Spectral intensity distribution 
I(0)  (blue solid curve) compared to the spectrum S() obtained from 
Eq. (3)  (red solid curve) for a B-integral accumulated in the fiber of 20 
rad. (b) Evolution of the spectrum S() with the B-integral. The red and 
purple vertical dash-dotted lines represent the maximum frequency 
m and the simplified-model prediction for the position of the 
outermost spectral peak ’M [Eqs. (20) and (21)]. The green and cyan 
dotted lines or open circles represent the frequencies at which 
constructive and destructive interference occurs, as predicted by Eqs. 
(13) and (12), respectively.  
 

Figure 6 shows the results obtained for a super-Gaussian pulse 
given by I(t) = exp(-(t/T0)2m) with m = 3. In this case, the chirp m has a 
maximum point at tm = T0 (1−1/(2m))1/2m, which can be approximated 
to T0 for large m. With this approximation, we get m = 2 B m e−1 / T0. 
Thus, using the simplified model, we obtain the following expression 
for the position of the outermost spectral peak:  
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We can see in Fig. 6 that our method can accurately predict the 
lateral extreme points of the spectrum. However, a significant 
discrepancy between the spectral intensity distribution I(0) and the 
actual spectrum S() can be observed at the low frequencies. In 
particular, S() features a marked peak at 0 = 0, which cannot be 
reproduced by our approach. In fact, most of the pulse energy remains 
in the central peak because the SPM-induced chirp is nearly zero over 
the central region of the pulse as a consequence of the nearly uniform 



intensity of a super-Gaussian pulse for |t| < T0. This central peak may 
make the first minimum from the center slightly fuzzy, hence care 
should be taken when applying the formula for the number of minima 
in the SPM-broadened spectrum derived by Cubeddu et al. to 
experimental data. 
 

 

Fig. 6. SPM pattern of a transform-limited super-Gaussian pulse with m 
= 3. (a) Spectral intensity distribution I(0) (blue solid curve) 
compared to the spectrum S() obtained from Eq. (3)  (red solid 
curve) for a B-integral accumulated in the fiber of 20 rad. (b) 
Evolutions of I(0) (panel 1) and S() (panel 2) with the B-integral. 
The red and purple vertical dash-dotted lines represent the maximum 
frequency m and the simplified-model prediction for the position of 
the outermost spectral peak ’M [Eq. (22)]. The green and cyan dotted 
lines or open circles represent the frequencies at which constructive 
and destructive interference occurs, as predicted by Eqs. (13) and (12), 
respectively.  

 

4. SPM PATTERN PREDICTION OF LINEARLY CHIRPED 
INPUT PULSE 

A. General discussion on the appearance of spectral interference 
fringes 

In this section, we discuss the effects of an initial linear chirp on the 
SPM-modified pulse spectrum. Such a chirp can be easily generated 
through propagation in a linear dispersive medium such as a pair of 
diffraction gratings, fiber Bragg gratings or a hollow core optical fiber. 
Linearly chirped pulses are widely used in chirped pulse amplification 
to mitigate undesirable SPM [9, 27]. However, the residual SPM can be 
sufficient to degrade the quality of the pulses [28]. We focus our 
discussion on an input Gaussian pulse, but the method can be extended 
to other bell-shaped waveforms [29]. Note that part of the discussion 
can also aid to qualitatively understand the initial stage of wave-
breaking occurring in a nonlinear dispersive fiber, as described by 
Anderson et al. [30].  We retain here the assumption of a highly 
nonlinear propagation regime so that the temporal intensity profile of 
the pulse does not change along the fiber length.  Hence, for a Gaussian 

