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Abstract 

The combination of two or more metal oxides onto graphene sheets with even 

distribution is projected to enhanced charge transfer properties in photocatalytic applications. We 

report, tungsten oxide (WO3) with iron oxide (Fe2O3) nanoparticles grown on graphene sheets 

via a facile economical one pot hydrothermal method and consequently characterized by 

standard analytical techniques. Synthesized Fe2O3 with WO3 nanoparticles were well ornamented 

on surface of the graphene sheets which have a significant charge transfer properties. The 

resulting hybrid WO3-Fe2O3-rGO (WFG) nanocomposites showed enhanced photocatalytic, 

heavy metal removal and antibacterial activities. The superior photocatalytic removal 

efficiencies were observed for the removal of rhodamine B (~94%) and methylene blue dyes 

(~98%) under solar light irradiation. The antibacterial activity of WFG nanocomposites were 

performed against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) as models for 

Gram-negative and Gram-positive bacteria. The outcome of the results have an intellectual effect 

on the use of WFG nanocomposites to address the upcoming energy and environment issues. 

Keywords: WFG nanocomposites; photocatalyst; antibacterial activity; dyes removal. 

  



  

1. Introduction 

The removal of highly colored wastewater especially, secondary effluent contains 

refractory organics from hazardous industrial chemicals is of great interest and significance for 

environmental protection [1]. The industrial generated wastewater contains residual organic 

compounds and dyes which posed adverse effect to human health [2,3]. Several advanced 

techniques have been used to deal with this serious phenomenon, such as biological, wet 

catalytic oxidation, ozonation, electrochemical, sonocatalytic, photochemical techniques, etc., 

[4,5] were used to remove organics from wastewaters, but still have challenge to complete 

elimination of this refractory organics [6]. Recently, photocatalytic processes are used as to 

remove refractory organics into smaller non-toxic organic molecules without sludge generation 

(i.e., secondary heavy metal pollution) by simple, efficient and an economical, to clean industrial 

effluent [7–9]. Numerous research on photocatalysis for wastewater containing organic and 

inorganic contaminants have been reported earlier [3]. Currently, inorganic heavy metals such as 

lead, cadmium and mercury are the environmentally significant pollutants and are flattering one 

of the most serious environmental threat. Thus, the removal of toxic heavy metals from industrial 

wastes is an important challenge to avoid water and soil pollution [10]. 

Semiconducting nanoparticles have drawn tremendous attention due to their unique 

physicochemical properties and potential applications in photocatalysis, solar energy production, 

energy conversion, carbondioxide reduction and supercapacitors [11,12]. Among numerous 

exposed photocatalysts, tungsten oxide (WO3) and iron oxide (Fe2O3) nanoparticles were 

extensively studied for gas sensing, catalysis and solar energy conversion processes, and 

electrochromic displays, because of their economical and distinctive properties such as strong 

oxidizing abilities for superior conductivity, chemical stability, plasmon-resonant properties and 



  

fine chemical production [13–16]. Fe2O3 nanoparticles have already been utilized by food and 

drug administration (FDA) of United States for food and medicinal applications [17]. It has been 

progressively used in the field of photocatalysis, due to high absorption in the visible region 

which is about 43 % in solar spectrum [18].  

In this context, a number of binary photocatalysts such as, WO3-Fe2O3 nanocomposite 

[19], WO3-Fe2O3 nanosheet arrays [20] and Fe2O3@WO3 nanostructures [21] were developed to 

recognize the reminiscence of photocatalysts by taking advantage of Fe2O3 magnetic properties. 

However, these binary composites always endure a poor photocatalytic efficiency after many 

cycles, [20] due to the chemical instability of Fe2O3 convinced by the photogenerated electrons 

moved from WO3. In this regard, it is essential to enhance the stability as well as charge 

transport properties of the recollectable photocatalysts for practical use [22].  

In recent years, many researchers have focused on several ways to improve the efficiency 

of photocatalysts, such as carbon, N-doping on WO3/TiO2, α-Fe2O3/graphene oxide, 

WO3@graphene composite, and Cu2O/graphene/α-Fe2O3 nanotube [23–26] among which 

graphene has showed excellent activity. Graphene has initiated new research area in material 

science, due to its unique sp
2
 monolayer structure, remarkably high conductivity, superior 

electron mobility, enormously high specific surface area and chemical stability [27]. It is treated 

to be an ideal matrix and electron mediator of semiconductor nanoparticles for energy and 

environmental applications [28,29]. On the other hand, combinations of metal nanocomposites 

with graphene were attractive in improving photocatalytic activity under visible-light irradiation. 

Use of graphene/BiVO4/TiO2 nanocomposite, Ag/RGO/ZnO, Ag-Cu2O/rGO and graphene 

oxide–CuFe2O4–ZnO nanocomposites as photocatalysts for environmental remediation have 



  

been reported [30–33]. In specific, reduced graphene oxide (rGO) based ternary nanocomposites 

have great superiority than binary composites when used as photocatalysts. 

