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Abbreviations 

AAR: area at risk  

ANAR: area not at risk  

BP: blood pressure 

[Ca2+]i: intracellular calcium 

cAMP: Cyclic adenosine monophosphate 

CNS: Central nervous system  

cTnI: cardiac Troponin-I 

CVD: cardiovascular disease 

DAPI: 4,6-diamido-2-phenylindole 

DORA: dual orexin (OX1R/OX2R) receptor antagonist 

ERG: ETS-related gene 

ERK: extracellular signal–regulated kinases  

FITC: fluorescein isothiocyanate-conjugated  

GPCR: G protein-coupled receptors 

HCRTR2: hypocretin receptor 2 

HEPES: (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

HR: heart rate  

ICV: intra-cerebroventricular  

LA: left atrium 

LCA: left coronary artery  

LSVP mmHg: left ventricular systolic pressure 

LV: left ventricle 

LVDP: left ventricular developed pressure  

LVEDP mmHg: left ventricular end diastolic pressure 

MAP: mean arterial pressure  

MAPK: mitogen-activated protein kinase  

MTC: multiple tissue cDNA  
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Myosin Light Chain: MLC 

NS: No supplement 

NYHA: New York Heart Association  

OR-A: Orexin A 

OR-B: Orexin B 

OX1R: orexin receptor 1 

OX2R: orexin receptor-2  

OXRs: orexin receptors 

PGK1: Phosphoglycerate Kinase 1  

PI3K: PI3 kinase 

PVN: paraventricular nucleus  

RA: right atrium  

RISK: reperfusion injury signalling kinase  

RPP: rate pressure product 

RPP: rate pressure product 

RSNA: renal sympathetic nerve activity 

RT-PCR: reverse transcription-polymerase chain reaction 

RV: right ventricle  

SNS: sympathetic nervous system 

Troponin: Tn 

TTC: Triphenyl-tetrazolium chloride  

Perspectives Section 

(i) Several cardiovascular drugs exert their cardiac actions via GPCRs, and orexins acting

via their GPCR receptors can affect the heart centrally. In this study we tested whether

orexins and their receptors can exert a direct effect at cardiac level.

(ii) The human and rat heart constitutes a source of orexins and expresses functional OXRs.

OR-B can exert direct cardioprotective effects in both ex vivo and in vivo rat heart models. In

adults with heart failure there was a significant negative correlation between the severity of

clinical symptoms (NYHA class) and OX2R expression in the human heart.
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(iii) Based on the findings from our study, the use of orexin antagonists warrants further

assessment and careful monitoring for CVD adverse effects, particularly in heart failure

patients.

Abstract 

Orexins/hypocretins exert cardiovascular effects which are centrally mediated. In this study 

we tested whether orexins and their receptors may also act in an autocrine/paracrine 

manner in the heart exerting direct effects. Quantitative RT-PCR, immunohistochemical and 

Western blot analyses revealed that the rat heart expresses orexins and orexin receptors. In 

isolated rat cardiomyocytes, only orexin-B (OR-B) caused an increase in contractile 

shortening, independent of diastolic or systolic calcium levels. A specific orexin receptor-2 

(OX2R) agonist ([Ala11, D-Leu15]-Orexin B) exerted similar effects as OR-B, whereas a 

specific OX1R antagonist (SB-408124) did not alter the responsiveness of OR-B. Treatment 

of the same model with OR-B resulted in a dose-dependent increase of myosin light chain 

and troponin-I phosphorylation. Following ischaemia/reperfusion in the isolated Langendorff 

perfused rat heart model, OR-B, but not OR-A, exerts a cardioprotective effect; mirrored in 

an in vivo model as well. Unlike OR-A, OR-B was also able to induce ERK1/2 and Akt 

phosphorylation in rat myocardial tissue and ERK1/2 phosphorylation in human heart 

samples. These findings were further corroborated in an in vivo rat model. In human subjects 

with heart failure, there is a significant negative correlation between the expression of OX2R 

and the severity of the disease clinical symptoms, as assessed by the New York Heart 

Association (NYHA) functional classification. Collectively, we provide evidence of a distinct 

orexin system in the heart that exerts a cardioprotective role via an OR-B/OX2R pathway.  
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INTRODUCTION 

Cardiovascular disease (CVD), including myocardial infarction, is the leading cause of 

morbidity and mortality in the Western world (1,2). Orexins, also referred to as hypocretins, 

exist in two functional forms, i.e. orexin A (OR-A) and orexin B (OR-B), which are derived 

from a common 130 amino acid precursor peptide (3,4)  and exert their actions by activating 

the orexin-1 (OX1R) and orexin-2 (OX2R) receptors. OXRs belong to the GPCR superfamily 

(3) and are distributed throughout both central and peripheral sites where they regulate 

endocrine, metabolic and cardiovascular functions (5–7). Of note, several established 

cardiovascular drugs exert their cardiac actions via GPCRs, such as the muscarinic, 

angiotensin, adrenergic and endothelin receptors (8). 

Growing evidence indicates that central orexin neurons are implicated in cardiovascular 

regulation (5).For example, in the central nervous system (CNS), both orexin and OX2R-

containing nerve fibres have been identified in the paraventricular nucleus (PVN) (9), an 

area which constitutes a vital central site for integration of sympathetic outflow and 

cardiovascular function(10–12)(13–15) (16) (17). Thus, although orexins can influence the 

autonomic control of the cardiovascular system, little is known about any direct effects of 

orexins in the heart.  

 

 

We and others have provided evidence for a wide distribution of orexins and their receptors 

peripherally (18–20). We have also demonstrated the presence of OXRs in human adipose 

tissue, where they modulate adipogenesis and adipose tissue metabolism (7). Herein, we 

hypothesised that orexins may also exert direct cardiac effects and we sought to investigate 

the expression and function of cardiac OXRs using in vitro, ex vivo and in vivo models, 

corroborating this with clinical data. 
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Materials and Methods 

Drugs and experimental solutions 

Study treatment agents were: OR-A, OR-B (Phoenix Peptides), OX2R agonist ([Ala11, D-

Leu15]-Orexin B; Tocris), OX1R antagonist (SB-408124; Tocris), wortmannin (PI3Kinase 

inhibitor; Sigma-Aldrich) and MAPK inhibitor U0126 (Tocris). According to the manufacturer’s 

specifications on biological activity, the used OX2R agonist ([Ala11, D-Leu15]-Orexin B; 

Tocris) is a “highly potent and selective OX2 receptor agonist; displays 400-fold selectivity 

over OX1 receptors. EC50 values are 0.13 and 52 nM for human OX2 and OX1 receptors 

respectively”. Similarly, the used OX1R antagonist (SB-408124) is a “selective non-peptide 

orexin OX1 receptor antagonist (Kb values are 21.7 and 1405 nM for human OX1 and OX2 

receptors respectively)”. Triphenyl-tetrazolium chloride (TTC, Sigma-Aldrich) was used to 

determine the infarct size following ischemia and reperfusion. All other reagents used were 

of the highest purity commercially available. 