pulse with an initial linear chirp (C ≠ 0), the total chirp after undergoing 
SPM is given by 
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Hence, the extreme points of the chirp te verify the following equation: 
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where R = C/B is the ratio of the initial chirp coefficient to the level of 
SPM experienced. The function H2(t/T0) G(t) is plotted in Fig. 7(a) and 
has values comprised between −2  (attained at t = 0) and 4 exp(−3/2)  
(attained at ts = T0 (3/2)1/2). In other words, for R below Rmin = −2 or 
above Rmax = 4 exp(−3/2), the chirp (t) is a strictly monotonic 
function as shown in panels b1 or b5 of Fig. 7 (blue curves). Hence, for 
this range of values of R, we should not expect spectral interference to 
occur and the spectrum should not show any oscillatory structure.  
When R = C = 0 (panel b3), we recover the case of an unchirped input 
pulse studied in Sec. 3. For −Rmin < R < 0  (see panel b4 as an example), 
the chirp has a local minimum and a local maximum, with the 
maximum Cm = (tCm) located on the trailing edge of the pulse at  
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For R = Rmin, the two extrema merge and the chirp has an inflexion 
point at t = 0 (panel b5, red curve). For 0 < R < Rmax, the chirp may 
feature a minimum and a maximum on the trailing edge of the pulse as 
illustrated in panel b2. The maximum point is given by Eq. (25), while 
the minimum value Cmin = (tCmin) occurs at 
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For R = Rmax, the chirp exhibits an inflexion point at ts = tCm = tCmin (panel 
b1, red curve).  
 

 



Fig. 7. (a) Plot of H2(t/T0)G(t) for an initially chirped Gaussian pulse. 
The green dashed line is the linear approximation to the function in the 
vicinity of tm given by Eq. (26). The gray dash-dot horizontal lines 
represent the values of R used in the different subplots b.  (b) Temporal 
chirp profiles of the pulse for different values of R: (b1), R = 1.5 (blue 
curve) and R = Rmax (red curve); (b2) R = 0.5; (b3) R = 0; (b4) R = −1; 
(b5) R = −2.5 (blue curve) and R = Rmin (red curve).  

The different behaviors of the chirp function according to the ratio of   
its linear and nonlinear parts impose remarkably different features on 
the pulse spectrum. To illustrate this point, we have plotted in Fig. 8 the 
evolution of the spectrum with the ratio R at a level of SPM 
corresponding to B = 20 rad. The results highlight the distinctly 
different spectral regimes that are observed depending on R: for R > 
Rmax, the central part of the spectrum does not show any oscillations. 
For 0 < R < Rmax, two intense peaks are visible in the spectrum and 
some ripple develops on the spectrum’s boundaries. For Rmin < R < 0, 
the spectrum features an oscillatory structure, which is different from 
the sinusoidal variation discussed in Sec. 3. Finally, for R < Rmin, no 
oscillatory structure is visible in the spectrum and most of the pulse 
energy is focused on the center of the spectrum. Indeed, the pulse 
experiences spectral compression, a phenomenon that is well 
documented in the literature and has found many practical 
applications [6, 8, 31, 32]. 
 

 

Fig. 8. Evolution of the spectrum of a chirped Gaussian pulse with the 
ratio R = C/B for B = 20 rad, as obtained from numerical integration of 
Eq. (3). The white dotted horizontal lines represent the notable values 
of R. The green dotted horizontal lines indicate the R-values used in 
Figs. 9 and 11. The red, blue, black and purple dash-dotted curves 
represent the frequencies Cm, Cmin, ’Cm  and ’CM,  respectively. 

 
In the following subsection, we discuss some simplifications of the 

spectral interference model that can be advantageously used to 
describe the SPM-induced spectral pattern of an initially chirped 
Gaussian pulse. Then, we discuss the two regimes where the pulse 
spectrum exhibits an apparent oscillatory structure and explain the 
origin of the spectral features that are induced by the initial chirp of the 
pulse. 

 
 

B. Simplified model 

The maximum point of the chirp tCm given by Eq. (25) is very important 
for the description of the SPM pattern. However, once again the 
presence of the Lambert W function would prevent the development 
of a fully analytical approach. We can circumvent this difficulty by 

considering an approximate formulation of the problem that is valid in 
the highly nonlinear propagation regime for which R is close to zero. To 
this end, we approximate the function H2(t/T0)G(t) around the point t = 
tm by its first-degree Taylor polynomial:  
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The green dashed line in Fig. 7(a) highlights the validity of this 
approximation over a rather wide range of possible values of R.  
Accordingly, Eq. (25) simplifies to 
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and the peak value of the chirp is obtained as 
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Equation (29) indicates that for C > 0, the maximum instantaneous 
frequency excursion contained in the pulse spectrum is increased 
relative to the case of an unchirped input pulse. Conversely, for slightly 
negative values of R, the maximum frequency is smaller than that for 
an unchirped pulse. The black dash-dotted curve in Fig. 8 confirms the 
validity of the approximate formula of Eq. (29) for small values of R.  

