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THESIS SUMMARY 

New molecular entities entering the pharmaceutical market are required to adhere to stringent 
safety, efficacy and quality requirements that often lead to delays in the early-phases of drug 
development. Pharmacokinetic modelling approaches, such as physiologically-based 
pharmacokinetic (PBPK) modelling, can cater to most of the critical PK issues and at the same 
time optimise the utilising of resources. The overall aim of this work was to illustrate, explore and 
facilitate the application of PBPK modelling in the context of drug disposition and risk 
assessment. In Chapter 2 of this thesis, we illustrated the concept of developing customisable 
pharmacokinetic models through the development of a region-specific CNS PBPK model to 
assess the rodent hippocampus and frontal cortex pharmacokinetics using MATLAB. We then 
extrapolated the model to predict human regional brain pharmacokinetics, using morphine as a 
case study for comparison. This successfully proposed a simplified first-principle approach to the 
development of a regional brain central nervous system (CNS) PBPK model. This approach has 
significant implications for assessing drug disposition across the human CNS and provides an 
opportunity for exploring the relationship between regional brain drug concentration, 
pharmacodynamics effects, and interspecies extrapolation. 
 
In Chapter 3 of this thesis, our goal was to develop a population-based PBPK modelling that could 
explore the potential risk of drug-drug interactions (DDIs) in adults and paediatric populations. 
We developed a model capable of predicting the impact of efavirenz-mediated DDIs on the 
pharmacokinetics of the antimalarial drug lumefantrine in Ugandan paediatric population groups, 
whilst also accounting for the polymorphic nature of CYP2B6. We demonstrated that an extension 
of the current artemether-lumefantrine treatment regimen from 3-days to 7-days would counteract 
the reduction in efavirenz metabolism common with the *6/*6 genotype and hence enhance the 
attainment of the target day-7 lumefantrine concentration in both *1/*1 and *6/*6 genotype 
groups, thereby reducing the risk of malaria parasite recrudescence. This study demonstrated the 
capability of PBPK modelling in predicting PK profiles in special population such as paediatrics 
and dealing with complex DDIs associated with genotype specific effects. 
 
The final part of this work, Chapter 4, focussed on demonstrating the capability of PBPK 
modelling in addressing inter-ethnicity variability and risk assessments within a mixed population 
group. We explored the application of PBPK models for specific population data analyses in the 
context of CYP2C19 polymorphism on clopidogrel in the multi-ethnic populations of Malaysia. 
We demonstrated a statistically significant difference in the peak concentrations of the active 
metabolite, clopi-H4, between the extensive metaboliser (EM) and poor metaboliser (PM) 
phenotypes with either Malay or Malaysian Chinese population groups. The study directly 
addresses this inter-ethnicity variability and provide a research tool that brings together the 
complexity of systems-biology with the ease-of-use applicability of pharmacokinetic modelling 
to provide a robust predictive platform which can easily be adapted and developed as required 
within a population. 
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1.1 BACKGROUND 

New drug products that enter the pharmaceutical market are required to adhere to stringent 

safety, efficacy and quality requirements. These requirements are becoming increasingly 

apparent with the emergence of high profile cases of drug product safety issues arising 

following marketing authorisation. Ever since the thalidomide controversy, a drug which was 

marketed in Europe indicated for morning sickness, which led to thousands of babies with birth 

defects in 1957, the United States Food and Drug Administration (USFDA) has made major 

amendments in its drug registration policies in 1962 (1, 2). Such amendments include the 

mandatory requirement of establishing proof of efficacy and safety through recognised well-

controlled studies.  

Another recent case that has posed stricter safety regulation was rofecoxib, a non-steroidal anti-

inflammatory drug (NSAID) under the brand name Vioxx®, indicated for the treatment of 

osteoarthritis, acute pain conditions, and dysmenorrhea. Registered by USFDA in 1999, this 

drug has been used by almost 80 million people (3). In a USFDA safety analysis, it was 

estimated 88,000-139,000 Americans had heart attacks and strokes because of taking rofecoxib 

(4, 5). Such alarming findings have led to the drug’s withdrawal in September 2004 (4, 6). 

Consequently, regulatory authorities such as the USFDA and European Medicines Agency 

(EMA) have imposed several measures to monitor these trends including, but not limited to, a 

requirement in obtaining rapid information regarding the pharmacokinetics (PK) of new drug 

candidates. This requirement might lead to a bottleneck in the early-phase of drug development 

since a considerable amount of resources are required to assess the pharmacokinetics profile of 

a drug.  

In order to optimise the resources for assessing this, predictive PK modelling has becoming a 

growing interest among researchers to predict PK behaviour of drug molecules, thereby aiding 

in facilitating the selection of suitable candidates for further development and rejecting those 

molecules which have a low probability of success (7). Furthermore, predictive PK modelling 

could also be beneficial in assessing the safety of established drugs by predicting possible drug-

drug interaction (DDI) that could occur in specific population groups such as paediatrics, 
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geriatrics and patients with co-infected diseases (8). Optimal prediction of a drug’s PK 

properties will ultimately be a pre-cursor towards better treatment optimisation to improve drug 

safety and efficacy without jeopardising patients’ safety. 

1.1.1 Modelling and simulation in drug development 

Prior to drug product marketing authorisations, drug discovery and development processes are 

rigorous, taking 12-15 years from the discovery phase up to obtaining market authorisation with 

an associated development cost of up to $48 billion (9, 10). With the advancement of in-silico 

capabilities, modelling and simulation techniques have become an essential element of drug 

development strategies, particularly in pre-clinical and clinical trials setting (Figure 1.1). Since 

such settings are subjected to rigorous regulatory requirements such as Good Laboratory 

practice (GLP) for pre-clinical studies, and Good Clinical Practice (GCP) for the clinical 

stuides, the application of modelling simulation have been utilised in each of the phases in drug 

development in order to efficiently manage the risks towards human and animal subjects. 

 

Figure 1.1 Application of modelling and simulation during drug development. 

Reproduced from Mould et al. (2012) (11) 
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1.1.1.1 Pre-clinical testing 

Every new candidate compound is required to undergo pre-clinical testing in order to determine 

its toxicology and pharmacological profile prior to first-in-human (FIH) studies, as required by 

international regulations and standards (12, 13). The range of tests includes both rodent and 

non-rodent species with the aim to investigate the maximum-tolerated dose in single and 

multiple dose administration, carcinogenicity, mutagenicity, fertility, teratogenicity, and 

reproduction. The number of animals which are involved in the studies usually varies depending 

on the type of studies and the data that has been generated from these types of studies will be 

extrapolated to predetermine the safety and efficacy aspects of the compound in human 

subjects. 

In this very early phase, mechanistically relevant pharmacokinetic/pharmacodynamic (PK/PD) 

data derived from modelling and simulation can be utilised to understand the response and 

concentration of the drug molecule in animal models. Results generated can be used to 

extrapolate to humans and aid in giving preliminary data for risk assessment of the drug and 

selecting appropriate dose ranges (14).  After the required amount of data has been generated 

to justify the safety, efficacy, and quality of the compound in animal studies, subsequent steps 

expose the new compound to human subjects.  

1.1.1.2 Phase I studies 

After the compound has been subjected to pre-clinical testing and the maximum-tolerated dose 

in human has been determined, it then goes through FIH trials whereby human subjects (usually 

healthy ones) will be exposed to the drug to determine its pharmacology, safety, and tolerability 

aspects. This phase has its unpredicted risks even with the progressive advancement of 

pharmaceutical technology (9). Due to the risks involved, pharmacokinetic modelling and 

simulation can be the first-line assessment towards describing the dose-concentration response 

and also dose selection for further assessment at phase II clinical trials. 

According to Aarons et al. (2001) (14), even though modelling and simulations were utilised 

in only a small number of phase I clinical trials, the application of this approach was significant 
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in numerous scenarios including estimating exposure-response relationship, characterisation of 

non-linearity, sparse sampling studies, special population studies, filtering investigational 

molecule due to assay limitation, combined analyses, integrating PK/PD knowledge for 

decision making, formulation development, bridging studies, sparse sampling studies and 

predicting multiple dose profile from single dose. 

1.1.1.3 Phase II studies 

During phase II trials, the drug is subjected to the first assessment of its safety, tolerability and 

preliminary efficacy in a patient population. Its dose range will also be assessed as a basis for 

the confirmatory phase III studies. The number of subjects is also substantially increased 

(approximately 100 to 300 patients) as compared with phase I studies to obtain the power 

needed for statistically significant results. As the desired therapeutic outcomes of many new 

drugs were usually long term especially for anticancer treatments, many of the phase II trials 

use surrogate markers (biomarkers) as primary endpoints. This emerging trend has met with 

scepticism with regards to the actual efficacy of the drug in phase III trials (15). Therefore, 

given this issue, preliminary analysis can be implemented using modelling and simulation in 

identifying as well as confirming dose adjustment that is required to be exposed to subjects in 

phase III clinical trial, further minimising the risk towards safety and provides a suitable starting 

point for an efficacious dose.  

During this phase, specifically in dose-ranging studies, a model based simulation may provide 

a quantitative understanding as well as useful insights towards the selection of doses that have 

been derived from a phase II studies (16). Furthermore, a comparison study using other drug 

molecules for the same indication could also be conducted using virtual trials that are available 

in modelling and simulation software. Such comparison can be made to determine its safety 

and efficacy in virtual subjects as a preliminary representative towards phase III study involving 

actual subjects that will be conducted.  
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1.1.1.4 Phase III studies 

Phase III clinical trials typically involve thousands of patients and can amount to significant 

financial investment. This phase is where the clinical efficacy and safety aspects of the drug are 

determined in a patient population as it includes the ‘real’ endpoints required by many 

regulatory authorities such as survival rate, lowering of blood glucose levels or myocardial 

infarction rather than using surrogates, such as HbA1c or lowering of plasma cholesterol. As 

discussed by Richards (2008) (9), the challenge that the pharmaceutical industry needs to 

overcome in this phase is the extent of information that is required by regulatory authorities 

which require that the results of these studies be specific to their regions such as in China and 

Japan. This scenario will also lead to studies being conducted in that particular region after the 

product has obtained its authorisation globally which will further escalate the drug development 

time and cost. Modelling and simulation may facilitate in this aspect since clinical trials 

simulation can be utilised to include the specific virtual population such as the Chinese and 

Japanese to provide an accurate estimation that occurred for these populations. Similar to phase 

II studies, modelling and simulation approaches in phase III could also confirm the dose 

adjustment, dose-response and the predictive covariates that have been made by utilising virtual 

clinical trials to assess that information. 

Further, a dose-response model of a clinical response can be developed using data derived from 

phase II analyses. Simulations can be conducted to assess the robustness of the on-going phase 

III studies by comparing data that has been derived from the simulation with the actual on-

going phase III results regarding ‘true’ dose-response, and patient’s variability in dose-response 

severity, thereby, minimising uncertainty. Also, a comparison can be made between the range 

of possible outcomes generated by the simulation with the on-going phase III data to provide 

an informed decision-making process with regards to the fate of the investigational drug 

encompassing its safety, efficacy and registerability with respective regulatory authorities (17).   

Following generation of supporting data to justify a drug’s safety, efficacy and quality aspects 

at this stage, a compilation of data which includes information from pre-clinical, phase I, phase 
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II and phase III studies will be made available for the submission to the relevant regulatory 

authorities to be assessed for marketing authorisation.  

1.2 PHARMACOKINETIC MODELLING 

There are several approaches to PK modelling and simulations dependent upon the complexity 

and types of data that are available (Figure 1.2). Empirical or top-down approaches include 

compartmental and non-compartmental modelling which require the availability of clinical data 

(18, 19). On the other hand, mechanistic or bottom-up approaches such as physiologically-based 

pharmacokinetic (PBPK) modelling often do not rely on clinical and pre-clinical data to 

adequately extrapolate the intended drug molecules to predict its absorption, distribution, 

metabolism, and excretion (20-22).  

Finally, population PK is often utilised in clinical trials with poor sampling and a large number 

of patients to predict the optimum dosing for the subgroup populations (23, 24), allowing for 

the inclusion of patient covariates to describe population variability in clinical drug 

concentrations/response.  

EMPIRICAL MECHANISTIC POPULATION

COMPLEXITY

• Compartmental

• Non-

compartmental

• PBPK Modeling • Population PK

• Bayesian 

modeling

 

Figure 1.2 Approaches used in pharmacokinetics modelling. 
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1.2.1 Compartmental modelling 

Compartmental modelling integrates the concept of pharmacokinetics (absorption, distribution, 

metabolism and elimination) into logical mathematical terms. Such integrations enable this 

approach to model complex physiological processes by condensing the body into smaller and 

manageable number of mathematical terms which allows prediction of drug PK as well as 

determining the parameter of that system. In general, compartmental modelling will allow 

pharmacometricians to determine parameters such as volume of distribution, half-life, area 

under the curve (AUC) and elimination rates (25). One of the earliest compartmental models in 

history was developed by Widmark in 1924 whereby he modelled the distribution of alcohol in 

the human body (26). 

In compartmental modelling, a compartment is termed as an imaginary unit or boxes which 

represents a group of tissues that have similar rates of drug distribution such as rapid or slowly 

perfused (27). Assumptions must be made that the drug concentration is homogeneous in all 

the compartments and it does not represent any specific tissues. In order to predict the PK 

parameters, the model requires a priori plasma concentration data available, and typically, the 

number of compartments is dictated by the plasma concentration profile.  

The number of compartments in a PK analysis will be dependent on the drug’s physicochemical 

characteristics as numerous processes involving drug movement around the body are not 

saturated at normal therapeutic dose levels (28). Compartment 1 represents the central (tissue 

or plasma) compartment in which the drug molecule rapidly absorbs. The addition of extra 

compartment will be determined whenever there is a slow distribution of drugs to other tissues. 

Conceptually, the elimination typically will occur from Compartment 1, but it could also occur 

in another compartment as well, depending on the characteristics of the molecule (29).  

1.2.1.1 1-compartment model 

For 1-compartmental model, the assumption is made that the whole body is considered as a 

single compartment and that drug is rapidly distributed to tissues (Figure 1.3). The route of 

administration for this model is usually intravenous bolus administration, considering the body 
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to behave as a single compartment and due to its simplest route of drug administration.  Because 

of rapid drug equilibration between the tissues and blood, drug distribution and elimination 

happen as if the dose is all dissolved in a single compartment whereby the drug is eliminated 

(30). However, there are certain cases whereby a 1-compartment model has been applied to an 

orally administered drug due to sparse sampling method which limits the calculation of full PK 

parameters of each patient (31). An example of drugs that follows the 1-compartment model 

are aminoglycosides when given as IV bolus whereby its distribution phase is only 15 to 30 

minutes (32). 

 

  

Figure 1.3 Diagrammatic representation of a one-compartment model and its plasma 

concentration-time profile.  

Mono-exponential (single k term) decline from the original concentration (C0) is defined by the 
elimination constant (k), which is related to the drug half-life (t1/2). Drug concentration at any 
time (Ct) can be estimated with knowledge of C0, k, and the time (t) (33). 

 

 

The drug half-life (t1/2) is determined by the following equation; 

��/� � �.�	

�        (1.1) 

where k is the elimination constant. 
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This model relies on a simple mass balance equation; 

�

�� � −����(�)      (1.2) 

where kel is the elimination constant, and C(t) is the drug concentration. 

At � � 0; 

�� � ����
�       (1.3) 

where V is the compartment volume. 

 

Therefore; 

� � ��������     (1.4) 

 

To account for differences in the extent of distribution, a volume of distribution (VD) can be 

determined for each compound. The VD is represented by the association between a single dose 

(D0) and the plasma concentration (C0) observed after dosing as well as corrected for 

bioavailability (F). Such relationship can be summarised in the following equation; 

�� � � 	"	#

        (1.5) 

where VD is the volume of distribution.  

 

The VD is not an actual physiologic volume; on the contrary, it is a calculated parameter that 

can be much larger than the volume of a human body. VD could be described as the volume of 

fluid theoretically required to dilute a given dose to its known concentration if the drug were 

present only in the blood. A higher calculated VD means a low plasma concentration due to most 

of the drugs enter tissue. Therefore, a large VD represents an extensive distribution, whereas a 
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small VD suggests that the drug is retained in the plasma vasculature. The value of VD in an 

individual depends on many of the factors including protein binding, drug lipophilicity and 

body composition which also represents inter-individual variability. VD can be expressed as a 

volume such as litres or as a volume per unit body weight such as L/kg. The VD is an essential 

parameter for predicting the clearance rate of a drug as well as estimating plasma concentrations 

after dosing. 

When a drug is taken orally as a tablet, the 1-compartment model equation is modified to 

accommodate a first-order transfer kinetics, representing the absorption of drug through the gut. 

In this instance, an absorption constant (ka) is introduced to represents drug input in the 

following equation (first-order absorption); 

�

�� � �$%.−����      (1.6) 

� � �����&�       (1.7) 

Therefore; 

� � �&
 
�(�����&) '1 − ���&�)     (1.8) 

1.2.1.2 2-compartment model 

In the 2-compartment model, the human body is divided into two compartments, namely the 

central and peripheral. For the central compartment, the drug is distributed rapidly, which is in 

contrast with the peripheral compartment that distributed at a slow rate (Figure 1.4). These 

assumptions create two distinct plasma curves which represent the distribution of drug through 

peripheral compartment and its elimination.  

In this model, the initial plasma concentration of drug declines rapidly as the compound 

equilibrates between the two compartments (distribution phase). When approaching 

equilibrium between the two compartments, the dominant kinetic mechanism becomes the 

elimination of the drug from the plasma (elimination phase). Generally, the elimination process 

occured by the necessity for the drug to leave the tissue compartment before it can be eliminated 
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from the body. The slopes at the two phases represent the distribution (α) and elimination (β) 

macroconstants, which determine corresponding half-lives for each phase. The distribution 

half-life is called the alpha half-life, and the elimination half-life is the beta half-life. An 

example of a drug which follows the 2-compartment model is vancomycin whereby its 

distribution phase, when given as IV bolus, is 1 to 2 hours (34).  

 

 

  

Bi-exponential decline from the original concentration (C0) is influenced by both the 
distribution phase (characterised by the constant α) and the elimination phase (characterised by 
the constant β) (33). 

 

 

 

The kinetic equations for this model are as follows; 

�
�* .

�
*
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�+     (1.9) 

and, 

Figure 1.4  Diagrammatic representation of a 2-compartment model and its plasma 

concentration-time profile. 
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At 	� � 0, �� � �
�*, �� � 0, which gives, 

�� � �
�* .
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(1�-) , (�+*�1)�.20
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and, 

�� � �
�+ .
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(-�1) 3��1� − ��-�4     (1.12) 

 

Therefore, to represent integration between the two compartments, 

�� � 5��-� , 6��1�      (1.13) 

whereby A and B represent the intercepts as in Figure 1.4. 

1.2.1.3 3-compartment model 

The 3-compartment model is an extension of 2-compartment model, with an additional deep 

tissue compartment as an extension (Figure 1.5). In certain situations, whenever there is a drug 

that distributes very slowly to poorly perfused tissues such as at the bone and fat area or for 

strongly lipophilic drugs distributed into adipocytes, extra compartments can be added to 

illustrate such conditions. A drug that is in the peripheral compartment can also return to the 

central compartment. The kinetic equations are similar with 2-compartment model with the 

addition of the third compartment and the gamma phase. The tissue release phase (gamma 

phase) usually occurs 16 hours post-infusion whereby drug that is tissue bound at various organs 

is released. Even though the amount of drug that is release is in a small volume, the 

accumulation of the drug over time could lead to aminoglycosides toxicity (35). 
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Figure 1.5 Diagrammatic representation a of 3-compartment model and its plasma 

concentration-time profile.  

Tri-exponential decline from the original concentration (C0) is influenced by the distribution 
phase (characterised by the constant α), the elimination phase (characterised by the constant β) 
and the tissue release phase (characterised by the constant γ).  

1.2.2 Non-compartmental analysis 

Similar to compartmental modelling, non-compartmental analysis (NCA) or model-

independent method is an empirical approach that relies on a compilation of clinical data of 

individuals (36). NCA has several advantages over compartmental modelling as it requires less 

restrictive assumptions to be made to conduct the modelling approach in which there is no 

compartment that needs to be assumed to suit the drug PK profile (26). The process for model 

development is also more straightforward and manageable for less experienced modellers. 

Furthermore, regarding clinical data, NCA requires fewer plasma samples and sampling time 

may not be as critical as compared to the compartmental modelling.  

The aim of NCA is to estimate essential parameters such as mean residence time (MRT), mean 

absorption time (MAT) and area under the first moment of the systemic drug concentration 

curve (AUMC).  
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Similar with the area under the curve (AUC), AUMC can be determined by the trapezoidal rule 

equation, whereby the plasma concentration-time profile is divided into individual trapezoids, 

and the AUC of these trapezoids are added, for example; 

57������ � 8
�9
�� : . (�2 − �1�    (1.14) 

whereby time is represented by t and concentration is represented by C 

 

Therefore, 

57������ , 57�����
 , 57��
��<…… . . 57���$��   (1.15) 

 

The AUMC is a product of the AUC and time (Figure 1.6). 

57>���? � 
�&@0.��&@0��� , 
�&@0�����+    (1.16) 

 

 

 

Figure 1.6 Diagrammatic representation of the AUC in the plasma concentration-time 

profile and AUMC in the plasma concentration*time-time graphs. 
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MRT mainly reflects the elimination rates process in the body since it is calculated for a drug 

after intravenous bolus injection. 

>AB � CDE

CD
       (1.17) 

MAT is the difference between the oral MRT and intravenous MRT.  

>5B � 	>AB�F$� −>ABGH     (1.18) 

 

Following determination of the MRT, other PK parameters such as clearance (CL), elimination 

rate (kel) and the volume of distribution at steady state (Vss) can be calculated from IV data, can 

be derived from the following equation (26); 

 

For volume of distribution at steady state (Vss), the relationship between the AUC, AUMC, 

MRT and CL are as follows; 

�I � ����
CD
       (1.19) 

 

Therefore; 

��� � �I.>AB � ����.EJK
CD
      (1.20) 

 

Results derived from NCA are usually a generalisation from a compartmental analysis and is 

still useful in providing a general overview extrapolation of the drug PK profile especially in 

its early stage of development (25). An example would be the evaluation of drug absorption 

data whereby the more prolonged the MRT, the more sustained or prolonged the drug 

absorption.  



 

 

34

1.2.3  Population pharmacokinetics 

Population pharmacokinetics (PPK) is a study of the variability in plasma drug concentrations 

between individuals whenever standard dosage regimens are administered and its effects 

towards absorption, distribution, metabolism, and excretion (37). The covariates in question 

can include gender, weight, age, creatinine clearance, liver function markers or other disease 

biomarkers. The interest in PPK stems from a concern that new drugs that are developed might 

not have been studied in different or relevant populations or that patients have not been 

introduced to the new drugs at the early stage of drug development (38). The latter concern is 

more related to obtaining as much information as possible regarding the safety and efficacy of 

the new drugs. To date, most PPK studies are conducted in clinical setting as well as for drug 

development programme (39-41).  

Variability in pharmacokinetics is influenced by several factors which include, but not limited 

to, demographics (sex, gender, ethnicity, body surface area and body weight), drug-drug 

interactions (DDI), genetic phenotypes which affect the clearance of drugs (polymorphism), 

physiologic (pregnancy, renal and hepatic impairment or other disease states), and 

environmental factors (diet and smoking) (39, 42). The effect of this population variability on 

pharmacokinetics will be discussed further in the following section of this thesis. 

PPK has several characteristics which differ from traditional PK evaluation (41). Such 

characteristics include the ability to incorporate and explain the source of variabilities such as 

demographics, DDI, pathophysiology and environmental factors which contributes to the PK 

of the drugs. In addition, a PPK approach could recognise the source of variability including 

inter- and intra-subjects as well as inter-occasions which are essential factors during drug 

development. PPK also can obtain relevant PK information which is specific to specific 

populations that are intended to be treated with the new drug. Finally, PPK could quantitatively 

predict the unexplained aspects of the variability that occurs in the specific population. This 

characteristic will further enhance the safety and efficacy of the new drug in evaluation as the 

lower the magnitude of unexplained variability, the higher the estimated safety and efficacy. 
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Once a PPK analysis has been completed, simulation results derived from the analyses can be 

utilised to predict ‘what-if’ scenarios such as dose optimisation in achieving a therapeutic goal 

and the extent of dosage that will give a toxic effect to the patients as well as the optimum 

dosage that will have minimal adverse effects. Ultimately, PPK analyses can lead to improved 

patient care and facilitate drug development processes.  

1.3 ALLOMETRIC SCALING IN PHARMACOKINETICS MODELLING  

Allometric scaling or pharmacokinetic interspecies scaling is used to scale pharmacokinetic 

parameters from animals to humans. It is based on the relationship that shows the ratio of organ 

weights compared to body weight is similar across species. Allometric scaling in combination 

with preclinical pharmacodynamics may provide a more meaningful clinical data that allows a 

greater predicting accuracy regarding the efficacy and toxicity of new chemical entities in 

humans (43).  

Allometric scaling of PK parameters such as clearance and volume of distribution, is 

generalised as  non-linear regression equations: 

L � 	M�6N�O       (1.21) 

 

which can be transformed to a linear functions; 

log�L� � log M , S�TUVN�     (1.22) 

These can then be plotted in a linear graphical format such as Figure 1.7 for clearance and 

Figure 1.8 for volume of distribution; 
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Figure 1.7 Example of allometric scaling for plasma clearance. 

Reproduced from Zhang et al. (2011) (44). 

 

 

Figure 1.8 Example of allometric scaling for volume of distribution. 

Reproduced from Zhang et al. (2011) (44). 
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In this approach, Y represents PK parameter, BW represents body weight, a represents the 

allometric constant and b is the allometric scaling exponent (45). The value of a is dependent 

on the PK parameter, and the compound, whereas b is specific to the PK parameter. There are 

five principles that delineate the allometric scaling exponent, b (46): 1. When b = 0, then Y is 

independent of BW, such as hematocrit and body temperature; 2. When b < 0, then Y decreases 

with the increase in BW, such as heart rate; 3. When b > 1, then Y increases faster than BW, 

such as skeleton weight; 4. When b = 1, then Y increases proportionally with BW, such as blood 

volumes and 5. When 0 < b < 1, then Y does not increase as fast as BW, such as heart beat.  

The volume of distribution, half-life and clearance are the three most frequently extrapolated 

parameters. Physiological flow rates and clearance usually have an exponent of 0.75, signifying 

that clearance increases as species get larger, but not as rapidly as body weight (46). Also, for 

clearance scaling, only unbound clearance is taken into consideration since plasma protein 

binding of many drugs varies between species and only unbound drug can be eliminated (47). 

At least five animal species (mouse, rat, rabbit, dogs and monkey) have to be taken into account 

to generate correlation of the changes in BW versus the PK parameter. The accurate value of 

allometric scaling is considered to be prominent in therapeutic proteins as opposed to small 

molecules due to the limited role of the hepatic enzymes that are highly species-variable and 

limited non-specific distribution (48).  

1.4 MECHANISTIC APPROACHES: PBPK MODELLING  

PBPK modelling is another unique type of compartmental model that does not rely on prior 

clinical or pre-clinical data to adequately extrapolate drug distribution. The model’s 

characteristics are in contrast with the previously described compartmental models which rely 

heavily on the empirical data for prediction. PBPK model structures include multiple 

compartments representing tissue/organs supplemented by the incorporation of its 

physiological parameters values, and these approaches have been utilised extensively in drug 

development. The application of predictive pharmacokinetics modelling to drug discovery and 

development has increased over the past decade and has become routine aspects of all clinical 
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trials phases to both extrapolate dose to optimal therapy in population groups and to also 

identify covariates which may contribute to the variability in clinical response to drugs. 

Integration of knowledge regarding physiological processes with physicochemical attributes or 

other information regarding specific compounds to simulate complex physiological system is 

the primary aim of PBPK modelling (48). Such approach provides a superior platform with 

which to both predict temporal tissue concentration profiles and also to conduct interspecies 

scaling of pharmacokinetics.  

The earliest known PBPK model was developed by the ‘father’ of pharmacokinetics, Torsten 

Teorell in 1937 (49, 50). In this model, blood circulation is represented by a circle of water 

pipeline that is in contact with several compartments of tissues which have different volumes 

according to the representative organs (Figure 1.9). Drug molecules are transported via 

subcutaneous routes (rate constant k1) and then circulated throughout the body through blood 

circulation.  

  

Figure 1.9 Diagrammatic representation of the earliest PBPK models from Teorell, 1937 

and the concentration-time profiles estimation in several compartments.  

Reproduced from Teorell et al. (1937) (49, 50) 
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Transportation of drug molecules to different tissues are represented by the rate constant into 

respective tissues and out of it. Teorell then developed differential equations to illustrate the 

process and established concentration-time curve profiles that expressed the peak concentration 

of the drug. Due to the technology at that time, this model was not fully utilised to its full 

potential. This early model provided a stepping stone for other researchers and gave overviews 

of the processes of the drug in the human body. However, in this time the term 

‘pharmacokinetic’ has yet to be define, and it was only in 1953 where it was introduced by a 

German Professor, F.H Dost (51).  

As technology progresses and computing abilities became feasible, this first concept was 

developed further by Bischoff and Brown in 1967 (52) whereby multicompartment models 

based on known physiology were formulated using compartment as an actual tissue region, as 

proposed by Bellman et al. (53). To date, many hundreds of published PBPK models exist to 

describe drug distribution and this approach has received recognition by several prominent 

regulatory authorities including United States Food and Drug Administration (USFDA), 

European Medicines Agency (EMA) and Pharmaceuticals and Medical Devices Agency, Japan 

(PMDA).  

For any drug of interest, PBPK approaches require the use of drug-specific parameters or 

‘compound data’ which describe the pharmacokinetics of the drug, namely absorption 

(lipophilicity, hydrogen-bonded donors (HBD) and polar surface area (PSA)), distribution (size, 

log P, pKa,  blood to plasma ratio (B:P or Rb), and unbound tissue partition coefficients (Kp)), 

metabolism and elimination (intrinsic clearance) data, while also taking into account the 

physiology of the population group within which the drug will be used (48).  In addition to 

‘compound data’, PBPK model also requires ‘system data’ consisting of physiological (organ 

volumes, organ perfusion rates, glomerular filtration rates, fat content, body weight and alveolar 

ventilation) and biochemical attributes (transporter abundance and enzyme abundance) 

representing relevant species (45). Such approaches allow the scientist to develop population-

based predictions, where the physiology of the subject (e.g., tissue volumes, cardiac output, 

tissue perfusions, and enzyme abundances) are varied within a defined range (dictated by prior 

literature knowledge) to enable predictions of plasma concentration-time profiles to be made 
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which will include the typical variability observed within real population groups. Further, this 

approach allows the extensive extrapolation of pharmacokinetics to special population groups 

such as paediatrics and those with organ impairments (54, 55). Additionally, we can address 

ethnic differences in both the abundance and genotype of metabolic enzymes and drug 

transporter proteins to drive predictions of drug plasma concentrations in non-Caucasian 

population groups (56). 

 

PBPK modelling approaches mathematically model the biophysical and physical processes that 

determine the fate of a compound in the body. Therefore, PBPK models are often represented 

in various ordinary differential equations according to organs such as lungs, arterial blood, 

venous blood, stomach, gut, brain, and others. The schematic diagram of a ‘typical’ PBPK 

model is illustrated in Figure 1.10.  

Typically, 14-compartments are used to represent major tissue/organs in the human body and 

include the lung, heart, brain, muscle, adipose, skin, spleen, pancreas, liver, stomach, gut, bone, 

kidney and thymus (48). Much of the physiological data required for operation of a PBPK 

model was coallated by Brown et al. (1997) (45), and inlcudes values such as organ volumes 

and organ perfusion rates for adrenals, adipose tissue, bone, brain, gastrointestinal tract, heart, 

kidneys, liver, lung, muscle, pancreas, skin, spleen, and thyroid in four species (rats, mice, dogs 

and humans).  

The physiological parameter values delineated by Brown et al. (1997) (45) also include 

biological and experimental variability associated with the data and provides modellers with 

information on the variability associated with each parameter as well as factors that may 

influence the values selected for the respective parameter. Once developed, the generic whole-

body PBPK modelling will be able to simulate the concentration-time profiles in any species 

whether intravenously, orally or any other route of interest through measurement of 

physicochemical properties such as solubility, pKa, Log P, permeability, intrinsic clearance and 

protein binding.  
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Compound-dependent parameters can also be altered in PBPK model through sensitivity 

analysis, to provide further understanding and achieve the desired pharmacokinetic properties. 

Also, extrapolations of data from preclinical to clinical, from one route of administration to 

another, and from different populations are the most critical applications of PBPK modelling 

(20, 45). 

As with other in silico methods, quality and validity of the simulations need to be emphasised. 

Results obtained in the simulation should be supported by experimental data and should not 

replace data that has been established from well-conducted experiments to be used as primary 

evidence (57). 

 

Figure 1.10 Schematic diagram of PBPK models. 

Reproduced from Peters et al. (2012) (48). 
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1.4.1 PBPK modelling equations and assumptions 

PBPK models represent several tissue compartments connected by the circulating blood system. 

Each tissue compartment is represented by a volume (VT), which is often obtained from 

retrospectively published literature (58-61). Transfer of drug from one compartment to another 

is defined by a flow rate (QT). Partitioning of drug into tissue compartments are defined by the 

tissue partition coefficient of the drug (Kp), fraction unbound of drug in plasma (fup), and a 

permeability-surface area metric (PST), which is obtained from the in-vitro permeability (Papp) 

and corrected for the surface area that is available for absorption at the respective tissue site 

(62).  

Typically,  the tissues in the PBPK model can be described as either permeability rate limited 

or perfusion rate limited (Figure 1.11) (63). Generic PBPK models generally assumes perfusion 

rate-limited kinetics (21). In a perfusion rate-limited tissue, the kinetics usually occur for small 

lipophilic compounds whereby the blood flows to the tissues is the limiting process. 

 

Figure 1.11 Diagrammatic representation of perfusion vs permeability rate-limited 

tissue models.  

(A) Perfusion rate limited and (B) Permeability rate limited. 
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At a steady state, the total drug concentration in the blood circulation is in equilibrium with the 

total drug concentration in the tissue as determined by the drug-specific Kp value and the free 

drug concentrations (unbound) are equal (64). The time taken to reach steady state is determined 

by the Kp value, tissue volume, and blood flow rate for the respective tissue. Generally, a poorly 

perfused tissue will reach steady state slower compared with a highly perfused tissue. The mass 

balance differential equation representing these perfusion rate-limited non-eliminating tissues 

is represented as; 

�
W�� � X ��W × ZK × �CJ	[ − \ ��W × ZK × ] 
W
_̂`×a` × AObc  (1.23) 

where CT is the drug concentration of the respective tissues, t is for time, QT is the blood flow 

rate of the tissue, CAR is the arterial drug input, VT is the volume of the respective tissue 

compartment, fup is the fraction unbound of drug in plasma, Kp is the tissue-to-plasma partition 

coefficient, and Rb is the blood-to-plasma ratio of the drug. 

For eliminating tissues, the mass balance differential equation is as follows; 

�
W�� � X ��W × ZK × �CJ	[ − \ ��W × ZK × ] 
W
_̂`×a` × AObc −	 X ��W × �IGd� × �eK	[ 

 (1.24) 

where CLint represents the in-vitro intrinsic clearance of the compound and u represents 

unbound. The CLint here refers to the in-vitro intrinsic capability of a compound (unbound) to 

be metabolised by related enzymes in the absence of extrinsic factors such as blood flow and 

protein binding. 

Likewise, in a permeability rate-limited tissues, the tissue for this kinetic reaction is divided 

into two compartments namely, the extracellular and intracellular space, separated by a cell 

membrane that forms a diffusional barrier. At a steady state, like perfusion rate-limited kinetics, 

this model will reach its equilibrium state whenever the unbound drug concentration is equal. 

Nevertheless, the time to equilibrium is highly dependent on compound permeability across the 
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barrier membrane, as opposed to blood flow. These drug-specific permeability values are used 

to estimate the permeability rate constant that affects the equilibrium across the membrane 

between the intracellular and extracellular concentrations. Whenever there is an active transport 

process, the unbound drug concentrations in the intracellular space may become lower or higher 

than the extracellular space depending on the exit or entry of the compound from the 

intracellular area (62). The mass balance differential equation representing these permeability 

rate-limited tissues is represented as; 

 

Tissue: 

�
W�� �	 �fgK	h	��H� −	8fgK	h	 
Wai:    (1.25) 

where PST is permeability-surface area metric and Cev is drug concentration within the 

extravascular space. 

Extravascular (tissue blood): 

�
W�� �	ZK	h	��CJ −	��� ,	fgK	h	 8
Wai−	��H:   (1.26) 

where Cv is the concentration of drug with the venous circulation. 

