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Executive Summary 

Strong scientific evidence shows that anthropogenic greenhouse gas emissions 
from usage of fossil fuels are responsible for global warming and climate change. 

Biomass is a sustainable and reliable resource for replacing fossil fuels to produce 
energy and chemicals through pyrolysis and gasification routes. Pyrolysis of 

biomass leads to three products i.e. bio-oil, non-condensable gas and char. 
Gasification of biomass leads to a syngas which consists of hydrogen, carbon 
monoxide, carbon dioxide, ,methane, nitrogen water vapour and some C1-C4 

gases. 

The objectives of this thesis included: to conduct tests on a twin-screw pyrolysis 
reactor (Pyroformer); to evaluate the effects of char recirculation on products; to 
characterise the bio-oil and char produced and characterise an in-situ blend of 

biodiesel/bio-oil; and to review the design of the Pyroformer and its coupling with 
a bubbling fluidised bed gasifier, thus enabling a novel concept of Pyrogasification.  

To observe the biomass and char flow characteristics, and to calculate the 
residence time and char to biomass ratio (C/B), cold flow tests were performed in 

a transparent model of 20 kg/h Pyroformer. Biomass throughput limitations were 
identified at different feeding rates and C/B.  

Pyrolysis tests were conducted in a Pyroformer with up to 10 kg/h feeding rates. 
It was observed that, during pyrolysis of dry digestate pellets, gas yield increased 

and liquid yield decreased at optimum C/B of 3.1 at 5 kg/h. The organic phase of 
bio-oil for MSW had an HHV of 30.3 MJ/Kg and a very low total acid number of 0.2 

mgKOH/g. 

ENPlus certified wood pellets and miscanthus pellets were pyrolysed in a 100 kg/h 

Pyroformer with in-situ blending of bio-oil with biodiesel. Product yield of 21, 32 
and 47 wt% for liquid, char and gas fractions were observed for wood pellets; and 

31, 32 and 37 wt% with miscanthus. Bio-oil content in the blend was 19.75 and 
11.28 wt% for wood and miscanthus derived feedstocks. The heavy metal content 
in biochars met voluntary biochar standards for soil remediation. A gasifier 

commissioning test was done with hydrogen, CO, methane and CO2 yields of 13.3, 
17.3, 4 and 17 vol% at 818 °C. 

 

Keywords: 2 stage pyrogasifier, char to biomass ratio, total acid number, bio-oil 
biodiesel blend, pyrogasification 
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Chapter 1- Introduction 

This chapter explores the global energy scenario and the important role 

biomass can play to meet global energy needs. Energy demand is increasing 

worldwide with population and economic development. Hitherto they have been 

met mostly by conventional fossil derived energy resources which are now 

becoming depleted. Such conventional energy resources are unsustainable and 

contribute to greenhouse gas emissions. Energy from biomass is an attractive 

alternative due to its low carbon footprint, sustainability, abundance, energy 

security, local availability and production. In Europe, interest in bioenergy is driven 

by various factors such as EU’s commitment to reduce landfill and concerns about 

energy security. The EU renewable energy directive spurs on research into 

biomass and bioenergy. 

Energy security is of fundamental importance considering growing energy 

demands and the urge to maintain and improve living standards. Various energy 

resources may be utilised to meet these demands including: fossil derived fuels 

such as coal, oil, natural gas; nuclear energy; and renewable energy such as wind, 

solar, geothermal, hydroelectric, and biomass. Energy from biomass or bioenergy 

is gaining increasing global interest because of perceived environmental benefits, 

local bio-economy development and its wide availability. Biomass reduces net 

carbon dioxide emissions into the atmosphere by absorbing atmospheric carbon 

dioxide when it is grown. Biomass to bioenergy production also helps to reduce 

the greenhouse gas emissions from decaying biomass, complementing food 

production while using crop wastes. Economically, local biomass production leads 

to local jobs creation and prosperity. Bioenergy production increases biomass 

resource efficiency by adding value to low-grade wastes and by eliminating the 

tax bill from imported fossil fuels. Politically, local bioenergy production favours 

energy security by avoiding fossil fuel imports from politically unstable regions, 

reducing the dependence on depleting fossil fuel resources and interlinking the 

national energy policy with local biomass resources [6, 7].  

Due to the above benefits, energy from biomass is considered more 

sustainable compared to many other resources to meet the energy demands of 
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increasing populations with aspirations of better living standards [8]. Other factors 

influencing bioenergy uptake are: greenhouse gas emissions, fluctuations in global 

fuel prices, increasing municipal solid waste (MSW) production (predicted to reach 

2.7 billion tonnes/yr globally by 2050 [9]), increasing landfill costs of waste 

materials and increasing awareness of greenhouse gases from fossil fuels [10]. 

Organic wastes of various kinds such as agricultural, forestry, industrial residues 

and municipal solid wastes are useful materials to be used in energy production. 

Amongst the various existing conventional waste management technologies such 

as incineration [11], combustion [12] and anaerobic digestion [13], there are 

other suitable technologies such as biomass gasification [14] and pyrolysis [15] 

which can turn biomass materials of varying quality into useful products. 

1.1 Biomass resources and their availability 
 

Biomass resources include various natural and derived materials such as 

forestry and wood wastes [16-19] food processing wastes [20, 21], agricultural 

and industrial wastes [22, 23]. Other potential biomass feedstocks include waste 

paper, biogenic municipal solid waste, sewage sludge, digestate solids, sawdust, 

bio-solids, grass, waste from food processing, animal wastes, aquatic plants and 

algae, etc. [24, 25]. Biomass feedstocks are attractive due to the absence of 

contaminants which could be present otherwise in municipal wastes. Bioenergy 

can satisfy existing energy needs in the form of electrical and heat energy, fuel 

for transport sector and feedstock for chemicals [26]. Also, biomass is in principle 

CO2 neutral; there need be no net carbon emissions to the atmosphere [27] as 

bioenergy production uses the carbon absorbed by plants during photosynthesis 

during the growth of biomass [28]. Solid and dry biomass can be used as a coal 

replacement in conventional combustion energy systems due to its similar 

properties [29]. Biomass is available in most parts of the world, and is a significant 

part of the global energy supply contributing about 13% of primary energy and 

75% of the global renewable energy mix. Biomass is envisaged to contribute 25-

33% of global energy supply by 2050 [30, 31]. The increase in biomass usage as 

an energy resource is anticipated by the World Energy Council to continue for 

some decades into the future. Biomass can be used more sustainably, efficiently 

and by complementing the production of food and fibres when resulting waste 

crop residues during food production are used for energy production [31]. 
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Although it is considered a sustainable energy resource, there are challenges with 

the use of biomass which need to be addressed for any biomass energy project to 

succeed.  Biomass has low energy density, potential competition with food and 

feed production, high moisture content, higher harvesting, collection, 

transportation and storage costs, seasonal and scattered availability [32].  

Biomass, as the name suggests, is formed from living or recently dead 

microorganisms, plants and animals [33]. Such biomass can generally be defined 

as any carbonaceous material consisting mainly of carbon, hydrogen, oxygen and 

nitrogen. Sulphur is also present in low proportion. Some biomass types also carry 

significant proportions of inorganic species, which constitute ash and chlorine [24, 

33, 34]. The concentration of the ash arising from these inorganics ranges from 

less than 1% in softwoods to 15% in herbaceous biomass and agricultural residues 

[24]. So-called biogenic municipal solid wastes can contain up to 40 wt% of ash 

[35]. Normally biomass samples have significant moisture content which, if not 

dried to acceptable levels (generally <10%), makes the energy conversion 

process very cumbersome and inefficient. Biomass is generally made up of 3 

biopolymer constituents such as lignin, cellulose and hemicellulose. The influence 

of these biopolymer is evident in the end products of conversion via pyrolysis e.g. 

variability in bio-oil, pyrolysis gas and char fractions for different materials.  

1.2 Biomass to energy conversion routes  
Although biomass has been used as fuel for fire since the Stone Age, there 

are various other pathways (as shown in Figure 1) available for the conversion of 

biomass to energy to meet current human needs. These include physical, thermo-

chemical, chemical and bio-chemical conversion methods as shown in Figure 1. 

Physical methods involve densification of biomass after drying in the form of 

pellets or briquettes to be used as a biofuel. Thermochemical conversion methods 

for energy production include combustion, incineration, gasification and pyrolysis. 

Chemical conversion includes trans-esterification of plant oils to biodiesel. 

Biochemical methods include fermentation for bioethanol and biobutanol [36] 

aerobic fermentation and anaerobic digestion of biomass to produce biomethane 

[37]. 

Biofuels exist in many different forms such as bioethanol, biobutanol, vegetable 

oils, biodiesel, biogas, biomethane, biosynthetic gas (biosyngas), biohydrogen, 
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bio-oil (from pyrolysis), biochar, biobriquettes and Fischer-Tropsch liquids etc. 

[19, 37, 39]. Given in Table 1 are some of the benefits associated with biofuels. 
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Figure 1 - Biomass conversion processes  [38] 
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Table 1 - Major benefits of biofuels compared to fossil fuels – adapted from [39] 

Economic benefits Sustainability 

Fuel diversity 

More jobs for rural areas 

Increased income taxes 

Increased investment in plant and equipment 

Agricultural development 

International competitiveness  

Reduced dependency on imported fuel 

Environmental benefits Greenhouse gas reductions 

Reduction in air pollution 

Lower biodegradability 

Higher combustion efficiency 

Improved land and water use 

Carbon sequestration  

Energy security Achievement of domestic targets  

Supply reliability 

Reduction in use of fossil fuels 

Readily available 

Domestic distribution 

Renewability 
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Amongst many, one of the important issues with first generation biofuels is their 

competition with land available for production of food increasingly in demand [40]. 

Biofuel production has been linked to many issues such as deforestation [41, 42] 

of rainforests to grow palm trees, displacement of land available for growing food, 

and hikes in food prices [43]. Thus first generation biofuels [42] have been proven 

to be very un-sustainable and efforts are now diverted to second generation 

biofuel resources such lignocellulosic biomass residues [44], and third generation 

based on high yield algae production by using wastewater and carbon dioxide to 

produce biodiesel. Some energy crops (e.g. Jatropha) can be cultivated on 

marginal and non-agricultural lands to reduce food versus fuel competition with 

comparatively higher oil yields per hectare potential. Normally, biogas production 

through AD systems has low [42] energy conversion efficiency of lignocellulosic 

materials. There are also digestate storage issues over couple of months and 

disposal later. These issues require alternative processing ways for such materials 

into energy conversion where more complex waste and non-waste derived 

feedstock  materials can be used [42]. 

Bio-alcohols such as bioethanol and biobutanol production via fermentation 

are well established for use in transportation as a biofuel. This pathway is 

important for reducing the fossil fuels usage and enhancing  sustainability factors 

[39]. Bioethanol production is mostly associated with sugars and starch from 

biomass, whereas use of lignocellulosic fractions of biomass for bioethanol 

production has not been widely developed as such. Also, the usage of bio-alcohols 

is mostly limited to gasoline engines which limits their usage potential. 

1.3 Thermochemical methods of biomass conversion 
Pyrolysis and gasification are two important thermochemical pathways to 

divert organic solid mixed waste materials from landfill for energy recovery and 

also convert agricultural [22, 23] and forestry residues [16-19] efficiently into 

energy [12, 45].  Gasification leads to a syngas product which can be used in 

many ways including energy recovery and chemical synthesis. Pyrolysis has the 

distinct advantage of versatility where feedstock with low calorific value, high ash 

and moisture contents and diversely mixed materials can be used [46]. These 

processes are further discussed below. 
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Although biomass combustion processes have been used by humans since 

ancient times, they are associated with limited efficiency in producing heat and 

power and require costly infrastructure for storage, transport and utilisation of the 

energy away from the point of combustion. For biomass to be a sustainable energy 

resource it is vital for biomass to conform to existing energy storage, 

transportation and consumption patterns according to existing applications. 

Biomass can supply existing energy needs in the form of electrical and heat 

energy, fuel for transport sector and feedstock for chemicals [26]. Biomass 

combustion processes are not economically viable to provide transportation fuels 

and chemicals. On the other hand, gasification and pyrolysis provide flexible end 

products which can be used in many ways, for example syngas gasifier can be 

used for energy conversion or in chemical synthesis and bio-oil from pyrolysis 

provides the ease of storage and transportation. 

Gasification is a thermochemical energy conversion process where small 

proportion of oxygen, air or steam are introduced into a gasifier reactor to convert 

organic materials under high temperature conditions (>800°C) into syngas fuel 

[47, 48]. In other words, gasification is partial oxidation (combustion) of coal, 

biomass and or other hydrocarbons providing useful gaseous products which have 

various designations (e.g. syngas or fuel gas) depending on the gas composition 

and type of oxidant used. These gases are mainly composed of carbon monoxide, 

carbon dioxide, water vapour, hydrogen, nitrogen, C1 – C4 hydrocarbon gases in 

varying concentrations [31]. Syngas (CO & H2) is a precursor for the production 

of liquid fuel through the Fischer-Tropsch (FT) synthesis process [49]. The gaseous 

product from gasification can be used in many different ways such as in heating 

applications (furnaces, boilers), power applications (gas engines, IGCC) or in 

chemical synthesis through catalysts for producing ammonia, hydrogen, FT 

hydrocarbons and methanol [50]. 

Pyrolysis is a thermochemical process which does not involve any oxidant 

and is performed under in-oxidant conditions [51]  at temperatures above 350°C 

[47, 52]. Pyrolysis in general can lead to three products which are solid (char), 

liquids (bio-oil) and uncondensable gas. Bio-oil yield is influenced by many factors 

such as feedstock type, pyrolysis temperature, heating rate, residence time and 

reactor type [37]. Pyrolysis is further categorised as: (a) fast pyrolysis where 

feedstock material resides in the reactor for seconds and temperature is >500°C; 
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(b) intermediate pyrolysis where residence time is in the range of few minutes 

and temperatures from 450-550°C [31]; and (c) slow pyrolysis where residence 

time ranges from tens of minutes to hours and temperature is <400°C [47, 52, 

53]. Pyrolysis of biomass and other organic wastes is advantageous due to the 

possibility of using higher moisture-containing materials and lack of further 

preparation processes. 

Bio-oil from pyrolysis of biomass is of interest due to its higher energy 

density compared to initial biomass per unit mass [54] and hence can be easily 

stored and transported. It is a complex mixture of water and oxygen-containing 

hydrocarbons and is normally unstable. It is red-brown in appearance with high 

acidity or low pH, high viscosity and lower calorific value compared to crude oil. It 

is a mixture of organic compounds such as carboxylic acids, alcohols, aldehydes, 

esters, ketones, sugars, phenols, guaiacols, syringols, furans, terpenes and other 

minor compounds [31, 55]. Bio-oil can be used as a fuel in diesel engines with 

some modifications or as a fuel in furnaces, oil-fired boilers and turbines.  Due to 

the complex characteristics of bio-oil, such as high oxygen and water content 

leading to high acidity and low calorific value compared to diesel, some 

improvements such as bio-oil upgradation or blending with conventional fuels are 

necessary to enable its usage as a liquid fuel [3, 31, 54, 56]. 

1.4 Pyrogasification  
Pyrogasification is a technique which has been developed to combine the benefits 

of pyrolysis and gasification to resolve various issues preventing the uptake of 

these two conversion routes. There are needs to optimise the biomass to energy 

conversion process, resolve the end product utilisation issues in existing 

technologies, and invent new or shorter routes for biomass-to-energy conversion. 

This thesis focuses on intermediate pyrolysis, as further explained in Chapter 2, 

and its potential coupling with a bubbling fluidised bed gasifier to enable a 

relatively new energy conversion route to produce low tar containing syngas. 

Pyrogasification is the term used for advanced thermochemical energy conversion 

where pyrolysis and gasification are linked in two separate process steps to 

produce a syngas. This technique is also termed as ‘integrated (or staged) 

pyrolysis and gasification’, and is of particular interest to researchers due to the 

possibility to produce low-tar containing syngas from mixed wastes and biomass 

materials of varying quality. Many examples of processes based on this technique 
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exist, such as the flexible three-stage thermochemical conversion process by Sea 

Marconi Technologies [57], the NOTAR novel two-stage downdraft gasifier from 

Xylowatt for industrial applications [58], and a two stage Viking gasifier [59] 

system. NOTAR is a registered trademark used by Xylowatt to distinguish its 

gasifier process. All these systems have unique differences and novel ways to 

combine the pyrolysis and gasification stages but with a view to enhance the 

syngas quality with reduced tar levels. 

1.5 Origin of the Thesis 
This PhD project was carried out in the context of various funded projects as 

mentioned in the “Acknowledgments” section. The INTERREG Bioenergy NW 

project supported the research to support companies, organisations and local 

authorities to deliver local bioenergy in parts of the UK, France, Germany, Belgium, 

and the Netherlands. The Pyrogas IAPP project supported the novel coupling 

between the Pyroformer (100 kg/h) and BFB gasifier to enable the usage of 

complex feedstocks to be converted to syngas. This meant that lab resources were 

shared between different projects and tests had to be done under strict time 

schedules to deliver results to those projects as well as to contribute towards this 

PhD thesis. Tests were done in an intermediate pyrolysis screw reactor called the 

“Pyroformer” as patented by Dr Andreas Hornung and Dr Andreas Apfelbacher 

[60] in laboratories at Aston University. This reactor encompasses a combination 

of “pyrolysis” and “reforming by char re-circulation” and hence the name 

“Pyroformer”. Pyroformer (20 kg/h) equipment was shared among different 

groups and projects, and hence there were some availability which needed to be 

adhered to when sharing the equipment.  

 

This work was done to support the European Union’s constant drive to increase 

the renewable energy share into the energy mix by looking for better ways to 

convert waste biomass resource into energy and chemicals. For example, hot 

pyrolysis tests in the 20 kg/h were done in the context of the Bioenergy NW 

Interreg and IAPP Pyrogas projects. Pyrogas IAPP project was supported by 

European Commission Seventh Framework programme, Industry-Academia 

Partnerships and Pathways (IAPP), weblink 

http://www.aston.ac.uk/eas/research/groups/ebri/projects/pyrogas-project/ . 

Cold flow tests were done in parallel to an MSc design project where active 

http://www.aston.ac.uk/eas/research/groups/ebri/projects/pyrogas-project/
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supervision was provided in parallel to MSc students. Hot tests in 100 kg/h 

Pyroformer were conducted in Harper Adams University labs under Bioenergy NW 

Interreg project. This project can be found under this weblink http://bioenergy-

nw.eu/project-objectives/.  

 

For cold flow tests, plastic beads and wood pellets were used due to their ease of 

availability as a common feedstock. In the hot 20 kg/h Pyroformer two types of 

experiments are performed; the first being a parametric study based on the effect 

of char-to-biomass ratio on pyrolysis products arising from corn and green rye 

digestate feedstock sourced from mainland Europe under Bioenergy NW Interreg 

project as explained in the “Acknowledgements” section; whereas the second set 

of tests involved comparative study of various feedstock materials such as 

municipal solid waste pellets, chicken litter pellets and corn and green rye pellets. 

No other materials were tested at 20 kg/h scale.  

1.6 Structure of Thesis 
This thesis is based on the research on intermediate pyrolysis technique and 

particularly around the Pyroformer reactor situated in EBRI laboratories at Aston 

University.  

Chapter 1 provides a broad overview of the global energy situation with an 

increasing trend towards utilizing waste resources and biomass for energy 

conversion. This chapter provides an outline of thermochemical conversion 

technologies and the benefits of using biomass for biofuels production. The 

following chapters of this thesis address the objectives based around intermediate 

pyrolysis and its potential integration with bubbling fluidised bed gasification 

(pyrogasification) and explain how these objectives have been met.  

Chapter 2: In this chapter a detailed review of the literature on pyrolysis and 

gasification technologies is presented. Various technological aspects of pyrolysis 

and gasification techniques are assessed from the literature, with emphasis on the 

intermediate pyrolysis or screw pyrolysis. A critical review of the Pyroformer 

reactor (based on intermediate pyrolysis) is presented, highlighting areas for 

improvement as well as potential integration of the Pyroformer in gasification. 

Potential applications of the end products of pyrolysis such as bio-oil, biochar and 

syngas are highlighted in this chapter.  

http://bioenergy-nw.eu/project-objectives/
http://bioenergy-nw.eu/project-objectives/
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Chapter 3:  In this chapter details of the PhD project are formulated following on 

from the literature review and the gaps identified. The aim and objectives of the 

thesis are highlighted as well as the scope, limitations and structure of the thesis.  

Chapter 4: In this chapter the importance of the cold-flow modelling of a 

transparent 20 kg/h Pyroformer reactor is highlighted. The experimental method, 

materials and results are presented. The results of residence time and char to 

biomass ratio from this chapter pave the way for further research in hot 

Pyroformer experiments which as covered in subsequent chapters. 

Chapter 5: The effects of char-to-biomass ratio on pyrolysis products are 

presented in this chapter. This constitutes an important original contribution to 

knowledge of the thesis. The relationship between char to biomass ratio and its 

effect on bio-oil fuel properties and biochar is presented in detail. The analysis of 

biochar with regard to its properties suitable for land application are presented. 

Results of biochar analysis are compared with existing biochar standards to 

highlight whether biochar field application can be justified based on its micro and 

macronutrient benefits. 

Chapter 6: Experimental results from a 100 kg/h Pyroformer process (scale up 

model of 20 kg/h Pyroformer) are presented here. Wood pellets and Miscanthus 

biomass materials are studied for intermediate pyrolysis and an analysis of end 

products is presented in this chapter. In this experiment, biodiesel is used as a 

quench and in-situ blending medium to upgrade the pyrolysis bio-oil. 

Chapter 7:  In this chapter the design of critical components of a Pyroformer are 

reviewed and potential alternatives are highlighted to resolve the operational 

issues of the Pyroformer. The operational experience of the Pyroformer is 

presented to highlight the issues and potential remedies to ensure a near problem 

free Pyroformer system. 

Chapter 8: To enable the integration of Pyroformer with a bubbling fluidised bed 

gasifier, a design of the coupling parts between both systems is presented in this 

chapter. This paves the way for so-called “Pyrogasification” where pyrolysis and 

gasification can be performed in coupled mode in two separate steps. Also, syngas 

composition data is presented from BFB gasifier commissioning test. 

Chapter 9: This chapter reviews the research outcomes of the thesis and 

the extent to which the objectives are met. It summarises the conclusions 

of the research thesis and highlights the resulting recommendations. 
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Contributions to knowledge based around thermochemical processing of 

biomass are presented together with potential for future work.   

1.7 Summary of the chapter 

Various biological materials fall under the term biomass and can be used for 

energy generation. Biomass is mainly composed of three biopolymers: lignin, 

cellulose and hemicellulose. There are many benefits associated with biomass-to-

energy conversion, but critics also note significant drawbacks such as competition 

with food and high costs.  

This chapter has explored various biomass-to-energy and chemical technologies 

and provided an insight into their advantages and disadvantages. The literature 

reveals a shift towards advanced thermochemical conversion technologies for 

biomass conversion, due to their flexibility with regard to choice of feedstock, the 

decoupling of the biomass production to energy conversion, and the diversity of 

products which can be used in many ways as opposed to combustion systems 

which provide heat or electricity only. Gasification and pyrolysis are attracting 

growing interest from the research community, due to the benefits highlighted 

above. A wide range of energy needs can be met by using these advanced 

thermochemical conversion technologies to provide electricity, heat, cooling (via 

absorption or electric chillers), transport fuels and basic chemicals for further 

synthesis. 

Gasification of biomass has the potential to provide syngas (a mixture of carbon 

monoxide and hydrogen principally) for onsite energy generation, or to synthesise 

chemicals. Pyrolysis has the advantage of providing bio-oil which can be stored, 

transported and consumed offsite thus decoupling the low-density rural biomass 

production and enabling its usage as needed in modern applications. Also, 

pyrolysis processing can be energy self-sustaining by use of the gaseous product 

as a combustion fuel for process heat, thus reducing the need for other supporting 

energy carriers. The solid fraction of pyrolysis called “char” has attracted attention 

of the global scientific community for use as a carbon sequestration medium to 

supplement soil organic matter in the form of solid carbon which has been 

absorbed by the biomass during its growth; this absorbed carbon is then put back 

into soil to increase the productivity of farmlands.  
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Combining pyrolysis and gasification leads to Pyrogasification. Pyrogasification can 

be useful in providing the flexibility of raw material usage through auger pyrolysis 

and then followed by gasification to reduce the tar component in the syngas. The 

vapour phase generated from complex raw materials during pyrolysis leads to 

better conversion into syngas at the gasification step and hence overall tar content 

in syngas can be reduced to avoid tar-related issues. This thesis will present an 

investigation of intermediate pyrolysis and the engineering design of combining 

intermediate pyrolysis with gasification.  
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Chapter 2- Literature review 

Pyrolysis and gasification of biomass and wastes are of particular interest 

in this study for energy conversion. Separating pyrolysis and gasification into two 

process stages has shown many benefits as highlighted by various researchers 

[59, 61-64] and exemplified by Viking and Xylowatt NOTAR™ gasifiers. “NOTAR” 

is a trademark used by Xylowatt to represent very low tar content in the syngas. 

It is important to understand the background research into thermochemical 

conversion route to be well informed of the benefits and the optimum pathways 

to convert biomass and waste feedstock into energy. Conversion of lignocellulosic 

material to syngas through gasification has been performed since the Second 

World War and various patents have emerged since then. Biomass pyrolysis for 

charcoal production has been done for centuries, but its usage for liquid fuels has 

become popular only during the last few decades. Now researchers are focusing 

on more novel techniques which can use feedstocks of varying quality and size to 

produce syngas, which can be used as fuel gas in engines or chemical synthesis.  

This chapter contains a literature review of pyrolysis and gasification 

technologies. Various pyrolysis reactor types are presented and a section on 

notable differences between the screw type pyrolysis systems is presented to 

inform the reader of the variations of design in screw pyrolysis. The influence of 

various operating conditions such as temperature, biomass composition and tar 

cracking with char is also explained in this chapter. Various gasifier types are also 

explained with the advantages and disadvantages of each type highlighted. The 

benefits of integrated pyrolysis and gasification techniques are highlighted 

towards the end of this chapter, which introduces the reasons to investigate and 

design the coupling of the pyrogasification system based on intermediate screw 

pyrolysis and bubbling fluidised bed gasification systems.  

2.1 Pyrolysis 

Pyrolysis is a thermochemical conversion process, performed in the 

absence of any oxidizing environment, to convert carbonaceous material 

into volatile vapour, gas and char. Volatile vapours can be further 

condensed to form a liquid called bio-oil leaving non-condensable gases. 

Pyrolysis can be further divided into three main types as fast pyrolysis, 

intermediate and slow pyrolysis [47, 52, 53]. 
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2.1.1 General principles of pyrolysis 

When biomass is subject to pyrolysis, it goes through both primary and 

secondary reactions which are based on mass and heat transfer mechanisms. 

Decomposition of biomass constituents such as cellulose, hemicellulose and lignin 

are classed as primary reactions which give rise to primary pyrolysis products and 

some intermediate radicals. These intermediate radicals are transformed through 

secondary reactions if not condensed rapidly. Operating parameters play major 

role in determining the composition of final products of biomass pyrolysis [56]. It 

is reported by [56] that due to biomass having low thermal conductivity (0.1 W 

m-1K-1 along the grain, ca 0.05 W m-1K-1 cross grain) the ability to rely on gas-

solid heat transfer is limited and requires very fine biomass particle size for 

efficient heat transfer for fast pyrolysis reasons. For efficient heat transfer, it is 

imperative to rely on conduction heat transfer (solid-solid) rather than convection 

(gas-solid) and to carefully select a reactor type between a fluidized bed or packed 

bed reactors. 

 

When an organic material is subjected to pyrolysis, complex reactions take 

place both in parallel and series. During pyrolysis, thermal decomposition of 

material takes place where long chains of carbon, hydrogen and oxygen are 

broken down into shorter chain hydrocarbons in the form of gases, char and 

condensable vapours such as tars and bio-oil [65]. Two types of reactions take 

place; primary reactions which are initial decomposition reactions of biomass and 

secondary reactions between the products of primary reaction species which can 

be both homogenous and heterogeneous nature. The probability and severity of 

these reactions depend on various factors such as type of feedstock, ash content, 

temperature, mixing between different species, heating rate, pressure and 

presence of any other catalyst [65]. 
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When biomass containing some moisture is subjected to pyrolysis it goes 

through various stages of heating as shown in Figure 2. In the initial heating stage, 

the biomass starts to warm up gradually, biomass dries up and loses moisture 

slowly at the end of this stage. The temperature curve is shown steadily increasing 

with time. At the drying stage the major portion of free water (moisture) from 

biomass evaporates out and the curve (in the 2nd box from left in Figure 2) starts 

to flatten out (rate of water evaporation increases) as the temperature stays 

somewhat constant until nearly all the moisture is driven off the biomass. The rate 

of water evaporation starts to decrease by the end of this stage. In the further 

heating stage, the temperature of the biomass increases to 200°C and during this 

stage all physically bound water is released and some low boiling point volatiles 

(e.g. terpenes) are also released. Between 200-320°C, torrefaction takes place 

which leads to biomass being partially charred and brittle as most of the moisture 

is driven out and biomass fuel properties are improved. In the pyrolysis stage, 

which occurs above 300°C, most of the volatiles are lost from the biomass and the 

solid residue remains in the form of char. Pyrolysis temperature can be as high as 

Figure 2 - Biomass thermal degradation curve showing various heating stages of 

biomass from initial heating leading to pyrolysis – adapted from [216] 
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800°C, but the literature suggests most of the mass loss from biomass occurs 

between 400°C and 500°C temperature range [66]; thus further heating is not 

very beneficial and requires special grade of steel (Inconel, Hastelloy and stainless 

steel 316Ti) as material construction. The volatiles evolved from biomass can then 

be condensed into bio-oil and some un-condensable gases remain. Char or solid 

residue is also formed as a by-product. 

2.1.2 Products of Pyrolysis 

Pyrolysis of biomass leads to the formation of bio-oil, gas and char fractions. Mass 

distribution of these products is influenced by many parameters as well as the 

type of pyrolysis and type of feedstock. Generally fast pyrolysis is aimed at 

producing higher yields of bio-oil with low char yield and slow pyrolysis is used for 

charcoal formation with low volumes of liquids being produced. Also, it is well 

understood from literature [3, 48] that higher the pyrolysis temperature the lower 

the char fraction and higher the vapours are produced. These products are further 

explained below.  

2.1.2.1 Bio-oil 

During pyrolysis, the breakage of bonds between the biopolymers (lignin, cellulose 

and hemi-cellulose) lead to volatile vapours being produced. The vapours are 

condensed to form a liquid called bio-oil. Fast pyrolysis leads to higher bio-oil 

yields and slow pyrolysis to lower yields. Bridgewater [3] and Duman [23] describe 

the bio-oil as a complex mixture of different organic compounds which requires 

blending with conventional fuels or hydro-deoxygenation to make it useable as a 

liquid fuel. Bio-oil is a complex mixture of around 300 different compounds as 

stated by Zhang [55]. Various researchers [67-69] have described the weighted 

percentage of compounds present in bio-oil to include water (10-30%), aldehydes 

(1-17%), acids (3-10%), carbohydrates (3-34%), phenolics (2-15%), alcohols 

(<4%), ketones (2-11%) and other unclassified compounds between (5-58%). 

Calorific value, pH and viscosity of bio-oil are shown by Zhang [55] to vary 

between 16-30 MJ/kg, 2.5-3.4 and 40-100 (cP) which make it an inferior fuel 

compared to diesel. 

2.1.2.2 Char 

As stated above, the solid fraction from the pyrolysis process is char which can 

make up a considerable percentage (10-50 wt. % of starting feedstock) depending 
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on ash content and pyrolysis temperature used. Char contains ash and 

hydrocarbons and its percentage yield is dependent on pyrolysis temperature, 

residence time and feedstock composition. Ash content in char has been reported 

as high as 83 wt. % by Dominguez  [70]. Char yield varies due to the type of 

pyrolysis, the pyrolysis residence time of solids in the reactor and the type of 

feedstock being used. For example, char yield varies between 10 wt. % from wood 

through fast pyrolysis to more than 50 wt. % for digestate and sewage sludge 

through slow pyrolysis. Sharma [71] reported that the composition of char varies 

with feedstock composition, but mostly includes carbon up to 70 wt. %, hydrogen 

and oxygen and some inorganic species such as metal oxides, sulphates, nitrates, 

halogens and others. The presence of inorganic species in the char is well known 

to have some catalytic effect on pyrolysis reactions. Calorific values of char vary 

between low-grade char  from sewage sludge (CV of 5 MJ/kg) to higher grade char  

comparable to lignite coal (CV of 23 MJ/kg) and are mostly dependent on amount 

of ash present in char [70]. 

When char is used for soil amendment it is typically referred to as biochar. Char 

however is a solid residue produced from biomass through pyrolysis where 

biomass is heated up in no oxygen environment [72]. The application of biochar 

for soil improvement and carbon sequestration has gained momentum due to the 

discovery of utilisation of charcoal in fertile soils of Amazon basin. Biochar exhibits 

high surface area, high density of negative surface charges, characteristic pores 

and surface functional groups [73]. Various studies highlighted the addition of 

char to soil increased soil organic matter and subsequently improved soil fertility 

by enhancing nutrients retention in soil [74-76] leading to enhanced plant growth. 

2.1.2.3 Non-condensable gas 

The non-condensable gas fraction arising from biomass pyrolysis is a mixture of 

carbon monoxide, carbon dioxide, water vapour, hydrogen, nitrogen, C1 – C4 

hydrocarbon gases in varying concentrations [31]. Generally, with increasing 

pyrolysis temperature (>500°C), the yield of gas fraction increases and char yield 

decreases [77]. Calorific values for the pyrolysis gas fraction are somewhat 

comparable to gasifier fuel gas arising from air blown gasifier systems to be 

around 4-10 MJ/m3 [78]. 
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2.2 Types of pyrolysis and pyrolysis reactors 
Various types of pyrolysis have been reported in the literature to include fast 

pyrolysis [3, 23], slow pyrolysis [48] and intermediate pyrolysis [15, 20]. However 

there are other types of pyrolysis such as ablative pyrolysis, microwave, flash 

pyrolysis, plasma pyrolysis and vacuum pyrolysis which are also used by other 

researchers [31, 79]. In all these pyrolysis systems, the objective is to pyrolyse 

biomass to produce bio-oil, except in slow pyrolysis system where charcoal is the 

desired product.  

2.2.1 Slow Pyrolysis  

Slow pyrolysis has been used for centuries in the past to produce charcoal. 

Slow pyrolysis involves slow heating rates for relatively long duration of hours or 

even days of residence time of biomass material in the reactor. In slow pyrolysis 

the product is charcoal and there is little interest in vapours. Temperature in this 

kind of pyrolysis is kept low (<400°C) and at atmospheric pressure to maximize 

the charcoal yields. Slow pyrolysis can work with large particle size up to few 

inches in diameter and hence needs longer residence times (days) to release the 

volatiles [48]. For example, large chunks of wood logs with diameters up to 10 

inches and lengths up to one meter are very normal to pyrolyse and convert to 

charcoal in sub Saharan Africa where charcoal is used as a fuel source. Charcoal 

making through slow pyrolysis is a batch process and is normally performed in 

earth, brick or steel drum kilns with charcoal outputs ranging up to 5 tons per 

batch [80]. 

2.2.2 Fast Pyrolysis  

Fast pyrolysis involves high heating rates, short residence time of fine 

ground biomass in the reactor and biomass to bio-oil yield up to 75 %wt. by rapid 

quenching [3, 23]. The main objective of fast pyrolysis is to maximize the 

production of bio-oil. Bio-oil product from fast pyrolysis tends to have a heating 

value about half that of conventional fuel oil [3].  Fast pyrolysis is better done with 

moisture content below 10 %wt. and biomass particle size less than 3 mm for high 

heat transfer to produce volatiles which are rapidly quenched to avoid secondary 

reactions and to maximise bio-oil product [3, 48]. It is well understood that during 

secondary reactions some high molecular weight hydrocarbons re-polymerize to 

produce char. Hence to avoid secondary reactions, fast pyrolysis produces 
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comparatively higher amount of bio-oil by rapid quenching (and low char yield) 

which are very complex and requires further upgrading for usage. Fast pyrolysis 

employs bubbling fluidised bed (BFB) and circulating fluidised bed (CFB) reactors 

for high heat transfer, good temperature control and good conversion efficiencies 

[3, 23].  

Fast pyrolysis is distinguished by the following factors, as described by Bridgwater 

[3]: 

 Very high heating rates and heat transfer rates are required for biomass of 

3 mm or smaller particle size due to low thermal conductivity. 

 Pyrolysis temperature to be 500°C or higher to maximize liquid yield. 

 Vapour residence time is kept as low as possible, typically less than 2 

seconds to reduce the possibility of secondary reactions taking place. 

 Rapid removal of char product, to reduce the cracking of vapours. 

 Rapid quenching of pyrolysis vapours to get bio-oil to minimize the 

secondary reactions.  

2.2.3 Intermediate pyrolysis  

Intermediate pyrolysis involves moderate heating rates with solid residence 

time of a few minutes in the reactor. It [31] involves considerably shorter solid 

phase residence time (in the order of minutes)  in the reactor compared to slow 

pyrolysis. In slow pyrolysis the objective is mostly to produce charcoal or char and 

not liquids from evolving vapours, whereas intermediate pyrolysis focuses on 

producing liquids at moderate temperatures (450-550°C) which can phase 

separate into an aqueous phase and organic phase [31].  This technique is claimed 

to have improved the HHV of bio-oil [20], whereas the product yields remain 

somewhat similar in all three phases i.e. one third in each bio-oil, char and gases. 

Intermediate pyrolysis involves screw or an auger driven system where biomass 

is introduced in the pelletized or chipped form and reaction occurs at moderate 

temperatures around 500°C. The use of a mechanical transport mechanism such 

as a screw or an auger supports slightly bigger biomass particles than needed for 

fast pyrolysis. Hence intermediate pyrolysis is more flexible with size and type of 

biomass as well as tolerance to higher moisture content than fast pyrolysis due to 

liquid fraction easily separable into an organic oily phase and aqueous phase. 

Intermediate pyrolysis was shown to be working satisfactorily without the need of 

hot gas filtration as the solids content in the hot vapours is very low [15, 20]. 
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2.2.4 Other types of Pyrolysis  

Flash pyrolysis involves very high heating rates >1000°C/s and very short 

residence time of materials through the reactor. Operating temperature can be as 

high as 800-1000°C. The biomass particle size needs to be in few microns to 

ensure very high heating rates in the bubbling fluidised bed (BFB) or circulating 

fluidised bed (CFB) reactor configurations [31, 81].  

Other less common types of pyrolysis as reported by Hossain and Bridgwater [31, 

79] include rotating cone, ablative, microwave, plasma and vacuum pyrolysis. 

These differ from fast and slow pyrolysis mostly in the way biomass is introduced 

(ablative pyrolysis) in the reactor or the way reaction is conducted (vacuum, 

plasma and microwave pyrolysis). In microwave pyrolysis, the biomass is heated 

from within the particle by microwaves rather than external heat transfer to 

particle. In a plasma reactor electrical arc is used to generate plasma heat for the 

process. Plasma pyrolysis reactors are made up of a cylindrical quartz tube which 

is surrounded by two electrodes to generate plasma arc to meet pyrolysis process 

heat requirements. A screw system is used to transport the feedstock through the 

tube and an inert gas is used as a working gas both to displace the pyrolysis 

vapours as well as to produce the plasma [82].  In another type of pyrolysis called 

hydropyrolysis, hydrogen is added during the pyrolysis at high pressures to reduce 

the oxygen content in resulting bio-oil. The product yields from these pyrolysis 

types are somewhat like fast and intermediate pyrolysis as discussed previously. 

2.3 Factors influencing pyrolysis products 

Biomass pyrolysis products can be affected mainly by the type and composition of 

biomass, particle size and reaction conditions including pyrolysis temperature, 

residence time, feeding rates and pressure. Some of these factors can be 

controlled or optimized during the pyrolysis such as temperature, residence time 

and pressure. The factors related to the type of biomass and its biopolymer 

composition are inherent features of biomass and can only be controlled before 

the biomass is grown. Normally these factors are hard to manage and demand a 

massive change in the whole supply chain of the biomass acquisition.  

2.3.1. Biomass type and composition 

Bio-oil produced from pyrolysis of biomass is directly affected by the type of 

biomass and the biopolymer composition (lignin, cellulose and hemicellulose) of 

the biomass feedstock. For example wood derived bio-oils are very acidic with a 
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total acid number (TAN) as high as 117 mgKOH/g [83]. Whereas, the digestate 

derived bio-oils have lower total acid number not exceeding 5 mgKOH/g [61]. 

Total acid number is a measure of corrosiveness of bio-oil and is measured by 

using an alkali solution such as KOH to neutralise the bio-oil. The amount of alkali 

solution used to neutralise the bio-oil corresponds to TAN. Other factors which has 

some minor influence on bio-oil quality are inorganic content in ash, weather 

conditions and type of soil or water used to grow that biomass.  

2.3.1.1 Effect of biomass composition on pyrolysis products 

Biomass is naturally made up of three main biopolymer types namely cellulose, 

hemicellulose and lignin, which give rise to volatiles upon thermal decomposition 

when subjected to pyrolysis [150]. As mentioned above, the biopolymer 

composition of biomass is a natural phenomenon and is an area of intense 

research. Hemicellulose consists of various saccharides (xylose, mannose, glucose 

and galactose) in the form of short branches which decompose easily during 

pyrolysis to form CO, CO2 and some hydrocarbons [18]. Cellulose exist in the form 

of long strong branches of glucose which are require higher energy to decompose 

compared to hemicellulose. Whereas lignin is long aromatic rings which form 

chemical bonds and decompose over a wide temperature range.  The typical wt% 

compositions of these three biopolymers for various types of biomasses are shown 

in Table 2. 