To estimate the position of the outermost peak of the spectrum, we 
can use the simplified approach described in Sec. 3.B. To be rigorous, 
we should include in the total phase difference ’T between pulse 
parts having the same instantaneous frequency an additional phase 
term accounting for the initial chirp of the pulse. However, we have 
found that for small values of R, this additional term does not affect 
significantly the prediction of the position of the outermost peak ’CM. 
Hence, for small R we can neglect this phase contribution and utilize 
Eq. (20) with m replaced by 'Cm. The expression for ’CM so obtained 
is plotted in Fig. 8 with a purple dash-dotted curve and confirms the 
pertinence of the simplification made.  
 
 

C. Normal initial chirp 

In this section, we focus on an input Gaussian pulse with a linear 
normal (positive) chirp such that the ratio R is below Rmax. The time-
dependence of the total chirp of the pulse for C = 4 and B = 20 rad is 
shown in Fig. 9. We can clearly see that the chirp has a local maximum 
Cm at tCm < ts and a local minimum Cmin at tCmin > ts. Accordingly, for a 
given instantaneous frequency 0 such that 0 < 0 < Cmin, only one 
point in the pulse corresponds to this frequency, hence no spectral 
interference occurs. By contrast, for Cmin < 0 < Cm, three instants: t1 < 
tCm, tCm < t2 < tCmin, and t3 > tCmin have instantaneous frequency equal to 
0. However, one should note that as t3 is very far from the center of 
the pulse, the pulse intensity at this point I3 = G(t3) is very low and can 
be neglected.  This reduces the problem to a two-wave interference 
process similar to the one discussed in Sec. 3 for the case of an 
unchirped input pulse. As a result, spectral interference only occurs at 
the boundaries of the spectrum as can be seen in Fig. 10. 
 



 
Fig. 9. Temporal intensity (panel a) and chirp (panel b) profiles for an 
initially chirped Gaussian pulse with C = 4 after undergoing SPM at a B-
integral of 20 rad. The extreme points of the chirp function and the 
solutions of the equation = 0 are indicated with red and blue lines, 
respectively. 

 
When R approaches Rmax, Cmin andCm become very close to each 

other. This results in the development of a single peak on each side of 
the spectrum, which thus acquires a ‘batman-ear’ shape. Accordingly, 
the use of a linearly chirped input pulse may be a convenient 
alternative to a triangular-shaped pulse for efficiently copying 
information onto two different frequency channels [33, 34]. In the 
opposite limit of R approaching zero, which occurs for a low input 
chirp or for a high level of SPM accumulated in the fiber, the oscillations 
cover the major part of the spectrum. 

 

 
Fig. 10. SPM pattern of an initially chirped Gaussian pulse with C = 4. 
(a) Spectral intensity distribution I(0) (blue solid curve) compared to 
the spectrum S() obtained from Eq. (3)  (red solid curve) for a B-
integral accumulated in the fiber of 20 rad. (b) Evolutions of I(0) 

(panel 1) and S() (panel 2) with the B-integral. The red and purple 
vertical dash-dotted lines represent the extreme frequencies Cm and 
Cmin, and the simplified-model prediction for the position of the 
outermost spectral peak ’CM, respectively. The green and cyan dotted 
lines or open circles represent the frequencies at which constructive 
and destructive interference occurs, as predicted by Eqs. (13) and (12), 
respectively.  

D. Anomalous initial chirp 

Finally, we discuss the case of an input Gaussian pulse with an 
anomalous (negative) chirp. As previously mentioned, for R < Rmin the 
pulse is spectrally compressed by the effects of SPM [6, 8, 31, 32]. We 
are interested here in values of R above Rmin, which correspond to the 
propagation regime in which the spectrum expands again after the 
point of maximum spectral focusing and, thus, spectral interference 
can arise. The temporal chirp profile of the pulse for C = −4 and B = 20 
rad is shown in Fig. 11. Contrary to the case of a normal initial chirp, 
spectral interference can now occur for any value of 0 such that −Cm 
< 0 < Cm. For a given 0 > 0, the pulse has this instantaneous 
frequency at three distinct points:  0 < t1 < tCm, t2 > tCm, and t3 < −tCm. 