1.4.2 In vitro to in vivo scaling in PBPK modelling 

In order to simulate oral and intravenous plasma concentration-time profiles using PBPK 

modelling, additional drug-specific inputs such as intestinal effective permeability (Peff), the 

apparent permeability (Papp), partition coefficient (Kp) and intrinsic clearance (CLint) values are 

required. The following section portrays how these input parameters are extrapolated from in 

vitro derived inputs, into parameters reflecting the equivalent in vivo processes for use within 

PBPK models.  
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1.4.2.1 Absorption 

The permeation of drug compound through cell membranes involve two main pathways: 

transcellular and paracellular processes. Transcellular pathways involve the diffusion of drug 

molecules through the lipid bilayer and have an affinity towards hydrophobic or lipophilic 

compounds of small molecular weight. Paracellular pathways comprise of the movement of 

typically small hydrophilic compound through small aqueous channels within the membrane.  

A key input parameter for absorption is the human jejunum effective permeability (Peff),  which 

can be predicted from in silico methods or in vitro high-throughput assays such as the human 

epithelial colorectal adenocarcinoma cells (Caco-2) or Madin-Darby canine kidney (MDCK-II) 

studies (65).  

In vitro values must be scaled to in vivo Peff values in order to utilise these values in a PBPK 

model. In Caco-2 model, the in vitro permeability values, or also defined as the apparent 

permeability (Papp), are usually obtained during preclinical screening. Linear regression has 

been applied previously by Sun et al. (2002) to develop correlations between Papp and Peff  (66). 

In their study, in vivo Peff drug permeability measurements were obtained through single-pass 

intestinal perfusion in human subjects, and correlated with in vitro Caco-2 transport 

permeability.  The resultant regression expression for this correlation can be used to estimate  

Peff   from Papp: (66); 

IUVjf�^^k � 0.6532	IUVjf$iik − 0.3036    (1.27) 

Similarly, in silico method can also be applied utilising the quantitative structure-activity 

relationship (QSAR) parameters namely the molecular polar surface area (PSA) and the number 

of hydrogen bond donors (HBD) with the following equation (67); 

IUVjf�^^k � 4 − 2.546 − 0.11fg5 − 0.278r6%   (1.28) 

The above equation has been utilised by Winiwarter et al. (1998) (67) in a study to predict 

passive absorption of 34 structurally diverse drugs in the human intestine using projections to 

latent structures method to correlate between Peff and the physicochemical data.  
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1.4.2.2 Distribution 

Another important drug-specific parameter is the Kp value which is used to characterise the 

distribution of the drug into different tissues in the body (68). Kp values are the ratio of total 

concentration of compound in the tissue to total concentration of compound in the plasma at 

steady state. In other words, Kp values represent the tissue accumulation resulted from 

processes which include lipid dissolution and protein binding; 

st �	 
0u@@_�
`�&@v&      (1.29) 

In recent years, Kp values can be obtained through mechanistic methodologies which have 

proven to be cost-effective when compared with obtaining Kp experimentally in preclinical 

studies (68). Utilising in vitro data (binding characteristics of compounds to lipids and proteins) 

and physicochemical properties, these models could estimate the tissue distribution of the drug 

compound; 

st �	 ^e0^e`      (1.30) 

where fut is the unbound fraction of drug at tissue and fup represents the unbound fraction of 

drug in plasma. 

Poulin and Theil (2000) (69) and Rodgers and Rowland (70-72) have developed this concept 

further through advanced mechanistic equations that incorporate the following considerations: 

(i) dissolution of ionised and unionised drug in tissue water; (ii) partitioning of unionised drug 

into neutral lipids and neutral phospholipids; (iii) interactions with extracellular protein for 

neutrals, weak bases and acids and (iv) electrostatic interactions between ionised drug and 

acidic phospholipids for strong ionised bases (See appendix A for a full description of the 

associated mechanistic equations).  

These mechanistic equations are capable of predicting the steady-state tissue to plasma water 

unbound drug concentration ratio (Kpu) for moderate to strong bases and for acids, very weak 

bases, neutrals and zwitterions drugs, further defined Kp values into more logical PK 

interpretation whereby typically, it is the unbound drug that can partition into tissues; 
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ste �	 ai^e`      (1.31) 

Furthermore, through these tissue composition-based equations, Kpu values can now be 

calculated with only four drug-specific parameters namely LogP, pKa, Rb and fup, further 

facilitating early phase drug development. 

 

1.4.2.3 Metabolism  

In vitro metabolic clearances can be determined in model systems which include recombinant 

CYP systems, primary hepatocytes, and microsomes (73, 74). Recombinant CYP assays are 

utilised using incubations with baculovirus-expressed recombinant CYP enzymes forming 

certain metabolite representing participation of specific CYP isoforms that are well 

characterised (74). Primary hepatocyte assays are perhaps the most commonly used method due 

to the use of whole intact hepatocyte cellular systems which incorpoate both drug metabolism 

and drug active transport (biliary secretion) (73).  

Hepatocytes are isolated from human liver. Since  hepatocytes contain both phase I and phase 

II drug metabolising enzymes, the assay can be utilised to determine the in vitro intrinsic 

clearance of a drug, as well as prediction of in vivo hepatic clearance.  

Finally, microsomes are isolated from cellular fraction, specifically the endoplasmic reticulum, 

and are popular due to their simplicity in isolation and cost-effectiveness when compared to 

other cell models. However, due to the poor predictive utility of microsomal data hepatocytes 

are preferred.  This if often a result of wide variablity in quality which is often laboratory-

dependent, and the fact that mircosomes only contain phase I enzymes as compared to primary 

hepatocytes assay in which hepatocellularity is not an experimental variable and contains both 

phase I and phase II enzymes (73, 75). 

Since in vitro metabolic clearance data generated by these in vitro assays are mainly related to 

the unit of enzyme content, extrapolation is required to an unbound human hepatic intrinsic 

clearance (CLH). The scaling of CLint, in vitro to CLint, in vivo involves the inclusion of microsomal 
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recovery that consists of the microsomal protein content or hepatocellularity (74, 76, 77) and 

the liver weight of species (76). These scaling factors can be summarised in two key equations 

representing the microsomes (equation 1.32) and the hepatocytes (equation 1.33) (62); 

�Iwx��y$��� �	 
zGd�&``^_,u|} 	h	>ff~I	h	IN    (1.32) 

�Iwx��y$��� �	 
zGd�&``^_,u|} 	h	rf~I	h	IN    (1.33) 

where CLintscaled represents the scaled in vivo CLint in ml/min, CLintapp represents the apparent 

in vitro CLint (µl/min/mg for microsomes and µl/min/million cells for hepatocytes), fu,inc 

represents the fraction unbound in the in vitro system, MPPGL represents the milligrams of 

microsomal protein (MSP) per gram of liver (mg/g), LW represents liver weight (kg), and HPGL 

represents the hepatocellularity per gram of liver (106/g).  

Using a well-stirred liver model, the unbound hepatic plasma clearance of a drug is then 

calculated with the following equation; 

�I� � ^e`×
zu|0,			u|	�u��×����9^e`×
zu|0,			u|	�u�� J�⁄                                       (1.34) 

where �I� represents the unbound hepatic plasma clearance, ��i represents the fraction 

unbound of drug in plasma, �IGd�,			Gd	HGH� represents the in vivo intrinsic metabolic clearance, 

Z� represents the blood flow rate of the liver tissue and AO is the blood-to-plasma ratio of the 

drug. 

 

Table 1.1 highlights the typical values and units used for the hepatocytes and microsomes assay 

scaling factors. 
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Table 1.1 Typical steps, values and units used for the microsomes and hepatocytes assay 

scaling factors. 

 
Microsomes Assay 

Step Value Unit Note 

1 a pmol/min/mg MSP Vmax in vitro value 
2  a x 20.8 mg MSP/g liver MPPGL (78) 
3 b x 1820 g Liver Weight 
4 c x 109 mmol/nmol pmol to mmol conversion 
5 d / MW mg/mmol Molecular Weight (MW) 
6 e x 60 min/hr Minutes to hour conversion 
7 f mg/hr Vmax in vivo value 

8 g mg/hr/kg body weight 
(BW) 

Vmax scalar in PBPK model 
(for 70kg human) 

Primary Hepatocytes Assay 

1 a nmol/hr/106 cells Vmax in vitro value 
2 a x 137 106 cells/g liver HPGL (79) 
3 b x 0.026 x 70 x 103 g Liver Weight 

2.6% of BW, BW=70kg 
4  c / 103 µmol/nmol nmol to µmol 
5 d µmol/hr Vmax in vivo value 

6 e µmol/hr/kg BW0.7 Vmax scalar in PBPK model 
(for 70kg human) 

 
Scaling factors are based on the assumption that the content of enzyme present in each system 
is proportional to the amount of the functional unit of the given system. Enzyme activity is 
expressed as the amount of product formed/unit such as nmol/min. 
a – value extracted from in vitro assay; b, c, d, e, f, g – values calculated 
 

 

1.4.2.4 Renal or biliary excretion 

Numerous approaches can be used to predict in vivo intrinsic organ clearance for organs other 

than the liver such as renal and biliary. However, these approaches are still under scrutiny and 

development (21, 80-82). An example of a more recent approach for renal excretion is the 

extrapolation of animal renal clearance such as in rodents to human in vivo values as well as 

utilising allometric method including the use of glomerular filtration rate (GFR) (83). 
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1.5 PBPK AND POPULATION VARIABILITY 

Population-based PBPK modelling is a platform and integration of database that links 

mechanistic modelling and simulation of ADME processes of drug compounds in healthy and 

disease population. This platform is an invaluable tool to simulate and predicts population 

variability in terms of metabolically-based DDIs and also multi-ethnic polymorphism (84).  

As previously highlighted, developing a PBPK model requires three types of data for it to be 

functioning as intended, namely, the ‘compound-data’, the model structure which comprises of 

tissues and organs arrangement, and the ‘systems-data’ (biochemical, anatomical and 

physiological data) (85). The integration of these data allows the understanding and prediction 

of concentration-time profiles in tissues and plasma as well as the PK behaviour of the drug 

compounds. PBPK model can also extrapolate across the mammalian species such as rat, 

mouse, and human due to the generic structures of the model and if an appropriate system data 

is utilised.  

Since PBPK modelling involves system’s data such as blood flow and organ volumes of animal 

or human, it is expected that population variability or inter-individual differences in physiology 

and biochemistry occurs. This variability can affect the susceptibility of individual towards drug 

compounds especially its PK profiles (absorption, distribution, metabolism, and elimination) 

which in turn, has an impact towards the efficacy and safety of drugs.  

Within the context of PBPK modelling,  the incorporation of such variability is possible through 

defining boundary limits on ‘system-data’ parameters, often within a  plausible range 

(coefficient of variation [CV]) of 30 % (48).  Thereafter, in simulating multiple subjects, a 

Monto-Carlo approach can be implemented to allow random between-subject variability in 

specific ‘systems-data’) to mimic the variability in pharmacokinetics observed in clinical 

studies.  

To explore this population variability, two modelling approaches have been developed: a priori 

(bottom-up) and a posteriori (top-down). 
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In a priori (based solely on theory) approach, variability can be modelled in two separate 

models or a combination of stochastic simulations (Monte-Carlo methods) and deterministic 

description of the determinants of variability (48). Mechanistic PBPK modelling belongs to this 

group. These methods aim to estimate the overall variability of the concentration-time profile 

which is then used to compare with the observed variability data, independent of experience 

such as clinical trials. The Monte-Carlo approach involves computation and generation of 

multiple sampling of purely random statistical distribution to generate 90% or 95% confidence 

interval of multiple parameters such as the volume of distribution and clearance. This method 

can sometimes be considered as ‘random guessing’ of parameters since it only provides purely 

statistical distribution even for a simple PK-determined parameter such as time, age and sex 

that can be easily obtainable from literature. However, Monte-Carlo method can be beneficial 

to estimate drug disposition in complex organs such as the central nervous system which can 

prove to be difficult to obtain any observed data. In deterministic modelling approaches, the 

concept of this method revolves around the fact that some of the inter-individual variability is 

due to gender, growth or age-related changes which can be modelled in a specific lifetime PBPK 

models such as paediatric, geriatric, pregnant, disease states and gender-specific models (86, 

87). 

For a posteriori (observational) models, the approach to obtain an estimate of the inter-

individual variability is through data based on clinical trials or empirical evidence. This is where 

empirical compartmental PK models (population PK) plays a part in providing a plausible 

explanation of covariates in observed variability (88, 89). This model aims to determine 

scenarios such as the impact of variability in metabolic rate, renal clearance or bioavailability 

has on the variability of plasma concentration of drug molecules inter-individually. This model 

can also be used to predict various clinical treatment scenarios provided that the determinants 

of variability have been obtained. Population variability can be observed within phases of PK 

which is discussed below. 
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1.5.1 Absorption 

The most convenient and common route of drug administration is the oral route albeit with its 

issues of high inter-individual variability and low bioavailability. Several factors could affect 

oral absorption of drug molecules. Such factors can be classified into two main categories which 

are the drug-related (physicochemical) and system (physiological) factors. Inter-individual 

effects mainly involve the system factors, and it includes the intestinal residence time, 

transporters contribution, gastrointestinal pH and gastric emptying time. 

Drugs with low permeability characteristics often contribute to the effect of intestinal residence 

time, hence, lead to high inter-individual variability (90). Studies have shown that intestinal 

residence time can vary between one to six hours in 400 subjects and it appears to be 

independent between solid and liquid dosage forms as well as the presence of food (90-92). 

Regarding membrane localised drug efflux/influx transporters, inter-individual variability can 

be observed along the basolateral and apical membranes of the intestinal cells whereby most of 

the affected transporters are expressed (93-95). The expression of these transporters has been 

found to be varied across the gastrointestinal tract (96). Most of the studies seem to be revolved 

around the efflux transporters such as BCRP (ABCG2), MRP2, (ABCC2) and MDR1 (ABCB1) 

located at the apical membrane of the intestine due to its characteristics in limiting intestinal 

drugs absorption when administered orally.  

Drug solubility and dissolution can also be influenced by the pH along the gastrointestinal tract 

(97, 98). Also, drug permeability can also be affected by the gastrointestinal pH since the latter 

can influence the balanced between non-ionised and ionised moieties. The inter-individuality 

of the gastrointestinal pH can vary up to two pH units at the same time, and this observation 

has been reported by Fallingborg et al. (1989) (97). Presence of food in the gastrointestinal tract 

could also raise the gastrointestinal pH in the proximal part of the small intestine and the 

stomach due to the buffering capacity of proteins. Oral drug absorption can also be affected by 

gastric emptying time of the drug in the stomach in which variability can also occur with the 

drug’s absorption rates (99-101). 



 

 

53

1.5.2 Distribution 

Drug distribution can be defined as a reversible transfer of molecule from one location to 

another within the body (102). Several factors could affect the distribution of the drug which 

includes the binding of the drug within blood and tissues, partitioning of molecule into fat, 

tissue uptake, the ability of the drug molecule to cross tissue membranes and the delivery of 

drug to tissue by blood (103, 104). Physiological factors that introduce variability in the drug 

distribution include expression of transporter proteins, plasma protein concentrations, tissue 

composition, tissue volumes, haematocrit and blood perfusion rates to the tissues.  

Several drug transporters can be found in the membranes of tissues which can influence drug 

distribution especially for the low passive permeability drug such as valsartan, methotrexate, 

and digoxin (105). Polymorphism has also been reported occurred in transporters which may 

affect the drug distribution variability among individual (106). In order to be considered a 

polymorphism, the minority or variant allele’s frequency should be at a minimal 1 % (107).  

Tissue composition also plays a role in the variability of drug distribution. In blood, the volume 

of haematocrit is influenced by several factors such as physical activity, seasonal influence, sex 

and age (108-110). The reported value of haematocrit ranges from 40 % - 54 % in males and 

38 % - 47 % in females.  The three essential plasma proteins responsible for binding of drugs 

are albumin, alpha1-acid glycoprotein (AAG), and lipoproteins (111). Of those three, albumin 

levels have been reported to generally decreased with age (112). 

Tissue volumes and blood flows have been reported to influence inter-individual variability in 

a PBPK modelling study which shows the importance of modelling and simulation in detecting 

inter-individual variability in human pharmacokinetics (113). This model included 

physiological parameter values approximately 31,000 database records which include 

information regarding volumes and masses of selected organs and tissues as well as blood flows 

to the organs and tissues. 
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1.5.3 Metabolism 

Ethnicity within a population plays a role in metabolic variability due to differences in 

biological parameters such as enzymatic abundance which can differ between ethnic population 

(114, 115).  Drug metabolism occurs in many organs; however, the liver has been established 

to be the primary site of metabolism in many drugs. Cytochrome P450 (CYP450) is a family of 

enzymes that catalyse the biotransformation of drugs (Figure 1.12). It was observed that the 

African and South Asian population have lower CYP3A4 activities when compared to the 

Caucasians, further, the Africans also have lower CYP2D6 levels compared to the Caucasians 

(116). Consequently, age-related differences also contributed to the variability in drug 

metabolism due to the low levels of activity of CYP1A2, CYP3A4 and glucuronidating 

enzymes in paediatrics and the slower activity or expression of CYP2C19, CYP2D6 and 

CYP3A4 in the elderly population (117). The impaired functionality of the liver due to liver 

cirrhosis could also potentially affect the first-pass metabolism of drugs which contributes to 

the metabolic variability in a subpopulation (55). 

 

Figure 1.12 Phase I and II CYP450 metabolism enzymes composition in the liver and 

intestine of the human body. 

Reproduced from Paine et al. (2006) (118). 



 

 

55

1.5.4 Elimination 

Variability in elimination phase occurs due to several factors including genetic polymorphism 

of renal transporters, glomerular filtration rate variation due to disease such as hypertension and 

diabetes as well as variation in the bile flow due to cholestasis (48). Drug excretion or 

elimination is defined as an irreversible loss of chemically unchanged drug from the body (119). 

In many drugs, elimination is primarily mediated by the kidneys, but there are some drugs 

which are excreted predominantly via the bile (and faecally eliminated). Drug elimination could 

also happen via sweat, lungs, breast milk and saliva but at limited rates.  There are three 

processes involve when drugs are eliminated via kidneys: 1. Tubular secretion, 2. Tubular 

reabsorption and 3. Glomerular filtration (Figure 1.13).  Tubular secretion is mediated by 

transporters and happens mostly at the proximal tubule area. Tubular reabsorption is active and 

passive processes. The former occurs around the nephron whereas the latter at the proximal 

tubule (transporter-dependent) and usually associated with drug interactions (120). Renal 

elimination is dependent on plasma protein binding, renal blood flow, renal transporters, urine 

pH, and urine flow (121, 122). Variability in renal elimination depends on the genetic variations 

that occur in transporters and affects renal secretion as well as reabsorption (123). 

Besides kidneys, biliary elimination also plays a part in excretion of drugs and drug metabolites 

(124). It requires active transporters to allow drug molecules to cross the biliary epithelium 

against a concentration gradient and it is often that a drug will undergo reabsorption 

(enterohepatic circulation) when eliminated via the bile. Similar to kidney excretion, variability 

in biliary excretion also depends on the genetic variations due to the transporters (proteins) 

involved in its mechanism (125). 



 

 

56

 

Figure 1.13 Diagrammatic representation of a nephron, delineating an area where active 

secretion, passive reabsorption, and filtration occur. 

Reproduced from Tett et al. (2003) (120).  

 

1.6 STRATEGIES FOR DEVELOPING A PBPK MODEL 

Developing a PBPK model requires intuition, experience, patience and solid theoretical 

background. Troubleshooting skill is also necessary for solving difficult problems, especially 

in model fitting. Gabrielsson and Weiner (2010) (126) have established several guidelines that 

can be utilised as a strategy when developing a PBPK or PPK models (Figure 1.14). 



 

 

57

 

Figure 1.14 Development of a PBPK model: from data to model.  

The initial starting point is developing a tentative model (1) and designing/selecting experiment 
to obtain parameters, e.g. effect at various concentrations (2). Next, obtaining the parameters 
required (3) and exploring the data by analysing it (4). After that, fitting the model if necessary 
(5) and finally, analysing the data output after fitting has been done (6). Then, the cycle restarts 
to obtain more precise and accurate simulations.  
 

1.6.1 Development of tentative models 

According to Gabrielsson and Weiner (2010) (126), understanding of pharmacological effects 

and underlying kinetics are one of the initial steps for model selection. For example, the 

modeller needs to determine if the response that they observed is the result of stimulation or 

inhibition. Regarding kinetics, the linearity and non-linearity should be taken into 

consideration. As for the compound, the physicochemical characteristics such as the clearance 

and half-life should be known first-hand if there is any plasma profiles to be analysed. In other 
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words, the kinetics or turnover of the compound should be examined including the routes of 

elimination and time to reach steady state. 

1.6.2 Designing and performing experiment 

As stated previously, before designing and conducting an experiment, prior information 

regarding kinetics, dynamics or turnover needs to be taken into accounts. The data that has been 

gathered from all these parameters will be used to make an initial simulation. This is done to 

obtain initial design points for sampling (minimum/maximum plasma concentrations or time 

points) from the concentration-time plot using the estimation of the tentative parameter of the 

proposed model. After all of these strategies were performed, the proposed experiment can be 

conducted for the proposed model testing or validation. 

1.6.3 Exploring data 

Once the tentative model, experimental design, and data collection have been conducted, the 

experimental data needs to be explored and prepared. For this stage, it is recommended to begin 

by pooling data from several subjects as well as inspecting data from each subject. Data pooling 

is essential whenever there is an insufficient data density from individuals to be analysed or 

when the data has high variability. Two approaches can be used for data, the Naïve Pooled Data 

(NPD), whereby model fitting is done simultaneously to all individual data observations and 

Naïve Averaged Data (NAD) whereby the data are averaged, and model fitting is done to the 

mean data. These two approaches will give identical estimates with the condition that the 

number of observations at each time point is the same. However, pooling methods could only 

be used as a general overview as it may expose the risk of masking individual data or behaviour. 

Obtaining initial estimates is also part of data exploration. These initial estimates are integral 

whenever the data does not fit the model, and there is much scattering. Numerous methods can 

be conducted to obtain initial estimates such as non-compartmental analysis, convolution-

deconvolution methods and graphical methods and linear regression. Knowledge of the 

compound should be obtained as early as possible, and any regression methods that have been 

utilised should have a clear objective to achieve the desired modelling outcome. 
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1.6.4 Model fitting 

After data exploring, model fitting is used to fit the proposed model to the available data. The 

rationale for this approach is to reduce the variability of the observed and predicted data by way 

of parameter estimation (PE), or ‘model fitting’. PE is also conducted whenever there is the 

need to quantify physiological process that involves sophisticated system-related parameter 

such as absolute abundances of hepatic transporters in which it is relatively difficult to obtain 

its published values. However, before any attempt to parameter estimated the unknown 

parameter, a sensitivity analysis is recommended to be conducted to determine whether the 

output is sensitive to the respective unknown model parameter. Sensitivity analysis is a method 

whereby the variation of the specific output in the model is examined quantitatively or 

qualitatively to different sources of variation (127). Nestorov et al. (1997) (128) and 

Gueorguieva et al. (2006) (129) made comprehensive reviews on numerous methods that can 

be utilised and technical issues regarding the implementation of sensitivity analysis in PBPK 

modelling. Results from sensitivity analysis can be used to justify any output that has been 

parameter estimated due to its robust calculations of obtaining variability in different scenarios. 

Such approach can also provide uncertainty analysis by providing an overview of which 

parameter that is needed to be determined to improve the predictability of the PBPK model. 

PE approaches can be challenging due to sparse observed data availability and a large number 

of parameters that are usually involved. Hence, various approaches have been developed in 

order to fit the model to observed data. As mentioned previously (Section 1.5), one of the most 

widely used approaches is using Monte-Carlo optimisation which searches optimisation 

randomly for adequate fits and also to address uncertainties in parameters (130). In Monte-

Carlo optimisation for uncertainty analysis, the simulation will randomly samples model 

parameters from defined distributions (e.g., normal, log-normal) with defined variability (131). 

Using this method, parameter values are chosen using random selection scheme. These 

parameter values are then simulated in a huge number (amounting to thousands of iterations) 

to generate values of the output variables which are then saved for analysis. These output 

variables represent the distribution of the model output as well as estimation of its level of 

uncertainties (132). It is important to note that using Monte-Carlo approaches could sometimes 
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lead to unrealistic parameter values in some well-defined physiological parameters such as 

volumes and flows in certain organs. Therefore, it is recommended that any results obtained by 

Monte-Carlo analysis should always be validated with physiological values that are plausible 

within their ‘true’ physiological space. 

In general, it is advisable to do several simulations with variable parameters representing the 

different effect in calculated curves with various degrees of parameter values. It is also highly 

recommended to use upper and lower bound of the parameters (e.g., 5th and 95th percentile of 

the population) to correlates with better numerical stability. The visual inspection between the 

predicted and observed values is essential as the parameter values from the compound must be 

consistent with the predicted and observed data to indicate their value towards the proposed 

model.  

1.6.5 Analysing outputs 

The final step of the modelling approach is the analysis of the output and assessment of 

goodness-of-fit which is related to the fitted curve of the data distribution. The evaluation of 

goodness-of-fit is very subjective to the modeller as it requires the modeller to make 

superimposed comparisons between fitted curve plots and the observed data. For PPK models, 

it is recommended to use residual plots to analyse the goodness-of-fit. Residuals are errors 

which the model could not explain and can be defined as the vertical difference between the 

observed and predicted concentration (Figure 1.15). The residual values (ε) can be positive or 

negative. A positive value means that the residual point is above the curve whereas, for a 

negative value, it is below the curve. In general, it is preferable that the residuals be randomly 

distributed around the predictive curve to indicate a good fit in a PPK model. In other words, if 

the model fit to the data were correct, the residuals would approximate the random errors that 

make the relationship between the explanatory variables and the response variable a statistical 

relationship. Consequently, if the residuals appear to act randomly, it suggests that the model 

fits the data well. In contrast, if non-random structure is apparent in the residuals, it indicates 

that the model fits the data poorly (133). 
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Residual = Cobs - Ccalc

Cobs = Ccalc + ε

C

Time  

Figure 1.15 Relationship between the residual error (ε), the observed concentration (Cobs) 

and the predicted concentration (Ccalc) for PPK model analyses. 

 

In a PBPK model, assessment of the goodness-of-fit and accuracy can be determined by two 

approaches: the assessment of mean fold error and the reduced mean squared error (X2) statistic 

method (134). For the mean fold error assessment, a ratio of predicted and observed values can 

be taken into account as such the value will always be more than 1. This equation can be 

summarised as follows: 

>�Mx	�UT�	���U� � 	10X*|∑ ���(^���	�FF�F)[    (1.35) 

where n represents the number of observations. The closer the number of mean fold error to 1, 

the higher probability that the prediction can be accepted. 

In the X2 statistic assessment, this approach can be utilised whenever there are standard 

deviations or standard deviations of multiple observations at each timepoint. The equation is as 

follows: 

h� � �
�∑ ]∆u+�u+b

�G��      (1.36) 

where N represents the number of observations, ∆ represents the difference between the 

observed and simulated concentrations at the same timepoints, and σ represents the standard 
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deviation at the corresponding timepoints. The closer the value of X2 to 1, the higher probability 

that the prediction can be accepted. 

For a model to be accepted or rejected with a known level of confidence, statistical tests should 

also be conducted to any goodness-of-fit value as an essential complement to visual inspection. 

Generally, a mean fold error of less than 2 is considered an acceptable range for a good 

prediction. Such error range is commonly reported by other researchers and is considered 

appropriate for a predictive model (87, 135-138). 

1.7  PBPK MODELLING SOFTWARE 

Several commercial software have been developed to cater for different applications in PBPK 

modelling. Typically there are two types of software available; general mathematical and 

engineering modelling software and PBPK specialised software (57, 139). General 

mathematical and engineering modelling software includes acslX®, Berkeley Madonna® and 

Matlab® (140). This software provides not only programming language and numerical solution 

of the system of the model but also a graphical output of the simulation results and offers much 

flexibility to the modellers. However, advanced programming, modelling skills, and experience 

are required which makes this software unsuitable for beginners.  

For PBPK specialised software such as Simcyp® (141), PK-Sim® (142) and GastroPlus® 

(143), even though this software provides less flexibility in modelling development, it required 

less experience and modelling skill from the modeller. In addition, these software offers 

additional features such as simulation for virtual populations (obese, pediatric, renal 

impairments, and others), simulation of complex PK involving multiple metabolite profiles and 

drug interactions as well as clearance prediction model (57). It also needs to be mentioned that 

although this software requires less experience and modelling skills, users need to understand 

the fundamentals of PK and background of clinical pharmacology to determine the appropriate 

models and understand the difference between various models offered in the software that is 

used in the PK analysis. 
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1.8 ROLE OF PREDICTIVE MODELS FOR DRUG DELIVERY 

Advancement in computing technologies has made it possible for PBPK modelling to explore 

more complex scenarios including simulating complex absorption models such as the advanced 

compartmental absorption and transit (ACAT) (144) and the advanced, dissolution, absorption 

and metabolism (ADAM) models (20). These two models have been used extensively in 

complex scenarios such as simulation of drug-drug interactions (139, 145, 146), changes of PK 

characteristics (ADME) in different age groups and special populations, i.e. pregnant women, 

renal and hepatic impairments and also children (147-151). Also, PBPK approach has shown 

to be useful in predicting drug disposition in complex organs such as the central nervous system 

(152).  

Regulatory authorities have also taken an interest in applying PBPK modelling in their routine 

evaluation of submission of drugs for marketing authorisation and have also utilised such 

approach when implementing or developing new policies of drug utilisations (153-156). For 

example, European Medicines Agency (EMA) has published several guidelines related to the 

application of PBPK modelling in its investigational new drugs (IND) and new drug 

applications (NDA) as well as in special populations such as hepatic impairment and DDIs 

(157, 158). Likewise, the United States Food and Drug Administration (USFDA) has also 

established their version of guidelines related to PBPK modelling in pharmacogenetics, 

paediatrics and also predicting optimal dose and design of clinical studies, specifically, the first 

in human (FIH) trials (159-161) (Table 1.2).  
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Table 1.2 Implementation of PBPK modelling in drug development and regulatory 

authorities policies. 

SCENARIO IMPLEMENTATION EXAMPLE 

Specific 

Patient 

Population 

• Paediatrics and 
Geriatrics  

• Hepatic and Renal 
Impairment  

Paediatrics 
Skyla® IUD (progestin-containing IU system for 
prevention of pregnancy) 
• The simulated pediatric PK of levonorgestrel in 

pediatric subjects supported the use of this 
product in a paediatric trial for females 
postmenarcheal to 18, an age group for which 
there is currently no data (156). 
 

Drug-drug 

Interactions 
• Drug as Enzyme 

Substrate 
• Drug as Enzyme 

Perpetrator 
• Transporter-

mediated 
Interaction 

DDI 
Cabazitaxel (hormone-refractory metastatic prostate 
cancer) 
• PBPK analysis indicated minimal effect on the 

exposure of midazolam (a CYP3A probe) in 
humans – resulted in USFDA to request a post-
marketing requirement study to evaluate a 
possible interaction between cabazitaxel and 
CYP3A substrates in humans (156).  

 

Other 

Situations 
• Tissue 

concentration  
• PK prediction in 

humans: FIH 
studies 

FIH studies  
Pfizer – PF-02413873 (non-steroidal progesterone 
receptor antagonist) 
• Simulations were performed in human using CL 

values estimated from human liver microsomes 
and the dog CL (153). 
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1.8.1 Regulatory Perspectives 

1.8.1.1 European Medicines Agency (EMA) 

The increasing demand on developing medicines (for human or animal use) adhering to high 

standards of safety, efficacy and quality as well as constant monitoring of medicines following 

its approval led to the establishment of the European Agency for the Evaluation of Medicinal 

Products (EMEA) in 1995 for the purpose of harmonising and integrating the function of 

existing medicines regulatory authorities within the European Union (EU). The name was 

subsequently changed to European Medicines Agency (EMA) in December 2009 as part of 

strengthening its communication materials to the public and giving more explicit messages 

about the agency’s roles and activities (162). EMA is organised into five main Units which are 

the Human Medicines Development and Evaluation, Patient Health Protection, Veterinary 

Medicines and Product Data Management, Information and Communications Technology and 

Administration Unit. All these Units are headed by the Executive Director who is appointed by 

Agency’s Management Board. Figure 1.16 shows the overview of the primary organisation 

structure.  



 

 

66

 

Figure 1.16 The Overview Structure of the EMA.  

Diagrammatic representation of the overview structure of EMA showing the various units and 
the subunits of the organisation.  
 

EMA viewpoint on PBPK modelling 

In response to narrowing the knowledge gaps between ethical and practical issues in drug 

development, especially when it is related to conduct of clinical trials and its benefit-risk 

evaluations, the EMA has begun to implement virtual trials or PBPK modelling as part of its 

strategic plan for regulatory science (163). Draft guidance on the qualification and reporting of 

PBPK modelling and simulation has been established on July 2016 to address issues such as 

the ability of the platform to adequately perform a simulation of the predetermined type, and 

drug model specific issues (157). The scope of the guideline revolves on the qualification of 

the PBPK platform and the reporting of PBPK modelling and simulation. To date, numerous 

marketing authorisation application (MAA) containing PBPK as part of the dossier is 
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increasingly submitted and requested. These submission and requests have comprised mainly 

of drug-drug interactions (DDI), paediatric dose selection and first in human trials (Figure 1.17). 

Such information has been included in EMA’s European Public Assessment Reports and 

European Summaries of Product Characteristics for several products such as Imbruvica® 

(ibrutinib - anticancer), Opsumit® (macitentan - pulmonary arterial hypertension), Cerdelga® 

(eliglustat tartrate - lysosomal storage disorders), Zykadia® (ceritinib - anticancer), and 

Odomzo® (sonidegib phosphate - anticancer) (164). 

 

Figure 1.17 Areas of PBPK application submissions received by the EMA up to 2015 

(n=112). 

 

A forum was held on 30 June 2014 between the Association of the British Pharmaceutical 

Industry (ABPI) and United Kingdom Medicines and Healthcare products Regulatory Agency 

(MHRA), representing EMA to explore PBPK simulation and modelling and its regulatory 

applications (165). In that meeting, MHRA, which represents the European regulatory 

perspective, has made several recommendations towards a better implementation of PBPK 

platforms towards regulatory submissions. The key recommendations were for companies to 
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agree and adopt common reference standards especially with regards to methodologies when 

conducting PBPK modelling since different companies were developing methodologies which 

include various reference standards that prove to be challenging to validate across companies. 

This led to difficulties in assessing and validating the models by the evaluators. Furthermore, 

to address critical parameters that are required for PBPK modelling especially those that involve 

DDI, specific populations and biopharmaceutics, a consensus should be developed to compile 

essential input parameters that cater for these conditions to provide appropriate data standards 

to the regulatory authorities. 

The EMA also has provided guidance on the verification of drug specific input parameters 

especially the range of values in sensitivity analysis around the chosen parameters (158). To 

address this issue, it was recommended that general guidance regarding the choice of 

parameters and the range of values in sensitivity analysis should be developed based on the 

experimental system and physicochemical properties of the drug molecule. Companies were 

also advised to not solely depend on sensitivity analysis to resolve parameters uncertainty, 

instead it was recommended that they need to resolve that uncertainty by experimental methods 

wherever possible.  

In terms of establishing a PBPK report, EMA inferred that a specific plan to extrapolate the 

PBPK modelling to clinical pharmacology program should be developed to provide an 

integrated approach towards drugs quantitative disposition. Also, a clear statement of 

assumptions underlying the development of the modelling should be accounted and integrated 

with the impact on the prediction so that the rationale of the model can be justified (158). 

In summary, EMA’s viewpoints towards PBPK modelling shows that standardisation and 

rationalisation are paramount in determining the acceptability of the PBPK evaluations towards 

the MAA. Also, EMA’s willingness to develop policy guidance in PBPK modelling proved that 

this area is evolving rapidly and is expected to show its full potential regarding model-informed 

drug development in the very near future.  
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1.8.1.2 United States Food and Drug Administration (USFDA) 

The USFDA is one of the oldest establishments of regulatory authorities dating back to 1862. 

Its primary roles are the evaluation and monitoring of most of food products (excluding meat 

and poultry), drugs for the use of human and animal, biological therapeutic agents, medical 

devices, radiation-emitting products for medical, occupational and consumer use and cosmetics 

as well as animal feed in accordance with the Federal Food, Drug, and Cosmetic Act (FD&C 

Act). The FDA also regulates the distribution, marketing, and manufacture of tobacco products 

(166, 167). The organisation is an agency within the Department of Health and Human Services 

and consists of nine Centres and Offices as shown in Figure 1.18. 

 

Figure 1.18 The structure of the FDA.  

Diagrammatic representation of the structure of FDA showing the hierarchy, the centres, and 
the offices. The Office of the Commissioner is overseen by two other principal offices; Office 
of the Chief Counsel which report to the General Counsel of Department of Health and Human 
Services (HHS) and gives advises to the Commissioner of Food and Drugs and Office of the 
Administrative Law Judge which reports directly to the Secretary of HHS.  
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USFDA policy on PBPK modelling 

USFDA is one of the early adopters of PBPK approaches based on its various strategic plans 

for regulatory science promoting innovation in drug development (159). The earliest known 

PBPK application on drug approvals by USFDA was in the 1990s whereby a compound known 

as tretinoin was approved as an active ingredient in topical anti-wrinkle cream (168). The 

USFDA requested a PBPK simulation to be conducted to determine the risk of congenital 

disabilities and foetal exposure due to the teratogenic effect of the compound. The simulation 

concluded that the risk was minimal and the PBPK model has managed to provide an estimation 

of maternal and foetal plasma concentration accurately for the regulatory decision to be made. 

