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S1. SIMULATED ANNEALING (SA)

Here we describe the details of the simulated annealing process. Without loss of generality we

assume the input graph G is connected. If instead G is formed by two or even more connected

components, each of these connected components can be treated separately. The SA process starts

from an initial inverse temperature β = βinit, which is quite low (e.g., βinit = 10−3). The occupation

configuration c = (c1, c2, . . . , cN ) is initialized to be fully occupied, ci = 1 for all the vertices i ∈ G.

Each occupied vertex contributes a unit energy, so the total energy of the initial configuration is

E(c) = N . At each value of the inverse temperature β the configuration c is allowed to evolve for a

time w0 through a sequence of single-vertex and multiple-vertex state flips, and the mean value of

the configuration energies is recorded during this time window w0. Then the inverse temperature

is increased to β ← β + ε with ε being a small value, e.g., ε = 0.001 or ε = 0.01. The SA process

continues to run at this and later elevated β values until the final value βfinal is reached, which is

sufficiently high (e.g., βfinal = 10). The latest configuration c is then returned as the output of the

SA evolution process. For the regular random (RR) graph instances studied in this work, we have

checked that the subgraphs formed by the vertices in these final alliance solutions always have only

a single connected component.

We adopt the Metropolis importance-sampling method to update the occupation configurations

c. In each elementary step of this Markov Chain Monte Carlo evolution dynamics: with probability

ps a single-vertex state flip is attempted, and with the remaining probability pm = 1−ps a multiple-

vertex state flip is attempted; and then the evolution time t advances by the incremental change

δt = 1/N irrespective of whether the proposed change to c was accepted or rejected. One unit

time of the SA evolution therefore corresponds to N consecutive flipping trials. Let us emphasize

that the SA process generates a stochastic trajectory within the space of strong defensive alliance

(SDA) solutions; at any evolution time t the vertex set formed by the occupied vertices of c is

always a valid alliance.

We set ps = 0.5 in all our SA simulations. The value of pm is set to be pm = 0.5 except for

the simulation results reported in Fig. S4. The SA algorithm applicable to K-regular graphs is
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accessible from the webpage lib.itp.ac.cn/html/zhouhj/codes.htm.

A. Single-vertex state flip

A single-vertex flipping trial consists of proposing a state change ci → 1 − ci for a vertex i of

the graph, under the constraint that the initial configuration c and the updated configuration c′

are both valid alliances. For the initial configuration c, let us denote the set of all the flippable

vertices from ci = 1 to ci = 0 as V1→0 and the set of all flippable vertices from cj = 0 to cj = 1 as

V0→1; similarly, for the updated configuration c′ the sets of flippable (1→ 0) and (0→ 1) vertices

are denoted as V ′1→0 and V ′0→1, respectively. The cardinality of a vertex set (say V ) is denoted

as |V |. We conduct single-vertex flipping trials following the rule of importance sampling, which

guarantees detailed balance:

1. Generate a uniform real random number r in [0, 1).

2. If r < |V1→0|
|V1→0|+e−β |V0→1|

, randomly choose a flippable occupied vertex i from set V1→0 and

propose a flip from ci = 1 to ci = 0; otherwise randomly choose a flippable empty vertex j

from V0→1 and propose a flip from cj = 0 to cj = 1.

3. Accept this single-vertex flip proposal and the associated new configuration c′ with proba-

bility As(c→ c′), whose precise expression being

As(c→ c′) = min
(

1,
|V1→0|+ e−β|V0→1|
|V ′1→0|+ e−β|V ′0→1|

)
, (S1)

otherwise keep the old configuration c.

B. Multiple-vertex state flip for a regular graph of degree K = 3

To better explain the adopted multiple-vertex flipping trials we first consider the special case

of a regular graph of degree K = 3 (i.e., a 3-regular graph). We define the concepts of empty

and occupied bridges as follows: An empty bridge for a 3-regular graph is a path formed by n≥2

different empty vertices j1, j2, . . . , jn such that: (1) the whole path is connected to two and only

two occupied vertices (called the bridge anchors, e.g., vertices i and m in Fig. S1a) by exactly

two edges, attached to the start and end vertices (j1 and jn), and there is no other neighboring

occupied vertex to the whole path except the two bridge anchors, and (2) there is no other edge

between any two vertices of this path except for the n−1 edges linking these n empty vertices into
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Figure S1: Bridge addition and deletion processes for regular graphs of degree K = 3. (a) Vertices i and

m serve as the two anchors for an empty bridge (j, k, l) of length n1 = 3 of an occupation configuration c.

(b) After an empty bridge is flipped to be an occupied bridge, a new configuration c′ is formed, and vertices

i and m then serve as the two anchors of an occupied bridge (j, k, l) in this new configuration. (c) and (d):

An occupied bridge (j′, k′) of length n2 = 2 anchored to vertices i′ and l′ is flipped to an empty bridge.

a path. Similarly, an occupied bridge for a 3-regular graph is a path formed by m≥ 2 different

occupied vertices k1, k2, . . . , km such that: (1) all these m vertices have exactly two occupied nearest

neighbors, (2) there is no other edge between any two vertices of this path except for the m−1

edges linking them into a path, and (3) the start and end vertices (k1 and km) of the bridge are

connected to two different occupied vertices (the bridge anchors, e.g., vertices i′ and l′ of Fig. S1c)

with each of these two anchors having three occupied nearest neighbors.

For the initial configuration c, let us denote by B0→1 the set formed by all the start or end

vertices of all the empty bridges, and by B1→0 the set formed by all the start or end vertices

of all the occupied bridges. Similarly, the two sets of bridge terminal vertices for the updated

configuration c′ are denoted as B′0→1 and B′1→0, respectively. Notice that if a vertex j ∈ B0→1 is

flipped to the state cj = 1 all the other vertices of the associated empty bridge must be flipped

to be occupied as well; similarly if a vertex j′ ∈ B1→0 is flipped to the state cj′ = 0 all the other

vertices of the associated occupied bridge must be flipped to empty as well (Fig. S1).

To construct an empty bridge of configuration c we proceed as follows: (1) Draw an empty

vertex (say j of Fig. S1a) from set B0→1 and regard it as the start of an empty bridge. (2) Then

randomly select an empty neighbor (say vertex k) of j and add it to the bridge. (3) Determine

whether to stop or to continue: if k has two occupied neighbors, the bridge construction is regarded

as a failure and is stopped; otherwise if k has only one occupied neighbor, the bridge construction

is regarded as successful and is stopped; otherwise k has no occupied neighbor, then the bridge
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is extended by adding an randomly chosen empty neighbor (say vertex l) different from j to the

bridge and then step (3) is repeated. If the construction of the empty bridge is successful, the last

added vertex (e.g., l in Fg. S1a) must be connected to a single occupied vertex.

The construction of an occupied bridge is slightly simpler: (1) Draw an occupied vertex (say

j′ of Fig. S1c) from set B1→0 and regard it as the start of an occupied bridge. (2) Then add

a neighboring occupied vertex (say k′) with exactly two occupied neighbors to the bridge. (3)

Continue this bridge extension process if necessary, until an anchor vertex (say l′ in Fig. S1c) is

reached. The constructed bridge is regarded as successful if the two anchor vertices i′ and l′ of the

bridge are not identical.

We conduct the multiple-vertex flipping trial from c to c′ according to the following rule of

importance sampling, which guarantees detailed balance:

1. Generate a uniform real random number r in [0, 1).

2. Perform bridge addition or bridge deletion:

(2.1). If r < |B0→1|
|B0→1|+|B1→0| , then randomly choose an empty vertex j from set B0→1 and

construct an empty path starting from j following the above-mentioned protocol. If

the constructed path is not a valid empty bridge, keep the old configuration c. If this

path is a valid empty bridge, then flip all the vertices in this bridge to be occupied and

accept the updated configuration c′ with the following probability

A0→1
m (c→ c′) = min

(
1,
|B0→1|+ |B1→0|
|B′0→1|+ |B′1→0|

2nb−1e−βnb
)
, (S2)

where nb denotes the length of the constructed bridge; otherwise keep the old configu-

ration c.