In Fig. 12(a) we compare the spectrum I(reconstructed from the 
interference between t1 and t2 with the actual spectrum S() obtained 
from Eq. (3). We can see that the two-wave interference model can 
conveniently reproduce the positions of the extrema of the oscillating 
pattern. However, as can also be seen in Fig. 12(b1), the details of the 
pattern are not qualitatively reflected. Indeed, S() has a more 
complex structure than a sinusoidal-like variation, exhibiting an over-
modulation and sharper features. 
 

 

 Fig. 11. Temporal intensity (panel a) and chirp (panel b) profiles for an 
initially chirped Gaussian pulse with C = −4 after undergoing SPM at a 
B-integral of 20 rad. The extreme points of the chirp function and the 
solutions of the equation = 0 are indicated with red and blue lines, 
respectively. 

 
To reproduce these properties, one has to take into account the third 
wave located at t3. The resulting spectral intensity distribution is 
represented by a purple solid curve in Fig. 12(a) and is clearly in much 
better agreement with the actual spectrum than the two-wave 



interference pattern. The results shown in Fig. 12(b2) substantiate the 
necessity of including the third wave in the interference model for an 
accurate qualitative description of the spectral pattern engendered by 
SPM. 

 

 
Fig. 12. SPM pattern of an initially chirped Gaussian pulse with C = −4. 
(a) Spectral intensity distribution I(0) resulting from the interference 
of two and three waves (blue and purple solid curves respectively) 
compared to the spectrum S() obtained from Eq. (3)  (red solid 
curve) for a B-integral accumulated in the fiber of 20 rad. (b) 
Evolutions of I(0) when two and three interfering waves are 
considered (panels 1 and 2, respectively) and S() (panel 3) with the 
B-integral. The red and purple vertical dash-dotted lines represent the 
maximum frequency Cm, and the simplified-model prediction for the 
position of the outermost spectral peak ’CM, respectively. The green 
and cyan dotted lines or open circles represent the frequencies at 
which constructive and destructive interference occurs, as predicted 
by Eqs. (13) and (12), respectively.  

 

5. CONCLUSIONS 
We have described a simple theoretical approach to predict the main 
features of the spectra of optical pulses affected by SPM in the highly 
nonlinear regime of propagation in which the effects of GVD are 
negligible. Our approach is based on regarding the optical spectrum 
modification as an interference effect. We have shown that a two-wave 
interference process is sufficient to describe the SPM-broadened 
spectra of initially Fourier-transform-limited pulses or pulses with an 
initial positive linear chirp, and to accurately predict the extreme 
values of the spectra. Simplified but fully tractable closed formulae 
have been derived for the positions of the outermost peaks of the 
spectra, which provide a more plausible measure of the spectrum 
extent than the approximate or rms expressions for the spectral 
bandwidth that are commonly used. We have also discussed the 
various spectral regimes that are observed depending on the ratio of 

the initial chirp of the pulses and the level of SPM accumulated in the 
fiber, and shown that in the case of negatively chirped input pulses, the 
description of the SPM spectral patterns requires the inclusion of a 
third wave in the interference model.  

The present approach has been discussed in the context of 
dispersionless passive propagation, but its extension to include gain or 
loss is straightforward. Our approach can also help better understand 
qualitatively the genesis of peculiar spectrum shapes of laser pulses, 
such as the batman ear spectra observed in all-normal dispersion 
lasers [35] or Mamyshev oscillators [36]. While the present discussion 
focuses on SPM, the concept can also be applied to other nonlinear 
modulations of the phase of a pulse, such as the modulation generated 
by cross-phase modulation [37] or an external modulator [38-40] or a 
cubic-quintic nonlinearity. However, it is important to reiterate that 
our approach does not account for the effects of dispersion on the 
pulse dynamics. As such, it cannot describe, even qualitatively, the 
spectra of solitons, breathers or shock waves, which conversely 
require the use of more advanced analytical tools [41-44].  
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