In general, cellulose and hemicelluloses contribute toward the production of bio-

oil, whereas lignin contributes in the char production. Percentage variation of 

these three basic components in biomass which occur naturally will modify 

composition and yield of pyrolysis oil. Figure 3 illustrates the chemical structures 

of cellulose, hemicellulose and lignin and it is evident that there is a big portion of 

oxygen present which accumulates into bio-oil after pyrolysis and can be up to 30 

wt%. 
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Table 2 - Lignin, cellulose and hemicellulose content of selected biomass types 

[18, 25, 77, 85 & 150] 

Feedstock Lignin 

(%) 

Cellulose 

(%) 

Hemicellulose 

(%) 

Wood 25-30 35-50 20-30 

Wheat straw 15-20 33-40 20-25 

Switch grass 5-20 30-50 10-40 

Sugarcane bagasse 23-32 19-24 32-48 

Miscanthus 17 24 44 

Corn stover 16-21 28 35 

Hazelnut shell 42.9 28.8 30.4 

Olive husk 48.4 24 23.6 

Corncob 15 50.0 31 

Tea waste 40 30.20 19.9 

Walnut shell 52.3 25.6 22.7 

Almond shell 20.4 50.7 28.9 

Sunflower shell 17 48.4 34.6 

Nutshell 30-40 25-30 25-30 

Paper 0-15 85-99 0 

Stored refuse 20 60 20 

Plant Leaves 0 15-20 80-85 

Cottonseed hair 0 80-95 5-20 

Industrial waste 

paper 

5-10 60-70 10-20 

Barley straw 14-15 31-34 24-29 

Oat straw 16-19 31-37 24-29 

Bamboo 21-31 26-43 15-26 

Rye straw 16-19 33-35 27-30 

Jute fibre 21-26 45-53 18-21 
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During pyrolysis, cellulose and hemicellulose breakdown to give organic acids, 

esters, aldehydes, alcohols, ketones, hydroxyl carbonyls, furans and sugars, 

whereas lignin contributes towards forming the phenolics and substituted aromatic 

groups [77, 84]. The end products of these biomass types depend upon the 

percentage of cellulose, hemicellulose and lignin and are also determined by the 

operating conditions such as pyrolysis temperature, residence time, heating rate 

etc. Wood, shells and husks tend to have higher percentage of lignin compared to 

herbaceous species. In biomass, hemicellulose acts like cement in reinforced 

concrete whereas cellulose acts as steel rods where strands of microfibrils 

(cellulose) are supported by hemicellulose. Devolatilisation of these biopolymers 

under pyrolysis conditions is in the order hemicellulose first, then cellulose and 

finally lignin [18, 37]. This is illustrated by thermo gravimetric analysis (TGA) 

curves for cellulose, hemicellulose and lignin and is shown in the Figure 4.
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Figure 3 - Typical products from the breakdown of basic components of biomass during pyrolysis [15] 
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Figure 4 - Pyrolysis curves of hemicellulose, cellulose and lignin in TGA [85]
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During pyrolysis, hemicellulose decomposes mostly within the temperature range 

of 220°C -315°C whereas cellulose starts decomposing above 300°C and above 

400°C it’s mostly volatilised. Lignin is more resistant to volatilisation and it has a 

wide temperature range of vaporisation, between a temperature range of 160 -

900°C [85]. This shows that if the pyrolysis temperature and feedstock residence 

time in the reactor is low, then lignin devolatilisation is limited and the volatiles 

are mostly released from cellulose and hemicellulose species. The analysis of 

resulting bio-oil under these conditions shows the greater portion of organic acids, 

esters, aldehydes, alcohols, ketones, hydroxyl carbonyls, furans and sugars due 

to cellulose and hemicellulose breakdown whereas phenolics and aromatics are 

lower and char percentage is higher due to limited breakdown of lignin [85]. 

2.3.1.2 Effect of variation in feedstock types 

In the literature, various types of feedstock have been reported to produce 

bio-oils derived from a variety of forestry and agricultural biomass wastes to 

municipal waste. Mohan et al and Antal et al [45, 86] reported the bio-oil yield in 

the range of ∼60-95 wt.%, depending on the feedstock composition. The woody 

feedstock during pyrolysis gave rise to bio-oil in the range of 72-80 wt %, which 

depends upon the relative amount of cellulose by using fast pyrolysis method. The 

presence of high lignin content, shown to have a tendency to give lower liquid 

yields (60%-65%) [48, 86]. Volatilization or decomposition of biopolymers 

contributes to bio-oil, gas and char products. The presence of alkali metals in the 

char, as reported by Nik-Azar et al [87], has been shown to have a catalytic effect 

on pyrolysis reactions leading to increased char yields. Sometimes a change in the 

composition of bio-oil is due to the catalytic effect of alkali metals resulting in an 

increase in pyrolysis oil and decrease in gas products. The properties of bio-char 

tend to vary due to the  type of feedstock and its biopolymeric composition and 

presence of other inorganic species in the form of ash [37].  

2.3.2 Influence of operating conditions during pyrolysis 

The many pyrolysis operating parameters are grouped into two types by 

Akhtar [88] as : (i) the parameters which are highly influencing (ii) and 

moderately to low influencing parameters. The temperature and biomass types 

are considered highly influencing parameters; whereas other factor like vapour 

residence times, size of feed particles are considered less influencing parameters 

in the production of bio-oils. The amount of mineral matter and initial moisture 
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content are negatively influencing parameters for bio-oil yields and energy inputs, 

respectively. Thermo-chemical decomposition of biomass during pyrolysis 

depends on various process parameters such as the type of feedstock, operating 

conditions and physico-chemical properties of biomass – which ultimately affect 

the biomass conversion time or pyrolysis rate with product distribution and quality. 

A combination of moderate pyrolysis temperature, rapid biomass heating rates, 

and short residence times maximizes the yield of liquid.  

2.3.2.1 Effect of pyrolysis temperature 

Temperature has a significant effect on mass loss of biomass during 

conversion to pyrolysis products, as shown in Figure 4. It is reported by Xiao et al 

and Difelice et al [89, 90] that the percentage yield of gases and bio-oils increases 

with temperature, whereas increases in temperature have an inverse effect on 

biochar production. The bio-oils or liquid fraction yield reach a maximum at about 

500°C. There are many non-condensable gases such as CO and CO2 in the 

decomposition or recombination of unstable oxygenic functional groups. Pyrolysis 

temperature exerts a great effect on pyrolysis products originating from organic 

functional groups of biomass [66]. The pyrolysis temperature range is different 

for the three components of biomass i.e. cellulose, hemicellulose and lignin [91]. 

The order of pyrolysis of different components of biomass are reported by Wen et 

al [92] to be, firstly, hemicellulose between 180 and 240 oC; followed by cellulose 

and lignin at 230-310 oC and 300-400oC, respectively. It is also reported by Wen 

et al [92] that biomass did not pyrolyse and volatiles were not released when the 

operating temperature was lower than 185oC. Veses et al [54] analysed the 

distribution of pyrolysis products in terms of their yields. The amount of liquid and 

gas products were reported to increase with increasing temperature, while char 

decreased and the yield of liquid shown to be constant (48 wt %) above 450oC 

pyrolysis temperature.  

 

In another study the mass balance observed by Dufuor et al [97] were 

92.1%, 101.8%, 99.4%, and 97.8% for reactor temperatures of 700, 800, 900 

and 1000°C respectively, and the total mass of permanent gases was shown to 

increase between 700 and 800°C, then remained almost constant above 800°C. 

They also observed the char yield to be decreased from 16.5 wt% at 700°C down 

to 13.3 wt% at 1000°C. The quantified products masses were underestimated at 
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700°C in part due to tar, which was not subject to analysis. More than 60 

compounds were detected but not quantified. Total amount of the quantified 

aromatic tar was always lower than 5% mass and reached a maximum at 800°C. 

Most of these studies indicate that having a very long residence time leads to an 

increase in the aqueous phase and that the optimum temperature for screw 

pyrolysis is around 500°C 

2.3.2.2 Effect of heating rate on pyrolysis products 

In another study, Adrados [93] reported that higher pyrolysis temperatures 

above 750oC and slow heating rates are necessary if the aim is to produce 

metallurgical grade charcoal, because the liquid products obtained in slow high 

temperature pyrolysis are low-quality fuels having a large fraction of aqueous 

phase and some organic phase. The charcoal produced in this way is reported to 

contain a char product having (80 wt. %) of carbon. They also reported another 

catalytic step to upgrade the pyrolysis vapours which led to low bio-oil and CO2 

content whereas the gas fraction was increased together with higher hydrogen 

concentration in the gas product thus enhancing the quality of gas phase. 

Bridgwater et al [3] also used higher heating rates in fast pyrolysis to produce 

high percentage of bio-oil (up to 70 %wt) with rapid quenching of vapours to 

inhibit the impact of secondary reactions. 

2.3.2.3 Effect of residence time on pyrolysis products 

 In another study done by Puy et al [94], forestry waste was pyrolysed in 

an auger reactor at five different temperatures ranging from 500 to 1000oC at 

different feeding rates of 3.9, 4.8 and 6.9 kg/h with varying residence times 

between 1.5 min to 5 min. Different product yields were observed by Puy et al 

[94] depending on the reaction temperatures and residence times. The liquid yield 

ranged from 45% to 59% at 500°C and decreased with temperature due to severe 

cracking of the primary pyrolysis at higher temperatures. Puy et al [94] also 

reported the optimum temperature of 500°C with maximum liquid yield of 58.7 

wt%. Increase in gas yield with higher reaction temperatures in auger reactor and 

similar results were reported by Gilbert et al and Bridgwater et al [95, 96].  

2.4 Methods of enhancing bio-oil quality during pyrolysis 
The tar content during pyrolysis and gasification can be reduced in many ways 

such as by thermal tar cracking, catalytic tar cracking and tar cracking with char. 

Further details about tar will be discussed in section 2.9. Tar cracking is favoured 
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for various reasons including: improved quality of gas product, better efficiency in 

conversion of tars into simpler hydrocarbons, and to limit problems related to tar 

condensation in the downstream processes. In this thesis, the focus is on tar 

cracking by char as further explained in this section. Other types of thermal and 

catalytic tar cracking are also presented. 

2.4.1 Tar cracking with char 

Using char to crack the tars is well established in the literature [95, 98-

101]. Char contains carbon together with other organic and inorganic species. 

Inorganic species which are present in the char such as alkali metal oxides, 

nitrates and hydrates can catalyse the pyrolysis process. Recycling of char in the 

Pyroformer by the outer screw to come into direct contact with evolved vapours 

from pyrolysing biomass in the inner screw is further supported by various authors 

[98-101] in varying configurations to achieve the similar result. El-Rub et al [99] 

reported the comparison of biomass derived char from pyrolysis with other 

inorganic catalysts for the cracking of naphthalene and phenol at a temperature 

range of 100-900°C and also found that char as a catalyst was as good as nickel 

and dolomite. It is reported by Al-rahbi [98] that waste derived pyrolysis chars 

were effective in minimizing the condensable tars and bio-oil hydrocarbons with 

waste car tyre derived char with up to 70% reduction in tars compared to no char 

application in a pyrolysis-gasification experiment. The order of performance of 

chars by this author for tar removal was highlighted as tyre char>RDF char> date 

stone char > no char. Al-rahbi [98] used various biomass to char ratios and found 

that 1:3 ratio of biomass to char by %wt was giving the highest yields of CO, H2, 

CO2, CH4 and CnHm gases which are formed after tar cracking. This tar cracking 

phenomenon was associated with char catalytic conversion and physical 

adsorption of tar compounds. 

 

In another study, El-Rub [99] reported that tars can be adsorbed onto 

active sites of the char thus leading to tar cracking. Tar cracking over the char 

surface is reported by Hosokai et al [100] to result from various mechanisms such 

as tar deposition on char surface, dehydrogenation of tar leading to soot formation 

and gasification of soot. Coke formation and gas formation from char is reported 

to occur simultaneously, while gaseous products are formed from tars during these 

processes. Deactivation of char pores due to coke formation is another 
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phenomenon which limits the usage of char over a prolonged time and 

necessitates the char regeneration (as reported by Abdullah and Wu [102]) unless 

char can be replaced by fresh char and spent char can be used as a solid fuel in 

conventional applications.  

2.4.2 Thermal tar cracking 

In thermal tar cracking, the tar is reduced to simpler hydrocarbons by means of 

high temperature treatment. This kind of treatment involves high temperatures 

with direct heating, or by means of oxygen injection to raise the temperature of 

the gas containing tars to reduce them, or by means of an electric arc or plasma 

to elevate the temperature. A study performed by Fagbemi [217] described a 

kinetic model for thermal cracking of tars in pyrolysis and gasification applications 

for wood, coconut shell and straw at temperature ranging from 400-900 °C. This 

model showed that a gas residence time of zero to 4 seconds is needed for tar 

reduction. Thermal tar cracking is effective between the temperature 700-1250 oC 

as reported by El-Rub [99] that thermal conversion of phenol occurs at 700–900 

oC. Phenol is stable at a temperature of 700 oC with only 6.3 wt.% conversion, but 

loses its stability as temperature increases. The conversion is more than 97 wt.% 

at 800 oC and more than 98 wt.% at 900 oC . In the experiment of Phuphuakrat 

et al [218], the reduction of the gravimetric tar mass is 78% in the case of the 

thermal cracking at 800 oC, whereas it is in the range of 77–92% in the case of 

steam and air reforming. Similar results were also reported by Chen et al [219]. 

2.4.3 Catalytic tar cracking 

In catalytic tar cracking, a catalyst is used which can be effective at even lower 

temperatures compared to thermal cracking or combination of both high thermal 

temperature and catalyst for maximum conversion of tar into gaseous products to 

achieve better conversion efficiencies. Jude et al [220] used algae species 

Chlorella vulgaris, Spirulina platensis and Saccharina latissimi under supercritical 

conditions at 500 °C and 36 MPa in a batch reactor for 30 minutes with and without 

sodium hydroxide and Ni-Al2O3 catalyst. They reported tar reduction of 71 wt% 

with the catalyst. By doing this they were also able to enhance the hydrogen 

production yield thus achieving the double benefit of tar conversion and hydrogen 

yield maximisation. In another study Tiejun et al [221] explored the use of 

Nickel/dolomite catalyst which was prepared by the incipient wetness method over 
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a dolomite support. They modified the dolomite with Fe2O3 powders with natural 

dolomite powders to increase Fe2O3 content for higher activity of tar cracking. 

They also prepared another four catalysts (natural dolomite, modified dolomite, 

ICI-46-1, and Z409) and tested and compared them with Ni/dolomite catalyst. 

The also explored the effects of temperature, steam-to-carbon, and space velocity 

on tar conversion. They found the Ni/dolomite to be very active and useful for tar 

removal. A 97% tar removal was obtained at catalyst temperature of 750 °C and 

space velocities of 12 000/h. A study by Mian et al [222] investigated the tar 

cracking with nickel catalyst using steam obtained from a char supported nickel 

catalyst in a lab-scale fixed bed reactor to determine the effects of catalytic 

cracking temperature, Ni loading and gas residence time on product distribution 

and gas composition. Their results showed that the optimum catalytic cracking 

parameters were at 800 °C catalytic cracking temperature, 6 wt% Ni loading and 

0.5 s gas residence time. 

2.5 Types of intermediate pyrolysis reactors 
The reactor is the heart of pyrolysis system and most of the research in 

pyrolysis has been focused around the reactor development [65]. There are 

various types of reactors used for pyrolysis such as bubbling fluidised bed, 

circulating fluidized bed, cone reactor, microwave, screw/auger, cyclonic or 

vortex, multi-stage, rotary kiln, entrained flow reactors.  Screw pyrolysis reactor 

is essentially a mechanical conveyor mounted inside a tube with the ability to 

transfer the biomass feedstock along the length of heated reactor tube. The 

pyrolysis reactor tube can be heated by various means such as electrically  [20, 

103, 104] or through a mobile hot gas [59] or simply the heat can be supplied 

through a hot solid such as hot sand [105] or hot steel balls [15].  

An auger or screw as used in pyrolysis is simply an Archimedes helical screw 

driven by mechanical means to transport the solids through the reactor. Various 

researchers have used auger kilns such as the Haloclean reactor [106-108] and 

screw pyrolysis systems with interchangeably attribute their systems to fast, slow 

and intermediate pyrolysis. However, the key principle remains the same in all 

reactors - the purpose is to convey the biomass through the reactor by some 

mechanical means [3, 51, 79, 96]. Ingram and co-workers reported [109] the 

amount of char produced from different feedstock (e.g. wood and barks from pine 

and oak) in an auger pyrolysis reactor in the range 17.5–19.8%, 17.5–19.9%, 
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9.7–23.2, 21.3–27.8% and total bio-oil yield in the range 48.7–55.2%, 49.6–

56.3%, 42.8–44.2%, 43.8–49.8%, respectively. A screw can be either mounted 

on a shaft (solid or hollow) within a tube or it can simply be a spring-like structure 

depending on its design requirements whether it is the strength or flexibility which 

is required in the screw. Screw-based reactors for pyrolysis have been developed 

to be either single-screw type [103, 106], parallel twin-screw co-rotating type (for 

self-cleaning purposes) [105], parallel twin-screw counter-rotating type, or twin-

screw counter-rotating type where one screw is mounted inside the other [104, 

110]. These variations in screw designs are motivated by some technological 

advantage, differentiation for patenting, and/or simplicity of design. Given below 

in Table 3 is a comparison of different screw-based pyrolysis reactors together 

with information about their operation, design parameters and variations in 

product yields arising from such a system. 

The auger screw mechanism within a pyrolysis reactor gives distinct 

advantages compared to fluidised bed system. These advantages include the 

ability of a screw to convey biomass materials which are heterogeneous [3], with 

varying moisture content, clearing of the internal reactor walls and hence aiding 

the heat transfer from metal surface of reactor to biomass, prolonged solids 

residence time, ability to recycle char in twin screw systems, ability to handle a 

variety of heat-carrying media, ability to control the material flow by rotational 

speed of screw. The disadvantages of screw pyrolysis include the lack of rapid 

heat transfer and thermal expansion in the material of construction leading to 

mechanical problems compared to fluidised bed pyrolysis systems [3]. Once the 

biomass has passed through the reactor by means of a screw, the resulting 

vapours are then either passed through a ceramic filter or allowed to condense in 

a specially designed condensing train. The char or solid residue of pyrolysis 

products is collected in a char container. The char collection is also aided by the 

same screw which is transporting the biomass through the pyrolysis reactor. 
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Table 3 - Various configurations of pyrolysis screw/auger reactors types 

a -[106], b -[111], c-[105], d-[112], e-[20] 
RT-Residence time of solids 

NA-not available 
 

Given below in Figures 5, 6, 7 and 8 are schematics of screw-pyrolysis 

reactors. All systems have a great similarity in the biomass conveying mechanism 

through the reactor by a screw; however, the differences between these reactors 

are seen in the way screw is laid out within the reactor, type of heat transfer 

Reactor 
type 

Heating 
medium 

Reactor 
throughpu

t 

Feedstock 
used 

Yields 
Wt.% 

Reactor 
Schematic 

Halocleana 
auger kiln 

Heated 
circulating 

steel 
spheres 
Temperatur

e: 450°C 

Feed: 2-3 
kg/h 

RT: NA 

Brewers 
spent 

grains 
(barley) -as 
received  

 

Char: 50 
Liquid: 

51 
Gas: 26  

Figure 5 

Augerb 

reactor  
Diameter: 

7.6 cm 
Length: 102 
cm 

Electrical 

band 
heaters. 

Temperatur
e: 450°C 

Feed: 1kg/h 

RT: 50 s 

Pine wood 

2-4 mm 
particle size 

Char: 

17.5-
19.8 

Liquid: 
48.7-
55.2 

Gas: NA 

NA 

Twin Parallel 

screwsc 
counter 
rotating 

reactor 
Each screw 

diameter: 44 
mm 
Length: 450 

mm 

Electrically 

heated 
Sand as 
heat carrier 

@ 2kg/h. 
Reactor 

Temperatur
e: 500°C 

Feed: 300g 

RT: NA 

Cassava 

Rhizome 
0.425 – 0.6 
mm particle 

size 

Char: 22 

Liquid: 
40 
Gas: 38 

Figure 6 

Auger 

reactor d 
Reactor 
length: 420 

mm 

Band 

electrical 
heaters 
used. 

Temperatur
e: 450°C 

Feed: NA 

RT: NA 

Mango 

wood 
< 0.425 
mm particle 

size 

Char: 22 

Liquid: 
61 
Gas: 17 

Figure 7 

Two coaxial 
horizontal 
screw 

Pyroformere 

reactor  

Electrical 
band 
heaters  

Temperatur
e: 450°C 

Feed: NA 
RT: 4 min 

Brewers 
spent 
grains- 

6mm 
pellets 

Char: 29 
Liquid: 
52 

Gas: 19 

Figure 8 
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medium, number of screws in each reactor, the feeding system and the 

condensing system.  

Screw pyrolysis reactors differ in their ability to transport biomass through 

the reactor’s hot zone according to the different configurations used. For example, 

a simple screw pyrolysis system [106, 111, 112] can just convey the biomass, 

provide the mixing and heat transfer from heat media or through reactor wall. 

Another way to arrange the screw pyrolysis reactor is in the form of a twin screw 

format which have counter-rotating arrangement in omega shape [105] of the 

tubes of the reactor. This layout helps in transporting the biomass in a single 

forward or backward direction. This arrangement provides the additional ability to 

self-clean the screws and hence can handle sticky materials. Another way to 

arrange screw pyrolysis reactor is in a twin screw counter rotating system where 

one screw is installed inside the shaft of other screw which helps to transfer 

material in same and or opposite directions [20], thus re-circulating the char to 

enhance the heat transfer in fresh feed and leading to further cracking of evolving 

vapours by tar. 

Figure 5 - Scheme of Haloclean rotary kiln [106] 
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The Haloclean reactor (Figure 5) is different from other pyrolysis reactors 

in many ways; for example, it has steel balls circulating within the kiln together 

with biomass thus enhancing the heat transfer between these solids. The reactor 

body is electrically heated and screw conveyor inside the kiln transfer the fed 

biomass across the reactor. The advantage of this reactor configuration is rapid 

heat transfer from steel balls to biomass as well as large particle size irregular 

shape biomass feed types. The reactor size has a throughput of 1-2 kg/h and a 

bigger variant of this reactor with a feed throughput of 100 kg/h exists at 

Karlsruhe Institute of Technology in Germany.
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Figure 6 - Schematic diagram of the parallel counter rotating twin screw pyrolysis apparatus [105]
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Figure 6 shows a laboratory-scale screw pyrolysis reactor with a biomass feed rate of 280-400 g/h with screws driven by DC 

motors to convey the biomass and hot sand. The system takes 5 times higher sand throughput compared to biomass. Although 

this system also has efficient direct heat transfer from the hot sand, the disadvantage is mixing of sand with the char. The 

main twin screws in this pyrolysis reactor are counter rotating and this gives it an advantage over other systems due to its 

self-cleaning action where both screws are cleaning each other and high protein containing or softened biomass can be 

conveyed without problems.  

In Figure 7, a simple single screw pyrolysis reactor is shown with simple biomass conveying ability. The outside walls of the 

reactor are heated by means of electrical band heaters to provide necessary heat for pyrolysis. The residence time of the 

biomass in the reactor is controlled by a motor by varying its rotational speed.  
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Figure 7 - Schematic diagram of auger reactor [112] 
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In Figure 8, a twin-screw counter rotating pyrolysis screw reactor (Pyroformer) is represented. The main differences between 

this reactor (Figure 8) and the reactor in Figure 6 are that (i) no sand is used as heat carrier in the Pyroformer and (ii) the 

material is transferred in series from one screw to another in the Pyroformer. The reactor in Figure 6 has self-cleaning abilities 

due to its twin screws counter rotating in parallel thus meshing with each other. Other differences between these two reactors 

are the Pyroformer’s ability to recycle char from one screw to other and thus maximising the heat transfer into fresh feed as 

well as tar cracking by char action as discussed earlier. Both these reactors have their advantages over each other, for example 

reactor in Figure 6 can handle high protein containing materials and materials which are softened (sticky) during pyrolysis, 

whereas the Pyroformer (Figure 8) can provide a very long residence time of material, high heat transfer through char and 

catalytic effect by char recycling.  
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Figure 8 - Schematic diagram of the Pyroformer reactor system [20] 
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2.6 Critical review of Pyroformer studies 
 The author has used an intermediate pyrolysis based reactor introduced at 

Aston University called “Pyroformer” (as shown in Figure 8, item 1). This reactor 

has been used by various other researchers in their studies such as [15, 20, 110, 

113]. The Pyroformer is claimed to have significant advantages in increasing gas 

yield and quality, low molecular weight bio-oil and its ability to process difficult 

feedstocks with higher moisture content. Experimental results from various 

studies [20, 110, 113, 114] showed better bio-oil and permanent gases properties 

compared to fast pyrolysis bio-oil [46, 48].  

 

Key recent studies to inform the current one include those of Miloud et al 

[114] and of Yang et al [110] who used a small Pyroformer of 20 kg/h throughput 

for their experiments. Pelletized biomass materials such as two varieties of de-

inking sludges (AN de-inking sludge and KC de-inking sludge) were used by Miloud 

et al [114], whereas Yang et al [110] used wood pellets and barley pellets for their 

tests. More details about the sources of these biomass can be found in [114] and 

[110] which are de-inking paper sludge pellets, wood and barley pellets. The de-

inking sludges (as shown in Table 4) exhibit very low carbon, HHV and moisture 

content and very high ash content [152]. This type of material is generally sent 

to landfill or combusted in boilers with natural gas to recover some energy; 

however it is normally deemed inefficient for energy recovery [104]. 

 

Yang et al [110] on the other hand has tested more refined materials such 

as wood and barley pellets. Table 5 shows the feedstock analysis with carbon 

47.5% and 44.2% for wood and barley straw pellets with considerably higher 

oxygen content in both materials. Moisture, HHV and ash content were also shown 

to be in the average range typical of refined woody biomass. 
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Table 4 - Proximate, ultimate analysis and heating values of the de-inking sludges. 

Adapted from [114] 

 Aylesford Newsprint 
(AN) de-inking sludge 

Kimberly-Clark (KC) 
de-inking sludge 

   
Moisture content 

(As received wt %) 

35 48 

Proximate analysis wt% (dry basis) 

Moisture 1 1.3 
Volatiles  46.3 55.1 
Fixed carbon 1.1 ˂0.1 

Ash (at 900 °C) 51.6 43.6 
Ash (at 575 °C) 74.5 62.9 

HHV (MJ/kg) 6.4 7.0 
Ultimate analysis wt% (dry basis) 

Carbon 21.1 21.7 
Hydrogen 2.3 2.8 
Oxygena  24.7 29.8 

Nitrogen 0.3 2.1 
Sulphur ˂0.1 ˂0.1 

Chlorine ˂0.1 ˂0.1 
a Obtained by difference 

It is evident from feedstock analysis that both set of materials de-inking paper 

sludge pellets [114] and wood and barley pellets [110] exhibit diverse composition 

properties and were fit for use in Pyroformer. Both researchers have reported the 

approximate feeding rates of the feedstock. Miloud et al [114] has reported 15 

kg/h for both de-inking sludge samples which equates to 4 minutes of residence 

time if a single pass of material through inner screw is estimated however char 

recycling through outer screw is the key differentiator step. The rate of char 

recycling determines the catalytic effect to increase HHV of gas and to crack large 

molecular weight hydrocarbons in to light fractions. The rate of char recycle within 

the Pyroformer is determined by relative rotational speeds of inner screw to outer 

screw rpm. Yang et al [110] has reported the feeding rates of 6kg/h and 5 kg/h 

of wood and barley straw pellets respectively. Inner and outer screw speeds of 1 

and 7 rpm respectively were reported by Yang et al [110] with a residence time 

of 1.5 minutes. 
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Table 5- Wood and barley feedstock and products analysis (dry basis) in the 

Pyroformer - adapted from Yang et al [110] 

  Unit Wood Barley 
straw 

Feedstocks 
analysis 

    

Ultimate analysis C wt% 47.5 44.2 
 H wt% 5.3 6.1 

 Oa wt% 0.4 0.4 
 S wt% 36.4 30.4 
 Cl wt% ˂0.1 0.6 

Proximate analysis Moisture wt% ˂0.1 0.4 

 Volatiles wt% 82.1 74.9 
 Fixed carbon wt% 7.0 11.9 
 Ash wt% 7.7 7.2 

HHV  MJ/kg 3.2 6.0 
Pyrolysis oil 

analysis 

    

Elemental analysis C wt% 55.69 62.57 
 H wt% 7.93 8.12 

 N wt% 0.36 1.41 
 Oa wt% 36.02 25.79 

Properties TAN g/mgKOH 47.5 30.9 
 Moisture wt% 15.4 5.8 
 HHV MJ/kg 24.2 28.9 

 Kinematic viscosity 
@ 40 °C 

cSt 14.8 30.5 

 Density @ 20 °C g/ml 1.10 1.15 
 Carbon residue wt% 3.55 6.50 

 Ash wt% 0.18 0.20 
Gas analysis     
 H2 vol% 2.24 1.54 

 O2 vol% -- 0.42 
 N2 vol% 5.54 4.68 

 CO vol% 34.70 21.74 
 CH4 Vol% 7.24 10.48 
 CO2 vol% 50.27 60.13 

HHV  MJ/m3 7.27 6.92 
Char analysis     

Elemental analysis C wt% 75.60 74.83 
 H wt% 3.38 3.51 
 N wt% 0.22 0.10 

 Oa wt% 10.20 8.46 
Ash  wt% 10.60 13.10 

HHV  MJ/kg 30.1 32.9 
a Obtained by difference 

It is better to measure the actual material throughput rather than rely on 

theoretical calculations which are prone to errors. Faster outer screw speed of 7 
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rpm should indicate a blockage shortly after start as more and more solids build 

up in the system rather than leaving the Pyroformer unless the experiment has 

been performed under unsteady state in which case the experiment must have 

been completed before reaching the steady state. However, product yields and 

quality are more interesting for the sake of experiment rather than the screw 

settings. There is a strong relationship between screw rpm and product yields and 

quality due to the fact lower the inner screw rpm the longer the solids residence 

time and higher the char to biomass ratio in the screw thus leading to increased 

mass loss from feedstock and hence lower the char yield [110 & 114]. 

The product yields reported by Miloud et al [114] are 9 wt% bio-oil (of which 

1 wt% is aqueous phase), 15 wt% pyrolysis gases and 75 wt% is solid phase 

(char). As expected due to very high ash content in feedstocks up to 75 wt% and 

63 wt%, the solid phase after pyrolysis have very high proportional yield compared 

to liquid and gas. It can be seen that % yields of the products are not well 

reported, however more attention was given to quality of gases and bio-oil from 

the materials. Table 6 gives the bio-oil ultimate analysis and heating values. 

Table 6 - De-inking sludge bio-oils ultimate analysis and heating values [114] 

The HHV of these bio-oils are superior to most of the bio-oils produced 

through pyrolysis with different feedstocks. The heating values are as good as 

biodiesel. Also, the lower oxygen content is another key factor enabling such high 

HHV of the bio-oil. The reasons behind having such high HHV can be attributed to 

solids (char) re-circulation within the Pyroformer as well as high heating rates. 

During the recirculation of solids, inorganic content (mostly metals such as shown 
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in Table 7) have played an important role in producing metal oxides and thus 

lowering the overall oxygen content in bio-oil.  

Bio-oil fuel properties as presented in Table 8 show the suitability of the 

bio-oils as engine fuels with the exception of high total acid number and carbon 

residues. Carbon residue can be removed by physical methods and total acid 

number can be improved by blending in high proportion with conventional diesel 

or biodiesel fuels. The HHVs (37 and 36 MJ/kg) of the bio-oils are much better 

than fast pyrolysis fuel which have HHVs between 15-18 MJ/kg [48]. 

Table 7 - De-inking sludge bio-oil metals analysis [114] 
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Table 8 - De-inking sludge bio-oil fuel properties [114] 

When comparing the bio-oils from de-inking sludges, wood and barley straw 

pellets it is evident that HHVs of de-inking sludge oils are much better than those 

from wood and barley feedstocks. One simple reason for this is comparatively high 

oxygen content in wood and barley oils of 36% and 26% as opposed to 11% in 

de-inking sludge. It is also very interesting to see that de-inking sludge pellets 

have higher throughput compared to wood and barley, which means heating rates 

for de-inking sludge could be slightly lower but bio-oil properties are still better 

than wood and barley oils. The quality difference in bio-oils from de-inking sludge 

to those of wood and barely can be better explained by the presence of metals in 

ash. The metals (inorganics) must have oxidised by taking the oxygen away from 

oil into water vapour in gaseous fraction and helped crack the vapours into lighter 

molecular weight hydrocarbons.  

The HHVs for pyrolysis gases are somewhat similar in all cases (Table 5 & 

9) with minor differences which hold well with expectations (for char derived tar 

cracking) due to long chain hydrocarbons cracking into lighter hydrocarbon in the 

Pyroformer. The gas HHVs of all feedstock are very similar to low quality HHV air 

blown gasifiers. 

Notable differences in the solid phase (char) are evident from Table 10. Ash 

(60 wt %) and oxygen (24 wt %) contents are very high in de-inking sludge 
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derived solid phases and carbon content is very low (17.12 wt %). When compared 

to wood and barley for ash, oxygen and carbon contents are shown in Table 5. 

Table 9 - De-inking sludge gas phase analysis [114] 

Table 10 - De-inking sludge char ultimate and HHV analysis [114] 

2.7 Lessons from the Pyroformer studies  
This review indicated some shortcomings in the way the data are reported by both 

researchers [110, 114]. The compilation of data shows that more attention was 

paid towards the analysis of the quality of bio-oils and gases [114] and less 

towards the optimisation of the pyrolysis parameters. There is a lack of detail into 

showing the relationship between inner and outer screw speeds, recirculated char 

to fresh biomass feed ratios and the impact on quality and quantity of the pyrolysis 

products. Bio-oils from de-inking sludge exhibited better quality but had lower 

yield compared to barley and wood derived oils [110]. Metals must have played a 

major role in cracking large molecular weight hydrocarbons or tars into lighter 
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hydrocarbons. Bio-oils and permanent gases from all feedstock show better 

qualities than those of fast pyrolysis products [20, 48]. It is evident that more 

work needs to be done to establish optimum temperatures, char recirculation rate 

and residence time of test samples in the Pyroformer. The knowledge gained 

through this review will be extremely useful in making intelligent decisions when 

testing further samples on Pyroformer. Residence time calculations based on 

actual runs need to be calculated and a detailed mass and energy balance needs 

to be carried out for all tests by building upon the experience of [110].  

2.8 Gasification  
As stated earlier biomass gasification is desirable for fuel production and 

synthesis of chemicals. Gasification is essentially a lean form of combustion where 

lower amount of oxygen is supplied than a combustion process to produce a fuel 

gas (syngas) which can be further used as fuel or for chemical synthesis. 

Gasification processes have been extensively studied where researchers have tried 

to optimise the gasification conditions by means of thermal and catalytic 

treatments to enhance the gas quality by reducing the tar content in the syngas 

[14, 115], increasing the calorific value, reducing the processing steps to name a 

few. Furthermore, various studies focused on the effect of gasifier types [116], 

effect of processing temperatures [117-119], effect of biomass types and its 

particle size [119], effect of gasifying (oxidant) agent [118, 119], effect of the bed 

material [120, 121] and combining gasification with other processes to enhance 

the process economics. During gasification, various complex homogeneous and 

heterogeneous reactions take place; some of these are shown in Table 11. 

Gasification involves four different steps i.e. drying of biomass, pyrolysis, 

oxidation and reduction [124]. These are further explained below. 

Drying - Biomass has varying moisture content which is removed in a drying 

process at temperatures above 100°C. In this step, no chemical reactions take 

place and only water vapour is removed from biomass by heat due to the phase 

change into steam. 

Pyrolysis – In this step biomass starts to decompose [51] in the absence of oxidant 

at elevated temperatures and vapours are released from biomass by means of 

primary reactions. The proportions of vapours and char produced are influenced 

by process conditions such as the heating rate and operating temperature. In 
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addition, the product distribution is also affected by biomass composition (type of 

free radicals released) and biomass size (heat transfer limitations).  

Oxidation – At elevated temperatures and in the partially oxidised environment, 

heterogeneous reactions take place between oxidant and biomass forming carbon 

monoxide and water vapour. Oxidation is influenced by chemical composition of 

biomass, type of oxidant (oxygen, steam, CO2 or air) and operating conditions. 

This step is mostly exothermic and results in heat energy being released resulting 

in energy self-sufficiency to sustain the process. 

Reduction – This is a net endothermic step during which high temperature 

chemical reactions take place in the absence of oxygen. Various reactions between 

the products of oxidation and char take place to form new hydrocarbons.  Ash and 

some char are the by-products of this reaction step [81, 124, 125]. 
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Table 11 - List of reactions in gasification process [122, 123] 

̶̶

̶̶

̶̶

̶̶

̶̶

Gasifier selection involves a detailed understanding of the different types of 

gasification systems. Selecting a gasifier type between an atmospheric or 

pressurised type will have cost implications as pressurised systems tend to cost 

more compared to their atmospheric pressure variants [56]. Selection between a 

fixed bed and fluidised bed gasifier system will be influenced by the scale of 

process as well as the upstream and downstream processing requirements such 

as upstream air preheating for fluidised bed gasifier and downstream heavy air 

suction requirement for fixed bed gasifiers. Choosing among different oxidant 

types such as air, oxygen, steam or CO2 will be influenced by capital costs, syngas 
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product quality and its application. Using air as an oxidant is a cheaper option with 

regards to capital investment but it will not give high calorific value syngas due to 

(inert) nitrogen and hence a compromise needs to be made during selection 

process [126]. Syngas heating values have huge influence when selecting a 

gasifier because syngas heating value ranges between 4-40 MJ/kg. The end 

applications of syngas may necessitate certain heating values e.g. syngas for 

heating applications can be accepted with a low heating value gas whereas Fischer 

Tropsch diesel and other chemical synthesis will require the fairly high heating 

value syngas [127]. 

 

There are many types of gasification system configurations which are 

preferred for various reasons; these are presented in Table 12. Most notably they 

include fixed-bed downdraft gasification where biomass and syngas flow 

downward in co-current direction, and updraft gasification where biomass and 

syngas flow in counter directions with syngas generally flowing upward in the 

gasifier. Fluidised bed gasification involves a moving (catalytic or non-catalytic) 

bed material in addition to biomass and oxidant. Fluidised bed gasifiers include 

bubbling and circulating fluidised beds. In a bubbling fluidised bed gasifier, there 

is rapid mixing of biomass and bed material by the oxidant which leads to high 

heating rates and somewhat uniform distribution of temperature within the system 

[128]. Notable differences between different types of gasifiers arise due to 

variations in support for biomass material in the gasifier, direction of flow of 

material and oxidant and the heat supply and control in the gasification process. 

Table 12 lays out the most common gasifier configurations [79, 129]. 
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Table 12 - Types of gasifiers, fuel and oxidant flow configuration [79, 129] 

2.8.1 Fixed bed gasifiers  

Fixed bed gasifiers are generally suited for small-scale gasification 

applications under 1 MW. Generally, there is a grate inside the gasifier which 

supports the biomass while it is consumed during the reaction. The biomass bed 

normally travels downwards until it is reacted and the char (ash) is then removed 

from the bottom of the gasifier. The oxidation reaction zone experiences the 

highest temperature in the process and maintaining this temperature is somewhat 

difficult giving rise to variations in quality of product gas. Fixed bed gasifiers are 

further divided in two types; updraft (i.e. counter current) gasifier and downdraft 

(i.e. co-current) gasifier. 

2.8.1.1 Updraft gasifier  

This type of gasifier is normally simple, providing a low-cost process with 

greater flexibility of feedstocks with high moisture and ash containing materials. 

Ash is the remaining inorganic residue of biomass after complete combustion. 

Updraft (Figure 9) gasifiers are generally well known for high tar content (up to 

20% of tar by weight) which limits the syngas applications unless thoroughly 

cleaned [117].  
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2.8.1.2 Downdraft gasifier  

This type of gasifier produces a very low tar syngas which can be used in 

an engine for power production. Tars can be broken down in the hot zone of the 

gasifier due to presence of oxidant and high temperature. Tars are thermally 

broken down into permanent gases, thus giving better quality gas with low tar 

content compared to updraft gasifiers. Another advantage of the down draft 

gasifier is that it allows turn down in syngas output, thus enabling the system to 

run at considerably lower syngas output if needed to match with engine syngas 

demand. Disadvantages of the downdraft gasifier include the problems associated 

with low-density fibrous feedstocks, and low ash melting point of feedstocks in the 

oxidation zone causing material flow issues within the gasifier bed. Also, small-

scale applications (generally <1 MW) and low moisture content biomass 

requirements are the other disadvantages of this type of gasifier. A schematic of 

the down draft gasifier is shown in Figure 10.  
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Figure 9 - Schematic of an updraft gasifier [127] 

Figure 10 - Schematic of a downdraft gasifier [127] 
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2.8.2 Fluidised bed gasifiers  

Fluidised bed gasifiers have been used extensively for coal gasification for 

many years. Fluidised bed gasifiers have certain key advantages over fixed bed 

gasifiers; these include rapid heat transfer, uniform temperature distribution and 

excellent mixing. Two main types of fluidised bed gasifiers exist [127]: 

 Circulating fluidised bed (CFB) 

 Bubbling fluidised bed (BFB) 

2.8.2.1 Circulating fluidised bed gasifiers  

This type of gasifier allows high throughputs of materials as the bed 

material is circulated between the gasifier and cyclone separator where char can 

be removed and the bed material and char can be recirculated. These gasifiers 

can be operated at elevated pressures and can be easily coupled to gas turbines 

for increased efficiency and economy of scale. Circulating fluidised bed gasifiers 

exhibit benefits such as rapid heat transfer, uniform temperature distribution, 

excellent mixing and high conversion rates. Disadvantages of these gasifiers 

include temperature gradients along the path of solids flow. Heat transfer in 

circulating fluidised bed gasifiers is poor compared to bubbling fluidised bed 

gasifiers [79]. Given below (Figure 11) is a schematic of CFB gasifier.  