On the other hand, antibiotic resistance is a severe and growing phenomenon in human 

health. Notably antibiotic resistant bacterial strains, fungi and parasites have become a serious 

problem for health care and food technology zones [34]. Thus, antibiotics having a different 

mechanism of action are instantly needed for changes in the traditional antimicrobial 

compounds. Because of their large specific surface area and high bioactivity, the improvements 

of nanoparticles with antimicrobial activity have been developed as a new class of biomedical 

materials having enhanced or distinct antibacterial activity against multi drug resistant human 

pathogenic microbes to fulfil cumulative demands for hygiene in daily life [35].  

Herein, we report a simple hydrothermal method to prepare ternary graphene-

semiconductor-magnetic nanocomposite, precisely referring to WO3-Fe2O3-rGO (WFG) [22], 

which retains the combined functions as showed in Scheme. 1. The synthesized ternary WFG 

nanocomposites exhibited superior visible-light photocatalytic activity towards the degradation 

of two organic dyes, called methylene blue (MB) and rhodamine B (RhB) in synthetic waste 

water. The proposed mechanisms of the photocatalyst for WFG nanocomposites were discussed 

by relating with experimental details. The WFG nanocomposites were further investigated for 

antibacterial activity against Escherichia coli and Staphylococcus aureus. The developed 

material showed superior photocatalytic and antimicrobial properties. This synthesized 

photocatalytic material may afford significant antibacterial performance in environmental 

purification application. 



  

 

Scheme. 1. Schematic diagram for preparation of WFG nanocomposites 

2. Materials and Methods 

2.1 Materials and Reagents 

Graphite powders, sodium tungstate dihydrate (Na2WO4·2H2O), ferric nitrate 

(Fe(NO3)3·9H2O) and sodium hydroxide (NaOH) were purchased from Sigma-Aldrich Co. 

Potassium permanganate (KMnO4), hydrochloric acid (HCl), sulfuric acid (H2SO4) and hydrogen 

peroxide (H2O2), methylene blue dye, rhodamine B, working and standard metal ions solution 

were all purchased from Merck Chemicals, India. All the reagents and chemicals were used 

without any further purification. 

2.2 Preparation of the WO3-Fe2O3-rGO nanocomposites 



  

Graphene oxide was synthesized through a modified Hummer’s method [22]. WFG was 

synthesized by simple hydrothermal process. In a typical process, 0.30 g of rGO was added to 30 

mL distilled water and then ultra-sonicated for 1 h. Then the rGO suspension was added 30 mL 

to aqueous solutions of Na2WO4·2H2O (2.638 g), Fe(NO3)3·9H2O (3.232 g) with continuous 

stirring. After 30 min reaction, the above mixture was transferred to a 100 mL Teflon-lined 

stainless-steel autoclave and heated at 170 
°
C for 15 h. The obtained precipitate was separated by 

centrifugation and washed with ethanol and distilled water for several times. The resulting solid 

was dried in vacuum oven at 60 
°
C over-night prior to characterization. For comparison, Pure 

WO3, Fe2O3 and binary WO3/rGO, Fe2O3/rGO nanocomposites were obtained through a similar 

procedure. 

2.3 Characterization 

The crystal structure of the products were carried out using a Rigaku Miniflex X-ray 

diffractometer with Cu Kα (λ = 0.15406 nm). Fourier transform infrared (FT-IR) spectra were 

recorded on a BRUCKER TENSOR 27 FTIR spectrophotometer. Raman spectra were recorded 

using a LabRAM HR Horbia Micro Raman spectrometer. The scanning electron microscope 

(SEM, Zeiss18 Evaluation) was employed to investigate the morphology and Energy dispersive 

X-ray spectroscopy (EDX Oxford X-Act) was used to find the elements composition. High 

resolution electron microscopy (HRTEM) and selected area electron diffraction (SAED) were 

measured on a Jeol/JEM 2100 transmission electron microscope operating at 200 kV. UV–vis 

Diffuse reflectance spectra (UV–vis DRS) were recorded in the range 200–800 nm with a Perkin 

Elmer Lambda 25 spectrometers. 

The determination of Pb
2+

, Cd
2+

 and Hg
2+

 concentrations was carried out on an ICP-OES 

using a Perkin Elmer Optima™ 7000 DV dual view series sequential spectrometer (Shelton, CT, 



  

USA) equipped with WinLab™32 for ICP Version 4.0 software. In order to avoid any carry-over 

effects, the ultrasonic nebulizer was washed out with 1% (v/v) HNO3 for 60 s between each 

sample run. Argon gas (99.99%) was used as the ICP torch gas and nitrogen gas was used as the 

optical purge gas. A charge-coupled device (CCD)-array detector was used to collect both the 

analyte spectra and the background spectra, which provided improved precision and analytical 

speed. The three analytical emission wavelengths of 220.353, 228.802 and 253.652 nm were 

employed for quantification of Pb, Cd and Hg. The repeatability was calculated for ICP-OES as 

the relative standard deviation (RSD) on six consecutive replicates of the same sample.  