This first case study has become a stepping stone towards encouraging more companies to 

utilise PBPK modelling to determine the best dosing strategy (169).  

In-line with the recommendations, the USFDA has developed several guidelines related to the 

application of PBPK modelling such as in clinical lactation studies, paediatric medicines 

development, drugs interaction evaluations, generic drugs and recently, specific guidance for 

industry on PBPK analyses (160, 161, 170-172). The latter, being the most recent draft 

guidance, have covered several types of drugs applications which include investigational new 

drug (INDs) applications, new drug applications (NDAs), biologics license applications 

(BLAs), and abbreviated new drug applications (ANDAs). The guidance’s primary aim is to 

standardise the content and format of PBPK study reports that are submitted to the USFDA 

hence, facilitating assessments efficiency. Similar with EMA, this guidance delineates several 

aspects to consider when submitting PBPK reports to USFDA for assessment including an 

overview of modelling strategy, modelling parameters, simulation design, software, model 

verification and modification, and model application. From 2008 to 2012, USFDA has received 

33 PBPK submissions in IND or NDA from pharmaceutical companies which shows higher 

acceptance towards this approach in drug evaluations (Figure 1.19). 
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Figure 1.19 Areas of PBPK application submissions received by the USFDA from 2008 to 

2012 (n=33).  

 

An example of the approach of PBPK modelling actively being utilised in USFDA assessment 

is in the generic drug review section whereby this approach has been implemented to assess 

biowaivers for Biopharmaceutical Classification System (BCS) Class 2 (low solubility and high 

permeability) and 3 (high solubility low permeability) drugs (Figure 1.20) in which these drugs 

usually display multiple concentration peaks (typical representive of enterohepatic 

recirculation) such as propofol, acebutolol, digoxin, nevirapine, ranitidine and valproic acid 

(173).  
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Figure 1.20 Biopharmaceutical classification system as defined by the USFDA. 

 

Furthermore, the PBPK approach is also used to improve upon a drugs in vitro-in vivo 

correlation (IVIVC), in locally acting gastrointestinal drugs, nanotechnology, formulations 

evaluation, topical and pulmonary routes of administration among others (174). Recently, 

another emerging area in which USFDA routinely applied PBPK approach in drug evaluations 

is in DDI predictions, including the effects on multiple CYP enzyme inducers, inhibitors, and 

transporters as well as in extreme genetic polymorphisms (175, 176).  

A pertinent example in this scenario is in the assessment of pharmacokinetic inhibition of 

CYP3A substrates by ketoconazole (177). In this assessment, PBPK modelling approaches 

were used to determine the impact of single dose (SD) versus multiple doses (MD) ketoconazole 

at 400 mg using CYP3A substrates with a broad range of pharmacokinetic characteristics (t1/2 

and bioavailability, F), the impact of multiple dosing regimen of ketoconazole on the inhibition 

of CYP3A, and the effect of timing of the administration of the substrate when SD ketoconazole 

is given. In this study, the SD ketoconazole has shown to provide maximal inhibition towards 

substrate of low F and short t1/2. Also, MD ketoconazole 200 mg given two times daily provides 

a higher degree of inhibition when compared with 400 mg daily as it shows sustained CYP3A4 
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inhibition when compared with the last dose. The results of this simulation have shown the 

importance of considering the pharmacokinetic characteristics of both inhibitor and drug 

substrate when designing an in vivo DDI study involving CYP3A inhibition.  

Consequently, USFDA’s policy in PBPK will continue to expand to cope with future 

technological advancement as this approach will further evolve to predict complex situations 

such as the impact of specific diseases whether in individual, populations or clinical and 

preclinical trials.   

1.8.1.3 Pharmaceuticals and Medical Devices Agency, Japan (PMDA) 

The Pharmaceuticals and Medical Devices Agency (PMDA) was established and came into 

service on 1 April 2004, under the Act on the Pharmaceuticals and Medical Devices Agency 

following the government restructuring and reorganisation plan in 2001 (178). The main aim 

of PMDA is to consolidate three agencies under one roof namely, the Pharmaceuticals and 

Medical Devices Evaluation Centre of the National Institute of Health Sciences (PMDEC), the 

Organisation for Pharmaceutical Safety and Research (OPSR), and part of the Japan 

Association for the Advancement of Medical Equipment (JAAME). PMDA focuses on three 

areas of services to the Japanese population which is product reviews, safety assessments, and 

relief services for individuals who are injured by adverse effects resulted from medical products 

(Figure 1.21). 
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Figure 1.21 The Structure of the PMDA.  

Diagrammatic representation of the structure of PMDA showing the hierarchy, the centres, and 
the offices.  
 

PMDA experience in PBPK  

Albeit being relatively new in the assessment of PBPK modelling and simulation when 

compared with the previous two regulatory authorities, PMDA has made a commendable 

achievement regarding assessments and acceptability of submissions related to PBPK. From 

2014 to 2016, PMDA has assessed 17 submissions in new drug applications (NDA) of new 

molecular entities (NME) in the area ranging from DDI, organ impairment, absorption, 

paediatrics, and DDI and pharmacogenomics (179) (Figure 1.22). 
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Figure 1.22 Areas of PBPK application submissions of NME received by the PMDA from 

2014 to 2016 (n=17).  

 

In the evaluation of Cerdelga® (Eliglustat), PBPK assessment was utilised extensively to predict 

the ADME profile (area under the curve (AUC)) in CYP2D6 subjects with different genotype 

(poor metabolisers (PM)) as well as to determine the magnitude of DDI with concomitant 

treatment of fluconazole, a CYP3A inhibitor and terbinafine, a CYP26 inhibitor (180). Results 

from the simulations shown that the AUC of eliglustat 100 mg daily dosing in CYP2D6 PM 

subjects was comparable with CYP2D6 intermediate metaboliser (IM) after twice daily dosing. 

In the DDI simulations, it was observed that the Cmax and AUC of eliglustat increased 11.7-fold 

and 8.85-fold, respectively, in the presence of fluconazole and terbinafine. With these results, 

PMDA has made two dosage recommendations on the product label of Cerdelga® which were 

to include contraindication section for co-administration with both the CYP3A and CYP2D6 

inhibitors in CYP2D6 extensive metabolisers (EM) patients and also co-administration with 

inhibitors of CYP3A in CYP2D6 IM and PM patients. 

Another example of a product in which PMDA had utilised the PBPK assessment is Farydak® 

(panobinostat), an anticancer drug (180). In this assessment, PBPK was used to determine the 
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magnitude of DDI with rifampin.  AUC of panobinostat was simulated and results shown that 

there was approximately 70% decrease in AUC whenever rifampin is given concomitantly. A 

strong recommendation was made in the product labelling of Farydak® indicating that dosing 

with potent inducers of CYP3A is not recommended due to a decrease of panobinostat blood 

concentration that will ultimately result in panobinostat ineffectiveness. 

 

To ensure that the standards of PBPK evaluation are intact and properly conducted, PMDA has 

taken the initiative to develop a guideline on DDI for drug development and labelling 

recommendations incorporating PBPK analysis as part of the product assessment. This 

guideline will encompass input from other regulatory authorities such as USFDA and EMA 

with regards to modelling and simulation and will be issued in the near future to facilitate PBPK 

evaluations (164).  
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1.9 AIMS AND OBJECTIVES 

The general aim of this thesis is to illustrate, explore and facilitate the application of mechanistic 

modelling or specifically, PBPK modelling in the context of tissue-specific drug disposition 

and population data analysis. 

This general aim was achieved through the application of PBPK modelling approaches to three 

distinct research areas:  

i. Development and application of customised PBPK models to assess hippocampus and 

frontal cortex drug pharmacokinetics in rodents and humans. 

The first aim is addressed in chapter 2 of this thesis. The study attempted to explore the 

application of PBPK modelling to simulate target tissue PK, specifically, at the CNS. The 

rationale for this approach is that CNS diseases warrant effective drug therapy, of which 

very few exist. The primary cause for this is the difficulty of drug molecules to effectively 

partition across the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier 

(BCSFB). Both the BBB and BCSFB play a significant role in maintaining the 

neuroparenchymal microenvironment by protecting the neural tissues from toxins, 

maintaining the barrier function of the brain and blood as well as buffering variations in 

blood composition. Incidentally, these same mechanisms that protect the CNS from toxins 

can also pose significant difficulties in designing effective drugs as most small-molecule 

drugs do not easily cross the BBB. Due to the high attrition rate for CNS drug development, 

a new revised approach is urgently needed to improve the research and development of 

CNS drug therapies. Such an approach can be augmented by the application of PBPK 

modelling to prospectively assess the CNS pharmacokinetics of drug candidates in humans.   

In this chapter, a rat CNS PBPK model was developed to predict pharmacokinetics in brain 

compartments for the frontal cortex (FC), hippocampus (HC), ‘rest-of-brain’ (ROB), and 

cerebrospinal fluid (CSF). The model was also extended to predict human brain morphine 

concentrations and illustrates how a simplified regional brain PBPK model is useful for 
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forward prediction approaches in humans for estimating regional brain drug 

concentrations.  

ii. To develop a PBPK model with customised virtual population groups to assess the impact 

of CYP2B6 polymorphisms on the interactions of efavirenz with lumefantrine. Further, this 

model will be utilised to assess these DDIs implications in paediatric antimalarial therapy, 

thereby, providing a model informed precision dosing towards this population group. 

 

The second aim is addressed in chapter 3. The study attempted to explore the application of 

PBPK modelling to explore the genotype impact on pharmacokinetics of drugs. 

Lumefantrine is a widely used antimalarial in children in sub-Saharan Africa and is 

predominantly metabolised by CYP3A4. The concomitant use of lumefantrine with the 

antiretroviral efavirenz, which is metabolised by CYP2B6 and is an inducer of CYP3A4, 

increases the risk of lumefantrine failure and can result in an increased recrudescence rate 

in HIV-infected children. This is further confounded by CYP2B6 being highly polymorphic 

resulting in a 2–3-fold higher efavirenz plasma concentration in polymorphic subjects, 

which enhances the potential for an efavirenz-lumefantrine drug-drug interaction (DDI). 

Due to the complexity and ethical issues of recruitment of paediatrics into complex DDI 

studies in HIV-infected malaria subjects, PBPK modelling can be used to explore the 

potential risk of DDIs in adults and paediatric populations. The benefit of this approach is 

both the ability to model population variability in physiology, but to also specifically 

develop a modelling approach that is tailored towards a specific geographical population 

group of interest rather than a standard healthy adult male. 

 

This study developed a population-based PBPK model capable of predicting the impact of 

efavirenz-mediated DDIs on lumefantrine pharmacokinetics in African paediatric 

population groups, which also considered the impact of the polymorphic nature of CYP2B6 

on pharmacokinetics. Further, this chapter demonstrated the application of PBPK modelling 

to develop and optimised dosing regimen for paediatric patients who may be exposed to an 
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antiretroviral-antimalarial DDI, where the DDI is mediated through complex 

polymorphisms affected processes.  

 

iii. Explore the application of PBPK models in the multi-ethnic Malaysian population group to 

assess inter-individual variability attributed to polymorphisms in CYP2C19 using 

clopidogrel. 

 

The final aim of this thesis is addressed in chapter 4. The study attempted to explore the 

application of PBPK modelling to address inter-ethnicity pharmacokinetics variability in a 

multi-racial population.  Malaysia is a multi-ethnic society whereby the impact of 

pharmacogenetics between different ethnic groups may contribute significantly to clinical 

therapy, as in the case of clopidogrel, a second generation thienopyridine antiplatelet drug 

and its active metabolite, clopi-H4. Since CYP2C19 plays an integral part towards the 

metabolism of clopidogrel to clopi-H4, genetic polymorphisms in CYP2C19 could 

potentially influence the attainment of target clopi-H4 plasma concentrations for clinical 

efficacy. The rationale of this study was to address the inter-ethnicity variability in the 

Malaysian population by applying pharmacokinetic modelling to address the impact of 

polymorphism of CYP2C19 on clopi-H4 in the two predominant groups, namely Malays 

and Malaysian Chinese. 
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 CHAPTER 2             

Target tissue pharmacokinetics: the 

application of PBPK modelling to 

predict regional brain 

pharmacokinetics  

 

 

Disclaimer 

Elements of this chapter have been published as follows: 

Zakaria, Z & Badhan, R 2018, 'Development of a Region-Specific Physiologically Based 

Pharmacokinetic Brain Model to Assess Hippocampus and Frontal Cortex 

Pharmacokinetics' Pharmaceutics, vol 10, no. 1. 

DOI: 10.3390/pharmaceutics10010014 
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2.1 INTRODUCTION 

2.1.1 Background 

Diseases of the central nervous system (CNS) represent a considerable socioeconomic burden 

in Europe, which are often associated with increased incidences as we age. Data reported by 

the World Health Organisation (WHO) has shown that brain diseases contribute to 35 % of 

Europe’s total disease burden (181). Brain cancer, stroke, spinal cord and brain trauma are all 

common examples of CNS diseases that warrants effective drug therapy, of which very few 

exist (182). The primary cause for this is the difficulty of drug molecules to effectively partition 

across the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB).  

Both the BBB and BCSFB play a significant role in maintaining the neuroparenchymal 

microenvironment by protecting neural tissues from toxins, maintaining the barrier function of 

the brain and blood as well as buffering variations in blood composition (183). Incidentally, 

these same mechanisms that protect the CNS from toxins can also pose significant difficulties 

in designing effective drugs as most small-molecule drugs do not easily cross the BBB (182). 

Out of over 7,000 drugs in the comprehensive medicinal chemistry database, 5 % of those drugs 

treat the CNS and limited to only diseases such as insomnia, depression, and schizophrenia 

(182, 184). Due to a high attrition rate in CNS drug development, a new revised approach is 

urgently needed to improve the research and development of CNS drug therapies.  

2.1.2 Brain penetration 

Due to the complex and dynamic nature of the BBB, the presence of intercellular tight junctions 

(TJ) and abundance of active drug transporter proteins that impair or facilitate drug passage, 

the penetration of drugs into the brain is challenging. Furthermore, dysfunction of the BBB in 

pathologies such as multiple sclerosis, Alzheimer’s disease, traumatic brain injury and stroke 

can also lead to a compromise in permeability and transportation which affects drug delivery 

(185). Therefore, assessment of risks when introducing a compound through the pharmaceutical 
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development process is paramount in obtaining necessary information for rational drug design 

to minimise shortcomings when developing medicinal products in the CNS area.  

2.1.2.1 CNS barriers    

In humans, three barrier layers regulate and limit molecular exchange between the neural tissue, 

its fluid spaces and the blood. These barriers are the blood-brain barrier (BBB) (created by the 

cerebrovascular endothelial cells between the brain interstitial fluid and the blood), the blood-

cerebrospinal fluid barrier (BCSFB) (created by the ventricular spinal fluid facing the epithelial 

cells of the choroid plexus), and the barrier that is provided by the avascular arachnoid 

epithelium between the subarachnoid CSF and blood which enclosed the CNS completely (186-

188) (Figure 2.1).  

 

Figure 2.1 The location of brain barriers 

(a) The BBB, which consists of cerebral capillary endothelial cells that form tight junctions. (b) 
The BSCFB, tight junctions that form between epithelial cells at the apical surface of the 
epithelium (CSF-facing surface) which is located at the lateral, third and fourth ventricles of 
the choroid plexus of the brain. (c) The arachnoid barrier. Tight junctions formed by multi-
layered epithelium between inner layer cells that create an effective seal. Reproduced from 
Abbot et al. (2010) (187). 



 

 

83

 

2.1.2.2 Function of the barriers 

All three barriers function dynamically within three broad scopes; as a transport barrier, 

physical barrier, and metabolic barrier. In addition, the profoundly negative charge of 

glycocalyx located at the brain endothelial cells (luminal surface) acts as an additional defence 

mechanism against molecular permeation (189).  

The BBB acts as a transport barrier due to the specific transport system such as the adsorptive 

and receptor-mediated transendothelial transport, efflux pumps and solute carriers that are 

present on the abluminal and luminal membranes of endothelial cells which regulate the 

molecular transcellular traffic (190).  

The BBB can also act as a physical barrier, as a result of the complex network of TJ proteins 

formed between adjacent endothelial cells, and which reduces the movement of molecules 

paracellularly through the TJ in brain endothelial cells (183, 191).  

The BBB can finally act as a metabolic barrier, whereby endothelial cells express several 

metabolic enzymes. Specific Phase I enzymes (Cytochrome P450 (CYP), CYP1A1,1B1, 2B6, 

2D6, 2E1, 2J2, 2R1, 2S1 and 2U1) and Phase II enzymes (glutathione S-transferase-π (GSTπ), 

GSTα, SULT1A1, SULT1A2, and UDP-glucuronosyl-transferase UGT1A1) are examples of 

such enzymes (192-197).  

2.1.2.3 Drug permeation pathways 

At the level of the BBB, six transport pathways of drug compound can be distinguished as it 

enters this area (Figure 2.2) (189). 
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Figure 2.2 BBB transport pathways.  

1. Passive Transcellular Pathway for Lipophilic Molecules, 2. Passive Paracellular Pathway for 
Hydrophilic Molecules, 3. Carrier-Mediated Transport, 4. Active Efflux Transport, 5. Receptor-
Mediated Transcytosis, and 6. Adsorptive-Mediated Transcytosis. Reproduced from Deli et al. 
(2011) (188, 189). 
 

 

i. Passive Transcellular Pathway for Lipophilic Molecules 

Transcellular pathways are often utilised by molecules which are lipophilic (LogP < 5) and a 

small molecular weight (MW) of < 500 Da (198, 199). These properties typically ensure 

molecules are able to adequately partition across the lipids bilayer and permeate into the brain 

parenchyma along a concentration gradient, from a region of high concentration within the 

microvascularate to a region of lower concentration within the parenchyma. 

ii. Passive Paracellular Pathway for Hydrophilic Molecules 

One of the reasons that most hydrophilic molecules such as peptides, proteins, and 

polysaccharides cross the BBB poorly is because of the restricted paracellular pathway of the 

TJs (199). Most of the drugs that have been developed for CNS diseases belong to this category 

are often hydrophilic which results in low BBB penetration. Due to the structure of BBB which 

consists mainly of lipid bilayer membranes, it is impermeable to ions such as Na+, K+, Cl -, and 

to polar molecules, even non-charged (non-ionic) molecules such as glucose, and proteins 

(unless they have special transporters which facilitate their movement across the BBB) (182). 
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iii. Carrier-Mediated Transport 

At the BBB, there exist a bi-directional, saturable transport systems for vitamins, minerals, and 

nutrients (187, 199). Enerson and Drewes (2006) (200) conducted a serial analysis of gene 

expression and identified approximately 40 members of the solute carrier (SLC) transporter 

family in the brain micro vessels. Amongst the SLCs, the most important is that involve in the 

transport of proteins for glucose which is the primary energy source for the CNS. These SLC 

proteins include the SLC2A1 (GLUT-1) and SLC2A3 (GLUT-3) glucose transporters and 

SLC5A2 (SGLT2) sodium glucose co-transporter. The SLC family also involves in transporting 

amino acids such as system N amino acid transporter SN1 (SLC38A3), system A amino acid 

transporters 1 and 2 SAT1 (SLC38A1), SAT2 (SLC38A2), the cationic amino acid transporters 

CAT-1 (SLC7A1) and the large neutral amino acid transporter LAT-1 (SLC7A5). Transporter 

carriers at the BBB that provide vitamins (SLC5A6 or SMVT), choline (SLC6A8) and long 

chain fatty acids (SLC27A1 or FATP-1) to the brain can be exploited for drug delivery. An 

example would be L-Dopa, which crosses the BBB together with LAT-1 and is developed for 

the treatment of Parkinson’s disease. One of the important aspects regarding the rate of uptake 

of the endogenous ligand of a transporter that crosses the BBB is that it is approximately ten 

times higher as compared to the same molecule that crosses by transmembrane diffusion (201). 

iv. Active Efflux Transport 

There is an increasing number of active efflux transporters that have been identified at the BBB 

(200, 202, 203). Examples of these transporter proteins predominantly include members of the 

ATP-binding cassette (ABC) transporter family such as MRP-1, -4, -5 and -6 (ABCC1-6), P-

glycoprotein (ABCB1) and brain multidrug resistance proteins (BMDP/BCRP/ABCG2). In 

terms of drug delivery, these efflux transporters act in restricting drug penetration to the brain 

which caused a decreased effectiveness of drugs used to treat diseases such as brain tumours, 

neurodegenerative disorders, and stroke (204). 

v. Receptor-Mediated Transcytosis 

The brain penetration and clearance of proteins and peptides are among the roles of receptor-

mediated transport (199, 205). Regulatory proteins (peptide-specific) that are carried using this 

mechanism includes, but not limited to, insulin, ghrelin, transferrin, leptin, and low-density 
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lipoprotein (192). This mechanism of transportation can be unidirectional or bidirectional 

(blood-to-brain and brain-to-blood directions) (199). There are three major steps for this form 

of transport: (i) receptor-mediated endocytosis at the luminal side of the endothelial cells of the 

brain, (ii) transcytosis in vesicles through the cytoplasm, and (iii) exocytosis at the abluminal 

side (199). These pathways have made the delivery of large drug molecules such as 

nanoparticles and biopharmaceuticals to the CNS area possible (180). 

vi. Adsorptive-Mediated Transcytosis  

The transfer and uptake of cationic molecules across the brain endothelial cells followed by 

abluminal exocytosis is the primary role of this pathway and represent a form of vesicular 

transport (206). 

 

2.1.3 Quantifying CNS drug delivery  

2.1.3.1 In vitro methods 

The BBB permeability properties of investigative compounds need to be determined at the early 

stage of the drug discovery process. High-throughput screening is often employed and 

Gumbleton and Audus (2001) (207) and Reichel et al. (2003) (208) have described in details 

the basic requirements and properties for a BBB in vitro studies whereas Lundquist and Renftel 

(2002) (209) have listed several advantages of using in vitro BBB permeability models.  

Such advantages include: 

i. permits the screening of more molecules 

ii. evaluation can be made on the mechanism of transport 

iii. less expensive than in vivo studies 

iv. ethical reasons 

v. recording of early signs of toxicity 

vi. evaluation of compounds is less as compared to in vivo studies 

vii. supporting the development of structure-transport relationships 
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viii. inducing of pathological conditions can be made, and molecular mechanisms can be 

assessed.  

 
Numerous noncell-based and cell-based in vitro models have been established for the 

measurement of the in vivo brain uptake which are summarised in Appendix B.  

2.1.3.2 In vivo methods 

As stated by Pardridge (1999) (210), in vivo methods provide the most reliable assessment of 

BBB permeability. However, these methods are expensive, low-throughput, requires tracers 

that are specifically labelled and significant technical expertise (211).  

The key outcome of in vivo measurements is the determination of the permeability-surface area 

(PS or LogPS) and the ratio of brain-to-plasma concentration (Kp or Log BB). At steady state, 

Kp is influenced by several factors including the BBB permeability, BBB transporter uptake 

and efflux, drug binding to plasma proteins and non-specific brain binding, brain tissue and 

BBB metabolism and the interstitial bulk flow within the brain. To reach brain equilibrium, the 

ratio of free brain/free plasma concentration plays an essential factor whereas, for the time to 

reach the brain equilibrium, the PS and the non-specific brain binding are essential (212). To 

evaluate brain penetration of a compound, Kp is a widely used parameter and can be defined by 

the following equations, 

si � 
��&u|
`�&@v&      (2.1) 

where Cbrain is the total brain concentration and Cplasma is total plasma concentration.  

Whereas, 

�e,i�$��$ � 
_,`�&@v&
`�&@v&       (2.2) 

where fu,plasma is fraction unbound of drug in plasma and Cu,plasma is unbound plasma 

concentration and: 
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�e,OF$Gd � 
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where fu,brain is fraction unbound of drug in the brain.  

Furthermore, the ratio of free brain and free plasma concentration at equilibrium can be defined 

as Kp,uu (213): 

si,ee � 
_,��&u|
_,`�&@v&      (2.4) 

.  Therefore, Kp and Kp,fuu can be determined in a relationship as, 

si � ^_,`�&@v&^_,��&u| 	× 	si,ee     (2.5) 

 

This relationship has emphasised the relevance of Kp,uu values in quantifying the presence and 

absence of active and passive BBB transport in the brain. So far, this Kp,uu values have been 

shown to vary between 0.02 and 3 (150-fold difference) and has proven that it can be valid 

representations of the BBB transport of drug molecules (214-217).  

However, the Kp values alone do not necessarily mandate the level of drug penetration at the 

BBB. As shown by Doran et al.(2005) (218) in a study of determining the Kp values in mice of 

the 32 most prescribed CNS drugs, the value of Kp at 0.1 such as sulpiride, can still contribute 

to a successful CNS drug comparable to Kp values > 10.  More often however, Kp,uu provides a 

more suitable quantitative description of the way the BBB transport the drug molecules instead 

of the Kp values alone and understanding the impact of the binding in brain and plasma is 

essential when using Kp values to optimise drug penetration to the brain. 

There are two in vivo techniques used to obtain the required in vivo parameters for BBB 

permeability. The invasive techniques include bolus injection, brain uptake index (BUI), brain 

efflux index (BEI), in situ brain perfusion, quantitative autoradiography, intercerebral 

microdialysis and CSF sampling. As for the non-invasive techniques, it includes magnetic 

resonance imaging (MRI), near-infrared time-domain optical imaging, positron emission 

tomography (PET) and single photon computed tomography (SPECT).  Appendix C provides 
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an overview of the in vivo methods used and the related parameters established from the 

techniques.  

2.1.3.3 In silico approaches 

In drug discovery, in silico methods provide a high-throughput, economical, and relatively fast 

method for assessing and establishing the pharmacokinetics of new compounds.  

 

i. Molecular approaches 

Several molecular approaches have been described to assess molecualear properotes for CNS 

drug delivery and include quantitative structure-activity relationships (QSAR), molecular 

descriptors and rule based methods.  A full description of these approaches are detailed in 

Appendix D. 

 

ii. Pharmacokinetics approaches 

PBPK models are capable of making predictions of the extent of CNS drug disposition, which 

in turn, assists in understanding the characteristics of CNS uptake and reduces the need for 

complex in vivo procedures to quantify CNS drug disposition.  

In non-physiological empirical pharmacokinetic models, the CNS is described by either a 1‐
compartment model (representing brain) or a 2-compartment model (representing brain 

interstitial fluid and brain intravascular fluid (IVF) with such models often being used in 

conjunction with brain microdialysis to describe CNS drug disposition (219, 220). Semi-

physiological models have also been proposed to describe drug disposition within the brain 

mechanistically (45, 218, 221-226). However, all current semi-physiological and non-

physiological models employed to describe CNS pharmacokinetics fail to consider regional 

CNS pharmacokinetics within district brain sections, which limits the application of such 

models to the assessment of regional brain extracellular fluid (ECF) drug disposition.  
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To address this limitation, PBPK can be used to mechanistically describe the drug concentration 

in tissues with consideration of regional tissue distribution (227, 228).  PBPK models are 

mechanistically driven and developed around accounting for relevant physiological processes 

which may impact upon the pharmacokinetics of compounds.  As opposed to empirical models, 

the integration between system-dependent (physiological) and compound-dependent 

parameters of PBPK models in predicting the compound's PK profile have enabled an 

understanding of the underlying mechanisms of the PK (20, 45) and have recently been applied 

to model ECF pharmacokinetics of drugs (64, 229, 230).  

Several CNS PBPK models have been developed in recent years to predict drug disposition in 

the brain in rodents and humans. Badhan et al. (2014) (64) developed a PBPK model of the rat 

CNS which formed the foundation for this chapter (Figure 2.3). This model incorporates brain 

interstitial fluid (ISF), choroidal epithelial and total CSF compartments that were capable of 

predicting CSF-to-plasma ratios and Kp,uu brain of 90% compounds with diverse 

pharmacokinetic characteristics using a series of in vitro permeability and unbound fraction 

parameters. 
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Figure 2.3 PBPK model of the rat CNS utilised by Badhan et al. (2014).  

(A) Whole-body physiologically based pharmacokinetic (PBPK) model. CL: Clearance; CSF: 
Cerebrospinal fluid; and (B) Brain and CSF compartments. V: vascular compartment; EV: 
extra-vascular compartment; CLpassive: passive clearance; CLactive: active efflux clearance. 
Reproduced from Badhan et al. (2014) (64). 
 
 

Liu et al. (2005) (231) have also developed a semi-mechanistic brain PBPK model and a brain 

compartmental model to characterise the pharmacokinetics of selected compounds in plasma 

and brain tissue in order to explore the role of BBB permeability, plasma protein binding, and 

brain tissue binding on CNS PK (Figure 2.4). They demonstrated that to achieve a rapid brain 

equilibrium, the two most important aspects that are required are a low tissue binding and a 

high BBB permeability. However, their brain PBPK model did not take into account the 

contribution of transporters towards brain drug disposition.  
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Figure 2.4 A hybrid brain PBPK model utilised by Liu et al. (2005).  

Vp: distribution volume of central compartment; Ca: concentration in central compartment; Q: 
cerebral blood flow; Civ: concentration in the intravascular space in brain; Viv: physiological 
volume of intravascular space in brain; Cev: concentration in extravascular space; Vev: 
physiological volume of extravascular space; fu,brain: unbound fraction in brain tissue; fu,plasma: 
unbound fraction in plasma determined using equilibrium dialysis; Vsp: distribution volume of 
the peripheral compartment; Csp: concentration in the peripheral compartment; Clp: systemic 
clearance (A) and a brain compartment model. Vb: volume of brain tissue; Cb: concentration in 
the brain compartment; Cp: concentration of central compartment (B) were used to characterise 
the pharmacokinetics in plasma and brain tissues. Reproduced from Liu et al. (2005) (231) 

 

 

Ball et al. (2012) (232) established a model to predict morphine, and oxycodone unbound brain 

concentration profiles by implementing in vitro to in vivo scaling factors as well as using in 

vitro permeability data for modelling BBB penetration (Figure 2.5). Their brain PBPK model 

for the rat consists of two compartments which are the brain vasculature and brain tissue.  
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Figure 2.5 A whole-body rat PBPK model incorporating a permeability limited brain 

model as utilised by Ball et al. (2012)  

Q: blood flow; LU: lungs; HE: heart; BR: brain; SK: skin; BO: bone; MU: muscle; AD: adipose; 
LIV: liver; GI: gastro-intestinal tract; PV: portal vein; KID: kidneys; CLint: intrinsic clearance; 
CLR: renal clearance; PSpassive: passive permeability surface area product; CLinflux: active 
influx clearance; CLefflux: active efflux clearance. Reproduced from Ball et al. (2012) (232).  
 

In a further study, Ball et al. (2014) (233) developed a generic and customisable brain PBPK 

model of the rat that has shown to be more precise in predicting compounds in the CNS area, 

specifically the brain permeability of the passively transported drugs (Figure 2.6). The brain 

PBPK model consists of four compartments: the brain, CSF, brain extracellular fluid (ECF) and 

the intracellular brain space (BC). The four compartments brain area that was proposed by Ball 
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et al. seems also to be a good framework to be adapted for this study as it shows a good 

interspecies correlation and all ODEs were customisable and adaptable to different parameters. 

 

 

Figure 2.6 Schematic diagram of Ball et al. (2014) (A) the rat CNS minimal PBPK model 

and (B) the rat CNS whole-body PBPK model.  

Fixed CNS physiological parameters: bulk flow of ECF (Qbulk) and sink flow of CSF (Qsink), 
volumes of CSF (VCSF), ECF (VECF), and intracellular space (VBC). Experimentally measured 
drug-specific parameters: unbound fractions in plasma (fu,plasma) and brain (fu,brain). Model-
estimated drug-specific parameters: permeability-surface area products across the BBB 
(PSBBB,in, PSBBB,out), BCSFB (PSBCSFB,in, PSBCSFB,out), and BC membrane (PSBC,in, PSBC,out). 
Optional model parameter: bidirectional diffusion rate constant between ECF and CSF 
(PSECF:CSF). Reproduced from Ball et al. (2014) (233).  
 

 

Recently, a series of publications by Yamamoto et al. (234-237) have established the basis for 

some level of mechanistic regional pharmacokinetic modelling of CNS tissues, however this 

group focussed more on a global regional model of the CNS (i.e. inclusion of regional CSF 

compartments) which would be more applicable to clinical sampling in humans (i.e. spinal 

CSF) (Figure 2.7).  Furthermore, such models were developed using population-based 
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compartment modelling pharmacokinetics (e.g., NONMEM (238)), making model portability 

difficult.  

To address this limitation, PBPK can be used to mechanistically describe the drug concentration 

in tissues with consideration of regional tissue distribution element (227, 228). A key benefit 

of the application of PBPK models is the ability to amalgamate existing relevant physiological 

processes, which may impact upon the pharmacokinetics of compounds, alongside a 

compound’s physicochemical properties to both mechanistically describe a compounds 

pharmacokinetic’s.  Additionally, such approaches allow both interspecies scaling and the 

prediction of whole organ and organ sub-compartment temporal concentrations profiles.  As 

opposed to empirical models, the integration between system-dependent (physiological) and 

compound-dependent parameters of PBPK models in predicting the compound's PK profile 

have enabled an understanding of the underlying mechanisms of the PK (20, 45) and have 

recently been applied to model ECF pharmacokinetics of drugs (64, 229, 230). 

 

 

Figure 2.7 A hybrid brain PK model utilised by Yamamoto et al. (2016)  

The brain PK model consists of plasma, brainECF: brain extracellular fluid compartment; 
brainICF: brain intracellular fluid compartment; CSFLV: compartment of cerebrospinal fluid in 
lateral ventricle; CSFTFV: Compartment of cerebrospinal fluid in third and fourth ventricle; 
CSFCM: compartment of cerebrospinal fluid in cisterna magna and CSFSAS: compartment of 
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cerebrospinal fluid in subarachnoid space, which consists of 4 different categories parameters 
(colours). The scaling method for each parameter is indicated with colour coding. Reproduced 
from Yamamoto et al. (2016) (239). 

 

The need for quantifying regional brain temporal concentrations is integral to expand existing 

CNS PBPK modelling approaches, particularly for those drugs that are reported to be unevenly 

distributed within the brain (240, 241).  

The aim of this chapter was to therefore develop a PBPK model of the rat CNS which considers 

the whole brain ECF in addition to two regionals compartments, namely the frontal cortex and 

hippocampus, to predict regional brain pharmacokinetics of phenytoin (240) and 

carbamazepine (242).  Further, the model was expanded to predict human regional brain 

pharmacokinetics of morphine. Key objectives of this study are to quantify and predict the 

extent of drug delivery to the brain and wider CNS across three key drug delivery/barrier sites 

namely; (i) the BBB; (ii) the hippocampus and (iii) the frontal cortex using phenytoin, 

carbamazepine and morphine as case studies. 

2.2 METHODS 

A three-stage workflow methodology was applied to model development. Step 1 focussed on 

the validation of a whole-body PBPK model incorporating a previously published CNS PBPK 

model (64), for the prediction of Kpuu,brain for 10 passively transported compound.  Step 2 

adapted this CNS PBPK model to include two regional brain compartments, namely frontal 

cortex, and hippocampus and validated these against two reported studies of phenytoin (240) 

and carbamazepine (242) regional brain ECF temporal concentration from rodent microdialysis 

studies.  Subsequently, Step 3 extrapolated the regional brain PBPK model to humans for the 

prediction of morphine pharmacokinetics based upon reports of human brain microdialysis of 

morphine (243, 244). 
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2.2.1  Step 1: a whole-body physiologically based pharmacokinetic (PBPK) CNS model 

A whole-body PBPK model was developed in MATLAB 9.1 (The MathWorks, Inc., Natick, 

Massachusetts, United States) (245). The model incorporated the following compartments: 

lung, heart, brain, muscle, adipose, skin, spleen, liver, pancreas, gut, stomach, bone, kidney, 

arterial blood, and venous blood. All tissue compartments were modelled as well-stirred (Figure 

2.8). 

 

Figure 2.8 A generic whole-body PBPK model.   

Arrows indicated direction of blood flow. Q: blood flow; CLH: hepatic clearance; CLR: 
renal clearance. 
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Ordinary differential equations were used to describe the whole-body PBPK model with all 

compartments, except CNS tissues (Figure 2.9), assumed to be well-stirred (equation 2.6-2.7). 

 

Well-stirred tissues: 

����� � X ��� ×�� × ���	[ − \ ��� × �� × ] �����× � × �¡bc  (2.6) 

where CT is the drug concentration of the respective tissues, t is for time, QT is the blood flow 

rate of the tissue, CAR is the arterial drug input, VT is the volume of the respective tissue 

compartment, fup is the fraction unbound of drug in plasma, Kp is the tissue-to-plasma partition 

coefficient, and Rb is the blood-to-plasma ratio of the drug. 