(2.2). Otherwise r ≥ |B0→1|
|B0→1|+|B1→0| , then randomly choose an occupied vertex j′ from set B1→0

and extend an occupied path starting from j′, following the above-mentioned protocol.

If the constructed path is not a valid occupied bridge, keep the old configuration c. If

this path is a valid occupied bridge, then flip all the vertices in this bridge to be empty

and accept the updated configuration c′ with the following probability

A1→0
m (c→ c′) = min

(
1,
|B0→1|+ |B1→0|
|B′0→1|+ |B′1→0|

21−nbeβnb
)
, (S3)

where nb again denotes the length of the constructed bridge; otherwise keep the old

configuration c.
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C. Multiple-vertex state flip for a general graph

The bridge addition and deletion processes can be extended to a general graph, but Eqs. (S2) and

(S3) have to be modified accordingly. Here we describe the extended bridge flipping processes from

one configuration c to another configuration c′. For simplicity we assume the input graph G to be

K-regular (i.e., each vertex having K nearest neighbors). Let us denote θ ≡ dK2 e. An empty vertex

(say i) is regarded as a candidate start/end of a possible empty bridge if i has exactly θ−1 occupied

neighbors. Notice that if such a vertex i is flipped to the state ci = 1 one of its empty neighbors

must also be flipped. The sets of such empty terminal vertices of the initial configuration c and of

the updated configuration c′ are denoted as B0→1 and B′0→1, respectively. An occupied vertex j

is regarded as a candidate start/end of a possible occupied bridge if (1) j has exactly θ occupied

neighbors and, (2) one of these occupied neighbors (say k) has exactly θ occupied neighbors itself

while all the other occupied neighbors have more than θ occupied neighbors. Notice that if j is

flipped to cj =1 the occupied neighbor k must also be flipped. The sets of such occupied terminal

vertices in c and c′ are denoted as B1→0 and B′1→0, respectively.

To construct an empty bridge for the configuration c we proceed as follows: (1) Set index l = 1

and draw an empty vertex il from the set B0→1 and consider it as the start of an empty bridge. (2)

Construct a set Cil for the newly added vertex il, which contains all the empty vertices k satisfying

the following properties: (a) k is a nearest neighbor of il but it is not a nearest neighbor of any

other existing vertices of the bridge (to avoid loop formation), (b) k has not yet been added to the

bridge, and (c) k has either θ−1 or θ−2 occupied neighbors. If set Cil = ∅, the bridge construction

is regarded as a failure and it is terminated; otherwise randomly draw an empty vertex il+1 from

Cil and add it to the empty chain. (3) Set l ← l + 1. If the last added vertex has exactly θ−1

occupied neighbors, the bridge construction is regarded as successful and it is terminated, otherwise

go back to step (2) to try to further elongate the empty bridge. If this bridge construction process

is successfully finished, we obtain an empty bridge (i1, i2, . . . , inb) involving nb ≥ 2 empty vertices.

Because of the randomness in extending this empty bridge, we assign it a “surprising” scale as

W 0
i1,i2,...,inb

=

nb−1∏
l=1

|Cil | , (S4)

where |Cil | denotes the cardinality of vertex set Cil . Notice that the set Cil for index l ≥ 2 is

affected by the vertices i1, i2, . . . , il−1 of the bridge.

To construct an occupied bridge for the configuration c is easier than constructing an empty

bridge. Let us refer to an occupied vertex j as being critical occupied if it has exactly θ occupied
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neighbors (so it has to be flipped to cj = 0 if any one of its occupied neighbors is flipped). Then

a candidate occupied bridge is generated in the following way: (1) Set index l = 1 and draw an

occupied vertex i1 from the set B1→0 and consider i1 as the start of an occupied bridge. (2) Add

the only critically occupied nearest neighbor (say vertex i2) of i1 to the bridge and increase the

index to l = 2. (3) If the newly added vertex il has only one critically occupied neighboring vertex

(i.e., il−1) the candidate bridge is constructed and the process is terminated; if il has more than

two critically occupied neighboring vertices the bridge construction is regarded as failed and it is

terminated; otherwise ii has exactly two critically occupied neighbors (one is il−1, the other one

is denoted as il+1), then we add il+1 to the bridge, increase index l ← l + 1, and repeat the last

step (3) to further elongate the occupied bridge if necessary. After this bridge construction process

is successfully finished, we obtain a candidate bridge (i1, i2, . . . , inb) involving nb ≥ 2 occupied

vertices. To check whether this occupied chain is a valid bridge, we flip all the vertices of this chain

to be empty. If every occupied nearest neighboring vertex of this chain still has θ or more occupied

nearest neighbors itself after this chain has been flipped to empty, then the chain is regarded as

a valid bridge and its “surprising” scale as an empty bridge is computed according to Eq. (S4),

otherwise it is regarded as a failure. After this check all the vertices in the chain is flipped back to

be occupied.

Given an occupation configuration c, if we decide to perform a multiple-vertex flipping trial

(which occurs with probability pm), then

1. With probability |B0→1|
|B0→1|+|B1→0| it is a bridge addition trial: an empty chain (i1, i2, . . . , inb)

of variable length nb ≥ 2 is generated according to the above-mentioned protocol and, if it

is a valid empty bridge, the whole bridge is flipped and accepted with probability

A0→1
m (c→ c′) = min

(
1,
|B0→1|+ |B1→0|
|B′0→1|+ |B′1→0|

W 0
i1,i2,...,inb

e−βnb
)
. (S5)

2. With the remaining probability |B1→0|
|B0→1|+|B1→0| it is a bridge deletion trial: an occupied chain

(i1, i2, . . . , inb) of variable length nb ≥ 2 is generated according to the above-mentioned

protocol and, if it is a valid occupied bridge, the whole bridge is flipped and accepted with

probability

A1→0
m (c→ c′) = min

(
1,
|B0→1|+ |B1→0|
|B′0→1|+ |B′1→0|

1

W 0
i1,i2,...,inb

eβnb
)
. (S6)

Let us emphasize again that W 0
i1,i2,...,inb

in Eq. (S6) is the surprising scale of the resulting

empty bridge (i1, i2, . . . , inb) after the flip.
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D. Extending bridge-flipping into tree-flipping

The bridge-flipping process of the preceding subsection can be extended into tree-flipping process

with some modifications. We define a connected subgraph of the K-regular graph as a flippable

occupied tree (FOT) if the following conditions are satisfied: (1) the FOT forms a connected

subgraph without any internal loops; (2) each vertex i of this FOT is occupied (ci = 1) and

has exactly θ occupied neighbors; (3) flipping all the vertices in this FOT will not force any other

vertices in the graph to be flipped. Similarly a flippable empty tree (FET) is defined as a connected

subgraph without any internal loops with the following additional properties: (1) every vertex i in

this FET is empty (ci = 0); (2) every leaf vertex of this FET is connected to exactly θ−1 occupied

external vertices (which do not belong to the FET) and one vertex in the FET; (3) every non-leaf

vertex j of this FET is connected to dj ∈ {0, 1, . . . , θ} other vertices of the FET and exactly θ−dj

occupied external vertices.

According to the above definitions, a FOT can be flipped to be a FET without disturbing the

states of all other vertices, and a FET can be flipped back to be a FOT without the need of flipping

any additional empty vertices. We have implemented this tree-flipping process under the condition

of detailed balance. It turns out that the resulting numerical code is much slower than that of

the bridge-flipping process. When testing on the RR graph instances of degrees K = 3, 4, 5, 6

we found that the tree-flipping SA algorithm produces quantitatively very similar results as the

bridge-flipping SA algorithm. For example, in the case of K=5, the dramatic energy drop occurs

at βSA≈0.979 and the final energy level is ρ≈0.180; the corresponding values for the K= 6 case

are βSA ≈ 1.205 and ρ ≈ 0.102. The simulation data in Fig. 2 of the main text and Fig. S2 of

the current document were obtained by the simpler bridge-flipping algorithm; while the SA results

listed in Table I of the main text were obtained by the slightly better performing tree-flipping

algorithm. More detailed analysis of the tree-flipping SA algorithm will be reported in a follow-up

paper.