2.4 Evaluation of Photocatalytic activity  

The MB and RhB were chosen as a model organic pollutants to test the photocatalytic 

activity of WFG photocatalyst at room temperature. A typical reaction mixture for irradiation 

comprised the following initial concentrations: 100 mg of the prepared samples were added to 

100 mL of different dye solutions (30 mg/mL). Prior to the photocatalytic activity testing, the 

reaction mixture was kept for 30 min in a dark environment to establish the 

adsorption/desorption equilibrium of the dye molecules on the photocatalyst surface. The 

mixture then continuously irradiated with 450 W low pressure quartz mercury lamp for 1 h. The 

suspension was periodically withdrawn from the reactor, and the samples were then centrifuged 

to remove the photocatalyst powder. The photocatalytic activity of the samples was calculated 

from initial and final reaction mixture containing MB and RhB by time using UV–vis 

spectrophotometer. As for the stability test, the remaining photocatalyst powder was centrifuged 

and used upto 4 cycles for photocatalytic degradation efficiency of WFG towards MB and RhB. 

For comparison, the auto photodegradation of MB and RhB (namely, photolysis) were also 

tested under similar conditions in the absence of photocatalyst. The photocatalytic degradation 



  

efficiency of WFG on degradation of MB and RhB were evaluated by the value of C/C0, where 

C0 and C are the symbolic representations for the concentration of organic pollutants before and 

after photocatalytic experiments, respectively. 

2.5 Metal ion adsorption properties of WFG ternary nanocomposites  

2.5.1 Removal of toxic metal ions at different pHs 

The heavy metals removal capacity of the prepared WFG nanocomposites were studied 

by batch equilibrium method. Briefly, Dried 0.5 g of WFG nanocomposites was added to 300 

ppm (100 mL) solution of mixture of Pb
2+

, Cd
2+ 

and Hg
2+ 

metal ions, pH was maintained as 2, 3, 

4, 5, 6 and 7 by using 0.5 M HCl or 0.5 M NaOH aqueous solutions at 25 ± 0.5 
o
C with 

continuous stirring of 200 rpm for 12 h to facilitate the adsorption equilibrium of heavy metals 

onto the WFG nanocomposites. After the specified time, the WFG nanocomposites were 

separated out from the solution by filtration through Whatman filter paper (No. 42). The filtrate 

were collected and then the amount of metal ions was determined by ICP-OES. A blank was also 

analyzed to ensure that no metal ions were carried over from the previous sample. The blank 

values were subtracted from the values determined for the different metal ions to give the exact 

adsorbed metal ion concentrations. The amount of metal ions removed by WFG nanocomposites 

in the presence of a given pH was calculated by following expression:  

% Removal efficiency = Co – Ce/Co × 100. 

where, Co is the initial metal ion concentration (ppm), Ce the equilibrium metal ion 

concentration in ppm 

2.6 Antibacterial Activity 

2.6.1 Chemicals for antibacterial assay 



  

Chloramphenicol (Hi-Media, Pvt Ltd., India) was used as a positive reference standard 

for selected two bacterial strains E.coli and S.aureus, respectively. 10% dimethyl sulfoxide 

(DMSO) (Qualigens) was used as a solvent for the tested samples. 

2.6.2 Preparation of inoculums 

Two different human pathogenic bacterial strains of gram positive bacteria and gram 

negative bacteria were used in our current study. The gram positive strain was Staphylococcus 

aureus while the gram negative bacteria was Escherichia coli. The tested bacterial species were 

obtained from microbial type culture collection centre, Chandigarh, India. Bacterial inoculums 

were prepared by growing freeze-dried cells in nutrient agar for 24 h at 37 ºC. WFG ternary 

nanocomposite was assessed for their antibacterial activity by agar modified well diffusion 

method using nutrient agar media [36]. The catalyst was dissolved separately in diluted 10% 

dimethyl sulfoxide. The catalyst was tested against E. coli and S. aureus at different 

concentrations (50, 75 and 100 µg/mL) and incubated at 37 °C for 24 h. The inoculums of two 

bacterial strains were prepared by suspending overnight grown cultures in normal saline (NaCl 

0.85%). The turbidity of the inoculum was adjusted as per the 0.5 McFarland standards. 

2.6.3 Agar well diffusion method 

The antibacterial activity of WFG nanocomposite was investigated quantitatively through 

the different doses of materials supplemented in the growing media. For the antibacterial assay, 

WFG nanocomposites with different concentrations were filled in the wells. Dilute DMSO was 

used as a negative control and the standard drug, chloramphenicol was used as a positive control. 

After overnight incubation in the incubator at 37 °C, all plates were examined and the zone of 

inhibition (diameter) was measured. After incubation, the colony forming units (cfu) were 

counted in the respective dilutions of the treated sample.  