2.8.2.2 Bubbling fluidised bed gasifiers 

This type of gasifier (as shown in Figure 11) consists of a vessel with an air 

distributor nozzle assembly at the bottom of the vessel. Biomass feed enters the 

bed and finely ground bed material is fluidised by air or oxidizing agent. The 

temperature of the bed in the gasifier is regulated by the air/biomass ratio within 

700-900°C. Biomass is thermally broken down into gaseous compounds and char 

is produced. The hot char and fluidizing bed material cause further reactions to 

break long chain hydrocarbons or tars into syngas components. Thus, a syngas 

product with very low tar content is produced with tar content less than 3 g/Nm3. 

 

Advantages of BFB gasifiers include uniform syngas product composition, 

uniform temperature distribution throughout the gasifier, rapid heat transfer 

between the biomass, bed material and oxidant. It is also possible to achieve high 

conversion efficiency and low tar content in the syngas. The effectiveness of tar 

removal can be further enhanced by using catalytic bed materials such as olivine, 

dolomite and other industrial nickel based catalysts. Disadvantages include 
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problems with low ash melting point materials and large gas bubbles bypassing 

the bed [79]. 

 

 

Figure 11 - Schematic of bubbling and circulating fluidised bed gasifiers [130] 

2.8.3 Plasma gasification 

Plasma gasification is preferred for mixed waste such as MSW or hazardous waste 

(asbestos and radioactive) where high temperatures are used to produce syngas 

and a melt arising from inorganic species of feedstock. Distinctive features of the 

plasma process are higher energy efficiencies and its ability to produce very high 

temperatures (15000 Kelvin) which are not achievable with conventional 

gasification and combustion. These high temperatures help to reduce tars and 

convert all the organic material into syngas. Tar content as reported by [131, 132] 

is shown to be 1000 times less than that of auto-thermal gasification processes. 

Thermal plasmas are obtained by arc discharges from DC or AC current or through 

radio frequency or microwaves. Mostly DC plasma technology is preferred for 

waste gasification plasma processes. The plasma is formed by high energy from 

AC or DC sources through the plasma torch close to the bottom of reactor and 

fuels are gasified through the plasma state. The oxygen demand in this process is 

small compared to conventional gasification as most of the thermal energy is 

coming from external energy source rather than through exothermic reactions 



  

72 
 

between the fuel and oxygen. Oxygen is only used to convert the fuel into syngas 

[133]. 

 

Figure 12 - Schematic of Plasma gasifier reactor showing the positioning of plasma 

torch [134] 

2.9 Tars 
Tars are defined by Milne [131] as “the organics produced under thermal 

or partial-oxidation regimes (gasification) of any organic material are called tars 

and are generally assumed to be largely aromatic”. Other researchers have 

described tars as a very complex mixture of aromatic and oxygenated 

hydrocarbons having a molecular weight greater than that of benzene of [135-

137]. Benzene and other heavier molecular weight compounds are present in 



  

73 
 

pyrolysis bio-oil and their presence in syngas tends to cause problems. As 

previously said in section 2.2.3, intermediate pyrolysis is based around the 

concept of encouraging secondary reactions between the evolved vapours from 

biomass and resulting char. Some tars present in the bio-oil can have their 

molecular weight up to 500 g/mole [138]. The presence of these very high 

molecular weight tars in bio-oil and syngas lead to incomplete combustion when 

these fuels are used. High molecular weight tars act as promoters of high viscosity, 

limit atomization of fuel, cause blockages in fuel pipes and injector lines by 

condensation [31, 98, 131].  

Tar levels as represented by Milne [131], exhibit a wide range in various 

gasification processes. For example, updraft gasifier tar content in raw syngas is 

reported between 1-150 g/m3, in downdraft it is 0.04-6 g/m3 nominally and in the 

fluidised bed gasifiers it is 0.1-23 g/m3. Milne [131] also reported tar tolerance 

levels in the gas for various applications such as for engines, turbines, fuel cells 

and compressors. It is imperative to bring down the tar levels in the syngas as 

low as possible to avoid associated problems in the end use machines. 

2.10 State of the art, combination of pyrolysis and 

gasification processes 
Pyrolysis of biomass is possible in various configurations as described in 

section 2.8 and it leads to the production of bio-oil together with char and gases. 

During production of bio-oil formation of NOx and SOx and other toxic compounds 

in char, such as dioxins and polycyclic aromatic hydrocarbons (PAH), have been 

shown to be  below the regulatory standards for land application of chars [139, 

140] for soil improvement reasons. But the issues of limited economic feasibility 

of bio-oil usage in conventional energy machines remain due to poor bio-oil fuel 

properties requiring blending with conventional fuels [3, 31]. Bio-oils are also 

shown to have solids content up to 3 wt% of solid (char) particle size between 1-

200 µm [141]. Tar and solid content in bio-oil leads to incomplete combustion in 

engines and hence may increase the particulate matter and unburnt hydrocarbon 

exhaust emissions, thus leading to regulatory compliance issues for emissions 

monitoring. 

Numerous researchers are looking into alternative ways to make use of low-

grade biomass by avoiding the need to even produce bio-oils but still pyrolysing 

and gasifying these materials [57, 59, 61-64, 98, 141- 143].   One such system 
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is the Viking gasifier as shown in Figure 13a [142] which is a two stage process to 

thermally crack the tars. This system works by a screw pyrolysis system which 

produces hot vapours and char at temperature of 500-60 °C at the top of the 

gasifier to be partially oxidised and tar fractions to be broken down into syngas. 

The char from the pyrolysis unit is transferred into fixed bed of the gasifier to act 

as a tar cracking unit where further tar cracking occurs. This system is reported 

to have a nominal tar content in syngas as low as 15 mg/m3.  
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Figure 13a - Viking Gasifier arrangement showing the integrated screw pyrolysis and gasification processes [59] 
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Tar sampling has been performed in various stages of this process in 

another study [144] which showed a progressive decrease in tar levels starting 

from the pyrolysis stage to partial oxidation to gasification stages and decreasing 

to 5 mg/m3 tar levels as shown in Figure 13b. The syngas from this two-stage 

process has been shown to work successfully in a gas engine for a couple of 

hundred hours without major issues. The proposed research on pyrogasification 

in this thesis is built upon somewhat similar two stage pyrolysis and gasification 

process with a notable difference of removing the char fraction in the Pyroformer 

and not taking it into the gasifier. The char fraction is to be used for other 

applications such as soil amendment or heating. The detail of work is further 

explained in Chapter 3.  It is anticipated that, by separating the pyrolysis stage 

with in-situ char re-circulation for tar cracking and then taking the tar-reduced hot 

vapours into a bubbling fluidised bed (BFB) gasifier, a significant tar reduction in 

the syngas will be achieved. This tar reduction becomes possible, firstly due to 

char recirculation (tar cracking by char) in Pyroformer and then further tar 

cracking due to high temperature thermal tar cracking (800-1000 °C) in the 

gasifier, and finally a dolomite catalytic bed within the BFB gasifier further 

catalyses the tar reduction.  

The Pyrogasifier concept of this thesis differs from Viking gasifier in many 

ways. These differences include, a BFB gasifier (rapid mass and heat transfer) as 

opposed to downdraft gasifier in Viking, biomass char and dolomite catalytic bed 

as opposed to only char bed in Viking, char recirculation in pyroformer to reduce 

tars as no char recirculation in Viking system. The Viking gasifier has been shown 

to be reducing the tar content by 100 folds by doing such an arrangement [142]. 

The notable difference of eliminating char with complex (low melting point) 

materials will enhance the economic viability of gasification process which is 

otherwise mostly dependent on wood pellets. Pyrogasification could lead to the 

minimisation of wood pellets by compensating the input energy from more 

complex non-woody waste materials in the form of hot vapours. Further similar 

studies need be conducted, and syngas product quality and tar content in syngas 

analysis results are to be published in international journals when the 

experimental work is conducted on this integrated process after the upgrades are 

done on a pilot plant (Pyroformer and BFB gasifier) based at the European 

Bioenergy Research Institute, Aston University.  
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Figure 13b - Progressive decrease in tar levels as measured in various stages of Viking gasifier process [144] 
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2.11 Summary of the Literature review 
The literature review strongly suggests that pyrolysis is effective to turn 

complex feedstocks into useful bio-oils, gaseous fuel and char. The fuel properties 

and yield of permanent gases and bio-oil show a promising future for energy 

applications in engines if associated fuel issues can be resolved as indicated by 

these researchers Hossain [3, 31, 53, 145]. Bio-oil production from biomass is 

favoured by use of materials containing higher wt% of cellulose and hemi-cellulose 

whereas materials with higher lignin content tends to have lower bio-oil yield and 

higher char yield. Bio-oil yields from woody biomass have been reported in the 

range of 60-95 wt% by Mohan [45, 56, 86]. Bio-oil is a complex mixture of various 

compounds, containing tars and having low pH, which limit its application as a 

fuel. When bio-oils containing high molecular weight tars are used as fuel they act 

as promoters of high viscosity, limiters of atomization of fuel, causing blockages 

in fuel pipes and injector lines by condensing as reported by these authors [31, 

98, 131].  

Tar cracking by char is supported by the works of various researchers such 

as El-Rub [99] who reported comparisons of biomass-derived char from pyrolysis 

with other inorganic catalysts for the cracking of naphthalene and phenol at a 

temperature range of 100-900°C and also found that char as a catalyst was as 

good as nickel and dolomite. It is also reported by Al-Rahbi et al [98] that waste 

derived pyrolysis chars were effective in minimizing the condensable tars and bio-

oil hydrocarbons. They reported up to 70% reduction in tars when using waste car 

tyre derived char compared to no use of char catalyst in a pyrolysis-gasification 

experiment. The order of performance of chars for tar removal was highlighted by 

this author as tyre-derived char being the best followed by RDF char, date stone 

char, and no char as the worst. Also of interest in this thesis is to understand the 

char composition and its usage in soil amendment downstream of the pyrolysis 

process. 

The possibility of coupling the Pyroformer to the BFB gasifier opens new 

opportunities in avoiding bio-oil production where the aim is to produce onsite 

heat and power. In this combination, the Pyroformer can act as a complex waste 

pre-treatment step to process waste materials which cannot directly be used in 

the gasifier. This is done by pyrolysing the waste and producing the hot vapours 
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which can be directly fed into gasifier without the need for condensing them and 

also separating the solid residue (char) which could otherwise be problematic in 

the gasifier. The benefits are achieved by making use of the augers in the 

Pyroformer to transport feedstock materials through the reactor and thus produce 

hot vapours, which would otherwise be hard to feed into a gasifier due to their 

appearance, composition, size and shape. In this way, depending on the ash 

content of material, a large fraction of mass (up to 70% to that of feedstock) is 

supplied to the gasifier via the Pyroformer.  

The critical review of the Pyroformer has highlighted, however, that information 

needed to understand the claimed beneficial effect of char recirculation is lacking. 

It is necessary to do further research to establish optimum temperatures, char re-

circulation rates and residence times of the materials in the Pyroformer. The 

novelty of char catalytic cracking by solids phase (char) re-circulation in 

intermediate pyrolysis (through the Pyroformer), and its coupling with a BFB 

gasifier to produce low-tar containing syngas, needs further research to bring this 

technology closer to application. 

 

The literature review strongly indicates that further research is needed to 

evaluate the potential of these technologies by researching into new and optimised 

conversion routes. Furthermore, it is essential to address the key questions about 

pyrolysis in general and intermediate (screw) pyrolysis in particular how best to 

understand the cold flow behaviour of biomass in a cold Pyroformer, improve the 

product quality by utilising char recirculation, conduct a design review of critical 

components of a Pyroformer and how best to integrate the Pyroformer and 

bubbling fluidised bed gasifier to enable pyrogasification. 
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Chapter 3 – PhD project aims, objectives and 

methodology 

In the literature review commonly known pyrolysis techniques were presented 

with the focus on the intermediate screw pyrolysis of biomass feedstocks [3, 51, 

79, 96]. This PhD thesis builds upon the literature review, Intermediate pyrolysis 

research on Pyroformer in Aston University, identifying the knowledge gaps and 

the need to look for applied solutions for biomass feedstocks in thermochemical 

conversion processes including gasification. From the literature review it is evident 

that some waste materials including biomass are not easy to process solid fuel 

resources. These complex feedstocks exhibit high moisture content, high ash, 

feeding issues, and problems with size reduction and furthermore the end products 

(especially bio-oil) require further upgrading or blending to enable its usage as a 

fuel. Also, the literature review highlights [ the interest from scientific community 

[57, 59, 61-64, 98, 141- 143] in using char in pyrolysis and gasification 

applications to enhance the quality of end products but there are no dedicated 

studies where the effect of in-situ char re-circulation during pyrolysis has been 

investigated in detail.  

3.1 Knowledge gap 
There is little or no information in the literature to study the combined effects of 

biomass flow behaviour within a screw pyrolysis reactor and to study the char re-

circulation ratios to biomass feed and their impact on pyrolysis products. In-situ 

tar cracking by char recycling studies while char is still hot and in the reactor, are 

not found anywhere in the literature. It is fair to say there is a knowledge gap in 

the literature to quantify the benefits of tar cracking by varying the quantity of 

char to that of biomass in a pyrolysis reactor. The counter rotating twin screws 

combination, as exhibited in the Pyroformer, offers a state of the art setup to 

understand and optimise the tar cracking benefits by the recycled char. However, 

the critical review of the Pyroformer related studies in section 2.6 have 

shortcomings to address the impact of char to biomass ratio on pyrolysis products, 

the feeding rate and the residence time. Furthermore, there is a knowledge gap 

to show an efficient and trouble-free operational pyrolysis process and how best 

this can be linked to a BFB gasification process if bio-oil route is to be eliminated 

and syngas is the desired end product. 
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3.2 Project aim 
The work has happened to advance the thermochemical processing of biomass by 

means of detailed understanding of intermediate pyrolysis and its combination 

with gasification to derive better end products. The aim of this study is to 

understand biomass flow behaviour in cold Pyroformer model to calculate char to 

biomass ratio which is important for hot pyrolysis and then integrate the scale up 

version of Pyroformer model to a gasifier. 

 

The scope of this thesis is to understand the cold flow behaviour of feedstock in 

20 kg/h cold Pyroformer reactor and apply the knowledge to a hot 20 kg/h reactor 

where feedstock is pyrolysed and then further enhance a scale up model of 100 

kg/h Pyroformer which can then be coupled to a BFB gasifier to develop 

Pyrogasification concept. The work involved the operation of small scale (20 kg/h) 

Pyroformer, and then experience gained from this unit was used to test the 100 

kg/h Pyroformer and its potential coupling with BFB gasifier. 

3.3 Project Objectives 
The main objectives of the proposed work are to address missing information as 

explained in critical review of Pyroformer previous studies with regards to 

Pyroformer operation and its integration in new concept of Pyrogasification. 

1. To visualize the cold flow behaviour of biomass in a 20 kg/h transparent 

Pyroformer model (at ambient temperature), this cold pyroformer unit is 

similar in size to the hot Pyroformer model. This will help to establish the 

residence time of material in the inner screw, steady state calculations in 

the Pyroformer, time taken to reach the steady state and to study the char 

to biomass mass ratio for char re-circulation within Pyroformer. 

2. To test 2 or more types of biomass feedstock materials in small scale hot 

Pyroformer to understand the effects of material composition on bio-oil 

product quality and processing ability of the Pyroformer for different 

feedstocks. 

3.  Using the different feedstocks, to understand the effects of char re-

circulation (by varying inner and outer screw speeds), residence time and 

pyrolysis temperature variance on products yields and quality within the 

Pyroformer. 
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4. To analyse the liquids produced during the test runs for fuel properties and 

compare the results with the literature.  

5. To analyse the biochar properties and compare them with British Biochar 

Quality Mandate (BBQM) and International Biochar Initiative (IBI) 

standards for soil amendment and theoretically quantify biochar carbon 

sequestration potential. 

6. To review the design of the Pyroformer reactor and to recommend the 

modification of key components of the Pyroformer which had technical 

problems based on operational experiences. 

7. To commission the BFB gasifier and get it ready to couple it with Pyroformer 

and to study the issues of combining 100 kg/h Pyroformer to the BFB 

gasifier to enable the Pyrogasification. The coupling between the 

Pyroformer and BFB gasifier is limited to electro-mechanical design and 

control philosophy of integrated process. 

3.4 Methodology  
To contribute to the knowledge based on the literature review [98-101], a global 

research methodology diagram has been created which highlights the areas which 

need further work with regards to Pyroformer. This is shown in Figure 14. Also, 

the screw pyrolysis of various complex feedstocks (such as digestates) has seldom 

been conducted to solve digestate disposal issues, in this thesis attention is 

focused onto digestate to address this issue. There are various small-scale studies 

which have been highlighted in the literature but there are a few studies of closer 

to application scale-up models of pyrolysis systems. In this thesis small scale 20 

kg/h and pilot scale 100 kg/h Pyroformer models have been used. These were 

pre-existing pyrolysis units in the laboratories of European Bioenergy Research 

Institute (EBRI) at Aston University, and this research has arisen from the 

numerous technical problems from their operation. The experimental studies 

presented in this thesis are based on 3 different combinations of a Pyroformer 

process as given below: 

 20 kg/h Perspex cold model for material flow characteristics (as shown in 

number 1 in Figure 14) 

 20 kg/h hot Pyroformer for detailed parametric and comparative studies (as 

shown in number 2 and 3 in Figure 14) 
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 100 kg/h hot Pyroformer for large scale comparative study (as shown in 

number 4 in Figure 14) 

 All these 4 steps then provide sufficient knowledge to integrate the 

Pyroformer with gasifier to achieve best outcomes in the form of tar free 

syngas 

The chronological order of the experimental work (as in the order work was done) 

was influenced by the equipment and other resources availability as the work was 

done under various projects as highlighted in Chapter 1. The chronological order 

of the work is shown in methodology diagram in Figure 14 and is represented by 

grey arrows in the order 4 – 1 – 2 - 3. The reasoning behind doing the experiments 

in this order was simply due to the circumstantial dependence on equipment, 

materials and human resources availability from the Interreg and IAPP projects 

which provided critical resources for the research. 

To meet the project objectives three different types of reactors were used in the 

research experiments. In the first set of experiments a 20 kg/h cold reactor which 

was a Perspex (transparent) model of 20 kg/h hot Pyroformer was used. This 20 

Figure 14 - Pyroformer research methodology diagram 
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kg/h cold reactor was identical in auger screw dimensions to 20 kg/h hot 

Pyroformer reactor with notable differences in Perspex transparent body in cold 

reactor instead of stainless body in hot reactor and also absence of electrical 

heaters in the cold reactor. The transparent body was considered good for viewing 

the material flow inside the reactor when both screws are turning. The 

experimental setup and procedure is explained further in chapter 4. 

In the second set of experimental setup there was a 20 kg/h hot Pyroformer 

reactor involved. This Pyroformer was semi-automated and was able to heat the 

biomass with precise control and variance of temperatures of electrical heaters 

and the rotational speeds of the both screws.  

In the third experimental setup there was a 100 kg/h Pyroformer involved. This 

Pyroformer was part of an integrated process where ancillary equipment was used 

to conduct the experiments. The experimental setup and procedure is explained 

in Chapter 6. 

3.5 Limitations of the project 
 

All the experimental work has been done under various funded projects which are 

acknowledged in Chapter 1. This means tests were done under tight time 

schedules to deliver results to these projects as well as to contribute towards this 

PhD thesis. Hot Pyroformer (20 kg/h) equipment was shared between different 

groups and hence there were some time limitations which needed to be adhered 

to.  

The analysis of bio-oil and biochar properties was performed in Chapters 5 and 6. 

The emphasis was more onto bio-oil and biochar quality during pyrolysis tests for 

their applicability, whereas the gas fraction was not analysed for its composition 

due to lack of availability of gas sampling and analytical equipment and due to 

lack of interest as a mainstream pyrolysis product.  The gas fraction is hard to 

store and transport and in reality, can be used as combustion fuel to drive the 

heating demand of a pyrolysis process. Bio-oil was only characterized for its fuel 

properties and hence no detailed engine tests are performed to evaluate its fuel 

combustion characteristics. Also, the biochar study was kept limited to biochar 

composition analysis and its comparison with newly adapted biochar quality 

standards from BBF (British Biochar Foundation) and IBI and hence there are no 
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field trials and lifecycle assessment conducted as this will encompass long duration 

and effort which is beyond the scope of this thesis.  

Large scale pyrolysis tests in 100 kg/h Pyroformer were conducted on a 

comparative basis between ENPlus standard wood pellets and miscanthus, the 

results are presented in Chapter 6 section 6.3. It must also be noted here that the 

nature of the setup of the plant was such that biodiesel was used to directly quench 

the pyrolysis vapours and a blend of pyrolysis oil and biodiesel was produced which 

was further analysed for its fuel properties. This was considered beneficial as it 

will eliminate the need for bio-oil post pyrolysis blending as pyrolysis bio-oil have 

been proven to be a complex and problematic fuel in pure form. 

There are no gasifier tests covered in this thesis as the gasifier plant was still in 

improvement stages and was lacking certain crucial equipment to merit a detailed 

scientific study. Commercial scale of gasifier process (as installed at EBRI) 

operations required significant budget and human resources to merit scientific 

tests which were not available in time. 

 

The design review recommendations for the 100 kg/h Pyroformer are based on 

initial operational experience at Harper Adams University before it was relocated 

to EBRI. This Pyroformer is now relocated in EBRI labs next to 1.2MW BFB gasifier 

where it is proposed to be integrated. The integration of Pyroformer and gasifier 

has not fully completed which means there are no combined mode tests between 

both units. However, a detailed design recommendation of the coupling parts is 

presented in this study. This is the maximum which can be done in this study to 

facilitate the Pyrogasification concept. Hence this thesis will not include any 

combined mode tests between the Pyroformer and the gasifier.  
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Chapter 4- Cold flow modelling in a 20 kg/h 

transparent Pyroformer  

The literature research [98-101] strongly indicated the positive effect of tar 

cracking by char, however it is evident that there is a lack of understanding the 

effect of char to biomass ratio for maximising the tar cracking by char. To fill this 

gap in scientific literature a detailed experimental study of char to biomass ratio 

was conducted in an innovative twin screw counter rotating Pyroformer reactor. 

During this study, the experimental and theoretical residence times of feedstock 

in the Pyroformer reactor were established so that any change in residence time 

and its impact on pyrolysis products can be better understood.  

To meet the first objective as highlighted in section 3.3 of Chapter 3, cold flow 

tests were performed in a transparent cold Pyroformer model with capability to 

see through the transparent body of the reactor as shown in Figure 15. This cold 

Pyroformer setup enabled to visually observe the material flow for bridging and 

fill levels in screws through Perspex transparent body of Pyroformer, to establish 

residence time of material in inner screw of Pyroformer, time taken to reach steady 

state and char to biomass ratio and fill level characteristics in the reactor. There 

are no heaters installed on this system and hence there are no hot pyrolysis 

reactions taking place. The inner and outer screw dimensions were identical to 

that of 20 kg/h hot Pyroformer where actual pyrolysis reactions take place. It is 

assumed that material flow characteristics are very similar to that of hot 

Pyroformer system except hot vapours and material density differences, however 

the change in material volume was very small compared to density difference. 

These tests are performed to meet the objectives as stated earlier in section 3.3 

which included the following; 

 to monitor the material flow inside the reactor, this is essential to establish 

process limitation in terms of blockages 

 to establish the residence time inside the inner screw of the Pyroformer by 

determining the frequency settings (Hz) on the inverter controllers of 

Pyroformer screws 

 to calibrate the system to understand the steady state limitations of the 

Pyroformer for various feeding rates while carefully observing the pellet 

bridging and blockages caused by re-circulated material 
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 to understand the char to biomass ratio while using the plastic beads (as 

simulation material) and accounting for any differences in density of 

biomass pellets and plastic beads as well as the mass loss of wood pellets 

in evolving vapours.  

4.1 Equipment and materials 
A cold Perspex see through Pyroformer model was used in this study. The 

equipment listed below is same as used in the residence time observations, steady 

state establishment and for char to biomass ratio calculations in cold flow tests. 

This is because hot Pyroformer is not practical to be used for such tests due to 

health and safety and operational reasons. A detailed breakdown of Pyroformer 

screw components is presented in the Figures 16 and 17. The dimension of inner 

and outer screws are presented in the Table 13. An integrated setup of Pyroformer 

screw components is shown in the Figure 18. For cold flow modelling to understand 

the pellet flow behaviour in the Pyroformer following equipment was used as listed 

below.  

 Twin screw transparent Pyroformer mobile assembly 

 Motor specifications for both screws: TEC Motor, 0.75 kW, 240 V, model 

MS802-4 0.7543TECAB3-45DEG  

 Low rpm gearbox (coupled to above motor) specification: Goldcrest 

gearbox, model: M0532, reduction ratio 70:1, 20 rpm 

 Single phase 240 V to 3 phase rpm inverter controllers, one for each screw 

motor (Powtran, type PI8600A1 R75G1, 0.7 5kW 4 A). 

 ENPlus standard certified wood pellets of 6 mm diameter acquired from 

Verdo renewables 

 Low density (LDPE) Plastic solid beads of 3.5 – 4 mm diameter (used in C/B 

tests) manufactured by Sigma Aldrich 

 3 Plastic beakers of 500 ml capacity for biomass weighing and feeding 

 Container for collecting the material at Pyroformer outlet 

 Ohaus weighing scale, weighing range up to 4000 grams, Model Scout Pro 

SPU4001, 0.1 gram accuracy 

 Stopwatch with 0.1 Sec accuracy
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Figure 15 - Image of cold Pyroformer system, 1. Mains power, 2. Inner screw rpm controller, 3. Outer screw rpm controller, 4. 

Emergency stop, 5. Feed inlet, 6. Outlet, 7. Inner screw motor, 8. Outer screw motor, 9. Pyroformer transparent body and 

screws 
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Figure 17 – Dimensions of the inner screw (IS) of 20 kg/h Pyroformer 

Figure 16– Dimensions of outer screw (OS) of 20 kg/h Pyroformer 
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Table 13 - Pyroformer IS & OS screw dimensions 
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Figure 18 - Cross section of Pyroformer showing IS & OS integrated setup (A–Feed inlet, B-Inner screw, C-Gas outlet, 

D- Outer screw, E-char outlet 
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4.2 Residence time  
The time biomass feedstock (wood pellets) spent in the reactor when conveyed in 

the forward direction by the inner screw is called as residence time (RT). This is 

the pyrolysis time for biomass to give off volatile vapours.  RT depends upon the 

speed of inner screw (IS). The residence time was experimentally determined by 

feeding the wood pellets in empty transparent Pyroformer and measuring the time 

taken on stopwatch by wood pellets to travel through the inner screw and to come 

out at the char outlet. The transparent body of the cold Pyroformer enabled to 

clearly view the biomass entering and exiting at their respective ports. The mean 

residence time of the biomass is different for recirculated material and is also 

dependent on the outer screw speed during C/B calculations. 

The residence time can be measured experimentally by observing material entry 

and exit and measuring the time as well as theoretically by equation 1. Inner 

screw has 14 helixes as shown in Figure 16. Theoretical residence time (RT) can 

be calculated as the number of sections of the inner screw (N=14) divided by the 

rotational speed of the inner screw (IS): 

𝑅𝑇 (min) =
𝑁

𝐼𝑆 (𝑟𝑝𝑚)
    (Equation 1) 

For example, taking the first result from Table 15, the theoretical residence time 

for inner screw is calculated as below 

𝑅𝑇 (min) =
𝑁

𝐼𝑆 (𝑟𝑝𝑚)
 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑅𝑇 (𝑚𝑖𝑛) =
14

2.3
=   6.1 min 

Where  

N=14 number of helixes  

And inner screw speed is 2.3 rpm 

Whereas the experimental residence time is the actual time taken by the inner 

screw to convey the pellets from feed point to exit point.   This is measured time 

on the stopwatch after reaching steady state when the pellets are introduced into 

the Pyroformer at the feed inlet and the time taken by the pellets to appear on 

the char outlet of Pyroformer at the set speed (rpm) of the inner screw motor.  
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4.2.1 Procedure for residence time determination 

For residence time (RT) determination, both LDPE and wood pellets were used to 

verify the RT individually for both materials. The residence was verified to be same 

for both materials. The stopwatch was set to zero then the material was fed into 

feed inlet (A) which then entered the inner screw (B) through the 4 slots (as shown 

in Figure 17) in the outer screw (D) and then it gets conveyed away from feeding 

point. The 4 slots were in feeding end of outer screw and the 8 slots were on the 

far end from feeding section. Biomass then falls into outer screw through 8 slots 

in outer screw. When the reactor reaches the solids steady state then feed-in 

equals the feed-out in cold Pyroformer model.  

The normal direction of material flow is from feed inlet (A) to char outlet (E) (as 

shown in Figure 18) in the inner screw in forward and recirculation of material is 

by means of outer screw rotating in backward direction compared to inner screw. 

The residence time of the biomass during pyrolysis must be sufficient to allow for 

the complete evolution of volatile matter from the biomass.  The recirculated 

biomass from the OS has the longer residence time compared to single pass 

through inner screw only as it can travel more than one time from within inner 

screw.  Both materials (wood pellets and LDPE beads) show similar RT for a similar 

feeding rate. Material flows are shown in the Figure 19 during various stages. 
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Figure 19 - Material flows in the Pyroformer during various stage 
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In the initial preparation stage (Figure 19a), before the pellets are introduced in 

the feed inlet to enter the Pyroformer, both IS and OS are turning in forward and 

reverse directions respectively and no materials are going in or out. Once the 

feedstock is introduced, it starts to accumulate (Figure 19b) inside the reactor 

before both screws are filled, no material comes out of the reactor. After feed 

introduction into the Pyroformer, it takes between 45-60 minutes to reach the 

steady state (Figure 19c). In the steady state, material fed in equals the material 

coming out and OS is re-circulating some of the material (mC) in backward 

direction after some material accumulation has taken place as shown in red 

dashed arrow in Figure 19b. Residence time (RT) is experimentally determined 

after reaching steady state where FRin equals FRout.  In emptying stage both screws 

are turning in forward direction (Figure 19d) to avoid re-circulation of material and 

hence all the material is emptying into char container. 

4.2.3 Residence time calibration data 

The frequency setting in Hertz (Hz) was altered on the Pyroformer screw motors’ 

inverters to get the required rpm of inner or outer screws while precisely 

monitoring the time for each rpm of screws on the stopwatch. The relationship 

between frequency in Hz and rpm of the motor was found by calibration. Given 

below in the Table 14 are corresponding frequencies for required rpm setting which 

were used on the digital inverter controller of both inner and outer screw motors.  

Table 14 - Relationship between frequencies (Hz) and rpm of the inverters and 

motors of inner and outer screw in cold transparent 20 kg/h Pyroformer 

Inner screw Inner screw Outer screw Outer screw 

Frequency Hz rpm Frequency Hz rpm 

5.21 2 5.15 2 

7.80 3 7.65 3 

10.25 4 10.30 4 

12.50 5 12.66 5 

15.00 6 15.00 6 

17.65 7 17.65 7 

19.55 8 19.55 8 

21.30 9 21.40 9 

24.00 10 24.00 10 
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After determining the frequency setting for required rpm then the residence time 

experiments are performed in the transparent cold Pyroformer. Determining the 

frequency settings (Hz) is essential to ensure that correct rpm can be set on screw 

motors. The corresponding frequencies were then used to run the screw motors 

at desired incremental speed and the results are presented in the Table 15. 

Table 15 - Effect of the inner screw speed on the minimum residence time 

IS (rpm) 2.3 4 7.1 10 13 

RT (min)      

  Theoretical RT (min) 6.1 3.5 2.0 1.4 1.1 

  Experimental RT (min) 5.3 3.3 1.6 1.2 1.0 

4.2.4 Inferences from residence time calibration 

The relationship between frequency (Hz) setting of the inner or outer screw 

inverters and the rpm of the respective motor is found to be linear as expected. 

It is essential to point out that although inner and outer screws have different 

diameters of spirals or helix and their required frequency settings on inverters are 

approximately similar to get the same rpm on respective motors due to low rpm 

reduction gearbox. Even due to the large inertia and diameter of the outer screw 

relative to that of inner screw outer screw/inverter did not require higher 
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frequency setting. This relationship between frequency settings of inverters and 

rpm of the motors is linearly represented in Figure 20.  

The difference in theoretical and experimental residence times can be seen in the 

Table 15 and shown graphically in Figure 21. The shorter experimental residence 

time is perhaps attributed to the biomass feed point which is above the second 

helix of the inner screw and when the material enters the inner screw it is 

conveyed from 2nd or 3rd helix onwards. The conveyance of material from 2nd or 

3rd helix of inner screw is due to feed inlet slots in the outer screw which prevent 

the biomass to start from very beginning of the inner screw upon entry. It is due 

to the biomass feed joining from second helix which is leading to shorter 

experimental RT compared to that of theoretical RT. 

Figure 21 highlights the relationship between the inner screw speed and residence 

time. As the rpm of IS increases the RT decreases. However, this relationship is 

not linear. It is also evident that the theoretical RT is higher than the experimental 

RT.  

This difference in both values can be attributed to less number of helixes of inner 

screw used in transporting the material. Such as when biomass pellets enter the 

inner screw they must pass through the outer screw slot and reach the 2nd or 3rd 

helix of the inner screw and then they are carried forward. Also, when the pellets 

are exiting the reactor through the char outlet, here again initial few inches of 
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speeds to the residence time of biomass in inner screw 



  

97 
 

inner screw length with spirals/helixes are not used as the char outlet is positioned 

slightly short of complete length of inner screw or the length of the reactor. This 

also leads to further questions such as whether the experimental RT should be 

much shorter and the difference (between both RTs) should be more than seconds 

as shown in Table 15. The reason behind such small difference between the 

theoretical and the experimental RTs could be attributed to significantly longer 

time taken by the pellets in the experimental RT due to the physical resistance to 

the flow of pellets by the bridging of pellets thus balancing the overall 

experimental RT of pellets compared to theoretical RT. Which means experimental 

RT is decreased by less number of helixes of inner screw used and due to the 

bridging between the pellets causing them to slow down during travel. It is hence 

fair to say that the experimental RT is balanced by the lower number of IS helix 

and material bridging to get somewhat similar residence time to that of theoretical 

RT. 

4.3 Steady state operations 
When the distribution of the biomass in the reactor is constant after char re-

circulation has taken place for significant duration of time this is called steady 

state. The total volume of the particles in the reactor during steady state do not 

change but the fresh feed and char materials are replaced provided the feeding 

rate is constant. During this state the biomass input mass flow rate equals the 

output mass flow rate at a constant feeding rate as shown in Table 16. During the 

steady state at a given feed rate same amount of biomass leaves the reactor as 

the amount of biomass entering the reactor, the material accumulation inside the 

reactor is controlled by the cut-out slots in the outer screw shaft and the char 

outlet slots above the char pot. This is true in the cold transparent model whereas 

it is different in hot Pyroformer where vapours are evolving and hence mass flow 

rate will different in charpot due to gases leaving in the vapour outlet. The time 

taken to reach the steady state varies with the feeding rate. In general, steady 

state is achieved quicker when the feeding rate is higher and vice versa. This 

means at feeding rates closer to maximum design limit of Pyroformer the steady 

state can be achieved in 45 minutes whereas the steady state for very low feeding 

rate of 3 kg/h can be as high as an hour. 

In steady state screws are rotating in counter directions with material transport in 

counter directions as shown in Figure 19b with flow directional arrows. The weight 
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of the recycled material (mC) is determined by stopping the OS and emptying the 

IS in normal forward direction until inner screw is completely empty of all material. 

This is the material which contains fresh feed as well as the recycled material. At 

this point stopwatch is started again to run the OS equal to RT while IS also 

running in forward direction after it was emptied. The material collected is only 

the recycled material mC after running both screws as shown in Figure 19b in 

steady state. To empty the reactor of all the material then both screws are run in 

forward direction (as shown in Figure 19c) until all material has come out and then 

the system is ready for next experiments. 

The real steady state inside the hot Pyroformer is reached when the evolved 

pyrolysis gas flow rate is constant at constant feeding rate whereas there will be 

different material mass flow in and pyrolysed char leaving out into char container 

due to mass loss into vapours. During the accumulation state, the pyrolysis liquid 

is having more aqueous phase, while the liquid collected during the steady state 

contains more organic phase. This phenomenon is further discussed in next chap



  

99 
 

Table 16 - Material distribution in the cold Pyroformer with counter flows in screws showing accumulation and steady state 

Accumulation Steady state 

Material flow direction in OS  

 

 

 

 

 

 

 

 

 

During this state the fill rate and material distribution is 

changing 

 

 

 

 

 

 

 

   Material flow direction in OS 

During this state, material fill and distribution is constant 

 

Important! It is the feeding rate and screw speeds of both 

screws which determines the fill volume in the Pyroformer. 
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In the Pyroformer before the steady state is established the material fed into the 

reactor is accumulating and both the inner and outer screws are being filled. There 

could be no or little quantity of material leaving the reactor into the charpot 

depending upon whether there is excess material build-up at the 8 char 

recirculation slots in the outer screw. In steady state there is sufficient char 

recirculation taking place which is dependent on feeding rate and screw speeds. 

Once steady state is established in cold model the material in equals material out 

as shown in Figure 19b. 

4.4 Char to biomass ratio (C/B) determination 
Char to biomass ratio (C/B) as the name states is a simple measure to determine 

how much recirculated char is present in the inner screw compared to the fresh 

feed material. Based on literature research where tar cracking by char is 

highlighted, it is assumed that higher the quantity of recirculated material (char) 

present within pyrolysis reaction zone, this may lead to higher number of carbon 

active sites being present for the evolving organic vapours. These active carbon 

sites (since most of the char is carbon) will promote the re-arrangement of free 

radicals within pyrolysis vapours to react with long chain hydrocarbons (tars) to 

further breakdown and lead to improved pyrolysis products. Char to biomass ratio 

is discussed here on the mass basis. It is linked to the rotational speed of outer 

screw to the inner screw of the Pyroformer. As both Perspex model and hot 20 

kg/h Pyroformer screws and reactor diameter are identical in dimensions, the 

material flow must be same with the exception of very small volume change and 

a large density change in the solids and the release of volatiles in the hot 

Pyroformer system compared to cold Pyroformer model.  

For char to biomass ratio (C/B) to be calculated it is important that steady state 

in the Pyroformer is reached as it is when after this constant char re-circulation 

occurs and then C/B becomes effective. Figure 19 represents the material flow 

through the Pyroformer during various stages of tests. 

𝐶/𝐵 =
𝑚𝐶̇

𝑚𝐵̇
                   (Equation 2) 

The above equation is the baseline equation to represent the C/B. Where, mC and 

mB are mass flowrates of recirculated char and freshly fed biomass. Detailed 

calculations were performed based on the equation 2 to represent the differences 
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in densities of plastic beads used in the cold Pyroformer to that of biomass in the 

hot Pyroformer. To apply the findings from cold tests to hot Pyroformer, 

adjustments are made for differences in density between plastic material and 

biomass as well as material lost in the vapours in the hot Pyroformer. This was 

done by using equation 3. There are variables which need to be adjusted each 

time a different C/B ratio is concerned, these are inner screw speed in forward 

direction, outer screw speed in backward direction, feeding rate of material and 

any variability in feedstock composition.  

4.4.1 Procedure for char to biomass ratio determination 

The experimental residence time, feeding rate, speeds of inner and outer screws 

and bulk density of the materials were determined by using a stopwatch, feeding 

the materials and observing for the flows. Start the screws (with IS forward and 

OS backward). Set the time to zero and start feeding the reactor continuously at 

least until the steady state of solid particles (as shown in Figure 19) is reached 

(FRIN = FROUT). Stop feeding and stop the screws. Reset the time to zero and start 

only the inner screw. Leave it on during a period equal to RT. Then, stop the inner 

screw and weigh the mass, m1. Calculate the C/B ratio using the following 

equation, considering the right units. 

𝐶/𝐵 =
𝑚̇𝐶

𝑚̇𝐵
=

1

𝐹𝑅
∙ [

𝑚1

𝑅𝑇

3600

1000
− 𝐹𝑅]

𝜌𝐶

𝜌𝑝𝑙𝑎𝑠
                                                (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 

Where 

m1 combined mass of mixture of “freshly fed material in IS” and 

“recirculated material after going through OS into IS” that enter the 

inner screw from the outer screw after a period >RT in grams, this 

(m1) is normally found experimentally in the cold Pyroformer by 

stopping OS and removing all material from IS after steady state and 

then weighing the material to determine m1. 