There are some non-trivial restrictions in our bridge-flipping and tree-flipping protocols which

make it difficult to rigorously prove that the configuration transition matrix is ergodic for a general

graph G. At the moment we are able to prove the ergodicity property only for graphs of maximum

vertex degree less than 5 (see the following subsection S1 G). However, ergodicity can be guaranteed

by adding some Monte Carlo transition rules or by relaxing the hard SDA constraints into soft en-

ergy penalty terms. The next two subsections describe such alternative SA protocols. As expected,

the simulation results obtained by these new SA algorithms are similar to our bridge-flipping and
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tree-flipping SA algorithms, see subsection S1 G.

E. Additional multiple-vertex flipping rules

Besides the bridge-flipping and tree-flipping rules, we consider two additional multiple-vertex

flipping rules, one of them is referred to as cascade-flipping and the other as creation-flipping. The

purposes of these two processes is to guarantee the ergodicity of the SA dynamics and validate the

robustness of the SA simulation results. These are not employed in our default SA simulations due

to their heavy computational cost.

The cascade-flipping rule goes as follows. First an occupied vertex j which is connected to at

least one critically occupied vertex (say k), is chosen uniformly at random from the set of all such

occupied vertices. The state of the chosen vertex j is then flipped and clamped to the value cj = 0.

This forced flip destabilizes critically occupied neighboring vertices (such as k) collapsing to the

zero state. These induced flips may in turn destabilize more occupied vertices. After this cascading

process finally stops, there are two possibilities: either all the initially occupied vertices in the SDA

configuration become empty (zero-state), or there are still some occupied vertices in the perturbed

configuration (see subsection S1 G for additional discussions). If the former case (all-zero) occurs,

the cascading process is rejected and the initial SDA configuration is kept, while if the second case

occurs, the cascading process is accepted and the final configuration becomes the new SDA graph

configuration. It is easy to see that this cascade-flip process may extensively decrease the energy

of SDA configurations.

The creation-flipping process goesin the opposite direction to the cascade-flipping process and

aims at increasing the number of occupied vertices. First an empty vertex j which is surrounded

by less than
dj
2 occupied vertices is selected uniformly at random from the set of all such zero-

state vertices. Then this vertex j is flipped and clamped to the value cj = 1. To satisfy the

SDA condition some of the empty neighbors of j are then randomly chosen and flipped to an

occupied state (c = 1), until the SDA constraint of j is satisfied. Each newly flipped vertex is

then examined (in a random order) in the same manner and the induced 0→ 1 flipping process is

continued if necessary to satisfy the SDA rule for the newly occupied vertices. After this process

stops, a new SDA configuration with an increased number of occupied vertices is constructed.

Denote by ∆n the total number of newly occupied vertices. We accept this new configuration

as the updated configuration of the system with probability e−β∆n and reject it with probability

1 − e−β∆n. Notice that this creation-flip process might cause an extensive increase in the energy
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of the SDA configuration, especially when the value of β is small.

The cascade-flipping process deletes a connected subgraph of occupied vertices from the current

SDA configuration, while the creation-flip process adds a connected subgraph of occupied vertices

to it. With these two additional state transition rules, the Monte Carlo dynamics is guaranteed to

be ergodic in the whole SDA configuration space.

In each elementary SA updating process, the probability of carrying out a cascade-flipping action

is set to be pcas, and that of a creation-flipping action is set to be padd. We did not enforce detailed

balance between the cascade-flip and creation-flip processes due to the high computational cost

needed to determine precisely the values of acceptance ratios. This might not be critical, since the

condition of detailed balance is not absolutely necessary for obtaining low-energy configurations.

Here we simply set pcas = padd in our simulations. The corresponding bridge-flipping (or tree-

flipping) probability is set to pm = 1
2 − pcas − padd, while the single-vertex flipping probability is

still ps = 1
2 . In the default case of pcas = padd = 0, we have ps = pm = 1

2 .

F. SA with energy penalty: Relaxation of hard constraints on SDA vertices

The above SA protocols are conducted with the Hamiltonian E(c) =
∑

i δ
1
ci subject to the

following hard constraints on every vertex in the SDA, i.e.,∑
j∈∂i

cj ≥
di
2
, ∀i with ci = 1 . (S7)

In this case, all configurations visited by the SA algorithm with single-vertex state flip (i.e. the

algorithm described in Sec. S1 A) are connected by paths of valid SDA configurations in the state

space. It may happen that some SDA configurations cannot be visited by the SA dynamics even

after a long time, if they are enclosed by invalid SDA configurations in the state space. This implies

that the single-vertex state flip algorithm may be non-ergodic and incapable of visiting all valid

configurations. In order to show that the failure of SA to obtain ground state solutions, to be

discussed in the next subsection, is not due to the non-ergodicity of the algorithm, we replace the

hard constraints in Eq. (S7) by soft constraints through the modified (relaxed) Hamiltonian:

Er(c) =
∑
i

δ1
ci + α

∑
i

δ1
ciΘ̃
(di

2
−
∑
j∈∂i

cj

)
, (S8)

where the step function Θ̃(x) is defined to be Θ̃(x) = 1 if x > 0 and Θ̃(x) = 0 if x ≤ 0. When

α → ∞, the system reduces to the original system with hard constraints. On the other hand, as

α decreases, the system gradually explores also invalid SDA configurations. As a result, the SA
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algorithm which minimizes Er(c) with a finite α does not necessarily result in a valid SDA config-

uration, but the single-vertex flipping process becomes ergodic since the hard constraints Eq. (S7)

are relaxed and the system can visit all the 2N possible configurations. We thus perform SA with

Er(c) and a finite α value, and then reduce the resulting, potentially invalid, SDA configurations to

valid ones by repeatedly re-labeling vertices with ci = 1 that do not satisfy Eq. (S7) to state ci = 0.

In many cases, this reduction procedure leads to the removal of all vertices with ci = 1, resulting

in an all-zero state with no SDA. The results obtained by this algorithm are discussed in the next

subsection and are compared to the results obtained for the single-vertex and multiple-vertex state

flip SA algorithms.

G. Discussions on the performance of SA

The default SA dynamical results (with ps = pm = 1
2) obtained for random K-regular graphs

are shown in Fig. 2 and Fig. S2. When each vertex has only K = 3 (Fig. 2a) or K = 4 (Fig. S2a)

nearest neighbors, the SA trajectory can successfully reach a minimum alliance solution, after

experiencing an abrupt drop in energy density ρ, at a certain critical value of inverse temperature

β predicted by the cavity theory (marked by the vertical dashed line of Fig. 2a and Fig. S2a). The

simulated annealing behaviors observed on the 3- and 4-RR graphs indeed fully agree with the

theoretical prediction. This algorithmic success can be well explained.

Given an occupation configuration c we refer to a vertex i as being critical if this vertex is

occupied (ci = 1) and it has exactly θ = dK2 e occupied nearest neighbors. A critical vertex will

collapse to the empty state if any one of its occupied nearest neighbors if flipped to be empty.

Since θ=2 in the cases of 3- and 4-RR graphs, a critical vertex i has at most two critical nearest

neighbors and so its flipping will immediately affect at most two other occupied vertices. If vertex

j is such a critical nearest neighbor of i, it will have at most one other critical nearest neighbor

besides i, so the induced flipping of j will immediately affect at most one additional occupied

vertex, and the same applies for the critical neighbor of j and so on. By this analysis we see the

critically occupied vertices of c form some simple paths (without self-loops) which do not share

any vertex. The occupied bridges sampled by the SA algorithms are just some of these critical

paths. If such an occupied chain is flipped as a whole, a new occupation configuration c′ of lower

energy will be obtained. On the other hand, suppose there is an empty vertex j which has only a

single occupied nearest neighbor and we flip j to be occupied (i.e., from cj = 0 to cj = 1). Then

we only need to flip one of its empty nearest neighbors (say k) to make j satisfy the constraint of
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Figure S2: The same as Fig. 2 of the main text. Simulated annealing results on a single RR graph of size

N = 104 and degrees K = 4 (a), K = 6 (b), and K = 25 (c) are compared with theoretical predictions.