 

Animal Experiments 

All animal experiments were performed in accordance with UK legal requirements and the 

guidelines from Directive 2010/63/EU of the European Parliament on the protection of 

animals used for scientific purposes. This investigation also conforms to the guidelines for 

the welfare of animals in experimental neoplasia as they have been developed by the United 

Kingdom Coordinating Committee of Cancer Research (UKCCCR). Adult male Wistar rats 

(250-300 g) were housed in environmentally controlled conditions (22±2°C, humidity 40–

60%) under a 12:12-h light-dark schedule (lights on 0600). After a week of habituation to 

these conditions, rats were sacrificed using cervical dislocation. Hearts were immediately 

removed for the following studies: (a) dissection and immediate snap-freezing for later tissue 

analysis; (b) isolation of ventricular cardiomyocytes by enzymatic digestion; (c) immersion in 

ice-cold oxygenated Tyrode’s solution and then perfusion via the aortic cannula in the 

modified Langendorff model with Tyrode’s solution at 37oC, as previously described (21). In 

brief, contractile parameters were measured by insertion of a fluid-filled latex balloon through 
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the left atrium into the left ventricle, this was connected to a pressure transducer (MTL0380, 

ADInstruments Ltd, UK) and the balloon volume was adjusted to give end-diastolic pressure 

of <10 mmHg. Aortic perfusion pressure was monitored with a second pressure transducer 

in series with the aortic cannula. Data were continuously recorded using a Power Lab 8 

preamplifier/digitiser (ADInstruments Ltd, UK). Hypothalamic dissection took place as 

previously described (22). All procedures were approved by the ethics committee and 

complied with the University’s care and welfare guidelines, in strict accordance with the 

Home Office Guidance (PPL 70/7175) on Research and Testing using animals and the 

Animal (Scientific Procedures) Act, 1986 and the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 85-23, 

revised 1996). 

 

Human Cardiovascular Multiple Tissue cDNA (MTC) Panel 

Commercially available human cardiovascular multiple tissue cDNA (MTC) panel (Clontech) 

were used for this study. All tissues were normal (i.e. non-diseased) and the amount of 

pooled patients varied from 11 up to 32. The sets of primers used for RT-PCR amplification 

were (i) OX1R sense 5’-ccttcctggctgaagtgaag-3’ and antisense 5’-agtgggagaaggtgaagcag-3’; 

(ii) OX2R sense 5’-gtcgcaactggtcatctgct-3’ and antisense 5’-cgtcctcatgtggtggttct-3’. 

 

Harvesting of single-cell mRNA and cDNA synthesis 

Under the microscope, single rat cardiomyocytes (n=6) were harvested via the patch clamp 

micro-electrode pipette, without losing the gigaseal to prevent contamination with 

extracellular fluid (23). Subsequently, the pipette contents were expelled into a sterile 0.5 ml 

tube.  

 

 

Polymerase Chain Reaction (PCR) 
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Total RNA from different rat heart chambers (n=3) was extracted and cDNA synthesis was 

performed. PCR reactions were carried out as previously described (7). 

 

Immunofluorescence for orexins and orexin receptors in cardiomyocytes 

Adult rat cardiomyocytes, seeded on glass cover-slips were fixed with 4% paraformaldehyde 

in PBS. The primary rabbit antiserum OR-A and OR-B (Phoenix Europe GmbH, Karlsruhe, 

Germany) and the primary goat polyclonal OX1R (Santa Cruz Biotechnology Inc., USA) and 

a monoclonal OX2R antibody (Abcam, UK) were used at a 1:500 dilution. All dilutions were 

made in 3% BSA in PBS-0.01% Triton X-100. Specimens were incubated with primary 

antibody for 60 min, then washed three times with PBS (5 min each time) before incubation 

with anti-rabbit IgG-fluorescein isothiocyanate-conjugated (FITC) and Texas Red anti-goat 

secondary antibody (Vector laboratories, Peterborough, UK) for 45 min. The slides were 

then thoroughly rinsed with PBS, and the cell nuclei were visualized by applying the DNA-

specific dye 4,6-diamido-2-phenylindole (DAPI) at a final concentration of 1.5 µg/ml. 

 

Immunohistochemistry for orexin and orexin receptors in the rat heart 

Whole heart tissue sections from adult rats (n=3) were cut at 3 μm. Endogenous peroxidase 

was blocked by incubating sections in a 1.5% H2O2 solution for 20 min. The detection 

system used was an immunoperoxidase-based system (Vector Universal Elite ABC kit) with 

a diaminobenzidine tetrahydrachloride visualisation agent. Sections were incubated in 

primary antibody (OX1R, OX2R, OR-A and OR-B) for 60 min at room temperature. Sections 

were then washed for 2x5 min in buffer. Secondary biotinylated antibody was applied for 30 

min at room temperature. The avidin-biotin complex solution was then applied to the 

sections and incubated for 30 min at room temperature (Vector Elite ABC reagent). DAB 

solution was prepared according to the manufacturer’s instructions and applied to the 

sections for 5 min. Sections were then dehydrated, cleared and mounted.  
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For controls, rat spleen, testes (positive controls) and thymus (negative control) were stained 

using paraffin-embedded tissues from US Biomax (#RA162, MD, USA). Furthermore, we 

have repeated the OR-A staining on rat heart array (#TR031; US Biomax MD, USA). 

 

Western Blotting for PPO and Orexins 

Protein lysates from rat brain, rat heart and human myometrium were separated using 

SDS/polyacrylamide gel electrophoresis (SDS/PAGE) (15% polyacrylamide) under reducing 

conditions and then transferred onto immunoblot nitrocellulose membrane. Blocking of non-

specific binding was achieved by placing the membrane in a blocking buffer (1% BSA in 1X 

TBST) at 4oC overnight. The following day, membrane was rinsed with TBST for 5-10 min. 

Membranes were then incubated with primary anti-rabbit OR-A and OR-B antibodies 

(Phoenix Peptides) diluted 1:500 and further incubated at 4oC overnight under gentle 

agitation. The next day, after rinsing the membrane three times in TBST for 10 min to 

remove unbound primary antibodies, the membranes were exposed to anti-rabbit IgG- HRP 

conjugate (Sigma Aldrich) (diluted 1:2000 in blocking solution) for 1 h at room temperature. 

Detection of immunocomplexes took place using the ECL method, exposing x-ray film (Fuji) 

at different time points (30 sec to 1 min) following by developing. Molecular weight 

approximations are taken by comparing the stained bands to that of the marker proteins. 