RT residence time, in seconds 

FR feeding rate, in kg/h 

ρchar density of char 485kg/m3 

ρplas density of LDPE particles with which the test was performed, 

607kg/m3 
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4.4.2 Char to biomass ratio data 

The results from cold tests are presented in Table 17 and graphically represented 

in Figure 22. These tests are done in cold Pyroformer reactor based on plastic 

beads as test material. The C/B is in fact ratio of recirculated material to that of 

freshly fed material. The highlighted column in Table 17 is C/B when the difference 

in densities of plastic beads to that of char is considered and hence is labelled as 

char to biomass ratio (C/B). During the determining of C/B ratios experimentally, 

it was observed that Pyroformer could not take feed rate greater than 10 kg/h at 

higher than 2 rpm of OS. It was also observed that blockages will occur inside 

Pyroformer at feed inlet if the feed rate was higher than 10 kg/h and IS rpm was 

lower than 3 rpm. But at the same time when it was cross checked with the need 

to have sufficient RT of biomass for pyrolysis reasons (maximum mass loss at RT), 

it became apparent that Pyroformer system has limitations for liberating volatiles 

efficiently. The results of various operating parameters leading to C/B are shown 

in Table 17.
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Table 17 – Cold Pyroformer experimental results as shown for various C/B ratio, IS, OS rpm and residence time (RT) 

FRIN, kg/h IS OS RT OS flow, kg/h IS flow, kg/h    C/B            C/B 

Plastic Char rpm rpm s Plastic Char Plastic Char mass Volumetric 

3 2.40 6 1 151 13.44 10.74 16.44 13.14 3.58 4.48 

3 2.40 6 2 151 17.10 13.66 20.10 16.06 4.55 5.70 

3 2.40 6 3 151 21.90 17.50 24.90 19.90 5.83 7.30 

3 2.40 6 4 151 24.18 19.32 27.18 21.72 6.44 8.06 

3 2.40 6 5 151 32.76 26.18 35.76 28.57 8.73 10.92 

5 4.00 3 1 301 6.00 4.79 11.00 8.79 0.96 1.20 

5 4.00 3 1.5 301 6.95 5.55 11.95 9.55 1.11 1.39 

5 4.00 6 1 151 10.25 8.19 15.25 12.18 1.64 2.05 

5 4.00 6 1.5 151 13.00 10.39 18.00 14.38 2.08 2.60 

5 4.00 6 2 151 15.25 12.18 20.25 16.18 2.44 3.05 

5 4.00 6 3 151 17.65 14.10 22.65 18.10 2.82 3.53 

5 4.00 6 4 152 19.79 15.81 24.79 19.81 3.16 3.96 

6 4.79 6 8 151 21.51 17.19 27.51 21.98 3.60 3.59 

10 7.99 3 1 301 2.00 1.60 12.00 9.59 0.16 0.20 

10 7.99 3 1.5 301 1.80 1.44 11.80 9.43 0.14 0.18 

10 7.99 6 1 151 7.00 5.59 17.00 13.58 0.56 0.70 

10 7.99 6 1.5 151 7.90 6.31 17.90 14.30 0.63 0.79 

10 7.99 6 2 151 8.80 7.03 18.80 15.02 0.70 0.88 

           



  

104 
 

 

Figure 22 - Graphical representation of relationships between IS and OS rpm to C/B (mass basis as grey highlighted in Table 

17) 
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4.4.3 Inferences from C/B data 

Char to biomass ratio (C/B) is calculated from global equations 2 and 3 as 

described above.  In the equation parameter “m1” was determined by calibrating 

the cold Pyroformer and removing the combined mass from IS of freshly fed 

material and recirculated material. This is simply the combined mass of “fresh” 

and “recirculated” particles within the inner screw after steady state has been 

reached. Equation 3 is based on the density differences between plastic beads and 

char as the plastic beads were uniform in size and unbreakable, very close to wood 

pellets in density and particle size and hence they were used in the study as 

opposed to wood pellets. As opposed to residence time calculation (where RT was 

validated to be approximately same in both cold and hot Pyroformer units) C/B 

could not be validated in hot Pyroformer due to health and safety risks associated 

with hot Pyroformer if char-pot was to be opened during pyrolysis. The validation 

was more from an overall perspective where the density of char was known for 

wood pellets in hot Pyroformer. The results of the tests are presented in the Table 

17. C/B of recirculated material when taking into account the density of char is 

shown if C/B ratio was to be used for hot Pyroformer application. It is observed 

that the C/B will change with changing feed rate and rpm of both inner and outer 

screws. This change in C/B must be due to different fill levels due to mass entering 

per unit time in IS and also the very small difference in the density of pyrolysed 

recirculated material due to mass loss (only valid in hot Pyroformer case).  

It is worth noting here again that cold Pyroformer used in this study has exactly 

same IS and OS diameter and length to that of 20 kg/h hot Pyroformer used in 

Chapter 5. This cold system is made up of a Perspex body rather than steel 

enclosure as in the hot Pyroformer. Also, the 20 kg/h scale of the reactor is only 

associated with the IS being able to transport all the 20kg of material in one hour 

without blockages and without any material re-circulation through outer screw. 

Hence it is fair to say the actual scale of this Pyroformer is drastically reduced 

when outer screw is rotated (very slowly) in backward direction to recycle the 

material back towards the feed inlet point. The wood pellets were also tested in 

the cold Pyroformer to see the pellet breakdown, amount of fine and blockages 

caused at feeding rates closer to design capacity of 20kg/h. The scale of this 

Pyroformer is observed to be in the following order depending on which screw is 
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turning and in which direction. Throughput of the Pyroformer is interlinked in the 

following order 20 kg/h (IS forward, OS forward or stopped.  

During the cold tests when the experimental RT was determined and validated to 

be same for both wood pellets and plastic beads. Three different feeding rates of 

3, 5 and 10 kg/h were tested at two different RTs relative to 3 and 6 rpm of IS. It 

was noticed through the transparent body of the cold Pyroformer that there was 

some fine material retained within the system, this was more applicable to wood 

pellets than the plastic beads which were more robust. This material build-up 

between the screw shaft and reactor body was due to mechanical forces breaking 

down some wood pellets during transport through the screws. The other 

clarification which is important to be highlighted here was that higher feeding rates 

(>10 kg/h) could lead to blockage at the feeding point. The blockage is caused by 

too much material entering through the 4 slots in the OS. There were freshly fed 

material and then recirculated material both joining together from feed entry point 

in the OS screw slots. The probability of blockage inside the Pyroformer feed inlet 

was more apparent when the IS rpm was low and feeding rate was higher than 

10 kg/h for a constant rpm of OS. For effective material transfer without blockage 

inside the Pyroformer it was observed that 10 kg/h is the maximum feeding rate 

which should be used in future with a RT of 3.3 minutes at IS rpm of 4. There was 

an inversely proportional relationship between RT and rpm of IS. Which means by 

increasing the IS rpm, the RT will be reduced. This is an important factor for hot 

pyrolysis where it is necessary for biomass to spend a certain minimum RT inside 

the reactor to have most of the volatiles released from biomass. A trade off must 

be made between RT by means of IS rpm and the throughput of the reactor.  

 

The relationship between C/B is explained with the help of Table 17 and Figure 

22. It is important to highlight that these tests are done in the cold Pyroformer 

and without pyrolysis conditions and with plastic beads and the C/B is determined 

for recirculated material to that of freshly fed material in the IS. However, by 

ignoring the small volume change during hot pyrolysis and considering the density 

difference between plastic bead and char materials the same C/B ratios can be 

applied for hot Pyroformer. Hence, although the observations given below are 

based on plastic beads experimental study but same is true to great extent for 
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recirculated char and biomass pellets if a minor change in volume is ignored. The 

change in volume can be ignored for feeding rates below 10 kg/h as during this 

time IS was not completely filled so small volume fluctuations do not make any 

difference as there is ample space available in the screw to account for volume 

change. Feeding above 10 kg/h meant that IS was near capacity to be full and 

blockage potential was imminent. Here, C/B is not necessarily char but 

recirculated plastic beads representing the char when considered with the 

difference in density.  

 Two RTs are tested in the experiments in Perspex cold Pyroformer i.e. with 

IS of 3 rpm and 6 rpm at different feeding rates, it is important to remember 

that these RTs are experimental and hence there is a small variance of 10% 

to those of theoretical RTs. 

 With increasing C/B there is higher mass flow rate which is observed in the 

inner screw. This higher flow rate is caused by initial fresh feed plus any 

recirculated material coming back from OS to re-join the fresh feed in the 

IS. 

 At constant feed rate and constant IS rpm in forward direction, increasing 

the OS rpm in reverse direction to convey char towards feed inlet increases 

the C/B as is evident in curve 1 in Figure 22.  

 At low feeding rates and constant IS and OS rpm the C/B is higher compared 

to higher feeding rates and as the feeding rate increases the C/B decreases 

as there is more fresh feed compared to recirculated material at the feeding 

point, this phenomenon is evident from the C/B curve shifting to right with 

lower feeding rates (e.g. 3, 5 and 10 kg/h) and C/B curve shifting to left at 

higher feeding rate. 

 RT below 151 seconds at IS 6 rpm (curves 1,3 and 5) will possibly lead to 

a very small mass loss (although not applicable in cold test) during hot tests 

in Pyroformer and hence any tests faster than 6 rpm of IS were not 

performed, as this was not going to give any benefit.  

 At the same time with increasing feeding rates at 6 rpm of IS, the OS rpm 

(curves 1-4) can be increased at lower feeding rate (3 and 5 kg/h) to 

achieve higher C/B but there is a limit to this and blockages are likely at 

higher feeding rates, if OS rpm was increased beyond 2 rpm (e.g. beyond 

curve 5).  



  

108 
 

 To achieve better C/B ratio lower feeding rates and low IS rpm and higher 

OS rpm is recommended, however Pyroformer system can be sensitive to 

blockages if very high OS rpm is selected while maintaining reasonable RT 

for hot pyrolysis reactions in reality. 

 

When applying the C/B ratio results from cold model to the hot Pyroformer 

there must be some additional aspects which must be understood, as 

explained below; 

 

 With regards to C/B from these cold tests and applying it to hot Pyroformer, 

higher feeding rates lead to lower C/B and thus the catalytic effect of vapour 

cracking with char (carbon + inorganic ash content) may well be 

compromised. This can be better explained in next chapter in terms of 

amount of carbon and inorganic fractions available in the char to that of 

biomass feed. As more and more carbon (from recycled char) becomes 

available to evolving gaseous vapours from biomass the vapours are 

adsorbed onto carbon’s catalytic sites and re-organise and or decompose 

into other hydrocarbons. 

 In hot Pyroformer, for the purposes of maximisation of char cracking effect 

(anticipated to be related to higher C/B) it is better to run the Pyroformer 

with low feeding rates as it is when more char containing elemental carbon 

and inorganics are present in the reaction zone with evolving gaseous 

vapours from fresh biomass feed.  

 In hot Pyroformer, experimental RT needs to be sufficient to allow for 

maximum or effective weight loss due to vapour release i.e. shorter the RT 

(means higher IS rpm) the less weight loss from biomass pellets will occur 

and vice versa
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4.5 Summary of the chapter 
The literature research strongly indicated the positive effect of tar cracking by 

char, however it is evident that there is a lack of work done in understanding the 

amount of recirculated material (char) to freshly fed material (biomass) ratio for 

maximising the tar cracking by char. To fill this gap in scientific literature a detailed 

experimental study of char to biomass ratio was determined in an innovative twin 

screw counter rotating Pyroformer reactor. During this study the experimental 

residence time of feedstock in the reactor was determined and it was compared 

with the theoretical RT. This study also enhanced the understanding of material 

flows with the reactor and helped to understand the operational limitations of 

Pyroformer due to blockages by material bridging. 

This study enables to understand the relationship between inverter motor control 

frequency settings (Hz) and the IS and OS screw speeds. Both IS and OS seemed 

to be working at similar rpm at approximately similar frequency settings. The 

residence time (RT) which is a function of rpm of IS was also experimentally 

observed and theoretically calculated and it showed a small difference between 

both. This is important aspect of pyrolysis for maximum weight loss from biomass 

and is interlinked with weight loss curve as done by various researchers in thermo 

gravimetric analysis (TGA). The RT need to be equal to are greater than the initial 

maximum weight loss point on TGA curve. It is also well known in pyrolysis field 

that higher the residence time then the grater is weight loss however excessively 

unnecessary long RT is not beneficial as it does not bring a lot of benefit and to 

be sufficient time until weight loss levels on TGA curve.  

The ratio between recirculated material and freshly fed material in cold Pyroformer 

or in hot Pyroformer terms it is char to biomass ratio (C/B) which is another 

important aspect which is modelled in this study. It enables to understand how 

much recirculated material was present at any given time if the IS and OS rom 

and feeding rate of the biomass were known. This C/B ratio also enabled to 

understand the system limitation which is prone to blockages by excessive OS rpm 

and hence a trade-off need to be found between the feeding throughput and higher 

C/B without blockages. The determination of C/b ratio paved the way for better 

understanding of hot pyrolysis, explained in chapter 5 where the impact of C/B is 

observed on the quality and quantity of pyrolysis products. Previously it was not 

known that by changing the IS or OS rpm how much recirculated material was 
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present relative to freshly fed material. During this study the ratio of recirculated 

material to fresh feed was determined at various IS and OS rpm, this (C/B) 

parameter is now quantified and with this information a better understanding of 

the effect of IS and OS rpm variance on the quality of pyrolysis products can be 

established. Further work to understand the relationship between C/B ratios was 

conducted in Chapter 5 to see the impact on quality and quantity of the pyrolysis 

products. 
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 Chapter 5 - Experimental studies in hot 

Pyroformer 20 kg/h  

In this chapter, the results of two different studies are reported. The first study is 

parametric study into effects of the ratio of recirculated char to biomass and of 

variation in the feeding rates of biomass pellets, on quantity and quality of 

pyrolysis products. In this study only one type of biomass feed stock in the form 

of corn and green rye digestate pellets is used.  In the second comparative study 

the effect of biomass feedstock variation at similar feeding rate is studied and the 

results are presented. In this case three different feedstocks are used and the 

analytical results are presented. 

5.1 Parametric study  
Three different feed rates of digestate were used to evaluate the effect of feeding 

rate on the mass yields and quality of pyrolysis products. This meant that the time 

taken to reach steady state were different. The feed rates used in the study were 

3, 5, and 10 kg.h-1 of digestate pellets through the Pyroformer reactor. Various 

screw speeds were used for both screws in both directions to investigate the 

improvements in the quality and quantity of products.  

5.1.1 Feedstock characterisation 

The feedstock used in the parametric study was from arable crops (corn and green 

rye) digestate. This means the feedstock had gone through an anaerobic digestion 

process where biogas was formed and resulting liquid digestate was then filtered 

to remove any solids by a mechanical process as is used generally in this industry. 

The solid fraction of the anaerobic digestate was dried and pelletized by Milson 

Engineering Ltd of Worcestershire in 6 mm diameter pellets before being used in 

this Pyroformer. The pellets were chosen over the powder and granules of 

digestate because of their uniform particle size, uniform heat transfer due to 

similar size and better flow performance against material bridging. The pellets 

from this digestate were also suitable to be used in the Pyroformer due to the low 

fines content, low moisture content and high density. Table 18 gives the results 

of the feedstock analysis. As shown, the moisture content in the feedstock was 

11.5% whereas ash content was 35.7% in weight. 
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Table 18 - Corn and green rye digestate feedstock analysis 

Parameter Units Analysis Value  

Proximate 

analysis 

  

Moisture content Wt. % 11.5 

Ash Wt. % 35.7* 

Volatile matter Wt. % 54.1* 

Gross Calorific 

Value 

MJ/kg 15.02* 

Ultimate analysis   

Chlorine Wt. % 0.87* 

Carbon Wt. % 35.95* 

Hydrogen Wt. % 3.91* 

Nitrogen 

Oxygena 

Wt. % 

Wt. % 

3.54* 

55.73 

* Dry basis analysis 

a Oxygen by difference 

The ultimate analysis of the feedstocks was determined using combustion analysis 

on a Flash EA 1112 Series CHNS analyser. Oxygen was calculated by difference. 

The density was measured according to the ASTM D-285. The moisture content of 

the feedstock was determined using a moisture analyser (Sartorius MA35) with a 

programmed temperature of 105°C. The gross calorific value in HHV (MJ/Kg) of 

the dried feedstock was determined using a Parr 6100 bomb calorimeter. 

5.2 Experimental method 
The samples were supplied by Milson Engineering Ltd of Worcestershire in 6 mm 

diameter pellets, these were fed into the Pyroformer reactor as shown in Figure 

23 where a detailed layout of the Pyroformer process is also presented.  This 

Pyroformer setup was used in the parametric and comparative studies. The 

differences between parametric and comparative studies were the different feed 

materials and the operating parameters whereas the equipment setup remains 
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the same. The Pyroformer process layout includes various parts which are 

integrated together which are explained below and represented in Figure 23: 

1. Pyroformer mild steel body 

2. Biomass feeding hopper with screw feeder motor (Motor specification; 

Danfoss Bauer, BS02-34v/d06la4/tf-k305/sp, 230V, 0.73A, 0.12KW, IP65) 

3. Sluice valve assembly made up of two ball valves (2-inch Internal diameter) 

and a hopper, 3a Nitrogen purge line 

4. Electrical heaters fitted on outside body of reactor tube across the length 

(Total 5 band heaters, 2×3kW and 3×2.5kW) to provide the heat for the 

process 

5. Inner auger screw (as shown in Figure 16) 

6. Outer auger screw (as shown in Figure 17) 

7. Electrical drive motors for inner and out screw with solwertsteller rpm 

controller (Motor specifications; Sew Eurodrive, Model: R57 

DRS71M4/mm/7, Power: 380-500V, 1.90A, 0.75kW) 

8. Pyrolysis gas outlet 40mm diameter (with KF40 flange) 

9. Metal stand for mounting the Pyroformer 

10. Char container of 15 Litres capacity 

11. Pyrolysis gas line (insulated) connecting the gas outlet to condenser 

12. Counter current bio-oil condenser, 12a & 12b cooling water inlet and outlet 

13. Ice bath for tar removal 

14. Bio-oil collection vessel (1 Litre glass bottle with screw tight lid) 

15. A dual stage fabric filters 

16. Gas flare 
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After general preparations, the process of preheating the Pyroformer was 

performed to reach the set temperature in the Pyroformer reactor. The 

temperature of the electrical heaters (4) was raised in 50°C increments every 30 

minutes to pyrolysis reaction temperature of 500°C for all the tests. This 

incremental temperature increasing procedure was implemented to ensure the 

uniform temperature distribution across the Pyroformer body (1) and also to avoid 

any hot and cold spots. The time taken to reach the set temperature was 

dependent on initial starting temperature of the Pyroformer. If the reactor was 

heated a day before then it took shorter time to reheat due to some residual heat 

present from last time.  A nitrogen purge (3a) was introduced at a 20-25 ml.min-

1 flow rate to ensure vapours evolving from the biomass could be facilitated by 

nitrogen flow to leave the Pyroformer and to drive off any air from within the 

Pyroformer during start-up. The rotational screw speeds of both inner (5) and 

outer (6) screws were selected before the introduction of feed to avoid sagging of 

screws due to heat. It was also ensured that during the heating process the 

Pyroformer was empty of any residual biomass and char from previous tests; and 

a nitrogen purge was introduced to ensure there was no air in the system. The 

biomass was fed from a hopper (3) by means of a screw motor. The screw motor 

Figure 23 - Pyroformer process (20 kg/h) layout - adapted from [110] 
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rotational speed was calibrated before heating up the reactor to ensure correct 

feeding rate was maintained during the test. Once the Pyroformer reached the 

desired temperature of 500°C then feed was introduced. Both feeder sluice valves 

on the vertical feeding section (3) were actuated to allow the biomass to enter the 

reactor while maintaining a sluice.  

Once the material entered the Pyroformer reactor, it was moved forward by the 

inner screw motor and just before the char outlet, material dropped into outer 

screw through special cut-outs. The outer screw moved the material backward 

towards the feed entry point where pyrolysed biomass (now char) joined the fresh 

feed and then got conveyed again with freshly entering biomass. It was also 

possible that some of the materials would be recirculated more than one time. 

During the material transfer forward by inner screw and backward direction by 

outer screws, pyrolysis reactions took place by means of the electrical heaters. 

During pyrolysis in the Pyroformer hot vapours are generated which are taken out 

from gas outlet (8) whereas the solid residue (char) comes out from char outlet 

into the container (10).  

It was also possible that, while resident in the reactor, some of the biomass 

underwent no recirculation instead coming straight out in the char container as 

pyrolysed material. Pyroformer was accumulating the biomass initially to fill the 

both screws rotating in counter directions to each other until any material came 

out in the char container. The actual residence time of the material in the 

Pyroformer was hence based on time taken by the biomass material in the inner 

screw after entering the reactor to exit into char container without any 

recirculation through outer screw as only a fraction of the material was recirculated 

through outer screw. Most of the feed material was exposed to a single pass 

through inner screw only. Exiting pyrolysis vapours were then condensed in a 

counter current shell and tube water cooled heat exchanger (condenser) (12) with 

hot pyrolysis vapours entering one side (to condense) and non-condensable gas 

coming out on the other side. Bio-oil was collected in the air tight glass bottle 

(14). The condensation took place with cooling water in counter current direction 

in a shell and tube heat system. The condensing pyrolysis bio-oil was collected at 

the exiting bottom end of the condenser in glass bottle fixed at the end.  
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The remaining non-condensable gases were then passed through an ice-cold bath 

(13) to recover any further traces of bio-oil. The gases then passed through a two-

stage fabric filter (15) and then was burnt in a gas flare (16). The resulting exhaust 

gases were discharged outside the building. The condensing liquids in the glass 

bottle was dominated by an aqueous phase. The system was defined to be in 

steady state when the organic phase became dominant in the liquid collection 

bottle, as before then there was some likelihood of residual air (until fully 

consumed) present which lead to combustion and produced mostly the combustion 

water. When the organic phases started to dominate then glass bottle was 

changed and the resulting liquid collected after this stage was then taken for 

further liquid analysis. However overall mass yields of the liquids were based on 

all the collected liquid. The liquid collected after steady state was sampled and 

was analysed for its fuel properties. The results of analysis are presented later in 

this chapter. 

5.3 Results and discussion 
The experimental results from 3, 5 and 10 kg/h pyrolysis tests are presented in 

the Tables 19 and 20. Various details of the tests are presented in these tables. 

During the tests for 3 kg/h feeding rates, it was observed that the time taken to 

reach steady state was the longest compared to 5 and 10 kg/h. Also, when the 

char to biomass ratio (C/B) was increased for a fixed feeding rate, the time taken 

to reach steady state was also increased. This confirmed that by increasing the 

char to biomass ratio by means of increasing OS rpm, the material was 

accumulating in the Pyroformer reactor, this accumulation led to longer time taken 

to reach steady state.  

The overall mass balance for the tests is presented in Table 20. There is a clear 

reduction evident in liquid fraction with increasing char to biomass ratio (C/B), as 

is evident in tests 7, 14 and 3 at 3 kg/h feeding rate.   There was also a good 

indication that by increasing C/B a significant increase in gas yield was achieved 

at 19 and 25.7 wt.%, whereas char yield decreased at 3 kg/h feeding rate. Similar 

results were also obtained for the char and gas yields at 5kg/h feeding rate during 

tests 9, 10 and 16.  

The bio-oil samples produced from these tests were phase separated into an upper 

layer organic phase and bottom layer aqueous phase (mostly water) were 
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obtained by gravity settling the bio-oil overnight in a conical separator apparatus. 

The organic phase of pyrolysis liquid showed mixed results and a conclusive trend 

is hardly visible to justify the effect on organic phase fuel properties.  Perhaps due 

to lack of data for all analysed properties missing for some samples is one 

contributing factor to make a balanced conclusion. More is discussed about this in 

Section 5.3.2. One interesting phenomenon presented in Table 21 in section 5.3.2 

was the values of total acid numbers which stood between 0.2 And 0.4 mgKOH/g 

of oil. These values were found to be lower than fast pyrolysis bio-oil and were in 

agreement to another study by Neumann [61] who also reported low total acid 

number value of 4.9 mgKOH/g for a digestate derived bio-oil pyrolysed at 750°C 

by influenced by tar cracking promoted by char.



  

118 
 

 

Table 19 - Experimental conditions for 3, 5 and 10 kg/h tests in 20 kg/h Pyroformer 

 

“a” - indicates reverse rotation of outer screw to that of inner screw for char recirculation 

SS – Steady state 

IS - inner screw rpm 

OS - outer screw rpm 

C/B – Char to biomass ratio 

              Screws rpm   

Test run 
no. 

Feeding 
(kg/h) 

Input total 
(g) 

Operational 
Time (min.) 

Input SS 
(g) SS (min.) IS OS C/B 

7.0 3.0 9500.0 190.0 4500.0 90.0 6.0 -1.3a 3.6 

14.0 3.0 13990.0 282.0 6986.2 137.0 6.0 -3.0a 5.6 

3.0 3.4 8500.0 180.0 2833.0 60.0 6.0 -4.0a 6.4 

16.0 5.0 13118.0 155.0 4167.0 50.0 6.0 0.0 0.0 

9.0 5.0 14167.8 170.0 5833.8 55.0 6.0 -1.0a 1.6 

10.0 5.0 12501.0 155.0 5000.4 65.0 6.0 -4.0a 3.1 

11.0 5.0 15834.6 190.0 9584.1 115.0 6.0 -8.0a 3.6 

12.0 10.0 17430.0 105.0 9960.0 60.0 6.0 -1.0a 0.6 

15.0 10.0 19999.2 120.0 11666.2 70.0 6.0 -1.0a 0.6 
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Table 20 – Experimental mass balance results for 3, 5 and 10 kilograms per hour test runs in 20 kg/h Pyroformer 

 

“b” Gas calculation by difference

       Overall Mass balance wt %     
Steady state wt% distribution of 
liquid 

Test run 

no. 

Feeding  

(kg/h) C/B  Liquid  Char Gasb 

Organic 

phase  Aqueous phase   

7.0 3.0 3.6  32.2 48.8 19.0 55.0 45.0 

14.0 3.0 5.6  28.3 46.0 25.7 46.0 54.0 

3.0 3.4 6.4  27.8 49.9 22.3 45.0 55.0 

16.0 5.0 0.0  29.7 59.3 11.0 33.0 67.0 

9.0 5.0 1.6  32.1 49.6 18.3 59.0 41.0 

10.0 5.0 3.1  32.0 43.8 24.2 48.0 52.0 

11.0 5.0 3.6  32.9 54.1 13.0 57.0 43.0 

12.0 10.0 0.6  34.9 51.3 13.8 42.0 58.0 

15.0 10.0 0.6  30.6 55.2 14.2 44.0 56.0 
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5.3.1 Effect of char recirculation on pyrolysis products 

In addition to varying feed rates of biomass between 3, 5 and 10 kg per hour, the 

C/B was also varied to evaluate the mass yields of products as well as the quality 

of products.  This was done by varying the relative inner and outer screw speeds 

in counter rotating directions. It is important to remember that char re-circulation 

took place only when the inner screw was moving in the forward direction (i.e. it 

was conveying the fed biomass from feed inlet towards the char outlet) and the 

outer screw was recirculating some of the pyrolysed char just before the char 

outlet through the cut-outs in the outer screw towards the feed inlet. The re-

circulated char then re-joined the fresh biomass feed and this was where the heat 

from the electrical heaters and hot recycled char transferred into fresh biomass as 

well as the catalytic effect due to the formation of active sites in the pores of the 

char shown to be playing their role in tar cracking. Tars are long chain 

hydrocarbons which are undesirable due to their impact on increasing bio-oil 

viscosity and inefficient combustion due to reduced atomisation of fuel. 

During the recirculation of char (after steady state) through the outer screw to 

inner screw most of the pyrolysed biomass experienced a single pass through the 

inner screw and then fell into char container. It was also possible for some particles 

of the recirculated char to recirculate multiple times.  The recirculation of char was 

a function of both the inner screw and out screw speeds as well as the biomass 

feeding rate, i.e. the fill rate of inner screw. When the outer screw rotated in the 

forward direction same as the inner screw then the C/B ratio was considered zero 

as the recirculation of biochar could not take place as both screws conveyed the 

contents towards char container. During this state, the conduction heat transfer 

from electrical heaters to biomass in inner screw was going to be minimised due 

to the empty outer screw (only heat convection to IS) and heat transfer 

mechanism was radiation and convection through gas phase to inner screw. 

However, some biomass could also be conveyed through the feeding inlet into the 

outer screw and then to char container in which case some heat conduction could 

take place. The enhancement of better heat transfer and increasing C/B ratio 

resulting in increasing char and surface area availability seemingly enhanced the 

product yields. The effect of C/B is further discussed below. Gas yield was 

calculated by difference as the accurate gas yield determination was not possible 

due to some gas escaping from the feeding section into a suction ventilation 
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system for disposal outside the lab. During this small gas loss, it was likely that 

some condensable vapours were also lost thus further impacting the mass 

balance. Solid residue collected in the char container, acquired after pyrolysis is 

called char. However, the carbon content in this char from digestate pellets was 

very low compared to char derived from pyrolysis of wood pellets [110]. 

Gas yield % + liquid yield % + char yield %= Biomass input X 100 % 

 

Gas yield % = 100 – (Liquid yield % + char yield %) 

 

The data collection for mass balance may have suffered some in-accuracies 

due to the scale of plant being slightly larger in 20 kg/h rather than 

hundreds of grams per hour in some cases. There were elements of data 

collection which could have influenced the inaccuracies in the date. These 

inaccuracies in data collection include; some fine feedstock particles 

deposited inside the feeding section where some fugitive gas emissions may 

have condensed, char left inside the Pyroformer screws or in the voids 

between the screws and reactor body, some vapours condensing inside the 

feeding section or condensed vapours elsewhere in the condensing train but 

not recoverable due to large volume and complex pipe joints and the 

escaping gaseous vapours from feeding section into suction ventilation 

system for safe disposal outside the lab. These errors in mass balance are 

not quantified as the gas fraction was not metered to provide a complete 

mass balance to highlight the percentage error. 
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Figure 24 - Effect of C/B ratio on product yields during 3 kg/h feed rate
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Figure 25 - Effect of C/B ratio on aqueous and organic phase yields during 3 kg/h feed rate 
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Experimental results are presented in Tables 19 and 20 where various operating 

conditions and the experimental data are shown. It was observed that there was 

a significant difference in time to achieve the steady state. The time taken to reach 

steady state was directly linked to the reaction conditions inside the Pyroformer 

in terms of thermal conditions, as the delayed steady state indicated poor reaction 

conditions due to longer drying time of biomass. A large time difference was noted 

between run 14 and 3 which was more than double for run 14 compared to run 3 

at 137 and 60 minutes. A comparison between the product mass yields from Figure 

24 indicated that char fraction was considerably higher in all tests at around 3 

kg/h. This was an indication that due to the limited volume fill of the Pyroformer 

there were limited secondary reactions taking place and hence less of the pyrolysis 

vapours came into contact with char compared to 5 and 10 kg/h.  

The total liquid yield seemed to decrease with increasing C/B ratio and also there 

was an increase in the aqueous phase compared to organic phase of the liquid as 

presented in Figure 25. However, the differences in are negligible in both organic 

and aqueous phases. A progressive increase in the aqueous phase as well as the 

higher char fraction combined with lower organic phase indicated no 

improvements in the pyrolysis reactions to form better quality liquid. The longer 

time taken to reach steady state was commensurate with the high char fraction 

and aqueous phase. There was a minor indication of improved performance at C/B 

of 5.6 where considerably more permanent gases were produced at considerably 

longer time of 137 minutes to reach the steady state (SS). This longer SS time 

could be attributed to a random error in the test run as such longer delay in SS 

could not be justified when compared with other two tests at same feeding rate. 

When comparing the quality of organic phase at 3 kg/h during various C/B ratios 

at the constant pyrolysis temperature of 500°C, it was evident that after 137 

minutes of time delay to reach SS, a better calorific value of organic phase of bio-

oil fuel (26.5 MJ/kg) was produced. As there were limited fuel analyses available 

for other samples at same feeding rate, it is not completely justifiable to state that 

this fuel is any better than other two samples but based on the information for 

run 7 it is clear that it has led to a fuel which has even though comparatively 

higher water content but has higher carbon content and lower oxygen content 

compared to run 14 and thus can be a better fuel. Hence with further testing and 
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fuel analysis a C/B ratio of 5.6 could well be a better operating condition for this 

feedstock at 3 kg/h.
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Figure 26 - Effect of C/B ratio on product yields during 5 kg/h feed rate 
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The effect of C/B ratio on product yields is represented in the Figure 26 for a 

digestate pellets feeding rate of 5 kg per hour. At C/B ratio of zero i.e. no char 

recirculation, it can be seen that the char yield is 59.3 wt%, which is higher 

compared to most of the results during char recirculation. It is also evident that 

with increasing C/B ratio the char yield decreases which is an indication of 

secondary reactions taking place between the evolving vapours from the fresh 

feed and pyrolysed char. This is true to some extent until increasing the C/B ratio 

to 3.6 then the char yield shows an increase. Also, there is an increasing trend for 

the gas yield which indicates more gas is formed with increasing C/B up to a 

certain point of C/B. The increase in gas yield is similar to that of Jin et.al  [146] 

where they reported low liquid yield and higher gas yield. Jin et.al [146] reported 

the char addition in a different manner but the ultimate objective was the same 

to evaluate the effect of char on product quality and yields. 

The gas yield increases with increasing C/B ratio until to a C/B of 3.6 when it 

decreased compared to char yield. In all cases there seems to be an increasing 

trend with total liquid yield. The reduction in char yield due to increasing C/B ratio 

caused the positive effect on liquid yield as the organic phase of the liquids in 

steady state can be seen increasing from 33.0 to 57 wt %. It is important to 

remember that the organic phase wt % are only taken from steady state sample 

whereas the total liquid yield is an overall Figure for all the liquid during both 

steady and unsteady states which accounts for overall mass balance. The 

applicability of steady and unsteady state is valid for all tests and for all liquid and 

organics yields in weight percentages.  The gas yield was based on the difference 

as explained above and it can also be seen that the gas yield was low at 11 wt % 

during C/B ratio of zero and it increased to 24.2 wt % with increasing C/B ratio of 

3.1. It can be concluded that with increasing C/B ratio the increase in gas and 

liquids yields was evident up to a point of C/B ratio of 3.1 whereas char yield 

decreased. Also with increasing C/B ratio the organic phase of liquids during 

steady state also increased as shown in Figure 27. From these results it could be 

concluded that char recirculation had a positive effect on enhancing the liquid yield 

whereas gas yield increased to some extent. There is a strong relationship 

between the secondary reactions, char and evolving vapour with increasing the 

char recirculation within the Pyroformer. The optimum C/B for 5 kg/h is 1.6 where 

an organic phase yield of 59 wt % was achieved.
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Figure 28a –Reliability of the results to evaluate the effect of C/B ratio on product yields at 10 kg/h feeding rate 
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Figure 28b –Reliability of the results to evaluate the effect of C/B ratio on aqueous and organic phase yields at 10 kg/h feeding 

rate 
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Two tests were done at the same C/B ratio of 0.6 for a feeding rate of 10 kg/h as 

shown in Figure 28a however more tests need to be done for other C/B ratios at 

this rate. In this report only at a C/B ratio of 0.6 the data is presented in Figure 

28a. As both tests were conducted at the same feeding rate and C/B, it is good to 

compare between both tests to see the reliability of data. Small variations in 

product yields could be noticed as well as the different times taken to reach steady 

state respectively (60 and 70 minutes) as shown in Table 19. During this C/B ratio, 

the inner screw was rotating at 6 rpm in forward whereas outer screw rotated at 

1 rpm in backward direction, which meant there was very little char recirculation 

and when compared to 5 kg/h at same rotational speed (which equated to C/B of 

1.6), the mass yields of liquid and organic phase are somewhat similar at 34.9, 

30.6 and 32.1 as shown in Figure 28a. The variability in the mass yields at similar 

C/B ratio of 0.6 and extended steady state time in test 15 could be associated 

with random errors in data collection or influence by ambient conditions and 

variations in the quality of feedstock. There were minor noticeable differences in 

the product yields which means the reliability of data was questionable and 

perhaps the best way will be to average the data based on triplicate results in 

future. Organic phase yields (as shown in Figure 28b) were found to be 42 and 44 

wt % which were significantly lower than other feeding rates at 3 and 5 kg/h as 

shown in Table 20. This meant that organic phase yield decreased with increasing 

feeding rate. 

5.3.2 Comparison of quality of organic phase of pyrolysis liquids 

In this section a comparison between the qualities of organic phase of the liquids 

is presented. Organic phase is the upper phase of bio-oil liquid when gravity 

settled, it separates into an upper layer of organic phase oil and bottom layer into 

an aqueous phase. It is the upper layer organic phase from intermediate pyrolysis 

liquids which carried most of the energy of the starting feedstocks after pyrolysis.  

Various feeding rates were used to determine the effect of C/B and feeding rate 

on the quality of organic phase. Table 21 contains the results of fuel properties of 

the organic phase during 3, 5 and 10 kg/h at various C/B ratios. Lack of data for 

the HHV of organic phase for all the tests prohibits the complete analysis of fuel 

quality. However, the downward trend in HHV with increasing C/B ratio at 3kg/h 

between the values of 21 and 26.5 indicated there was a very limited effect on 

the calorific value of the fuel.
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Table 21- Fuel properties of organic phase of pyrolysis liquid from dry digestate in 20 kg/h Pyroformer tests 

 

  

  Organic Phase properties  

(as received basis)       
 

Test 

run 

no. C/B 

 

Feeding 

(kg/h) 

Water 

wt% 

HHV 

(MJ/Kg) 

C wt 

% 

H wt 

% 

N wt 

% 

O wt 

% 

Acid No. 

(mgKOH/g) 

Viscosity 

 (c St) 

7.0 3.6  3.0 3.1 n/a 61.6 7.4 5.1 25.9 n/a n/a 

14.0 5.6  3.0 1.3 26.5 54.8 9.3 6.0 29.9 0.3 3.5 

3.0 6.4  3.4 6.4 21.0 55.1 9.2 6.0 29.7 n/a n/a 

16.0 0.0  5.0 1.3 26.1 55.9 10.2 5.8 28.1 0.3 3.1 

9.0 1.6  5.0 2.9 n/a 60.4 8.7 6.0 24.9 n/a n/a 

10.0 3.1  5.0 1.9 27.6 59.9 8.6 5.1 26.4 0.4 3.6 

11.0 3.6  5.0 2.4 24.3 56.6 8.9 5.5 29.0 0.3 3.1 

12.0 0.6  10.0 1.5 26.4 59.0 9.2 5.9 25.9 0.2 3.3 

15.0 0.6  10.0 2.0 26.7 53.9 10.3 6.3 29.5 0.2 4.6 

 

“n/a” – not available data due to no analysis was done for this property 

Fuel properties of the organic phase during all three feeding rates at various C/B ratios are presented in Table 21.
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The total acid number value was very low at around 0.3 mg KOH/g which indicated 

the digestate to be alkaline and it showed an improvement in quality over other 

pyrolysis oils as shown by Yang in [113], where the acid values for sewage sludge 

pyrolysis oil, de-inking sludge pyrolysis oil and biodiesel were 19.90, 33.03 and 

0.80. There is a downward trend in the yield of the organic phase with increasing 

C/B ratio and the opposite is happening to the aqueous phase as can be seen in 

Figure 28b. There is an upward trend in the hydrogen in the organic phase which 

can be associated with the inorganic or mineral species in the char playing their 

part to enhance hydrogen yield, this is in agreement with literature such as [146] 

and [147]. Most of these properties together indicate poor reaction conditions 

even with increasing C/B ratio. It is fair to conclude that there was no significant 

improvement in the organic phase fuel properties whereas there was an 

undesirable improvement in aqueous phase yield with increasing C/B ratio. The 

increasing trend for the char yield with increasing C/B ratio indicated there were 

secondary reactions taking place which favoured the char and aqueous phase 

which could be due to some combustion reactions and lack of volume occupied by 

char in the inner screw when biomass was recirculated. 

There were no significant trends seen in Figure 27 for the organic phase at 5 kg/h 

feeding rate. There was an increasing trend for more carbon content in the organic 

phase up to a C/B ratio of 3.1 and then this trend diminished with further 

increasing the C/B ratio to 3.6. This indicated the limitation of the positive char 

effect for carbon transfer in the organic phase up to C/B of 3.1. The similar trend 

could be seen with HHV of organic phase with increasing C/B ratio up to 3.1. One 

considerable trend was the increase in gas yield as per Table 21. The reduction in 

the hydrogen content in the organic phase also indicated more hydrogen was 

carried over in the gas phase as with increasing C/B ratio of 3.1. There were some 

inconsistencies in the tests but overall it is fair to say there as a positive effect on 

yield of the organic phase with increasing C/B ratio. In the Table 21, the results 

of organic phase properties and the effects of C/B ratio on organic phase properties 

are presented. Due to the lack of data for increasing C/B ratios, only limited 

comparisons could be made but one noticeable difference between the 5 kg/h and 

10 kg/h was the decrease in the yield of organic. This could be associated with the 

increase in feeding rate as at higher feeding rate more vapours are released which 
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do not have enough proportional active carbon sites for reaction available to have 

better organic phase yield due to low C/B at 10 kg/h. 

The results of the properties of the char are presented in Table 22. The analysis 

for nitrogen (N), phosphorus (P) and potassium (K) were important to evaluate 

the fertiliser potential of the biochar. Corg is the organic carbon content which is 

linked to amount of carbon which can be sequestered in land for thousands of 

years. More on these properties will be presented in Chapter 6.  The overall char 

yield had a decreasing trend with increasing the C/B ratio for both 3 and 5 kg/h 

but it then showed the increasing trend at significantly higher C/B ratios of 6.4 

and 3.6 for 3 and 5 kg/h feeding rates. This special phenomenon is evident in 

Table 22. By looking at the rpm of both IS and OS it was evident that C/B increased 

significantly which resulted in the increase in char yield. Also, generally the HHV 

of the organic phase showed a downward trend commensurate with the special 

phenomenon of carbon carry over in char due to increasing C/B. This led to the 

conclusion that there was a negative impact on the HHV of the organic phase of 

liquids when more carbon was carried into char with increased char recirculation. 

Ideally it is desirable to have as much carbon and hydrogen taken into gas and 

liquids phases through volatiles so that value addition for fuel from biomass can 

be maximised. At the same if char was then to be later used as a Carbon 

sequestration medium then organic carbon content need to be as high as possible. 

Thus, an optimum value for char recirculation can be drawn to be C/B ratio of 5.6 

and 3.1 for 3 and 5 kg/h feeding rates respectively. Unfortunately, not enough 

information was available to draw a conclusion for 10 kg/h feeding rate.
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 Table 22 - Effect of C/B ratio on char composition 

 

a Organic carbon wt. % (considered important for biochar carbon sequestration) 

Test 

run 

no. 