Evolution trajectories obtained at three different waiting times w0 are shown. The inverse temperature

is denoted by β while ρ is the relative size of alliances. In each panel the bold solid line represents the

theoretical curve of ρ versus β, and the circle and dotted horizontal line mark the predicted ground-state

energy density. An equilibrium discontinuous phase transition is predicted to occur for the RR ensembles

of K ≤ 22. The phase transition point, obtained from the corresponding free energy values, is marked by

the dotted vertical line in (a) and (b).

being in the alliance. If vertex k again only has one occupied nearest neighbor (which is j), then

we only need to flip one of the empty nearest neighbors to stabilize k, and the same applies for the

neighbors of k and so on. After this chain extension process stops, a new occupation configuration

c′ of increased energy is reached.

By repeatedly applying the above-mentioned chain flipping and single-vertex flipping processes,

any occupation configuration of a 3- or 4-RR graph can be reached from any another occupation

configuration, meaning that the algorithm can reach all configurations of the system and it is an

ergodic algorithm. To guarantee detailed balance property of the SA dynamics, we have further

restricted the flipped chain to be a bridge (there should be no internal loop among the vertices of

this chain, and flipping of this chain should not cause any of the connected occupied vertices to be

unstable) but these restrictions do not affect the ergodic property of the SA dynamics. In a random

graph the typical length of a shortest-distance path between two vertices grows logarithmically with

the graph size N . We therefore expect the energy gap of flipping an empty bridge to be at most of

order log(nb), with nb being the bridge length. In our simulations nb exceeded 20 only very rarely.

We have formulated a percolation theory (to be described in a following paper) to compute the

mean value of nb; this theory predicts that, for 3- and 4-RR graphs, nb is only of O(1) even for an

infinite graph (N → ∞). The energy barrier of bridge flipping can therefore be easily overcome.

This property together with the ergodicity property of SA for the 3- and 4-RR graphs explain why
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the SA evolution trajectories in Fig. 2a and Fig. S2a abruptly drop at the theoretical predicted

phase transition point to visit a ground state.

Results for RR graphs of degrees K = 5 and K = 6, shown in Fig. 2b and Fig. S2b, exhibit

an abrupt drop of energy density ρ during the SA evolution process; this does not occur at the

predicted equilibrium phase transition point (the vertical dashed line of Fig. 2b and Fig. S2b), but

close to the predicted entropy inflection point. After this much delayed drop in energy the SA

evolution trajectory still fails to reach the energy level of ground states but is trapped at a much

higher energy level. It seems that the energy barriers are high in these graph instances and the SA

evolution dynamics with only single-vertex and bridge (or tree) flips is unable to overcome these

barriers, leading to effective ergodicity-breaking in the SA process.

To see why ergodicity in the configuration space of the K-RR graph (K ≥ 5) might be severely

broken at low energy levels, let us investigate the consequence of flipping an occupied vertex i

(from ci = 1 to ci = 0). If an occupied nearest neighboring vertex j of i is critical (that is, having

exactly θ occupied nearest neighbors), j will no longer be marginally stable and it will collapse to

the empty state (cj = 0). Since θ ≥ 3 vertex j may itself be connected to more than one critically

occupied vertex besides j, and its collapse may then induce the collapse of two or more (up to

θ − 1) critically occupied nearest neighbors, and so on. When this avalanche process finally stops

and we count the remaining occupied vertices, with high probability the whole alliance solution

has collapsed! This single-vertex flipping may therefore induce a complete collapsing behavior as

demonstrated in Fig. S3b on a 5-RR graph instance, and it is prohibited because the all-empty

configuration does not correspond to a valid alliance solution. This global collapsing behavior

is dramatically different from the situation observed on a 3-RR graph (Fig. S3a), for which the

avalanche size is always finite (< 50) at any value of β.

For the 5–RR graph, as long as the inverse temperature β exceeds 0.8, we observed that a

finite fraction of the occupied vertices in every visited equilibrium configurations are completely

blocked (flipping any one of these occupied vertices will cause the collapse of the whole alliance

solution). We have developed a percolation theory to quantitatively understand this strong blocking

phenomenon (to be reported in the follow-up paper). The equilibrium dynamics of the system

is therefore severely restricted. For such a blocked vertex (say i) to be flippable, the system

has to rearrange itself (through many local single-vertex or multiple-vertex flips) into a suitable

configuration in which i is no longer blocked; but with the relaxation of vertex i some other vertices

will be blocked and the evolution trajectory will still be strongly restricted. In other words, there

is a high degree of dynamical heterogeneity among the vertices: some of the vertices can be

12
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Figure S3: The size of avalanches induced by flipping a single occupied vertex i on an alliance configuration

c. The size ai of this avalanche is defined as the total number of flipped vertices (including i). The n occupied

vertices in c are ranked with index r = 1, 2, . . . , n according to the avalanching effect and the relative rank

is simply r/n. The results of avalanche size for (a) a 3-RR graph instance of size N = 104, at three different

values of β (the predicted phase transition point is βc = 0.7491), with the alliance size n being n = 2129

(β = 0.73), n = 1930 (β = 0.74) and n = 2017 (β = 0.7491); and (b) a 5-RR graph of size N = 104, at

four different β values (βc = 0.8815), with alliance size being n = 5318 (β = 0.85), n = 5156 (β = 0.8815),

n = 5043 (β = 0.90) and n = 4894 (β = 0.92). The big jumps in (b) correspond to all the vertices in the

graph being in the empty state.

easily flipped while the others are completely blocked, and every vertex changes between these

two coarse-grained states over time. The entropic barrier associated with an extensive number of

blocked vertices may make it impossible for the SA evolution process to realize the huge energy

drop at the predicted discontinuous phase transition point βc. Instead the SA dynamics enters into

the “super-cooled” non-equilibrium region (see Fig. 2b and Fig. S2b) as β exceeds βc.

The simulation results of Fig. S2 on a RR graph of degreeK = 25 demonstrate a smooth decrease

of energy density ρ with inverse temperature β, in agreement with the theoretical prediction of the

absence of a discontinuous phase transition in RR graph ensembles of degree K ≥ 23. However,

at β ≈ 3.5 the SA evolution trajectories start to deviate from the theoretical ρ(β) curve, possibly

due to the waiting times w0 used in the SA dynamics becoming shorter than the characteristic

system relaxation time. It may also be possible that the low-energy configurations (with ρ < 0.45)

of this 25-RR graph instance are in the spin glass phase. This possibility deserves to be thoroughly

explored in future investigations.

We validated that adding more sophisticated multiple-vertex flipping (cascade-flipping and

creation-flipping) rules does not qualitatively improve the performance of the SA algorithm. For

example, as shown in Fig. S4a, when cascade-flipping is introduced to the SA algorithm alongside

single-vertex flipping and tree-flipping, the SA dynamics still fails to reach the ground-state energy

13
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Figure S4: Representative simulation results obtained by the SA algorithm with multiple-vertex flipping

protocols. The RR graph has N = 104 vertices of degree K = 5; ρ is the fraction of occupied vertices during

the evolution process, and β the inverse temperature. The SA dynamics waits w0 = 104 time steps (i.e.,

performing 104N updating trials) at each β value. (a) Cascade-flipping (probability pcas ∈ {0.001, 0.01, 0.1})

is combined with single-vertex flipping (probability ps = 1/2) and tree-flipping (probability pm = 1/2−pcas)

in the SA algorithm. (b) Cascade-flipping (probability pcas) and creation-flipping (probability padd = pcas)

are employed together with single-vertex (probability ps = 1/2) and tree-flipping (probability pm = 1/2 −

pcas − padd) processes. In each panel the bold solid line represents the theoretical curve of ρ versus β, the

circle and dotted horizontal line mark the predicted ground-state energy density, and the dashed vertical

line marks the predicted equilibrium discontinuous phase transition point.

level. Adding both creation-flipping and cascade-flipping to the SA algorithm does not help either

(Fig. S4b).