Brain: 

 

 

Figure 2.9 CNS PBPK brain model.  

Q: blood flow; PS: permeability surface-area; BB: intravascular blood; BT: brain tissue; 
fu: drug fraction unbound 
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��¡¡�� � �¡¢£¤¥��£¢�¦¢¤£§ − �¡¡� , j¨©ªª�¡���¡ − ¨©ªª�¡¡���k     (2.7) 

where Cbb is the drug concentration in the brain blood (brain vascular blood), t is for time, Qbrain 

is the blood flow rate to the brain, Carterial is the arterial drug input, fup is the fraction unbound 

of drug in plasma and brain (fup), PS is the bidirectional passive permeability-surface area 

product of BBB and CLBin, and CLBout are the active clearance into and out of the brain, 

respectively. 

Drug removal from eliminating organs (liver and kidney) was described by either a hepatic 

clearance (CLH) or renal clearance (CLR) term. Hepatic clearance was derived from either in 

vitro intrinsic metabolic clearance (CLint, in vitro) or in vivo human blood or plasma clearance 

(CLb or CLp).  Renal clearance was calculated using a glomerular filtration rate (GFR)  

correction approach (83).  

Intrinsic clearance was scaled to an CLH, through the use of microsomal recovery (microsomal 

protein content: 45 mg protein/g liver) or hepatocellularity (130 x 106 cells/g liver) and 

assuming a rat liver weight of 40 g/kg body weight (74, 76, 77), before being scaled using a 

well-stirred liver model (equation 2.8): 

 

	�«¬ � ���×�«¤¥�,			¤¥	­¤­®×�«�«9���×�«¤¥�,			¤¥	­¤­® �¡⁄                     (2.8) 

Tissue volumes and blood flow rates were obtained from published literature (45, 137) (Table 

2.1). 
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Table 2.1 System-related parameters used for the rat whole-body PBPK model. 

Tissue Perfusion Volume 

 Rat Human Rat Human 

  (mL/min) (mL/min) (mL) (mL) 

Adipose 4.72 277.5 19.03 10,725 

Bone 8.08 270 10.37 9300 

Brain 1.12 750 1.43 1552.5 

Gut 12 975 6.75 1770 

Heart 3.2 160.5 0.825 285 

Kidney 11.6 1177.5 1.825 330 

Liver 20 1575 10.3 1807.5 

Lungs 80 5325 1.25 1252.5 

Muscle 18.96 802.5 101 32175 

Pancreas 1 142.5 1.3 90 

Skin 4.08 322.5 47.5 8325 

Spleen 0.88 82.5 0.5 202.5 

Arterial 

blood 
- - 6.8 1927.5 

Venous 

blood 
- - 13.6 3855 

 

Ten passively transported compounds (benzylpenicillin, buspirone, caffeine, carbamazepine, 

diazepam, midazolam, phenytoin, sertraline, thiopental, and zolpidem) with reported unbound 

brain: unbound plasma partition coefficient (Kpuu,brain) were selected to validate the structure of 

the PBPK model.   

Unless otherwise stated, all data contained within the tables below are applied to the rat CNS 

PBPK model (Table 2.2-2.6).  
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Table 2.2 In vitro permeability data 

    

  Parental cells a 

   Papp  

  cm/s (x10-6) 

  AB   BA 

Benzylpenicillin  4.35 3.17 

Buspirone  34.25 33.6 

Caffeine  27.0 29.7 

Carbamazepine 32.1 34.5 

Diazepam  37.3 36.8 

Midazolam  34.8 35.5 

Phenytoin  20.94 31.7 

Sertraline  2.27 1.61 

Thiopental  31.2 30.6 

Zolpidem    35.6   35.4 

  

a Data obtained from Kalvas et al. (2007) (246) and Uchida et al. (2011) (247). 
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Table 2.3 Model predicted versus literature reported in situ permeabilities 

    
 Permeability     

Clearance  

       In Situ Permeability  

 

 
  mL/h  mL/h 

  
PSBB_BT PSBT_BB      

Benzylpenicillin 4.3 3               0.97 (248) 

Buspirone  33.3 32.6  
 

Caffeine  26.3 28.2  95 ±33.7 (249-252) 

Carbamazepine 33.6 33.5  116 (253) 

Diazepam  36.3 35.8  351 ±254 (249, 253, 254) 

Midazolam  33.9 34.5  459 (253) 

Phenytoin  25.4 30.8  36.7 ± 21 (252, 253, 255) 

Sertraline  2.2 1.6  129 (256) 

Thiopental  30.4 29.8  
 

Zolpidem   34.7 34  
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Table 2.4 Physicochemical parameters used to calculate partition coefficients. 

         

  Physicochemical parameters a 

   

  pKa  LogP 

Benzylpenicillin  3.55 b 2.74 c 

Buspirone  7.62 1.95 d 

Caffeine  14 0.92 e 

Carbamazepine  15.96 2.1 

Diazepam  3.4 c 2.82 f 

Midazolam  6.2 3.89 

Phenytoin  8.3 g 2.5 

Sertraline  9.16 h 5.1 

Thiopental  7.55 f 2.85 b 

Zolpidem   6.2 1.2 

    

All partition coefficients were subsequently calculated using Rodgers and Rowlands 
mechanistic approaches (72, 257). Further explanations of these approaches have been 
explained in chapter 1 (section 1.4.2.2) and Appendix A. 

a. Unless otherwise stated, calculated using ChemAxon 

b. Hansch et al. (1995) (258) 
c. Merck Index (2001) (259) 
d. Ullrich and Rumrich (1992) (260) 
e. Martin et al. (1969) (261) 
f. Sangster (1994) (262) 
g. McLure et al. (2000) (263) 
h. Deak et al. (2006) (264)
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Table 2.5 Protein binding and metabolic clearance 

              

  
Protein Binding a 

 

Metabolic 

Clearance  

  
Plasma Brain CSF 

 
Rat b 

      
CLint, in vivo  

  
fuplasma fubrain fuCSF 

 
mL/min/kg 

       
Benzypenicillin 0.649 2.26 0.998 

 
na 

Buspirone 0.45 0.137 0.996 
 

95.34 

Caffeine 0.917 0.697 1 
 

0.70 

Carbamazepine 0.385 0.17 0.995 
 

0.37 

Diazepam 0.211 0.0426 0.989 
 

0.88 

Midalzolam 0.045 0.0431 0.94 
 

75.66 

Phenytoin 0.302 0.0967 0.993 
 

0.56 

Sertraline 0.0347 0.00038 0.923 
 

158.01 c 

Thiopental 0.202 0.244 0.988 
 

na 

Zolpidem 0.267 0.265 0.992   7.47 

 

a. Taken from Kodaira et al. (2011) (265). 
b. Unless otherwise indicated, intrinsic in-vivo clearance was calculated based on a well-stirred 
liver model assuming average hepatic blood flow (QH, 55 mL/min/kg). Blood clearance and 
unbound fraction in blood were determined using the blood:plasma ratio (Rb) or by assuming a 
value of 1 for basic and neutral drugs and 0.55 for acidic drugs. 
c. Calculated from Ronfield et al. (1997) (266)  
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Table 2.6 Renal Clearance 

        

    
Compound 

 
Rat  

  
CLR 

  
ml/min/kg 

Benzylpenicillin 10.22 a  

Buspirone na 

Caffeine 0.021 b  

Carbamazepine na 

Diazepam na 

Midazolam na 

Phenytoin na 

Sertraline na 

Thiopental na 

Zolpidem na 

Renal clearance in rats (CLR) was calculated based on glomerular filtration rate (GFR) ratio 
approach as described by Lin (1998) (267) 

a. Taken from Scavone et al. (1989 (268), 1997 (269)) and Thompson et al. (1996) (270) 
b. Taken from Birkett and Miners (1991) (271) 
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This approach required prediction of both plasma and brain concentration-time profiles to 

calculate the Kpbrain (brain-to-plasma partition coefficient) (equation 2.9) and more specifically 

when corrected for the unbound fraction, Kpuu,brain (equation 2.10): 

 �¡¢£¤¥ � �¡¢£¤¥��§£¯°£						    (2.9) 

 ���,¡¢£¤¥ � ± ��¡¢£¤¥×��²³± ���§£¯°£×��²³ � �´��,¡¢£¤¥�´��,�§£¯°£   (2.10) 

The brain was modelled with a perfusion limited compartment (Figure 2.10).  Absorption 

(permeability clearances) from the BBB, protein binding (plasma, brain tissue and CSF), 

metabolic clearance and predicted tissue partition coefficients (Kpt) were previously collated 

by our group (64) and implemented within the model as described by equation 2.7. In this 

approach, in vitro permeability was scaled to an in vivo permeability through correction for the 

brain microvascular endothelial surface area (150 cm2.g brain-1 for rats (272) or 157 cm2.g brain-

1 (273) for humans) and was parameterised into the appropriate unidirectional PS term (equation 

2.11 and 2.12): 

µ¶¡§®®���®�¡¢£¤¥	�¤¢¦·�¤®¥ � µ¸¹¹º» × »¼¸½¾	¿À½ÁÂÃ × ¶Ä¼Å¸ÆÀ	º¼À¸ × ÇÈ  (2.11) 

µ¶¡¢£¤¥��®�¡§®®�	�¤¢¦·�¤®¥ � µ¸¹¹»º × »¼¸½¾	¿À½ÁÂÃ × ¶Ä¼Å¸ÆÀ	º¼À¸ × ÇÈ (2.12) 

where brain weight was assumed to be 1.8 g in rats, 0.36 g in mice and 1500g in humans (274-

276).   

The correction factors (CF) terms relate to an in vitro-to-in vivo extrapolation factor which 

corrects for the absent physiologically conditions inherent in the determination of the in vitro 

permeability (229, 230).  It is also important to note that for actively transported compounds, 

CF can be replaced by a relative expression factor (REF) which accounts for the differences in 

transporter abundances from the in vitro system to the in vivo species being studied permeability 

(229, 230).  CF was assumed as being ‘1’ in the absence of any parameter estimation 

approaches. When only a single Papp was reported in the literature, the resultant predicted PS 

was assumed bidirectional.  Further, for active efflux compounds, the PSblood-to-brain was assumed 

to be bidirectional and the active efflux component applied through correction of the PSbrain-to-

blood of the efflux-ratio of the substrate (64). 
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All compounds were simulated using IV-bolus doses. 

The validity of individual compounds was assessed using a fold-error (FE) method whereby 

whenever the observed Kpuu,brain values were determined to be more than the predicted Kpuu,brain 

values, therefore,  

ÉÊ �  ���,¡¢£¤¥Ë¡¯¦¢­¦� ���,¡¢£¤¥¨¢¦�¤·�¦�     (2.13) 

If however, the predicted Kpuu,brain values were more than the observed Kpuu,brain values, 

therefore, 

ÉÊ �  ���,¡¢£¤¥¨¢¦�¤·�¦� ���,¡¢£¤¥Ë¡¯¦¢­¦�    (2.14) 

2.2.2 Step 2: development of a rat regional brain PBPK sub-model 

A study by Walker et al. (1996) (240) reported regional brain concentration of phenytoin in 

distinct brain regions of the rat, namely the hippocampus and frontal cortex.  A further study 

by Van Belle et al. (1995) (242) also reported carbamazepine regional brain concentrations in 

the hippocampus.  These studies were used to validate the regional brain PBPK sub-model.  

Compound-specific parameters for phenytoin and carbamazepine, along with permeability 

clearances across the hippocampus, frontal cortex and the rest of the brain tissues were obtained 

from in-vitro permeability data previously collated (64). 

Model development adapted a previously reported CNS PBPK model (64) to include a 

hippocampus and frontal cortex compartment (Figure 2.10) and was applied to the whole-body 

PBPK model with systems parameters detailed in Table 2.1. 
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Figure 2.10 5-compartmental rat CNS PBPK brain model.  

Q: blood flow; PS: permeability surface-area; BB: intracranial blood; HC: hippocampus; 
FC: frontal cortex; C and CSF: cerebrospinal fluid; BT: brain tissue; fu: drug fraction 
unbound. 

 

In the development of this model, the following assumptions are made: 

1. The CNS is represented by five compartments, namely CSF, intracranial blood, rest of brain 

tissue, frontal cortex and hippocampus;  

2. All compartments are well-stirred with permeability barriers between the intracranial blood 

and brain;  

3. There is no rate-limiting diffusion barrier between the ECF and CSF, and that drug 

equilibration between these two compartments is rapid (233);  

4. Only unbound drug, governed by unbound fraction in plasma (fup), brain tissue (fubt) or CSF 

(fuCSF) was considered capable of crossing permeability barriers 

5. In the absence of published regional fub, unbound brain fraction was assumed equivalent for 

all brain regions (i.e., hippocampus, rest of brain and frontal cortex) (277).   

6. Within the extracellular space of the brain, fluids move either by diffusion or by bulk flow 

(Qbulk) (278); 
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7. Where absent from literature, hippocampus, and frontal cortex volumes scaled from mice to 

rats based on brain weight ratio-scalars (64, 275, 276, 279);  

8. Due to the absence of regional brain in-vitro or in-vivo permeability data, the bi-directional 

passive transport (PS) term was assumed scaled based upon the regional tissue weight 

(assuming density =1) rather than whole brain mass.  

9. The temporal concentration profile of the drug in the regional brain ECF would mimic the 

biophase sampled during microdialysis studies (280). 

10. Since the liver was considered as the only site of clearance for phenytoin based on literature 

(281), the prediction for unbound renal clearance (CLR) was excluded from the simulation. 

11. Active transporter from brain tissues (Efflux: CLBout; Influx: CLBin) can be determined as 

described in our previous CNS PBPK model (64). 

 

The CNS PBPK model equations are detailed in equations 2.15-2.18. 

Intercranial blood (‘brain blood’): 

��¡¡�� � �¡¢£¤¥��£¢� − �¡¡� , j¨©É�_ªª��·���· − ¨©ªª_É��¡¡���k , j¨©ª�_ªª�¡���¡� −
¨©ªª_ª��¡¡���k , �«ª®���¡���¡� − �«ª¤¥�¡¡��� , j¨©¬�_ªª�Í·��Í· −
¨©ªª_¬��¡¡���k , ��©¤¥Î�·¯���·¯�                    (2.15) 

where the subscripts art, bb, bt, csf, hc, fc, p, and Csink represent arterial blood, brain blood, 

brain tissue, cerebral spinal fluid, hippocampus, frontal cortex, plasma and CSF absorption, 

respectively; Q is blood or CSF flow; CL is transporter clearance, respectively; PS is the passive 

permeability-surface area product of BBB, BCSFB, blood-brain to hippocampus (and vice 

versa), and blood-brain to frontal cortex (and vice versa), respectively; fu is fraction unbound. 
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Brain tissue (rest of brain tissue): 

��¡��� � j¨©ªª_ª��¡¡��� − ¨©ª�_ªª�¡���¡�k , �«ª¤¥�¡¡��� − �«ª®���¡���¡� ,
j¨©É�ª���·���· − ¨©ª�É��¡���¡�k − �¡�§Îª��©É�¡���¡� , j¨©¬�ª��Í·��Í· −
¨©ª�¬��¡���¡�k	                                   (2.16) 

where QbulkBT_CSF is the bulk flow from the brain tissue to the CSF. 

Frontal cortex: 

���·�� � j¨©ªª_É��¡¡��� −¨©É�_ªª��·���·k − �¡�§ÎÉ�_�©É��·���· , j¨©ª�_É��¡���¡� −
¨©É�_ª���·���·k                 (2.17) 

where QbulkFC_CSF is the bulk flow from the frontal cortex to the CSF. 

Hippocampus: 

��Í·�� � j¨©¬�_ª��¡¡��� − ¨©ª�_¬��Í·��Í·k − �¡�§Î¬��©É�Í·��Í· , j¨©ªª¬��¡¡��� −
¨©¬�ªª�Í·��Í·k	                 (2.18) 

where QbulkHC_CSF is the bulk flow from the hippocampus to the CSF. 

CSF: 

��·¯��� � ��©¤¥Î�·¯���·¯� , �¡�§Îª��©É�¡���¡� , �¡�§ÎÉ�_�©É��·���· − ��©¤¥Î�·¯���·¯� 

                             (2.19) 

For the rat brain PBPK model, the tissue volumes, and blood flow rates were obtained from 

published literature (Table 2.1).  Subsequently, the 5-compartment brain model was applied to 

predict plasma, rest of brain, hippocampus and frontal cortex concentration profiles following 

an intraperitoneal dose of 50 mg/kg of phenytoin (240) or a 10 mg IV infusion (10 minutes) of 

carbamazepine.  

In order to account for the uncertainty in the ECF volumes of regional brain compartment, 

Monte Carlo simulations were used to incorporate a 30% CV (log-normal distributed) on the 
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fixed estimates of ECF compartment volumes (simultaneous applied and simulated to the rest 

of brain, hippocampus and frontal cortex) resulting in at least 3000-runs per compound (1000-

per compartment).  This was applied using simulations for both rat (Step 2) and human (Step 

3) models.  The resultant 5th and 95th percentiles were graphically assessed.   

To assess the impact of PS parameter uncertainty on model predictions, a sensitivity analysis 

was conducted to assess the impact of variation in PSHC_BT and PSBB_HC and PSFC_BT and 

PSBB_FC, on the hippocampus and frontal cortex Cmax over a PS range of 0.01 to 100 mL/min 

using phenytoin as a model compound. Three-dimensional mesh plots were used to assess this 

relationship graphically. 

2.2.3 Step 3: development of a human regional brain PBPK sub-model  

To explore the possibility of utilising the regional brain PBPK model to predict human brain 

pharmacokinetics, human CNS physiological parameters were used to develop a human 

regional CNS PBPK model (Table 2.7) based upon the regional brain model described in 

section 2.2.2.  Despite limited human brain concentration data being reported in the literature, 

two studies were chosen which reported morphine brain concentrations in patients who suffered 

from traumatic brain injury, acquired using microdialysis cerebral catheter insertion in ‘better’ 

or ‘worse’ brain tissues, as determined by computed tomography scanning (243, 244).  Systems 

parameters for the human CNS PBPK model are detailed in Table 2.7, and morphine-specific 

parameters are detailed in Table 2.8. 
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Table 2.7 System-related parameters used for the brain PBPK model 

  Rat Human 

Flow Rates a Q (mL/min) 

Rest of brain tissue to CSF 
(bulk flow)  

0.00024 0.285 

Hippocampus to CSF (bulk 
flow) 

0.00002 0.00114 

Frontal cortex to CSF (bulk 
flow) 

0.00005 0.0566 

CSF production rate 0.0037 b 0.35c 

CSF absorption (Qcsink) d 0.0037 0.35 

Volume V (mL) 

Intercranial blood e 0.025 75 

Rest of brain tissue f 1.222 1211 

* Rest of brain tissue ECF e  0.243  267 

Hippocampus 0.093 g 5.68 h 

* Hippocampus ECF e 0.019 1.07 

Frontal cortex 0.233 i 283 j 

* Frontal cortex ECF e 0.038 53.2 

CSF 0.25 k 160 l 

* Monte Carlo simulations were applied to address uncertainty in true parameter value.  A 30% 
CV was applied as the boundary conditions and predictions conducted with the all parameters 
identified simultaneous using a log-normal distribution with at least 3000 iterations per 
compound. a Regional brain ISF bulk flow was assumed to be 0.2 µL/min.g brain (186) and 
assumed to be species independent; b Taken from Harnish et al. (1988) (282); c Taken from 
Brinker et al. (2014) (283); d Assuming that the rate of CSF absorption is the same with CSF 
production rate (284); e Calculated by assuming fractional volume of brain intravascular fluid 
is 0.014 and fractional volume of brain interstitial space 0.188 (285); f Assumes average brain 
weight of 1.8 g in rats, 0.36 g in mice and 1500g in humans (274-276); g Taken from Lee et al. 
(2009) (286); h Taken as mean of total hippocampal volume (right and left) (287); i Scaled based 
on a mean mouse frontal cortex volume of 0.0467 mL (288) and a scalar of 5 (ratio of rat brain 
weight:mouse brain weight) or 4166 (ratio of human brain weight:mouse brain weight); j Taken 
as mean of range reported values from Semendeferi et al. (2002) (289); k Taken from Bass and 
Lundbord (1973) (290); l Taken from Sakka et al. (2011) (291). 
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Table 2.8 Physicochemical parameters for the human regional brain model 

  

In-vitro 

permeability (cm/s 

x10-6) 

Permeability 

clearance 

(mL/h) b 

pKa LogP fuplasma fubrain fuCSF Rb CLint,in-vivo CLR 

  PappAB   PappBA PSBB_BT PSBT_BB             (mL/min/kg)  

Carbamazepine - - 29818 33818 - - - - - - 0.4 na 

Phenytoin - - 22545 27418 - - - - - - 0.47 na 

Morphine 1.07a 1.06a 924 926 8.9c  0.89d 0.74e 0.45f 1g 1.02f 18 na 

 

a Obtained from Dale et al. (2006) (292) 
b PS was calculated as described in Section 2.2.1.  PS was subsequently applied to all regional brain compartments through correction for 
regional tissue weight (Refer Section 2.2.2 and assumption 8 above) 
c obtained from Roy et al. (1989) (293) 
d obtained from Illum et al. (2002) (294) 
e obtained from Olsen et al. (1975) (295) 
f obtained from Ball et al. (2012) (230) 
g assumed to be 1 
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2.2.4 Data and statistical analysis 

The accuracy and success of the prediction were assessed by the root mean squared error 

(rmse) (Equation (2.20), where N refers to the number of observations) and the average-fold 

error (afe) (Equation (2.21)) which determine whether the prediction were over- and under-

predicted. An afe ≤ 2 was considered a successful prediction (137, 138): 

°¯¦ � �
Ï∑�¨¢¦�¤·�¤®¥ − Ë¡¯¦¢­¦��Ð, ¢°¯¦ � √°¯¦                             (2.20) 

£�¦ � �³Ò
∑§®Ó¨¢¦�¤·�¦�Ë¡¯¦¢­¦�Ï Ò

                                                      (2.21) 

 

2.3 RESULTS 

2.3.1 Step 1: Validation of the PBPK Model 

To develop a broader regional CNS PBPK model, this step focussed upon the development of 

a base PBPK model consisting of a whole-body PBPK model incorporating a simplistic 1-

compartment model of the brain.  Predictions of brain temporal concentration profiles were 

surmised using the unbound brain: plasma ratio (Kpuu,brain), which is widely used to assessed 

brain drug partitioning.  Validation of the whole-body physiologically-based pharmacokinetic 

(WB-PBPK) model examined the ability of the model to predict Kpuu,brain in rats for 10 

compounds demonstrating passive absorption across the BBB which were previously used in 

PBPK modelling by our group (64).  The WB-PBPK model was capable of predicting Kpuu,brain  

to within 5-fold of the reported Kpuu,brain for all compounds except benzylpenicillin, which was 

5.34-fold over predicted (Figure 2.11). 
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Figure 2.11 Comparisons of predicted and reported Kpuu,brain in rat.  

Solid bold mid-line represents the line of unity, and solid outer-lines represent 5-fold 
prediction error. 

 

2.3.2 Step 2: development of a rat regional brain PBPK sub-model 

2.3.2.1 Case 1: Phenytoin 

The base PBPK model described in Step 1 was adapted to replace the 1-compartment brain 

model with a 5-compartment regional brain model. This model was then used to predict 

phenytoin plasma and regional brain concentrations. 

Predictions of phenytoin plasma concentration profiles were subsequently simulated and found 

to be within the range of observed profiles (Figure 2.12), with a predicted Cmax (61.79 µmol/L) 

similar to that reported by Walker et al. (1996) (240), 61.69 ± 4.7 µmol/L.  Furthermore, a 

similar tmax was predicted compared to that reported by Walker et al. (240), approximately 20 

mins (Figure 2.12). 
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Figure 2.12 Simulated mean phenytoin plasma concentration-time profiles.  

A 50 mg/kg phenytoin dose was simulated (solid line) with literature reported data 
represented by open circles with error bars representing standard deviations. 

 

Prediction of regional brain concentrations was accomplished through application of the 5-

compartment brain model, which incorporated distinct hippocampus and frontal cortex 

compartments.  When accounting for uncertainly in model parameter predictions, model 

predictions were compared to those reported using microdialysis sampling in the hippocampus 

and frontal cortex, as reported by Walker et al. (1996) (240) and were generally in agreement 

in observed profiles in each brain region (Figure 2.13). 
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Figure 2.13 Simulated mean phenytoin hippocampus and frontal cortex concentration-time profiles.  

Simulated mean values of phenytoin-time profiles in (A) hippocampus and (B) frontal cortex after a 50 mg/kg dose of phenytoin. Open circles 
and errors bars represent literature reported mean and ± SD in 5 rats.  Solid black line represents model prediction mean profiles and dashed 
lines indicated 95th and 5th percentiles. 
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Table 2.9 Summary of predicted and observed pharmacokinetic parameters of phenytoin 

in plasma, hippocampus and frontal cortex in rats. 

  Plasma Hippocampus Frontal cortex 

 
Cmax AUC Cmax AUC Cmax AUC 

(µmol/L) (µmol/L.min) (µmol/L) (µmol/L.min) (µmol/L) (µmol/L.min) 

Predicted 61.79 5891.97 
8.62 ± 
3.42 

718.29 ± 
18.31 

3.87 ± 
0.24 

340.47 ± 
11.53 

Observed 
61.69 ± 

4.7 
5924.55 ± 

340.4 
7.00 ± 

2.2 
594.74 ± 

21.2 
3.98 ± 

1.1 
370.97 ± 

17.1 

AUC is calculated as AUC(0-last); Data represent mean ± SEM 

 

Model-predicted Cmax and AUC were within 2-fold of that reported (240) (Table 2.9). 

Predictions of hippocampus tmax, approximately 20 minutes, were slightly over-predicted 

compared to the observed tmax of 15 mins. For the frontal cortex mean concentration, Cmax was 

predicted at 3.87 ± 0.24 µmol/L and was consistent with the published literature Cmax of 3.98 ± 

1.1 µmol/L (Figure 2.13B).  In both cases, the afe and rmse of 0.92 and 0.40 respectively, were 

indicative of a good model prediction.  Furthermore, predictions of the regional Kpuu,brain for the 

hippocampus (0.12) and frontal cortex (0.057) were within 2-fold of the reported regional 

Kpuu,brain of 0.11 for hippocampus and 0.08 for frontal cortex.  

2.3.2.2 Case 2: Carbamazepine  

Predictions of carbamazepine plasma concentration profiles were found to be within the range 

of observed data (Figure 2.14A), with a predicted Cmax (1.81 nmol/mL) similar to that reported 

by Van Belle et al. (1995) (242), 2.14 ± 0.27 nmol/mL (Table 2.10).  Furthermore, a similar 

tmax was predicted, 39 mins, compared to the reported tmax (242) of approximately 44 ± 9 mins 

(Table 2.10).
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Figure 2.14 Simulated mean carbamazepine plasma and hippocampus concentration-time profiles.  

Simulated mean values of carbamazepine-time profiles in (A) plasma and (B) hippocampus after a 2.5 mg/kg carbamazepine dose. Open 
circles and errors bars represent literature reported mean and ± SD. Solid black line represents model prediction mean profiles and dashed lines 
indicated 95th and 5th percentiles.
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Van Belle et al. (1995) (242) reported carbamazepine hippocampus pharmacokinetics 

following a single dose to rats and this was used as a basis to validate the regional brain PBPK 

model further.  The model predicted plasma (Figure 2.14A) and hippocampus (Figure 2.14B) 

Cmax and AUC to within 2-fold of the reported values (Table 2.10).  Furthermore, predicted 

regional Kpuu,brain were within 2-fold of the reported Kpuu,brain (reconstructed from the AUC 

ratios) (242), 0.79 and 1.02 respectively.   

 

Table 2.10  Summary of predicted and observed pharmacokinetic parameters of 

carbamazepine in plasma and hippocampus brain regions in rats. 

  Plasma Hippocampus 

 
Cmax AUCa Cmax AUC 

(nmol/mL) (nmol/mL.min) (nmol/mL) (nmol/mL.min) 

Predicted 1.81  367.9  1.87 ± 0 81 470.2 ± 181.2 

Observed 1.91 ± 0.25 333 ± 58 1.45 ± 0.41 340 ± 102 
a AUC(0-last) 

Data represent mean ± SD 
 

2.3.2.3 Model Sensitivity Analysis  

To assess the impact of parameter uncertainty on model predictions, a sensitivity analysis 

assessed the impact of variation in PSHC_BT, PSBB_HC, PSFC_BT and PSBB_FC on phenytoin (as a 

model compound) hippocampus and frontal cortex Cmax over a PS range of 0.01 to 100 mL/min 

(Figure 2.15).   Model predictions were generally sensitive to changes in both drug flux into 

each compartment (PSBBB_HC or PSBBB_FC) and out of each compartment (PSHC_BT or PSFC_BT). 

Irrespective of changes in hippocampus PS over the range simulated, predicted Cmax spanned 

3.7 to 8 µM.  Furthermore, variations in frontal cortex PS resulted in a predicted Cmax spanned 

2.3 to 3.9 µM.  Assuming regional differences in the HC and FC compared to the rest of the 

brain, where flux across the regional BBB located at the ‘rest of brain’ was ten-folder greater 

than that of the HC or FC, limited sensitivity was simulated across any change in PSBBB_HC, 

PSBBB_FC, PSHC_BT or PSFC_BT. 
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Figure 2.15 Model sensitivity analysis of brain PS on Cmax.  

Sensitivity analysis of the impact of variation in PS on the hippocampus (A) or frontal 
cortex (B) phenytoin Cmax. Grey mesh indicates profiles where PSBBB_BT is 10-fold lower 
and pink mesh indicates profiles where PSBBB_BT is 10-fold higher than that presented in 
the associated multi-colours mesh plots. PS: permeability surface area product; HC_BT 
(hippocampus and brain tissue); BBB_HC (cerebral microvasculature [blood brain barrier] 
and hippocampus); FC_BT (frontal cortex and brain tissue) and BBB_FC (cerebral 
microvasculature [blood brain barrier] and frontal cortex). 

(A) 

(B) 
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2.3.3 Step 3: development of a human regional brain PBPK sub-model  

In an attempt to predict regional brain concentrations in humans, we utilised data reporting 

morphine brain concentrations in patients who suffered from traumatic brain injury using 

microdialysis cerebral catheter insertion in ‘better’ or ‘worse’ brain tissues (‘less extensive’ or 

‘more extensive’ tissue damage), as determined by computed tomography scanning (243, 244).
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Figure 2.16. Simulated human morphine concentration-time profiles. Predicted concentration-time profiles for (A) plasma, (B) rest 
of brain, (C) hippocampus and (D) frontal cortex, following a 10 mg IV-infusion over 10 minutes. Circles represent literature reported 
values.  Solid black line represents model prediction mean profiles and dashed lines indicated 5th and 95th percentiles. ‘Better’ and ‘worse’ 
(‘less extensive’ and ‘more extensive’ tissue damage) regional brain morphine concentrations are highlighted by solid or open circles in 
(B).
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Figure 2.16 (cont). Simulated human morphine concentration-time profiles.  

Predicted concentration-time profiles for (A) plasma, (B) rest of brain, (C) hippocampus and (D) frontal cortex, following a 10 mg IV-infusion 
over 10 minutes. Circles represent literature reported values.  Solid black line represents model prediction mean profiles and dashed lines 
indicated 5th and 9th percentiles. ‘Better’ and ‘worse’ regional brain morphine concentrations are highlighted by solid or open circles in (B).
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The plasma concentration-time profile was well predicted (Figure 2.16A) with Cmax, tmax and 

AUC all within 2-fold of the reported values (Table 2.11).  In the absence of human 

hippocampus or frontal cortex temporal concentration profiles, we compared the reported 

profiles for ‘better’ and ‘worse’ brain morphine temporal concentration profiles to those 

generated within the ‘rest of brain’ compartment within the regional brain PBPK model (Figure 

2.16B).  The model predicted a rest of brain (ROB) Cmax of 14.5 ± 4.21 ng/mL, which was 

within the range reported for both ‘better’ and ‘worse’ brain tissue (‘less extensive’ and ‘more 

extensive’ tissue damage), in addition to calculated AUC beings within 2-fold of those reported 

(Table 2.11).  However, tmax was 2.5-fold underpredicted.  For regional brain compartments, 

the hippocampus exhibited a slow transfer of morphine leading to a tmax of 79.6 minutes and 

Cmax of 124.4 ± 41.2 ng/mL, whilst the frontal cortex tmax was shorter (26.5 min) with a Cmax of 

38.91 ± 15.78 ng/mL (Figure 2.16C and D). 

 

Table 2.11  Summary of predicted and observed pharmacokinetic parameters of 

morphine in plasma and regional brain compartments in humans. 

Compartment 
Cmax AUC tmax 

(ng/mL) (ng/mL.min) (min) 

Plasma 
Predicted 208.2 5363 7.2 

Observed 178 7513 ± 124 9.8 

Better Brain Observed 10.1 941.7 
31.4 ± 
17.1 

Worse Brain Observed 29.8 2732 17.8 ± 2.3 

Rest of brain Predicted 14.5 ± 4.21 815 ± 93 18.1 

Hippocampus Predicted 124.4 ± 41.2 19971 ± 3791 79.6 

Frontal Cortex Predicted 38.9 ± 15.7 2444 ± 153 26.5 

Data represent mean ± SD 
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2.4 DISCUSSION 

Central nervous system (CNS) disorders affect millions of people worldwide despite the 

availability of a wide range of established treatments (181).  The primary challenge to CNS 

drug delivery is the penetration of the blood-brain barrier in order to attain a sufficiently high 

enough biophase concentration for a clinical effect.  Given the lengthy discovery and 

development times associated with CNS drug development, the application of mechanistic 

pharmacokinetic modelling has emerged to bridge the gaps between in vivo and in vitro 

approaches to expedite extrapolation of the pharmacokinetics of drug compounds and to aid in 

the selection of appropriate doses for clinical studies (257, 296). 

 

The primary aim of this research was to employ mechanistic pharmacokinetic modelling 

approaches to develop models capable of conducting robust in vitro-to-in vivo correlation and 

thus allow interspecies extrapolations (rodent-to-human). Such approaches are based around a 

mechanistic set of physiological (‘systems’) parameters describing the physiology of the model 

system (e.g. rodents or humans) and in vitro derived or estimated drug (‘compound’) 

parameters. 

 

Such extrapolations will enable the quantification and prediction of the extent of drug delivery 

to the brain and wider CNS across drug barrier sites, namely, the BBB and the regional brain 

area. These mechanistic platforms are in line with a replacement, reduction and refinement 

concept that is integrated into the drug discovery framework (297). The aim of this study was 

therefore to develop a PBPK model of the rat CNS which was capable of predicting to predict 

regional brain pharmacokinetics (frontal cortex and hippocampus) of phenytoin and 

carbamazepine in rats, in addition to the prediction of human regional brain pharmacokinetics 

or morphine. 

 

2.4.1 Validation of the PBPK Model 

To develop an accurate brain PBPK model that can predict human drug concentrations from a 

limited set of routinely available pre-clinical and in vitro drug-specific parameters, a robust 

validation process is essential to determine the prediction accuracy and precision. A rat CNS 
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PBPK model developed by Ball et al. (2012) (230) was selected to confirm successful base 

model development.  Initial validation was conducted by comparing the Kpuu,brain values 

between the predicted and published data for passively transported compounds, namely 

benzylpenicillin, buspirone, caffeine, carbamazepine, diazepam, midazolam, phenytoin, 

sertraline, thiopental, and zolpidem (64). Model predictions were all within 5-fold of the 

observed Kpuu,brain, with prediction of Kpuu,brain for benzylpenicillin being 5.5-fold over 

predicted (Figure 2.11). This over-prediction found in benzylpenicillin may be a result of the 

involvement of unclarified molecular active transport mechanism through the BBB as reported 

by Suzuki et al. (248, 298) where the rapid CNS elimination was not captured during the 

simulation.   

As the description of the brain compartment using a simplistic permeability limited 

compartment is not physiologically relevant, it would be expected that model predictions of 

temporal brain concentrations would, therefore, be less accurate and this would account for the 

large error range simulated.  This basic CNS PBPK model was subsequently adapted and built 

upon in Step 2 to propose a regional brain CNS PBPK model which was more mechanistically 

derived. 

2.4.2 Prediction of regional brain concentrations in rats 

In order to expand upon this previously developed model, we adapted the basic CNS PBPK 

model to include two further tissue compartments, namely the frontal cortex and hippocampus.  