 

C/B Feeding  

(kg/h) 

Ash  

wt% 

HHV  

MJ/Kg C wt % 

C orga wt 

% 

H wt 

% 

N wt 

% 

P wt 

% 

K wt 

% 

7.0 3.6 3.0 64.8 10.0 30.5 >25 1.0 1.0 2.7 4.4 

14.0 5.6 3.0 66.1 9.7 27.1 21.9 0.9 1.7 2.8 5.9 

3.0 6.4 3.4 62.5 11.7 29.5 >25 1.5 1.9 2.7 8.8 

16.0 0.0 5.0                 

9.0 1.6 5.0 63.4 10.1 27.0 >25 1.1 1.8 2.6 3.9 

10.0 3.1 5.0 66.7 9.5 27.8 24.9 1.0 1.8 2.8 5.4 

11.0 3.6 5.0 66.3 9.2 26.9 21.5 1.0 1.7 2.8 5.7 

12.0 0.6 10.0 63.7 10.3 29.2 21.0 1.4 2.0 2.7 5.5 

15.0 0.6 10.0 57.2 10.3 27.9 22.0 1.2 1.9 3.1 6.6 
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5.3.3 Effects of feed rate on product yields in 20kg/h Pyroformer 

Apart from exploring the effects of char re-circulation on intermediate pyrolysis 

products, the effects of feeding rate variations on intermediate pyrolysis were also 

analysed. This section discusses the effects of feeding rate variations observed 

during the experiments. The Pyroformer has a design throughput of 20 kg/h. 

However, this design throughput was not tested due to recurring (blockage) issues 

with the Pyroformer at higher throughput, instead 3 different feed rates were used 

which are 3, 5 and 10 kg/h. These feed rates were chosen with a view to establish 

the effect of the fill level of the inner and outer screws. When the feeding rate was 

3 kilograms per hour there was less biomass available to fill the inner and outer 

screws per unit time and hence the time taken to fill both screws was longer 

compared to 5 and 10 kg/h. This meant the inner screw would have more empty 

space available within the helix as there was the feedstock material available 

compared to higher feed rates. This also meant that the char container at 3 kg/h 

feeding rate would see the less and delayed arrival of char compared to higher 

feed rates as less material is conveyed through the screws.  

Comparing the effect of feeding rate can only be done at similar screw speeds for 

both IS and OS. This means only 1 test run can be compared for each feeding 

rate. So, a comparison between test runs 7, 9 and 12 was done here from Tables 

20 and 21. Runs 7 and 9 (at 3 and 5 kg/h) represented higher gas yields of 19 

and 18.3 wt% whereas gas yield for run 12 (10 kg/h) was considerably less at 12 

wt%, however liquid yield had an opposing trend to go up for 10kg/h and lower 

for 3 and 5 kg/h. The organic phase was at maximum at 5 kg/h run 9 followed by 

run 7 and 12. This shows the pyrolysis reactions were at optimum when feeding 

rate was low at 5 kg/h. More liquid was produced at 10 kg/h but with high aqueous 

phase at 58 wt %.  

When 3 and 5 kg/h feeding rates were compared at the higher OS and constant 

IS rpm rather than the C/B ratio, it was evident that run 3 (3.4 kg/h) and run 10 

(5 kg/h) had increasing values for organic phase at 45 and 48 wt % with increasing 

feeding rates. This phenomenon was also true for total liquid yield which was 

increasing at 27.8 and 32 wt % with increasing feeding rate. This could be justified 

with regards to the fill rate in the IS as there is more char available leading to 

more liquid yield. When HHVs of the organic phase are compared it is evident that 

5 kg/h has considerably higher value of 27.6 MJ/kg (run 10) compared to any 
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lower feeding rates of 3 kg/h. It is fair to conclude that by increasing the feeding 

rate up to 5 kg/h, better reaction conditions were created which led to 

improvements in the HHV of organic phase, total organic phase yield and gas 

yields. Due to increased interactions between free radicals from released vapours 

and char led to higher carbon carry over into organic phase and this increased 

carbon carry-over increased the HHV of the resulting organic phase. This can be 

justified based on the following reasons; that more optimum C/B ratios were 

obtained due to char recirculation within the IS, this resulted in the creation of 

relatively more active carbon sites with the pores of char and as there was 

comparatively (compared to 3 kg/h) more volatiles (free radicals) present in the 

vicinity of the active carbon pores this resulted in long chain hydrocarbons being 

broken into simpler hydrocarbons and thus more hydrogen and carbon was carried 

into condensable vapours and ending up in the organic phase. 

5.4 Comparative study 
This study looked into the effect of differences in feedstock composition on the 

pyrolysis product quality and quantity. Three different feedstocks were used to 

evaluate the effect of material composition which they differed significantly due to 

their origin. The difference in material composition were attributed to high ash 

and moisture content of 46.9 wt% and 24 wt% for chicken litter digestate, high 

carbon content in green rye and corn derived digestate after biogas production 

and very low moisture content of 7.35 wt% in municipal solid waste (MSW) with 

significantly higher energy content due to plastic content in the material. 

5.4.1 Raw materials for comparative study 

In Table 23 the analysis of feedstocks is presented as used in the comparative 

study. Municipal solid waste (MSW) residue was acquired from municipal works 

and was pelletized to 6 mm pellets. The chicken litter digestate material originated 

from poultry farms and was pelletized to 6 mm pellets. These feedstocks were 

pelletized by Milson Engineering Ltd. The digestate material (corn and rye) is same 

as explained above in section 5.2.1. The ultimate analysis of the feedstocks was 

determined using combustion analysis on a Flash EA 1112 Series CHNS analyser. 

The oxygen content in feedstocks was calculated by difference. The density was 

measured according to the ASTM D-285. The moisture content of the feedstock 

was determined using a moisture analyser (Sartorius MA35) with a programmed 
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temperature of 105°C. The gross calorific value in HHV (MJ/Kg) of the dried 

feedstock was determined using a Parr 6100 bomb calorimeter. 

 The proximate and ultimate analysis of these feedstocks is presented below in 

the Table 23 

Table 23 - Comparison of feedstocks used in the comparative study 

S/O Parameter MSW pellets Chicken Litter 

digestate 

pellets 

Digestate 

pellets 

1 Moisture content Wt. 

% 

7.35 24.0 11.5 

2 *Ash Wt. % 33.6 46.9 35.7 

3 *Volatile matter Wt. 

% 

54.1 n/a 54.1 

4 *Carbon Wt. % 29.73 27.64 35.95 

5 *Hydrogen Wt. % 4.21 2.39 3.91 

6 

7 

*Nitrogen Wt. % 

*Oxygena Wt. % 

1.15 

64.91 

2.66 

67.31 

3.54 

56.60 

8 Higher Heating Value 

MJ/kg 

16.34 8.55 15.02 

* Dry basis 

a Oxygen by difference   
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Table 24 – Experimental settings of digestate, MSW and Chicken litter at 5 kg/h 

 

 

 

 

 

 

 

 

 

 

“a” - indicates reverse rotation of outer screw to that of inner screw for char recirculation 

SS – Steady state 

IS - inner screw rpm 

OS - outer screw rpm 

C/B – char to biomass ratio 

DCL – Digestate from chicken litter 

 

            Screws rpm   

 

 

Feedstock 

Test 

run no. 

Feeding 

(kg/h) 

Input 

total (g) 

Time 

(min.) 

Input 

SS (g) 

SS 

(min.) IS OS C/B 

 

   DAC 

 

9.0 5.0 14167.8 170.0 5833.8 55.0 6.0 -1.0a 1.6 

          

   MSW 18.0 4.8 16861.0 210.0 9430.0 120.0 6.0 -1.0a 1.6 

   DCL 1.0 5.0 14167.8 170.0 4583.7 55.0 6.0 -1.0a 1.6 
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Table 25 – Overall mass balance of digestate, MSW and Chicken litter at 5 kg/h 

 

      

Overall Mass 

balance wt %     

Steady state wt% 

distribution of liquid 

 

 

Feedstock 

Test run 

no. 

Feeding 

(kg/h) 

Total liquid 

(g) Liquid Char Gasb 

Organic 

phase 

Aqueous 

phase 

 

DAC 

 

9.0 5.0 1262.0 32.1 49.6 18.3 59.0 41.0 

         

MSW 18.0 4.8 3927.0 41.6 43.0 15.4 30.3 69.7 

 

DCL 1.0 5.0 

         

1470.0 

 

32.1 49.0 

 

18.9 77.1 22.9 

 

“b” Gas calculation by difference 



  

141 
 

The results in Table 24 and 25 are for similar feeding rates at around 5 kg/h with 

IS 6 and OS 1 which gives the C/B ratio of 1.6 calculated as explained above. The 

results for 5 kg/h feed rate have been chosen for a fair analysis for all feedstocks 

at similar operating conditions. The Pyrolysis temperature in the Pyroformer was 

500°C for all materials and the process was slightly above atmospheric (10-20 

mBar) in terms of pressure to get the flow of evolving volatiles. By selecting the 

similar operating conditions, a good comparison between the quality and quantity 

of the products from these feedstocks can be made.  

5.4.2 Comparison of product yields 

Table 25 represents the mass yields of digestate (DAC), MSW and digestate from 

chicken litter (DCL). MSW gave the highest liquid yield of 41.6 wt% whereas the 

other two materials gave similar liquid yield of 32.1 wt%. The organic phase yields 

were higher for DAC and DCL at 59 and 77 wt %. This is interesting as total liquid 

yield for these two materials were low but organic phase yield during the steady 

state was considerably high. This could mean that the quality of the DAC and DCL 

was better to that of MSW whereas the quantity of the total liquids in MSW was 

higher. Given that similar operating conditions were used, then it was right to 

assume that material characteristics must be playing their part to show the 

differences in quality and quantity.  

Despite DCL having a very high moisture content of 24%, the yield of organic 

phase was comparatively higher than DAC at 77.1 wt %, this could be associated 

with considerably higher inorganic metal content within the char leading to better 

organic phase production as most of the oxygen was reacted with metals to form 

oxides and was either in the metal oxide form or in the gaseous state such as 

water vapour or carbon dioxide. The higher ash content of 46.9 wt % in DCL 

feedstock is the good indication to link the better quality behaviour of organic 

phase from DCL. The presence of inorganic species in the form of ash in DCL at 

59.1 wt %, such as phosphorus and potassium at 3 and 9.6 wt % in the ash could 

have a good effect on yield of higher organic phase. There is no data available for 

MSW to compare against but the similar data from Table 26 for DAC shows that a 

high ash content of 63.4 wt % in the char has somewhat similar effect to yield an 

organic phase of 5 wt %. 
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Table 26 - Char analysis of DAC, MSW and DCL at 5 kg/h feeding rate 

Feedstock Ash HHV C H N Corg P K 

 
wt.% MJ/kg wt.% wt.% wt.% wt.% wt.% wt.% 

DAC 63.4 10.1 27.0 25.0 1.1 1.8 2.6 3.9 

MSW n/a 11.02 22.6 2.19 0.61  n/a  n/a  n/a 

DCL 59.1 9.7 29.5 1.4 2.0 19.0 3.0 9.6 
 

      

 

The effect of potassium (K) on the organic phase of the liquids is similarly reported in the literature. As reported by various 

authors, it was shown that the presence of K lowers the activation energy and increases the pyrolysis rate [148-151]. Varhegyi 

et al [150] have also reported the reduction in total liquid yield but better organics and gas calorific values. Higher nitrogen, 

phosphorus and potassium values together with high ash content indicate that these chars could also be good soil improvers.
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5.4.3 Comparison of quality of organic phase of liquids         

The fuel properties of the organic phase of the DAC, MSW and DCL are presented below in Table 27. The presence of potassium 

as stated above seems to have the effect on the total acid number of 0.2 of MSW and DCL. As it was evident that the oxygen 

content was considerably higher for the DCL at 38.7 wt% and this led to a significantly lower calorific value of 19.3 MJ/kg 

compared to 30.3 MJ/kg of MSW. MSW has the higher carbon % and hence this led to its higher calorific value. There was a 

minor difference available for viscosity for both DCL and MSW.          

Table 27- Organic phase fuel properties analysis for DAC, MSW and DCL 

  Organic Phase (as received basis)         

Feedstock 

Feeding 

(kg/h) 

Water 

wt% 

HHV 

(MJ/Kg) 

C wt 

% 

H wt 

% 

N wt 

% 

O wt 

% 

Acid No. 

(mgKOH/g) 

Viscosity (c 

St) 

DAC 5.0 2.9 n/a 60.4 8.7 6.0 24.9 n/a n/a 

MSW 4.8 1.1 30.3 62.1 9.4 3.3 25.2 0.2 3.1 

DCL 5.0 1.1 19.3 45.8 10.8 4.7 38.7 0.2 4.1 

 

        

 

There were mixed results for these materials both for overall yields and quality. MSW showed the higher total liquid yield but 

lower organic phase with higher HHV whereas DCL although had higher organic phase yield but exhibited lower HHV. So, 

where the quantity of organic phase was maximised, the fuel exhibited lower HHV whereas it was opposite for MSW where 

there was lower organic yield but better HHV. These characteristics could be attributed to mineral content in ash such as 

Potassium. These findings were somewhat similar to other researchers as reported by Knudsen et.al [148], Varhegyi et.al 

[150], Pan et.al [149] and Williams and Horne [151].         
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5.5 Chapter Summary 
Novel work has been done for this thesis which looked at the effect of char 

recirculation on the quality and quantity of pyrolysis products. The study 

highlighted a lot of mixed results with a notable increase in gas yield and a bio-oil 

which benefits from two phases separation. The recirculation of char led to higher 

gas yield and lower liquid yield with increasing C/B ratio at feeding rate of 3 kg/h 

whereas the HHV of the liquid increased. The effect of char recirculation at 5 kg/h 

led to the increase in gas yield up to a C/B ratio of 3.1 whereas there was an 

overall increasing trend with (liquid) organic phase yield at steady state. Lower 

acid values of around 0.2 mgKOH/g were evident during all tests which indicated 

that these oils certainly had better fuel properties with low oxygen content of 

around 30 wt% compared to fast pyrolysis oil where oxygen content can be of mid 

40 wt% range. The ease of 2 phase separation of intermediate pyrolysis bio-oil 

was further proven to be beneficial with better higher heating values. The steady 

state time was also different for different C/B ratios and this was another factor 

which demands further tests. 

With increasing feeding rate and at same C/B ratios it was found that the gas yield 

decreased at 10 kg/h. The organic phase was higher at 5 kg/h feeding rate up to 

a maximum of C/B of 3.1 due to catalytic effect from char recirculation as 

explained before and then it decreases whereas there was high liquid yield at 10 

kg/h but with lower organic phase yield compared to aqueous phase. Overall the 

total acid number for all the organic phase samples was in modest range around 

0.2 mgKOH/g when compared to other intermediate pyrolysis oils [152].  

The comparative study showed some interesting results where the DCL and DAC 

gave higher percentage of the organic phase but overall the liquid yield was low 

when compared with the MSW results. It was discovered that char had high ash 

and potassium content for both DCL and DAC char samples. Potassium is known 

to have some catalytic effect on the organic phase yield whereas it limited the 

overall liquid yield. Potassium effect on the mass yield was further backed up by 

other researchers such as Knudsen et.al [148], Varhegyi et.al [150], Pan et.al 

[149] and Williams & Horne [151]. Higher nitrogen, phosphorus and potassium wt 

% in char indicated good soil improving characteristics for DCL and DAC materials. 
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Chapter 6 – Pyrolysis experiments in 100 kg/h 

Pyroformer system 

Large scale experiments were done using wood pellets and miscanthus pellets of 

6 mm diameter in a 100 kg/h Pyroformer while it was installed at Harper Adams 

University College as part of Bioenergy Interreg NW project. The chronological 

order of these experiments (No. 4) is shown in Figure 3.1 which depicts the 

methodology of the Pyroformer research.  

These tests addressed the objectives 3, 4, 5 and 6 as explained in Chapter 3, 

Section 3.3. Also, during these tests, there were some operational issues with the 

key components of the 100 kg/h Pyroformer, these issues and their solutions are 

explained in detail in Chapter 7. The operational experience gained from these 

experiments as well as during the commissioning stages of the whole process 

helped to highlight the key operational limitations and technical issues with this 

system. These experiences became the basis of engineering design of critical 

components of the 100 kg/h Pyroformer. 

This 100 kg/h Pyroformer (as shown in Figure 30) process was a scale up variant 

of the 20 kg/h for the reactor type and there were significant variations in the 

auxiliary units upstream and downstream of the Pyrolysis reactor. The 

experiments with this system were performed at the much lower throughput (61 

kg/h for wood pellets and 70 kg/h for miscanthus pellets) compared to the design 

throughput of 100 kg/h.  

These experiments were conducted to make use of a technique called in-situ 

blending of pyrolysis vapours during condensation with biodiesel. So, this meant 

pyrolysis vapours were in direct contact with biodiesel immediately after exiting 

the reactor. There was a likelihood that some reactions might have occurred 

between both fluids (re-polymerisation and cracking of pyrolysis vapours) which 

are not elaborated further in this thesis. This process arrangement was a major 

difference when compared to the pyrolysis tests in 20 kg/h Pyroformer where the 

heat transfer medium (cooling water for condenser) did not come into direct 

contact with pyrolysis vapour. The main reason for doing in-situ blending of 

pyrolysis vapours with biodiesel was to produce a blended fuel which can be used 

in a diesel engine with little upgrade, thus reducing the processing steps. However, 
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this study did not consider detailed combustion analysis of blended fuel in the 

engine. This was due to resource limitations and was limited to characterisation 

of blended fuel properties which are presented in the results section of this 

chapter. Instead, another area of the focus was the characterisation and 

application of biomass derived char (biochar) for carbon sequestration. This will 

be discussed in this chapter. 

6.1 Equipment and materials 
The pyrolysis process was installed in an out-building at Harper Adams University 

College which was a key partner of Bioenergy Interreg NW Project as explained in 

section 1.5 of Chapter 1. The process layout is shown in Figure 29 with further 3D 

layout images in the Appendix 1.  

6.1.1 Process layout 

Process layout of the Pyroformer 100 kg/h process is shown in Figure 29. 
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Figure 29 - 100 kg/h Pyroformer process layout  

1-Feed Hopper, 2 -Auger, 3&4-Pneumatic Ball Values, 5-Electric Heating Bands, 6 & 7-Electric Motors, 8-Main Control Board, 

9-Pyrolysis Reactor, 10-Char Collection Vessel, 11-Wet Scrubber, 12-N2 Purge Line, 13a-Biodiesel supply for quench, 13b-

Biodiesel quench stage 2 and air cooled condenser, 13c-Biodiesel quench stage 1 -Air cooled condenser, 14-Electrostatic 

Precipitator ESP (not turned on), 15-Syngas line 16-ESP Control Board, 17-Pyrolysis Oil Collection Tanks, 18-Gas Suction 

Pump, 19-Flare, 20-Gas Line to Engine, 21-Dual Fuel Engine, 22-Electrical Generator, 23-Gas Calorimeter, 24-Electronic valve, 

25-Oxygen sensor, 26-Electrical connection
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Figure 30 - Pyroformer 100 kg/h Reactor dimensions approximately 3m long and 0.4m external shell diameter 

 



  

149 
 

6.1.2 Feedstocks  

Two different feedstocks were tested in these experiments, wood pellets and 

miscanthus pellets of 6mm diameter each. Wood pellets were supplied by Verdo 

Renewables Limited of Andover, Hampshire. These pellets were supplied in 10 kg 

packaged bags which were desirable for ease of handling and storage. These 

pellets were made to ENPlus A1 standard which is an EU wide quality standard for 

wood pellets quality and sustainability. Miscanthus (Miscanthus X Gigantueus) 

pellets were supplied by Agripellets Limited of Alcester, Warwickshire in 6 mm 

pellet diameter and delivered in 1000 kg bulk bags. These pellets were made to 

CEN/TS 335 standard which is also an EU wide quality standard for all types of 

biomass pellets. Biodiesel was sourced from a local supplier and was manufactured 

from waste cooking oil to EN14214 standard. 

The ultimate analysis of the feedstocks was performed using combustion analysis 

on a Flash EA 1112 Series CHNS analyser. Oxygen was calculated by difference. 

The density was measured according to the ASTM D-285. The moisture content of 

the feedstock was determined using a moisture analyser (Sartorius MA35) with a 

programmed temperature of 105°C. The gross heating value in HHV (MJ/Kg) of 

the dried feedstock was determined using a Parr 6100 bomb calorimeter whereas 

the LHV was theoretically calculated using a standard empirical formula. The 

results are shown in the Table 28 below and are also presented in Appendix 6a in 

a conference paper from this work. 

Table 28- Feedstock analysis of wood and Miscanthus pellets 

Feedstock Unit Wood pellets Miscanthus 
aUltimate analysis 

Carbon 

Hydrogen 
Oxygenb 

Nitrogen 
Sulphur  
aProximate analysis 
Moisture 

Ash content 
Density @20°C 

Higher Heating Value (HHV)  

 

wt.% 

wt.% 
wt.% 

wt.% 
wt.% 

 
wt.% 

wt.% 
kg/m3 

MJ/kg 

 

46.2 

5.96 
47.6 

<0.01 
0.28 

 
8.71 

0.46 
688 

18.3 

 

41.34 

5.27 
52.5 

0.57 
0.35 

 
10.4 

2.98 
640 

17.3 
aAnalysis based on pre-treated feedstock, as received basis 

 bCalculated by difference 



  

150 
 

6.1.3 In-situ quenching of pyrolysis vapours with biodiesel 

The process layout of the Pyroformer needed an external quenching solvent to be 

used as a quench medium for pyrolysis vapours. Bio-oil in its pure form is a very 

complex mixture to be used as a fuel on its own and often leads to problem with 

engines [3]. Biodiesel is a renewable fuel derived from plant oils, very safe to 

handle, high flash point and a good solvent [26 & 100]. It also has heating value, 

density and viscosity somewhat similar to petroleum derived diesel. Biodiesel was 

chosen due to these properties as it has the tendency to blend well with pyrolysis 

oils as opposed to petroleum diesel [153].  

The purpose of this work was to create a blend of bio-oil and biodiesel to avoid 

the downstream oil upgrading to enable its usage as a diesel engine fuel. This 

selection also fulfilled the direct quenching requirement for the Pyroformer process 

and it also fulfilled the need for a blending fuel for engine compared to water which 

may have needed separation and then further blending. 

6.2 Experimental procedure 
Intermediate pyrolysis of two different biomass fuels (pelletized miscanthus 

and Wood, 6mm) was performed using a 100 kg/h Pyroformer under the 

European Union funded project called Bioenergy Interreg NW. The process was 

patented (Patent number GB 0808739.7 and WO 2009/138757) by researchers 

based at European Bioenergy Research Institute (EBRI) of Aston University. 

This process was installed at Harper Adams University in Shropshire during the 

tests, UK under a project partnership agreement.  

 

Each experiment involved at least 3 personnel including the author. Various 

duties were assigned to each operator while operating the plant. A detailed 

checklist of the equipment and its status was performed to ensure the 

availability and safety of each process item. A detailed content of this checklist 

is given in Appendix 2 (Harper Adams Pyroformer Daily Operations Checklist). 

The 3D lay out of the whole process is given in the attached 3D drawings in 

the Appendix 1.  

 

For simplicity reasons and to keep the operational procedure concise, only the 

details of the Pyroformer related activities are mentioned here. Although the 

checklist and 3D drawings show an engine installed in the room next to 
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Pyroformer main hall. This engine was providing the electrical power to process 

only and was not part of these experiments. A gas flaring system (with Natural 

gas supporting flame) was installed outside the Pyroformer building to burn 

un-condensable gases from the Pyroformer process.  

 

On the day of the experiment after going through the checklist as shown in 

Appendix 2, the Pyroformer control panel was made live by switching on the 

main power supply. Then a USB memory stick was inserted into the control 

panel which was used as an access control device. After this the ancillary units 

of the Pyroformer such as air compressor, building ventilation system, nitrogen 

purge system, biodiesel for the pyrolysis vapour quenching, copper grease 

lubrication system, carbon monoxide detectors and gas flaring system were 

made live as and when needed. Air compressor was delivering the compressed 

air to drive the pneumatic valves with an operational air pressure between 6-

8 Bar.  

 

The Pyroformer operation was controlled in three different modes and this was 

programmed in the Pyroformer control system. These three modes were 

labelled as “Start-up mode”, Pyrolysis mode” and Shut down mode”. Each of 

these modes have certain process items inter-linked and controlled to achieve 

a certain objective. These are further explained below.  

 

The Pyroformer was started after logging in with a USB memory stick. Biomass 

pellets were weighed and put into the feeder hopper. Then the lubrication 

copper grease was started with an automated controller by means of a 

pneumatic piston pump. Then the temperature of the Pyroformer band heaters 

was set in increments of 100°C to ensure the steady heat distribution across 

the length of the Pyroformer reactor body. The total installed capacity of 

electrical band heaters was 70kW and this comprised of 8 band heaters as 

shown in Figures 29 and 30. Five of these heaters were installed on the main 

body of the reactor and other three were installed at the feeder inlet, vapour 

outlet and char outlet. After setting the temperatures, both Pyroformer screws 

were started to rotate by means of electrical motors of 1 hp each. The motor 

was linked to a gear drive to lower the rotations of the electric motor. The 

direction of the screws was interlinked with the start-up mode and both screws 
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were rotating to empty the reactor with the inner and outer screws turning 

anti-clockwise to carry material towards the char outlet. Once all the 

thermocouples (linked to each band heater) were reached at set temperature 

then the next incremental value was set. This was done to ensure uniform 

temperature distribution in order to minimise thermal shocks in the reactor 

body and uniform thermal expansion of steel. When the temperature reached 

300°C, nitrogen gas was purged through the reactor to ensure no air was in 

the system during the pyrolysis mode. A small nitrogen purge was activated 

for 5 minutes during start-up mode to displace any volatile vapours out of the 

reactor. Biomass pellets feed was not started until “pyrolysis mode” was 

selected. 

 

Once the set temperature of 400°C was achieved on all heaters, then the 

“Pyrolysis mode” was enabled with all the valves and motors parameters 

sequenced through automation. The gas flare was started with natural gas 

supporting flame.  Then the feeder motor was started to convey the pelletized 

material by means of an auger to both feeder valves (in vertical section) and 

then into the Pyroformer. The screw motors of the Pyroformer in the “Pyrolysis 

mode” were turning in counter directions to each other. The inner screw was 

turning in the clockwise direction at 6 rpm to convey pelletized biomass 

material forward from feed inlet and the outer screw in the opposite direction 

at 3 rpm to recycle the char.  The biodiesel quench was started at this point 

and the biodiesel flow rate was measured on liquid flow meters.  Biodiesel was 

injected at the desired flowrate in 1st stage quench point (K0110) and second 

stage quench point (K0115) as shown in Figures 29 and 31. 

 

After starting in “Pyrolysis mode” it took around 45 minutes to reach steady 

state. Steady state in this case was achieved when both screws of the 

Pyroformer were filled with feedstock and char particles start to drop into the 

char container. Two feeding rates were used for these tests such as 61 kg/h 

for wood pellets and 70 kg/h for miscanthus as shown in Table 26. The variation 

in the feeding rate was done to achieve the gradual increase in feed rate and 

maximum design throughput in stages. The vapours released during the 

pyrolysis are directly quenched with biodiesel. Although there was an 

electrostatic precipitator unit number 14 was installed (as shown in the Figure 
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29) but it was not used during these tests due to technical problems and short 

circuiting of the unit. Also, the gas calorimeter number 23 as shown in Figure 

29 was not used in the tests. 

 

Any non-condensable gases after the quenching stages were then passed on 

to the gas flaring system which was installed outside the building. The gases 

were burnt with a noticeable bright orange flame. The quenched liquids were 

collected in three separate tanks (number 17 in Figure 29), one tank under 

each quench stage and then third one at the bottom of Electrostatic precipitator 

stage which was acting as a cooling unit only. The quench liquids were then 

blended together into one tank. The mixtures at this point included quenching 

biodiesel with 80-88 parts and remaining 18-20 parts of pyrolysis bio-oil. The 

char fraction of the biomass was collected in the char container and the 

contents were weighed on the next day, after they were naturally cooled 

sufficiently. A mass balance of the materials was then performed.  

 

It is important to highlight here that it was not possible to measure the total 

gas flow or gas volume of non-condensable gases as the gases were not free 

from aerosols and a suitable gas flow meter was not available at the time. 

Hence the quantity of un-condensable gases was estimated by difference. 
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Figure 31 - P&ID of 100 kg/h Pyroformer (as taken from Pyroformer HazOp study of EBRI Pyroformer archive) 
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6.3 Results and discussion 
After conducting the experiments, the mass balance of the biomass feed in the 

Pyroformer was performed. The methodology used for mass balance is given 

below. 

6.3.1 Mass balance 

Mass balance was derived based on the biomass consumed in the experiments. 

Mass balance is represented by equation below. 

𝑀𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑀𝑔𝑎𝑠 + 𝑀𝑐ℎ𝑎𝑟 − 𝑀𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 = 0 

Where 

𝑀𝑙𝑖𝑞𝑢𝑖𝑑  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜 − 𝑜𝑖𝑙  

𝑀𝑔𝑎𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑜𝑛 − 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑏𝑙𝑒 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑖𝑠 𝑔𝑎𝑠𝑒𝑠  

𝑀𝑐ℎ𝑎𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐ℎ𝑎𝑟 

𝑀𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 𝑝𝑒𝑙𝑙𝑒𝑡𝑠 

Figure 32 - 100 kg/h Pyroformer installation at Harper Adams University College 

(Photo by Louise Ciaravella) 



  

156 
 

 

The gas yield or mass of non-condensable gas was calculated as below 

𝑀𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑀𝑐ℎ𝑎𝑟 − 𝑀𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 =  𝑀𝑔𝑎𝑠 

Table 29- Mass yields (wt. %) of pyrolysis products from different biomass 

feedstocks 

*Gas yield was calculated by difference + also considering the uncondensed bio-

oil lost from the feeding section as gas 

As it is seen in Table 29 a significant quantity of biomass feedstock was consumed 

in each experiment and a healthy feeding throughput was achieved with wood 

pellets at 61 kg/h and Miscanthus pellets 70 kg/h. There is a significant difference 

of 10% more syngas produced for wood pellets compared to Miscanthus derived 

material. Also, there was significantly less bio-oil produced (20.77 wt %) 

compared to (30.90 wt %) from miscanthus pellets. Biochar wt % is somewhat 

similar for both materials. 

6.3.2 Bio-oil and biodiesel blend sampling and characterisation 

The liquid characterisation was done by Al-control Labs based at Conwy in Wales. 

The samples were prepared from the blended liquids from all 3 tanks of the 

Pyroformer and were sent off for analysis within a week after the experiments. 

Due to budgetary constraints, the liquids were characterised only for important 

fuel properties. It is important to mention that the blended liquids contained 19.75 

wt. % bio-oil from wood pellets and 11.28 wt. % bio-oil from Miscanthus pellets. 

There was no water separation in the blend. The samples were collected randomly 

from the 1000 litres plastic IBC tank from the approximate middle of tank with 

the height adjustable suction port on the pump. The liquid was then put into plastic 

clear bottles in the required quantity as was specified by the external Lab. The 

samples were clearly marked for correct identification. 

Feedstock Quantity 

(kg) 

Feed 

rate 

(kg/h)  

Bio-oil 

wt. % 

Biochar 

wt. % 

gas* 

wt. % 

Wood pellets  117 61.0 20.77 32.0 47.23 

Miscanthus 

pellets 105 70.0 30.90 31.62 37.48 
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Table 30- Elemental analysis and Characterisation of Intermediate Pyrolysis oil & ASTM standard for Biodiesel 

Bio-oil Unit 

Wood pellets 

Bio-oil/biodiesel 

blend 

Miscanthus  

Bio-oil/biodiesel 

blend 

Biodieselb 

Compositional analysis 

Carbon 

Hydrogen 

Oxygena 

Nitrogen 

Sulphur  

Higher Heating Value (HHV)  

Lower Heating Value (LHV) 

Ash content 

Density @20°C 

Total acid number 

 

Kinematic Viscosity @40°C 

Water Content 

 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

MJ/kg 

MJ/kg 

wt.% 

kg/m3 

mg KOH/g 

 

cSt 

wt.% 

 

76.34 

11.13 

12.33 

<0.10 

<0.10 

38.50 

36.14 

<0.01 

886 

17.06 

 

14.0 

0.52 

 

 

74.34 

11.59 

13.87 

<0.10 

<0.10 

38.16 

37.01 

0.70 

885 

5.33 

 

21.0 

0.36 

 

77.04 

11.73 

11.21 

<0.10 

<0.10 

40.11 

37.47 

<0.01 

820 

0.62 

 

6.0 

0.12 

 

aCalculated by difference 
bBiodiesel (made from waste cooking oil) obtained from a local supplier
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Fuel characterisation for solid contamination was measured according to IP375, 

viscosity according to IP71 modified, Water content according ASTM D4928, Total 

Acid number (TAN) IP177, elemental analysis BS1016;1977, HHV according to 

BS1016:1992.  

Considerably greater char and gas yields are apparent due to intra and extra 

particle reactions. The lower liquid yield of 20.77 wt% indicates that due to higher 

lignin content in wood pellets may have contributed to more char formation thus 

more catalytic activity to produce simpler hydrocarbons in gas rather than liquids 

as was reported by Yang H. et al [85]. The lower liquid yield from wood pellets 

could also be attributed to a greater percentage of condensable vapours lost 

through the feeding section.  

There was no water phase separation from the blended liquid which shows the 

water may well be miscible in the whole blend. The fuel properties of both liquid 

blends’ (presented in Table 30) were very similar to that of biodiesel with 

considerable difference in the density of biodiesel to be 820 kg/m3 to that of wood 

and miscanthus derived liquid blend around 885 and 886 kg/m3. From Table 30 it 

was strongly evident that both liquids from wood and miscanthus possessed higher 

viscosities of 14 and 21 cSt whereas it was 6 cSt for biodiesel. Hence, it’s an 

indication that liquid fuel flow ability will be an issue and may lead to premature 

failure of the engine’s fuel injection system due to increased stress during pumping 

during use. The water content for both liquids are also higher by 3 times for 

miscanthus and nearly 4 times for wood derived blend. This was an indication that 

initial feedstock moisture content and water formation during pyrolysis is present 

in the ultimate blend and will lead to high oxygen content in the fuel as well as 

leading to somewhat lower calorific compared to biodiesel. The effect of the water 

content was evident in the lower heating values for both liquids. An important fuel 

property, Total Acid Number (TAN) is the key determinant of the corrosion 

properties of the fuel. In this case TAN value is nearly 8 times greater than 

biodiesel for miscanthus derived bio-oil/biodiesel blend and nearly 27 times higher 

for wood derived bio-oil/biodiesel blend. The results suggest that wood derived 

blend was highly acidic and miscanthus derived blend had higher viscosity. The 

elemental analysis shows somewhat similar carbon, hydrogen and nitrogen 

contents but the oxygen content was significantly higher (13.87 wt %) for 

miscanthus derived blend compared to 12.33 and 11.21 wt. % for wood derived 
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blend and biodiesel. In theory the higher oxygen content of miscanthus should 

lead to higher TAN compared to water but this was not evident.  

6.4 Biochar emissions reductions         

Carbon dioxide (CO2) is a potent greenhouse gas which is emitted into atmosphere 

due to natural and anthropogenic activities; it absorbs the sunlight reflected from 

earth’s surface into atmosphere and leads to global warming. The anthropogenic 

greenhouse gas effect [154] can be minimised by reducing the carbon emissions 

into the atmosphere. CO2 is normally absorbed by plants during photosynthesis 

from the atmosphere. During the photosynthesis, the CO2, sunlight and water 

absorbed by plants lead to the formation and accumulation of organic matter in 

the plant [5, 28]. This accumulated CO2 in the form of organic matter (biomass) 

can be locked into soil through biochar application thus making the whole process 

carbon negative [5, 155]. 

Greenhouse gas emissions associated with biomass decay can be reduced in two 

ways. Firstly, by converting the biomass into energy thus displacing the fossil fuels 

for energy production. Secondly, by sequestering carbon contained in the biochar 

made by pyrolysis into land for soil remediation. Gaunt and Lehmann [155] 

conducted a Life Cycle Assessment (LCA) of biochar which showed a carbon 

savings of 2 to 5 times greater when biochar is applied in agricultural land. Figure 

33 highlights only the carbon cycle in biomass and soil and does not show the 

lifecycle of the methane and other greenhouse gases. 
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Figure 33 - Simple carbon cycle on left and biochar from pyrolysis (with energy recovery) based carbon cycle on right - 

adapted from [5] 
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Shackley et.al. [156] highlighted the potential benefits of biochar application in 

soil. Biochar balances the acidity of soil to neutral, enhances the cat-ion exchange 

capacity (CEC) and provides beneficial growth conditions for microbes within the 

pores of biochar to name a few.  

The properties and yield of biochar depend on feedstock type and pyrolysis 

temperature (400, 500, 600, 700°C). For example, soil cation exchange capacity 

of manure-based biochars is higher than that of wood (Eucalyptus) biochar [157]. 

Char produced at low-temperature leads to high char yields but low Carbon 

content. In contrast, high-temperature pyrolysis produces less char yield but high 

C content, large surface area, high porosity, high adsorption characteristics and 

recalcitrant chemical character in woody biochars [158]. Biochar derived from low-

temperature pyrolysis is characterized by a high content of volatile matter that 

contains easily decomposable substrates, which can support plant growth [159, 

160]. The addition of woodchip based biochar results into highly saturated 

hydraulic conductivities compared to manure-based biochar [109]. Similarly, 

poultry-litter based biochar presents higher specific surface area and porosity than 

wheat-straw based biochar despite their preparation at same temperature 

(400°C). 

Feedstock type and pyrolysis temperature can influence molecular structure 

and pores size distributions in biochars, and thus it affects biochar sorption 

characteristics [161, 162]. Sohi et al [163] reported that different feedstocks 

resulted in different magnitudes of surface areas, pores and functional groups in 

biochars, and all these variables affect sorption characteristics of biochars. Sun et 

al [164] reported that poultry-litter biochar had a larger specific surface area and 

porosity than wheat-straw biochar, despite the fact that both biochars were 

produced under the same temperature (400°C). Lei and Zhang [109] have 

reported the high specific surface area and C/N ratio for the biochars obtained 

from woodchips compared to that of dairy manure [109]. High pH of poultry 

manure derived bio-oil has been reported by Novak et al [165] due to the presence 

of the calcium (Ca) and magnesium (Mg) in the feedstocks, high concentrations 

of Ca and Mg are desirable for biochar in soil applications.  

 In general, high pyrolysis temperatures lead to greater specific surface 

areas and aromaticity of biochars [161]. Chun et al [166] reported that charcoal 

made from wheat straw residue at 500–700°C is well carbonized and its specific 
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surface area is relatively high (300 m2 g-1), whereas chars formed at 300–400°C 

are partially carbonized and have a lower specific surface area (200 m2 g-1). This 

indicates higher pyrolysis temperatures lead to higher specific surface areas of 

biochar which increase the adsorption of micronutrients and thus prolongs their 

availability for plant growth functions. 

The pH of biochar significantly increases with higher pyrolysis temperatures 

probably as a consequence of the relative concentration of non-pyrolysed 

inorganic elements, already present in the original feedstocks [165]. Wu et al and 

Lehmann et al [72, 167] also reported that the biochars (from rice straw and 

wood) they produced were alkaline in pH range (8.2 and 10.4) common for 

pyrolysis produced biochars.  

Electrical conductivity (EC) is a measure of soluble salts or ions in a sample [168]. 

Cantrell et al [169] reported that the biochars produced from swine separated-

solids; paved-feedlot manure; dairy manure; poultry litter; and turkey litter 

exhibited similar EC values. However, the EC values increased significantly with 

the higher pyrolysis temperature. The increase in EC of biochar with the increase 

in pyrolysis temperature is sown likely to be due to the loss of volatile materials 

at high temperatures, which promoted the relative concentrations of salts in the 

ash fraction [169]. 

The ash contents of different biochars  from wheat straw, corn straw and 

peanut shell were measured by Cao et al [170] to be between 11 to 18 wt%, 

which are lower than the original ash content of the feedstock (wheat-straw 28 

wt%, corn-straw 31 wt% and peanut-shell 27 wt%). Apparently, ash content 

increased with a rise in temperature due to increased concentrations of minerals 

and organic combustion residues. Similarly, the CEC of different biochars 

significantly differ due to the type of feedstock used and pyrolysis temperature. 

Biochars produced from all feedstocks have shown an increasing trend of CEC with 

the increase in pyrolysis temperature. Cao et al [170] also discovered that all 

biochars pyrolysed at 400°C and 500°C had higher CEC than that at 600°C and 

700°C. Whereas in other findings by Yuan et al [171], the CEC of biochar prepared 

from corn at 500°C was higher than that at 300°C and 700°C; and the CEC of 

biochar prepared from peanut at 700°C was higher than that at 300°C and 500°C. 
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Specific surface area, pore volume and pore size of the biochars obtained 

from different feedstocks were significantly affected by biochar feedstock and 

pyrolysis temperature [172]. This is likely due to the removal of H- and O-carrying 

functional groups, including aliphatic alkyl-CH2, ester C5O, aromatic -CO and 

phenolic - OH groups, in biochars produced at 600°C, which has greatly enlarged 

their surface areas [173]. The porosity and surface area represent the most critical 

physical properties of biochar for the improvement of soil properties such as soil 

nutrient adsorption capacity and water retention ability [174]. 

Biochar is widely recognized as an efficient tool for carbon sequestration 

and soil fertility. The understanding of its chemical and physical properties are 

strongly related to the type of the initial material used, pyrolysis conditions and 

process type [5, 154]. 

Its use as a soil additive has been proposed to simultaneously mitigate 

anthropogenic climate change and improving agricultural soil fertility. The 

feedstock selection for producing biochar seemingly plays an important role [175], 

as does soil fauna and microbiology. Due to its high chemical stability, high carbon 

content and its potential to reside in soil over decades to millennia, biochar 

applications have the potential to become a long-term carbon sink [176-180]. 