  

3. Results and Discussion 

3.1 Crystal structures 

Powder XRD was used to examine the structural and crystal phases of the synthesized 

pure, binary and WFG ternary nanocomposites. The X-ray diffraction (XRD) pattern of WFG 

nanocomposites are presented in Fig. 1, which showed the major peaks corresponding to 

hexagonal WO3 (JCPDS No. 85-2459)  at 2θ values of 12.8° (1 0 0), 24.19° (0 0 2), 28.8° (2 0 

0), 30.1° (1 1 2) , 34.8° (2 0 2), 36.5° (2 1 0), 38.1° (2 1 1), 45.8° (2 1 2), 50.1° (2 2 0), 52.6° (3 1 

0), 55.4° (2 2 2), 59.5° (4 0 0), 64.7° (3 1 3) and 70.3° (2 2 4). The Fe2O3 (JCPDS No. 33-0664) 

at 24.2° (0 1 2), 33.2° (1 0 4), 35.7° (1 1 0), 40.9° (1 1 3), 49.5 (0 2 4), 54.1° (1 1 6), 57.6° (1 2 

2), 62.5° (2 1 4), 64.1° (3 0 0), 72° (1 1 9) and 75.6° (2 2 0), and reduced graphene oxide at 

24.52° (0 0 2) [37]. However, no rGO peak observed in the WFG nanocomposites, which is due 

to its low amount, highly dispersed and comparatively low diffraction intensities in the 

composites [38,39]. Also, the XED peak of WFG nanocomposites significantly shifting to high-

angle, this reason can be explained the well bound between WO3-Fe2O3 and the two composite 

interconnecting heterojunction with rGO, which results the semiconductors shrinkage in the 

lattice [40,41].  The diffraction spectra confirm the formation of the hexagonal crystalline phase 

of WO3 and rhombohedral crystalline phase of Fe2O3 grown over the rGO sheet. Here, we 

showed that GO cannot be fully reduced into rGO during the synthesis process and therefore 

some of the oxygen based functional groups are often attached to rGO sheet even after the 

reduction [42]. The average crystallite size of the all samples were estimated using the Debye-

Scherrer equation [43], which is presented in Table 1. The lattice parameters, degree of 

crystallinity and crystallite size of pure, binary and ternary nanocomposites were calculated and 



  

provided in Table 1. The calculated d-spacing is in good agreement with HR-TEM of ternary 

nanocomposites. 

Table 1. Lattice parameters, crystallite size and degree of crystallinity of pure, binary and ternary 

nanocomposites. 

Sample 

Lattice Parameters (Å) Crystalline size 

(nm) 

Degree of 

crystallinity (Xc) a = b c 

WO3 7.147 7.754 51.20 3.221 

Fe2O3 5.124 13.642 66.02 6.764 

WO3-rGO 7.148 7.755 72.97 8.990 

Fe2O3-rGO 5.125 13.643 52.12 3.151 

WFG - 48.14 2.784 

 



  

 

Fig. 1. Powder XRD patterns of pure, binary and WFG nanocomposites.  

3.2 Morphology studies 

FE-SEM and HR-TEM analysis of WFG was carried out to identify the morphology, 

particle size and structures. The morphology of rGO and WFG nanocomposites is presented in 

Fig. 2(a-e). Notably, the morphology of WFG nanocomposites greatly deviated, compared with a 

crumpled sheet like structure rGO (Fig. 2(a,b)). Moreover, WO3 and Fe2O3 nanoparticles are 

randomly ornamented on rGO sheet surface, which could efficiently prevent the stacking of rGO 

sheets [44]. HR-TEM images of the pure WO3 and Fe2O3 particles with sizes of different 

magnifications presented in Fig. S1(a-d). The HR-TEM images of WFG nanocomposites, where 

rGO exhibits wrinkled and folded sheets like structures showed in Fig. 3(a-f). The WO3 and 



  

Fe2O3 metal oxides nanoparticles (black in colour) are consistently disseminated on rGO sheets. 

Inset of Fig. 3f clearly describes the selected area electron diffraction (SAED) pattern of the 

ternary nanocomposites which showed that material is in polycrystalline nature. The (d002) planar 

spacings of 0.43 nm corresponds to rGO layers [24,25]. While the (d020) and (d110) planar 

spacings of 0.38nm and 0.25 nm confirmed the plane of WO3 and Fe2O3 (Fig. 3(c,f)) which is 

good agreement with XRD pattern.  The EDX spectrum of WFG displays the only existence of 

C, O, Fe and W, indicating the successful formation of nanocomposite with high purity, which is 

analyzed by EDX and presented in Fig. 2f. The concentration elements (wt %) in this catalyst is 

listed in Fig. 2f. 



  

 
Fig. 2. FE-SEM images of rGO (a,b) and different magnifications (c-e) and EDX spectrum of 

WFG nanocomposites (f). 



  

 
Fig. 3. (a-f) HR-TEM images of WFG different magnifications and (f) SAED patterns (insert: 

right corner) of WFG nanocomposites. 