In this process, we identified two candidate compounds to validate our adapted model against, 

phenytoin and carbamazepine. Both compounds have been administered to rats and region-

specific brain microdialysis conducted to assess the CNS pharmacokinetics.  Frontal cortex and 

hippocampus phenytoin concentrations had been previously reported by Walker et al. (1996) 

(240), with Van Belle et al. (1995) (242) also reporting carbamazepine regional brain 

concentration in the hippocampus. The PBPK model developed incorporated an in situ 

permeability surface area (PS) previously reported in rodents to drive diffusion from the plasma 

circulation into the CNS.  The resultant predictions of plasma and regional concentrations were 

within the range of concentrations reported for both compounds (Figures 2.12-2.14) with the 

majority of model predicted pharmacokinetic parameters within 2-fold of that observed (Table 

2.9-2.10). 
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2.4.2.1 Model sensitivity analysis 

Monte-Carlo based model sensitivity analysis was first addressed by assessing the uncertainty 

in our calculation of regional brain compartments PS on predictions of regional brain 

concentrations.  The rationale for focussing on regional brain PS when conducting the 

sensitivity analysis is to identify key parameters that have the greatest influence on model 

outputs in terms of variability, hence, increasing the model accuracy.  Model predictions were 

sensitive to changes in both drug flux into each compartment (PSBBB_HC or PSBBB_FC) and out of 

each compartment (PSHC_BT or PSFC_BT), however irrespective of any changes in either 

hippocampus or frontal cortex PS, the resultant impact on the compartment Cmax was minimal.   

Therefore, assuming the permeation of drug across the brain microvascular is uniform (i.e. no 

regional differences), variations in the inter-regional brain permeability (PSHC_BT or PSFC_BT) of 

the drug would play a minimal role in influencing regional brain Cmax.  Furthermore, assuming 

that the regional brain penetration of drug was non-uniform across the brain, a 10-fold lower or 

10-fold higher shift in PSBBB_BT would significantly increase (10-fold lower) or reduce (10-fold 

higher) overall regional brain Cmax (Figure 2.15). 

2.4.3 Prediction of regional brain concentrations in humans 

The prediction of human CNS pharmacokinetics, from preclinical data, would provide an 

invaluable approach to assessing the usefulness of candidate molecules progressing through 

drug development stages. 

 

Human brain pharmacokinetics data is extremely sparse in the literature, however a study was 

identified which applied microdialysis to quantify morphine pharmacokinetics in human brain 

tissue and where a relatively rich brain pharmacokinetic profile was available.  This data was 

available for ‘brain tissue’, and we assumed this was equivalent to the ‘rest of brain’ 

compartment within our 5-compartment brain model.  The resultant model predictions resulted 

in a reasonable prediction of the shape of the concentration profiles along with a good estimate 

of the Cmax and AUC, the former of which was predicted within the ‘range’ of ‘better’ and 

‘worse’ Cmax reported in the observed data sets (Figure 2.16).  However, the prediction of the 

terminal elimination phase was poorer than expected, although the reported data only illustrated 
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data points for two representative patients, the distribution of resultant morphine concentrations 

at each time point was not reported, hence we were unable to ascertain the intra-individual 

variability. 

 

As a first principles approach, we have been able to capture the pharmacokinetics of morphine 

in human brain tissue and the validated ‘rest of brain’ compartment.  Assuming PS is scaled 

from in-vitro Papp based on correction for surface area (cm2/g tissue), the PS would be 

‘corrected’ for overall surface area based on the gross tissue weight.  Furthermore, the small 

regional mass of the hippocampus would result in a highly localised concentration of morphine, 

which would slowly diffuse out of the brain tissue as a result of the smaller surface area.  

Similarly, regional differences in both morphine (299) and biperiden have been reported in rat 

brains (300).  

 

Further, although this model did not consider active transport substrates, it would be possible 

to model the active transport of, for example, P-glycoprotein substrates.  This is made possible 

by the availability of absolute protein abundance data for a range of transporter proteins at brain 

barriers as a result of the application of quantitative proteomics (301, 302). Further, we have 

previously demonstrated the application of this approach to the prediction of Kpuubrain (for whole 

brain) for 11 active transporter substrates using a similar CNS PBPK (64), where an active 

transport permeability surface area (PS) can be determined by the use of a corrected efflux ratio 

(to account for the differentiation between purely active and purely passive transport) (303, 

304) in addition to accounting for the abundance of the transporter protein (64). 

 

Finally, the key to driving regional brain drug concentration predictions would be accounting 

for any potential regional differences in non-specific brain tissue binding (i.e. a brain regional 

specific fubt).  In the absence of any reported regional brain fubt data, we assumed fubt was 

uniform across all brain regions.  Any regional differences in grey/white matter phospholipid 

/lipid content may result in localised differences in fubt. Indeed, it has been reported that 

differences in lipid content do exist when comparing white and grey matter regions (305-308).  

Given these potential regional differences in brain composition, the application of techniques 

such as equilibrium dialysis should be encouraged to further investigate and determine fubt for 

specific brain regions to provide more appropriate input data in the model. 



130 

 

2.5 CONCLUSIONS 

With an ageing population, elevated fertility rates and a progressive increase in life expectancy, 

the number of older adults will increase the demands on both the public health system and on 

medical and social services. This is particularly true for chronic neurological disorders such as 

Alzheimer’s disease and Parkinson’s disease, which affect older adults and contribute to 

disability and increased health care costs. This situation is made worse as a result of the time 

that was required to bring a new medicine to market, as well as the high cost. 

Recent advances in biotechnology and pharmaceutical sciences have significantly expanded the 

number of drugs that are being developed for the treatment of CNS disorders. However, drugs 

identified through novel discovery techniques often do not consider the pharmacokinetic and 

pharmaceutical properties of the drug candidates. The reasons for the under-developed CNS 

drug market is the lack of efficient delivery strategies that exist to enable drugs to overcome 

the BBB and BCSFB and poor knowledge of the relationships between molecular properties 

and pharmacokinetic parameters and how these should be optimised to enhance CNS drug 

delivery (225, 309). 

With high attrition rates for CNS drug development, there are now major health and regulatory 

initiatives to improve the potential bio-distribution and clinical efficacy of new chemical or 

pharmaceutical agents within central nervous system (CNS) drug development strategies. 

Quantitative techniques, such as PBPK modelling and systems biology are common solutions 

to the problem of increasing attrition rates within the pharmaceutical industry.  Empirical and 

mechanistic, ‘top-down’ pharmacokinetic models, are routinely used in quantitative decision 

making and are easy and simple to develop and use, portable, and good at extrapolating across 

different doses and subpopulations. 

During preclinical and clinical development, these models are routinely used to maximise the 

information obtained from in vivo and in vitro experiments, while minimising resource 

utilisation. In an attempt to explore the drug disposition across the CNS, a regional brain PBPK 

model was developed for rats and extended to human to model human regional brain 

pharmacokinetics of morphine.  While the limiting factor in the application of this model to 

human CNS pharmacokinetics is the paucity in human brain (whole) or regional brain drug 

concentrations, with the greater application of cranial microdialysis, it would be possible to 
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further refine the proposed model for application in regional brain concentration. Nonetheless, 

the research has successfully proposed a simplified first-principle approach to the development 

of a regional brain CNS PBPK model as well as addresses our first aim of the thesis which is 

to assess hippocampus and frontal cortex drug pharmacokinetics in rodents and humans. 
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 CHAPTER 3                              

Utility of PBPK modelling in dose 

optimisation for complex drug-drug 

interactions in HIV- and malaria- 

infected children 
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3.1 INTRODUCTION 

3.1.1 Background 

Malaria represents a considerable healthcare burden, with the World Health Organization 

(WHO) attributing an estimated 212 million malaria cases and 429 000 malaria-related deaths 

in 2015. Out of those malaria cases and deaths, 92% are from the African regions and 

predominantly occur in children aged under 5 years (310). Consequently, areas with high rates 

of malaria also carry a high incidence of HIV (human immunodeficiency virus)/AIDS (acquired 

immune deficiency syndrome). Despite a decrease in new HIV infections in children and adults 

from 2005 onwards, the majority of HIV infections still occur in African regions, making it the 

number one cause of mortality in that region (311, 312). 

3.1.2 Malaria 

Plasmodium parasites have been determined as the main carrier leading to malaria in their hosts. 

These parasites are spread exclusively by infected female Anopheles mosquitoes that act as 

malaria vectors which bite mainly between dusk and dawn. In humans, five Plasmodium species 

are known to cause malaria, namely Plasmodium falciparum, Plasmodium vivax, Plasmodium 

ovale, Plasmodium malariae and Plasmodium knowlesi (313). The majority of cases of malaria 

are caused by either P. falciparum or P. vivax, with the former being more common and highly 

prevalent in in Sub-Saharan Africa (314, 315).  In regions such as Asia and Latin America, P. 

vivax is the most common infection as compared to P. falciparum due to P. vivax resistance to 

colder climates, higher altitudes and lower temperatures (310).  

Plasmodium parasites are introduced to human from the infected Anopheles mosquitoes’ saliva 

into the human blood. These parasites (sporozoites) invade liver hepatocytes, expand and 

mature to produce thousands of merozoites before subsequently leaving and reproducing within 

red blood cells. The invasion and multiplication of the asexual parasites (merozoites) in the red 

blood cells are the point where the disease occurs (316). All Plasmodium species have a similar 

life cycle (Figure 3.1), however, Plasmodium falciparum has the highest rate of parasitaemia 

due to its ability to invade all red blood cells because of its higher flexibility in the receptor 

pathways. This characteristic is what makes Plasmodium falciparum most deadly as it can 
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develop adhesive proteins that can stick to the walls (endothelium) of the blood vessels which 

can prevent the infected red blood cells from being destroyed in the spleen (317, 318).  

 

 

Figure 3.1 Life cycle of the plasmodium species. 

Reproduced from Miller et al. (2002) (316).  

Malaria usually manifests itself in the form of acute febrile illness. Symptoms such as fever, 

chills, headache, and vomiting usually occur between 10 to 15 days after the infective mosquito 

bites. These symptoms might be mild and often quite difficult to be recognized as malaria (319). 

Due to these difficulties, the symptoms might progress to severe illnesses such as the 

development of respiratory distress which often can lead to death if it is not treated within 24 

hours especially those that have been infected with P. falciparum (320). Children are most 

susceptible to these risks whenever they develop severe malaria as the symptoms can manifest 

to severe anaemia, respiratory distress, and cerebral malaria. As for adults, failure to treat P. 

falciparum infection within 24 hours also could lead to severe multi-organ infection which is 

often difficult to be treated (321).  

According to the WHO, malaria is classified into either ‘severe’ or ‘uncomplicated’ (310, 321). 

The classification of ‘severe’ occurs when the following symptoms are presented in patients: 

hyperparasitaemia, jaundice, renal impairment, pulmonary oedema, severe malarial anaemia, 
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acidosis, hypoglycaemia, multiple convulsion, significant bleeding, multiple convulsion and 

impaired consciousness.  

Treatment for malaria usually depends on the severity and type of the disease. Typically, 

antimalarial medications are given in the form of oral doses for uncomplicated malaria or 

intravenous doses for severe malaria. Therapeutic objectives for uncomplicated malaria are to 

prevent progression to severe malaria and to cure the infections as rapidly as possible. With 

these objectives in mind, administration of drugs are usually in the form of antimalarial 

combination therapy (ACT), combining rapidly acting but short half-life artemisinin derivatives 

(e.g. artemether, artesunate, artemotil, artelinic acid and dihydroartemisinin) with longer acting 

and long half-life (slowly eliminated) partner drugs (e.g. lumefantrine, mefloquine, 

amodiaquine, sulfadoxine/pyrimethamine and piperaquine) to minimise resistance to any single 

drug components (310, 322, 323).  

The artemisinin derivatives act by reducing parasite numbers rapidly up to a factor of 10,000 

in each 48 hours asexual cycle of the malaria parasites. The partner drugs, which possess a 

longer half-life, act by clearing the remaining parasites thus protects against resistance towards 

the rapid-acting artemisinin derivatives (324). The ACT recommended by the WHO for 

treatment of uncomplicated malaria are: 1. artemether plus lumefantrine; 2. artesunate plus 

mefloquine; 3. artesunate plus amodiaquine; 4. artesunate plus sulfadoxine-pyrimethamine and 

5. dihydroartemisinin plus piperaquine.  

As for severe malaria, which typically occurs due to exacerbation of P. falciparum infection, 

parenteral form of artesunate is often used for children and adult (325). In a case of cerebral 

malaria in children, another systematic review also suggests intravenous artemisinin derivatives 

or quinine in combination with supportive care in the critical care unit for better management 

of complications such as seizures and high fever (310, 311, 321, 326).  

3.1.3 Human Immunodeficiency Virus (HIV) 

The human immunodeficiency virus (HIV) is a type of retrovirus that can instigate HIV 

infection and with due time, can develop acquired immunodeficiency syndrome (AIDS) (327). 

HIV infects the human immune system, specifically the CD4+ helper T cells, dendritic cells 

and macrophages, hence, weakens the defence system against opportunistic infections (328). 

Depending on the individual, HIV infection can develop to AIDS in 2 to 15 years without 
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treatment (312). AIDS manifests itself in the form of development of certain cancers (Kaposi’s 

sarcoma and lymphomas), infections (severe bacterial and fungi infections) and another type of 

severe clinical manifestations such as cryptococcal meningitis and tuberculosis (329).  

The mechanisms in which HIV infect include termination of infected CD4+ T cells by CD8 

cytotoxic lymphocytes, direct viral elimination of infected cells, apoptosis of uninfected 

bystander cell and pyroptosis of abortively infected T cells (330-332). These mechanisms 

eventually lead to the low levels of CD4+ T cells, hence increase the susceptibility of the body 

to the opportunistic infections. HIV has some unique characteristics as compared to other 

viruses in terms of its genetic variability due to its fast replication process (Figure 3.2) and high 

mutation rate (333-335). There are two types of HIV according to its characterisation: HIV-1 

and HIV-2. Initially, HIV-1 is the name that has been given when it was first discovered, and 

this type of virus has more infective and virulent characteristics as compared to HIV-2 (336). 

Majority of HIV infection is also originated from HIV-1 type as opposed to HIV-2 which is 

mainly restricted to West African region (337).  

 

 

Figure 3.2 HIV replication cycle. 

Reproduced from Jmarchn et al. (2017) (338). 
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HIV can be transmitted by sexual contacts, mother to child during breastfeeding and pregnancy 

and through exposure to infected tissues or body fluids (339). There is also a possibility that a 

patient can be infected with several strains of HIV and this condition is termed as HIV 

superinfection (340).  

Unfortunately, to date, there is still no cure for HIV or AIDS (339).  The only alternative 

towards a cure is to slow the progression of the disease by administering highly active 

antiretroviral therapy (HAART) (341). This treatment also provides a form of prevention and 

treatment towards the opportunistic infections that usually occur in AIDS patients. Typically, 

adults patients will be given a ‘cocktail’ of HAART combinations as an initial treatment which 

includes a non-nucleoside reverse transcriptase inhibitor (NNRTI) combined with two 

nucleoside analogue reverse transcriptase inhibitors (NRTIs) (339). NNRTI drugs include 

efavirenz (EFV), etravirine (ETV) and nevirapine (NVP) whereas for NRTIs, the drugs include 

abacavir (ABC), didanosine (ddI), emtricitabine (FTC), lamivudine (3TC), stavudine (d4T) and 

zidovudine (AZT). For children younger than 3 years of age, a proteases inhibitors (PIs) such 

as lopinavir/ritonavir (LPV/r)-based regimen should be used as first-line treatment regardless 

of NNRTI exposure. As for children 3 years of age and older, EFV is the preferred NNRTI for 

first-line treatment while NVP can be given as an alternative (339).  

3.1.4 Malaria and HIV co-infection 

In theory, mortality and morbidity attributed to malaria could potentially increase due to HIV 

infection. Through immunosuppression, HIV infection could increase susceptibility to malaria, 

hence, increases the disease clinical and severity occurrences. Also, immunosuppressed patients 

are more likely to become infected with malaria (in endemic regions) that may lead to delayed 

parasitaemia clearances, and consequently, higher parasite density and these patients may 

contribute to the increase of parasite transmission and biomass to the endemic region, especially 

in the sub-Saharan population (342). Even though malaria has been found not to be the most 

frequent cause of death in HIV patients, it was found to be the third cause HIV-related morbidity 

in Africa, akin to tuberculosis (343, 344). Furthermore, pharmacological interactions between 

antimalarial and HIV drugs could potentially affect the efficacy of antimalarial treatment due 
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to underexposure and subsequently leads to high recrudescence rate. In contrast, overexposure 

to the drugs could also lead to toxicity (345).  

Lumefantrine, often combined with artemether, is one of the most widely used antimalarials in 

sub-Saharan Africa, and many countries adopted it as first-line therapy for uncomplicated 

falciparum malaria, including children with HIV co-infection (346). In terms of 

pharmacokinetics, lumefantrine has similar properties as halofantrine (347), with a large 

apparent volume of distribution as well as approximately 4 to 5 days of terminal elimination 

half-life for malaria (348). The bioavailability of oral lumefantrine is very dependent on food 

and usually reduced effectiveness in acute malaria treatment. However, the cure rate is 

markedly improved upon recovery (349). Typical treatment regimens for lumefantrine in 

children include a 3-day six-dose regimen which is stratified based on body weight: 5-15 kg 1 

tablet per dose; 15-25 kg 2 tablets per dose; 25-35 kg 3 tablets per dose and >35 kg 4 tablets 

per dose (311).  Lumefantrine is predominantly metabolised by CYP3A4. The overall basis of 

lumefantrine clinical efficacy is the area under the curve, with day 7 concentration (Cd7) of 280 

ng/mL considered to be the primary marker for successful therapy under dosing with standard 

3-day dosing regimen (349, 350). Table 3.1 summarises lumefantrine pharmacokinetics and its 

structure. 

Efavirenz is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and is predominantly 

metabolised by CYP2B6 (351) and is an inducer of CYP3A4 (352, 353).  It is a standard first-

line treatment in paediatrics or pregnancy population groups (339) (354). Efavirenz has a linear 

pharmacokinetics behaviour, and steady-state plasma concentration was reached within 7 days 

(355). Similar to lumefantrine, food also has a substantial effect towards efavirenz absorption 

whereby it could increase to more than 50% when given with a high-fat meal, after a single 

dose of 1,200 mg (356). Although lumefantrine therapy has a long therapeutic window (357), 

patients who are exposed to CYP3A4 inducers, such as efavirenz, may demonstrate reduced 

lumefantrine exposure which can lead to increase recrudescence rates and therapeutic failure 

(358). Table 3.2 summarises efavirenz pharmacokinetics and its structure.  
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Table 3.1 Summary of lumefantrine pharmacokinetics  

 

PHARMACOKINETICS 

 

 

STRUCTURE 

Absorption and 

Distribution 

• Absorption of lumefantrine, a highly lipophilic 
compound, starts after a lag-time of up to 2 
hours, with peak plasma concentrations about 6 
to 8 hours after administration (359). 

• Lumefantrine is highly bound to human serum 
proteins in vitro (99.7%) (360). 

• Protein binding to human plasma proteins is 
linear (361). 

 

 

 

 

Formula: C30H32Cl3NO 

 

Molar mass: 528.94 g/mol 

 

Chemical name: 2-Dibutylamino-1-
[2,7-dichloro-9-(4-chloro-
benzylidene)-9H-fluoren-4-yl]-ethanol 

 

Metabolism • Lumefantrine was metabolized mainly by 
CYP3A4 to desbutyl-Iumefantrine (361). 

• The systemic exposure to the metabolite 
desbutyl-Iumefantrine was less than 1 % of the 
exposure to the parent compound (361). 

• In vitro, lumefantrine significantly inhibits the 
activity of CYP2D6 at therapeutic plasma 
concentrations (361, 362). 

 
Elimination • Lumefantrine is eliminated slowly, with a 

terminal half-life of 3-6 days in healthy 
volunteers and in patients with falciparum 
malaria (361). 

 
Renal dysfunction • Not established 

 
Elderly • Not established 

 
Chronic liver disease • Not established 

 
Children aged 3 

years and over 

• Similar in children to adults after correction for 
body size (361). 
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Table 3.2 Summary of efavirenz pharmacokinetics  

 

PHARMACOKINETICS 

 

 

STRUCTURE 

Absorption and 

Distribution 

• Linear pharmacokinetic behaviour (356) 
• Steady-state plasma concentrations were 

reached in 7 days (363). 
• The rate of absorption was not rapid based on 

the Tmax values (356). 
• Low water solubility of efavirenz probably led 

to a slow dissolution rate in the gastrointestinal 
tract and the relatively long time to peak 
concentrations might be a function of the 
dissolution rate (363). 

• The absolute bioavailability of efavirenz has 
not been determined due to the lack of an 
adequate intravenous formulation (356). 

• Highly bound to plasma proteins, primarily to 
serum albumin, with a mean free fraction of 
0.58 % in rat, 0.57 % in rhesus monkey and 
0.25-0.5 % in human plasma (363). 

 
• Intestinal absorption (364): 

 

o Efavirenz was capable of inducing 
hepatic CYP3A4 activity. 

o Efavirenz itself is predominantly 
metabolized by UGT2B7. 

o Efavirenz inhibit intestinal ABCB1, 
ABCC2 and UGT1A1 

o Efavirenz is rapidly absorbed from 
the upper intestine (Tmax 2-3h) and 
does not undergo significant biliary 
secretion 

o Efavirenz undergoes extensive 
oxidative metabolism by CYP2B6 
and CYP3A4 and conjugation via 
UGT2B7. 

 

 
Formula: 

C14H9ClF3NO2 

 

Molar mass: 

315.675 g/mol 

 

Chemical name: 

(S)-6-chloro-4-(Cyclopropylethynyl)-
1,4-dihydro-4-(trifluoromethyl)-2H-
3,1-benzoxazin-2-one 

Metabolism • Metabolised by the cytochrome P450, 
especially CYP 2B6 and to a lesser extent 
CYP3A4 to oxidative inactive metabolites 
(363) 

• Induce both CYP2B6 and CYP3A4 and 
therefore to induce its own metabolism (356). 

• Inhibitor of CYP2C9, 2C19, and 3A4 and 
therefore pharmacokinetic interactions of 
clinical relevance could be expected (363). 

• The AUCs were approximately 8-10% lower 
following 20 days of dosing as compared to 
AUCs after 10 days of dosing (363). 

 
Elimination • Single oral dose was estimated to be 4.3 l/h in 

the population analysis consisting of healthy 
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volunteer’s data and increased to 11 l/h after 
multiple dosing (356). 

• Long elimination half-life (t1/2) - (40 to 55 
hours) (363) 

• The elimination pathway for efavirenz was 
mainly through the faeces (363). 

 
Renal dysfunction • Not established 

 
Elderly • Not established 

 
Chronic liver disease • Reduction in efavirenz Cmax (356) 

• Increase in the unbound fraction (356) 
 

Children aged 3 

years and over 

• Similar in children to adults after correction for 
body size (363). 

 

 

3.1.5 Genetic polymorphisms 

The human chromosomes consist of approximately 500 million base pairs (bp) of DNA that in 

turns consist of thousands of genes (365).  A gene can be defined as a region of DNA that has 

a function (Figure 3.3). These genes formed various DNA sequences called genotypes which 

determines specific characteristics (phenotypes) of an individual (366).   

 

Figure 3.3 Structure of chromosome, DNA, and gene. 

Reproduced from Shafee et al. (2015) (367). 

Genetic polymorphisms occur when more than one allele (variant) occupies a gene locus (fixed 

position on a chromosome) within a population which could underlie differences in health 

conditions (63). Various types of genetic polymorphism exist and include single nucleotide 
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polymorphisms (SNPs), small-scale insertions/deletions, polymorphic repetitive elements and 

microsatellite variation (63).  

The most commonest type of polymorphism are SNPS, which occur whenever there are single 

nucleotide changes in a particular location in the genome, specifically, the replacement of the 

nucleotide adenine (A), thymine (T), cytosine (C), or guanine (G) in a part of the DNA. These 

changes lead to two alleles of DNA fragments in different individuals which are defined as 

SNPs (Figure 3.4). These genetic changes alter the genes that code for proteins and enzymes, 

which in turn may alter their functional ability.  For SNPs occurring on genes encoding for CYP 

enzymes, the results could be no alteration in function or increased or reduced function of the 

enzyme, which in turn leads to altered metabolic capacity. This variation in the DNA sequences 

can affect how a human reacts to certain types of medications, i.e., whether they are extensive 

metabolisers, poor metabolisers or ultra-rapid metabolisers, develop diseases and respond to 

other types of xenobiotics.  

 

Drug response often varies between individuals, and about 15% to 30% of this variability is 

often a result of genetic polymorphisms (368). Within this range, Cytochrome P450 (CYP450) 

enzymes constitute about 80% of phase 1 drug metabolism and about 65% to 70% of drug 

clearance (369, 370). Also, the highly polymorphic states of the CYPs enzymes have been the 

primary cause for the increased risk of adverse drug reactions caused by the drugs (371). These 

CYP enzymes harbour a significant constituent of single nucleotide polymorphisms (SNP) 

which are primarily based on the lack of endogenous functions within the gene itself. In terms 

of clinical practicality, pharmacogenetics testing is currently limited to validation and 

qualification on phenotyping sequences of the observed genetic variation patterns (372). This 

testing eventually resulted in an accessible and standardised CYP allele nomenclature system 

which is designated by ‘star (*) alleles’ and is reviewed and regularly updated through a 

community website (373).  
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Figure 3.4 SNP schematic illustrating changes of a nucleotide at a single base-pair location 

on DNA.  

Reproduced from Eccles et al. (2014) (374).  

3.1.6 CYP2B6 polymorphisms  

CYP2B6 plays an essential role regarding biotransformation of several essential drugs such as 

antimalarials and antiretrovirals (375).  CYP2B6 belongs to a family of enzymes that catalyse 

the biotransformation of drugs called cytochrome P450 (CYP450) and thought to consists of 

less than 1% to the total CYP abundance in the liver. However, recent studies have established 

that this enzyme contributes between 2 to 10% of total hepatic CYP content (376).  

Nevertheless, several important CYP2B6 SNPs have been identified to have profound effects 

on drug metabolism and efficacy of drug therapy and in some extents, up to 50% higher 

frequencies in certain population (377, 378). CYP2B6 is highly polymorphic with at least 37 

distinct star-alleles (379) with the *1/*1 carriers considered as wild-type carrier. To date, there 

are over 100 identified SNPs for CYP2B6 have been documented which revealed a variety of 

phenotypic outcomes (376). Amongst the prominent type of CYP2B6 SNP alleles are 

CYP2B6*2, CYP2B6*3, CYP2B6*4, CYP2B6*5, CYP2B6*6, and CYP2B6*7 of which the 

CYP2B6*6 was discovered in about 15 - 40% in Asians and more than 50% in African-

Americans population (380-382). The most common variant alleles result in two amino acid 

changes, Q172H and K262R, and is termed CYP2B6*6, and which has been reported to lead to 
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a 65% reduction protein expression and 50% reduction in mean enzyme activity in the 

homozygous state (380).   

3.1.7 Efavirenz and CYP2B6 polymorphisms 

Pharmacogenetic studies have provided valuable information towards the prevalance of 

efavirenz pharmacokinetic variability between patients (383). The safety, efficacy and 

adherence to treatment for HIV patients that have been administered efavirenz were often 

compromised whenever efavirenz is given concomitantly with other medication such as 

antimalarials or other antiretrovirals and these effects are difficult to predict due to its variability 

(383). Further, efavirenz induces its own metabolism and results in reduced plasma exposure, 

a phenomena which can confound treatment management since it has also influenced by 

patients genotype and the presence of CYP2B6 SNPS (384, 385).  This fact is fundamental to 

the pharmacokinetics of efavirenz and also its ability to illicit a drug-drug interaction (e.g. with 

antimalarial agents) as efavirenz can induce CYP3A4,  a CYP isozyme through which many 

antimalarial are metabolised.  Further, the extent to which this DDI occurs is therefore highly 

dependant upon the phenotype preveleances within a popualtion group. 

Ward et al. (2003) (386) suggested that CYP2B6 polymorphisms are clinically significant for 

efavirenz treatment.  Further, it was discovered that a significant reduction in efavirenz 

clearance in African patients, resulting in enhanced efavirenz plasma concentration, was 

attributed to CYP2B6 SNPs which were unique to the African population groups studied (386). 

Therefore, it is highly likely that the sub-Saharan paediatric population, when predisposed to 

both HIV and malaria, may have a significantly higher risk of antimalarial treatment failure due 

to drug-drug interactions mediated by efavirenz. Although CYP2B6 contributes towards 

between 2-10 % of total CYP content (376), the impact of the *6/*6 genotype (poor metaboliser 

phenotype) can often result in a 2-3-fold higher efavirenz plasma concentration (378, 387-389), 

and hence a greater ability of efavirenz to induce CYP3A4 (353, 390, 391) and thereby enhances 

the potential for a efavirenz-lumefantrine DDI.  

Importantly, the *6/*6 polymorphism is more frequent in African population groups than 

Caucasian population groups (46.9% vs. 25.5%, respectively) (375, 392), and this places 

considerable risk-burden on this geographic population group.  However, the impact of 

CYP2B6 polymorphisms in antiretroviral-antimalarial mediated DDIs in African paediatric 
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populations is lacking, and warrants investigation as it may contribute to significantly increased 

the risk of recrudescence especially in highly endemic regions and the potential resistance 

towards these antimalarial treatments (310, 393-395).  This is further confounded by the risk of 

placental transfer of HIV (396) and malaria (397), and the lack of naturally acquired immunity 

towards children, often puts paediatric population groups at significant risk of succumbing to 

either infection or being exposed to complex DDIs (398). 

Due to the complexity and ethical issues of recruitment of paediatrics into complex DDI studies 

in HIV-infected malaria subjects, PBPK modelling can be used to explore the potential risk of 

DDIs in adults (399-401) and paediatric populations (402-405).   The benefit of this approach 

is both the ability to model population variability in physiology (84, 401, 405-407), but to also 

specifically develop a modelling approach that is tailored towards a specific geographical 

population group of interest rather than a standard healthy (Caucasian) adult male. 

In contrast to in vivo and in vitro assessments, generating population-based PBPK models to 

predict human pharmacokinetics and potential risk of DDIs in the paediatric population is 

particularly challenging. However, during the past decade, research has been ongoing to explore 

this area in-depth in the sub-Saharan paediatric population, albeit many authors observing 

pharmacokinetic profiles of efavirenz and lumefantrine separately (23, 408-411).  In 2013, Xu 

et al. established a clinical link between CYP2B6 metabolic status and efavirenz clearance 

through the development of a PBPK (412). This research provides a rationale and basis for the 

current study in providing a method and preliminary data for the paediatric population.  

Additional studies have been undertaken to explore the pharmacokinetics of lumefantrine and 

efavirenz in a sub-Saharan paediatric population with the most recent study conducted in 2016 

by Parikh et al. (408). The author has successfully shown that efavirenz exposure leads to a 

reduction of lumefantrine plasma concentration up to 2.1-fold. However, this study does not 

consider the impact of CYP2B6 polymorphism within the paediatric population.  

Therefore, our primary goal is to bridge this gap by not only providing a robust DDI profile of 

lumefantrine-efavirenz by accounting CYP2B6 polymorphism into the metabolic clearance 

profile of efavirenz but also provide a dose evaluation prediction for lumefantrine to overcome 

the issue of treatment failure and recrudescence specifically in this co-infected paediatric 

population. The objectives of the present study were 2-fold: (i) to predict efavirenz 

pharmacokinetics in African population groups (adults and paediatrics) and (ii) to assess the 
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impact of efavirenz in the attenuation of lumefantrine pharmacokinetics through a CYP3A4 

induction effect.  In all cases, it was important also to address the impact of the *6/*6 CYP2B6 

phenotype on efavirenz pharmacokinetics and the effect of this on efavirenz and thus its ability 

to alter lumefantrine pharmacokinetics. 

 

3.2 METHODS 

3.2.1 Compounds selection and development 

Input parameters for use in the development of lumefantrine and efavirenz compound files are 

detailed in Table 3.3. These parameters derived from previously validated publications, with 

lumefantrine, develop by Olafuyi et al. (2017) (8) and efavirenz developed and pre-validated 

by Simcyp (413). 
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Table 3.3 Compound-specific parameters for lumefantrine and efavirenz 

Parameters Lumefantrine Efavirenz 
Compound type Diprotic base Monoprotic acid 

Molecular weight (g/mol) 528.941 315.688 

Log P 8.701,2 4.028 

fu 0.0031,3 0.0298 

pKa 1 14.101 10.208 

pKa 2 9.801 - 
B/P 0.801,4 0.748 

Vss (L/kg) 0.701 14.268 

Peff (10-4 cm/s) 0.971 5.688 

Kp scalar 0.507 18 

Solubility (mg/mL) 0.0021,5 - 
CLpo (L/min) 0.251,6 208 

CLint3A4 (µL/min/pmol) 
 

4.607 
 

0.00948 

CLint2B6 (µL/min/pmol) - 1.358 

CYP3A4 Indmax (fold) - 38 

CYP3A4 IndC50 (µM) - 3.88 

CYP2B6 Indmax (fold) - 6.28 

CYP2B6 IndC50 (µM) - 1.28 

Absorption model 1st order 1st order 
Distribution model Full Full 

 

Log P: octanol:buffer partition coefficient, fu: fraction unbound in plasma, pKa: acid 
dissociation constant , B/P: blood-to-plasma ratio, Vss: volume of distribution at steady-state , 
Peff: human effective permeability, Kp: tissue partition coefficient, Kp scalar: scalar to 
predicted Kp values, CLpo: clearance of drug after oral administration, CLint3A4: in vitro 
intrinsic metabolic clearance of CYP3A4, CLint2B6: in vitro intrinsic metabolic clearance of 
CYP2B6, Indmax: calibrated maximal fold induction over vehicle (1= no induction), CYP3A4 
IndC50: calibrated inducer concentration that supports half maximal induction, 1st order 
absorption model: simplest absorption model within the simulator which treats the gut as a 
single compartment associated with a single first order absorption rate constant (ka) and fa, full 
distribution model: the full PBPK distribution model makes use of a number of time-based 
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differential equations in order to simulate the concentrations in various organ compartments. 
Inter-individual variability is introduced through tissue volume prediction taking account of 
age, sex, weight and height. 

1Olafuyi, O., et al. (2017) (8), 2Huang et al. (2012) (414), 3Colussi, D., et al. (1999) (415), 
4Zaloumis et al. (2012) (416), 5Kotila et al. (2013) (417), 6Ezzet et al. (1998) (348), 7Parameter 
estimated, 8Simcyp® default values. 

 

 

3.2.2 Model development 

Population-based PBPK modelling was conducted using the virtual clinical trials simulator 

Simcyp (Simcyp Ltd., a Certara company, Sheffield, UK, Version 16).  For all simulations, 

doses for both lumefantrine and efavirenz were employed according to standard weight-based 

dosing regimens (361, 363) (Table 3.4), unless stated otherwise. Further, for all lumefantrine 

simulations, dosing occurred under fed-conditions unless otherwise indicated. 

Table 3.4 Weight-based dosing regimens for lumefantrine and efavirenz 

    Total mg per dose 

Body weight Tablets per dose Lumefantrine 

5 to < 15 kg 1 120 
15 to < 25 kg 2 240 
25 to < 35 kg 3 360 
    Efavirenz 

10 to < 15 kg - 200 
15 to < 20 kg - 250 
20 to < 25 kg - 300 
25 to < 35 kg - 350 

3.2.2.1 Model development workflow 

A five-stage stepwise approach was implemented for model development, validation and model 

refinement (Figure 3.5). Unless otherwise stated, efavirenz was dosed for 20 days prior to 

initiation of a DDI (and throughout the study). Lumefantrine was dosed at over 3 days at 0, 8, 

24, 36, 48 and 60 hours. Clinical data from nine published studies were utilised throughout the 

model development and validation phases (Table 3.5) to demonstrate that the model could 

reasonably predict drug exposure in adult and paediatric populations. 
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Figure 3.5 Model development strategy.  

PK: pharmacokinetics, PBPK: physiologically based pharmacokinetic modelling. 
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Table 3.5 List of published papers utilised for validation purposes 

STEP 1 – Adult Oral 

PBPK Model 
Population groups Reference 

Efavirenz (EM/PM 
genotyping data available) 

• Healthy volunteers 
• Ugandan and South African 

population 

• Xu et al. (2013) (418) 
• Mukonzo et al. (2013) 

(419) 
  

STEP 2 – Adult Oral DDI 

PBPK Model 
Population groups Validation 

Lumefantrine + Efavirenz 
(Inducer) (EM/PM 
genotyping data available) 

• Healthy volunteers 
• South African as surrogate for 

Tanzanian populations 

• Huang et al. (2012) (414)  
• Maganda et al. (2015) 

(420) (EM/PM genotyping 
data available) 
  

STEP 3 – Paediatric Oral 

PBPK Model  (Ugandan) 
Population groups Validation 

Lumefantrine Custom designed (virtual twins) 
Ugandan paediatric population 

Parikh et al. (2016) (408) 

 
 
 
Efavirenz Custom designed Ugandan paediatric 

population 

• Parikh et al. (2016) (408) 
• Fillekes et al. (2011) (409) 
• Luo et al. (2016) (23) 
• Pressiat et al. (2017) (410) 
• Viljoen et al. (2011) (411) 

(EM/PM genotyping data 
available) 

  
STEP 4 – Paediatric Oral 

DDI PBPK Model 

(Ugandan) 

Population groups Validation 

Lumefantrine + Efavirenz 
(Inducer) (EM/PM 
genotyping data available) 

Custom designed Ugandan paediatric 
population 

• Parikh et al. (2016) (408) 
  

STEP 5 – Paediatric Dose Evaluation Prediction Simulation 

Simulations were run using the Ugandan population group and stratified across 4 age groups:  
• 0.25-1 year-old (120mg LUM/300mg EFV), 1-4 year-old (120mg LUM/400mg EFV),  
• 4-8 year-old (240mg LUM/500mg EFV) and 8-13 year-old (240mg LUM/600mg EFV) 
 

EM: extensive metabolisers, PM: poor metabolisers. 
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Step 1: Adult simulations with efavirenz 

For all simulations steps involving efavirenz, metabolism was modelled using intrinsic 

clearance (CLint) that were specific to *1/*1 and *6/*6 alleles, via ‘CYP allelics’ kinetics.  