Lehmann and Rondon [181] reviewed 24 studies with biochar additions to soil and 

found 20 to 220 wt% improvement in productivity at application rates of 0.4 to 8 

tons carbon per hectare. Steiner et al [182] reported a doubling of maize grain 

yield using a combination of NPK fertilizer with charcoal compared to use of NPK 

fertilizer alone. Biochar is also reported to improve nutrient availability [182, 183]. 

These observations could be attributed to reduced leaching of applied nutrients as 

well as reduced percolation of water [183-185] and increased fertilizer use 

efficiency [186].  

Biochar additions to sandy acidic soils significantly reduced acidity and 

improved soil fertility [169]. Although, the BC itself has a low nitrogen content 

[187], thus a wide C/N ratio does not immobilize nitrogen [188] and may be an 

important amendment for nitrogen dynamics with the ability to improve the 

efficiency of mineral nitrogen fertilizer [185]. Biochar helps improve soil health, 

microbial activity and nutrient availability through a variety of mechanisms [189-

192]. It has the potential to alter the microbial biomass and microbial composition 



  

164 
 

[185, 190, 193, 194]. Soils amended with BC show increased mycorrhizal 

colonization of plants [192], and increased biological nitrogen fixation [195] . An 

increase in soil respiratory activity has also been reported [196]. In high organic 

matter soil, however, biochar was found to reduce CO2 emissions [196]. Charcoal 

may contribute to the adsorption of metals [170, 197]. According to [198] 

charcoal is several orders of magnitude more sorptive than soil organic matter 

and can thus limit the mobility, toxicity and transport of xenobiotics in 

contaminated soils. Buss et al [199] reported reduced Cu toxicity in soils amended 

with 4% BC. The BC helps maintain structural stability of soil through increased 

porosity, greater cation exchange capacity (CEC) and better micro-/macro-

aggregation [183, 188, 197]. Besides, biochar improves soil water permeability 

and soil water holding capacity [165, 200, 201]. Laird [201] reported significantly 

increased CEC and extractable plant nutrients in biochar amended soils. [184] 

Lehmann et al [184] found lower cumulative leaching of mineral nitrogen (24 wt 

%), potassium (25 wt%), calcium (24 wt%) and magnesium (79 wt%) in 

unfertilized Amazonian dark earth compared to normal soil in that area; leaching 

from fertilized samples of the former exceeded that from the latter. This may be 

attributed to the strong adsorption affinity of BC for ammonium [202], nitrate 

[203], phosphate [4] and other ions [204]. It has also been suggested that biochar 

may have the potential to reduce leaching of pollutants from agricultural soils 

[154]. 

The above account based on literature review suggests that biochar has the 

potential for i) mitigation of GHG emissions, ii) C sequestration and iii) improving 

soil productivity. However, considerable uncertainties remain about its 

applicability to different soils and crops. The origin of feedstock and pyrolysis 

conditions are of significant importance. Likewise, BC application may be more 

beneficial to less fertile and sandy/sandy-clay soils of arid and semi-arid regions 

[205]. While a beneficial effect of soil-applied biochar on crop yields has been 

demonstrated for a number of soil/crop combinations, its utility in a wide range of 

soil/crop types (particularly in arid/semiarid and temperate zones) awaits 

demonstration. Of interest will also be to introduce the concept of biochar 

production and use on poor soils (a good proportion of which degraded or marginal 

in terms of fertility and productivity) to improve soil productivity. The best route 
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of biomass utilisation seems to be combined with bioenergy production and 

biochar application for soil amendment for truly sustainable reasons [154 & 155]. 

The literature review [185, 190, 193, 194] strongly suggests that there are 

potential benefits when biochar is applied in the soil. Carbon capture and 

sequestration via pyrolysis is advantageous because carbon evolved into vapours 

is retained in bio-oil and pyrolysis gas and used as fuel thus offsetting the use of 

fossil fuels. During pyrolysis, solid fraction containing the carbon is retained in the 

char which can be easily used for sequestration in the land since soil is the biggest 

carbon sink. Before biochar is applied in the soil, it must be analysed for its 

benefits as well as for potential contaminants leading to high toxicity in the form 

of dioxins, furans, polycyclic aromatic hydrocarbons (PAH) and polychlorinated 

biphenyls (PCBs). Regarding the potential contaminants in biochar, Shackley et.al 

[206] reported that “biochar could potentially contain two types of contaminants: 

a) those present in the feedstock itself (e.g. heavy metals, dioxins, polycyclic 

aromatic hydrocarbons (PAHs), etc.) and b) those produced during pyrolysis (e.g. 

PAH). Careful selection of feedstock is necessary to avoid or minimise the first 

category of contaminants, though some could be separated and removed during 

biochar production. The formation of PAH can be minimised by appropriate 

selection of operating conditions, specifically temperature range, and biochar with 

negligible PAH content should be achievable. Consistent analytical methods for 

quantifying contaminants such as PAH in the inherently stable matrix presented 

by pyrolysis char are yet to be defined. Better identification of specific PAHs is 

required, and targeted according to their toxicity”. 

 

There are various voluntary guideline biochar standards established for their 

application into soil. These include European Biochar Certificate [207] by European 

Biochar Foundation,  International Biochar Initiative’s (IBI) Biochar Standards 

v2.1 [208] and Biochar Quality Mandate (BQM) from British Biochar 

Foundation(BBF) [209]. These standards set guidelines for biochar manufacture, 

usage and contamination levels.  These standards are derived from various other 

standards for synthetic and organic fertilisers, pesticides, digestate and other 

growing media (clay pellets, coconut coir etc) for soil and soilless applications. 

Hence, they provide a solid guideline to ensure biochar application returns the 

perceived benefits.  
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Table 31 contains trace metal analysis of wood and miscanthus derived biochar 

from pyrolysis tests. Also, a publication based on this work is attached in Appendix 

6. It was evident that the trace metal content in both chars is well within the set 

guidelines from International Biochar Initiative (IBI) and British Biochar 

Foundation (BBF). Hence it is possible to use these wood and miscanthus derived 

chars in agriculture and horticulture. 

There are set guidelines from UK Environment agency for applying the biochar 

with a maximum of 1 tonne of biochar per hectare from uncontaminated biomass. 

These application guidelines are set-out in a regulatory position statement by the 

Scottish Environment Protection Agency [210]  and  similar guidelines are set by 

UK environment Agency. Carbon savings of 50% compared to normal carbon cycle 

(photosynthesis and then decay) of biomass and soil can be achieved by making 

biochar and bioenergy (bio-oil and gas). This is done by sequestering 50% of the 

carbon in the form of biochar in soil from biomass and remaining 50% converted 

into energy via bio-oil and pyrolysis gas thus offsetting fossil fuel usage [5].  
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Table 31 – Comparison of wood and miscanthus derived biochar (from 100 kg/h Pyroformer test in Table 30) showing toxic 

metal contents comparison with IBI and BBF biochar standards 

Metals Wood 
biochar 
(ppm) 

Miscanthus biochar 
(ppm) 

IBI Biochar 
Standard [208] 
(ppm) 

   BBF  BQM Biochar 
Standard [209]  
(ppm) 

Arsenic ˂1 ˂1 12- 100 10-100 

Cadmium ˂1 ˂1 1.4- 39 3-39 

Chromium 1 1 64-1200 15-100 

Cobalt ˂1 ˂1 40-150 n/a 

Copper 184 4 40-1500 40-1500 

Lead 3 1 70-500 60-500 

Mercury ˂1 ˂1 1-17 1-17 

Molybdenum 1 ˂1 5-20 10-75 

Nickel 41 2 47-600 10-600 

Zinc 62 317 200-7000 150-2800 
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In a study by Gaunt and Lehmann [155] which was based on data from Accardi 

Dey et al [211], they estimated the benefits associated with biochar. They found 

that making biochar as well producing energy from slow pyrolysis, 2 to 5 times 

more avoided carbon emissions savings can be made compared to only bioenergy 

production for off-setting the fossil fuel usage. This means that by using the 

Pyroformer for purpose grown energy crops and/or for crop waste residues for 

biochar and bioenergy production, maximum CO2 savings are achievable. They 

reported that 41-64% of these avoided emissions resulted from carbon 

sequestered in the agricultural land where as the remaining percentage is 

associated to off-setting fossil fuel for energy use and fertilizer savings.  These 

additional (2 to 5 times) CO2 emissions savings are possible because carbon is 

sequestered into agricultural land in the form of biochar as opposed to slash and 

burn system where all the carbon is burnt to make bioenergy; for example, in 

biomass combustion systems where no element of carbon sequestration is 

involved.  

The emissions reductions from woody biomass are shown in Table 32. It can be 

seen that by displacing the previously decaying wood waste by converting it into 

biochar and bioenergy and then applying the biochar in acidic or alkaline 

agricultural land, maximum carbon emissions savings can be made from woody 

biomass. These carbon emission reductions range between 1854-1925 kg CO2 

Mg−1 C−1 for acidic soil and 2356-2427 kg CO2 Mg−1 C−1 alkaline soils. It can also 

be seen that some carbon emissions reductions are still possible even if the 

existing energy production from wood waste was also to include the biochar 

production and its application in the agricultural land. In this case carbon emission 

reductions range between 249-550 kg CO2 Mg−1 C−1 for acidic soil and 751-48 kg 

CO2 Mg−1 C−1 for alkaline soil application of biochar while producing the same 

amount of energy.
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Table 32- Emissions reductions expressed as kg CO2 Mg−1 C−1 contained in woody biomass for systems changes –adapted from 

[154 & 155]. 

aAssumes 90% C is released as CO2 (IPCC 1996). 
bAssumes 46.5% C is released as CO2 (Lehmann et al 2002). 
cAssumes 100% released as CO2 in a 10-year period (IPCC 1996). 
dAssumes 52% released as CO2 (Day et al 2005). 
eAssumes that pyrolysis system produces 1.8 GJMg C−1 (Day et al 2005). Burning natural gas produces 57 kgCO2 GJ−1 

(http://www.videncenter.dk/gule%20halm%20haefte/Gul Engelsk/halm-UK02.pdf). 
fAssumes that pyrolysis system produces 1.8 GJMg C−1 (Day et al 2005). Burning coal produces 97 kgCO2 GJ−1 

(http://www.videncenter.dk/gule%20halm%20haefte/Gul Engelsk/halm-UK02.pdf). 
gAssumes that 38% released as CO2 when bio-char is used to scrub CO2 wastes gas stream (Day et al 2005). 
hAssumes that 1 Mg C in wood produces 22 GJ energy (calculated from http://www.thecarbontrust.co.uk/carbontrust/low carbon tech/ 

dlct2 1 6 3.html)

Systems 

Systems 

change  

Fossil fuel 

substitution   

 Emissions 

Emissions 

reductions 

Natural 

gas Coal 

Emissions 

reductions 

Total 

emissions 

reductions 

Char systems standalone        
Slash-and-burn 3300a 

   0  
Slash-and-char 1705b 1595 0 0 0 1595 

Charcoal production system 1705b 
 0 0 0  

Charcoal production system with application of char to soil 1705b 0 0 0 0  
Energy production system with pyrolysis to produce 

energy and biochar       
Wood waste currently applied to soil/allowed to decay 3666c 

 0 0   
Wastes to produce energy and biochar applied to acid soil  1913d 1753 101c 172f 101-172 1854-1925 

Wastes to produce energy and biochar applied to alkaline soil  1411g 2255 101c 172f 101-172 2356-2427 

Wood waste burnt for disposal 3300a 
  0   

Wastes to produce energy and biochar applied to acid soil  1913d 1387 101c 172f 101-172 1488-1559 

Wastes to produce energy and biochar applied to alkaline soil  1411g 1889 101c 172f 101-172 1990-2061 

Wood waste burnt for energy 3300  1239c, h 2109f, h 
  

Wastes to produce energy and biochar applied to acid soil  1913d 1387 101c 172f  -113-1937       249-550 

Wastes to produce energy and biochar applied to alkaline soil  1411g 1889 101c 172f -1138-1937 751-48 
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The above account shows that significant carbon emission reductions are possible 

if using a pyrolysis system. This is because only if a system change in wood waste 

is introduced to avoid the decaying of wood waste to convert into energy and 

biochar production, this will at the same time substitute the usage of fossil fuels 

such as natural gas or coal for energy production.  

The carbon sequestration is a recognised Clean Development Mechanism (CDM) 

under Kyoto protocol was recognised by United Nations Framework Convention on 

Climate Change (NFCCC) in 1997 but is only limited to carbon sequestration in 

newly afforested land. Thus the methodology used by Gaunt and Lehmann [155] 

can be used for afforested land for biochar application for carbon sequestration in 

agricultural soils. Under the Clean Development Mechanism (CDM), carbon 

sequestration was shown to be limited only to afforested land due to limited data 

available for benefits of carbon sequestration in agricultural soils. It also includes 

the benefits of biochar application such as carbon sequestration in agricultural 

land, reduction in fertiliser use due to biochar application and off-setting the fossil 

fuels by energy production through pyrolysis.   

A calculation of carbon emission reductions of wood waste by using the 100 kg/h 

Pyroformer coupled to a BFB gasifier were made based on same methodology as 

used by Gaunt and Lehmann [155] and Dey et al [211]. The scope and limitations 

of their methodology are shown in foot notes of Table 32 and in the original 

publications. For simplicity reasons some assumptions are made to apply this 

methodology for Pyroformer and BFB gasifier (Pyrogasification) application which 

include the following: 

 It is assumed that naturally decaying wood waste is used as the feedstock 

for the Pyrogasification process 

 Carbon emissions’ associated with the transportation, size reduction or 

pelletisation are not considered in this calculation. Also, methane and 

nitrogen oxide emissions are not taken into account for this study.  

 Only carbon emissions’ reduction by systems’ change and fossil fuel 

substitution for energy production and carbon sequestration for biochar 

application in acidic or alkaline soils is considered in this study. 

 Feedstock characterisation data for wood pellets is taken from Table 28. 
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 Elemental analysis of wood pellets shows a carbon content of 46.2 wt %, 

which is used for calculating the carbon emissions reductions by using a 

Pyrogasifier system. This combination is proposed as pyrolysis bio-oil is 

complex to use in its pure form and fuel gas from pyrogasification is 

assumed to be only directly useable product in a gas engine  

 It is assumed that the gasifier is not consuming any other wood pellets and 

only dolomite is used as the bed material and the energy contained in the 

syngas is used to substitute natural gas or coal  

 Any other associated issues are not taken into consideration  

 It is assumed that the Pyroformer is fed with waste wood pellets by 

diverting decaying waste wood from fallen trees at a 100 kg/h for 8000 

hours per annum operation. 

Thus  

By taking carbon content of wood pellets of 46.2 wt% from elemental analysis 

from Table 28  

Total carbon consumed in the Pyrogasification process per hour = 46.2 /100x 

100 kg/h  

= 46.20 kg/h C consumed in the process; 

Carbon (C) consumed for bioenergy and biochar per tonne of wood pellets  

= 46.2 kg/h x 10 h of Pyroformer at 100kg/h 

= 462 kg C consumed for one ton of wood pellets in the Pyroformer 

Which is   

= 369.6 ton C consumed per year of Pyrogasification of wood pellet feedstock 

Also, as 1 Mg (mega gram) = 1 ton 

By using Gaunt and Lehmann [155] and Dey et al [211] methodologies, it 

means,  

The emissions reductions for biochar application in acidic soil and offsetting 

natural gas for energy production from Pyrogasification 
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= 1.854 ton CO2/ton C x 369.6 ton C/annum = 685.24 ton CO2 emission 

reduction per annum, which is 685.24 ton of CO2 emissions are saved from 

the total carbon used from the feedstock per year 

The emissions reductions for biochar application in acidic soil and offsetting 

coal for energy production from Pyrogasification 

= 1.925 ton CO2 Mg−1 C−1 x 369.6 ton C /annum = 711.48 ton CO2 per 

annum 

The emissions reductions for biochar application in alkaline soil and offsetting 

natural gas for energy production from Pyrogasification 

= 2.356 ton CO2 Mg−1 C−1 x 369.6 ton C /annum = 870.78 ton CO2 per 

annum 

The emissions reductions for biochar application in alkaline soil and offsetting 

coal for energy production from Pyrogasification 

And for substituting energy production from coal, it is 

= 2.427 ton CO2 Mg−1 C−1 x 369.6 ton C /annum = 897.02 ton CO2 per 

annum 

So, the total carbon emissions reductions from pyrogasification of waste wood 

displaced from natural decay are given in Table 33. 

Table 33- Emissions reductions expressed as tonnes of CO2 per annum contained 

in naturally decaying waste wood for systems changes and fossil fuel substitution 

via pyrogasification  

 Biochar in acidic soil Biochar in alkaline soil 

Substitution of natural gas 

for energy production 

685.24 711.48 

Substitution of coal for 

energy production 

870.78 897.02 
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The above emission reductions in CO2 are shown only for using waste wood 

which is currently left to decay and by using this wood waste into bioenergy 

and biochar, the Pyrogasification process of 100 kg/h in 8000 hours of plant 

operation will save. However, this is not the case with wood waste as sometime 

the wood waste is burnt for disposal rather than left to decay naturally or it is 

burnt for energy recovery in which case the CO2 emissions reductions will be 

significantly low as there is no biochar application. The analogy used in the 

Tables 32 and 33 can be expanded for other waste wood usage options such 

as whether the waste wood is going to displaced from current combustion only 

processes for disposal or for waste wood for energy production. The maximum 

CO2 emission reductions are only possible if naturally decaying waste wood is 

displaced from decaying and then used for energy production to substitute 

fossil fuel usage and the biochar produced from Pyrogasification process is then 

sequestered into land. The Table 33 represents the values for such an 

application where biochar is used for carbon sequestration into acidic or 

alkaline soils. 

The reduction in carbon emissions is maximum with biochar application in 

alkaline soil and by substituting coal for energy production by using 

pyrogasification technique.  However, as carbon sequestration by biochar into 

agricultural land is not yet recognised under CDM, still a lot needs to be done 

to make this route attractive. Because the potential revenue generation by 

trading the carbon reduction certificates based on biochar application under 

CDM is not possible under current scenario. As developing and least developed 

countries may have more potential project implementation sites, they 

themselves may not be able to fund such projects except otherwise if they can 

access the revenue generated by trading the emissions certificates with 

developed nations [154].  

6.5 Summary of the Chapter 
The hot pyroformer tests are a significant achievement in scaling up the 

Pyroformer from a small bench scale process 20kg/h) to a Pilot scale of 100 kg/h. 

A novel way to blend bio-oil with biodiesel was presented in these tests with 

elemental fuel properties mostly representing the biodiesel qualities with the 

exception of total acid number, water content, density and viscosity. The results 

also show that by doing in-situ blending of pyrolysis vapours with biodiesel the 
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water content in bio-oil also becomes miscible with biodiesel and does not readily 

separate. This leads to increased oil yields. Since, bio-oil is the least expensive 

liquid fuel obtainable from lignocellulosic materials compared to biodiesel from 

plant oils and by doing in-situ blending of bio-oil and biodiesel it is possible to use 

it without the major upgrade. In this way an engine can be operated with the 

lower cost bio-oil/biodiesel blend rather than biodiesel alone. Solid content (ash & 

carbon) in the blended oil shows an increase as compared to biodiesel only and 

can easily be overcome by adding a simple filtration step from decanting tank after 

in-situ blending. Density and viscosity are somewhat interlinked and an 

improvement on this can be made by adding a minor preheating process to slightly 

increase the temperature of fuel to overcome higher viscosity issues in fuel 

injection system. This leaves the total acid number which is an inherent feature of 

most pyrolysis oils and need further investigation to manage it. One possibility is 

to use fractional condensation to separate the water content while the vapours 

are hot. This can be done so the hot pyrolysis vapours are condensed above water 

condensing temperature and only a liquid fuel free from water can be produced. 

This can eliminate the moisture inherently present in the biomass but any oxygen 

present with organic molecules may still give rise to increase in total acid number. 

A strong possibility for this oxygen is to remove the water content in the bio-oil 

through fractional condensation followed by catalytic cracking by char to react 

with high concentration hydrogen syngas to form water vapour and carbon dioxide 

leaving behind better quality liquids with less oxygen content. Consequently, this 

will also lead to better calorific value of blended bio-oil compared to raw bio-oil. 

More importantly, the characterisation and potential application of the biochar 

derived from the pyrolysis process was discussed in much greater detail. The 

comparison of biochar toxic metal content produced from wood and miscanthus 

feedstocks with IBI and BBF biochars standards showed that these biochars were 

beneficial and can be safely applied to land for soil remediation and for carbon 

sequestration. This shows that the biochar potential for carbon sequestration can 

lead to a CO2 negative system as not all the carbon is released into atmosphere 

after the plants has absorbed it through photosynthesis during the growth of 

biomass. An emissions reductions calculation based on displacing the woody 

biomass from natural decay for biochar and bioenergy production has been 

performed. The results suggest that if the decaying biomass is to be utilised in a 

pyrogasification system, then a significant reduction in CO2 emission can be 
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achieved. The emissions reductions are possible by introducing a system change 

for currently naturally decaying woody biomass through pyrogasification and by 

substituting the energy production from fossil fuels and using biochar in land 

application. Carbon emissions reductions of 685.24 tons of CO2 per annum from a 

100 kg/h system for biochar application in acidic soil; by substituting the natural 

gas, 711.48 tons of CO2 per annum for biochar application in alkaline soil; 

substituting natural gas for energy generation, 870.78 tons of CO2 per annum for 

biochar in acidic soil and by substituting natural gas for energy production and 

897.02 tons of CO2 per annum for biochar in alkaline soil and by substituting coal 

for energy production are achieved by using pyrogasification technique.  Currently, 

pyrogasification is the only possible route which can provide the biochar and a fuel 

gas which can be directly used energy purposes without further modifications as 

opposed to complex bio-oil from pyrolysis only.  
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Chapter 7– Pyroformer engineering design review 

of critical components 

In this chapter an engineering design review of the Pyroformer is presented from 

the operational experience of the 20 and 100 kg/h systems as described in 

Chapters 4, 5 and 6. For the success of any pyrolysis process, it is fundamentally 

important that all units of the process perform as intended without any issues. If 

any unit malfunctions, then the whole process fails and serious consequences can 

follow. This engineering design review of critical components was based on 6 years 

of operational experience gained during the installation, commissioning and 

operational stages of all three Pyroformer systems as explained before. The key 

issues associated with the Pyroformer were feeding valve failures, seizing of 

screws due to inappropriate lubrication, feedstock blockages, lack of char storage 

in char container leading to shorter test runs and excessive biodiesel demand 

(more than 80 wt%) for quenching of gases from the 100kg/h Pyroformer, thus 

compromising the economics of the process. 

For a redesign of the critical components, a detailed 5-step process was used as 

explained by Khandani [2] shown in Figure 34.  In the first step, the actual problem 

with the system or component is defined which includes what is expected of the 

product and any special features defining the demand. For example, what size of 

the valve was needed and what type of opening and closing function (gate type, 

butterfly etc.) of the valve was required. In the second step, the relevant 

information about the product is gathered which includes functional specifications 

such as whether the valve needed electric or pneumatic actuation, single or double 

acting, material of construction etc. In the third step, multiple alternative solutions 

are analysed for their suitability for the application which can fulfil the basic 

requirements. In 4th step, the final design solution is agreed based on detailed 

analysis of the multiple solutions as identified earlier. The selection criteria for 

analysis involved costs, safety aspects and material compatibility as well as ease 

of installation. In the final step, the final design solution is tested for its intended 

purpose and then a solution is implemented to resolve the problem. If the problem 

persists after these 5 steps, then the redesign process is restarted until a final 

design solution is found. 
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In this study, critical components of the Pyroformer were subjected to the same 

five-step process and a detailed design solution for each one of the problematic 

components is presented below.  

 

7.1 Feeding valve issues 
The feeding valve assembly is the key system of the Pyroformer whose function 

was to deliver the biomass pellets through it, while maintaining an air lock to 

prevent escape of pyrolysis vapours. Two different types of valve combinations 

were tried one after the other on 100 kg/h Pyroformer. These included an air pinch 

valve supplied by AKO Valves GmbH and the other valve was a custom made 

(provided by Pyrotop GmbH) pneumatically driven piston valve with water cooling 

jacket. Two pinch valves were connected in series and were driven by compressed 

air at >4 bar pressure, whereas only one piston valve was used to replace two 

pinch valves with no avail. When the pinch valve was actuated, a known volume 

of the compressed air was forced into the sleeve of the valve which expanded (or 

inflated) under compressed air resulting in the valve being shut. The valve 

Figure 34 – Showing 5 steps of engineering design process (Adapted from 

Khandani [2]) 
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specifications were model no, VF200.04HTEC.33.30GLA. With the two valves in 

series, when one valve was opened the other was closed, thus maintaining an air 

lock. Biomass pellets entered through the top valve when it was opened and rested 

in between both valves until lower valve was opened and upper was closed. There 

was a nitrogen gas purge between both valves to ensure no air was entering the 

system. This valve assembly can be seen in Figure 33 with both valves shown with 

arrows. This whole assembly can be seen at the top of the Pyroformer feed inlet 

in Figure 35. 

The lower pinch valve was exposed to 

the highest temperature which was just 

under set temperature of the 

Pyroformer in excess of 300°C. This 

valve failed after few days of operation. 

The reason for the failure was excessive 

heat damage to the pinch valve sleeve 

which was an EPDM fibre reinforced 

sleeve. Later, upon further investigation 

it was discovered that the valve was 

designed for a maximum of 120°C 

temperature duty. This valve sleeve was 

replaced a few times with no success 

before a different valve was proposed by 

the supplier (WSE Ltd); this was a 

water-cooled piston valve with 

pneumatic piston actuator. However, 

this valve also failed due to exposure to 

high temperatures - the bottom end of 

the piston expanded resulting in jamming of the valve. The associated problems 

with this valve assembly are summarised below: 

 The layers of EPDM sleeve showed signs of disintegration and softening 

under pyrolysis temperature 

 Pinch valve EPDM sleeve failure after a while resulting in air leakage 

 Air leakage lead to temperature hikes in the Pyroformer due to combustion 

of hot biomass inside the  

Figure 35 - Feeder valve assembly 
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 Valve sometimes failed to retract, thus leading to biomass pellet blockages 

 Valve sleeve failure could lead to formation of explosive atmosphere due to 

compressed air leakage into Pyroformer 

7.1.1 Define the problem 

Using the methodology developed by Khandani [2] for engineering design 

process astep by step breakdown of the process is presented for slecting the 

appropriate design solution for the Pyroformer related issues. The design 

requirements and problem of the valves are explained in this stage. The 

purpose of the feeder valve assembly was to provide an air lock against 

pyrolysis vapour while allowing the biomass pellets to be fed into the 

Pyroformer (100 kg/h). The problems with the pinch valves were blockages of 

biomass materials while it passes through the valve, leakage of compressed 

air from the pinch sleeve material leading to hazardous consequences in the 

Pyroformer and non-compatible sleeve material for the process temperature. 

The replacement piston valve assembly had different problems such as piston 

being stuck during operation due to expansion of bottom end of piston and 

when the valve opened it was splashing biomass everywhere due to pressure 

difference between the Pyroformer process and atmospheric pressure. So, due 

to the failures of both valve types it was necessary to find a better alternative 

to resolve the issues with the feeding valves assembly. 

7.1.2 Gather information 

The valve assembly consisted of two valves connected in series as shown in 

Figure 35. The valve must be able to withstand temperatures above the feeder 

inlet flange (50-100°C lower than pyrolysis set temperature) and be not 

affected by the solid and coarse media such as dust and fibres. As the body of 

the Pyroformer had a flanged connection of DIN200 (8 inches) then it was 

essential for the valve to have a flanged connection of DIN200. The valve must 

not have any air or oxygen which may leak into the Pyroformer thus leading 

to explosive area (ATEX) formation. The pressure rating of the Pyroformer 

process was less than 30 mBar, so the valve need to be rated for 1 Bar working 

pressure at least to allow for safety margin. Due to the high possibility of 

thermal expansion it was essential that a double acting valve must be selected 

which means the valve must be able to open and close by means of an external 
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motive force such as by means of pneumatic actuation or electric drive. Also, 

the valve must be able to be controlled by programmable logic controller (PLC) 

and should be interlocked with a position sensor to confirm it’s opened or 

closed position so that the other valve working in series with it must not 

perform its action until the required action of the first valve had been finished. 

All the seals and seats of the valve must be able to withstand the temperatures 

and pressures involved in the process.  

7.1.3 Generate multiple solutions 

To find the most effective solution for the feeder valve, various types of valves 

were considered such as ball valves, knife gate valves and rotary valves.  When 

comparing the types of valves which could suit the desired application, the 

following valves were identified as possible solutions as presented in Table 34. 

7.1.4 Analyse and select a solution 

Three valves were considered suitable as shown in Table 34 for feeding the 

biomass to the Pyroformer. All three valves work on completely different principles 

but they met the basic selection criteria. When explored further and compared 

against the examples in the industry for solid, abrasive material such as biomass 

then it was apparent that ball valves are not highly suitable for this kind of 

application. Other two valves were rotary valve and knife gate valve. The rotary 

valve provides an airlock with motor speed which can be adjusted to required 

throughput of 100kg/h, but it is very heavy and costly due to steel body, steel 

rotary vanes and electric motor and control inverter. The knife gate valve however 

is much lighter in weight and cheaper due to simple pneumatic air piston, works 

best with abrasive media. This valve also has explosive area (Atex) classification 

as well as meets or exceeds the temperature and pressure requirements. Hence 

it is recommended that the knife gate valve with carbon steel body, stainless steel 

gate, metal and grafoil seat and graphite packing be used for the Pyroformer. This 

valve is pneumatically actuated and has limit switches to confirm its open or close 

position, thus truly providing an air lock when used in series with exactly same 

kind of valve. Other advantages of this valve when compared to other two were 

simple design leading to lower cost of the valve enabling in-situ replacement for 

ease of maintenance of the grafoil seat and graphite packing. The full specification 



  

181 
 

of the valve for procurement is MV-E-200-MHT-TG-EC-PN10-ILS-SV. Figure 36 

provides a detailed design of the knife gate valve.  
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Table 34 – A list of valves suited for the feeder valve application 

S/O Valve type Model no. Material  

of construction 

Manufacturer 

and reference 

Other relevant 

information, T (°C), P 

(Bar), ATEX or not 

1 Motorised Rotary 

Valve 

S-250 DN200 Cast iron body, 

special seals for high 

temperature 

J. Englesman AG 

[212] Germany  

ATEX rated,  

600°C,  

1 bar 

2 Hard graphite 

seated floating ball 

valve 

B-300UTDZ 3H M 

DN200 

Stainless steel body, 

graphite seated,  

Ball A276, Type 304 

Kitz Corporation, 

Japan  [213] 

500°C, double acting 

Pneumatic actuator, 

20Bar, ATEX 

3 Knife gate valve 

MV 

MV-E-200-MHT-

TG-EC-PN10-ILS-

SV 

DN200 

Carbon steel body, 

stainless 316 gate, 

metal with grafoil 

seat, graphite 

packing 

Stafsjo Valves AB, 

Sweden [214] 

425°C,  

ATEX rated, 

10 Bar.  Pneumatically 

actuated 
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7.1.5 Test and implementation of final design solution 

The final selected solution of knife gate valve provides further confidence due to 

its recommended usage in high temperature and abrasive material applications by 

the vendor and other end users. These type of valves are used in biomass 

combustion boiler feeder systems with coarse media in Sweden and are shown to 

be working satisfactorily [214].   This valve can meet all requirements such as 

high temperature and material compatibility, ATEX area classification, limit 

switches to confirm desired operation and pressure rating greater than 1 bar. This 

valve will need to be interlocked with another similar valve to provide the air lock. 

A similar combination of two knife gate valves can be used for char outlet to ensure 

an air tight seal for char leaving the Pyroformer. Both pairs of these knife gate 

valves will need to be sequenced with each other so that only one valve opens at 

a time thus reducing the compressed air burden for actuators as well as providing 

perfect air tight seals on feeder and char outlet assemblies. The diagram and 

details of knife gate valve components are presented in Figure 36 [214].  
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Figure 36 – Selected knife gate feeder valve for Pyroformer 100kg/h as taken from 

Stafsjo Valves of Sweden [214] 
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 7.2 Char collection system  
The char collection system is another important part of the Pyroformer (100 kg/h) 

process as the duration of operation of the Pyroformer is directly linked to the char 

storage capacity in the char container. The char outlet of the Pyroformer also must 

form an air tight seal to prevent any pyrolysis vapour loss into atmosphere. Also, 

at the same time the char fraction of 

pyrolysis must be cooled to ambient 

temperature while in continuous operation 

so that it is not a heat hazard in the char 

container. The original cubical shape metal 

container of the Pyroformer can be seen in 

Figures 32 and 37. There is no valve 

between the Pyroformer and char 

container, thus exposing it to high 

pressures and leading to bulging of 

container if there was a blockage in the 

Pyroformer gas outlet 

To resolve the issues associated with char 

container it was necessary to find a better 

solution which could enable the Pyroformer 

(100 kg/h) to be operated on continuous 

basis as well as make it a safe system. To 

identify and design a better solution, a 

five-step design process was followed as 

shown in Figure 34. 

7.2.1 Define the problem with char collection system 

For an effective design solution, it was important to highlight the problems 

associated with the char collection system which are highlighted below. 

 Lack of storage capacity (500 litres) thus making the Pyroformer a batch 

system 

 Container was hanging onto Pyroformer thus causing unnecessary stress on 

Pyroformer body 

Figure 37 - Char container (shown 

hanging) of the 100 kg/h Pyroformer 

(Photo by Louise Ciaravella) 
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 No insulation on the body of char container thus a major health and safety 

hazard due to hot char presence inside the container 

 Pyrolysis vapour leaks from the joints on lower rectangular plate 

7.2.2 Gather information  

Further detailed specifications of the char collection system are summarised as 

below; 

 The char collection system must be leak proof to avoid any gas leaks thus 

avoiding the formation of explosive area near the Pyroformer 

 The system must be able to support the continuous operation of the 

Pyroformer  

 It must not stress the Pyroformer and should be able to hold its own weight 

 The char collection system should cool the char down to ambient 

temperature to avoid any health and safety risks 

 It must be able to withstand the pressures up to 3 bar to allow for sufficient 

safety margin pressure within the Pyroformer 

 The material of construction must be able to tolerate thermal expansion due 

to a large temperature difference between hot Pyroformer and container at 

ambient temperature 

 There must be temperature and pressure indication on the char container 

to show the char storage conditions 

7.2.3 Generate multiple solutions 

There were two potential designs identified which could resolve the issues 

related to char collection system. The first potential solution was a replaceable 

char collection steel drum (205 Litres capacity) with an expansion bellow and 

two knife gate valves installed between char drum and char outlet on the 

Pyroformer (as stated in section 7.1.5). Both knife gate valves can be 

interlocked in the control system to maintain a gas tight seal to avoid the 

pyrolysis gas escaping through this route. Between both valves a low flow 

volume of nitrogen could be introduced which could act as a cooling medium 

and be a safeguard against air ingression and to dilute the flammability 

potential of pyrolysis gas. A ventilation pipe could be installed on the welded 

lid of the drum, venting outside the building to avoid any local fugitive 

emissions when changing the drum. The lid of the char drum was to be welded 
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onto the pipework below the lower knife gate valve.  The whole area of the 

char drum could be insulated with a high temperature insulation jacket to 

mitigate the heat hazards. A temperature and pressure indicator could also be 

installed on the drum with a local display to show the status of contents inside 

the drum.  

A second solution could be a more robust and continuous char removal system. 

This system could consist of a pair of knife gate valves as stated earlier with 

an expansion bellow attached between Pyroformer outlet and upper char outlet 

valve. This expansion bellow could compensate the thermal stresses between 

the hot Pyroformer and char collection system. Between both knife gate valves 

could be a nitrogen gas purge to cool the char as well as to displace any 

incoming air. After both valves there could be an auger screw with a water-

cooled jacket (counter flow heat exchanger) along the length of the auger. The 

water-cooled jacket would provide cooling of the char. The water could be 

circulated through a chiller or cooling tower for heat removal. Temperature and 

pressure monitoring could be easily added on to ensure the char leaving the 

cooling system has cooled sufficiently and there are no auto-ignition 

(smouldering) risks.  

7.2.4 Analyse and select a solution 

Both the solutions discussed above for char collection systems had to be 

custom made as they were currently available off-the-shelf. When a 

comparison was made between both systems, it was evident that continuous 

char removal system based on water cooled auger screw was the preferred 

choice. This was because it could support the continuous operation of the 

Pyroformer. It is more robust, requires minimal operator interface and most 

importantly it appears to be safer than drum based system.  

7.2.5 Test and implement the solution 

For the design and implementation of such as system the throughput of char 

was taken as the percentage yield of char from the Pyroformer design capacity 

i.e. 100 kg/h. This yield could be estimated based on some high ash containing 

materials for pyrolysis to be around 50 wt%. This meant that the mass flow 

rate of char through the water-cooled screw was approximately 50 kg/h on the 

upper limit at steady state. A heat balance could to be made to establish the 
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water flow rate, cooling surface area requirement for char, screw and water 

jacket length and the rotation speed (residence time of char in screw) of the 

screw motor which are important functions for heat transfer from char to 

cooling water. One such system is shown in the Figures 38 and 39. A somewhat 

similar system to transport hot ash from the gasifier system is used in 

European Bioenergy Research Institute at (EBRI) at Aston University as shown 

with white arrow in Figure 38.  

The whole system would need to be backed up by a chiller to cool the water so 

that there is enough cooling capacity in the water when it is being used as a 

heat exchange medium in the water-cooled jacket of the screw conveyor. It 

may also be that the length of water-cooled screw is excessively long compared 

to Pyroformer and in which case more than one such water-cooled screw could 

be used, where outlet from the first is fed into the inlet of second water-cooled 

screw. Once a sufficient temperature below 50°C is achieved then the char can 

be collected in a bulk bag with a plastic liner and sealed with nitrogen gas to 

avoid any spontaneous ignition.  

Figure 38 - Water cooled screw conveyor for gasifier ash as installed at European 

Bioenergy Research Institute (Photo by Louise Ciaravella) 
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7.3 Biodiesel quenching system  
Biodiesel is used for direct quenching of the pyrolysis vapours soon after they 

leave the Pyroformer gas outlet. Biodiesel is used as an in-situ blend medium to 

form a bio-oil/biodiesel mixture which can be used as a fuel with little or no further 

upgrading as well as to rapidly quench the pyrolysis vapours. The issue with 

biodiesel quench in the prescribed manner as described in section 6.1.3 is that it 

consumes significantly large quantities of biodiesel in single pass due to no re-

circulation of biodiesel. If the consumption of biodiesel is reduced to increase the 

bio-oil blend ratio then it is very likely that some pyrolysis vapour may not 

condense due to lack of cooling capacity. Hence, to increase the bio-oil content in 

the liquid blend and to increase the economics of the pyrolysis process it is 

essential to re-circulate the bio-oil/biodiesel blend through a chiller. The re-

circulation of the blended liquid will lead to the increase in bio-oil ratio in the blend 

as more and more vapours will be condensed.  

It is possible to control the blend ratio of bio-oil and biodiesel by introducing known 

quantity of biodiesel in the quenching system. By controlling the biodiesel quantity 

in bio-oil/biodiesel will lead to better economics of pyrolysis by reducing the 

expensive biodiesel in the first place. However, this will lead to higher total acid 

number as bio-oil content in the blend will increase. There are ways where 

different types of bio-oils can be blended together to balance the total acid number 

of the resulting blend. For instance, the pyrolysis bio-oil from digestate feedstocks 

Figure 39 – A screw conveyor showing water cooling jacket proposed for char 

collection system of the Pyroformer [1] 
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show a total acid number around 0.2 mgKOH/g. This also means that bio-oils 

derived from pyrolysis of digestate materials (as shown in section 5.4.3) having 

low total acid number (0.2 mgKOH/g) can be used as quench liquid for high acid 

number producing materials such as wood pellets to neutralise the acidity effect. 

The resulting blends and/or digestate derived bio-oil having low calorific value 

(19.3 MJ/kg) can also be used in post quenching blending (not in-situ) with 

biodiesel to improve the blend calorific thus enabling its usage as could be 

influenced by process economics.  

The author has contributed in redesigning the existing biodiesel quench design 

which was to pump the re-circulating blended liquid (bio-oil/biodiesel) by means 

of a diaphragm pump (P0110) driven by nitrogen gas rather than compressed air 

as shown in Figure 40. Although an electric driven centrifugal pump will be a better 

choice but since a diaphragm pump already existed for this purpose hence a 

nitrogen driven diaphragm pump system is proposed for safety reasons. Driving 

the diaphragm pump with nitrogen is essential in case the diaphragm in the pump 

ruptures then the hot pyrolysis vapours will start to combust if compressed was 

used instead of nitrogen.  

During the quenching a known quality of the biodiesel is initially introduced and 

then re-circulated together with freshly collected bio-oil blend through a counter 

current heat exchanger which is connected to a chiller. In the redesign, there is 

an electric chiller shown as EC0100 after a counter current heat exchanger as 

shown in Figure 40. The chiller is there to provide extra cooling capacity to the re-

circulating liquid blend. The re-circulating blended liquid after passing through 

heat exchanger is delivered to existing quench points as was previously designed. 