Finally, we report the results of the SA algorithm with relaxed Hamiltonian Er(c) of Eq. (S8),

i.e. when an energy penalty is used instead of a hard constraint for vertices violating the SDA

condition Eq. (S7). In Fig. S5a, we show the fraction of occupied vertices, i.e.
∑

i δ
1
ci/N , as a

function of β for a large RR graph with K = 5. We remark that the identified configurations

are not necessarily valid SDAs, as some vertices may violate the hard constraints of Eq. (S7). As

we can see, although the configurations are not necessarily SDA, the number of occupied vertices

roughly follow the theoretical prediction of the SDA size and shows an abrupt drop when β is close

to the entropy inflection point, similar to the results obtained by multiple-vertex flipping algorithm

and shown in Fig. 2b of the main text, which are also for K = 5. Beyond the entropy inflection

point, the total number of occupied vertices becomes zero with α = 5 in the relaxed Hamiltonian

Er(c) of Eq. (S8), implying that the SA dynamics gives a solution with no SDA (i.e. ρ = 0) after

enforcing the hard constraints Eq. (S7). With larger values of α and hence a stronger enforcement

of the hard constraints, the SA dynamics recovers a non-zero number of occupied vertices beyond

the entropy inflection point, but the relative sizes of obtained configurations are much higher than

14
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Figure S5: Representative simulation results obtained on the modified model Eq. (S8) by the single-vertex

flipping SA algorithm. (a) The fraction ρ of occupied vertices in potentially invalid SDA configurations, and

(b) the relative size ρ of SDA after a reduction procedure is performed to obtain valid SDA configurations, as

a function of inverse-temperature β. Results were obtained on a single RR graph of size N = 104 and degree

K = 5. The evolution trajectories were obtained by using a waiting time w0 = 105, i.e. with 105N flip trials

at each value of β. The results for three different values of α = 5, 10 and 20 in the relaxed Hamiltonian

Er(c) of Eq. (S8) are shown. In each panel the bold solid line represents the theoretical curve of ρ versus

β, and the circle and dotted horizontal line mark the predicted ground-state energy density.

the predicted ground state energy density and are similar to the results shown in Fig. 2b of the

main text.

Since the configurations identified by the algorithm are not necessarily SDAs, we prune vertices

of the invalid SDA configurations which violate the SDA constraints to create valid ones. This is

done by repeatedly re-labeling vertices with ci = 1 that do not satisfy Eq. (S7) as ci = 0. If a

valid SDA configuration is identified after the pruning procedure, we show the resulting value of

SDA relative size ρ in Fig. S5b; otherwise, if no valid SDA configuration can be found, we show

ρ = 0. In this case, the value of ρ shown in Fig. S5b should be either equal to or smaller than

the number of occupied vertices shown in Fig. S5a. As we can see, using the pruning procedure

before the entropy inflection point, for α = 5, a lower SDA relative size is obtained compared to

the equilibrium theoretical value (but is much higher than the ground-state value); however, the

SA algorithm fails again to identify the ground-state SDA beyond the inflection point. For α = 10

and α = 20, the SDA relative sizes behave similarly, as a function of β, to the multiple-vertex

flipping SA algorithm, as shown in Fig. 2b of the main text. Qualitatively similar results shown

in Fig. S5 are obtained for other values of the parameter α (it turns out that the optimal value is

α ≈ 8, with achieved minimum relative SDA size ρ ≈ 0.195). We therefore conclude that although

the SA algorithm with a relaxed Hamiltonian is ergodic, it cannot identify the ground-state SDA

configurations.
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S2. THEORETICAL EXPRESSIONS FOR A REGULAR-RANDOM (RR) GRAPH

The BP equations (3) of the main text can be solved iteratively (see the following section). For a

RR graph of degree K, due to the uniformity of vertex properties; it turns out that the fixed-point

cavity probability distributions on all edges are identical. Therefore the BP equations (3) for the

RR graph ensemble can be simplified to

q(0,0) =q(0,1) =
1

z
(q(0,0) + q(1,0))K−1 , (S9a)

q(1,0) =
e−β

z

K−1∑
d≥K

2

CdK−1(q(1,1))d(q(0,1))K−1−d , (S9b)

q(1,1) =
e−β

z

K−1∑
d≥K

2
−1

CdK−1(q(1,1))d(q(0,1))K−1−d , (S9c)

where Cmn ≡ n!
m!(n−m)! , and z is the normalization constant. The corresponding marginal occupation

probability (simply ρ) for a vertex is

ρ =

e−β
K∑

d≥K
2

CdK(q(1,1))d(q(0,1))K−d

(q(0,0) + q(1,0))K + e−β
K∑

d≥K
2

CdK(q(1,1))d(q(0,1))K−d
. (S10)

Equations (S9a)-(S9c) can be analytically solved for the simplest non-trivial case of degree

K = 3, and the solution demonstrates the existence of an inflection point in the entropy–energy

profile. Let us first simplify the notation by introducing

a = q1,1 , b = q0,1 , c = q1,0 , d = q0,0 . (S11)

For the case of K = 3 the BP equation (S9) can be written as

b = d =
1

z
(c+ d)2 , a =

e−β

z
(a2 + 2ab) , c =

e−β

z
a2 . (S12)

One can re-arrange Eqs. (S9a)-(S9c) to obtain the exact solution of cavity probabilities, and sub-

sequently the free energy and the entropy. In this case, by using Eq. (S12), we obtain

a

c
= 1 + 2

b

a
, (S13)

b

a
=

(
b
a + c

a

)2
e−β

(
1 + 2 ba

) . (S14)

Let us denote x = a/b. From the above equations we obtain the following equation for x

(x2 + x+ 2)2 − e−β(x+ 2)3 = 0 . (S15)
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Figure S6: The non-concave entropy density function s(ρ) for the RR graphs of degree K = 3, obtained

from Eqs. (S16a) and (S16c), with the solution of x from Eq. (S15). Inset: the solution of x given by

Eq. (S15), which shows that there is a range of β values with no real solution for x. Similar to Fig. 3 of

the main text, the corresponding BP fixed-point solutions form higher (HFE) and lower-free-energy (LFE)

branches.

The energy density ρ, the free energy density f , and the entropy density s can also be expressed

in terms of x as

ρ =
e−β(x3 + 3x2)(

x2

x+2 + 1
)3

+ e−β(x3 + 3x2)
, (S16a)

f = − 1

β
ln
[( x2

x+ 2
+ 1
)3

+ e−β(x3 + 3x2)
]

+
3

2β
ln
[
1 + x2 +

2x2

x+ 2

]
, (S16b)

s = β(ρ− f) . (S16c)

By solving the quartic equation in (S15) at a given value of β, one can obtain both lower and higher

free-energy solutions, real and complex. Since only the real solutions are relevant in the present

case, we first write the determinant ∆ of Eq. (S15) as ∆ = ∆2
1 − 4∆3

0, where ∆0 = −72e−β + 49

and ∆1 = 432e−2β + 1512e−β − 686. One can then solve Eq. (S15) explicitly for β when ∆ = 0,

which gives

β = − ln
(19
√

57− 135

18

)
≈ 0.757 . (S17)

When the determinant of the quartic equation ∆ > 0, i.e. β > 0.757, there is no real solution

for x in Eq. (S15) and consequently for the cavity probabilities. On the the other hand, there are

two distinct solutions when ∆ < 0, i.e. β < 0.757 (see Fig. S6). By using Eqs. (S16a)–(S16c), we

can plot the entropy–energy profile s(ρ) with the two solutions of x sharing the same temperature

range β < 0.757. The concave branch of s(ρ) is obtained from one of the solutions, while the
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Figure S7: The analytical results of the entropy–energy profile s(ρ) for RR graphs with K = 3 to K = 10,

obtained by the cavity theory in Eq. (2)-(6) of the main text. The inflection points are indicated by the

cross symbols ×, and the dashed lines correspond to the convex regime of s(ρ).

other leads to the convex branch. The inflection point of s(ρ) locates at the value of ρ for which

β = 0.757.

As for related work, we notice that Ref. [1] discussed the inflection point of the inverse tem-

perature, but not that of the entropy, and specifically conclude that the entropy function will be

concave in the thermodynamic limit. For the SDA system studied here, the non-concavity of the

entropy function persist in the thermodynamic limit.