Subsequently, when simulating either entirely *1/*1 (EM) or *6/*6 (PM) genotypes, the 

frequency of CYP2B6 was set at 1 for either *1/*1 or *6/*6.  For efavirenz, unless otherwise 

stated, doses were administered to steady state or beyond (at least 20 days) prior to the initiation 

of lumefantrine dosing. 

Step 1 attempted to apply the compound file to model prediction in Healthy Volunteer 

(Caucasian), South African and Ugandan population groups, which were generally the focus of 

clinical studies identified. 

Clinical studies selected included: (i) A single 600 mg oral dose to healthy adult volunteers 

with results genotyped for *1/*1 and *6/*6 (418) and (ii) a 600 mg multi-dose study over 32 

weeks in Ugandan adults (421).  

The Ugandan population group was developed from reported age-weight relationships for 

Ugandan males and females (422), and are detailed in Section 3.3.1.1. A similar approach was 

reported and applied in PBPK modelling by our group (401). In the absence of literature 

reported abundance of CYP2B6 in Ugandan subjects, we fixed *1/*1 and *6/*6 genotype 

abundances to 6.9 and 2.4 pmol/mg protein, respectively, based upon adaptations found in a 

South African population group developed by Simcyp as part of the Critical Path to TB Drug 

Regimens (CPTR) (423) and which is available from population the library repository of 

Simcyp.  The South African population group includes appropriate age-weight-height 

distributions, CYP expression and blood biochemistry changes compared to standard 

(Caucasian) Healthy Volunteer population group (424).  All simulations replicated the study 

design reported by the validation clinical studies cited above. 

Step 2: Adult simulations with lumefantrine-efavirenz drug-drug interactions 

The validation of the lumefantrine-efavirenz DDI was conducted using two published clinical 

studies: (i) dosing of 480 mg lumefantrine and 600 mg efavirenz to a healthy volunteer 

population group (414) where no genotyping was reported and (ii) dosing of 480 mg 

lumefantrine and 600 mg efavirenz to a Tanzanian population group where genotyping of 

plasma concentration profiles were reported (425). As a result of similar age-weight 
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relationships (422), the South African population group was used as a surrogate for a Tanzanian 

population. 

For population groups co-administered with lumefantrine, the blood biochemistry was alerted 

based on reported changes in malaria population groups (Table 3.6). In malaria population 

groups, it has been reported that a reduction in albumin (HSA) is commonly detected (426), 

often coupled with a 3-4 fold increase in alpha-1-acid glycoprotein (AAG) (427). Due to an 

absence of specific males and females values for the blood biochemistry, these values were 

assumed to be equivalent for both sexes in the Ugandan population. Furthermore, analysis has 

shown that there were no significant sex differences in the different haematological parameters 

in the parasitaemic groups (428). 

 

Table 3.6 Malaria population biochemistry 

Biochemistry 

 

Caucasian 

 

Ugandan 

 

Haematocrit (%) 
 

M : 43  F : 38 
 

40.08 (429) 
 

AAG (g/L) 
 

M : 0.811  F : 0.791 
 

0.7 (430) 
 

HSA (g/L) 
 

M : 50.34  F : 49.38 
 

33.5 (429) 

 
AAG:  α1-acidic glycoprotein; HSA: human serum albumin. 
a Simcyp default values 

 

Step 3: Paediatric simulations with efavirenz 

After successful validation and refinement of efavirenz compound in the adult population, this 

step focused on the validation of efavirenz and lumefantrine in paediatrics. Similar with the 

adult population, the paediatric Ugandan population group was developed from reported age-

weight relationships for Ugandan males and females (422), and are detailed in Section 3.3.1.2. 

For the default Simcyp paediatric population groups, the age-weight relationships’ equations 

were specified into two age ranges: (i) 0 to 18 years old and (ii) 18 to 25 years old. These two 

equations allow not only prediction of pharmacokinetics in neonates, infants and children (431), 

but also considers the problems associated with scaling adult doses to children (432) under one 

paediatrics module. 
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The studies used for validation of efavirenz pharmacokinetics in paediatrics included: (i) 

weight-based once daily 300 mg dose of oral efavirenz in HIV-infected Ugandan children and 

simulated using the Ugandan population group with dosing to steady state (409); (ii) weight-

based once daily dose of oral efavirenz in HIV-infected children with weight-based 

stratification of plasma concentration profiles (23) simulated using the Ugandan population 

group; (iii) a single high dose (25 mg/kg) dosed once daily to 2-3 year old Ugandan children 

and simulated using the Ugandan population group (410) and (iv) a single oral 300 mg dose 

administered to 6-7 year old South African subjects and simulated using the South African 

population group (411) with genotyping of plasma concentration profiles. 

Step 4: Paediatric simulations with lumefantrine-efavirenz drug-drug interactions  

To validate the prediction of a lumefantrine-efavirenz based DDIs in paediatrics, we utilised 

the only study reporting the lumefantrine plasma concentration-time profile in the absence and 

presence of efavirenz (408), although this study did not report genotyped pharmacokinetics.  

Trial simulations were performed using a standard 6-dose regimen of weight-based dosing of 

lumefantrine administered on day 20 (unless otherwise indicated), with weight-based dosing of 

efavirenz from day 1 to day 40 in Ugandan children and simulated using the Uganda population 

group. To account for the impact of genotype on the pharmacokinetics of lumefantrine, our 

results were stratified for two extreme cases of an entire population of CYP2B6 *1/*1 or 

entirely CYP2B6 *6/*6, and this represents the ‘best’ and ‘worst’ clinical scenarios. 

Step 5: Paediatric dose evaluation prediction 

Having validated the lumefantrine-efavirenz DDI in Ugandan paediatric patients, this step 

simulated the potential impact of dosage regimen alterations on target day-7 (Cd7) lumefantrine 

plasma concentrations.  Simulations were run using the Ugandan population group and 

stratified across 4 age groups: 0.25-1-year-old (120mg LUM/300mg EFV), 1-4-year-old 

(120mg LUM/400mg EFV), 4-8 year-old (240mg LUM/500mg EFV) and 8-13 year-old 

(240mg LUM/600mg EFV).  Further, each simulation included 100 subjects (10 trials with 10 

subjects per trial) where the age-weight distribution matched the appropriate dose banding.  
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3.2.3 Predictive performance 

In all of the simulations, a prediction to within 2-fold of the observed data is generally excepted 

as part of the ‘optimal’ predictive performances range even though there is no uniform standard 

of acceptance to determine this criterion (87, 135, 136). This acceptance criterion was used in 

our Cmax and AUC comparisons with the published clinical data reported. For the efavirenz DDI 

simulations, since the therapeutic efficacy of lumefantrine is determined by its Cd7 of 280 

ng/mL (433), a direct analysis of lumefantrine day-7 concentration was set as a cut-off value to 

determine the impact of a DDI in lumefantrine pharmacokinetics. 

3.2.4 Data analysis 

The observed data that was used for visual predictive checks when compared with the simulated 

profiles were extracted using the WebPlotDigitizer v.3.10 

(http://arohatgi.info/WebPlotDigitizer/). All simulations of plasma concentration-time profiles 

were presented in 5th to 95th percentiles and either in mean or median unless otherwise specified. 

For all adult simulations, age ranges and subject gender ratios were matched, where possible, 

to reported clinical studies.  Where this information was not cited in clinical studies, a default 

age range of 20-50 years and gender ratio of 50% was selected. 

For simulations employing weight-based dosing, unless otherwise stated, a 100-subject 

simulation was run in a 10x10 trial (10 subjects per trial with 10 trials) to ensure that reasonable 

inter-/intra individual variability is captured within the model simulations.  However, as 

simulations are not possible with defined age and weight ranges, pooling and post-processing 

of output data were conducted to match individuals to the required age-weight boundary 

conditions for the study. 
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3.3 RESULTS 

3.3.1 Characterisation of selected population 

3.3.1.1 Age-weight relationship for adult population groups 

Based on the age-weight mathematical equations between the default and the customised sub-

Saharan (Ugandan) population groups, these relationships can be graphically visualised as 

detailed in Figure 3.6. In a 10x10 virtual clinical trial to simulate the age-weight distribution in 

this population, the plots indicated that there were significant differences between the mean 

weight distribution of Caucasian and Ugandan adult population from age 19 to 65 years old for 

both male and female groups (p<0.001 and p<0.0001, respectively). 

 

 

Default Simcyp adult population groups 

Females: 

r�wVℎ� � 161.66	 + 	0.1319	 ∗ 	MV�	 − 	0.0027	 ∗ 	MV�^2  (3.1) 

6U�Ø	Ù�wVℎ� = �(�.Ú
Û
	9	�.��	�	∗	��G�Ü�)     (3.2) 

Males: 

r�wVℎ�	 = 	175.32	 + 	0.1113	 ∗ 	MV�	 − 	0.0025	 ∗ 	MV�^2  (3.3) 

6U�Ø	Ù�wVℎ� = �(�.�<
	9	�.��			∗	��G�Ü�)     (3.4) 
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Malaria adult population groups 

Ugandan females: 

6U�Ø	Ù�wVℎ�	 = 	 (4.777 + 2.607 ∗ MV� + −0.412 ∗ MV�^2 + 0.0181 ∗ MV�^3)/(1 +

−0.068 ∗ MV� + −0.002529 ∗ MV�^2 + 0.000257 ∗ MV�^3)    (3.5) 

Ugandan males: 

6U�Ø	Ù�wVℎ�	 = 	 (7.037 + 0.42399 ∗ MV�^2 + −0.0032 ∗ MV�^4 + 0.000009118 ∗

MV�^6)/(1 + 0.00356 ∗ MV�^2 + −0.0000459 ∗ MV�^4 + 0.00000014335 ∗ MV�^6) (3.6) 

 

 

The age-weight distributions follow a descending pattern in both shape and the spread of 

attained weights as they advance from age 19 years to the end of the age range. For the male 

population, the Caucasian group had a higher mean weight range at 80.85 kg ± 13.92 kg (19.96 

years ± 6.82 years) as compared to the Ugandan group which was at 67.45 kg ± 17.56 kg (41.30 

years ± 10.72 years). At the larger age ranges of the distribution, the greatest difference between 

the Caucasian and the Ugandan male group was at 20 years of age where the Caucasian 

distributions were approximately 14.8 kg larger (p<0.001). On the other hand, for the female 

population, the Ugandan group has a higher mean weight range of 70.93 kg ± 21.62 kg (36.01 

years ± 11.09 years) when compared with the Caucasian group which was at 68.45 kg ± 14.38 

kg (20.19 years ± 7.75 years).  
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Figure 3.6 Age-weight relationship comparison between adult Ugandan and Caucasian 

males (A) and females (B).  

Black open circles indicate the Ugandan and red open circles indicate the Caucasian individual 
virtual data simulated by Simcyp. Black lines indicate the mean adult Ugandan and red lines 
indicate the mean adult Caucasian age-weight population group derived from Hayes et al. 
(2014) (434) regression equation.  

 



158 

 

3.3.1.2 Age-weight relationship for paediatric population groups 

The mathematical relationships for the age-weight distribution for Caucasian and Ugandan 

paediatric populations are detailed in Figure 3.7. In a 10x10 virtual clinical trial to simulate the 

age-weight distribution in this paediatric population, the plots exhibit a similar age-dependating 

increase in body-weight for males and females across all age range (Figure 3.7).  

 

Default Simcyp paediatric population groups 

 

Females: 

0-18 years old, 

r�wVℎ�	 = 	−0.00000151027 ∗ MV�^8	 + 	0.000121261 ∗ MV�^7	 − 0.0040023 ∗

MV�^6		 + 	0.070179 ∗ MV�^5	 − 	0.708233 ∗ MV�^4	 + 	4.1872 ∗ MV�^3	 − 14.3393 ∗

MV�^2	 + 	33.84778 ∗ MV�	 + 	51.535477       (3.7) 

More than 18 years old, 

r�wVℎ�	 = 	161.66	 + 	0.1319	 ∗ 	MV�	 − 0.0027	 ∗ 	MV�^2  (3.8) 

6U�Ø	Ù�wVℎ� = 5.454	 ∗ 	j1.0	–	�($��∗��.ÞÚ)k + �((��G�Ü�∗�.���<)9(�.��	∗$��))  (3.9) 

  



159 

 

Males: 

0-18 years old, 

r�wVℎ�	 = 	0.0000176179 ∗ MV�^7	 − 	0.00119874 ∗ MV�^6	 + 	0.0323848 ∗ MV�^5	 −

	0.444112 ∗ MV�^4	 + 	3.2946 ∗ MV�^3	 − 	13.2191 ∗ MV�^2	 + 	33.75 ∗ MV�	 + 	52.62152 

         (3.10) 

More than 18 years old, 

r�wVℎ�	 = 	175.32	 + 	0.1113	 ∗ 	MV�	 − 0.0025	 ∗ 	MV�^2  (3.11) 

6U�Ø	Ù�wVℎ�	 = 	7.826	 ∗ 	j1.0	– �($��∗��.�)k + �((��G�Ü�∗�.���	)9(�.��
∗$��))  (3.12) 

 

 

 

Malaria paediatric population groups 

 

Ugandan females: 

6U�Ø	Ù�wVℎ�	 = 	 (3.9033133 + 0.43769058 ∗ MV��.Þ +−0.73539741 ∗ MV� +

0.031919235 ∗ MV��.Þ + 0.019365454 ∗ MV��)/(1 + −0.70490582 ∗ MV��.Þ +

0.18985506 ∗ MV� + −0.024825615 ∗ MV��.Þ + 0.0015213393 ∗ MV��)  

 (3.13) 

 

Ugandan males: 

6U�Ø	Ù�wVℎ�	 = 	 (4.2596993 + 6.0143271 ∗ MV� + −1.2976996 ∗ MV�� + 0.15386155 ∗

MV�
 +−0.0099043391 ∗ MV�< + 0.0002557705 ∗ MV�Þ)/(1 + 0.12029078 ∗ MV� +

−0.039177947 ∗ MV�� + 0.003871229 ∗ MV�
 +−0.00019964827 ∗ MV�< +

0.0000045231346 ∗ MV�Þ)   (3.14) 
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For the males, the Caucasian population group had a greater mean weight range at 69.94 kg ± 

26.63 kg (17.99 years ± 6.85 years) when compared to the Ugandan group, 51.72 kg ± 19.10 

kg (17.87 years ± 6.85 years). Further, for the body weight deviated further from each 

population as the age increased, culminating in an approximate 18.22 kg difference between 

the two population groups at 18 years (p<0.002). With regards to the female paediatric 

population groups, Caucasians demonstrated a higher mean weight range at 60.36 kg ± 21.26 

kg (18.25 years ± 6.85 years) when compared with the Ugandan population, 52.65 kg ± 17.13 

kg (18.31 years ± 6.85 years).The greatest difference in body weight was observed at 18 years 

of age with a difference of approximately 7.71 kg between each population (p<0.08).    
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Figure 3.7 Age-weight relationship comparison between paediatric Ugandan and 

Caucasian males (A) and females (B).  

Black open circles indicate the paediatric Ugandan and red open circles indicate the paediatric 
Caucasian individual virtual data simulated by Simcyp. Black lines indicate the mean paediatric 
Ugandan and red lines indicate the mean paediatric Caucasian age-weight population group 
derived from Hayes et al. (2014) (434) regression equation. 
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3.3.2 Step 1: Adult simulations with efavirenz 

In order to predict the impact of efavirenz-mediated DDIs on lumefantrine pharmacokinetics, 

the capability of the model to predict efavirenz pharmacokinetics alone within a healthy 

volunteer population was first assessed.  Using the efavirenz compound file within the Simcyp 

library and the Simcyp ‘Healthy Volunteer’ population group, the predicted population plasma 

concentration-time profile for a single 600 mg oral dose of efavirenz were within the range of 

observed reported values for both *1/*1 (Figure 3.8A) and *6/*6 population groups (Figure 

3.8B). 

Furthermore, the model predicted tmax, Cmax and AUC were within 2-fold of the reported 

parameters for each genotype (Table 3.7). 
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Figure 3.8 Simulated single dose plasma concentration-time profiles of efavirenz in 

healthy volunteer adults. 

Simulated efavirenz concentration-time profiles after a single 600 mg oral dose of efavirenz 
(EFV) in healthy adults to CYP2B6*1/*1 extensive metabolisers (A), and CYP2B6*6/*6 poor 
metabolisers (B) genotypes (n=20). Solid lines represent mean with dotted lines representing 
5th-95th percentile range. Open circles represent observed data points. 
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Table 3.7 Summary of predicted and observed pharmacokinetic parameters of efavirenz 

in adults with CYP2B6*1/*1 and CYP2B6*6/*6 genotypes in a Healthy Volunteer 

population 

                        Pharmacokinetic parameters 

  
 Genotype 

 

tmax  

(h) 
Cmax 

(ng/ml) 
AUC0-inf 

(ng/mL.h) 
Observed *1/*1 2.3 ± 1.0 2300 ± 700 79800 ± 28400 

Predicted *1/*1 1.5 ± 0.02 2643 ± 53 59126 ± 1520      

Observed *6/*6 2.7 ± 1.5 2400 ± 200 101700 ± 7900 
Predicted *6/*6 1.5 ± 0.02 2727 ± 136 93857 ± 4693 

 

tmax: time to reach Cmax, Cmax: the maximum concentration recorded, AUC0-inf: a measure of 
the exposure to the drug from time zero to infinity. Data represent mean ± SD. Simulations: 
n=20 with 50 % female and age range of 20-50 years. 

 

 

Subsequently, to further validate model simulations, the ability to predict efavirenz plasma 

concentrations following multi-dosing was assessed in each genotype patient group using a 

Ugandan population group.  In both *1/*1 (Figure 3.9A) and *6/*6 (Figure 3.9B) populations, 

the predicted concentrations were within the range reported (421), and all within 2-fold of 

reported concentrations (Table 3.8) (Figure 3.9B).
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Figure 3.9 Simulated multidose plasma concentration-time profile of efavirenz in a Ugandan population group 

Simulated efavirenz (EFV) concentration-time profiles after single daily oral doses of 600 mg in adults with CYP2B6*1/*1 extensive metabolisers 
(A), and CYP2B6*6/*6 poor metabolisers (B) genotypes from day 1 to day 224 (n=157). Comparison of mean plasma concentration-time profiles 
for the two simulated groups. Solid line represents mean. Close circles represent observed mean data point with error bars indicating standard 
deviation.  
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Figure 3.9 Simulated multidose plasma concentration-time profile of efavirenz in a Ugandan population group 

Simulated efavirenz (EFV) concentration-time profiles after single daily oral doses of 600 mg in adults with CYP2B6*1/*1 extensive metabolisers 
(A), and CYP2B6*6/*6 poor metabolisers (B) genotypes from day 1 to day 224 (n=157). Comparison of mean plasma concentration-time profiles 
for the two simulated groups. Solid line represents mean. Close circles represent observed mean data point with error bars indicating standard 
deviation.
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Table 3.8 Summary of predicted and observed efavirenz plasma concentrations in 

Ugandan adults with CYP2B6*1/*1 and CYP2B6*6/*6 genotypes. 

Sampling day 
  *1/*1 *6/*6 

  Concentration 

 (ng/mL)   

Day 14 
Observed 1752 ± 197 2462 ± 130 
Predicted 1597 ± 80 3921 ± 196 

     

Day 56 
Observed 1466 ± 134 4600 ± 262 
Predicted 1594 ± 80 4074 ± 204 

    

Day 84 
Observed 1329 ± 166 3991 ± 194 
Predicted 1284 ± 64 3989 ± 199 

    

Day 112 
Observed 1446 ± 283 3741 ± 225 
Predicted 1140 ± 57 4170 ± 209 

    

Day 140 
Observed 1420 ± 221 5404 ± 319 
Predicted 1595 ± 80 5698 ± 285 

    

Day 168 
Observed 1292 ± 278 5621 ± 284 
Predicted 1284 ± 64 5219 ± 261 

    

Day 224 
Observed 1353 ± 198 6861 ± 382 
Predicted 1595 ± 80 5698 ± 285 

 

Data represent mean ± SD. Simulations: n=100 with 38.5 % female and age-range of 20-40 
years. 

 

3.3.3 Step 2: Adult simulations with lumefantrine-efavirenz drug-drug interactions 

To further validate the proposed model, DDIs were simulated between lumefantrine and 

efavirenz using the Simcyp ‘Healthy Volunteer’ population group. The impact of the predicted 

DDI on lumefantrine pharmacokinetics was within the range of the observed data reported (414) 

(Figure 3.10), with Cmax, tmax and AUC predictions within 2-fold of those reported by Huang et 

al. (2012) (414) (Table 3.9).  Furthermore, the predicted day 7 lumefantrine concentration (Cd7) 

in the presence of efavirenz, 679 ± 361 ng/mL, was within 2-fold of that observed (554 ± 432 

ng/mL) (Table 3.9). 
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Figure 3.10 Simulated lumefantrine plasma concentration following co-administration 

with efavirenz in a healthy volunteer population group 

Lumefantrine was dosed for 6 doses of 480 mg, twice daily for three days commencing on day 
12, with efavirenz (600mg once daily) dosed for the entire study duration (25 days) to 12 
‘Healthy Volunteer’ subjects.  Solid lines represent predicted mean plasma concentration with 
dashed lines indicated 5th and 95th percentiles.  Open circles with errors bars indicate observed 
plasma concentrations and associated standard deviation. 

 

 

Table 3.9 Summary of predicted and observed PK parameters of lumefantrine in the 

absence and presence of efavirenz in healthy adults. 

    Cmax AUClast tmax Cd7 
 

 (µg/mL) (µg/mL.h) (h) (ng/mL) 

- EFV 
Predicted 12.39 (8.12-19.2) 276 (320-711) 3.6 (2-5.9) 1162 ± 557  

Observed 11.6  (9.5-17.4) 418 (339-693) 2.0 (2-6) 1020 ± 478 

+ EFV 
Predicted 12.42 (7.14-18.7) 236 ± (201-617) 4.2 (0.4-5.7) 679 ± 361  

Observed 12.1 (10.6-16.4) 331 ± (270-503) 6.0 (0.5-6) 554 ± 432 
tmax: time to reach Cmax, Cmax: the maximum concentration recorded, AUC0-last: a measure of the 
exposure to the drug from time zero to last measured, Cd7: day 7 concentration. Data represents 
mean ± SD. Simulations: n=12 with 16.6 % female and age-range of 24-53 years. EFV: 
efavirenz. 
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The model was then extended to assess its application within an African population group. 

Recent studies reported lumefantrine Cd7 in a Tanzanian population group for *1/*1 and *6/*6 

population groups (425, 435).  In lieu of the development of a Tanzanian population group, a 

recently developed Simcyp ‘South-African’ population group was used as a surrogate for a 

Tanzanian population group to predict lumefantrine Cd7 in *1/*1 and *6/*6 population groups 

(Figure 3.11). In this simulation, we assumed some similarity between the population groups 

in terms of body weight demographics (422).  

 

Predictions of median lumefantrine Cd7 in the absence of efavirenz, for both *1/*1 and *6/*6, 

were well predicted and within 2-fold of that reported (425) (Table 3.10).  In the presence of 

efavirenz, the *1/*1 predicted median Cd7 was within 2-fold of that reported, however for the 

*6/*6 population, although within the overall range of reported values, the predicted median 

Cd7 was within 3-fold of that reported.  In the absence of efavirenz, CYP2B6 genotypes have no 

significant impact on any pharmacokinetic parameter modelling. However, in the presence of 

efavirenz, the Cmax and Cd7 for the *6/*6 population were significantly reduced (P<0.01), 17,500 

to 9,010 ng/mL and 901 to 201 ng/mL, when compared to the *1/*1 population group (Table 

3.10). 
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Figure 3.11 Simulated drug-drug interaction between lumefantrine and efavirenz in a South African population groups. 

Lumefantrine was dosed for 6 doses of 480 mg, twice daily for three days commencing on day 20, in the absence (A) and presence (B) of efavirenz 
(600mg once daily) dosed for the entire study duration (40 days) to 141 South African healthy adults.  *1/*1 (EM) and *6/*6 (PM) genotype 
pharmacokinetic profiles are indicated by the red and black colours. Median observed plasma day-7 lumefantrine concentrations (425) represented 
by the open circles (EM) and closed square (PM) with error bars indicating standard deviation.  Solid lines represent predicted mean plasma 
concentration with dashed lines indicated 5th and 95th percentiles. 
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Table 3.10 Summary of the simulated lumefantrine pharmacokinetics parameters in the absence and presence of efavirenz in South 

African adults with CYP2B6*1/*1 and CYP2B6*6/*6 genotypes. 

Parameters Lumefantrine alone Lumefantrine plus Efavirenz 

 

*1/*1  

Median (Range) 

 

*6/*6  

Median (Range) 

 

*1/*1  

Median (Range) 

 

*6/*6  

Median (Range) 

 

Cmax (ng/mL) 17500 (8350-28500) 17500 (8350-28500) 12100 (5550-21500) 9010 (4200-16800) 
AUC0-inf (ng/mL.d) 60002 (20195-138896) 60002 (20195-138896) 38243 (12171-92638) 25578 (7685-67347) 

tmax (h) 22.59 (22.54-22.64) 22.59 (22.54-22.64) 22.59 (22.10-22.60) 22.59 (22.05-22.64) 
Predicted  Cd7 (ng/mL) 901 (13-4620) 901 (13-4620) 382 (1-1650) 201 (1-1280) 
Observed Cd7 (ng/mL) 1000 (686–1929) 893 (562–1732) 299 (253–384) 226 (173–278) 

 
Cmax: the maximum concentration recorded, AUC0-inf: a measure of the exposure to the drug from time zero to infinity, Cd7: day 7 concentration 

Data represent median (range). Simulations: n=59 with 52.3 % female and age-range of 21-65 years
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3.3.4 Step 3: Paediatric simulations with efavirenz 

Having established the ability of the proposed model to predict adult lumefantrine-efavirenz  

DDIs in genotyped African population groups, the model was expanded to assess the impact of 

such interactions in paediatric population groups.  

Simulations were performed in a custom developed Ugandan paediatric population group with 

validation of efavirenz pharmacokinetics based on WHO weight-based dosing recommendation 

for children and compared to a report of efavirenz dosing in Ugandan paediatric malaria patients 

(409) where 41 children were dosed at 300 mg once daily.   Based on this dosing approach, 

predicted efavirenz concentration profiles (Figure 3.12) were within the range reported (409) 

with the predicted Cmax for the population group, 3.59 mg/L (1.65-9.52 mg/L), within 2-fold of 

that reported 3.62 mg/L (2.86-4.38 mg/L) (Table 3.11). 
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Figure 3.12 Simulated efavirenz plasma concentration-time profile in a Ugandan 

paediatric population group. 

Efavirenz was dosed to as a 300 mg daily dose to steady state using the Ugandan paediatric 
population group. Solid lines represent geometric mean with dotted-lines representing 5th-95th 
percentile range. Geometric mean observed plasma concentrations (409) are represented by the 
open circles, with error bars indicating standard deviation.  

 

Table 3.11 Summary of predicted and observed efavirenz pharmacokinetics parameters 

in HIV-infected Ugandan children. 

  Cmax 

(mg/L) 
AUC0-last 

(mg/L.h) 
tmax 

(h)  
Predicted 3.59 (1.65-9.52) 33.52 (11.24-94.43) 2.4 (2.3-2.6) 
Observed 3.62 (2.86-4.38) 54.52 (44.53-64.51) 4.0 (3.2-4.8) 

 

tmax: time to reach Cmax, Cmax: the maximum concentration recorded, AUC0-last: a measure of the 
exposure to the drug from time zero to last measured. Data represents mean (range). 
Simulations: n=41 with 58.5 % female and age-range of 3-12 years. 
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To further validate the ability of the model to predict efavirenz plasma concentrations in 

paediatric population groups, predictions were stratified over weight ranges, where efavirenz 

was dosed based on body weight using the Ugandan population group, and compared with 

published population-based data (23)  for matching weight ranges (Figure 3.13).  In all weight 

groups, the predicted mean plasma concentration profiles were generally well predicted, and 

the 5th and 95th prediction percentiles spanned the range of observed population data points for 

each weight banding.  
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Figure 3.13A  Simulated plasma concentration-time profile of body weight efavirenz dosing in Healthy Volunteers (10-15 kg and 15-20 

kg). 

A 10x10 trial was run with efavirenz dosed in a standard body-weight based single daily dose regimen for 30 days.  Results are presented stratified 
based on body-weight bandings each possessing at least 80 virtual trial subjects.  Solid lines represent mean predictions with dotted-lines 
representing 5th-95th percentile range for the final dose.  Open circles represent data for observed study for each body weight banding (23). 
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Figure 3.13B: Simulated plasma concentration-time profile of body weight efavirenz dosing in Healthy Volunteers (20-25kg and 25-30kg) 

A 10x10 trial was run with efavirenz dosed in a standard body-weight based single daily dose regimen for 30 days.  Results are presented stratified 
based on body-weight bandings each possessing at least 80 virtual trial subjects.  Solid lines represent mean predictions with dotted-lines 
representing 5th-95th percentile range for the final dose.  Open circles represent data for observed study for each body weight banding (23). 
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Figure 3.13C: Simulated plasma concentration-time profile of body weight efavirenz 

dosing in Healthy Volunteers (30-35 kg) 

A 10x10 trial was run with efavirenz dosed in a standard body-weight based single daily dose 
regimen for 30 days.  Results are presented stratified based on body-weight bandings each 
possessing at least 80 virtual trial subjects.  Solid lines represent mean predictions with dotted-
lines representing 5th-95th percentile range for the final dose.  Open circles represent data for 
observed study for each body weight banding (23). 

 

 

Further, following a high dose of efavirenz (25mg/kg), dosed once daily to 2-3 year old 

Ugandan children, simulations of the mean efavirenz plasma concentration profile (Figure 3.14) 

were in good agreement with data published (410), with prediction of C12h and AUC0-24 within 

2-fold of that reported (Table 3.12). 
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Figure 3.14 Simulated plasma concentration-time profile of efavirenz dosed at 25 mg/kg 

to 2-3 years old Ugandan children. 

A dose of 25 mg/kg efavirenz was administered once daily to 2-3 years old Ugandan children 
(n=53) using the Ugandan Simcyp population group.  Solid lines represent mean predictions 
with dotted-lines representing 5th-95th percentile range.  Open circles represent data for 
observed study (410) originating from Burkina Faso and Cote d’Ivoire. 

 

 

 

Table 3.12 Summary of predicted pharmacokinetic parameters of efavirenz in Ugandan 

children. 

  Cmax C12h AUC0-24 tmax 

 mg/L mg/L.h h 
Predicted 5.38 (2.95-8.63) 1.51 (0.23-6.12) 46.85 (35.13-89.33) 2.4 (2.12-2.70) 
Observed - 2.66 (0.95-14.06) 80.44 (46.98-279.16) - 

 
tmax: time to reach Cmax, Cmax: maximum plasma concentration, AUC0-24: area under the curve 
from time zero to 24 hours, Cd7: day 7 concentration.  Data represents median (range). C12h: 
concentration 12 hours after dosing 
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To further validate the ability of the model to predict efavirenz concentrations in CYP2B6 

genotyped paediatric subjects, simulations were performed in a South African paediatric 

population group where efavirenz was dosed at 300mg to 6-7 years old (Figure 3.15), and where 

genotyped plasma concentration had been previously published in a South African paediatric 

population group (411) for 2 hours around the C12h.  Model predictions for both *1/*1 and *6/*6 

were generally in good agreement with that published, with a slight under-prediction for *1/*1 

subjects.    Further, *6/*6 demonstrated a significantly higher Cmax, 8.27 ng/mL (3.18-17.44 

ng/mL), when compared to *1/*1, 4.26 ng/mL (1.45-7.98 ng/mL) (P < 0.001) (Table 3.13). 

 

 

Table 3.13 Summary of predicted pharmacokinetic parameters of efavirenz in South 

African children. 

Parameters Efavirenz 

 CYP2B6*1/*1 CYP2B6*6/*6 

 Mean (Range) Mean (Range) 

Cmax (µg/mL) 4.26 (1.45-7.98) 8.27 (3.18-17.44) 
AUC0-inf (µg/mL.h) 29.96 (8.58-81.23) 108.1 (31.13-298.3) 

tmax (h) 2.4 (2.1-2.6) 2.4 (2.1-2.6) 

 
tmax: time to reach Cmax, Cmax: maximum plasma concentration, AUC0-inf: area under the curve 
from time zero and extrapolated to infinity.  Data represents mean (range).  
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Figure 3.15 Simulated plasma concentration-time profile of efavirenz in South African children stratified by genotype. 

A dose of 300 mg was administered to 60 children (using the South African population group), aged between 6-7 years and possessing a weight of 
20-24.9kg, for 25 days. Simulations were run for genotypes of all subjects being either *1/*1 or all *6/*6 genotypes.  Results are presented for day 
20 with solid lines representing median predictions with dotted-lines representing 5th-95th percentile range.  Open circles represent data for observed 
study (411) from a South African population group.
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3.3.5 Step 4: Paediatric simulations with lumefantrine-efavirenz drug-drug 

interactions 

Having demonstrated the ability to predict efavirenz concentrations in paediatric subjects, we 

next attempted to predict lumefantrine-efavirenz based DDIs in African population groups.  We 

utilised the Ugandan paediatric population group, and a report by Parikh et al. 2016 (408), to 

predict lumefantrine concentrations in the presence and absence of efavirenz (Figure 3.16).  

Parikh et al. (2016) (408) applied weight-based dosing across a wide age range (3.1-8.6 years) 

with dosing that spanned different weight bands, but did not present plasma concentration 

profiles genotyped for CYP2B6.  Results presented in Figure 3.16 are therefore stratified for 

two extreme cases of an entire population of CYP2B6 *1/*1 or entirely CYP2B6 *6/*6, and this 

represent the ‘best’ and ‘worst’ clinical scenarios. 

When considering the two extreme scenarios, model predictions of the final dose Cmax were 

within 2-fold of that reported (408), and spanned a range of total values (2060-11083 ng/mL) 

that were similar to the population range reported by Parikh et al. (2016) (408) (2611-6673 

ng/mL) (Table 3.14).   In the absence of efavirenz, the predicted *1/*1 and *6/*6 lumefantrine 

profiles are largely overlapping with no significant differences in the last Cmax between 

genotypes (Table 3.14).  Further, model prediction of Cd7, (Figure 3.16), were within 2-fold of 

that reported (408) (Table 3.14) in the absence of efavirenz.  

 

In the presence of efavirenz median last-dose Cmax was significantly lower (P < 0.01) in the 

*6/*6 group (for both weight bands) (5-15 kg: 1532 ng/mL; 15-25kg: 1979 ng/ml) compared 

to the *1/*1 group (5-15 kg: 2494 ng/mL; 15-25kg: 2994 ng/ml) (Table 3.14). Similarly, Cd7 

was significantly lower (P < 0.01) in the *6/*6 group (5-15 kg: 20 ng/mL; 15-25kg: 51 ng/ml) 

compared to the *1/*1 group (5-15 kg: 120 ng/mL; 15-25kg: 221 ng/ml) (Table 3.14). 
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Figure 3.16A Simulated median plasma concentration-time profile of lumefantrine administered to Ugandan children in the absence and 

presence of efavirenz (5-15 kg). 

Lumefantrine (LUM) and efavirenz (EFV) were dosed to Ugandan children aged 3-9 years of age using weight-based dosing strategies of (A) 5-
15 kg (LUM: 120 mg per dose; EFV: 200 mg per dose) and (B) 15-25 kg (LUM: 240 mg per dose; EFV: 250-300 mg per dose) with simulated 
profiles for population groups of all CYP2B6 *1/*1 or all CYP2B6 *6/*6.  All simulations included 40-50 subjects per dosing band.  Open circles 
and error bars represent mean and standard deviation respectively (408).  Dotted-lines represent the 5th-95th percentile range. Dashed horizontal 
and vertical lines originated from each axis represent day 7 concentration (280 ng/mL) and simulation day respectively. 
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Figure 3.16B: Simulated median plasma concentration-time profile of lumefantrine administered to Ugandan children in the absence and 

presence of efavirenz (15-25 kg). 