The quantity of total liquid can be controlled in the system either by having a tank 

of large volume or by taking a small volume of blended liquid out by means of 

another pump from time to time controlled by high and low-level indicators. 
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Figure 40 - Biodiesel/bio-oil quench system redesign (adapted from EBRI Pyroformer archives) 
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Chapter 8 - Pyrogasification – Combining of 

Pyroformer and Gasifier 

Gasification of biomass leads to the production of a gaseous product which is a 

mixture of carbon monoxide, hydrogen, carbon dioxide, nitrogen, methane and 

some light alkane and alkene gases in very small quantities. Gasification is 

attractive due to the production of a uniform quality gas which can be used as a 

fuel or for chemical synthesis. However, tar content in the gas is highly undesirable 

as its presence in fuel gas can lead to serious problems with fuel injection system 

of engines. Pyrogasification involves the thermal treatment of biomass in two 

dedicated stages. Pyrolysis of biomass in the first stage, followed by takes place 

followed by gasification in the second stage as demonstrated by other researchers 

[98, 141, 142]. Pyrogasification is considered beneficial as this leads to 

significantly lower tar levels in the fuel gas compared to gasification alone. As 

highlighted in the literature review in section 2.10, pyrogasification provides 

improved gas quality by tar reduction [98, 141, 142]. Henriksen [59] has 

measured the tar content in the pyrolysis vapours, then in the char bed of a 

downdraft gasifier and finally before the use of syngas in the engine to prove that, 

by separating the pyrolysis of the biomass and then introducing the hot vapours 

and char into a gasifier with a char bed, tar content is reduced by 100 folds. This 

phenomenon of tar reduction by pyrogasification is attributed by Gassner [131] 

for easier breakdown of pyrolysis vapours (within a separate pyrolysis process) in 

the gasifier compared to gasifier alone application without a separate pyrolysis 

stage. The pyroformer has shown the potential to treat complex biomass (with 

high moisture, low ash melting point, high ash content) due to its operation at 

mild pyrolysis temperature (~500°C) by using the screw system to re-circulate 

char. Hence, combining the Pyroformer with a gasifier should lead to further tar 

reduction in the fuel gas in the pyrogasification system, compared to the so called 

the Viking gasifier developed by Technical University of Denmark as described by 

Henriksen [59].  

The Pyroformer process developed by researchers at the European Bioenergy 

Research Institute (EBRI) has been introduced in chapters 4, 5 and 6. This system 

is the key component for the proposed pyrogasification process by combining it 

file:///F:/Year%206%20reports/accepted%20-%20Last%203%20chapters%20Corrections_PD_JAO.docx%23_ENREF_131
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with a bubbling fluidised bed gasifier. There  is a significant difference in feeding 

throughputs of both systems, where the Pyroformer is 100 kg/h and gasifier 300 

kg/h of biomass. Originally the pyrogas coupling was going to include two 100kg/h 

Pyroformers under ERDF funding but one of these was cancelled due to budgetary 

constraints. The apparent disparity between the throughputs of both systems 

however can be mitigated by the fact that siginificant amount of solids (wood 

pellets + char + dolomite) are always present as gasifier bed materials, to 

maintain a fluidised bed in the gasifier for rapid mixing, mass and heat transfer. 

A one third proportion of wood  pellets feed in the gasifier is compensated by a 

small fraction of pyrolysis gas. As this coupling is only an experimental 

demonstration system, the close match between feed intake quantity was not 

considered important at this stage. Both these systems are installed as standalone 

processes at the EBRI laboratories as shown in Figure 42. They are spread over 4 

floors of a purpose built building to include all the ancillary items such air 

compressors, ventilation equipment, gas detection equipment for safety, pumps, 

motors, chillers, heat exchangers, dedicated automation and control systems and 

a a diesel fueled engine which is adapted to run on gasifier gas together with liquid 

fuel. A 3D layout of these processes is shown in Appendix 3. The engine is a water 

cooled MAN diesel engine converted by NEK GmbH of Germany to run on gasifier 

fuel gas. This engine (Model D2842) is a V12 21.9L displacement coupled to a 

Leroysomer electric generator of 400kW. This engine was not used in any of the 

tests as it was not commissioned in time. 

8.1 BFB Gasifier process commissioning test layout 
For clarification purposes it is worth mentioning that this thesis is limited to only 

a design study of an integrated pyrogasification system based on a 100 kg/h 

Pyroformer and a bubbling fluidised bed gasifier of 300 kg/h. There was only one 

gasifier commissioning test conducted during the plant commissioning and the 

results presneted to show the working principles and the fuel gas quality obtained 

during this test. As this test was conducted when some elements of plant or its 

control were still at the installation stage, hence a full scientific study with detailed 

data was not possible as not all plant items were available and fully comissioned 

at the time of tests. Only a comissioning operational test was carried out and the 

only available data arefuel gas compositions in terms of hydrogen, 

carbonmonoxide and methane fractions as measured online by an industrial type 
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Siemens gas analysis equipment (Model numbers, CALOMAT 6E and ULTRAMAT 

23E). The fuel gas produced during the test was burnt in an oxidiser flare and the 

resulting combustion gases were discarded safely into the environment. The CHP 

engine was not used in this test or in any other tests in this thesis. Hence, apart 

from a gasifier only commissioning test this thesis proposed a solution about how 

best to integrate both these systems (Gasifier and Pyroformer) to achieve the 

benefits of pyrogasification. As stated pyrogasification is desirable to provide 

feedstock flexibility to the gasifier by acting as upstream treatment unit and also 

to resolve the complexity of bio-oil fuel issues as it requires upgrading to be used 

in the engine.For the gasifier commissioning test, only the gasifier process was 

running  with its very basic safety control functions. There were no possibilities to 

gather sufficient information to merit a sophisticated scientific experiment with all 

inputs and outputs monitored.  Figure 41 shows the gasifier process layout for 

commissioning test. The whole plant is integrated by means of 6 different control 

systems which are explained in the Table 35. A small fraction of the fuelgas after 

the final filtration stage is taken to Siemens industrail gas analyser equipment and 

the rest is sent to a gasbuffer for temporary storage to manage pressure 

fluctuations in the process.  From gas buffer the fuel gas is either sent to a thermal 

oxidiser flare for disposal, or could be used in CHP engine in future for heat and 

power production. 
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Figure 41 – Gasifier process layout showing process items for commissioning test – CHP engine not used in the test 
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Table 35 - EBRI Plant integrated control system with interlocks  

S/O Process type Control system PLC* Purpose Interlocks 

1 Pyroformer 100kg/h Wago I/O module with 16 

channel - CoDeSys 

fieldbus PLC 

Automation of 

Pyroformer process 

Interlocks with 2 and 6 

2 BFB Gasifier 300 kg/h Siemens Simatic S7 -300 

PLC,Profibus protocol 

Automation of gasifier 

process system 

Interlocks with 1, 3, 

4,5 and 6 

3 Man dualfueled engine CHP ComAp engine PLC with 

InteliMonitor monitoring 

controller 

Openation and control 

of MAN engine for 

power generation 

Interlocks with 1, 2, 

4,5 and 6 

4 Load matching system Siemens PLC modbus 

protocol 

Automation and 

control of CHP heat, 

power and cooling 

Interlocks with 1, 2, 

3,5 and 6 

5 Building management system Trend IQ3  

LAN controller 

Management of EBRI 

building utilities  

Interlocks with 1, 2, 3, 

4, and 6 

6 Gas detection and HVAC system Trend IQ3 LAN Controller Fire safety and 

ventilation system 

Interlocks with 1, 2, 

4,5 and 6 

PLC* - denotes Programmable logic controller 
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8.1.1 Feedstock analysis 

Only standard wood pellets were tested in this commissioning test, with 6 mm 

diameter. The pellets were supplied by Verdo Renewables Limited of Andover, 

Hampshire. These pellets were supplied in 1000 kg big bulk bags which were 

desirable for easy handling and storage by means of a forklift truck and gantry 

crane. These pellets were made to ENPlus A1 standard which is an EU wide quality 

standard for wood pellets quality and sustainability. The same pellets were also 

used in the Pyroformer 100 kg/h system in Chapter 6. 

The ultimate analysis of the feedstocks was determined using combustion analysis 

on a Flash EA 1112 Series CHNS analyser. Oxygen was calculated by difference 

calculation. The density was measured according to the ASTM D-285. The moisture 

content of the feedstock was determined using a moisture analyser (Sartorius 

MA35) with a programmed temperature of 105°C. The gross heating value in HHV 

(MJ/Kg) of the dried feedstock was determined using a Parr 6100 bomb 

calorimeter whereas the LHV was theoretically calculated using a standard 

empirical formula. The results are as shown in the Table 36. 

Table 36- Feedstock analysis of wood pellets  

Feedstock Unit Wood pellets 
aUltimate analysis 
Carbon 

Hydrogen 
Oxygenb 

Nitrogen 

Sulphur  
aProximate analysis 

Moisture 
Ash content 

Density @20°C 
Higher Heating Value (HHV)  

 
wt.% 

wt.% 
wt.% 

wt.% 

wt.% 
 

wt.% 
wt.% 

kg/m3 

MJ/kg 

 
46.2 

5.96 
47.6 

<0.01 

0.28 
 

8.71 
0.46 

688 
18.3 

aAnalysis based on dry basis 

 bCalculated by difference 

 8.1.2 BFB gasifier working principles 

The BFB gasifier was developed by a German company called Wehrle Werk AG and 

was supplied to EBRI under a project funded by European Regional Development 

Fund (ERDF) to act as a demonstrator test bed to support biomass research in the 

West Midlands region of the UK. The integration of the Pyroformer and gasifier 
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was further supported by IAPP Pyrogas project and Bioenergy Interreg NW 

projects as stated in the acknowledgments section.  

For convenience, the bubbling fluidised bed gasifier referred to simply as “the 

gasifier” from now on. The gasifier is rated as 1.4 MW biomass thermal energy 

input based on ENPlus A1 standard wood pellets. Note that such standard pellets 

had to be used as the system was not able to handle any other size, shape, 

moisture and ash content of feedstock.  

Figure 42 - Pyroformer and gasifier shown next to each other in white arrows – 

Photo taken from EBRI archive 
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Figure 43 - BFB gasifier showing biomass feed inlet N1, dolomite inlet N10, pyrolysis gas coupling N8 and fuelgas outlet N11 

(Adapted from EBRI gasifier archive) 
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The gasifier produces a low calorific value (4-5 MJ/m3) gas to feed into an engine 

in dual fuel mode for electricity generation; however the engine was not tested. 

Before wood pellets can be fed into the gasifier, the gasifier went through a 

preheating stage where a solid bed material was maintained in the form of fine 

ground dolomite particles of less than 2 mm diameter. Dolomite was chosen by 

the vendor as a catalyst due to its good tar cracking potential and absorption of 

chlorine and sulphur contents from biomass [215]. The dolomite also acts as 

catalyst to minimise tar formation from wood pellets during the fluidisation. 

Preheated air (by an electrical heater) was used as main oxidant media for the 

gasifier and was supplied by means of an air blower fan. The working pressure at 

the inlet to the air injector nozzles at the base of the gasifier was maintained 

around 200 mbar and the gasification temperature was maintained between 800-

850 °C. Due to the presence of dolomite and wood pellets as bed materials in the 

gasifier there was a signification pressure loss which was measured online by a 

differential pressure gauge system and it was mostly controlled between 95-105 

mbar. The differential pressure was measured between the preheated air inlet 

pressure at the air injector nozzles and the fuelgas exit point on top of the 

freeboard. Three different temperatures were monitored in the various heights of 

free board to main process temperature around 800-850 °C.  Initially process air 

was electrically heated to 450 °C by means of an electrical heater of 100 kW and 

then supplied to the gasifier bed material through air nozzles to maintain 

fluidisation. After combustion had started, the exiting hot fuel gases preheated 

the air by means of a heat exchanger. 

Once a temperature of 450°C had been reached then wood pellets were introduced 

into the gasifier and the combustion process was started to elevate the gasifier 

temperature to its normal working temperature. Wood pellets were fed by means 

of a feeding system which consisted of a storage silo, screw conveyor, sluice 

double valve system with nitrogen purge and a final plug screw (N10 in Figure 43) 

to compress the pellets at the entry point to the gasifier to avoid any hot gas back 

draught. Dolomite was introduced from its own dedicated feeding system which 

was somewhat similar to wood pellet system but the main difference is the entry 

point of dolomite in the gasifier. The entry point of the dolomite is at the start of 

the freeboard section (N10 in Figure 43), whereas wood pellets were fed just 

above (N1 in Figure 43) the air inlet nozzles. 
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Wood pellets reacted with preheated air at 450°C and combustion started resulting 

in temperature increase and hot syngas was formed which left the gasifier at the 

top outlet. When a temperature greater than 850°C was reached in the gasifier, a 

transition from combustion to gasification was enabled (by reducing air flow) 

which also brought the temperature within the gasification set point temperature. 

This meant there was a lean oxygen environment and stoichiometric oxygen 

required for complete combustion (lambda, λ) was maintained between 0.3-0.4. 

By definition, a lambda value of 1 means complete combustion oxygen condition. 

Hence for a gasifier a lambda value of 0.33 means there is one third the amount 

of oxygen supplied (oxygen deficiency) to that of complete combustion of biomass 

[215]. The supply air fan maintained sufficient air pressure for fluidisation (the 

suspension of solids in gas under pressure) for intense mixing of dolomite, wood 

pellets and air. During the gasification stage fuel gas was produced which was 

mainly a mixture of carbon monoxide, hydrogen, water vapour, nitrogen, carbon 

dioxide and methane. The fuel gas exited into a cyclone and coarse solid particles 

are removed in this stage. The solids removed from the cyclone were then taken 

into a water jacket screw cooler to be transferred into a flexible big bag for storage 

below 50°C and disposal. The resulting clean gas then entered a counter-flow hot 

gas-air heat exchanger and its temperatures was further reduced, whereas now 

the process air was preheated by heat recovered from fuel gas. A thermal oil heat 

exchanger was used in next step to reduce the fuel gas temperature to below 

300°C.  

Fuel gas was then filtered down to 10 µm by means of sintered stainless-steel 

candle filters while still loaded with water vapour before being sent to a rapeseed 

oil scrubber. The rapeseed oil scrubber was a counter flow two-stage process 

where the fuel gas was further cooled and cleaned with the rapeseed oil in direct 

contact. In this stage, water vapour, tars and remaining solids were removed. The 

rapeseed scrubber oil was supplied from a buffer tank by means of pumps while 

passing it through heat exchangers to cool it down as shown in in the process flow 

diagram of Figure 41. Heat from the process was removed by means of the heat 

exchangers water cooling circuit which was connected to the dry cooler fan unit 

on the roof of the building (as shown in Appendix 3). Some of the rapeseed oil 

was sent to a water/oil separator (centrifuge) by means of a different pump at 

slightly higher temperature to remove combustion water from the process.  
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The fuel gas was now at almost ambient temperature and left the oil scrubber to 

pass through a fabric filter where it was filtered down to five µm to ensure it was 

sufficiently cleaned before it was flared in a thermal oxidiser or sent to the Siemens 

industrial gas analysers (Model numbers, CALOMAT 6E and ULTRAMAT 23E) for 

hydrogen, carbon monoxide and methane (H2, CO and CH4) content. After this 

fabric filter, the fuel gas was then temporarily stored in a large flexible PVC gas 

buffer vessel of 60 m3. The gas blower fans then delivered the fuel gas to a gas 

flare for combustion, as long-term fuel gas storage is not possible and the CHP 

engine was not ready to use it. The fuel gas pressure is maintained at 15 mbar for 

delivery to the flare or engine (when available). The produced gas quantity was 

maintained by controlling the wood pellets feed rates and the preheated air 

temperature from air blower by means of a PID controllers on the respective 

electrical motors, in response to monitoring of the fuel gas constituents (H2, CO 

and CH4). Fuel gas composition and higher heating values (HHV) are dependent 

on lambda.  

8.1.3 Gasifier fuel gas data sampling and results  

During the commissioning test the fuel-gas composition was measured online for 

H2, CO and CH4 with Siemens gas analysers (models; CALOMAT 6E and ULTRAMAT 

23E)and the carbon dioxide and oxygen content was measured by a portable 

biogas analyser (model GFM436) from Gas data analytics UK ltd. The results 

presented below for gas composition, gasification temperature and fuel gas 

flowrate were taken on the day of the test once the process was running in 

gasification mode. There were some fluctuations in the gas composition and flow. 

These were due to the fact that the process was being commissioned with various 

other tests on ancillary equipment being carried out in parallel. The output of the 

gasifier was determined by the amount of combustible gases produced and their 

energy content in terms of the higher heating value (HHV). 

(1)   𝑄̇𝑡𝑜𝑡𝑎𝑙 = ∑(𝑚̇𝑔𝑎𝑠,𝑖 ∙ 𝐻𝐻𝑉𝑖)  (Thermal energy of the gas) 

𝐻𝐻𝑉𝑖:    Higher Heating Value of each gas component (i) in MJ/kg 

𝑚̇𝑔𝑎𝑠,𝑖:   Mass flow of the i-th component in kg/s 

𝑄̇𝑡𝑜𝑡𝑎𝑙:   Thermal power in MW 
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In the gasifier plant, the total flow of syngas was determined by a combined 

measurement of absolute pressure, differential pressure and temperature. The 

calculation of the volume flow was conducted according to EN ISO 5167-1 but with 

the simplification of a constant expansion number and the assumption of ideal gas 

behaviour.  

The volume flow shown and recorded in the process control system was the 

volume flow based on standard conditions, i.e. T = 25°C and p = 1.013 bar. In 

order to calculate the mass flow of the i-th component the ideal gas equation was 

used: 

(2)      𝑝𝑉𝑖 =
𝑚𝑖𝑅𝑇

𝑀̃𝑖
   (Ideal gas equation) 

 

(3)       𝑚𝑖̇ =
𝑝

𝑅𝑇
𝑉̇𝑖𝑀̃𝑖 

 

(4)        𝑉̇𝑖 = 𝑥𝑖̃ ∙ 𝑉̇𝑡𝑜𝑡𝑎𝑙  
 

(5)  

𝑀̃𝑖: Molar mass of each gas component (i) in kg/mol 

𝑚𝑖 : Mass of each gas component (i) in kg 

p: pressure in Pa (𝑝𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 1.013 ∙ 105 𝑃𝑎) 

R: Gas constant = 8.314 kJ/(kmolK) 

T: Temperature in K (Tstandard = 273.15 K) 

V: volume in m³ 

𝑉̇𝑡𝑜𝑡𝑎𝑙: Volume flow m³/s under standard conditions (p, T) 

𝑥̃𝑖: Proportion of i-th component in mol/mol 

The proportion of the i-th component    𝑥𝑖̃  was measured for CO, H2 and CH4 in 

the Siemens industrial online measurement system (SIEMENS CALOMAT & 

ULTRAMAT). These gases were the main components of the combustible part of 

the gasifier gas, which contributed to the energy content. Depending on the 

gasification conditions, smaller amounts of alkanes and alkenes as well as 

aromatic components and oxygenates may contribute to the energy content. 

These components were not measured and left the system undetected. However, 

normally these components are very small in vol % and will not influence the 



  

204 
 

results drastically. For a detailed scientific experiment at later stage these 

constituents of the fuel gas can be measured to present the conclusive results.  

The standard higher heating value which is the heat of combustion for the gas 

components is given below 

CO  Carbon monoxide (g)   283.0 kJ/mol  M = 28 g/mol 

H2 Hydrogen (g)    285.8 kJ/mol  M = 2 g/mol 

CH4 Methane (g)    890.8 kJ/mol   M = 16 g/mol 

The average gas composition was measured during gasification for couple of hours 

as shown in Figure 44 between time 11:24 to 16:48 hrs during the commissioning 

test. The composition data are presented in Tables 37 and 38. 

Table 37 – Gasifier fuel gas composition as measured (on average) for  

 
Temp. Flow H2 CO CH4 CO2* O2* 

 
°C m³/h Vol% Vol% Vol% Vol% Vol% 

Average 818.5 788.3 13.3 17.3 4.0 17 0 

Stand. 

Dev. ± 4.3 13.4 0.6 0.8 0.3 N/A N/A 

 

Table 38 - Gasifier fuel gas composition, flowrates and higher heating values 

  xi Mi mi HHVi Qi 

i Vol% kg/mol kg/s MJ/kg MW 

CH4 4.0 0.016 0.006 55.7 0.348 

CO 17.3 0.028 0.047 10.1 0.478 

CO2
* 17.0 0.044 0.073 0 0.000 

H2 13.3 0.002 0.003 142.9 0.371 

O2
* 0 0.032 0.000 0 0.000 

 

*data sampled by handheld analyser for a short time only 

 

The following data were also recorded: 
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Average gasification temperature in freeboard zone = T = 818°C 

Total flow of fuel gas = 788.3 m3/h 

Total energy in gas at given flowrate = 1.197 MW 

Energy flowrate in fuel gas per cubic meter = 1.52 kWh/m3 

8.1.4 Discussion 

As stated earlier, this test was only a commissioning test as such subject to certain 

limitations. Also, during the test various plant items such as pumps, heat 

exchangers, gauges, flow meters, heat exchangers and other ancillary process 

units were brought on and off line to check their working status and to adjust the 

process. Hence, fluctuations can be seen in the gasifier gas quality as well in the 

flows and gasification operating temperature. Nonetheless, it is very interesting 

to note that during its first commissioning test in the EBRI labs, the system was 

made to work and the fuel gas was produced without major problems. Results and 

sampling were taken during the gasification period, as during this time the process 

was somewhat more stable. The data presented were collected over a 5-hour 

period and the averaged results are presented here. Most of the fluctuations in 

the flow caused the gas composition to fluctuate. It can be noticed that the gasifier 

was able to produce fuel gas around its design temperature of 800-850°C with 

average gasification temperature of 818°C. The process was well within 

defined parameters, with an averaged fuel gas flowrate of 788 m3/h and 

total energy flow in the fuel gas of 1.197 MW. 

For stable gasifier operation, it was necessary that the fluctuations in the 

temperature, pressure, gas flow and fuelgas composition were kept to a 

minimum. Figure 44 shows the temperature profile of the gasifier during 

operation. There are couple of temperatures which can be seen with a 

temperature variance of less than 50°C between higher and lower readings. 

It is also noticeable that, each time temperature is peaking the gas flowrate 

is dropping which indicates that this was happening when the biomass in 

the gasifier bed must have been consumed thus also leading to a sharp 

drop in CO composition.  
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Figure 44 - Gasifier fuel gas online composition, flowrate, gasification temperature, sampling time and handheld gas 

measurement for CO and oxygen (shown in a cross and circle) 
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The gas composition in terms of CO, hydrogen and methane can be seen 

varying even without big changes in gasifier operating temperature. These 

changes in the fuel gas constituents can be related to gas flowrate as it is 

evident that there is a strong relationship between air flow and gas 

composition which proves the basic point for gasification where air flowrate 

is controlled to optimise the fuel gas composition. The CO composition 

varied between 10-25 vol %. Similarly, hydrogen and methane also 

followed the same pattern of composition variation at same peak levels 

compared to CO profile. The changes in gaseous composition can be linked 

to changes in overall gas flow, as when the individual gas constituent 

composition is dropping low the gas flowrate also followed the same profile. 

As the biomass gets consumed, the amount of biomass reactant is reduced 

which leads to less reactions between air and biomass hydrocarbons. It is 

also partially evident from Figure 44 that each time the temperature peaks, 

the flowrate reduces which is another strong indicator of the process 

starting to deviate away from gasification into combustion until a batch of 

biomass feed is introduced in the gasifier and all parameter start to recover 

to their set points. However as there were no data logged for biomass and 

dolomite input intervals (or in continuous) this cannot be fully confirmed. 

The oscillations associated with gas flow can be linked to biomass and 

dolomite catalyst feed pulsation (these were not fed continuously) as the 

feedrate of material into the gasifier is automatically controlled to maintain 

a certain minimum and maximum pressure difference between the air inlet 

and freeboard. The controller monitors when the lower pressure differential 

is active, indicating less bed material. Then the automation starts the feed 

motors to feed in dolomite and wood pellets. This feeding pulsation is also 

reported by Henriksen [59] and Narvaez et al. [222]. There is some 

indication that, when the temperature is increasing, there is a small 

increase in hydrogen and CO production which is a basic feature of 

gasification as tar cracking reactions are optimised leading to more tar 

conversion. The increase in hydrogen production with temperature is 

similarly reported by Narvaez [222] and Li et al. [223]. This commissioning 
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test was without major problems, but showed some variations in product 

gas composition which can be further optimised in future test runs. 

Unfortunately, due to the lack of any other experimental data from this 

commissioning test, it is not possible to draw further conclusions.  

8.2 Integration of Pyroformer and gasifier by means of a 

self-cleaning twin screw system 
Since the biomass tests in the 100 kg/h Pyroformer as reported in Chapter 6 which 

was based at Harper Adams University College, this Pyroformer was relocated to 

EBRI laboratories and situated next to a gasifier as shown in Appendix 3. Hence 

the height of the Pyroformer mounting from its base was changed compared to its 

height at Harper Adams University as shown in Figures 30 and 32. The Pyroformer 

is now situated right next to the gasifier unit at ground floor level as shown in 

Figure 42. This suggests a straight forward connection between both units by 

means of a stainless steel flanged pipe coupling of diameter 200 mm.  

Before the actual design solution is presented it is essential to have a look at the 

anticipated problems when combining both systems. Given below are a list of 

anticipated mechanical and flow problems with twin-screw coupling and their 

solutions as presented in Table 37. The solution is in the form of twin screws which 

are driven by a single electrical motor. The screws rotate in opposite directions 

while pulling the solid material from the sides into the centre core. Figures 42, 43 

and 44 show the dimensions and layout of the twin screw assembly.  

The screws are mounted on separate shafts and they both extend outside the 

barrels. The reason for this is to keep the twin-screw pipes clear of any gasifier 

bed media so that pyrolysis vapours can easily find their way into the gasifier bed 

material. This layout of the twin screw assembly is beneficial to clear any dolomite 

and char residue which can get into the pyrolysis vapour pipeline as well as to 

clean any char residue which could be carried over in the pyrolysis vapours. When 

the Pyroformer is coupled to the gasifier then the flow to the bio-oil collection 

system is disconnected by means of a high temperature knife gate valve which 

can be automatically interlocked on both systems. This valve acts as a barrier to 

prevent any vapour loss. There are two vapour outlets on the Pyroformer: one 

connected to existing bio-oil quenching system and the other where the twin screw 

coupling is attached. Both these outlets are of 200 mm diameter and are 
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perpendicular to each other where bio-oil quench outlet is vertical to that of the 

horizontal body of the Pyroformer.  

Both vapour outlets on the pyroformer have a high temperature knife gate valve 

such as the one mentioned in section 7.1. Neither of these knife gate valves is 

shown in the Figures 43 and 44 but one of them is shown in Figure 47. These 

valves are essential to save time by providing a quick changeover between 

Pyroformer only and Pyrogasifier operational modes. Another important aspect 

which is worth mentioning is the pyrolysis vapour temperature which is always 

lower compared to the heater set temperature. This difference in Pyroformer 

heaters set temperature and evolving pyrolysis vapours is between 50-130°C due 

to the fact that heat is absorbed by the steel body of the Pyroformer at heater 

interfaces and due to poor convection heat transfer into pyrolysis vapours, 

pyrolysis gas temperature is low. However, a slow progressive increase in 

pyrolysis gas temperature has been observed over an extended operational time 

due to the fact that residual heat builds up in the mass of Pyroformer steel body 

as operation continues leading to vapour temperature increase. But even after 

hours of operation there was always at least a 50°C less temperature in pyrolysis 

vapours compared to heaters set temperature, was recorded during the various 

tests on Pyroformer. 
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Table 37 - Anticipated issues with the twin screw coupling to feed Pyroformer vapours to BFB gasifier 

Cause Effect Action 

Blockages in the connected pipework Pressure build up, potential pipe 

rupture and gas leak from gaskets and 

Pyroformer 

Install self-cleaning twin screws in 

pipework leading to gasifier to keep it 

clean  

Gas leaks from the pipework joints Explosive atmosphere leading to fire 

alarm and Emergency due to carbon 

monoxide gas release 

Install high temperature graphite 

gaskets in the joints, do a leak test after 

connecting pipework 

Reverse flow of gases from gasifier to 

Pyroformer due to higher pressures in 

gasifiers 

Hazardous situation in Pyroformer 

which may lead to explosion in 

pyroformer due to oxygen presence 

Install and interlink differential 

pressure measurements in gasifier and 

Pyroformer control system, also add a 

pressure controlled valve on the 

coupling to ensure valve closes when 

the differential pressure drops below 

certain minimum.  

Twin screws not turning or broken, 

leading to blockage 

Potential for gas escape from burst disc 

rupture 

Install optical sensors on screw shafts 

to confirm rotation 
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Figure 45 – Dimensions of twin screw coupling part to fit between Pyroformer and gasifier (electric drive motor not shown) – 

taken from EBRI gasifier archive 
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Figure 46a - Isometric view of twin screw coupling showing extended screw ends 

- taken from EBRI gasifier archive 

 

 

 

 

 

 

 

 

 

 

 

Figure 46b - Front view of twin screw coupling showing two holes for twin 

screw of diameter 61 mm - taken from EBRI gasifier archive 
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Figure 47 - Pyrogasification process flow diagram showing gasifier and Pyroformer 
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 8.3 Operational principles of the Pyroformer and gasifier 

as a combined system 
To safely operate both processes in integrated mode, it is essential to monitor and 

control a series of the pressures and temperatures in the Pyroformer and the 

gasifier. Pressure is important to predict the flow of gases i.e. from Pyroformer to 

gasifier or vice versa. The temperature and pressures can also be interlocked with 

the gasifier and the Pyroformer control system. It is to be understood that no hot 

tests of this twin-screw coupling are done between the Pyroformer and the 

gasifier. The information below is presented only to explain the working principles 

of both systems in integrated mode and no such real test was done so far. To 

maintain a high enough pressure in the Pyroformer so that pyrolysis vapour can 

flow towards the gasifier (with no reverse flow), an additional nitrogen gas purge 

was installed and made active during the heat-up phase of the Pyroformer. Once 

biomass is introduced to the gasifier and the Pyroformer then the evolution of 

pyrolysis vapour will maintain the gas pressure and flow from the Pyroformer to 

gasifier. A differential pressure of 20 mbar is maintained for normal operation and 

the knife gate valve is left open towards the twin screw line to transfer the 

pyrolysis vapours towards the gasifier. The differential pressure is measured by 

two separate pressure transducers, one in each system of the gasifier and 

Pyroformer. If the differential pressure drops to 5 mbar then the control system 

of gasifier sends a signal to the Pyroformer control system to close the knife gate 

valve to allow the pyrolysis vapours to rebuild pressure. Once the differential 

pressure is recovered to 20 mbar then knife gate valve is opened again. This 

control arrangement prevents any hazardous situation being developed due to 

reverse flow of gasifier gas (possibly air) to the Pyroformer leading to uncontrolled 

combustion and mechanical seal failures and gas leaks from the Pyroformer. 

During normal operation, the gasifier operates at 220 mbar and the Pyroformer 

operates at 240 mbar to maintain a positive flow of the pyrolysis gases to the 

gasifier. A nitrogen gas purge at 300 mbar is installed below the feeder valves of 

the Pyroformer and it can be opened or closed depending upon the need to 

maintain the slightly higher pressure (pyrolysis vapour flow to gasifier) within the 

Pyroformer compared to the gasifier. 
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8.3.1 General Preparations and working procedure 

The working procedure involves basic health and safety compliance during the 

operation of the Pyroformer and gasifier in pyrogasification mode. The 

pyrogasification mode is defined as when the pyrolysis vapours are fed into the 

gasifier and both processes are working in tandem. At the beginning of the test, 

this includes general preparations to ensure sufficient resources are in place to 

conduct the test safely. The following procedures are followed: 

 Ensure sufficiently well trained operational team of 5-6 people as the size 

of the plant dictates this many people as was highlighted in the Hazard and 

Operability Analysis reports. 

 2-way radio system should be available for communication between the 

operators on the plant floor and the operators in control room to control the 

Pyroformer and gasifier control systems. 

 Turning on and monitoring all necessary ancillary systems such as 

compressed air for valves actuation, nitrogen gas system for purging, water 

cooling system for heat exchangers, chillers for water cooling system, gas 

detection system for health and safety, oil scrubbing system for gasifier, 

ash removing system for gasifier, gas flare system, char handling system 

for Pyroformer and any other relevant systems as described by the gasifier 

vendor in the gasifier operational manual 

 Constant monitoring of the operational units by operators on the plant floor 

and by operators in the control room 

 One operator to control the Pyroformer control system and one operator to 

control the gasifier control system, both of these to be situated in the 

control room 

 Loading of biomass to be tested in the respective systems and topping up 

and fluids and checking of gauges etc. to ensure all equipment is functioning 

correctly 

8.3.2 Heating up the gasifier to bring it to working temperature  

In this step, the gasifier and Pyroformer are heated in parallel to ensure both 

systems are ready to feed the biomass at the same time to be operational in 

pyrogasification mode. Heating up of the gasifier is initiated with preheated air 

with 100 kW electrical heaters installed on the gasifier air supply from the blower 
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fan and combustion starts inside the gasifier after 450 °C temperature is reached 

in the preheated air with wood pellets feed. After this, due to wood pellets heat 

the gasifier in combustion mode and the electrical heat load is gradually reduced. 

The step by step process is carried out as below; 

 Start electrical heating up the gasifier while running the air blower fan to 

the gasifier, monitor the gasifier control system for irregularities 

 Switching on the twin interface screw motor to prevent solids intake in the 

pipe 

 Switching on the N2 purge of the twin interface screw to keep the screws 

cooled and cleaned of dolomite dust 

 Wait for the gasifier to reach temperature of 450 °C 

 Start feeding the wood pellets to the gasifier and initiate combustion 

process 

 Start feeding the dolomite bed material in the gasifier and filling up to max 

level for desired pressure in the gasifier of 220 mbar 

 Continue heating up the gasifier in combustion mode with wood pellets to 

optimum temperature 850 °C 

 Hold the set temperature of gasifier in combustion mode and wait until the 

pyroformer has reached its working set-temperature 450 °C 

8.3.3 Pyroformer heating up phase  

In this mode the Pyroformer is heated to its desired set temperature (450 °C) 

while the hot gas temperature within the Pyroformer is always lower by between 

50-100°C. This process is carried out in tandem with the gasifier heating process 

as described above. The process is executed in the following sequence 

 Starting electrical heating of the pyroformer with 50 or 100 °C increments 

to pyrolysis temperature as per modified checklist similar to Appendix 2 

 Start nitrogen purge to displace any organic vapours to ensure safe 

environment in the Pyroformer and maintain a slightly higher pressure 

compared to gasifier 

 Continue electrical heating to the pyrolysis set temperature  

 Hold the set temperature and wait until the gasifier has reached its set-

temperature 
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8.3.4 General operation of Pyroformer-gasifier coupled mode 

(Pyrogasification mode) 

This is the actual mode where pyrogasification takes place due to the Pyroformer 

and gasifier being integrated. During this mode as pyrolysis gases are fed into the 

gasifier, the gasifier control system makes the adjustments to the wood pellets 

feeding based on the pressure readings from pressure transducers installed on the 

gasifier. It is expected that the gasifier fluidised bed density will decrease due to 

the presence of extra gases per unit in the gasifier bed from the Pyroformer 

compared to normal operation of the gasifier alone. Only two parameters are 

measured in the gasifier to control the process. Firstly, the temperature in the 

gasifier is measured and maintained between 800-850°C so that ash melting point 

is not reached by a PID controller of the gasifier air blower. Secondly, the 

differential pressure in the gasifier is measured between two points i.e. the air 

pressure at the air inlet into distributor nozzles and the syngas pressure in the 

riser to be no greater than 20 mbar. If the air pressure becomes higher than 20 

mbar this indicates high solids content or too much bed material and vice versa 

and to counter this effect of solids are added. To decide between which material 

(dolomite or wood pellets) is to be added, this is achieved by monitoring the 

syngas quality and quantity which is measured after final filtration stage where 

total gas flow volume is also measured by a gas flow meter and gas quality for 

CO, H2 and CH4 in gas analyser. If the gas quantity was reduced then more wood 

pellets are added and if the gas quality was deteriorated then more dolomite is 

added but only in small quantities to be within the temperature and pressure 

operational limits. Due to the extra pyrolysis gas coming from the Pyroformer the 

density of bed will decrease leading to a lower pressure drop which is compensated 

by wood pellets intake to maintain syngas quantity by the flow meter and by the 

pressure drop across the bed in the gasifier. In essence by using this integrated 

process the capacity of the produced syngas can be increased by up to one third 

of the gasifier design capacity. The operational and control sequence is continued 

from previous sections 8.6.2 and 8.6.3. 

 Start feeding biomass pellets to the pyroformer with a desired feed rate 

lower than maximum design throughput of the Pyroformer 

 At the point when feeding of pyrolysis gas is initiated to the gasifier, the 

feed of the gasifier plug screw will reduce proportionally to maintain certain 
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set pressure in the gasifier as energy will come from the pyroformer or 

syngas quantity will increase if the desired outcome is to enhance the 

syngas production volume. The temperature of the gasifier will stay at its 

set point due to the automation auto-pilot 

 During operation actively monitor the pressure and temperature in the 

interface to ensure the positive flow of pyrolysis gases to the gasifier 

 Monitor the fuel gas quality and flow on the control system 

 Ensure constant monitoring of the plant by operators 

8.3.5 Decoupling the Pyrogasification mode to end the test 

When the desired objectives are achieved then both processes can be stopped. At 

this point operators can then choose to run both processes independently or shut 

them down. To continue running them independently the knife gate valve can be 

closed on the twin screw pyrolysis gas line and the other knife gate valve on the 

biodiesel quench line can be opened. If the objective here is to safely shut down 

both processes then the procedure below is followed. 

 Stop the biomass feed to the Pyroformer but continue heating and nitrogen 

purging 

 Allow the wood pellet feed rate of the gasifier plug screw to recover slowly 

due to automation auto-pilot to the same level as before the 

pyrogasification. Empty out the char from the pyroformer by activating 

empty char mode on Pyroformer 

 Allow cool down of the pyroformer as described in the shutdown procedure 

of the pyroformer 

 Constant monitoring of the plant by the operators 

8.3.6 Shut down of both processes 

The shutdown of both processes is completed in various stages to ensure plant 

safety and operability is not compromised. To shut down both processes the 

procedure is described below; 

 After the char is taken out of the pyroformer stop feeding the wood pellets 

to the gasifier 

 Allow the remaining wood pellets to burn out in the gasifier by stopping the 

feed of wood pellets and maintaining the air flow up to the point where the 
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temperature in the gasifier starts to drop down (all fuel consumed in the 

gasifier) 

 After a waiting time of 5 minutes turn of the fluidized bed fan of the gasifier  

 Shut down the gasifier as described in its normal shut down procedure by 

gradually turning off the ancillary systems one by one 

8.3.7 End of test and complete shutdown of ancillary systems 

The procedure below is followed after both processes are completely and safely 

shut down; 

 Tour throughout the plant for inspection for any irregularities 

 Inspect for any leaks, any local alarms and any equipment behaving 

abnormally 

 Shutdown all ancillary equipment 

 Remove any waste and arrange waste disposal. 

 Tidy up the plant. 

 Discuss and review the experiment with the team and record areas of 

improvement 

 Acquire logged experimental data from control system for analysis 

If for any reason some emergency situation is created then both processes can 

be safely shut down by means of their own emergency shutdown procedures. 

In all cases, failsafe pneumatic valves can be activated from the control system 

of both systems, even if the power is lost as they have uninterruptible power 

supply (UPS) for backup. In this case all electrical units are tripped and only 

the communication between valves, temperatures and pressures is available 

as well as the compressed air and nitrogen gas for purging. Because the motive 

force is applied by compressed air to the valves the valves can opened or closed 

and nitrogen gas can be purged if needed. If the gas pressure builds up 

because of the shutdown of the gas flaring system then the pressure relief 

valve is activated on the gasifier line and the bursting disc on Pyroformer may 

be activated. In both cases the escaping gases are released outside the building 

into a safe area as was approved by Hazard Operability (HazOp) Analysis.  

8.4 Summary of the chapter  
A very novel study to enable pyrogasification by integrating a Pyroformer and a 

BFB gasifier has been presented in this chapter. The benefits of pyrogasification 
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are: significantly lower tar content in the fuel gas and use of complex biomass 

feedstock flexibility. The process avoids making complex bio-oil requiring further 

upgrade downstream.  In this chapter, results from the commissioning of a 

commercial scale bubbling fluidised bed gasifier have been presented. Though 

there were plans to do detailed scientific tests in the gasifier, due to resource 

limitations this was not possible and instead, the data from a BFB gasifier 

commissioning test only are presented here. During the test, the gasifier was 

running without major problems with automation. However, there were 

fluctuations in the syngas flow, gasification temperature and syngas composition. 

The syngas volume flow of 788 m3/h, syngas total energy flow of 1.197 MW and 

a syngas composition containing CO (17.3 vol%), hydrogen (13.3 vol%), methane 

(4 vol%) and CO2 17 vol% were recorded on average. The average gasification 

temperature was 818 °C. There was some correlation between gasification 

temperature and syngas flowrate, such that by increasing the temperature the 

carbon conversion efficiency was increased leading to increased gas flowrate. 

It has been demonstrated that the pyrogasification treatment of complex biomass 

feedstocks can lead to benefits in improving the economics of gasification 

processes. The economics of the gasifier process can be improved by adding a 

pyrolysis process upstream, thus enabling a wide variety of complex feedstocks 

to be used in the pyrolysis step and then only taking the vapours and gaseous 

products into the gasifier. In this way problematic ash is retained in the pyrolysis 

step and most of the volatiles are used for fuel gas production which can then be 

used in the engines for electricity, heat and cooling production.  

This means the gasifier which was designed for expensive (£200/ton) wood pellets 

of certain type can now be fed on a wide range of feedstocks (not conventionally 

used in gasifiers) such as dry digestates, chicken litter, sewage sludge and other 

complex industrial wastes entering first the Pyroformer. It is also possible that 

most (if not all) of the wood pellets taken into the gasifier can be replaced by 

pyrolysis gas and char (permitting char melting point above gasification 

temperature). This excess pyrolysis gas and char quantity can be supplied by more 

than one such Pyroformer or a bigger Pyroformer to match the scale of the gasifier. 