3.3. Surface chemical states/ properties by XPS 

X-ray photoelectron spectroscopy was used to determine the chemical oxidation states of 

elements of WFG nanocomposites as presented in Fig. 4(a-e). Fig. 4a showed the XP survey 

spectrum of WFG nanocomposite confirmed W, Fe, C and O elements.  From the survey XP 

spectra of C1s binding energy at 284.6 eV, O1s  binding energy at 530.4 eV, W 4f  binding 

energies  at 35.4 eV and 37.5 eV, and Fe2O3 binding energy peaks at 724.32 eV, 710.72 eV 

(auger electron peak of Fe2p) [45,46]. The deconvolution XP spectra of WO3 (Fig. 4b), reveal the 

characteristic doublet binding energies at 35.4 eV and 37.5 eV for        and       , 

respectively, which is good agreement with reports [47,48]. The deconvolution XP spectra of 

Fe2O3  (Fig. 4c), and the main characteristic binding energies at 710.72 eV and 724.32 eV, 



  

corresponds to         and         spin-orbit peaks of Fe species in Fe2O3 which is in good 

agreement with reports [49,50]. The core level deconvolution C1s XP spectra (Fig. 4d) reveals 

the existence of O-C=O (290.84 eV), C–O (287.8 eV), and C-C 284.6 eV) functional groups, 

which responsible interaction between the nanocomposites. The core level O1s XP spectra was 

asymmetric and broad due to available multiple chemical environment in oxygen functionalities 

in WFG, and the binding energy at 530.4 eV and 529.4 eV is ascribed to WO3 [49,51] and Fe2O3 

[51], and binding energy at 531.8 eV corresponds surface chemisorbed  oxygen functionalities 

[52,53]. 
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Fig. 4a. XPS results of the WFG nanocomposites, deconvolution XP spectra of W 4f (b), Fe 

2p(c), C 1s(d)  and O 1s(e). 

3.4 Functional group Analysis 

Fourier Transform Infrared Spectra (FT-IR) of as synthesized pure, binary and the WFG 

nanocomposites are presented in Fig. 5. In FT-IR spectrum of WFG, the broad peak around 3459 

cm
-1

, is attributed to stretching vibration of O-H of rGO with metal oxide interaction [53]. The 

weak adsorption band at 1581 cm
-1

, is due to characteristic band of C=O functional groups in 

carbonyl and carboxyl moieties. The wide absorption band of WO3-rGO nanocomposite at low 

frequencies is attributed to W-O-W bond. The peak at 1427 cm
-1

 confirmed the skeletal 

vibrations of unoxidized graphitic (C=C) domains [54]. Few functional groups have been 

vanished in ternary nanocomposites due to the hydrothermal treatment of precursor material.  

Furthermore,  

The Raman spectra is most promising tool to determine metal and rGO. Fig. 6(a-c) 

showed Raman spectra of WO3, Fe2O3, and WFG nanocomposites. The Raman bands of  250 

cm
–1

, 700 cm
–1

 assigned to O–W–O bending modes [55]. Fig. 6a showed the minor phonon 

confinement effects are perceived on the major phonon of 670 cm
–1

 assigned to O–W–O 

stretching mode and the 957 cm
–1

 assigned to WO3 surface dangling bonds [56]. The Raman 

spectrum (Fig. 6b.) reveals the peaks at 223 and 487 cm
-1

 corresponds to A1g and the peaks at 

242, 296, 336, 408, and 605 cm
-1

 corresponds to Eg vibrational modes of Fe2O3, good agreement 

with previous reports [57,58].  



  

 
Fig. 5. FT-IR spectra of pure, binary and WFG nanocomposites 

Fig. 6c showed that the two main peaks at 1324 cm
-1

 and 1567 cm
-1

 correspond to the 

characteristic sp
3
 carbon (D band) and sp

2
 bonded carbons (G band) of the rGO sheets [59]. 

These Raman results suggest the presence of electronic interaction between WO3, Fe2O3 and 

rGO in the composite, thus confirming the successful incorporation of the WO3 and Fe2O3 

particles onto the rGO surface. 



  

 

Fig. 6. Raman spectra of WO3 (a), Fe2O3 (b), and WFG (c) nanocomposites 

3.5 Optical and bandgap by UV–DRS spectroscopy 

The optical absorption properties of WO3, Fe2O3, WO3/rGO, Fe2O3/rGO and WFG 

nanocomposites were studied by UV–DRS spectroscopy and corresponding absorption peaks are 

presented in Fig. 7. The absorption edge of all synthesized photocatalysts are exhibited at the 

range of ~450-600 nm. However, all composite samples produce a certain absorption intensity in 

the visible region. The band gap energy (Eg) of WO3, Fe2O3, WO3/rGO, Fe2O3/rGO and WFG 

nanocomposites (Fig. 7b) were calculated to be ~2.8, 2.33, 2.87, 2.63 and 2.73 eV respectively, 

according to the Kubelka-Munk method [22].  



  
 

Fig. 7. (a) UV-vis spectra of pure, binary and WFG nanocomposites, (b) Tauc Plot of pure, 

binary and WFG nanocomposites 

Pure WO3 showed the light absorption in the UV range with absorption on-set at 450 nm. 