Lumefantrine (LUM) and efavirenz (EFV) were dosed to Ugandan children aged 3-9 years of age using weight-based dosing strategies of (A) 5-
15 kg (LUM: 120 mg per dose; EFV: 200 mg per dose) and (B) 15-25 kg (LUM: 240 mg per dose; EFV: 250-300 mg per dose) with simulated 
profiles for population groups of all CYP2B6 *1/*1 or all CYP2B6 *6/*6.  All simulations included 40-50 subjects per dosing band.  Open circles 
and error bars represent mean and standard deviation respectively (408).  Dotted-lines represent the 5th-95th percentile range. Dashed horizontal 
and vertical lines originated from each axis represent day 7 concentration (280 ng/mL) and simulation day respectively.
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Table 3.14 Summary of simulated lumefantrine pharmacokinetic parameters in the absence and presence of efavirenz in children with 

CYP2B6 *1/*1 and CYP2B6 *6/*6 genotypes. 

      Weight Band Cmax (ng/mL) AUC0-inf  (ng/mL.d) tmax (h) Cd7 (ng/mL) 

L
u

m
ef

a
n

tr
in

e 

CYP2B6 *1/*1  Predicted 
5-15 kg  3649 (2093-5857) 15669 (6194-40144) 22.5 (14.1-30.9) 555 (58-2027) 
15-25 kg 5007 (2060-10055) 19855 (5906-60356) 22.5 (14.1-30.9) 675 (27-3115) 

CYP2B6 *6/*6  Predicted 5-15 kg  3649 (2093-5857) 15669 (6194-40144) 22.5 (14.1-30.9) 555 (58-2027) 
15-25 kg 5215 (2151-11083) 21083 (6056-64479) 22.5 (14.1-30.9) 672 (22-3105) 

Non-genotyped Observed - 4642 (2611-6673) 10547 (5822-15271) 23.3 (19.2-27.1) 340 (199-481) 

L
u

m
ef

a
n

tr
in

e 
+

 

E
fa

v
ir

en
z 

CYP2B6 *1/*1  Predicted 5-15 kg  2494 (702-5193) 7617 (1299-18962) 22.5 (14.1-30.9) 120 (1-508) 
15-25 kg 2994 (893-5933) 10005 (1949-25938) 22.5 (14.1-30.9) 221 (1-1049) 

CYP2B6 *6/*6  Predicted 
5-15 kg  1532 (383-3420) 3691 (596-9807) 22 (14-30) 20 (1-81) 
15-25 kg 1979 (505-4582) 5146 (912-13743) 22.5 (14.1-30.3) 51 (1-269) 

Non-genotyped Observed - 3795 (2543-5047) 6053 (3840-8267) 23.3 (19.2-27.1) 111 (65-157) 

Data represents median (range).
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3.3.6 Step 5: Paediatric dose evaluation prediction 

Given the variability in CYP2B6 polymorphisms across different population groups, it was 

essential to assess the risks associated with antiretroviral agents, such as efavirenz, attenuating 

CYP-mediated drug metabolism of antimalarials, where variability in efavirenz plasma 

concentrations, as a result of poor metabolism, may alter antimalarial concentrations in a highly 

polymorphic CYP2B6 population groups.  Confounding this is CYP2B6 ontogeny, where 

expression is known to be low at < 1 years (10-30% of adult mRNA/protein/activity) and 

stabilising at approximately 18 years of age (436, 437).  Simulations were therefore conducted 

to predict the impact of efavirenz on lumefantrine plasma concentrations for subjects aged 0.25-

13 years of age where weight-based dosing was used, with efavirenz dosed for at least 20 days 

prior to the initiation of lumefantrine to establish the stable induction of CYP3A4. 

In the absence of an increase in the treatment duration, significant difference in the percentage 

of subjects possessing a Cd7 above the 280 ng/mL threshold were apparent (P < 0.001) between 

*1/*1 and *6/*6 alleles for all dosing bands, with 1-11% of *6/*6 subjects attaining this 

threshold (Table 3.15). With an increase in treatment duration of 5- or 7-days (Figure 3.17), an 

increase in the percentage of subjects attaining the target Cd7 was evident  (Table 3.15) and 

most noticeable for the *6/*6 population group for the 7-day regimen where 28-57% of subjects 

attained the target concentrations across all dosing bands (Table 3.15). 

Further, extension of the dosing interval from 5-days to 7-days did not alter the half-life within 

the same genotyped subjects (*1/*1 or *6/*6). However a significant decrease in the half-life 

(P < 0.001) was noted when comparing the same dosing regimen extension but across the 

different genotypes. Additionally, when comparing the half-life across increasing dosing-

bands, the half-life increased but this was not significant (P > 0.05) (Table 3.16). 
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Figure 3.17A Simulated mean plasma concentration-time profile of lumefantrine administered in a 5-day to Ugandan children. 

Lumefantrine (LUM) and efavirenz (EFV) were dosed to Ugandan children aged 0.25-13 years of age using weight-based dosing strategies (0.25-
1 year-old (120mg LUM/300mg EFV), 1-4 year-old (120mg LUM/400mg EFV), 4-8 year-old (240mg LUM/500mg EFV) and 8-13 year-old 
(240mg LUM/600mg EFV)), with population groups simulating all EFV extensive metabolisers (CYP2B6 *1/*1) or poor metabolisers (CYP2B6 

*6/*6).  All simulations included 40-50 subjects per dosing band.  Upper and lower dashed lines represent the 95th percentile for the 0.25-1 years 
old and 5th percentile for the 1-4 years old groups respectively.  
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Figure 3.17B: Simulated mean plasma concentration-time profile of lumefantrine administered in a 7-day regimen to Ugandan children  

Lumefantrine (LUM) and efavirenz (EFV) were dosed to Ugandan children aged 0.25-13 years of age using weight-based dosing strategies (0.25-
1 year-old (120mg LUM/300mg EFV), 1-4 year-old (120mg LUM/400mg EFV), 4-8 year-old (240mg LUM/500mg EFV) and 8-13 year-old 
(240mg LUM/600mg EFV)), with population groups simulating all EFV extensive metabolisers (CYP2B6 *1/*1) or poor metabolisers (CYP2B6 

*6/*6).  All simulations included 40-50 subjects per dosing band.  Upper and lower dashed lines represent the 95th percentile for the 0.25-1 years 
old and 5th percentile for the 1-4 years old groups respectively.  
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Table 3.15 Summary of the percentage of subjects attaining a lumefantrine Cd7 > 280 ng/mL 

 

 

a Percentage of subjects with Cd7 ≥ 280 ng/mL, where a population group of 100 were used for all simulations. 
Cd7: day-7 lumefantrine plasma concentration. 
 

 

 

  Dosing  Lumefantrine ≥ 280 ng/mLa 

   CYP2B6*1/*1 CYP2B6*6/*6 

Age-band  

(years) 
Lumefantrine 

(mg) 
Efavirenz 

(mg) 3-day 5-day 7-day 3-day 5-day 7-day 

0.25-1 120 300 27 54 82 11 20 57 
1-4 120 400 11 29 64 1 5 28 
4-8 240 500 18 44 77 4 11 36 
8-13 240 600 13 37 72 2 9 35 
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Table 3.16 Summary of predicted mean day 7 lumefantrine concentrations during a 5 and 7-day treatment schedule in children stratified 

for CYP2B6*1/*1 and CYP2B6*6/*6 genotypes (n=100). 

 

Dosing Mean Cd7 (Range) (ng/mL)  Mean half-life (t1/2) (SD) (h) 

Age-

band 

(years) 

Weight-

band 

(kg) 

Lumefantrine 

(mg) 

Efavirenz 

(mg) 
CYP2B6*1/*1 CYP2B6*6/*6  CYP2B6*1/*1 CYP2B6*6/*6  

     5-day 7-day 5-day 7-day 5-day 7-day 5-day 7-day 

0.25 - 1 5 - 6.9 120 300 
1100 2800 306 1030 27.18 27.18 19.12 19.12 

(1-5585) (45-10345) (1-1497) (11-4308) (8.36) (8.36) (6.98) (6.98) 

1 - 4 7 - 13.9 120 400 
325 1013 65 305 28.12 28.12 21.03 21.03 

(1-1515) (17-3327) (1-259) (3-1072) (10.68) (10.68) (7.91) (7.91) 

4 - 8 14 - 16.9 240 500 
496 1456 100 438 29.12 29.12 22.11 22.11 

(1-1735) (45-4374) (1-380) (7-1568) (11.11) (11.11) (8.51) (8.51) 

8 - 13 17 - 24.9 240 600 
397 1053 100 359 30.62 30.62 24.93 24.93 

(3-1843) (56-3456) (1-390) (9-1315) (12.28) (12.28) (9.78) (9.78) 
 

Half-life was calculated from the final dose. SD: standard deviation.
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3.4 DISCUSSION 

In 2013 it was estimated that 35 million people were living with HIV worldwide with sub-Saharan 

Africa accounting for 71% of the total global burden, predominantly centred around Southern and 

Eastern African countries (South Africa > Nigeria > Mozambique > Uganda > Tanzania > Zambia 

> Zimbabwe > Kenya > Malawi > Ethiopia) (438).  Further at least 1 million pregnancies are 

complicated by the co-infection of malaria and HIV, resulting in a paediatric population group 

which may be subjected to complex pharmacotherapy (439). 

Although HIV infections can directly impact upon malaria through changes in parasitaemia (440), 

as well as the severity of the disease and mortality rates during pregnancy (441), the use of weight-

based dosing strategies and fixed-dosed combination system for both antiretroviral therapies and 

antimalarial therapies can hinder mitigation of DDIs.   

A recent systematic review by Seden et al. (2017) (442), assessed the literature reported DDIs 

between subjects co-administered with HIV and malaria pharmacotherapy.  They identified 

efavirenz as being an important mediator of DDIs, particularly when co-administered with 

artemisinins (and lumefantrine), leading to reduced antimalarial plasma concentrations and 

potential recrudescence. 

Efavirenz is a non-nucleoside reverse transcriptase inhibitor (NNRTI), being predominantly 

metabolised by CYP2B6 and an inducer of CYP3A4.  These interactions with CYP isozymes can 

complicate both antiretroviral therapy and antimalarial therapy.  Further confounding this, is the 

fact that CYP2B6 is highly polymorphic, with the most common variant alleles resulting in two 

amino acid changes, Q172H and K262R, and referred to as the *6/*6 polymorphism with wild-

types as *1/*1.  The *6/*6 polymorphism has been reported to lead to a 65% reduction in protein 

expression and 50% reduction in mean enzyme activity in the homozygous state (380).  Further, 

although CYP2B6 contributes towards between 2-10% of total CYP content (376), the *6/*6 

genotype can result in a 2- or 3-fold higher efavirenz plasma concentrations (378, 387-389), with 

this genotype being more frequent in African population groups than Caucasian population groups 

(375, 392).  A consequence of this alteration in efavirenz plasma concentration would be a greater 

ability of efavirenz to induce CYP3A4 (353, 390, 391). 
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3.4.1 Characterisation of selected populations 

The approach used in constructing the age-weight mathematical equations addressed the variability 

between the Ugandan and Caucasian populations. In the adult population, the higher mean weight 

range observed in the Caucasian male group (80.85 kg ± 13.92 kg (19.96 years ± 6.82 years)) and 

the Ugandan female population (70.93 kg ± 21.62 kg (36.01 years ± 11.09 years)) coincides with 

the trends observed in the WHO Global Health Observatory Data (Mean BMI in 2016: Caucasians: 

27.3 kg/m2 (male) vs. 27 kg/m2 (female) ; Ugandan: 29.3 kg/m2 (female) vs. 25 kg/m2 (male)) 

(443).   

Trends observed in the paediatric population demonstrated that the Caucasian group had a higher 

mean weight range (69.94 kg ± 26.63 kg (17.99 years ± 6.85 years)) when compared to the Ugandan 

population, with similar trend reported in the WHO data (Mean BMI in 2016: Caucasians: 19.5 

kg/m2 vs Ugandan: 17.4 kg/m2) (443). Factors that could potentially lead to these variabilities 

include malnutrition, cultural and traditional perception concerning body size, and degree of 

urbanisation (444). In terms of pharmacokinetics, weight, volume of distribution (Vd), clearance 

(CL), and elimination half-life (t1/2) play an important role in determining drug disposition in the 

human body especially for infants, children or obese patients (445, 446). Since Vd of a drug depends 

upon its degree of plasma protein binding, tissue blood flow and physiochemical properties, the 

design of any treatment regimens should account for any significant differences in the Vd and CL 

especially for vulnerable subjects, i.e. infants, children and obese. As an example, the t½ of a drug 

is dependent on both the CL and Vd. Since both are biologically independent entities, changes in 

the t½ of a drug in obese patients will reflect changes in the CL, Vd, or both. 

Pharmacokinetics assessment of drug therapy in paediatric population groups is often neglected 

due to ethical complications and the sparse plasma sample collections inherent in such population 

groups.  However, PBPK modelling represents a novel modelling strategy that has gained 

regulatory acceptance (447) in its applications in the paediatric population and has been used 

previously to model malaria pharmacokinetic in special population groups such as paediatrics (405) 

and pregnancy populations (401). 
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3.4.2 Model validation and DDI dose evaluation in paediatric populations 

Recently, we demonstrated the ability of rifampicin to alter antimalarial drug concentrations 

through a CYP3A4-induction process, and thereby reducing Cd7 (405).  In this present study, we 

addressed the impact of a similar induction process with the confounding complexity of potential 

CYP2B6 polymorphisms on the pharmacokinetics of lumefantrine in paediatric population groups.  

In this study, we adopted a 5-stage modelling approach which spanned efavirenz and efavirenz-

lumefantrine DDI model predictions in adults in African and Healthy Volunteer population groups 

(Steps 1 and 2), followed by efavirenz and efavirenz-lumefantrine DDI model predictions in 

African and Healthy Volunteers paediatric populations (Steps 3 and 4).  This culminated in 

predictions of potential DDI risks in CYP2B6 genotyped paediatric population groups with an 

assessment of the impact of a revised dosing adjustments on Cd7 (Step 5). 

Although efavirenz is a compound that has been previously developed and validated by researchers 

associated with Simcyp (413),  step 1 attempted to predict efavirenz concentration profiles in a 

African population groups with altered CYP2B6 abundances (6.9 and 2.4 pmol/mg for *1/*1 and 

*6/*6 genotypes), in contrast to those of the default values set by Simcyp within the Healthy 

Volunteer population group (17 pmol/mg and 6 pmol/mg). This step integrated revised CYP2B6 

abundances for EM and PM phenotypes, based on the incorporation of these abundances into a 

Simcyp developed South African population group, and in-lieu of any further published Ugandan 

CYP2B6 abundances (423, 424). 

In adults, successful predictions of efavirenz concentrations were validated against 2 clinical trials 

in both single (Table 3.7) and multiple dosing (Table 3.8) regimens in Ugandan population groups, 

with model predictions within 2-fold of the reported Cmax, AUC or single day point concentrations 

from clinical studies for each genotype.  Following validation of genotype-specific efavirenz 

pharmacokinetics, we next attempted to simulate the proposed lumefantrine-efavirenz DDI, 

whereby efavirenz would induce CYP3A4 expression, resulting in reduced lumefantrine plasma 

concentrations. 

A healthy volunteer population was first utilised to demonstrate successful Cd7 predictions, which 

were within 2-fold of that reported by Huang et al. (2012) (414).  This was subsequently extended 
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to simulate the DDI in a South-African population group, as a surrogate for the use of a Tanzanian 

population group, where the clinical DDI was reported within each CYP2B6 genotype (425, 435).  

Based on recent age-weight relationships for malaria subjects in Africa, we assumed that the South 

African population group would demonstrate similar demographics to that of the Tanzanian 

population (422), and this was further supported by the lack of reported CYP2B6 specific 

abundance data for EM or PM phenotypes within the Tanzanian population group. 

As expected, in the absence of efavirenz, Cd7 were well predicted for both genotypes, confirming 

that in the absence of efavirenz, CYP2B6 *6/*6 has no significant effect on lumefantrine 

pharmacokinetics (358).  In the presence of efavirenz, simulations with the *1/*1 and *6/*6 

population groups resulted in predictions for median Cd7 to within 2-fold of those reported, albeit 

with a broader range of values across the simulation study (358, 435), and demonstrated that 

lumefantrine pharmacokinetics are significantly altered following co-treatment with efavirenz. 

Having established a working model for genotype-based DDI predictions in adult, we subsequently 

assessed the ability to predict efavirenz plasma concentrations within an African paediatric 

population group, using a custom developed Ugandan paediatric population group and validated 

against 3 clinical studies employing/reporting weight-based dosing strategies in non-genotyped 

(23, 409, 410) and genotyped subjects (411).  The validation of efavirenz concentrations within 

and African paediatric population group was important as any changes in efavirenz plasma 

concentrations, for example as a result of the impact of CYP2B6 genotypes, would be the key 

function for driving a DDI with lumefantrine, the extent of which would, therefore, be sensitive to 

change in the available of efavirenz.  For both non-genotyped (Figure 3.12-3.14) and genotype 

predictions (Figure 3.15), overall 5th and 95th percentiles of the mean/median predicted profiles 

were within the range reported in existing published literature and contributed to our efavirenz 

validation attempts. However, for the high dose administration (25 mg/kg) (Figure 3.14), we were 

unable to capture the wide variability in the absorption phase reported (410), and this may have 

been a result of the influence of food on the absorption and bioavailability of efavirenz. 

Having established a working model for efavirenz-mediated DDIs in paediatric predictions, we 

addressed the ability of this model to predict the lumefantrine-efavirenz DDI, and validation was 

attempted based upon a report of the interaction in Ugandan children across an age range of 3.1-
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8.6 years and weight range of 11.4-25.1 kg, using weight-based dosing for both efavirenz and 

lumefantrine (408) (Figure 3.16).   The reported study did not differentiate lumefantrine plasma 

concentration profiles by genotype, although our simulations were stratified for two extreme cases 

of an entire population of CYP2B6 *1/*1 or entirely CYP2B6 *6/*6, and this represent the ‘best’ 

and ‘worst’ clinical scenarios.  Further, the wider Cd7 range simulated in our studies for purely 

*1/*1 populations was outside of the range reported by Parikh et al. (2016) (408), however we 

considered the ‘best’ and ‘worst’ clinical scenarios and a proportional ‘mixed’ genotype population 

(as potentially sampled by Parikh et al. (2016) (408)) would have corrected this disparity. 

This study demonstrated a significant difference in median Cd7 in the presence and absence of 

efavirenz and confirmed the capability of efavirenz to initiate this DDI.  In our model simulations 

across all weight bands, we demonstrated a similar significant reduction in Cd7, which was more 

apparent and resulted in significantly lower (P <0.001) lumefantrine in Cd7 in the *6/*6 compared 

to *1/*1 population group (Table 3.14). 

We previously demonstrated that an increase in lumefantrine treatment duration would 

significantly increase Cd7 under rifampicin-mediated CYP3A4 induction, and this formed the basis 

of attempting to address the significantly lower number of *6/*6 subjects capable of attaining target 

Cd7 (405). Orally administrated lumefantrine is known to display saturated absorption kinetics 

(448), and therefore increasing the dose of lumefantrine administrated within each fixed-dose 

combination would not be appropriate.  Therefore, having established the risk of DDI between 

efavirenz and lumefantrine (Step 4) the treatment duration was extended to a 5-day or 7-day 

regimen.   

The change in dosing schedule to 7-day regime resulted in a greater number of *6/*6 subjects 

attaining the target Cd7, with 28-57% of subjects (Table 3.15) attaining this across the age bands 

studied (Figure 3.17).  The greatest increase in those attained target Cd7 was evident with 1-4 years 

old (3-day: 1%; 7-day: 28%) (Table 3.15), and this may be accounted for by the maturation of 

CYP3A4 which would be the key driver for influencing lumefantrine plasma concentrations.  

CYP3A4 ontogeny is known to rapidly increase over this age range (449) to approach adult levels 

at approximately 6-years onwards.   
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Determination of the half-life of lumefantrine, typically difficult in paediatrics subjects, given the 

long-terminal half-life (2-6 days) (450) and the often sparse nature of plasma collections.  A recent 

study by Parikh et al. (2016) (408) in Ugandan children (3.1-8.6 years) reported the median half-

life of lumefantrine when dosing in the presence of efavirenz, as 23.7 hours.  When comparing 

model predictions of the half-life across all age range simulations (0.25-13 years), our predictions 

are broadly in line with those of Parikh et al. (2016) (408).  Further, the extension of the dosing 

interaction from 5-days to 7-days does not alter the half-life within the same genotype (Table 3.16), 

suggesting this extension would not alter the elimination clearance of lumefantrine.  As expected, 

the *6/*6 subjects demonstrated a significant decrease in half-life of lumefantrine, which would 

correspond to the increased circulating concentration of efavirenz, thereby handing the DDI and 

reducing the residency of lumefantrine within the subjects (Table 3.16).  However, although 

CYP2B6 ontogeny may influence circulating efavirenz (436, 437), the impact of this DDI may be 

less apparent or masked by the rapid changes in CYP3A4 ontogeny across this range, which would 

directly influence circulating lumefantrine concentrations.  Further clinical studies are encouraged 

to delineate the relative impact of CYP3A4 and CYP2B6 ontogeny on the extent of this DDI. 

Given the resource limitations and cost implications of dose extensions, we halted the study at a 7 

day dosing regimen and believe further extended dosing would likely not succeed clinically, due 

to medicine adherence concerns in resource-limited countries (451). While a 5- or 7-day extension 

may not result in all subjects attaining the target Cd7; the proposed extension can be considered to 

be a pragmatic approach, given the complexity of treatment regimens in developing countries.  

Further, using a standard 3-day regimen Parikh et al. (2016) (408) demonstrated that the median 

lumefantrine Cd7 for 3.1-8.6-year-old, 111 ng/mL, was significantly below the target concentration 

in the presence of efavirenz.  Therefore, although there may be some scope for further optimisation, 

the 5- or 7-day regimen would provide a greater level of subject’s attainment appropriate Cd7 

compared to existing 3-day regimens.  Despite the paucity in clinical data investigating altered 

dosing regimens for efavirenz-mediated DDI with lumefantrine, the relationship between the DDI, 

resultant reduction in lumefantrine concentration (primarily based around changes in day-7 

concentration) and the emergence of recurrent malaria has recently been highlighted in studies by 
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Parikh et al. (2016) (408) and Maganda et al. (2014) (452). Finally, a number of groups are now 

advocating increasing the dosing duration to counteract this interaction (345, 453). 

3.5 CONCLUSION 

Although the rates of malaria infections have decreased globally, persistent complications still exist 

in ‘at-risk’ population groups, particularly paediatrics and pregnant women (397, 454).  This is 

further confounded in situations where genetic polymorphisms contribute towards cross-population 

variability in complex pharmacokinetics situation, such as antiretroviral mediated-DDIs, may 

increase the risk of parasite resistance and treatment recrudescence.   

Exploration of these risks is difficult clinically, however population-based pharmacokinetic 

modelling provides a practical approach for simulating such complex interactions.  This study 

attempted to explore the application of PBPK modelling to simulate the pharmacokinetics of drugs 

in special population, specifically, the paediatrics. In addition, we also attempted to address the 

impact of complex DDIs associated with genotype-specific effects as well as managing these 

effects via dose optimisation. 

 This study focussed on predicting the risk of efavirenz-mediated DDIs on lumefantrine 

pharmacokinetics in African paediatric population groups with consideration of the polymorphic 

nature of CYP2B6.  We demonstrated that an extension of the current artemether-lumefantrine 

treatment regimen from 3-days to 7-days would counteract the reduction in efavirenz metabolism 

common with the *6/*6 genotype and hence enhance the attainment of the target day-7 

lumefantrine concentration in both *1/*1 and *6/*6 genotype groups, thereby reduce the risk of 

recrudescence.  
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4. CHAPTER 4      

The application of PBPK modelling 

to address the impact of inter-ethnic 

variability on the pharmacokinetics 

of drugs in Malaysian subjects  

 

Disclaimer 

Elements of this chapter have been published as follows: 

Zaril Zakaria, Alan Y.Y. Fong and Raj K. S. Badhan. Clopidogrel pharmacokinetics in Malaysian 

population groups: the impact of inter-ethnic variability. Pharmaceuticals. 2018; 11:74. 

DOI: 10.3390/ph11030074 
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4.1 INTRODUCTION 

Malaysia is a multi-ethnic society with a population of over 32 million which is comprised of three 

predominant ethnic groups, namely Malays (50.1%), Chinese (20.8%) and Indians (6.2%) (455).  

In a recent report by the Malaysian National Centre for Adverse Drug Reaction, 13,789 of adverse 

drug reactions were reported during the period from 2015 to 2016 (456). Given the mixed ethnicity 

of Malaysia, the impact of pharmacogenetics between different ethnic groups may contribute 

significantly to the prevalence of toxicity and ineffective clinical therapy (457-459). 

One of the leading cause of mortality in Malaysia is cardiovascular disease (CVD) which accounts 

for 16 % of all hospital deaths annually (460). Among those deaths, ischaemic heart disease 

accounts for the majority of all reported cardiovascular mortality, followed by acute myocardial 

infarction. Further, mortality rates have increased steadily since 1990 despite improvements of the 

health services (460). 

CVDs  accounted for approximately 17 million deaths per year and considered to be one of leading 

causes of death in the world (461). Atherosclerosis encompasses the majority of CVDs and is an 

underlying disease process in the blood vessels which results in cerebrovascular disease (stroke) 

and coronary heart disease (heart attack) (461, 462). The pathogenesis of atherosclerosis in the 

walls of blood vessels is complex and develops over several years. During this process, cholesterol 

and fatty constituents are deposited surrounding the lumen of the arteries which causes the inner 

surface of the arteries to become narrow and irregular. These deposits or plaques make it harder 

for blood to flow through and eventually the plaques rupture and form a thrombosis (blood clot). 

The location of the blood clots determines the type of disease. Heart attack occurs whereby the 

blood clots develops in a coronary artery whereas, stroke occurs when there is a blood clot that 

develops in the brain. 

Several risk factors  are associated with the promotion of the atherosclerosis process (463), and 

include: (i) metabolic risk factors such as high cholesterol, obesity, hypertension and diabetes; (ii) 

behavioural risk factors such as unhealthy diet, tobacco use, alcoholism and physical sedentariness; 
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and (iii) other risk factors such as genetic disposition, advancing age, stress, depression (464), 

poverty, excess in homocysteine and gender (men are more likely to develop CVD at an earlier age 

than women) (465). Of all the three types of risk factors, metabolic and behavioural risk factors 

play a key role in the attribution of atherosclerosis (461). 

Treatments of CVDs are mostly dependent on the type of risk factors the patient has with the aim 

of relieving symptoms, prevent complications and to reduce the risks of complications from 

worsening (463). Lifestyle changes such as low-fat and low-sodium diet, exercise, limiting alcohol 

intake and quitting smoking are generally recommended as an initial treatment for those with 

metabolic and behavioural risk factors.  

Pharmacotherapy approaches varies between risk factors (466-469). Aspirin, a pain reliever, is used 

extensively to prevent and manage stroke and heart disease. Beta-blockers (acebutolol, 

propranolol, metoprolol, labetalol) are used to manage hypertension and for the treatment of 

congestive heart failure. Calcium channel blockers (amlodipine, diltiazem, nifedipine, verapamil) 

are used to reduce systemic vascular resistance and arterial pressure. Digoxin, a cardiac therapy 

drug, is used for the treatment of atrial fibrillation. Diuretics (furosemide, spironolactone, 

hydrochlorothiazide) are used to promotes diuresis, therefore, excreted salt and water through urine 

which leads to reduction of blood pressure and treat heart disease. Nitrates (isosorbide mononitrate, 

isosorbide dinitrate) are used to treat angina in patients with coronary artery disease. Warfarin, an 

anticoagulant, is used to treat thrombosis and also as a stroke prevention therapy. And finally, 

antiplatelet drugs (clopidogrel, prasugrel, ticlopidine) are used as primary and secondary 

prevention of cardiovascular disease or thrombotic cerebrovascular. 

Clopidogrel is a second generation thienopyridine antiplatelet drug and a prodrug that is 

metabolised in two pathways: initially by CYP2B6, CYP1A2 and CYP2C19 leading to inactive 

carboxylic acid derivative (2-oxo-clopidogrel), then by CYP2C19, CYP2C9, CYP2B6 and 

CYP3A4, leading to its active metabolite (clopi-H4) (470). The active metabolite confers 

clopidogrel its therapeutic response by inhibition of adenosine diphosphate-induced aggregation, 

which in turns activate the irreversible binding of the platelet P2Y12 receptor (471).  The 

contribution of CYP2C19 towards the formation of clopi-H4 has been further confirmed by several 
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studies (472-474) and is responsible for 45% of the first step and 20% of the second step hepatic 

biotransformation of clopidogrel (475, 476). 

Since CYP2C19 plays an integral element in the metabolism of clopidogrel to its active metabolite, 

clopi-H4, any disruption or modification in CYP2C19 expression could potentially affect the 

pharmacokinetic profiles of clopi-H4, hence leading to effects on its therapeutic response (477).  

Clinically, approximately one fourth of individuals who are treated with clopidogrel exhibit a sub-

therapeutic response (478), and this can directly impact upon platelet inhibition, with a loss-of-

function genotype  reducing platelet inhibition by clopidogrel (479, 480) as a result of reduced 

clopi-H4 levels (475, 481).   

Such genetic polymorphisms in processes governing the pharmacokinetics of drugs (e.g. drug 

metabolism enzymes), within individuals of a mixed-ethnicity population group, can significantly 

alter the extent of therapeutic response.  Knowledge of genetic polymorphs within drug metabolism 

enzymes is sparse within the Malaysian population but some examples have been reported in 

several studies which have suggested that a higher occurrence of CYP2D6 variants, specifically 

rs1065852 and rs16947 in Malays, contribute to a higher prevalence of poor metabolisers of 

debrisoquine, an antihypertensive drug when compared to other East Asian populations (482). 

Additionally, CYP2C9 polymorphisms were found to exist in Malays and Chinese warfarin-treated 

subjects which contributed to the variability of the warfarin dose-response relationship in a reported 

clinical study (483). 

More than 50 genetic variants have been identified for CYP2C19 (484),  The wild-

type CYP2C19*1 allele is related to functional CYP2C19 metabolism, with CYP2C19*2 and *3 

being associated with a loss-of-function (LOF) (485).  Gain-of-function (GOF) variants have also 

been identified and are primarily related to the CYP2C19*17 variant, which results in higher 

catalytic activity of CYP2C19 (486). Thus, individuals presenting with the homozygote and 

heterozygote allelic variants *2/*2, *3/*3, or *2/*3 are considered to be representative of a poor 

metaboliser (PM) phenotypes; those with variants *1/*2 or *1/*3 (and possibly *2/*17 or *3/*17) 

are considered intermediate metaboliser (IM) phenotypes; those with *1/*1 are considered wild-

type or extensive metaboliser (EM) phenotypes and those with *17/*17 or *1/*17 are considered 
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ultra-rapid metabolisers (UM) (487).  Significant inter-ethnic differences exist in the prevalence of 

these allelic frequencies, with the CYP2C19*2 (488) and CYP2C19*3 (489) alleles in the broader 

Asian populations being significantly higher compared to other racial groups (490, 491). This 

would suggest that Asian population groups would be more likely to be resistant to clopidogrel 

therapy.  In European population groups, EM phenotypes predominate (~70 %) with approximately 

30 % EM and 2 % presenting as PM (492-494).  Within the Malaysian population group, Chinese 

and Malays have broadly similar prevalence of the *1/*1 genotype, 31.6 % and 34.5 % respectively 

(495), which is significantly lower than that observed within the European population groups (492-

494).  Further, *1/*17 genotypes were broadly similar (3.5 % and 3.5 % for Chinese and Malays 

respectively).  However, some difference were noted in the prevalence of PM phenotypes, for 

example, *1/*2 was greater for Chinese (43.9%) compared to Malay (31 %) and *1/*3 was higher 

for Malay (17.2 % compared to Chinese (3.5 %) (495). 

Clinically, LOF genotypes can often result in reduced active metabolite plasma concentrations.  

For example, in a clinical study by Brandt et al (2007) (481), the maximum clopi-H4 plasma 

concentration (Cmax) for wild-type CYP2C19 subjects (n = 56) was 58.4 ± 9.2 ng/mL, compared to 

CYP2C19*2 carriers, for whom the mean Cmax was reported to be 35.3 ± 4.3 ng/mL, a 40 % 

decrease in Cmax.  Further, pharmacogenetic studies have utilised dose optimisation to counter this 

reduced clopi-H4 Cmax, whereby a loading dose of 600 mg followed by a maintenance dose of 150 

mg could partially restore clopi-H4 to levels observed with a lower loading dose of 300 mg and the 

standard 75 mg maintenance dose (472). 

The advent of personalised medicine has allowed the clinicians to better respond to the impact of 

genetic variability on clopidogrel therapy. However such genotyping techniques have met with 

some contrasting views in relation to their clinic usefulness (496, 497).  The impact of 

anthropometric difference within a diverse patient population group can further confound the 

understanding of the impact of CYP2C19 genetic variability within mixed populations, and these 

factors together may significantly alter the pharmacokinetics of drugs.  Examples of these factors 

may include differences within patient demographics (body weight, age, glomerular filtration rate 

(GFR)), blood biochemistry (plasma proteins, haematocrit) and drug metabolism enzyme 

abundances (CYP abundance and polymorphism).  
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Precision medicine allows an individual’s unique physiological characteristics to be incorporated 

into treatment options, whereby treatments are tailored to individual patients based on their 

individual genetic, biomarker, phenotypic, and psychosocial characteristics (498, 499).  To assist 

in the process of integrating such a diverse range of anthropometric and genetics factors into 

clinical decision making, the application of pharmacokinetic modelling and simulation has 

emerged as techniques to better individualise drug therapy.  In particular, the field of population-

based physiologically based pharmacokinetic (PBPK) modelling has rapidly gained traction by 

drug regulatory authorities and the wider pharmaceutical industry as a viable means to ‘simulate’ 

clinical trials and the pharmacokinetics of drug compounds within virtual population groups 

representative of individual population groups (159) (169) (160, 161, 170-172).  Further, the 

application of PBPK modelling can allow for the use of population-specific anthropometric 

variability within virtual subjects, and this was recently demonstrated by our group when 

considering the optimisation of anti-malarial therapy in sub-Saharan African population groups 

using PBPK-based virtual clinical trials, where the population groups incorporated anthropometric 

and biochemical alterations from standard ‘healthy volunteer’ clinical trials subjects (405, 500). 

 

To our knowledge, we present here the first application of PBPK modelling to develop a Malaysian 

population group for the specific purpose of understating drug therapy within this mixed-ethnicity 

population. The study directly addresses this inter-ethnicity variability and provides a research tool 

that brings together the complexity (at a cellular level) of systems-biology with the easy-of-use 

applicability of pharmacokinetic modelling to provide a robust predictive platform which can easily 

be adapted and developed as required within the Malaysian population.  The objectives of the 

present study were 2-fold: (i) to predict clopidogrel pharmacokinetics in the Malay and Malaysian 

Chinese adult population groups and (ii) to address the impact of the *1/*1, *2/*2, *1/*2 and 

*1/*17 genotypes on clopidogrel pharmacokinetics. 

4.2 METHODS  

Population-based PBPK modelling was conducted using the virtual clinical trials simulator Simcyp 

(Simcyp Ltd., a Certara company, Sheffield, UK, Version 16). Simulations were performed for an 

exclusively CYP2C19 extensive metaboliser (EM) (CYP2C19*1/*1), poor metaboliser (PM) 
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(CYP2C19*2/*2), intermediate metaboliser (IM) (CYP2C19*1/*2) and ultrarapid metaboliser 

(UM) (CYP2C19*1/*17). For all simulations, dosing occurred under fasted-conditions unless 

otherwise indicated. 

 

4.2.1 Model development 

A five-stage stepwise approach was implemented for model development, validation and model 

refinement (Figure 4.1) which is fully described below.  
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Figure 4.1 Model development strategy 

A five-stage workflow approach was implemented to study clopidogrel and clopi-H4 pharmacokinetics within Caucasian, Chinese, 
Malay and Malaysian Chinese population groups.
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4.2.1.1 Step 1: Malaysian population development 

To develop a Malaysian population group for use in pharmacokinetic modelling, the National 

Cardiovascular Database (NCVD) Registry (460) was analysed for relevant population-level data.   

The NCVD register is a Malaysian nation-wide registry consisting of 33,043 anonymised and 

voluntary patient records for patients undergoing acute coronary syndrome and percutaneous 

coronary intervention, spanning the years 2006-2015.  The NCVD is supported by the Ministry of 

Health Malaysia and co-sponsored by National Heart Association of Malaysia, with the aim to 

gather information about cardiovascular diseases in Malaysia. Within this database, relevant 

physiological parameters were limited to (i) gender; (ii) age; (iii) weight and (iv) ethnicity. 