 

Orexin mediated signalling in cardiomyocytes 

Following the isolation of calcium tolerant cardiomyocytes (n=6), the cells were treated in a 

concentration (0.01-100 nM) and time (0-60 min) dependent manner with both OR-A and 

OR-B. Following these optimisation experiments, orexin-induced phosphorylation of various 

signalling cascades i.e. Akt, ERK1/2, Troponin-I and Myosin Light Chain were determined by 

western blot analyses, as described previously (24). 

 

Measurement of cell contraction and intracellular calcium 
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Contraction and intracellular calcium were determined in isolated ventricular cardiomyocytes 

(n=6), as previously described  (21). Cells were classified as either contractile or non-

contractile in response to electrical stimulation. To measure [Ca2+]i, myocytes were loaded 

with fura-2 and excited alternately at 340 and 380 nm with a monochromator and emitted 

light collected at > 520 nm and measured using a photomultiplier tube (Photon Technology 

International). Contraction strength is shown as percentage cell shortening and [Ca2+]i as 

Fura2 ratio. 

 

Determination of infarction following ischaemia/reperfusion in the isolated 

Langendorff perfused rat heart 

All experiments lasted 195 min. Hearts were allowed to stabilize for 30 min with the standard 

Tyrode’s solution perfusion. Contractile parameters from the data files were calculated by 

averaging a minimum of 6 cycles per data point to obtain the mean value for left ventricular 

systolic pressure, LVSP mmHg, and left ventricular end diastolic pressure, LVEDP mmHg 

(measured at t0, t30, t40, t75, t85, t100, t130, t160, and t195 min). The difference between 

these two pressure values represented the left ventricular developed pressure (LVDP, 

mmHg). Heart rate (HR, beats.min-1) was determined at the same time-points together with 

the rate pressure product (RPP, mmHg), which was calculated by multiplying the LVDP and 

HR (average value of LV Developed Pressure is obtained from averaging both systolic and 

diastolic values, then the mean is multiplied by HR to obtain RPP).  

Global ischaemia was produced for 30 min by stopping flow of physiological solution to the 

heart. At the end of reperfusion, the heart was frozen at -20oC before being sliced into 2mm 

thick transverse sections and stained with 2% TTC, which reacts with intracellular 

dehydrogenases present in viable cells producing a red pigment and staining viable tissue 

red (whereas infarcted tissue remains pale) and then fixed in 10% formalin overnight to 

enhance the contrast. Each section was then photographed with a digital camera and then 

traced onto a clear acetate sheet to determine infarct size (% infarct area= infarct area on 



11 

 

each slice/total area of the heart slice X 100) (25); the area was calculated using computer-

assisted planimetry [NIH image 1.57] (26–28). 

For the inhibitor studies the rats were randomly assigned to one of the following groups:  1) 

control group, where they were subjected to 30 mins of global ischaemia followed by 120 

mins of reperfusion, and the treated heart groups, which received inhibitor (wortmannin;  

1umol/l or  U0126; 10umol/l) together with OR-B perfusion which was added to Tyrode’s 

buffer after stabilisation and perfused for 10 mins prior to 30 min global ischaemia and 

switched back to normal Tyrode’s during 120 mins reperfusion. In addition, some hearts only 

received the inhibitors (wortmannin or U0126) to rule out any influence they may have 

directly upon infarct size. 

 

Inducing ischemia in rats in vivo 

Rats were anesthetized with 3% isoflurane inhalation and then intubated via a tracheostomy 

and ventilated with a mixture of O2 and 1.5-3% isoflurane, using a rodent ventilator. A left 

thoracotomy was performed through the 4th intercostal space, pericardium opened and the 

left coronary artery (LCA) located and ligated with a 4-0 silk suture. The ligation was 

confirmed successfully when the anterior wall of the left ventricle (LV) turns pale around the 

area that was tied off using a snare. Following 30 minutes of regional ischaemia the snare 

was released and blood allowed to flow freely during 120 minutes of reperfusion. At the end 

of the experimental protocol the hearts removed and perfused onto the Langendorff system 

for staining. The ligation was tied off and hearts perfused with 1% Evans blue to demarcate 

the area at risk, followed TTC staining to identify the viable tissue staining deep red. The 

infarct area within the risk area was then calculated (I/R %). The same surgical procedure 

was followed for sham group without occlusion of the LCA (data not shown).   

 

Determination of infarction following ischaemia/reperfusion in the in vivo rat heart 

At the end of reperfusion, the rat was overdosed with pentobarbital and the heart was rapidly 

removed and mounted onto the Langendorff apparatus as above. The left anterior 
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descending artery was ligated, 1 ml of 0.25% Evans Blue (in phosphate-buffered saline) was 

then injected into the heart and allowed to perfuse followed by normal Tyrode’s for a further 

2 minutes to delineate the area not at risk staining it blue (29). The heart was stored at -20oC 

before being sectioned into 2mm sections and stained with TTC to determine the infarct size 

as stated above. The percentage infarct tissue (I) within the area at risk (AAR) was 

calculated as I/AAR %. Furthermore, the ischaemic area (AAR) was distinguished from the 

area not at risk (ANAR).  

 

Orexin in the human heart  

The clinical study was approved by the Research Ethics Committee South-Central Oxford C 

(11/SC/0140). All participants provided written informed consent, in accordance with the 

Declaration of Helsinki. 

 

Orexin gene expression in human myocardial tissue  

To explore whether our findings from the cell cultures and animal model could be of 

relevance to cardiovascular disease in humans, we investigated OX2R gene expression 

levels in human myocardium samples. A cohort of 54 patients undergoing coronary artery 

bypass grafting with available myocardial cDNA library was used for this purpose (Table 1); 

relative expression was calculated using the Pfaffl method, with PGK1 as housekeeping 

gene (30). 