In addition to the emergence of an inflection point (ρ = ρx), the entropy density at low ρ values

(ρ < ρo) becomes negative and unphysical for RR graphs with K ≥ 5, as shown in Fig. S7. Since

the number of configurations at a given energy density ρ is of order eNs(ρ), a negative value of

entropy density indicates that low-energy configurations of ρ < ρo are non-existent in a typical

RR graph instance. Therefore, we define the SDA ground states to be the states of minimal SDA

with non-negative entropy. According to this definition, since the entropy for the cases of K = 3, 4

is always positive (see Fig. S7), the SDA ground states are characterized by ρ & 0. As discussed

in the main text, the ground states for K = 3, 4 are states with occupied triangular loops; if we

denote n to be the number of alliance nodes, the ground states are characterized by n = 3, such

that ρo = n/N & 0 in a system with large N . In this case, s(ρo) is infinitesimally positive, implying

that there may be more than one ground state, i.e. more than one state with a different occupied

triangle loops, which is consistent with the results of the statistics of loops in RR graphs obtained

in [2].

Coming back to the cases of negative entropy, we note that for cases of K ≥ 5, there is a

negative-entropy regime just before ρ = 0, implying that states with ρ & 0 have negative entropy
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Figure S9: The concave entropy density s(ρ) for the RR graph ensemble of degree K = 25. The inset

shows the slope ds(ρ)/dρ of the entropy density.

and unphysical and thus are not the ground states of the system. This interpretation of the

negative-entropy states with ρ & 0 is consistent with our analysis of the unlikely presence of clique

of size n = 4 in RR graphs with K = 5, shown in Sec. S4. This further implies that for cases

of K ≥ 5, the SDA ground states are those states with the minimal values of ρ just beyond the

negative entropy regime. By allowing the possibility of replica-symmetry-breaking at the vicinity of

ρo, the precise values of the minimum energy density ρo may be further improved (see, e.g., [3, 4]).

We leave this RSB exploration for future studies.

We have determined the values of ρx and ρo for the RR graph ensembles with K ranging from

K = 3 to K = 28, see Fig. S8. Both ρx and ρo depend on the even-odd parity of K and show

oscillating behavior. We find that ρx > ρo only for K ≤ 22. When K ≥ 23, we have ρx < ρo, so

the entropy density is concave in the whole physically relevant range of ρ ≥ ρo (see Fig. S9 for the

example of K = 25).
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S3. SOLVING THE BELIEF-PROPAGATION EQUATION

In addition to the method used in the preceding section, we also employ conventional methods [4]

for solving the BP equation [Eq. (3) of the main text].

A. With fixed inverse temperature β

At a given fixed value of β, we iterate the BP equation on a single graph G to obtain a fixed-point

solution. At each elemental iteration process a vertex j is randomly chosen from all N vertices of

the graph, and the cavity probability distributions q
cj ,ci
j→i on the edges between j and all its nearest

neighbors i are updated according to Eq. (3). When G is a RR graph we experience that this BP

evolution converges to a fixed point within about 100N elemental updates, and this fixed point is

uniform in that the cavity probability distributions are identical for all the graph edges.

To get ensemble-averaged results for random graphs characterized by certain vertex degree

profile, we also perform population dynamics simulations based on Eq. (3). In the case of the

RR graph ensemble, we first construct a long array of cavity probability distributions q
cj ,ci
j→i ; then

we repeatedly update it by (1) drawing K−1 cavity distributions uniformly at random from this

array as inputs to Eq. (3) to generate a new cavity distribution, and (2) replace an old cavity

distribution in the array (chosen uniformly at random) by this new cavity distribution. This

population dynamics also drives the population of cavity probability distributions to the uniform

population (all the elements being identical) for the RR graph ensemble. The ensemble-averaged

and single-graph BP results therefore are in complete agreement.

B. With fixed energy density ρ

To perform BP iteration at fixed energy density ρ, we need to slightly modify Eq. (3) as follows

w0,0
j→i ≡ w

0,1
j→i =

∏
k∈∂j\i

(q0,0
k→j + q1,0

k→j) , (S18a)

w1,0
j→i =

∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck −
dj
2

) ∏
k∈∂j\i

qck,1k→j , (S18b)

w1,1
j→i =

∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck + 1− dj
2

) ∏
k∈∂j\i

qck,1k→j , (S18c)
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where w0,0
j→i, w

0,1
j→i, w

1,0
j→i, and w1,1

j→i are four auxiliary weight messages from vertex j to its nearest

neighbor i. We denote these four real quantities collectively as wj→i. Similarly, we define the

marginal weights wj ≡ (w0
j , w

1
j ) of vertex j as

w0
j ≡

∏
k∈∂j

(q0,0
k→j + q1,0

k→j) , (S19a)

w1
j ≡

∑
c∂j

Θ
(∑
k∈∂j

ck −
dj
2

) ∏
k∈∂j

qck,1k→j , (S19b)

In each BP iteration the following actions are taken: (1) we update the output messages wj→i

and wi→j for each pair of edges (i, j) of the graph according to Eq. (S18), and the marginal

weights wj for all the vertices j according to Eq. (S19); (2) and determine the value of the inverse

temperature β as the root of the following equation

ρ =

N∑
j=1

e−βw1
j

e−βw1
j + w0

j

; (S20)

and (3) we re-calculate the cavity probability distributions qj→i between all the nearest-neighboring

vertices using the new β:

q0,0
j→i ≡ q

0,1
j→i =

1

zj→i
w0,0
j→i , (S21a)

q1,0
j→i =

e−β

zj→i
w1,0
j→i , (S21b)

q1,1
j→i =

e−β

zj→i
w1,1
j→i , (S21c)

where zj→i is the normalization constant.

Similar to the discussions in the preceding subsection, we also iterate the modified BP equations

(S18)–(S21) by population dynamics to get ensemble-averaged results for the random SDA problem.

For the RR graph ensembles the population dynamics results are in full agreement with BP results

on single graph instances.

S4. SOME SIMPLE PROBABILISTIC ARGUMENTS CONCERNING ENTROPY AND

ENERGY

The entropy density of the SDA problem is revealed by the cavity theory to be non-concave.

Here we present a simple probabilistic theory to further confirm this non-concavity.

Consider a random regular graph of degree K. The total number of occupation configurations

c with Nρ occupied vertices and (1 − ρ)N empty vertices is simply CNρN . The probability that a
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Figure S10: The non-concave entropy density function s(ρ) as predicted by the simple probabilistic theory

[Eq. (S24)] for the RR graph ensemble of degree K ∈ {3, 4, 5, 6}.

randomly chosen configuration from this subset being an alliance is[ K∑
d≥K

2

K!

d!(K − d)!
ρd(1− ρ)K−d

]Nρ
. (S22)

Therefore the mean number of alliances with a given relative size ρ is estimated to be

Ω(ρ) = CNρN

[ K∑
d≥K/2

K!

d!(K − d)!
ρd(1− ρ)K−d

]Nρ
. (S23)

At the thermodynamic limit N →∞, the entropy density s(ρ) ≡ 1
N ln Ω(ρ) is then estimated to be

s(ρ) = −ρ ln ρ− (1− ρ) ln(1− ρ) + ρ ln

[ K∑
d≥K

2

K!

d!(K − d)!
ρd(1− ρ)K−d

]
. (S24)

This simple probabilistic theory predicts that the entropy density function s(ρ) is convex when

ρ is small, see Fig. S10. Furthermore it predicts s(ρ) to be negative for 0 < ρ < ρo with ρo being

some K-dependent threshold value, which means that there should not be any defensive alliance

with relative size ρ < ρo. These predictions are in qualitative agreement with the results of the RS

cavity theory.

The size n of a minimum alliance for a 3- or 4-RR graph is found by the SA algorithm to

be n = 3, namely, the minimum alliance is a triangle. On the other hand, both theory and SA

simulations suggest that the minimum alliance size of a 5-RR graph is extensive. One would wonder

why a small change in the value of K from 4 to 5 results in an extensive gap in the size of alliance

size n. Given a 5-RR graph of large size N , why should we not expect to find a clique of size n = 4

(with each vertex connecting to all the three other vertices of this clique) to serve as a minimum

alliance? Here we offer an intuitive explanation. The expected number of a clique of size n = 4 in

22



a 5-RR graph is

 N

4


 N − 4

2


 N − 1

5



 N − 4

2


 N − 2

4



 N − 4

2


 N − 3

3



 N − 4

2


 N − 4

2


≈ 90

N2
, (S25)

which is vanishingly small as N →∞ and therefore will not be observed in a typical 5-RR graph.