By comparing with all samples, WFG composites showed largely varied absorption in visible 

light region (450–800 nm), resulted from rGO introduction [9,22]. Though, the band gap width 

of Fe2O3 is figured out at 2.33 eV, while that of Fe2O3/rGO is 2.63 eV, as shown in Fig. 7b. The 

difference in the band gap broadening of Fe2O3 nanocomposites is due to the band structure 

aberrance induced by hetero-interfaces [60]. These interpretations also suggest that the presence 

of rGO indirectly changes functional process of electron-hole pair creation of WO3 and Fe2O3 by 

increasing its surface electric charge in photochemical process [61]. 

3.6 Photocatalytic performance of Methylene Blue and Rhodamine B 

Photocatalytic degradation of MB and RhB were carried out to found the catalytic 

performance of WFG nanocomposite under solar light irradiation. The photocatalytic removal 

efficiency of WFG on removal of MB and RhB were examined by UV-Vis spectra and compared 

with pure, binary and WFG ternary nanocomposites as shown in Fig. 8(a-c) and Fig. 9(a-c). 

Additionally, the photocatalytic removal rate of dyes (MB and RhB) of pure, binary and WFG 

ternary nanocomposite are presented in Fig. 8d and Fig. 9d. As illustrated in Fig. 8c and Fig. 9c, 



  

the maximum absorption peaks of MB found at 664 nm and RhB at 554 nm, which is drastically 

decreased without shifting the peak position to the baseline, indicating that the dyes were 

completely eliminated/removed from the aqueous phase. However, the required reaction time is 

only 20 min for complete removal of MB and RhB dyes under solar light irradiation in the 

presence of WFG nanocomposite. It showed that the WFG nanocomposite has excellent solar 

light photocatalytic activity for the removal of MB at ~98% and RhB at ~94.5%, which is about 

~3 times and ~1.4 times higher than that pure and binary photocatalysts. The optimum reaction 

time to removal of dyes was optimized as 20 min, and no marginal enhancement was found after 

20 min reaction period. 

The comparative photocatalytic activity of our photocatalyst with existing reports are 

presented in Table 3. The photocatalytic performance of the pure, binary and WFG 

nanocomposites were explored for MB and RhB removal under solar light irradiation, and 

expressed as the resulting degradation efficiency derived from UV-Vis analysis of the reaction 

mixtures. 

 



  

 

Fig. 8. UV–Vis spectra of MB at different time intervals: (a) WO3-rGO, (b) Fe2O3-rGO, (c) 

WFG ternary nanocomposites and (d) MB removal rate at different photocatalytic system. 



  

 

Fig. 9. UV–Vis spectra of RhB removal at different time intervals: (a) WO3-rGO, (b) Fe2O3-rGO, 

(c) WFG ternary nanocomposites and (d) RhB removal rate at different photocatalytic system. 

 



  

Fig. 10. Pseudo-first-order kinetics for photocatalytic degradation of (a) MB and (b) RhB by 

pure, binary and WFG catalyst 

The photocatalytic degradation of MB and RhB rates were fitted with pseudo-first-order 

kinetics as presented in Fig. 10(a,b). The rate constants were determined according to the 

following equation (1) [62] 

ln(C0/Ct) = kt (1) 

where, C0 is the initial concentration, Ct is the concentration of MB and RhB dyes at varied time 

t, t referred irradiation time and k rate constant, which is derived from MB (absorption maxima at 

664 nm) and RhB (absorption maxima at 554 nm) with respect to time. The reaction rate 

constants (k) for all photocatalysts were determined from slope of fitted curves and rates are 

provided in Table 2. All the plots showed a linear association with good correlation coefficients 

(R
2
=0.9409 and R

2
=8472), indicating that MB and RhB degradation using the synthesized 

catalysts under solar light irradiation, and it is confirmed that the highest removal rates (k, 0.7154 

min
-1

 and 0.5846 min
-1

) were obtained for WFG ternary nanocomposite.  

Table 2. MB and RhB removal percentage and rate constant for different photocatalyst 

Photocatalyst 
Degradation (%) k (min

-1
) R

2
 

MB RhB MB RhB MB RhB 

WO3 13.60 23.08 0.0331 0.0665 0.9138 0.9068 

Fe2O3 29.51 28.98 0.0087 0.0865 0.9675 0.9808 

WO3-rGO 48.23 35.45 0.1589 0.1111 0.9947 0.9678 

Fe2O3-rGO 62.69 41.35 0.2462 0.1366 0.9946 0.9938 

WFG 97.61 93.92 0.7154 0.5846 0.9409 0.8472 

In this photocatalyst experiments, rGO acted as an acceptor in WFG nanocomposites, and 

subsequently reduced the charge recombination in the photocatalytic system. The difference 