 

Orexin signalling in the human myocardium 

To examine the direct effects of OR-A and OR-B on intracellular signalling in the human 

heart, human myocardial tissue samples were collected from the right atrial appendage of 8 

patients undergoing cardiac surgery. These myocardial tissue samples were washed in ice-

cold Krebs HEPES buffer and then cut into thin strips containing all myocardial layers. The 

tissue was first equilibrated for 10 min in Krebs HEPES buffer at 37oC and then incubated for 

20 min in the presence or absence of human recombinant OR-A (100 nM) or OR-B (100 nM) 
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(Phoenix Pharmaceuticals Inc., Burlingame, CA, USA). At the end of the experiment, 

incubated tissue samples were collected and stored at -80oC until assayed. Western 

immunoblotting was used to examine the direct effects of OR-A and OR-B on phospho-Akt 

(Ser473), total-Akt, (Cell Signaling, Danvers, MA), and phospho/total ERK1/2 (Abcam, 

Cambridge, England, United Kingdom) in human myocardial tissue. Briefly, myocardial 

tissue samples were homogenized for 30 seconds using a pre-cooled electric Polytron 

homogenizer in 220 μl of lysis buffer (Invitrogen, UK) containing a protease plus 

phosphatase inhibitor cocktail (Roche Applied Science). Homogenates were spun at 13,000 

rpm for 10 min at 4 ºC. The protein concentration of the supernatants was then measured 

using the BCATM Protein Assay kit (Pierce, UK). Protein lysates were separated on 12% 

gradient SDS-NuPAGE gel (Invitrogen, UK), and proteins transferred to polyvinylidene 

difluoride membranes (Amersham, UK Ltd.), followed by blocking with 5% powdered 

skimmed milk. The membranes were incubated with the respective primary antibodies 

overnight and immunodetection of the primary antibodies was performed with horseradish-

peroxidase-conjugated secondary antibodies (Promega), and enhanced chemifluorescence 

(Amersham Bioscience UK Ltd.), and quantified in relation to the house-keeping protein 

GAPDH (Santa Cruz Biotechnology, Santa Cruz, CA). 

 

Statistical Analysis  

All results are expressed as mean ± standard error (SEM), unless indicated otherwise. For 

western blotting experiments, the densities of the immunoreactive bands were measured 

using a scanning densitometer coupled to scanning software (ImageQuant; Molecular 

Dynamics, Amersham Pharmacia, UK). Data were evaluated as in the study by Maulik et al 

(31). Statistical analyses amongst the Langendorff model perfused groups were performed 

using one-way ANOVA followed by Bonferroni’s post hoc test with significance determined at 

the level of P<0.05.  

 

RESULTS 



14 

 

Detection of cardiac prepro-orexin and orexin receptors  

Using qRT-PCR we demonstrate that both orexin receptors are expressed in the rat heart. 

Using rat hypothalamus as positive control, the expression of OX1R was significantly less in 

the heart (P<0.001), whereas OX2R expression levels were similar between the heart and 

the hypothalamus (Figure 1A). Both OXRs were uniformly expressed throughout the rat 

heart including the left ventricle (LV), left auricle (also known as left atrial appendage), 

interventricular septum, right ventricle (RV), and right auricle (Figure 1D). Single cell PCR 

from cardiomyocytes revealed expression of both OXRs in single cells investigated (Figure 

1E).  

Using Western blotting, we also confirmed the expression of OXRs at the protein level in 

total rat heart and cardiomyocyte cell lysates (data not shown). Immunohistochemical 

analysis of ventricular sections using specific antibodies for OX1R (Figure 1B-I) and OX2R 

(Figure 1B-II) revealed a widespread cytoplasmic and membrane distribution of both OXRs 

across the rat ventricle. Cellular distribution of OXRs was further investigated in rat 

cardiomyocytes in vitro. Immunofluorescence revealed a similar distribution of OX1R (Figure 

1C-I) and OX2R (Figure 1C-II). This is consistent with the expression of GPCRs in the 

cytoplasm (due to trafficking or internalisation), as well as on the cell membrane (32). We 

then proceeded to study the expression of OXRs in the human heart using a cardiovascular 

multiple tissue cDNA panel demonstrating expression of both OXRs in multiple human 

cardiac compartments (Figure 1F).  

We also demonstrate that prepro-orexin is expressed as a 302bp PCR product in the left 

ventricle (LV), left atrium (LA), interventricular septum, right ventricle (RV), and right atrium 

(RA) of the rat heart (Figure 1G). We have used Western blotting to demonstrate that the 

prepropeptide can be cleaved into full length OR-A (Figure 1H) and OR-B (Figure 1I), with 

molecular weights of approximately 3.5 kDa and 2.9 kDa, respectively. We then assessed 

the protein expression using immunohistochemistry. Antibodies were validated using rat 

thymus as negative control and rat spleen and rat testes as positive control (Figure 1J; 

Supplementary Figure 2). Subsequent immunohistochemical analysis of rat ventricular 
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sections revealed protein expression of both cleaved peptides across the ventricle (Figure 

1K; Supplementary Figure 2). Similar expression was evident in individual cardiomyocytes 

(Figure 1L).  

 

Cardiomyocyte contractility and calcium measurements 

Superfusion of cardiomyocytes with Tyrode’s solution containing 10 nM OR-B increased the 

shortening of twitch contraction (Figure 2A), from 15.2±1.2% to 20.6±1.7% (n=6, P<0.01; 

Figure 2B). This was not associated with any change on either the amplitude (Figure 2A) or 

the rate of the Ca2+ transient decline (n=6, P=NS; Figure 2C). OR-A had no effect on the rat 

cardiomyocyte cell length even with concentrations as high as 100 µM (data not shown; 

P=0.07). The OR-B effect was replicated using the specific OX2R agonist ([Ala11, D-Leu15]-

Orexin B) (Figure 2D), whilst it was not blocked by an OX1R specific antagonist (SB-408124) 

(Figure 2E), suggesting that these effects are predominantly mediated via an OR-B/OX2R 

pathway. 

Furthermore, OR-B, but not OR-A (data not shown), significantly induced phosphorylation of 

troponin I at Ser23/Ser24 in cardiomyocytes. This effect was dose-dependent, with a 

maximum activation at 100 nM of OR-B (P<0.001; Figure 2F). Similarly, OR-B, but not OR-A 

(data not shown), induced significant phosphorylation of the myosin light chain (MLC) at 

Ser19 with maximal effects at 100 nM and 15 min (P<0.001; Figure 2G).  

 

OR-B exerts a cardioprotective effect  
 
In both the isolated rat heart and the in vivo rat model, we measured left ventricular 

developed pressure (LVDP), LV pressure decay and HR. The rate pressure product (RPP) 

was then calculated; this was used as a clear and direct indication of the energy demand of 

the heart and, thus, a good measure of the energy consumption of the heart pre- and post-

ischaemia. 

Initially, pre-treatment with either OR-A, OR-B or OX2R agonist, prior to the ischaemic insult, 

did not alter the haemodynamic parameters or HR between any of the groups (data not 
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shown). Contractile parameters were recorded at various time points throughout the 

experimental protocol (Supplementary Figure 1). Following 30 min of global ischaemia in the 

isolated Langendorff perfused rat heart model, the expected decline in cardiac function 

during reperfusion, as observed in the control hearts, was not affected by pre-treatment with 

OR-A (Figure 3A). In contrast, the pre- and post- treatment group for both OR-B and the 

OX2R agonist resulted in significantly improved recovery compared to control during 

reperfusion (P<0.05; Figure 3A-B). This was further replicated in the in vivo rat model where 

the control group (saline treated) demonstrated poor cardiac functional recovery and cardiac 

function following 30 min of regional ischemia and 120 min reperfusion, whereas the OR-B 

pre-treated group [bolus injection (i.v.) of OR-B (100 nM) 10 min prior to regional ischaemia] 

showed significant improvement in functional recovery during reperfusion (P<0.05; Figure 

3C). Concentration dependent effects were noted with OR-B (20–100nM), with a maximal 

response at 100 nM (data not shown). 