In both cases, the dolomite will still be required as catalytic material for fluidization 

and for gas cleaning. When the gasifier is combined in this way there are three 

important changes taking place. Firstly, there is low air demand for fluidisation 
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due to low bed density/pressure drop leading to lower nitrogen content in the 

syngas, which leads to an improvement in the calorific value. Secondly, a great 

portion of the heat demand for the gasifier is supplied from the hot pyrolysis gas 

thus lower air volume is needed to generate heat via exothermic reactions within 

the gasifier (this also links to first point). Thirdly, there will be a loss of the char 

bed catalytic effect due to the lower wood pellet intake to maintain the pressure 

drop across the gasifier bed, if Pyroformer char is not used in the gasifier. This 

leads to a lower char volume available per unit volume of air/syngas which is 

undesirable. There are three possibilities for tar cracking promoted by thermal 

cracking due to the high temperature in the gasifier, catalytic cracking by the 

dolomite and catalytic cracking by char. Hence, a compromise is to be made 

between tar cracking by char due to lowering of wood pellet feed rate and 

compensating it with pyrolysis gas and the Pyroformer char. Perhaps the loss of 

char activity could be compensated by the fact that pyrolysis gas is already gone 

through a volatile and tar cracking stage in the Pyroformer by char recirculation 

and now (with lower tar loading) it will be even easier for these gaseous vapours 

to be cracked further by dolomite and thermal cracking. The extent of these effects 

need to be further explored during combined pyrogasification hot tests. 

The pyrogasification step as described above also provides the benefit of the 

avoidance of size reduction and/or pelletisation steps of the biomass preparation, 

as the screws of the Pyroformer can easily transport biomass materials of varying 

shapes and sizes thus providing feedstock diversity and easier handling of complex 

feedstocks. However, integration of both processes in this way needs to be fully 

proven through further experimentation. It is likely that there will be some minor 

teething issues such as pyrolysis gas flow management towards gasifier, 

fluidisation air pressure management in the gasifier and the wood pellet feed 

adjustments in the gasifier in first few tests. These will need resolving as is normal 

with any new technical design.  

For pyrogasification to work in this integrated manner, it is absolutely essential 

that the twin-screw coupling works correctly without becoming blocked and to 

maintain a constant flow of pyrolysis gas from the Pyroformer to the gasifier. The 

success of the pyrogasification is very dependent on this twin-screw coupling and 

the operation steps as described above. The suggested design has been based on 

the available technology at EBRI for this research. Other designs would be 



  

222 
 

possible; for instance, it is also possible that, in downdraft or updraft gasifiers the 

twin-screw coupling may not be needed as there is no fluidization of the bed taking 

place, in which case a simple connecting pipe between both processes will be 

sufficient to enable the pyrogasification. 

The emission reductions are possible by introducing a system change for currently 

naturally decaying woody biomass through pyrogasification and by displacing the 

energy production from fossil fuels and producing biochar for land application. 

Pyrogasification of naturally decaying waste wood provides an excellent route for 

carbon emissions reduction by using biochar from pyrolysis process for land 

application and fuel gas for substituting fossil fuels for energy production. 

Currently, pyrogasification is the only possible route which can provide the biochar 

and a fuel gas which can be used directly for bioenergy and carbon sequestration 

without further modifications in an engine as opposed to complex bio-oil from 

pyrolysis.
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Chapter 9 – Conclusion and recommendations 

In this chapter a detailed summary of the intermediate pyrolysis reactor 

(Pyroformer) based on experimental work is presented. This provides an overview 

of the objectives and the associated findings. 

9.1 Conclusions 
In this project, three different models of the intermediate pyrolysis reactor 

(Pyroformer) have been tested. Screw pyrolysis systems provide the added 

advantage of ease of material transportation of varying sizes and shapes within 

the reactor. The hypothesised potential benefits of tar cracking by char recycling 

with twin screw arrangement of the Pyroformer has been tested experimentally. 

Dry digestate, wood pellets (ENPlus A1 standard) and miscanthus have been used 

in the Pyroformer. Digestates are typically used for land spreading which causes 

management problems in terms of storage and odours. Land spreading, however, 

is only required at certain times of year while for the rest of the year the digestates 

have to be stored up for months in sealed digester vessels to prevent odours 

escaping. Using solid fractions from anaerobic digesters for pyrolysis provides an 

alternative way to manage digestates. This is achieved by mechanical separation 

of solids from the digestate and then further drying. The remaining liquid digestate 

can mostly be recycled back into the process or spread on the land. This also 

means digestate materials can now be processed through intermediate pyrolysis 

and more value can be added to this resource and storage risks eliminated. During 

pyrolysis these complex residues produce bio-oil, char and gases or the residues 

can be converted to a fuel gas through pyrogasification. Altogether the main 

objectives set out in Chapter 3 have been met in the following ways: 

 The residence time of the biomass in the Pyroformer inner screw was 

calculated in Chapter 4 (section 4.2) by means of a cold model of the 

Pyroformer. A small difference of 10% between the theoretical and 

experimental residence times was discovered. It has been proven that 

residence time of more than 2 minutes was achievable in the Pyroformer 

by altering the rotational speed of the inner screw. Experimental residence 

times of 2, 3.5 and 6 minutes were achieved with an inner screw rpm of 

7.1, 4 and 2.3 respectively. These were sufficient residence times to release 
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most of the volatiles from the biomass as be confirmed by 

thermogravimetric analysis. 

 It was also discovered (Chapter 4, section 4.3) that the time taken to reach 

the steady state varies with the residence time as well as with the varying 

feeding rates.  

 Char to biomass ratio has been calculated (shown in Table 17) for the first 

time for a twin screw counter rotating arrangement. The char to biomass 

ratios varied with the rpm of inner and outer screws as well as with the feed 

rates. It was discovered that higher feed rates lead to the lower char to 

biomass ratios and that this may affect the anticipated benefits of char 

recirculation for tar cracking. 

 A variety of biomass feedstocks were tested In Chapter 5 in hot pyrolysis 

experiments and the results presented. It was discovered that lower feeding 

rates with increasing char to biomass ratio led to more gas product being 

formed whereas liquid yield was reduced. The optimum char to biomass 

ratio of 3.1 was discovered for the 5 kg/h feeding rate for green rye and 

corn derived digestate. 

 The organic phase of the bio-oil from digestates exhibited a very low total 

acid number which is associated with the material composition. Nearly all 

digestate derived feedstocks led to a total acid number below 1. For wood 

and miscanthus pellets the total acid numbers were 17.0 and 5.33 

mgKOH/g.  

 Direct quenching of pyrolysis vapours with biodiesel was performed in a 

large scale Pyroformer of 100 kg/h and the resulting blend of bio-oil and 

biodiesel inherited similar properties to those of biodiesel with the exception 

of higher total acid number and viscosity.  

 A blend of bio-oil and biodiesel was prepared by the in-situ blending 

technique involving direct quenching of pyrolysis vapours with biodiesel. 

The blend produced in this way contained 19.75 wt. % bio-oil from wood 

pellets and 11.28 wt. % bio-oil from miscanthus derived feedstocks, 

showing good fuel properties to be used in diesel engines. 

 Biochars derived from miscanthus and wood pellets were analysed for 

application in soil amendment and were compared against voluntary 

standards from the International Biochar Initiative and British Biochar 

Foundation. The values for toxic metals were found to comply with these 
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standards. It was also shown that these biochars can be applied to 

agricultural land to achieve soil amendment benefits as is allowed by UK 

Environment Agency. 

 Carbon emission reductions calculations in Chapter 6 were estimated based 

on the methodology developed by Gaunt et al [54] for wood pellet derived 

char for the 100 kg/h pyrogasification system. Emission reductions 

according to soil type for biochar application, and to the type of conventional 

energy source (without biochar production) against which the comparison 

was made, were thus found to be as follows. For biochar application in acidic 

soil, 685.24 and 870.78 tonnes per annum as compared to the use of 

natural gas and coal respectively. For application in  alkaline soil, 711.48 

and 897.02 tonnes per annum as compared to the use of natural gas and 

coal respectively.  

 A design review of three critical components of Pyroformer process was 

carried out in Chapter 7. These three components included valves of the 

biomass feeding system, char collection and cooling system and biodiesel 

quenching system redesign to lower the high throughput of the biodiesel in 

the quenching process. A pair of knife gate valves for the feeding and char 

outlet assembly was recommended to overcome valve failure due to 

thermal issues. For char cooling and collection system, a water-cooled 

screw conveyor was recommended to ensure the continuous operation of 

the Pyroformer. A chiller based counter current heat exchanger was 

recommended to be used with the existing biodiesel quenching system to 

reduce the biodiesel consumption and to enhance the process economics 

and the bio-oil content in the resulting blend of bio-oil and biodiesel. 

 In Chapter 8 the bubbling fluidised bed gasifier was used for a 

commissioning test and some data were presented. During the 

commissioning test of the gasifier, the syngas flowrate of 788 m3/h, syngas 

total energy of 1.197 MW and a syngas composition containing CO (17.3 

vol%), hydrogen (13.3 vol%), methane (4 vol%) and CO2 17 vol% were 

recorded on average. The average gasification temperature was 818 °C. 

There was some correlation between gasification temperature and syngas 

flowrate as by increasing the temperature the carbon conversion efficiency 

was increased leading to increased gas flowrate. 
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 A detailed design of the twin screw coupling is presented with an electric 

drive motor to feed the pyrolysis vapours into a bubbling fluidised bed 

gasifier.  

 In Chapter 8 a detailed operational and control philosophy for integrated 

Pyroformer and gasifier operation has been presented to ensure well-

integrated, smooth and safe operation of both processes to enable 

operation in pyrogasification mode.  

9.2 Recommendations 
The cold flow experiments of Chapter 4 have provided understanding regarding 

the char to biomass ratios in intermediate pyrolysis. But more tests need to be 

conducted to validate fully the char to biomass ratio model developed from the 

experiments in the cold Pyroformer and apply it to hot Pyrolysis experiments.  

Validation tests in a hot pyroformer with duplicate and triplicate results are needed 

to conclusively understand the density differences between the hot and cold 

model.  

The Pyroformer is based on a twin-screw counter rotating concept which has its 

limitations preventing the throughput being achieved without blockages at the 

feed inlet. More tests are needed for long durations, possibly extending to 

continuous operation for days if not weeks, to fully assess the design throughput 

of this system. Perhaps it will be better to use single screw rather than twin-screws 

system to counter the blockages in the system. 

Some results for pyrolysis tests in Chapter 5 in a 20 kg/h Pyroformer gave 

scattered results in parametric studies, leading to ambiguous conclusions and 

hence it is recommended that further tests be carried out to establish more 

conclusive findings. It is recommended to repeat some of the tests at 3 and 5 kg/h 

and also do further tests at 10 kg/h to confirm conclusions about the impact of 

higher feeding rate and of char to biomass ratio at higher feeding rates on the 

pyrolysis products. Char analysis of the DCL and DAC materials should be further 

analysed for other mineral content to establish their suitability for application in 

agricultural soils. This will help to understand the char ash composition and detect 

further inorganic species (e.g. potassium and sodium) which may well have some 

catalytic effect in addition to char and potassium which tend to form a better 

organic phase in the bio-oil. 
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It was discovered that bio-oils from the digestate materials have very low total 

acid numbers compared to wood pellets derived bio-oil (Chapter 5). Hence it is 

recommended that digestate bio-oil be used as a quenching fluid to balance the 

total acid number of the bio-oil.  It is also possible that digestate derived bio-oils 

can be blended post condensation with other bio-oils with high total acid numbers 

to reduce the total acid numbers of such highly acidic bio-oils. This could be more 

beneficial for fast pyrolysis bio-oils which are more acidic due to high oxygen 

content compared to intermediate pyrolysis oils. 

In Chapter 6 quenching of pyrolysis vapours with biodiesel shows good potential 

but more needs to be understood about the chemical reactions between biodiesel 

and pyrolysis vapours at different blending conditions especially temperature. 

There could be some reforming reactions taking place leading to smaller fraction 

of aqueous phase, but this is not fully understood yet and deserves further 

exploration as minimum aqueous phase in bio-oil is highly desirable. Since the 

biodiesel content in the in-situ blended liquid is very high at >80 wt. %, it is 

recommended to use a heat exchanger with a separate chiller to lose heat outside 

the process and thus enhance the bio-oil ratio in the blend. 

The literature shows that biochar exhibits some excellent properties for soil 

remediation, however biochar may contain some hazardous organic and inorganic 

components. Therefore, further characterization of biochar for nutrients and 

potential contaminants must be conducted in future. Field and pot trials of biochar 

produced from pyrolysis tests must be conducted on selected plant species and 

the anticipated benefits of biochar must be confirmed before applying the biochar 

on land at large scale. It is strongly recommended that detailed studies need to 

be conducted to include complete life cycle assessment (LCA) of the process. Also, 

there is some evidence of Polycyclic Aromatic Hydrocarbons (PAH), 

Polychlorinated Biphenyls (PCB) found in the biochar according to the literature. 

Each biochar source needs to be analysed to ensure no such carcinogens are 

deployed with.    

The carbon emission reductions by the systems change for naturally decaying 

wood were estimated for bioenergy production and biochar application for carbon 

sequestration in land, were estimated in comparison ti conventional fossil fuel 



  

228 
 

energy supply. These estimations need to be validated by a complete lifecycle 

analysis of naturally decaying wood in bioenergy and biochar application.   

In Chapter 8 the gasifier commissioning test was an attempt to highlight the 

experimental data about the syngas quantity, quality and operational parameters. 

However, further tests must be conducted on a prolonged and repeated basis to 

evaluate the apparent benefits of BFB gasifier technology and its coupling with the 

Pyroformer. 

Pyrogasification is a novel concept and this thesis has presented an important first 

step to review the design for an integrated system which can work effectively. It 

is recommended that further tests be conducted on the integrated pyrogasification 

system. In particular, the possibility to obtain better turn down ratio of the gasifier 

merits further investigation, as wood pellet feed can be compensated by pyrolysis 

gas supply, such that inlet air velocity for effective fluidisation will also be low. 

Hence it may well be possible to have a better turn down ratio corresponding to 

reduced syngas output. Also, as mentioned there could be a beneficial effect on 

the syngas quality due to the two-stage pyrolysis and gasification process to 

reduce the tar content in the syngas. This anticipated benefit in syngas quality by 

tar conversion should also be fully tested as the Pyroformer and gasifier integrated 

system coupling is ready for the pyrogasification tests.  

Benefits associated with pyrogasification can be huge if the pyrolysis step can be 

added to a gasifier system, as gasifier systems running on ENPlus wood are not 

currently economically viable. The benefits will include giving the gasifier flexibility 

to use cheap, more complex and abundantly available residues to be used via the 

upstream Pyroformer thus enhancing the gasifier process economics. However, 

until extensive tests are carried out in coupled Pyroformer and gasifier systems, 

the benefits and potential long-term technical problems are not fully quantifiable. 

It is therefore strongly recommended that further Pyrogasification tests be carried 

out on the EBRI plant at Aston University, as this is ready for operation.  
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1.0 Introduction 

The demand for fossil fuels is constantly increasing and there has been extensive research 

continuing into this area to substitute them with various renewable energy alternates to reduce any 

further impact on the environment. Intermediate Pyrolysis is an advanced thermo-chemical 

technique which utilizes multiple waste biomass streams to economically generate sustainable 

heat and power thereby reducing world’s reliance on fossil fuels, climate change and most 

importantly eliminating costly solid wastes disposal techniques such as landfill, landspread or 

incineration which are not so environmentally friendly.   

 

2.0 Materials and Methods 

Intermediate pyrolysis of two different biomass fuels (Pelletized Miscanthus and Wood, 6mm) 

was performed using a 100kg/hr pyrolysis reactor known as the Pyroformer recently developed by 

EBRI
2
 which is the first Industrial scale plant of its kind in the UK. The process temperature was 

maintained at 400°C by means of external heaters for both the feedstocks with feedstock 

residence time estimated to be about 10 minutes which is realized by the internal conveyor screw 

of the Pyroformer, although the vapour residence time is only a few seconds. The evolved gases 

and vapours pass through a scrubbing system where a light spray of biodiesel is injected thereby 

condensing a fraction of vapours at first stage tank. The remaining fraction is then passed through 

an air cooled condenser where they are condensed to form most of the pyrolysis oil. The gases 

which escape the second stage condenser are then passed through an electrostatic precipitator 

where they are further condensed to a combination of oil and water fraction. Finally the rest 

permanent gases are either directed to an internal combustion (IC) dual fuel common rail CI 

engine for combustion or flared.  

 

2.1 Feedstock Characterisation 

Table 1: The Proximate and Ultimate analysis of the feedstocks is as shown below: 

Feedstock Unit Wood pellets Miscanthus 
a
Ultimate analysis 

Carbon 

Hydrogen 

Oxygen
b 

Nitrogen 

Sulphur  
a
Proximate analysis 

Moisture 

Ash content 

Density @20°C 

Higher Heating Value 

(HHV)  

 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

 

wt.% 

wt.% 

kg/m
3 

MJ/kg 

 

46.2 

5.96 

47.55 

<0.01 

0.28 

 

8.71 

0.46 

688 

18.30 

 

41.34 

5.27 

52.47 

0.57 

0.35 

 

10.44 

2.98 

640 

17.28 

a
Analysis based on pre-treated feedstock, dry basis,

 b
Calculated by difference 

It can be noted here that both the input materials have almost similar characteristic properties. 

                                                           
1 Corresponding author: Tel: +44 (0)121 204 5027, email: m.saghir2@aston.ac.uk 
2 Hornung A et al. The thermal treatment of biomass, GB patent application number: GB 0808739.7, application submitted: 

May 15, 2009. World patent applied for (WO 2009/138757; Nov 19, 2009). 
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3.0 Results and discussion 

 

3.1 Mass balance 

As a general rule, for most of the feedstocks the product yield is evenly distributed (one-third of each 

product). From table 2, it can be observed that there is approximately 10% difference between the 

quantities of pyrolysis oil obtained from wood and miscanthus pellets which means wood pyrolysis 

vapours couldn’t be condensed as efficiently as the miscanthus vapours. This can be due to the fact 

that wood pyrolysis vapour contains more permanent gases and lower molecular weight products 

compared to the miscanthus. The gas yield also increases due to the reforming mode of the 

Pyroformer, turning water and pyrolysis vapours into more gas phase products. 

Table 2: The following table shows the Intermediate pyrolysis products’ yield 

Feedstock Quantity 

(kg) 

Feed rate 

(kg/h)  

%Bio-oil %Biochar %Gases* 

Wood pellets 

(6mm) 
117 61.04 20.77 32.0 47.23 

Miscanthus 

(6mm) 
105 70.0 30.90 31.62 37.48 

*Calculated by difference 

 

3.2 Biochar Characterisation 

Miscanthus and wood pellets biochar has the potential for carbon sequestration (if conditioned to C/O 

larger than 4) as well as soil conditioning or can be used as a co-combustion material in boilers and 

combustors since their heating value is as good as conventional coal. Moreover, experimental tests 

have been undertaken at Harper Adams University labs (UK) to study detailed effects of these 

biochars on the productivity of plants across a range of soils. 

Table 3: Proximate and Ultimate analysis of Biochar 

Biochar Unit Wood biochar Miscanthus 

biochar 
a
Ultimate analysis 

Carbon 

Hydrogen 

Oxygen
b 

Nitrogen 

Sulphur  
a
Proximate analysis 

Moisture 

Ash content 

Density @20°C 

Higher Heating 

Value (HHV) 

 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

 

wt.% 

wt.% 

kg/m
3 

MJ/kg 

 

71.58 

4.62 

23.04 

0.54 

0.22 

 

4.05 

2.64 

498 

28.78 

 

 

 

62.2 

4.37 

32.35 

0.8 

0.28 

 

8.03 

10.31 

436 

24.64 

a
Analysis based on pre-treated feedstock, dry basis 

b
Calculated by difference 

3.3 Bio-oil Characterization 

The table 4 illustrate the Physio-chemical characteristics of wood and miscanthus pellets pyrolysis oil 

at all the three condensation stages. The higher heating values of these pyrolysis oils closely resemble 

to that of ASTM biodiesel which is an average of 38.5MJ/kg for wood pellets and 39.24MJ/kg for 

miscanthus with negligible amount of ash or solids content. Therefore, these oils could be readily used 

into an internal combustion (IC) engine by adopting minor fuel upgradation techniques. 

   272 



Table 4: Elemental analysis and Characterisation of Intermediate Pyrolysis oils & ASTM standard for Biodiesel 

Bio-oil Unit 

Wood pellets Miscanthus 
Biodiesel

c 

ASTM 
Condensation Stage 

1
st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 

Compositional analysis 
Carbon 

Hydrogen 

Oxygen
a 

Nitrogen 

Sulphur  
Higher Heating Value (HHV)  

Lower Heating Value (LHV) 

Ash content 

Density @20°C 

Total acid number 

 

Kinematic Viscosity @40°C 

Water Content 

 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

MJ/kg 

MJ/kg 

wt.% 

kg/m
3 

mg 

KOH/gm 

cSt 

wt.% 

 

76.14 

12.46 

11.38 

<0.10 

<0.10 

39.58 

37.09 

<0.01 

882 

27.85 

 

21 

0.23 
 

 

 

76.21 

12.04 

11.73 

<0.10 

<0.10 

39.30 

37.05 

<0.01 

887 

18.05 

 

19 

0.59 
 

 

76.09 

11.55 

12.34 

<0.10 

<0.10 

38.92 

36.47 

<0.01 

910 

NaN
b 

 

- 

- 

 

76.33 

11.83 

11.80 

<0.10 

<0.10 

39.39 

36.88 

<0.01 

886 

7.95 

 

21 

0.31 
 

 

76.09 

11.92 

11.97 

<0.10 

<0.10 

39.38 

36.86 

<0.01 

881 

8.03 

 

21 

0.42 

 
 

 

70.6 

11.01 

18.37 

<0.10 

<0.10 

35.70 

33.37 

2.08 

955 

NaN 

 

- 

- 

 

77.04 

11.73 

11.21 

<0.10 

<0.10 

40.11 

37.47 

<0.01 

820 

0.62 

 

6 

0.12 

a
Calculated by difference, 

b
No acid number detected 

c
Biodiesel obtained from a local supplier (Waste cooking oil) 

 

However, the kinematic viscosity and the total acid number are significantly high with respect to the 

biodiesel. This can be overcome by blending it with proportionate amount of biodiesel which is found 

to be highly miscible with these pyrolysis oils or by emulsification to mitigate any related 

erosion/corrosion problems to the fuel injectors and additionally improve fuel atomisation during its 

combustion phase in the engine. 

GC-MS of these pyrolysis oils showed that the chemical composition is mostly dominated by the 

presence of aromatics, long chain hydrocarbons apart from some phenols.  

 

4.0 Conclusions and future work 

 

Various experimental tests on the Pyroformer concluded that it has no negative environmental or food 

security impacts and its capability to process multiple waste streams such as sewage sludge, 

agricultural and cattle wastes indicates it’s free from the requirement of special biocrops agricultural 

land or deforestation. This will help to achieve significant reduction in the fossil fuel usage in the UK 

and other countries and would also contribute towards the EU’s target of achieving 20% of the energy 

from renewable sources by 2020. 

 

All the three intermediate pyrolysis products are valuable sources of energy. It is observed that the 

pyrolysis oils obtained via this conversion process have high stability and energy density which can 

be easily stored and transported and already tested as a substitute to diesel in a slightly modified 150 

kW NEK Compression ignition (CI) engine. The basic advantage of these oils is they are free from 

any tar as most of it retains in the biochar. This eliminates the need of using expensive filtration 

systems thereby making the process economically feasible. 

 

The Syngas can also be used as a fuel in dual fuel CI engines and experimental investigation is 

continued to route this gas into multi-cylinder common rail NEK engine to fully utilize this pyrolysis 

output and there after the results of emission, combustion and performance of an IC engine operating 

on these Intermediate pyrolysis oil and gas fuel will be discussed in detail in future works. 

In conclusion, further research is still under progress to effectively resolve some of the minor issues 

around the technology. 
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ABSTRACT 

1.0 Introduction 

This study aims to investigate the potential combustion and agricultural application of char 

derived from intermediate pyrolysis of four different biomass feedstocks namely wood, 

miscanthus, dairy fibre and compost material in pelletized form. These biomass feedstocks 

could be considered as the most promising sources for the sustainable production of biochar. 

The other pyrolysis products such as bio-oil and syngas are also considered a rich source of 

alternate renewable energy compared to the conventional fuels. 

Intermediate Pyrolysis is an innovative thermo-chemical decomposition technique of biomass 

in the absence of oxygen in a specially designed industrial scale reactor known as the 

Pyroformer
TM

 recently developed by EBRI
2
 at Aston University which is first of its kind in 

the UK. The reactor is capable to process multiple waste streams with a maximum biomass 

feed handling capacity as 100 kg/h. 

2.0 Materials and Methods 

The Pyroformer
TM

 is essentially an auger pyrolysis reactor with two counter-rotating co-axial 

screws which can process feedstocks in an inert atmosphere of nitrogen. The reactor is heated 

externally by means of electrical heating jackets and the feed is processed through the screw 

conveyor system whilst being heated to the specified pyrolysis temperature of around 400˚C. 

Some solid residue (char and ash) is re-circulated within the reactor, the remainder drops out 

at the downstream end of the reactor, and the pyrolysis vapours and gases exit through the 

Pyroformer
TM 

outlet. (Refer Figure: 2 in the Appendix for schematic of the entire process) 

The recycling of char increases the char to feedstock ratio in the reaction zone which 

promotes catalytic cracking of the primary vapours to lower molecular weight hydrocarbon 

vapours and permanent gases. It also serves to recycle heat within the reactor and increase the 

heating rate experienced by the feedstock. This controlled thermal treatment and chemical 

reforming process produces a vapour stream that is free from particulates and tars and 

eliminates the need for expensive filtrations systems. At the end of the pyrolysis process, the 

system generates three different products: a combustible gas, a combustible bio-oil and a char 

solid. 

                                                           
1
 Corresponding author: Tel: +44 (0)121 204 5027, email: m.saghir2@aston.ac.uk 

2
 Hornung A et al. The thermal treatment of biomass, GB patent application number: GB 0808739.7, application submitted: 

May 15, 2009. World patent applied for (WO 2009/138757; Nov 19, 2009). 
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High quality char outputs and low tar vapour streams can be much more effectively linked to 

this technology because of low vapour residence time of the order of few seconds which is 

also the main criteria to minimize the process energy requirements with another advantage 

being variable solids’ residence time. 

2.1 Feedstock characterization 

Four different feedstocks were tested namely: Wood, Miscanthus, Dairy fibre and compost 

material. Wood and Miscanthus were tested to establish a standard relationship with 

reference to the other two materials. Wood and Miscanthus feedstock was obtained from a 

UK based local supplier in pelletized form (6 mm size) whereas the dairy fibre was obtained 

from a small cattle farm based at Harper Adams University (UK) and the compost material 

was from the household generated waste also referred to as ‘brown-bag’ waste which was 

obtained from Germany. Dairy fibre and compost material was initially in raw form which 

was pre-treated to form 8 mm sized pellets using a 200 kg/h die and roller electrical 

pelletiser. The characterisation of these feedstocks is discussed in detail below. 

2.1.1 Inductively coupled plasma (ICP) metals analysis 

Metals and a range of non-metals, such as phosphorus, for the feedstocks were analysed using 

Varian Vista MPX ICP-OES system. (Analysis based on dry, ash-free basis)  

Table 1: Elemental analysis of Biomass feedstocks (expressed in parts per million, ppm unless indicated in wt. %) 

Feedstock 
Wood pellets Miscanthus Dairy fibre Compost 

Element 

Al 46 70 0.6% 1.03% 

As <1 3 3 5 

B <1 <1 30 53 

Ba 7 9 78 343 

Ca 0.08% 0.5% 6.5% 5.75% 

Cd <1 <1 <1 1 

Ce <1 <1 6 8 

Co <1 <1 1 10 

Cr 1 1 15 74 

Cu 32 <1 107 150 

Fe 91 99 0.22% 1.89% 

Hg 1 1 <1 1 

Li <1 1 5 8 

Mg 0.012% 0.042% 0.75% 0.5% 

Mn 70 27 154 560 

Mo <1 <1 3 3 

Na 17 87 0.21% 0.3% 

Nb <1 <1 40 29 

Ni 1 1 7 24 

Pb <1 <1 34 86 

Pd <1 <1 <1 17 

Sc <1 <1 <1 1 

Si 0.016% 0.21% 2.08% 3.96% 

Sn 1 2 2 8 

Sr 4 8 130 133 

Ti 5 4 204 152 

V <1 1 4 16 
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Y <1 <1 1 4 

Yb <1 <1 <1 <1 

Zn 12 13 319 417 

Zr <1 <1 13 11 

 

2.1.2 Proximate and Ultimate analysis 

The Ultimate analysis was determined using combustion analysis on a Flash EA 1112 Series 

CHNS analyzer. Oxygen was calculated by difference. The density was measured following 

the ASTM D-285 methods with slight modifications. All moisture contents of the feedstocks 

were determined using a moisture analyser (Sartorius MA35) with a programmed 

temperature of 105°C. The gross heating value in (MJ/Kg) of the dried feedstocks were 

determined using a Parr 6100 bomb calorimeter whereas the LHV was theoretically 

calculated using a standard empirical formula. The results are as shown in the table below: 

Feedstock Unit 
Wood 

pellets 
Miscanthus Dairy fibre Compost 

a
Ultimate analysis 

Carbon 

Hydrogen 

Oxygen
b 

Nitrogen 

Sulphur 

Phosphorous 

Potassium  

C/O ratio  
a
Proximate analysis 

Moisture 

Ash content 

Density @20°C 

Higher Heating Value 

(HHV)  

Lower Heating Value 

(LHV) 

 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

 

 

wt.% 

wt.% 

kg/m
3 

 

MJ/kg 

 

MJ/kg 

 

46.2 

5.96 

46.69 

<0.01 

0.28 

0.004 

0.3 

0.99 

 

8.71 

0.46 

688 

 

18.34 

 

17.08 

 

41.34 

5.27 

51.81 

0.57 

0.35 

0.045 

0.23 

0.81 

 

10.44 

2.98 

640 

 

17.28 

 

16.16 

 

25.02 

3.18 

62.82 

1.62 

0.36 

0.25 

0.98 

0.40 

 

10.84 

24.61 

633 

 

11.34 

 

10.67 

 

 

30.03 

4.19 

55.83 

1.83 

0.88 

0.12 

0.42 

0.54 

 

6.38 

35.46 

672 

 

11.52 

 

10.63 

a
Analysis based on pre-treated feedstock, dry basis,

  

b
Calculated by difference 

 

The moisture content of the feedstocks was in the range of 6-10 wt. % which is optimum for 

the process with a gross heating value (MJ/kg) ranging in between 10-17 MJ/kg, highest 

being for wood pellets and lowest for the compost material. 

 

3.0 Results & discussion 

3.1 Mass balance 

The maximum feed rate that was practically tested during the test runs was restricted to 70 

kg/h which was for miscanthus pellets. The results indicate that the char yield remained 

almost one-third of the initial feedstock quantity whereas the bio-oil and syngas was in the 

range of 20-35% and 35-50% respectively depending upon the feedstock. The bio-oil and 

syngas were also analysed for use as a fuel in a dual fuel internal combustion (IC) 

compression ignition (CI) engine which have already been discussed in previous works. 
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Table 2: Mass yields (wt. %) of pyrolysis products from different biomass feedstocks 

Feedstock Quantity 

(kg) 
Feed rate 

(kg/h)  
Bio-oil 

wt. % 
Biochar 

wt. % 

Syngas* 

wt. % 

Wood pellets 

(6 mm) 
117 61.0 20.77 32.0 47.23 

Miscanthus 

(6 mm) 
105 70.0 30.90 31.62 37.48 

Dairy fibre 

(8 mm) 
65 25.0 33.73 30.2 36.07 

Compost 

(8 mm) 
290 66.5 19.74 32.55 47.72 

*Gas yield was calculated by difference 

3.2 Bio-oil Characterization 

The table 3 illustrates the Physico-chemical characteristics of all the four tested feedstocks. 

The higher heating values of these pyrolysis oils closely resemble to that of ASTM biodiesel 

which is in the range 38-40 MJ/kg with negligible amount of ash or solids content. Therefore, 

these oils could be readily used into an internal combustion (IC) engine by adopting minor 

fuel upgradation techniques. 

Table 3: Elemental analysis and Characterisation of Intermediate Pyrolysis oils & ASTM standard for Biodiesel 

Bio-oil Unit 

Wood 

pellets 

Miscanthus Dairy 

Fibre 

Compost 

material Biodiesel
b 

ASTM 

Compositional analysis 
Carbon 

Hydrogen 

Oxygen
a 

Nitrogen 

Sulphur  
Higher Heating Value (HHV)  

Lower Heating Value (LHV) 

Ash content 

Density @20°C 

Total acid number 

 

Kinematic Viscosity @40°C 

Water Content 

 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

MJ/kg 

MJ/kg 

wt.% 

kg/m
3 

mg 

KOH/gm 

cSt 

wt.% 

 

76.34 

11.13 

12.33 

<0.10 

<0.10 

38.50 

36.14 

<0.01 

886 

17.06 

 

14.0 

0.52 
 

 

74.34 

11.59 

13.87 

<0.10 

<0.10 

38.16 

37.01 

0.70 

885 

5.33 

 

21.0 

0.36 

 

76.82 

11.23 

11.75 

<0.10 

<0.10 

38.84 

36.46 

<0.01 

910 

3.51 

 

22.0 

0.28 

 

 

76.70 

11.87 

10.98 

0.34 

<0.10 

39.63 

37.11 

<0.01 

895 

4.42 

 

9.66 

1.1 

 

77.04 

11.73 

11.21 

<0.10 

<0.10 

40.11 

37.47 

<0.01 

820 

0.62 

 

6.0 

0.12 

a
Calculated by difference 

b
Biodiesel obtained from a local supplier (Waste cooking oil) 

 

However, the kinematic viscosity is slightly high with respect to the biodiesel. This can be 

overcome by blending it with proportionate amount of biodiesel which is found to be highly 

miscible with these pyrolysis oils or by emulsification to mitigate any related 

erosion/corrosion problems to the fuel injectors and additionally improve fuel atomisation 

during its combustion phase in the engine. A complimentary post processing technology to 

the Pyroformer™ namely Bio-activated fuel (BAF) technology is currently being tested to 

improve these bio-oils’ quality and this is most likely to be discussed in future works. 
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3.3 Biochar Characterisation 

Biomass char is a solid co-product of the pyrolysis process and is a renewable source of 

energy with heating value as good as conventional coal and when this char is utilised for 

special agricultural purposes it is referred to as biochar. 

The biochar is a carbon rich product and its production from waste streams is a good way to 

minimise the demand for fertilisers and could also be used as a potential solid biofuel during 

the combustion process in boilers, combustors, gasifiers etc. or for co-firing in power stations 

to generate electricity.  

Biochar is also an attractive means for sequestering carbon to mitigate global climate change 

and as a potentially valuable input for agricultural fields to enhance soil fertility, crop 

productivity and could be produced in large volumes per batch. 

Table 4: The proximate and ultimate analysis of different chars is presented in the table below: 

Biochar Unit Wood Miscanthus  Dairy Compost 
a
Ultimate analysis 

Carbon 

Hydrogen 

Oxygen
b 

Nitrogen 

Sulphur 

Phosphorous 

Potassium  

C/O ratio 
a
Proximate analysis 

Moisture 

Ash content 

Density @20°C 

Higher Heating 

Value (HHV) 

Lower Heating 

Value (LHV) 

 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

wt.% 

 

 

wt.% 

wt.% 

kg/m
3 

 

MJ/kg 

 

MJ/kg 

 

71.58 

4.62 

22.23 

0.54 

0.22 

0.1 

0.61 

3.35 

 

4.05 

2.64 

498 

 

28.78 

 

27.03 

 

 

62.20 

4.37 

31.45 

0.8 

0.28 

0.13 

0.77 

2.07 

 

8.03 

10.31 

436 

 

24.64 

 

23.71 

 

26.29 

2.06 

44.46 

1.61 

0.77 

0.4 

1.77 

0.59 

 

2.50 

56.29 

794 

 

10.81 

 

10.99 

 

26.90 

2.27 

48.86 

1.58 

0.72 

0.39 

0.61 

0.55 

 

1.94 

55.3 

821 

 

10.37 

 

10.51 

a
Analysis based on pre-treated feedstock, dry basis,

  

b
Calculated by difference 

The carbon content of the carbonised residue increased with regard to wood and miscanthus 

feed but remained almost similar for dairy and compost biomass feed along with 

deoxygenation of the feedstocks as a result of loss of functional groups during the pyrolysis 

process. The gross heating values (MJ/kg) of the chars were high for wood and miscanthus 

which was due to the an increase in the carbon content and decrease in the oxygen and ash 

content with respect to the initial biomass material but this slightly decreased for dairy and 

compost feedstocks because of an increase in the ash content.  

Figure: 1 below shows a sample of miscanthus char after pyrolysis
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    Figure 1: Miscanthus Biochar 

Table 5: Inductively coupled plasma (ICP) metals analysis (expressed in parts per million, ppm unless indicated in wt. %) 

Biochar 
Wood Miscanthus Dairy Compost 

Element 

Al 0.018% 0.023% 1.18% 1.13% 

As <1 <1 3 2 

B 413 12 43 68 

Ba 94 26 151 487 

Ca 0.94% 1.45% 16.64% 7.67% 

Cd <1 <1 1 1 

Ce <1 1 11 13 

Co <1 <1 4 13 

Cr 2 3 30 103 

Cu 182 4 140 211 

Fe 0.04% 0.78% 0.56% 2.34% 

Hg <1 <1 1 <1 

Li 1 2 5 8 

Mg 0.25% 0.17% 1.15% 0.80% 

Mn <1 0.012% 0.03% 0.15% 

Mo 1 <1 3 5 

Na 0.045% 0.016% 0.36% 0.40% 

Nb <1 <1 55 37 

Ni 41 2 13 33 

Pb 3 1 62 116 

Pd <1 <1 <1 4 

Sc <1 <1 1 1 

Si 0.33% 0.82% 2.28% 5.39% 

Sn 3 1 6 12 

Sr 28 21 263 176 

Ti 8 11 310 213 

V 1 1 8 21 

Y <1 <1 3 6 

Yb <1 <1 <1 1 

Zn 62 317 312 447 

Zr <1 <1 23 15 
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3.4 NPK rating 

NPK rating is a term commonly used to label a fertilizer based on the presence of relative 

content of the chemical elements such as Nitrogen (N), Phosphorous (P) and Potassium (K) 

which basically promotes plants’ growth and productivity.  

A balanced fertiliser is when all the three chemical nutrients NPK are included in equal 

proportion and reflected so in the ratio. This type of fertiliser is mostly preferred for all round 

general use. The table below shows approximate NPK values for the gained chars: 

Biochar N P K N:P:K 

 
    

Wood 0.54 0.1 0.61 5:1:6 

Miscanthus 0.8 0.13 0.77 6:1:6 

Dairy 1.61 0.4 1.77 4:1:4 

Compost 1.58 0.39 0.61 4:1:2 

 

4.0 Conclusions & future work 

The main advantage of using these biochars as a fertilizer is that they are produced from 

renewable resources. These biochars could potentially be used as special purpose fertilizers 

which can be intended to meet most plants’ requirements. 

The biochars contained moderate amounts of the essential plant nutrient, P, as well as 

substantial amounts of plant-available macronutrients, K, Ca and Mg along with reasonable 

amounts of Fe. (Refer Table: 4) 

The biochars also contained trace amounts of plant micronutrients, Mn, Zn, Cu, Co and Mo. 

The plant-available toxic elements such as As, Cr, Pb and Cd are also present in trace 

amounts but are below the authorized limits for organic soil amendments which is a positive 

indication. 

Additionally, these biochars when returned to agricultural land will increase the soil’s carbon 

content permanently and would establish a carbon sink for atmospheric CO2 and hence is 

proposed as a soil amendment in environments with low carbon sequestration capacity and 

previously depleted soils. 

Therefore, it can be concluded that these biochars are a good source of beneficial plant macro 

and micronutrients and contains negligible levels of toxic elements. Unfortunately, these 

biochars could not be considered as a balanced fertilizer on its own, as it contains relatively 

low levels of water soluble nutrients. However, this can be overcome by making blends 

which can be formulated to obtain balanced amount of required ingredient. 

Another interesting criteria to consider when using these chars as fertiliser is the presence of 

Polycyclic aromatic hydrocarbons (PAH’s). In particular, the presence of PAHs on biochar 

could be of concern when chars with high levels of PAHs are used in human food production 
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which could potentially result into food contamination. However, further research is still in 

progress on this aspect of biochar which will be discussed in future works. 

Moreover, agricultural field trials have currently been undertaken at Harper Adams 

University (UK) to study detailed effects of these biochars on the productivity of plants 

across a range of soils. This study will lead to a novel determination method of the char 

quality and the establishment of standards thereby will be helpful in reaching a definitive 

conclusion. 

Additionally, the future work will also be focussed on developing a business case for national 

scale-up sustainable biochar production, standardisation and utilization along with an 

application project which would be prepared based on available carbon finance opportunities 

in the region. 

5.0 Appendix 

Figure 2: Schematic Diagram of the Pyrolysis System for Production of Pyrolysis products 

 

1-Feed Hopper, 2 -Auger, 3&4-Pneumatic Ball Values, 5-Electric Heating Bands, 6&7-Electric Motors, 8-Main 

Control Board, 9-Pyrolysis Reactor, 10-Char Collection Vessel, 11-Wet Scrubber, 12-N2 Purge Line, 13-Air 

cooled condenser, 14-Electrostatic Precipitator ESP, 15-Syngas line 16-ESP Control Board, 17-Pyrolysis Oil 

Collection Tanks, 18-Gas Suction Pump, 19-Flare, 20-Gas Line to Engine, 21-Dual Fuel Engine, 22-Electrical 

Generator, 23-Gas Calorimeter, 24-Electronic valve, 25-Oxygen sensor, 26-Electrical connection 
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