These results are consistent with the negative-entropy regime at ρ & 0 for K = 5, obtained by the

mean-field cavity method (see Fig. S7), they also suggest the unlikely presence of cliques of size

n = 4.

Applying the same analysis of Eq. (S25) to 3-RR and 4-RR graphs we find that the expected

number of triangles is of orderO(1):

 N

3


 N − 3

K − 2


 N − 1

K



 N − 3

K − 2


 N − 2

K − 1



 N − 3

K − 2


 N − 3

K − 2


≈ K(K − 1)2

6
, (S26)

where K = 3 or K = 4. Therefore triangles will be observed in these graphs. These results are

again consistent with the profile of s(ρ) for the cases of K = 3, 4, which is always characterized by

positive entropy, including those states with ρ ∼ 1/N , i.e. states with small loops.

S5. STABILITY OF THE JACOBIAN MATRIX OF CAVITY PROBABILITIES

To examine the stability of the recursion relation of cavity probabilities around the BP fixed-

point solution with fixed β, we examine the stability of the equation with respect to small per-

turbations δq(c1,c2), by considering the largest absolute eigenvalue of the corresponding Jacobian
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matrix. We first differentiate Eq. (3) of the main text as follows:

δq0,0
j→i ≡ δq

0,1
j→i =

1

zj→i

∑
l∈∂j\i

[ ∏
k∈∂j\i,l

(q0,0
k→j + q1,0

k→j)
]
(δq0,0

l→j + δq1,0
l→j)

− 1

z2
j→i

[ ∏
k∈∂j\i

(q0,0
k→j + q1,0

k→j)
]
δzj→i , (S27a)

δq1,0
j→i =

e−β

zj→i

∑
l∈∂j\i

[∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck −
dj
2

) ∏
k∈∂j\i,l

qck,1k→j

]
δqcl,1l→j

− 1

z2
j→i

[∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck −
dj
2

) ∏
k∈∂j\i

qck,1k→j

]
δzj→i , (S27b)

δq1,1
j→i =

e−β

zj→i

∑
l∈∂j\i

[∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck + 1− dj
2

) ∏
k∈∂j\i,l

qck,1k→j

]
δqcl,1l→j

− 1

z2
j→i

[∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck + 1− dj
2

) ∏
k∈∂j\i

qck,1k→j

]
δzj→i , (S27c)

where the change of normalization constant is

δzj→i =
∑
l∈∂j\i

{
2
[ ∏
k∈∂j\i,l

(q0,0
k→j + q1,0

k→j)
]
(δq0,0

l→j + δq1,0
l→j)

+ e−β
[∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck −
dj
2

) ∏
k∈∂j\i,l

qck,1k→j
]
δqcl,1l→j

+ e−β
[∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck + 1− dj
2

) ∏
k∈∂j\i,l

qck,1k→j
]
δqcl,1l→j

}
. (S28)

We then re-write Eq. (S27) in terms of a, b, c and d given by Eq. (S11) to simplify the subsequent

derivation, and assuming the uniformity of vertices in RR graphs:

δbj→i = δdj→i =
1

z

∑
l∈∂j\i

(Dbcδcl→j +Dbbδbl→j)−
b

z
δz , (S29a)

δcj→i =
e−β

z

∑
l∈∂j\i

(Dcaδal→j +Dcbδbl→j)−
c

z
δz , (S29b)

δaj→i =
e−β

z

∑
l∈∂j\i

(Daaδal→j +Dabδbl→j)−
a

z
δz , (S29c)

24



where the coefficients are

Daa =

K−2∑
r=dK

2
−1e−1

CK−2
r arbK−r−2 , (S30a)

Dab =
K−2∑

r=dK
2
−1e

CK−2
r arbK−r−2 , (S30b)

Dbb = Dbc = (c+ d)K−2 , (S30c)

Dca =
K−2∑

r=dK
2
e−1

CK−2
r arbK−r−2 , (S30d)

Dcb =

K−2∑
r=dK

2
e

CK−2
r arbK−r−2 . (S30e)

Since a+ b+ c+ d = 1 and b = d, we have δa+ δb+ δc+ δd = δa+ 2δb+ δc = 0, and therefore we

can write all the equations in terms of δa and δb only. We first re-write Eq. (S29a) as

δbj→i = δdj→i =
1

z

∑
l∈∂j\i

Dbb(δbl→j + δcl→j)−
b

z
δz

=
1

z

∑
l∈∂j\i

Dbb(−δal→j − δbl→j)−
b

z
δz . (S31)

The variable δz is then given by the following equation in terms of δa and δb:

δz =
∑
l∈∂j\i

[
(e−βDaa − 2Dbb + e−βDca)δal→j + (e−βDab − 2Dbb + e−βDcb)δbl→j

]
. (S32)

Finally, we write down a 2× 2 Jacobian matrix as

M =
1

z

e−βDaa − a(e−βDaa − 2Dbb + e−βDca) e−βDab − a(e−βDab − 2Dbb + e−βDcb)

−Dbb − b(e−βDaa − 2Dbb + e−βDca) −Dbb − b(e−βDab − 2Dbb + e−βDcb)


(S33)

such that δaj→i
δbj→i

 =
∑
l∈∂j\i

M

δal→j
δbl→j

 = (K − 1)M

δal→j
δbl→j

 . (S34)

Following the arguments in [5], when the largest absolute eigenvalue |λmax| of the Jacobian

matrix M satisfies

(K − 1)|λmax| > 1 , (S35)
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Figure S11: Comparing the value of the energy density ρ at the ground state (ρo determined by entropy

density s = 0, circles), at the entropy inflection point (ρx, crosses), and at the RS/RSB (spin glass) transition

point as determined by local stability analysis (triangles). The values of ρ which satisfy Eq. (S36), i.e. the

RSB phase, are marked in orange (horizontal stripes); those which satisfy Eq. (S35) with real eigenvalues

λmax, i.e. the modulation phase, are marked in red (stripes with negative slopes); and values that satisfy

Eq. (S35) with complex eigenvalues λmax are marked in blue (stripes with positive slopes).

the differences (δa, δb) in the cavity probabilities diverge, which indicates the instability of the

so-called liquid solution (the so-called modulation instability [5]).

On the other hand, when

(K − 1)|λmax|2 > 1 , (S36)

the variances (〈(δa)2〉, 〈(δb)2〉) in the cavity probabilities diverge, which indicates the spin glass

transition, i.e., the instability of a replica-symmetric (RS) solution to a replica-symmetry-breaking

(RSB) solution.

As we can see in Fig. S11, the values of ρ of the RS/RSB spin-glass transition are consistent

with (or just slightly above) the values of ρo at the ground state, except for K = 5 and 6. These

results are obtained without computing the entropy of the system. They imply that the higher-free-

energy branch (ρo < ρ < ρx) of the RS cavity theory is locally stable. In other words, the predicted

discontinuous phase transition identified in the main text between the high-energy phase and the

ground-state phase is not due to the emergence of the RSB behavior but an effect associated with

26



entropy inflection.

In addition, the values of ρ with a real λmax satisfying Eq. (S35) (i.e. the red region) are generally

found below the inflection points; specifically, these ρ values are consistent with the inflection points

for K = 3, . . . , 6. This implies that the inflection points roughly mark the onset of modulation

instability, which may correspond to the fragmentation of the large alliances into smaller ones.

This region is characterized by completely different SDA solutions, possibly with non-overlapping

alliance members. On the other hand, we note that there is a large range of ρ above the inflection

points where the eigenvalues λmax are complex and |λmax| > 1 (i.e. the blue region). Nevertheless,

since the eigenvalues are complex the instability on (δa, δb) is rotational in nature, and neither

cavity states a nor b vanish eventually. With an appropriate initial condition and a sufficiently

slow adaptive iterative procedure, the iteration of the cavity equations lead to a uniform solution

similar to the one found in the regime with |λmax| < 1. In this region, different SDA solutions with

overlapping alliance members possibly co-exist, leading to uniform cavity probabilities a and b on

individual nodes.