 

Effects of OR-B reducing the LV infarct size  
 
In isolated rat heart model pre-treated with OR-B for 10 min prior to global ischaemia and 

reperfusion the LV infarct size was reduced from 61.5±3.0% in the control to 22.6±1.9% in 

the treated group (P<0.001; Figure 3D). In addition, the OR-B post-ischaemic treatment was 

just as effective at providing myocardial protection as pre-treatment, since it also significantly 

reduced the LV infarct size to 21.8±3.9% (P<0.001; Figure 3E). The OX2R specific agonist 

exhibited a similar protective effect to OR-B treatment, inducing a reduction in LV infarct size 

both during pre-treatment (25.7±3.6%) and at the start of reperfusion (34.7±3.1%, both P 

values <0.001 compared to control; Figure 3D-E). However, pre-treatment with OR-A alone 

showed no significant reduction compared to control (58.3±3.0% versus 61.5±3.0%, 

respectively; P=NS) in the LV infarct size (Figure 3D). Moreover, in the in vivo model pre-

treatment with a bolus injection (i.v.) of OR-B (and of ORX2Ra, but not of OR-A) 10 min prior 

to regional ischaemia and reperfusion significantly reduced the %LV infarct size compared to 
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the control (saline) group (66.7±3.0% versus 26.8±14.9% in the control and OR-B treated 

group, respectively; P<0.001; Figure 3F).  

 

Involvement of distinct signalling pathways in myocardial protection 

The isolated rat heart model was pre-treated either with an OX1R specific antagonist or a 

PI3 kinase (PI3K) inhibitor (wortmannin) in the presence or absence of OR-B prior to 

ischaemia reperfusion. Pre-treatment with either the OX1R specific antagonist or 

wortmannin alone showed no change in functional recovery compared to the control group 

(Figure 4A) and no effect on the %LV infarct size (61.5±3.0% in the control group versus 

61.8±1.9% with OX1R antagonist alone, and 56.5±1.5% with wortmannin alone; P=NS, 

Figure 4B). Pre-treatment with OR-B together with wortmannin showed no myocardial 

protection on cardiac functional recovery (P=NS; Figure 4A); and, abolished the OR-B 

protective effect on LV infarct size (P=NS, Figure 4B), suggesting the importance of the 

PI3K/Akt pathway in OR-B induced cardioprotection. Improved functional recovery with OR-

B pre-treatment was not inhibited by the simultaneous administration of an OX1R specific 

antagonist (P<0.05; Figure 4A). Similarly, the OR-B protective effect on %LV infarct size was 

not blocked by the OX1R specific antagonist (P<0.001; Figure 4B). Both these findings 

suggest that the noted effect is OX2R specific.  

Given that ischaemic preconditioning protects the heart by phosphorylating the pro-survival 

kinases Akt and ERK1/2 at reperfusion, we investigated further whether orexins can affect 

their phosphorylation (33). Treatment with OR-B increased the phosphorylation of both Akt 

and ERK1/2 compared to basal levels (P values <0.001; Figure 4C-E); in contrast to OR-A 

which had no significant effect on ERK1/2 (Figure 4E) and Akt (data not shown). The OR-B 

effect was concentration-dependent (Figure 4D). The time course for the ERK1/2 activation 

was for 3, 5, 10, and 15 minutes. The involvement of a MAPK pathway was further 

corroborated using the selective MAPK inhibitor U0126, demonstrating that inhibition of the 

MAPK pathway using U0126 abrogates the protective effect of OR-B on LV infarct size 

(Figure 4F). 
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OX2R expression in patients with heart failure, and involvement of the ERK1/2 

pathway 

To further evaluate the potential implication of orexins and their receptors in cardiac disease 

in humans, we studied OXR downstream signalling and expression in cardiac tissue 

samples from adult patients undergoing cardiac surgery and coronary artery bypass grafting. 

In the context of these studies, all human myocardial tissue samples were collected from the 

right atrial appendage during cardiac surgery.  

Using Western blotting, we examined the direct effects of OR-A and OR-B on the 

phosphorylation of Akt and ERK1/2 in heart tissue samples from 8 patients. Treatment with 

OR-A or OR-B did not change Akt phosphorylation compared to basal levels (Figure 5A), 

whilst only OR-B significantly increased ERK1/2 phosphorylation compared to control (non-

treated heart tissue; P <0.05; Figure 5B).   

In addition, we measured OXR expression levels in heart tissue samples from heart failure 

patients undergoing coronary artery bypass grafting (n=54; Table 1). Our results 

demonstrated a negative correlation between the severity of heart failure symptoms and the 

expression of OX2R. As such, when patients were categorised using the New York Heart 

Association (NYHA) functional classification of heart failure (classes I to IV based on 

increasing severity of clinical symptoms) there was a significant decrease of OX2R in NYHA-

II compared to NYHA-I and in NYHA-III/IV compared to NYHA-II and NYHA-I (P values 

<0.05; Figure 5C). 

 

Discussion 

In this study, we have shown that the heart constitutes a source of orexins and expresses 

functional OXRs. Moreover, our experiments revealed that OR-B can exert direct 

cardioprotective effects in both ex vivo and in vivo rat heart models.  

Indeed, using the Langendorff perfused rat heart model, pre- and post- myocardial 

ischaemia treatments with both OR-B and a selective OX2R agonist resulted in significantly 
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increased RPP which is a direct indication of the energy demand of the heart and, thus, a 

good measure of the energy consumption of the heart pre- and post-ischaemia. 

In the case of the ex vivo studies that replicate the in vivo results, additional interactions 

between sympathetic activity, which is increased in ischaemia (34), and OXR signalling 

through cAMP (35) cannot be ruled out. Additionally, treatment of ventricular cardiomyocytes 

with OR-B, but not OR-A, lead to significantly increased Tn-I and MLC phosphorylation, 

followed by a concomitant increase in the strength of their twitch contraction. Of note, these 

findings agree with previous studies demonstrating that changes in the phosphorylation of 

key cardiac regulatory proteins can affect cardiac function (36,37).   