  

might be the presence of rGO, which contributed to charge transfer [27]. For a traditional 

semiconductor photocatalyst, both electrons and holes generated in the photocatalyst could 

decompose pollutants directly. Alternatively, electrons could also react with oxygen to produce 

oxy radicals, which finally convert into hydrogen peroxide. In this case, holes would react with 

hydroxyl ions to produce hydroxyl radicals. Hydroxyl radicals are the most active species to 

decompose pollutants in the photodegradation process [63]. In our experiments, rGO could act as 

an acceptor of the electrons generated in WO3 and Fe2O3 nanoparticles, supposedly suppressing 

the recombination of charges and enhancing the photocatalytic activity. As to the reactive oxy 

radicals, we believe they may be generated on the surface of rGO as electrons have been 

efficiently transferred onto rGO. As the reactive oxy radicals, may create free electrons on the 

surface of rGO could transferred onto metal oxide surface. WFG nanocomposites formed in the 

hydrothermal route can effectually enrich the transfer efficacy of excited electrons and obstruct 

the recombination of electron-hole pairs, endowing the photocatalyst with enhanced solar light 

photocatalytic activity [64].  

The possibility of hydroxyl radical influenced in our photocatalytic system, which is 

confirm the generation of 

OH radicals during the reaction. Electron paramagnetic resonance 

(EPR) studies, DMPO radical trapping experiments confirmed the hydroxyl radical formation 

over graphene based WO3-Fe2O3 nanocomposites with model pollutant (MB dye) were presented 

in Fig. 11.  From the Fig. 11. its evidenced the formation of DMPO-

OH which is characteristic 

of hydroxyl (

OH) radicals generated during the photodegradation experiment compared with 

standard DMPO [65,66].  



  

 

Fig. 11.  EPR spin trapping experiments over WFG nanocomposites (Experimental conditions: 

MB; 30 mg/L, WFG; 100 mg /100mL and reaction time: 25 min) 

Apart from the photocatalytic activity, the stability is also predominant significance for 

its supportable recyclability [67]. Fig. 12(a,b) displays the recycling tests for the degradation of 

MB and RhB dyes over WFG nanocomposites under solar light irradiation, which confirmed that 

no noticeable loss in photocatalytic activity was perceived after four consecutive recycles, 

therefore suggesting that the WFG nanocomposite has best photostability. 
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Fig. 12. Stack plots showing % degradation of (a) MB vs time and (b) RhB vs time for WFG 

nanocomposite at different cycles. 

3.6.1 Possible photocatalytic mechanism 

On the basis of above discussion, it is well known that there are numerous factors played 

in photocatalytic activity of metal oxide semiconductors: crystal structure, charge separation 

efficiency, and so on. The enhanced photocatalytic performance of WFG nanocomposite is 

attributed to combined interaction and longer lifetime of photogenerated electron-hole pairs, 

faster interfacial charge transfer rate with high surface area. A possible Z-scheme reaction 

mechanism and the photodegradation process are illustrated in Fig. 13. Under solar light 

irradiation, both WO3 and Fe2O3 can be excited to photogenerated electrons (e
-
) and holes (h

+
).  

Based on the results, we propose MB and RhB dyes photo degradation over WFG 

composite through separation and transfer of photo induced electrons at Fe2O3 and WO3 

interface heterojunction. The CB of WO3 electrons transferred (photo generated) to the valence 

band (VB) of Fe2O3, and the residual holes within the VB WO3 may either mediated or directly 

produce hydroxyl radicals (reaction with H2O) to react with dyes (photooxidize). The 

photogenerated e
-
 from Fe2O3 also react with adsorbed O2 to produce O2

 −
 radicals, while only a 

few O2
 −

 radicals could further react with H2O to generate hydroxyl radicals (
•
OH). The close 

contact between WO3, Fe2O3 nanoparticles and the both CB band of WO3 and Fe2O3 electrons 

may trapped rGO sheets, extending the lifetime of charge carriers and suppressing the rate of 

recombination. Also, the photoinduced electrons on WO3, Fe2O3 surface and the trapped 

electrons on rGO sheets induce redox reaction in the targeted organic pollutants. The reduced 

GO can act as a back bone (transfer the electron) of e
-
 and h

+
 pair separation mechanism.  



  

 

Fig. 13. Schematic diagram of proposed photodegradation z-scheme mechanism for WFG 

nanocomposites 

3.6.2 Comparison with other reported systems 

The efficiency of our photocatalyst was compared with other reports, as listed in Table 3. 

Notably the reports, used high lamp powers, low concentration of pollutants and removal 

efficiency is comparably lower than that of our report. It can be seen that our catalyst showed 

higher removal efficiency even high concentration dye within 20 min and less amount of catalyst 

as compared to the other reported system presented in Table 3.  