If the energy density ρ is kept fixed during the BP iterations, instead of the inverse temperature

β, we find that the modulation instability disappears, and only the spin glass RS/RSB instability

remains (at the β/ρ values identified before). For example, for the RR graph ensemble of degree

K = 12, the ρ-fixed RS population dynamics simulations always converge to the uniform BP fixed-

point determined by Eqs. (S9a)-(S9c), irrespective of the initial conditions, as long as ρ ≥ 0.263.

This stability threshold fully agrees with the theoretical prediction of the RS/RSB transition

occurring at ρ ≈ 0.263, which is only slightly above the predicted minimum energy density ρo ≈

0.257.

S6. THE POTENTIAL FOR A CLUSTERING TRANSITION

Besides the local stability analysis of Sec. S5, we also check the possibility of a spin glass

dynamical (clustering) transition in the SDA problem. We follow the theoretical method of [6, 7]

in this analysis. The corresponding first-step replica-symmetry-breaking (1RSB) results obtained

by population dynamics simulations following Refs. [6, 7] reveal that the complexity of the system is

identical to zero for ρ > ρx (with ρx being the energy density of the inflection point), re-confirming

that the discontinuous phase transition at ρ > ρx as predicted by the mean field theory in the main

text is not a spin glass transition but a phase transition resulting from the sigmoidal shape of the

entropy function.
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Here we list the most essential message-passing equations used in the 1RSB population dynam-

ics. A systematic review of the 1RSB theory can be found in [4].

To investigate the possibility of an ergodicity-breaking transition at ρ > ρx, we consider the

1RSB mean field theory at y = β, where y is the inverse temperature at the level of macroscopic

states. The distribution of the cavity probability function qi→j among all macroscopic states is

denoted as Qi→j [qi→j ]. Let us first introduce an auxiliary probability functional

Q
ci,cj
i→j [qi→j |q̄i→j ] ≡

Qi→j [qi→j ]q
ci,cj
i→j

q̄
ci,cj
i→j

, (S37)

where the mean cavity probability is defined as q̄i→j ≡
∫
Dqi→j Qi→j [qi→j ]qi→j (averaging over all

the possible cavity probability functions). At y = β the mean cavity probabilities q̄i→j on all the

edges of the graph satisfy the BP equation [see Eq. (3) of the main text], and therefore they can

be determined without knowing Qi→j [qi→j ]. The functional Q
ci,cj
i→j [qi→j |q̄i→j ] can be understood

as the conditional probability of drawing a cavity distribution qi→j given the observed occupation

states of vertex i being ci and that of vertex j being cj [6].

At y = β the self-consistent equation for this auxiliary probability functional is derived to be

Q
ci,cj
i→j [qi→j |q̄i→j ] =

∑
c∂i\j

Γ
ci,cj
i→j (c∂i\j)

∏
k∈∂i\j

∫
Dqk→iQck,cik→i [qk→i|q̄k→i]δ[qi→j − q̂i→j ] , (S38)

where

Γ
ci,cj
i→j (c∂i\j) ≡

δ0
ci

∏
k∈∂i\j

q̄ck,0k→i + δ1
cie
−βΘ(

∑
k∈∂i\j

ck + cj − di
2 )

∏
k∈∂i\j

q̄ck,1k→i

2
∏

k∈∂i\j
(q̄0,0
k→i + q̄1,0

k→i) + e−β
∑
cj

∑
c∂i\j

Θ(
∑

k∈∂i\j
ck + cj − di

2 )
∏

k∈∂i\j
q̄ck,1k→i

, (S39)

and q̂i→j is a short-hand notation for the BP expression. The probability weights Γ
ci,cj
i→j (c∂i\j) can

be used to construct an occupation pattern c∂i\j = {ck : k ∈ ∂i\j} for a focal vertex i, and then

one can get a set of samples qi→j following Eq. (S38) to represent Q
ci,cj
i→j [qi→j |q̄i→j ].

For the RR graph ensembles the 1RSB population dynamics simulations carried out for ρ > ρx

all evolve to the trivial fixed point of all the probability functionals Q
ci,cj
i→j [qi→j |q̄i→j ] and Qi→j [qi→j ]

being Dirac’s δ-functionals. This indicates that the system has only a single equilibrium macro-

scopic state at energy density ρ > ρx.

The same 1RSB analysis, based on population dynamics, may be carried out for ρ < ρx to

determine the precise value of the spin glass dynamical transition point; this is beyond the scope

of the current study and will be the subject of future research.
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S7. THE CLAMP-ALLIANCE (CA) ALGORITHM

Here we present the pseudo-code of the CA algorithm. Algorithm 1 is based on the mod-

ified BP message-passing protocol (see Sec. S3 B). The inverse temperature β is adjusted by

solving Eq. (S20) after each BP iteration. The code of CA is accessible from the webpage

lib.itp.ac.cn/html/zhouhj/codes.htm.

The performance of the CA algorithm is not sensitive to the precise value of objective density ρ.

The CA results reported in Table I of the main text were obtained by setting the objective relative

size ρ = ρo, with ρo being the estimated minimum energy density by the RS mean field theory. If

the value of ρo is unknown, one can simply run the CA algorithm for a set of different objective ρ

values and choose the minimum-size alliance set A obtained from these different trials.

For the alliance solutions A obtained by the CA algorithm for RR graphs, the subgraph induced

by the vertices of each of these alliances forms only a single connected component.
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Algorithm 1 Clamp-Alliance (CA) for the minimum strong defensive alliance problem. The

output of CA is a vertex set (alliance) A such that each vertex i ∈ A has at least one half of its

nearest-neighbor vertices in A.

Input. A connected graph G of N vertices i ∈ {1, 2, . . . , N} and M edges (i, j) between pairs of vertices

i and j.

Initialize. Set S = {1, 2, . . . , N}; randomly assign cavity probability distributions q
ci,cj
i→j and q

cj ,ci
j→i for

all the edges (i, j); set decimation fraction η (e.g., η = 0.005); set objective relative size ρ of alliance;

set iteration number t (e.g., t = 10) of belief-propagation.

while S 6= ∅ do . reduce alliance size by BP-guided decimation

1. Set A = S.

2. Repeat t times the iteration of the modified BP equation [see Eqs. (S18) and (S21)] on all the

edges between the vertices of S, adjusting the inverse temperature β of each BP iteration to satisfy

condition (S20).

3. Compute the occupation probabilities qi for all the vertices i ∈ S according to qi =
e−βw1

i(
e−βw1

i+w0
i

)
[see Eq. (S19)], and then rank these vertices in increasing order of qi.

4. Delete the top fraction η of the vertices i ∈ S (which have the smallest qi values) from S.

5. Repeatedly delete a vertex j ∈ S from S if j has less than dj/2 nearest neighbors in S, until no

more vertices need to be deleted.

end while

for every vertex i ∈ A in a random order do . refine the alliance

1. Set S = A.

2. Delete i from S.

3. Repeatedly delete a vertex j ∈ S from S if j has less than dj/2 nearest neighbors in S, until no

more vertices need to be deleted.

4. If S 6= ∅, then set A = S.

end for
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of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. USA 104, 10318–10323

(2007).

31


	S1 Simulated annealing (SA)
	A Single-vertex state flip
	B Multiple-vertex state flip for a regular graph of degree K=3
	C Multiple-vertex state flip for a general graph
	D Extending bridge-flipping into tree-flipping
	E Additional multiple-vertex flipping rules
	F SA with energy penalty: Relaxation of hard constraints on SDA vertices
	G Discussions on the performance of SA

	S2 Theoretical expressions for a regular-random (RR) graph
	S3 Solving the belief-propagation equation
	A With fixed inverse temperature 
	B With fixed energy density 

	S4 Some simple probabilistic arguments concerning entropy and energy
	S5 Stability of the Jacobian matrix of cavity probabilities
	S6 The potential for a clustering transition
	S7 The Clamp-Alliance (CA) algorithm
	 References