This is the first observation of a differential specificity of OR-A and OR-B in the heart. OR-A 

activates both OX1R and OX2R receptors with similar potencies (~36 nM), whereas OR-B 

selectively activates OX2R compared to OX1R (~420 nM) (38). Both receptors belong to the 

GPCR superfamily and are highly promiscuous in terms of their G protein coupling 

characteristics (39). These tend to be cell- and tissue-specific and influence subsequent 

activation of downstream signalling pathways. For example, we have previously shown that 

expression of human OX2R is regulated by a complex involving a proximal PKA/PKC-

regulated promoter and a distal promoter regulating tissue-specific expression of alternative 

transcripts which in turn post-transcriptionally regulate receptor levels (40). Therefore, future 

studies are required to provide further insight into the regulation of the promoter of OX2R in 

the myocardium. 

Moreover, a dichotomous role of OXRs is evident in the rat brain, where OX1Rs mediate the 

neurobiological effects that drive drug seeking, whereas OX2Rs play a crucial role in 

sleep/wake cycle regulation and arousal (41). Interestingly, OR-A, but not OR-B, can 

activate electrophysiologically the subfornical organ of rat neurons (42). In a more recent 

study, OR-A (100 nM) and OR-B (100 nM) increased leptin gene expression in differentiated 

preadipocytes by 49.9% and 71.3%, respectively (43), indicative of differential modulation of 

transcriptional responses by these two peptides. 
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This phenomenon has been previously described for other GPCRs. In the case of smooth 

muscle cell CRH-receptors, urocortin, but not CRH, activated the MAPK signal transduction 

pathway despite similar binding affinities (44). Thus, it is possible that differences on OR-A 

and OR-B responses could also be influenced by the cardiac microenvironment, leading to 

alternative coupling of G proteins and activation of distinct signalling pathways. In previous 

studies, we have shown that OX2Rs can differentially couple to Gq, Gi/o and Gs proteins in 

different tissues (19,22,39). Emerging studies have also shown that OXRs can form 

functional dimers. It is possible that dimerization can also take place at the cardiac level and 

therefore influence pharmacological properties, such as the affinity of the receptors for 

orexin ligands, as well as cellular distribution and trafficking (45). Finally, polymorphisms of 

the OX2R gene have also been described previously (46). To this date, dimerization or 

polymorphisms have not been explored in the myocardium. Future studies should determine 

whether dimerization or polymorphisms of cardiac OXRs may affect ligand binding, or 

indirectly affect ligand binding by altering receptor structure.   

In the present study, using an OX1R antagonist and an OX2R agonist, we conclude that the 

primary signalling at the rat heart is mediated via an OR-B/OX2R pathway. OXRs are able to 

activate certain key plasticity-regulating cascades, such as PI3K and ERK, and p38 MAPK. 

Here, pre-treatment with wortmannin abolished the OR-B protective effect on LV infarct size; 

suggesting the involvement of the PI3K/Akt pathway in OR-B induced cardioprotection. This 

signalling pathway has been implicated in myocardial protection; and is referred to as the 

reperfusion injury signalling kinase (RISK) pathway (33). Mediators that target the activation 

of the RISK (PI3K/Akt) pathway have been also shown to ameliorate recovery following 

ischaemic stress (25,47). In our study, OR-B, but not OR-A, was able to induce the 

phosphorylation status of both Akt and ERK1/2. Our data contradict previous studies 

showing that both orexin peptides can increase Akt phosphorylation. For example, in a study 

of neuronal cell cultures OR-B was more potent than OR-A, but the maximal effect of both 

peptides on the Akt activation was very similar (48). This apparent contradiction could be 

attributed to the fundamental differences between cardiomyocytes and neuronal cells 
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including morphological polarity, shape and function of action potentials, synaptic and 

homeostatic plasticity; not to mention the spatial expression of orexin receptors in the brain 

(49). As such, it is plausible that orexins exert their effect in an organ- and cell-specific 

manner. 

The OR-B selectivity in post-translational modification of key mediators is corroborated by 

previous studies in other tissues. Indeed, in the human testis, when IP3 turnover was 

measured, OR-B exerted a more potent effect compared to OR-A (18). Similarly, in human 

H295R adrenocortical cells diverse roles have been noted for OR-A and OR-B in terms of 

activation of MAPKs and cortisol release; i.e. only OR-A (at 1nM) activated ERK1/2 and p38 

(50).   

Based on our findings, herein we propose the presence of a signalling pathway involving 

OX2R-ERK1/2-MLC in the heart with a net effect of increased Ca2+ sensitivity and cell 

length/contractility following OR-B superfusion in cardiomyocytes (21,51–54). Activation of 

ERK1/2 is involved in the activation of contractile responses through mechanisms involving 

direct phosphorylation of the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) 

(33,55–57).  

In a seminal review by Spinazzi et al, a case is made for mediation of Ca2+ by orexin 

receptors (58). However, this effect of OX1R and OX2R on Ca2+-release is through IP3 

receptor activation, which, although evident in the hypothalamus, does not impact on the 

contraction of rat ventricular cardiac muscle under basal conditions, where the ryanodine 

receptors (RyR) dominate excitation-contraction (E-C) coupling (59). As such, this may have 

more of a role in pathophysiology of heart failure and arrhythmias (60). Interestingly, the 

dominant expression of IP3-receptors is on the nuclear membrane where they are thought to 

be involved in cardiac hypertrophy (61). 

Conversely, inhibition of ERK attenuates force development by lowering MLC 

phosphorylation in cardiac tissue (62). Because of its central role in the regulation of 

contraction and relaxation of the heart, cTnI is also phosphorylated by OR-B to ensure 
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appropriate function. Changes in the phosphorylation status of cTnI are well documented 

during acute cardiac events and in patients with heart failure (63).  

We have expanded on these observations using human heart tissue samples from heart 

failure patients. So far, a number of studies indicated that there is a dysregulation of the 

orexin system in the CNS in models of heart failure (64–66). Here we further report that in 

adults with heart failure (NYHA classes I to IV) there was a significant negative correlation 

between the severity of clinical symptoms (NYHA class) and OX2R expression. The fact that 

OX2R expression was significantly lower in patients with NYHA classes III/IV compared to 

less symptomatic patients with NYHA class I/II, indicates that OX2R signalling is 

compromised in more severe heart failure. These observations are further supported by the 

findings of Perez et al., where in a heart failure model, HCRTR2/OX2R-deficient mice 

exhibited poorer cardiac function, and greater myocardial scarring (67). Moreover, in the 

same study, differential OX2R expression data from microarray experiments was recorded in 

patients with dilated cardiomyopathy and ischemic cardiomyopathy (67). 