  

Table 3. Comparison of solar light degradation rate (%) of MB over previously reported binary 

and ternary heterojunction 

Catalyst Dye % Removal Catalyst Irradiation Time Reference 

WO3/α-Fe2O3 MB 80 0.5 g/L 240 [20] 

CeO2/SnO2/rGO MB 95 0.5 g/L 90 [22] 

Ag/RGO/ZnO RhB 80 0.2 g/L 60 [31] 

g-

C₃ N₄ /Fe₃ O₄ /BiOI 
RhB 97 0.1 g/L 180 [68] 

TiO2-RGO/MoS2 MB 97 0.5 g/L 100 [69] 

WO3/Fe2O3/rGO MB 98 0.1 g/L 20 Present work 

WO3/Fe2O3/rGO RhB 94 0.1 g/L 20 Present work 

3.7 Removal of toxic heavy metal ions 

The selective Pb
2+

, Cd
2+ 

and Hg
2+ 

metal ions removal efficiency of the prepared WFG 

nanocomposites was investigated with different pH (2-7), and the obtained results are presented 

in Fig. 12. From the results it is noted that the solution pH value strongly affected the heavy 

metal ions removal efficiency on the prepared WFG nanocomposites and removal percentage 

increases with increasing pH. The maximum removal percentage were recorded at the pH 6 for 

each metal ion (Pb
2+

 (76%), Cd
2+

 (81%) and Hg
2+ 

(79%) with removal capacities of 229.2, 244.1, 

and 236.9 ppm, respectively. The adsorption capacity of WFG nanocomposites to the cadmium 

ion is higher than that of the lead and mercury ions. It seems to us that adsorption tendency of the 

ions is also possibly dependent on the size/softness of ion species as well. It should be noted that 

the removal percentage of WFG nanocomposites is very low at initial pH from 2 to 4 [70], 

however, further increase in pH from 5 to 6 there is remarkable change in removal capacity of 

WFG nanocomposites was observed. Moreover, abundant of H
+
 ions in this solution could 

compete with metal ions for available adsorption sites on WFG nanocomposites. However, WFG 



  

nanocomposites became negative charge due to the deprotonation surface when pH > 5-6 which 

could be responsible for the maximum removal capacity. 

 

Fig. 14. pH dependence of the metal ions removal by the WFG ternary nanocomposite 

3.8 Antibacterial Activity 

The present study analyzed the antibacterial effects of WFG ternary nanocomposite 

against two pathogenic bacteria name called E. coli and S. aureus. Fig. 15. showed the zone of 

inhibition around the bacterial strain for WFG nanocomposite. Both bacterial organisms are most 

common in enteric infections, water pollution and resistance to most broad spectrum of new 



  

generation antibiotics. In addition, nanocomposites damaged the cellular function by 

denaturation of cell enzymes, biological molecules and protein factors [71]. The as prepared 

WFG nanocomposite has been screened in vitro antibacterial activity on selected Gram negative 

E. coli and Gram positive bacteria S. aureus at different concentrations. The results are 

summarised in Table 4. WFG nanocomposite showed much higher antibacterial activity 

compared to both pure and binary composites (Fig. 15.). Decrease in the antibacterial efficacy in 

the prepared nanocomposite against E. coli may be due its gram negative nature. It is well known 

that gram negative bacteria consist of multiple cell walls compared to gram positive bacteria (S. 

aureus). From this study, it is evident that the cells exposed to WFG photocatalysis, have 

improved antibacterial activities, due to active oxygen species from the metal oxide 

nanocomposites. 

 

Fig. 15. Zone of inhibition tests for WFG nanocomposites materials towards gram-negative E. 

coli bacteria and gram-positive S. aureus bacteria 

Table. 4. Antibacterial activity of the catalysts against two human pathogenic bacteria 



  

Nanocomposites 
Bacterial 

strain used 

Zone of inhibition level (in mm) 

(Mean value of four measurements) 
Standard 

3 µl 
50 µg 75 µg 100 µg 

WFG 
E. coli 10.4±1.2 12.3±3.5 15.6±1.4 35.00±2.0 

S. aureus 12.2±1.4 14.5±2.4 19.3±1.2 35.23±1.6 

4. Conclusion 

In summary, we have showed the successful synthesis of WO3-Fe2O3-rGO ternary 

nanocomposites via a simple hydrothermal method with good photostability and recyclability. 

The resultant WFG nanocomposites deliver more adsorption and reaction sites, positively shift 

the position of the valence band potential and enhance charge transportation and separation 

efficiency. WFG nanocomposites show better photocatalytic activity for MB and RhB dyes 

under solar light irradiation, which is higher than pure and binary nanocomposites. The removal 

of heavy metal ions from the water has been successfully carried out by respective adsorption, 

photoreduction and photooxidation. Furthermore, WFG nanocomposites showed the 

considerable antibacterial performance and could be possibly used to treat domestic wastewater. 

In this report, provide new inroads into exploration and utilization of graphene-based 

nanocomposites with efficient performance in purifying polluted water resources. 
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Highlights 

 The effect of rGO based WO3 and Fe2O3 ternary nanocomposite was extensively 

investigated. 

 rGO in ternary nanocomposite could reduce the recombination of electron hole pairs. 

 The as-prepared ternary nanocomposites showed enhanced photocatalytic activity, metal 

ion removal and antibacterial activity. 

 Mechanism of enhanced photocatalytic activity was proposed and discussed. 

 