Based on the established role that orexins have in maintaining the awake state, orexin 

antagonism has also been identified as a novel therapeutic approach for the treatment of 

insomnia (68). As such, suvorexant, a non-selective dual orexin (OX1R/OX2R) receptor 

antagonist (DORA), has been approved by the FDA, in 2014, for treating insomnia patients 

with difficulties in sleep onset and/or sleep maintenance (www.acc.org/latest-in-

cardiology/articles/2015/06/16/08/40/new-insomnia-drugs-in-the-context-of-cardiovascular-

disease - BELSOMRA® (suvorexant) package insert: 

www.merck.com/product/usa/pi_circulars/b/belsomra/belsomra_pi.pdf). To date, suvorexant 

use has not been associated with any reported adverse cardiovascular safety outcomes; 

however, it must be highlighted that it is unknown whether suvorexant has adverse effects in 

CVD patients, since patients with significant and/or recent CVD (e.g. with acute coronary 

syndrome or congestive heart failure) were excluded from the relevant trials 

(http://www.acc.org/latest-in-cardiology/articles/2015/06/16/08/40/new-insomnia-drugs-in-

the-context-of-cardiovascular-disease). Therefore, and based on the findings from our study 
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and from others (67), the use of orexin antagonists may warrant further assessment and 

careful monitoring for CVD adverse effects, particularly in heart failure patients (69). 

Finally, our human ex vivo study results were also consistent with the in vitro rat data, since 

orexin treatment of human myocardial tissue demonstrated that OR-B, but not OR-A, was 

able to induce ERK1/2 phosphorylation. However, there was no change in Akt 

phosphorylation upon treatment with OR-A or OR-B. The latter could be due to the fact that 

chronic heart failure reduces Akt phosphorylation, so signalling is already compromised at 

basal levels. Indeed, compared to subjects with normal cardiac function, human skeletal 

muscle of heart failure patients demonstrates reduced Akt phosphorylation (70). It should be 

noted that the cardiovascular and musculoskeletal system are interrelated, whereby a 

functional deterioration in one is reflected similarly in the other (71). Differences in the 

phosphorylation of Akt can also be due to species differences, since certain proteins, like 

ERG, are differentially expressed in the rat and human heart (72).  

We also acknowledge certain limitations with our experimental system using healthy young 

adult rats compared to patients used in this study that have certain comorbidities. To date, it 

has proven difficult to find the “perfect” translational in vivo model for CVD. This is primarily 

due to the high level of complexity, as well as heterogeneity of these diseases, in addition to 

potential impact/influence from environmental or genetic factors. Future studies can make 

use of different animal models for examples such as; heart failure, aged rats, or rats fed with 

a high fat diet to generate further data on the involvement of OR-B/OX2R at the cardiac level. 

However, to the best of our knowledge, there is no perfect in vivo model to represent the 

entire repertoire of defects/comorbidities at the cardiac level. 

In summary, our present findings document that OR-B exhibits a protective role on cardiac 

function pre- and post- ischaemia, leading to reduction of the infarct size. We also provide 

novel conclusive evidence that the rat heart expresses functional OXRs and is a source of 

orexins. Cardiac OXRs can also influence contractile tone via mechanisms involving 

phosphorylation of TnI and MLC. Thus, in addition to the known CNS effects of 

orexins/OX2R (5,73), our data illustrate the importance of the OX2R as a potential 
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therapeutic target directly at the heart level, suggesting that targeted use of OX2R specific 

agonists may have a role in the prevention and treatment of CVD. 
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Figure Legends 

Figure 1: Expression of orexin-1 (OX1R) and orexin-2 (OX2R) receptors in the rat and 

human heart. 

Panel A: Quantitative RT-PCR analysis of OX1R and OX2R in the rat hypothalamus (hypo) 

and rat heart (***P<0.001 for heart vs. hypothalamus). 

Panel B: Immunohistochemical analysis of rat heart ventricular sections (n=3) for OX1R (I) 

and OX2R (II). Magnification x400. Negative control (III) confirmed the specificity of the 

immunostaining.  

Panel C: Immunohistochemical analysis of OX1R (I) and OXR2 (II) in rat cardiomyocytes 

and negative control (III). Identical results obtained from four independent experiments; 

measuring at least 50 cells.  

Panel D: Expression of OX1R and OX2R in rat heart compartments (n=3). Lane 1 cDNA 

from left ventricle (LV); Lane 2 cDNA from left auricle; Lane 3 cDNA from septum; Lane 4 

cDNA from right ventricle (RV); Lane 5 cDNA from right auricle; and Lane 6 is DNA marker.  

Panel E: Single-Cell RT-PCR in cardiomyocytes (n=6): Lane-1: -Actin; Lane-2: OX1R; 

Lane-3: negative control; Lane-4: OX2R.  

Panel F: Expression of OX1R and OX2R in different human cardiac compartments: Lane-1: 

aorta; Lane-2: apex of the heart; Lane-3: left atrium (LA); Lane-4: right atrium (RA); Lane-5: 

right auricle; Lane-6: left auricle; Lane-7: left ventricle (LV); Lane-8: right ventricle (RV); 

Lane-9: interventricular septum; and Lane-10: atrioventricular (AV) node.   

Panel G: Expression of prepro-orexin in rat heart chambers (n=3). Prepro-orexin is 

expressed as a 302bp PCR product in the left ventricle (LV) (lane 1), left atrium (LA) (lane 

2), interventricular septum (lane 3), right ventricle (RV) (lane 4), and right atrium (RA) (lane 

5). M=Marker; DNA ladder. 

Panels H and I: Prepro-orexin (PPO) and the cleaved peptides Orexin-A (OR-A) and 

Orexin-B (OR-B) were detected using western blotting, with molecular weights of 15 kDa for 

prepro-orexin, 3.5 kDa and 2.9 kDa for OR-A (H) and OR-B (I), respectively; Lane 1: rat 

heart lysates; and Lane 2: rat hypothalamus lysates (n=3).  

Panel J: Immunohistochemical analysis for OR-A on rat thymus section (I) and rat spleen 

(II). 

Panel K: Immunohistochemical analysis of rat heart ventricular sections (n=3) for OR-A (I) 

and OR-B (II) and negative control (III). Magnification x400.  
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Panel L: Rat cardiomyocyte immunofluorescent analysis of OR-A (I), OR-B (II), and negative 

control (III). Identical results obtained from four independent experiments, measuring at least 

50 cells.  

 
Figure 2: Effects of orexin B (OR-B) on contractility of rat cardiomyocytes and on the 

phosphorylation of troponin I (TnI) and myosin light chain (MLC). 

Using video-edge detection system, changes in cell length of individual cardiomyocytes 

(n=6) were recorded upon challenge with orexins.  

Panel A & B: Superfusion of the myocyte with OR-B (10 nM) increased the strength of 

twitch contraction (**P<0.01).  

Panel A & C: No effect on the amplitude of the Ca
2+

 transient was observed.   

Panel D: Similar effects on the strength of twitch contraction was observed following 

treatment with a specific orexin-2 receptor (OX2R) agonist (OX2Ra: [Ala11, D-Leu15]-Orexin 

B) (*P<0.05).  

Panel E: Addition of an OX1R specific antagonist (OX1R Ant.: SB-408124) did not alter the 

OR-B cardiomyocyte contractile response (*P<0.05).  

Panel F: OR-B was able to induce phosphorylation of troponin I in a concentration 

dependent manner (**P<0.01, ***P<0.001).  

Panel G: OR-B was able to induce phosphorylation of MLC in a concentration dependent 

manner (**P<0.01, ***P<0.001). For the above experiments, equal protein loading was 

confirmed, using β-actin as an internal control. B= basal (no Orexin B). 

 

 

Figure 3: Cardiac functional parameters and infarct size determination following 

ischaemia (n=8). 

Panels3A-C. Panels depict the effects on left rate pressure product (RPP) = heart rate (HR) 

x left ventricular developed pressure (LVDP), following 30 min of ischaemia (45 min to 75 

min) for:  

Panel 3A: Control (Con); pre-treatment: orexin A (OR-A), orexin B (OR-B) or orexin-2 

receptor (OX2R) agonist (OX2Ra) in the in situ rat model (ex vivo; isolated Langendorff 

model) (*P<0.05, compared to control). 

Panel 3B: Control, post-treatment OR-B or OX2Ra in the in situ rat model (*P<0.05, 

compared to control). 

Panel C: Control, bolus pre-treatment OR-A, OR-B, OX2Ra in the in vivo rat model 

(*P<0.05, compared to control). 
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Panels 3D-F. Depict the effects on the left ventricle (LV) infarct size (% LV; transverse 

sections of the rat heart were obtained at the end of the experimental protocol and the 

sections were stained using triphenyl-tetrazolium chloride so that the infarcted tissue 

appears pale, whilst viable tissue stains red). More specifically:  

Panel D: Control; pre-treatment with OR-A, OR-B and OX2Ra in the ex-vivo model 

(***P<0.001, compared to control). 

Panel E: Control; post-treatment with OR-B or OX2Ra in the ex-vivo model (***P<0.001, 

compared to control). 

Panel F: In vivo model with bolus pre-treatment with OR-A, OR-B and OX2Ra prior to 

regional ischaemia and reperfusion (***P<0.001, compared to control). 

 

Figure 4: Orexin B (OR-B)/orexin-2 receptor (OX2R) effects on key signalling pathways 

involved in myocardial protection using the isolated Langendorff perfused rat heart 

model (n=8).  

Panel A: Cardiac functional performance measured and represented as left rate pressure 

product (RPP) in rat hearts pre-treated with control (saline treated), OR-B plus OX1R 

antagonist, OX1R antagonist alone, OR-B plus wortmannin (wort; a PI3Kinase inhibitor), and 

wortmannin alone (*P<0.05 compared to control). 

Panel B: Left ventricle infarct size determination (%LV) in pre-treated hearts with OR-B plus 

OX1R antagonist, OX1R antagonist alone, OR-B plus wortmannin, and wortmannin alone 

(***P<0.001 compared to control). Dotted line across denotes control levels.  

Panel C: OR-B time-dependent treatment and Akt phosphorylation: exposure of rat 

cardiomyocytes to OR-B (100 nM) induced maximal phosphorylation at 5 min. Change in the 

phosphorylation was evident as early as 2 min post-treatment (*P<0.05, ***P<0.001 

compared to basal). 

Panel D: OR-B induced a dose-dependent induction in the phosphorylation status of Akt, 

becoming significant at 1 nM and reaching a plateau at 100 nM (**P<0.01, ***P<0.001 

compared to basal).  

Panel E: OR-B treatment increased the phosphorylation of ERK1/2 compared to basal levels 

(***P<0.001). Isoproterenol (ISO) and Angiotensin-II (Angio-II) were employed as positive 

controls. 

Panel F: inhibition of the MAPK pathway using a selective MAPK inhibitor (U0126) 

abrogates the protective effect of OR-B on LV infarct size (*P<0.05, **P<0.01, ***P<0.001 

compared to control; a: P<0.05 compared to OR-B). 
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Figure 5: Orexin-induced signalling and orexin receptor expression in heart samples 

from cardiac surgery patients. 

Panel A-B: In human heart tissue obtained from patients undergoing coronary artery bypass 

(n=8), both orexin A (OR-A) and orexin B (OR-B) showed no change in Akt phosphorylation 

compared to the non-treated heart tissue (100 nM). Change in the phosphorylation state was 

evident for ERK1/2 signaling in the OR-B treatment group (*P<0.05 compared to control).   

Panel C: Expression of orexin-2 receptor (OX2R) in heart samples from heart failure 

patients (n=54) demonstrated a significant decrease of OX2R in NYHA-II compared to 

NYHA-I patients (ǂP<0.05) and in NYHA-III/IV compared to NYHA-II (*P<0.05) and to NYHA-

I patients († P<0.05). NYHA: New York Heart Association Functional Classification for heart 

failure stages.  
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Supplementary Figure 1: Experimental protocol for the isolated Langendorff perfused 

rat heart and the in vivo model of ischaemia reperfusion (n=8).  

Protocol (1): presents the control pre-treatment study, which consisted of 30 minutes (min) 

stabilisation followed by 30 min global ischaemia and 120 min reperfusion. For the treatment 

groups, hearts were perfused with Tyrode’s+treatment agent for 10 min prior to 30 min 

global ischaemia followed by 120 min reperfusion.  

Protocol (2): presents the post-treatment study group, hearts were perfused with 

Tyrode’s+treatment for 30 min into the start of reperfusion after which the hearts were 

perfused with Tyrode’s only.  

Protocol (3): presents the in vivo rat model of regional ischaemia and reperfusion; the pre-

treatment was with a bolus intravenous (i.v.) injection (e.g. of orexin B 10 nmol) 10 min prior 

to 30 min regional ischaemia and 120 min reperfusion. 

 

Supplementary Figure 2: A: Rat testes (positive control), B and C: Different sections of rat 

heart stained positive for OR-A, D: Rat Heart; a region that is not positive for OR-A; 

demonstrating antibody specificity. Magnification x40 

 

Table 1. Selected key patient characteristics prior to cardiac surgery and tissue collection for 

the heart failure study patients, including age, gender, hypertension, hyperlipidaemia, type 2 

diabetes mellitus, smoking status and body mass index (BMI). Data are presented as 

mean±SEM, or as frequencies.  
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Participants (n) 54 

  

Age (years) 65.2 +/- 1.3 

  

Male gender (%) 50 (92.6) 

  

Hypertension (%) 30 (55.6) 

  

Hyperlipidaemia (%) 31 (57.4) 

  

Type 2 diabetes mellitus (%) 16 (29.6) 

  

Smoking - active (%) 26 (48.1) 

                - ex (%) 13 (24.1) 

  

BMI (Kg/m2)  27.29 +/- 0.50 

 

Table 1 
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