 

To develop the Malaysian population group the two largest ethnic groups, Malays and Malaysian 

Chinese, were considered as they constitute 50.1 % and 22.6 % of the total Malaysian population, 

respectively (455).  Appropriate anthropometric age-body weight distributions were generated and 

used to establish mathematical (polynomial regression) relationships to predict body weight from 

age, using TableCurve2D (Systat Software, San Jose, CA, USA).  The resultant polynomial 

regression equations were then applied within the population ‘Demographics’ section of Simcyp 

to create user-defined age-weight relationships for each population.  Further, blood chemistry was 

revised to match reported haematocrit and plasma protein concentrations within the Malay and 

Chinese population groups, as reported in the literature (Table 4.1). 

 

 

Table 4.1 Malay and Malaysian Chinese blood biochemistry 

Biochemistry Malay Malaysian Chinese 
Haematocrit (%) M : 43b  F : 38c M : 45.3 F : 40.5 
AAG (g/L) M : 0.65a  F : 0.64a M : 0.65 F: 0.64 
HSA (g/L) M : 47.3b  F : 46.3b M : 50.34 F: 49.38 

 
AAG:  α1-acidic glycoprotein; HSA: human serum albumin M: male; F: female. 
aSimcyp default values; bHamzah et al. (2016) (501); cKhor et al. (2006) (502) 
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In the absence of literature reported CYP2C19 hepatic abundance in the Malaysian Chinese and 

Malaysian Malay subjects, the dominant CYP2C19 genotypes, *1/*1 (Extensive metaboliser 

[EM]), *2/*2 (Poor metaboliser [PM]), *1/*2 (Intermediate metaboliser [IM]) and *1/*17 

(Ultrarapid metaboliser [UM]) were allocated a hepatic abundance of 8, 0, 6 and 10 pmol/mg 

protein respectively, based upon adaptations detailed within in a validated Chinese population 

group developed by Simcyp, and which is available from population library repository of Simcyp 

software. These abundances were assumed to be the same for both Malaysian Chinese and Malay 

population groups.  

4.2.1.2 Compound selection 

A search for published clinical studies reporting plasma concentration-time profiles for ethnicity-

specific Malaysian patients identified repaglinide, tramadol and clopidogrel as therapeutics drugs 

where clinical data was available for the population groups of interest.  These studies were used 

for model development and validation. Further, additional clinical studies were identified for 

Chinese populations for repaglinide and clopidogrel were identified and applied for model 

development and validation of the Malaysian Chinese population group.    

 

The three compounds of interest had previously been developed and validated by researchers and 

are available within the Simcyp library compound database, with repaglinide developed and pre-

validated by Simcyp (503), tramadol developed and validated by T’jollyn et al. (2015) (504) and 

clopidogrel and its’ primary metabolite (2-oxo-clopidogrel) and secondary metabolite (clopi-H4) 

previously developed and validated by Djebli et al. (2015) (477). Physicochemical and 

pharmacokinetic parameters used in the simulation for repaglinide, tramadol, clopidogrel, 2-oxo-

clopidogrel and clopi-H4 (active metabolite) are provided for references in Appendix E. 

4.2.1.3 Step 2: Adult simulations with repaglinide and tramadol 

To confirm the validity of the modelling approaches and the appropriateness of the customised 

Malaysian population groups, validation of repaglinide and tramadol were conducted using five 

published clinical studies: (i) a single 2 mg oral dose of repaglinide to healthy adult volunteers 
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(505), (ii) a single 2 mg oral dose of repaglinide on day 1 and subsequently 2 mg multiple doses 

orally on day 2 to day 9 in healthy young adults (506), (iii) a single 2 mg oral dose of repaglinide 

dosed to healthy native Han Chinese adult volunteers (507), (iv) a single 4 mg oral dose of 

repaglinide dosed to healthy adult Malay volunteers (508), and (v) a single dose of 100 mg tramadol 

given intravenously to adult mixed Malaysian volunteers (509).  All simulations replicated the 

study design reported by the validation clinical studies cited above.  

4.2.1.4 Step 3: Prediction of the impact of CYP2C19 polymorphisms on clopidogrel 

pharmacokinetics  

After successful validation of Simcyp software prediction, this step focused on the validation of 

clopidogrel and its active metabolite, clopi-H4 in healthy adult volunteers. The metabolism of 

clopidogrel and its metabolites were modelled using the application of allele-specific intrinsic 

clearance (CLint) for EM, PM, IM and UM phenotypes, as described by Djebli et al. (2015) (477).  

Subsequently, when simulating either entirely EM, PM, IM, and UM phenotypes, the frequency of 

CYP2C19 genotype was set at 1 for either EM, PM, IM, or UM.  The study design used for 

validation of clopidogrel pharmacokinetics in healthy adult volunteers consisted of a 300 mg 

loading dose followed by a 75 mg dose orally for 4 days with results phenotyped for EM, PM, IM, 

and UM  for clopidogrel and its active metabolite, clopi-H4 (477). Similar to step 2, all simulations 

replicated the study design reported in the clinical study cited above. 

Subsequently, we next simulated the potential impact of SNPs CYP2C19 on the resultant clopi-H4 

target plasma concentration range for patients known to result in a clinical response , namely 0.81 

to 13.45 ng/mL (510), within the Malay and Malaysian Chinese population groups. For all 

simulation, clopi-H4 concentration of below 0.81 ng/mL was used as a cut-off value to depict 

patients who were unresponsive to clopidogrel treatment. Simulations were performed using the 

Malay and Malaysian Chinese population groups and stratified across EM, PM, IM, and UM 

phenotypes. Simulations were performed using a validated clopidogrel compound (18) and using 

a trial design of 63 adult subjects were administered clopidogrel regimen of a 300-mg loading dose 

(LD) and a 75-mg/day maintenance dose (MD) for 4 days. 
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4.2.1.5 Step 4: Sensitivity analysis for CYP2C19 hepatic abundances 

To address the absence of literature reported CYP2C19 hepatic abundances in the Malaysian 

population, two further scenarios were simulated whereby the mean abundances for the Malay and 

Malaysian Chinese population were set at 30 % greater/less than that used as default (see Step 1).  

This allowed for the analysis of the sensitivity of model predictions to changes in abundance to be 

simulated through assessing the resulting impact on the percentage of subjects attaining clopi-H4 

target concentrations.  

4.2.1.6 Step 5: Dose optimisation in CYP2C19 poor metabolisers 

This step attempted to predict the potential impact of dosage optimisation in the CYP2C19 PM 

population, with an aim to recapitulate subjects into the clopi-H4 therapeutic window range. 

Simulations were run using the Malay and Malaysian Chinese population groups. Further, based 

on the study by Simon et al. (2011) (511) the dosing regimen for clopidogrel was increased to a 

‘high-dose’ scenario with a 600 mg loading dose followed by a 4 day regimen of 150 mg daily. 

4.2.2 Data analysis 

The observed data that was used for visual predictive checks when compared with the simulated 

profiles were extracted using the WebPlotDigitizer v.3.10 (http://arohatgi.info/WebPlotDigitizer/). 

All simulations of plasma concentration-time profiles were presented in 5th to 95th percentiles and 

either in mean or median unless otherwise specified.  For all adult simulations, age ranges and 

subject gender ratios were matched, where possible, to reported clinical studies.  Where this 

information was not cited in clinical studies, a default age range of 20-50 years and gender ratio of 

50% was selected.  For simulations employing genotypes stratification, unless otherwise stated, a 

100-subject simulation was run in a 10x10 trial (10 subjects per trial with 10 trials) per genotypes 

to ensure that reasonable inter-/intra individual variability is captured within the model simulations. 

4.2.3 Predictive performance 

In all simulations, a prediction to within 3-fold of the observed data was generally accepted as part 

of the ‘optimal’ predictive performances range despite there being no uniform standard of 
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acceptance to determine this criterion (87, 135, 136). This acceptance criterion was used in our 

Cmax and AUC comparisons with the published clinical data reported. For the clopidogrel 

simulations, the target clopi-H4 plasma concentration was set at the lowest value of 0.81 ng/mL 

from the range of 0.81 – 13.45 ng/mL obtained from literature (510) and used to determine the 

impact of SNPs CYP2C19 on Malay and Malaysian Chinese population pharmacokinetics. 

4.2.4 Visual predictive checks 

To further validate model predictions where comparison was made to existing clinical studies, a 

visual predictive checking (VPC) strategy was adopted.  This approach was described at the 2012 

FDA Paediatric Advisory Committee (US Food and Drug Administration, 2012) (512). In this 

approach, to graphically validate the predictability of the model, the 5th and 95th percentiles (along 

with mean or median) of predicted concentration-time profiles (generated from Simcyp) were 

graphically displayed along with the observed data for any validation data sets to ensure predicted 

data points largely overlapped with those from the observed data sets. 

 

4.3 RESULTS 

4.3.1 Step 1: Malaysian population group development 

4.3.1.1 The NCVD database 

The three largest population groups were selected for analysis and identified as Malay, Chinese 

and Indian, with Malay comprising the largest ethnic group contained within the NCVD (Table 

4.2). The mean age, weight and BMI were significantly different between Malay and Malaysian 

Chinese (P< 0.0001) and Malaysian Chinese and Malaysian Indian (P < 0.0001), whereas mean 

height was relatively consistent across all population group (1.63 m) and not statistically 

significantly different (Table 4.2).  
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Table 4.2 Summary demographic data from the NCVD database 

Ethnicity  

Age 

(years) 

Height 

(m) 

Weight 

(kg) BMI (kg/m2) 

Malay 

Mean 57.75 1.63 69.79 26.19 
N 23114 10250 12193 10170 
SD 11.62 0.08 14.24 4.35 
Median 57.60 1.63 69.50 25.78 
Minimum 20.00 1.30 30.00 14.17 
Maximum 99.50 2.09 179.00 50.00 

Malaysian 
Chinese 

Mean 62.89 1.63 67.17 25.11 
N 9929 4111 5259 4086 
SD 12.04 0.08 13.18 3.84 
Median 63.10 1.63 66.00 24.79 
Minimum 20.50 1.30 31.20 14.69 
Maximum 101.90 1.93 178.00 48.07 

Malaysian 
Indian 

Mean 57.70 1.63 69.61 25.95 
N 9167 4257 4809 4229 
SD 11.91 0.09 13.91 4.25 
Median 57.30 1.64 69.00 25.52 
Minimum 21.10 1.30 31.50 14.52 
Maximum 100.90 1.97 180.00 48.89 

N: total number of recorded metrics; SD: standard deviation. 

 

4.3.1.2 Development of age-weight relationships for Malaysian populations 

Polynomial mathematical relationship for gender-specific age-weight relationships for the Malay 

population group are described in equations 4.1 and 4.2 for 20-65-year-olds: 

 

 

Malay male body weight = -786.757075+-105.598305*age+9.79604022*age^1.5+-

0.33871491*age^2+498.1612119*age^0.5  

(4.1) 
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Malay female body weight = -3348.57622+2424.271248*age^0.5+-

676.182360*age+92.98417478*age^1.5+-6.31405170*age^2+0.169288237*age^2.5          

(4.2) 

Visual predictive check (VPC) was performed to confirm a suitable range of age-weight 

relationships for Malay males (Figure 4.2A) and females (Figure 4.2B), and confirmed model 

predicted age-weight relationships retained the same distribution across age ranges when compared 

to the NCVD (Figure 4.2). The model predicted values generally overlapped with the observed 

NCVD data. 

 

The polynomial mathematical relationship for gender-specific age-weight relationships for the 

Malaysian Chinese population group is described in equations 4.3 and 4.4 for 20-65-year-olds. 

 

 

Malaysian Chinese male body weight = (75.50929026+-3.86906581*age+0.034908233* 

age^2 +0.001047109*age^3)/(1+-

0.04452164*age+0.0000141817*age^2+0.0000206378*age^3)       

(4.3) 

 

Malaysian Chinese female body weight = 67.51927661+-0.00194867*age^2 

+0.0000000434656 *age^4  

(4.4) 

 

VPC were also performed for the Malaysian Chinese male and female populations (Figure 4.3). 

Similar with the Malay age-weight simulation, the VPC confirmed that the model predicted age-

weight relationships retained the same distribution across age ranges when compared to the NCVD 

(Figure 4.3). The model predicted values generally overlapped with the observed NCVD data. 
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Figure 4.2 Visual predictive checks on the comparison between predicted and observed (NCVD) age-weight relationship for the 

Malay male (n=18601) (A) and female (n=4513) (B) populations. 

Red outlined triangles represent the predicted population. Black outlined circles represent the observed population from the NCVD 
database. Green lines represent the fitted trend-line from the polynomial mathematical relationship. 
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Figure 4.3 Visual predictive checks on the comparison between predicted and observed (NCVD) age-weight relationship for the 

Chinese male (n=7445) (A) and female (n=2484) (B) population. 

Red outlined triangles represent the predicted population. Black outlined circles represent the observed population from the NCVD 
database. Green lines represent the fitted trend-line from the polynomial mathematical relationship. 
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4.3.2 Step 2: Adult simulation with repaglinide and tramadol 

4.3.2.1 Repaglinide 

The repaglinide compound file within the Simcyp library was used in conjunction with the Simcyp 

‘Healthy Volunteer’ population group to predict the plasma concentration-time profile for a single 

2 mg oral dose of repaglinide in healthy Caucasian subjects. The resultant predictions were within 

the range of observed reported values (Figure 4.4) with model predicted tmax, Cmax and AUC within 

3-fold of the reported parameters (Table 4.3).  

 

Figure 4.4 Simulated plasma concentration-time profile of repaglinide in healthy adults. 

A 2 mg oral dose of repaglinide was administered once daily to healthy adult volunteers (n=24).  
Solid lines represent mean population prediction with dotted-lines representing 5th and 95th 
percentile range.  Open circles represent data for observed study (Hatorp et al. (2002) (505)). 

 

Subsequently, to further validate model simulations, the ability to predict repaglinide plasma 

concentrations following single and multiple dosing was assessed using a healthy volunteer 

population group. Predicted plasma concentrations following a single dose (day 1) and multiple 
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doses (day 9) were within the range reported (506) (Figure 4.5), with model predicted tmax, Cmax 

and AUC within 3-fold of those reported (506) (Table 4.3).  

 

Figure 4.5 Simulated plasma concentration-time profile of repaglinide following single and 

multiple oral doses in healthy adults. 

An oral dose of 2 mg repaglinide was administered once daily on day 1, and thereafter daily for 9 
days to healthy adult volunteers (n=12) using the healthy volunteers Simcyp population group. 
Solid lines represent mean predictions with dotted-lines represent the 5th and 95th percentile range.  
Open circles represent data for observed study at day 1(single dose) and day 9 (multiple-dosing) 
(Hatorp et al. (1999) (506)). 

 
The model was then extended to assess its application within Malaysian Chinese and Malay 

population groups. For the Malaysian Chinese population, we utilised the customised Malaysian 

Chinese population group in the model to predict repaglinide plasma concentrations following a 

single 2 mg oral dose (Figure 4.6). The predicted repaglinide plasma concentration was within the 
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range reported with model predicted tmax, Cmax and AUC within 3-fold of those reported (507) 

(Table 4.3). 

 

 

Figure 4.6 Simulated plasma concentration-time profile of repaglinide in healthy Malaysian 

Chinese adults. 

A 2 mg oral dose of repaglinide was administered once daily to adult healthy Chinese volunteers 
(n=22) using the Malaysian Chinese population group.  Solid lines represent mean predictions with 
dotted-lines represent the 5th and 95th percentile range.  Open circles represent data for observed 
study (Zhai et al. (2013) (507)). 

 

For the Malay population group simulation, the model predicted Cmax and tmax were within the range 

reported (Figure 4.7) with AUC and clearance (CL) predictions within 2-fold of that reported (508) 

(Table 4.3). 
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Figure 4.7 Simulated plasma concentration-time profile of repaglinide in healthy Malay 

adults. 

A 4 mg oral dose of repaglinide was administered once daily to adult healthy Malay volunteers 
(n=121) using the custom Malay Simcyp population group.  Solid lines represent mean predictions 
with dotted-lines represent the 5th and 95th percentile range.  Open circle represents data for 
observed study (Ruzilawati et al. (2010) (508)). 

 

4.3.2.2 Tramadol 

Tramadol pharmacokinetics have been reported in mixed Malaysian subjects following an IV bolus 

dose (509). Further, T’jollyn et al. (2015) (504) have developed and validated a tramadol 

compound within Simcyp, and these studies were used as the basis for predicting tramadol 

pharmacokinetics in the Malay and Malaysian Chinese populations.  Following a 100 mg IV-bolus 

dose of tramadol, simulated plasma concentrations for Malays and Malaysian Chinese were within 

the range reported by Gan et al. (2002) (509) (Figure 4.8) with model predicted CL and AUC 

within 2-fold of that reported (Table 4.3).  
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Figure 4.8 Simulated plasma concentration-time profile of tramadol intravenous bolus dosing 

in Malay and Malaysian Chinese subjects. 

An IV-bolus dose of 100 mg tramadol was administered to adult healthy mixed Malaysian 
volunteers (n=100) using the custom Malaysian (Malay and Malaysian Chinese) Simcyp 
population group.  Solid lines represent mean predictions with dotted-lines represent the 5th and 
95th percentile range.  Open circles represent data for observed study (Gan et al. (2002) (509)) 
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Table 4.3 Summary of predicted and observed pharmacokinetic parameters of repaglinide and tramadol. 

 

Compound 

 

Validation 

     

CL 

(L/h) 

 Cmax 

(ng/mL) 

 tmax 

(h) 

 AUC 

(ng/mL.h) 

 

Observed Predicted Observed Predicted Observed Predicted Observed Predicted 
 
 
 
Repaglinide 

Hatorp et al., 2002 
(Healthy volunteers) 

- 12.17 (10.03 
-14.77) 

26.0 µg/L 32.9 (16.4 – 
47.0) µg/L 

0.83 (0.31 
– 1.35) 

0.54 (0.18 -
0.91) 

152.4 (62.8 – 
242.0) µg/L.h 

70.89 (15.51 – 
73.82) µg/L.h 

Hatorp et al., 1999  
(Single) 
(Healthy volunteers) 

- 13.9 (10.33 
– 18.70) 

 

47.9 (15.9 
– 79.9) 

26.2 (19.61 
– 35.0) 

0.8 (0.2 – 
1.4) 

0.47 (0.31 – 
0.60) 

69.0 (61.2 – 
76.8) 

54.87 (21.57 – 
106.1) 

Hatorp et al., 1999  
(Multiple) 
(Healthy volunteers) 

- 15.32 (12.24 
– 20.57) 

58.5 (8.1 – 
108.9) 

 

26.39 
(11.53 – 
46.85) 

0.6 (0.5 – 
0.7) 

0.48 (0.32 – 
0.61) 

98.1 (84.54 – 
111.66) 

56.8 (22.59 – 
109.1) 

Zhai et al., 2013 
(Chinese) 1 
 

- 56.66 (21.10 
– 146.00) 

(Malaysian 
Chinese) 

20.0 (14.9 
– 25.1) 

18.5 (8.79 – 
28.0) 

(Malaysian 
Chinese) 

1.2 (0.5 – 
1.9) 

0.93 (0.82 – 
1.08) 

(Malaysian 
Chinese) 

46.3 (31.2 – 
61.4) 

39.51 (16.21- - 
74.56) 

(Malaysian 
Chinese) 

Ruzilawati et al., 
2010 
(Malay) 

11.82 
(7.86 – 
15.78) 

10.41 (5.29 
– 15.53) 

 

83.56 
(55.63 – 
111.49) 

67.5 (34.4 – 
118) 

0.62 (0.24 
– 1.00) 

0.58 (0.20 – 
0.96) 

340.66 
(226.14 – 
455.18) 

151 (33.61 – 
196) 

 
 
Tramadol 
 
 

 
 
Gan et al., 2002 2 
(Malaysian) 
 

 
 

19.3 (13.1 
– 25.5) 

19.24 (13.31 
– 33.11) 
(Malay) 

- 
 

- - -  
 

5078.4 
(3117.3 – 
7039.5) 

4389 (2915 – 
6128) (Malay) 

18.36 (11.73 
– 30.19) 

(Malaysian 
Chinese) 

- - - - 4716 (3201 – 
6658) 

(Malaysian 
Chinese) 

Data reported an mean (range).  1 Validation study was reported within a Chinese population group. Simulations were performed within 
a Malaysian Chinese group for comparison. 2 Validation study was reported within a Malaysian population group without demarking 
ethnicities. Simulations were performed in Malay and Malaysian Chinese for comparison. 
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4.3.3 Step 3: Prediction of the impact of CYP2C19 polymorphisms on clopidogrel 

pharmacokinetics in Malaysians 

Having established the ability of the proposed model to predict repaglinide and tramadol 

compounds in Healthy Volunteers, Malay and Chinese population groups, the model was 

expanded to assess the impact of the compound of interests, clopidogrel and its active metabolite, 

clopi-H4 in healthy volunteers population groups phenotyped for EM, PM, IM, and UM.  

Simulations were performed in a ‘Healthy Volunteers’ Simcyp population group and compared to 

a report of clopidogrel pharmacokinetics in adult healthy volunteers (477) where 63 adult healthy 

subjects were administered clopidogrel regimen of a 300 mg loading dose (LD) and a 75 mg/day 

maintenance dose (MD) for 4 days. Based on this dosing approach, predicted clopidogrel 

concentration profiles (Figure 4.9) were within the range reported for all phenotypes (477) with 

the predicted Cmax and AUC at day 1 and day 5, within the lower and upper limit range of that 

reported (Table 4.4).  

Model predictions for all EM, PM, IM, and UM were generally in good agreement with that 

published, with a slightly over-prediction at day 1 and day 5 for all phenotypes.  
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Figure 4.9 Visual predictive check of clopidogrel in CYP2C19-PM, -IM, -EM and –UM. 

Observed concentrations (blue dots) and mean of predictions (red line) and the ranges of 5th and 
95th percentiles of predictions (pink area) (Djebli et al. (2015)) (477). Poor metabolisers (PM); 
Intermediate metabolisers (IM); Extensive metabolisers (EM); Ultrarapid metabolisers (UM). 

Further, for the active metabolite, clopi-H4, simulations of the mean clopi-H4 plasma 

concentration profile (Figure 4.10) were in good agreement with data published (477), with 

prediction of Cmax and AUC at day 1 and day 5, within 2-fold of that reported (Table 4.4). Model 

predictions for all EM, PM, IM, and UM were generally in good agreement with that published, 

with a slightly under prediction at Cmax at day 1 and day 5 for CYP2C19 EM and CYP2C19 IM 

phenotypes.  
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Figure 4.10 Visual predictive check of clopi-H4 (active metabolite) in CYP2C19-PM, -IM, -

EM and –UM. 

Observed concentrations (blue dots) and mean of predictions (red line) and the ranges of 5th and 
95th percentiles of predictions (pink area) (Djebli et al. (2015)) (477). Poor metabolisers (PM); 
Intermediate metabolisers (IM); Extensive metabolisers (EM); Ultrarapid metabolisers (UM). 
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Table 4.4 Summary of simulated clopidogrel and clopi-H4 pharmacokinetic parameters at Day 1 (300 mg loading dose) and Day 5 (75 

mg last maintenance dose) in Healthy adult Volunteers with CYP2C19 EM, CYP2C19 PM, CYP2C19 IM and CYP2C19 UM phenotypes. 

      
Cmax (ng/mL)  

Day 1 

Cmax (ng/mL)  

Day 5 

AUC0-24  (ng/mL.h) 

Day 1 

AUClast  (ng/mL.h) 

Day 5 

C
lo

p
id

o
g
re

l 

CYP2C19 EM  
Predicted 8.3 (1.8-43.9) 1.6 (0.4-6.4) 16.2 (3.85-67.61) 3.5 (0.79-11.66) 
Observed  4.5 (2.3-5.2) 1.6 (0.3-1.9) 8.4 (3.19-15.25) 1.4 (0.67-3.83) 

CYP2C19 PM  
Predicted 16.2 (3.83-66.88) 3.2 (0.92-11.55) 32.0 (8.04-113.92) 7.1 (1.90-20.78) 

Observed 15.8 (6.6-48.1) 1.2 (0.5-15.7) 8.9 (3.31-73.25) 2.1 (0.83-17.84) 

CYP2C19 IM 
Predicted 9.6 (2.6-32.8) 4.4 (1.4-10.8) 19.5 (5.75-53.17) 4.4 (1.39-10.78) 
Observed 4.5 (1.7-38.4) 3.1 (1.1-13.2) 5.1 (1.51-18.66) 1.3 (0.67-4.33) 

CYP2C19 UM 
Predicted 7.1 (2.2-20.4) 1.5 (0.5-3.8) 14.8 (4.74-35.77) 3.4 (1.15-7.70) 
Observed 4.2 (1.3-19.4) 2.3 (0.8-8.7) 5.5 (1.71-14.65) 1.2 (0.46-3.23) 

C
lo

p
i-

H
4
 

CYP2C19 EM 
Predicted 14.72 (2.9-47.0) 6.0 (1.38-16.3) 39.1 (10.5-147.1) 13.7 (4.24-46.11 

Observed 31.6 (11.0-52.2) 13.0 (5.67-20.33) 39.8 (15.4-64.2) 11.6 (5.79-17.41) 

CYP2C19 PM 
Predicted 7.1 (1.1-30.1) 3.02 (0.54-9.23) 16.7 (4.5-86.6) 5.43 (1.78-29.55) 

Observed 11.2 (7.2-15.2) 3.93 (2.54-5.32) 16.0 (9.8-22.2) 3.23 (1.92-4.54) 

CYP2C19 IM 
Predicted 12.1 (3.7-33.7) 5.3 (1.61-12.52) 35.9 (15.0-107.5) 12.0 (5.76-34.01) 

Observed 23.0 (12.1-33.9) 11.6 (6.22-16.98) 33.6 (20.5-46.7) 9.87 (5.45-14.29) 

CYP2C19 UM 
Predicted 16.3 (5.97-39.53) 6.9 (2.45-14.21) 50.1 (23.5-127.1) 16.9 (8.20-40.19) 

Observed 24.1 (14.24-33.96) 11.7 (5.95-17.45) 33.9 (11.1-45.0) 10.7 (6.18-15.22) 
Data reported as median (range). Simulations: n=63 with 32.5% female and age-range of 20-50 years.
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To assess the impact of CYP2C19 polymorphisms on clopidogrel pharmacokinetics, 

simulations were conducted to predict the impact of CYP2C19 SNPs, in Malay and Malaysian 

Chinese populations, on the target clopi-H4 plasma concentration, Cmax ranging from 0.81 to 

13.45 ng/mL (510). For this simulation, the lowest range of 0.81 ng/mL was used as a cut-off 

value to depict patients who were unresponsive to clopidogrel treatment. In this simulation, a 

loading dose of 300 mg was administered on day 1 and maintenance dose of 75 mg once daily 

commenced from day 2 to day 5 and administered to 400 Malay and Malaysian Chinese 

populations phenotyped with CYP2C19 EM, PM, IM, and UM (40x10 trials, 100 subjects per 

phenotypes).  

Within the Malay population, 3 subjects of EM phenotype did not reach the target 

concentration, followed by 27 subjects with the PM phenotype, 7 subjects with the IM 

phenotype and 3 subjects with the UM phenotype (Figure 4.11). In the Malaysian Chinese 

population, the percentage of subjects who did not reach the target concentration followed a 

similar pattern to that of the Malay population, with 3 subjects for the EM phenotype, 28 

subjects for the PM phenotype, 7 subjects for the IM phenotype and 4 subjects for the UM 

phenotype (Figure 4.11).  

There were no statistically significant differences between Malay and Malaysian Chinese when 

comparing the peak or trough clopi-H4 concentrations in each phenotype.  However, as 

expected, in both Malay and Malaysian Chinese populations, the PM phenotype resulted in a 

statistically significant difference in mean clopi-H4 Cmax when compared to all other 

phenotypes (P < 0.001).  
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Figure 4.11 Impact of clopidogrel standard dose regimens on final dose clopi-H4 plasma 

in Malay and Malaysian Chinese  

Cmax (upper panels) and Cmin (lower panels) in Malay (left panels) and Malaysian Chinese (right 
panels) subjects, demarked for all EM, PM, IM or UM populations. Box and whisker plots 
represent maximum, 75th percentile, median, 25th percentile and minimum clopi-H4 Cmax. (B) 
Simulated mean plasma concentration-time profile of clopi-H4 in Malay (left panel) and 
Malaysian Chinese (right panel) subjects demarked for all EM, PM, IM or UM populations. All 
subjects (N=100 for each phenotype) received a loading dose of 300 mg on day 1, followed by daily 
doses of 75 mg for 5 days.  Solid plasma concentration lines represent mean predictions.  Dashed 
horizonal line represent the lower therapeutic limit for clopi-H4.   
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4.3.4 Step 4: Sensitivity analysis for CYP2C19 hepatic abundances 

Considering the lack of literature reported CYP2C19 hepatic abundance data, the sensitivity of 

model predictions to changes in CYP2C19 hepatic abundance were simulated through 

simulating the percentage of subjects attaining clopi-H4 target concentrations when the hepatic 

mean enzyme abundances were increased or decreased by 30 %.  In the Malay population, a 

30% increase in mean abundances values resulted in 2, 27, 6 and 1 subjects failing to reach the 

target concentration for the EM, PM, IM and UM phenotypes respectively (Figure 4.12). 

Further, a 30 % decrease of mean abundances values, resulted in 6, 27, 8 and 6 subjects failing 

to reach the target concentration for the EM, PM, IM and UM phenotypes respectively (Figure 

4.12). 

 

For the Malaysian Chinese population, a 30 % increase in the mean abundances values resulted 

in 3, 27, 6 and 1 subjects failing to reach the target concentration for the EM, PM, IM and UM 

phenotypes respectively (Figure 4.13).  Further, a 30 % decrease in the mean abundances values 

resulted in 6, 27, 8 and 6 subjects failing to reach the target concentration for the EM, PM, IM 

and UM phenotypes respectively (Figure 4.13). There were also no statistically significant 

interethnic differences between the clopi-H4 peak and trough concentrations for each 

phenotype. 
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Figure 4.12 Impact of clopidogrel standard dose regimens on final dose clopi-H4 plasma 

in Malay subjects  

Cmax (upper panels) and Cmin (lower panels) in Malay subjects under scenarios where mean 
hepatic CYP2C19 abundance is increased (left panels) or decreased (right panels) by 30 %. All 
subjects are demarked for either all EM, PM, IM or UM populations. Box and whisker plots 
represent maximum, 75th percentile, median, 25th percentile and minimum clopi-H4 Cmax.  All 
subjects (N=100 for each phenotype) received a loading dose of 300 mg on day 1, followed by 
daily doses of 75 mg for 5 days.  Dashed horizonal line represent the lower therapeutic limit for 
clopi-H4.   
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Figure 4.13 Impact of clopidogrel standard dose regimens on final dose clopi-H4 plasma 

in Chinese subjects. 

Cmax (upper panels) and Cmin (lower panels) in Chinese subjects under scenarios where mean 
hepatic CYP2C19 abundance is increased (left panels) or decreased (right panels) by 30 %. All 
subjects are demarked for either all EM, PM, IM or UM populations. Box and whisker plots 
represent maximum, 75th percentile, median, 25th percentile and minimum clopi-H4 Cmax.  All 
subjects (N=100 for each phenotype) received a loading dose of 300 mg on day 1, followed by 
daily doses of 75 mg for 5 days.  Dashed horizonal line represent the lower therapeutic limit for 
clopi-H4.   
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4.3.5 Step 5: Dose optimization in CYP2C19 poor metabolisers 

Given the high number of subjects identified with clopi-H4 concentrations below the target 

threshold (Figure 4.11) in the PM phenotype group, the dosing regimen for clopidogrel was 

increased to a ‘high-dose’ scenario with a 600 mg loading dose followed by a 5 day regimen of 

150 mg daily (Figure 4.14).  For a standard dose 27 % (Malay) and 28 % (Malaysian Chinese) 

of subjects had a clopi-H4 plasma concentration below the target minimum therapeutic 

concentration (Figure 4.11), which decrease to 12 % (Malay) and 14 % (Malaysian Chinese) 

for the high dose regimen (Figure 4.14A).  No statistically significant differences were 

determined between Malay and Malaysian Chinese clopi-H4 Cmax (Figure 4.14B) 

4.4 DISCUSSION 

Cardiovascular disease (CVD) is a leading cause of mortality across the world with recent 

reports highlighting that approximately 85 % of CVD occurs in low- to middle-income 

countries (513, 514).  A primary cause of this increase is relates to changes in economic 

development and lifestyle  with reduced incidences of infectious disease, all of which has led 

to a marked improvement in the life expectancy of low- to middle-income countries from 61.7 

years in 1980 to 71.8 years in 2015 (513) and the higher incidences of non-communicable 

disease such as diabetes mellitus, hypertension and dyslipidaemia, which have all contributed 

to this increase incidence of CVD in low- to middle-income countries. 

Within Malaysia, the risks associated with CVD-mediated mortality were known in the 1970s 

(515), however ischemic heart disease (IHD) was ranked as the 1st major cause of death in 

Malaysia in with 12.9 % of certified cases in 2008, with 4 other CVDs which included arterial 

diseases (5.6%), diabetes mellitus (3.3%), stroke (1.7%), and hypertension (1.6%), amounting 

to a total of 48.491 cases in non-medically certified cases of deaths (516).  Despite these risk, 

the Ministry of Healthy (MOH) Malaysia has a proactive stance in relation to CVD and has 

maintained a long-standing databased of cardiovascular disease in Malaysia, which is utilised 

to evaluate risk factors and treatment within Malaysia. The National Cardiovascular Database 

(NCVD) Registry (460) ensure the ongoing systematic collection, analysis and interpretation 

of cardiovascular disease data essential which is essential and core to planning, implementation 

and evaluation of clinical and public health services within Malaysia. The NCVD was officially 

launched in 2006 by Dr Ghani Mohamed Din (Deputy Director General of Health Malaysia)  
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Figure 4.14 Impact of clopidogrel high dose regimen on clopi-H4 plasma Cmax in Malay 

and Malaysian Chinese subjects.  

(A) Impact of clopidogrel high dose regimen on clopi-H4 plasma Cmax in Malay (left panel) and 
Malaysian Chinese (right panel) subjects. (B) Simulated mean plasma concentration-time 
profile of clopi-H4 in Malay (left panel) and Malaysian Chinese (right panel) subjects. An oral 
loading doses of 600 mg was administered on day 1, followed by daily doses of 150 mg for 5 
days using the custom Malaysian (Malay and Malaysian Chinese) Simcyp population group (N 
= 100), with dosing to populations of either all PM or all EM phenotypes.  Solid plasma 
concentration lines represent mean predictions.  Dashed horizonal line represent the lower 
therapeutic limit for clopi-H4.  Box and whisker plots represent maximum, 75th percentile, 
median, 25th percentile and minimum clopi-H4 Cmax. 
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during the 10th Annual Scientific Meeting (ASM) of National Heart Association of Malaysia 

(NHAM). To date, the NCVD register consists of 33,043 anonymised and voluntary patient 

records for patients undergoing acute coronary syndrome and percutaneous coronary 

intervention, spanning the years 2006-2015 

Although aspirin remains a primary treatment option for many CVD related disorders due to its 

cost-effectiveness (517), a key reason for clinicians moving towards a second-line therapy is 

often hypersensitivity of patients towards aspirin.  In Malaysia, clopidogrel is recommended as 

a second-line therapy for ischemic cardiovascular events and also secondary prevention of 

ischemic stroke (518, 519).  Clopidogrel is an antiplatelet agent, being predominantly 

metabolised into a prodrug by CYP2C19, CYP2B6, CYP1A2, CYP2C9, and CYP3A4 leading 

to its active metabolite, clopi-H4. Of all these CYP enzymes, CYP2C19 has been found to be 

the primary contributor towards the formation of the active metabolite clopi-H4 (472-474).  

However, CYP2C19 is highly polymorphic (520), with the PM phenotype (*2/*2) and UM 

phenotype (*1/*17) known to be of higher prevalence in Asian populations when compared to 

Caucasians (521, 522).  The consequence of administration of clopidogrel to these populations 

could have a significant impact on its pharmacokinetics and pharmacodynamics.  

Considering the multi-ethnic composition of the Malaysian population, inter-ethnic variability 

may directly contribute to the difference in treatment efficiency for polymorphic-sensitive 

drugs, such as the antiplatelet drug clopidogrel, in reducing major adverse cardiovascular events 

(523, 524). Recent studies suggested that there was an association between the CYP2C19 SNPs 

with antiplatelet activity and ischaemic cardiovascular outcomes (525-530) with up to 12 % of 

the inter-individual variability of platelet aggregation having been observed in patients and 

more than 80 % were related to other influences such as environmental, cellular and clinical 

factors (concomitant diseases, obesity and inflammatory state) (531).  

Outside of Southeast Asia, the use of predictive pharmacokinetics modelling to aid in both drug 

discovery and development along with clinically optimised drug therapy has exponential 

increased over the past decade and has become routine aspects of all clinical trials phases to 

both extrapolate dose to optimal therapy in population groups and to also identify covariates 

which may contribute to the variability in clinical response to drugs (16, 154, 185). However, 
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within Malaysia, the use of pharmacokinetic modelling to conduct such beneficial model’s 

approaches is lacking. 

Recently, we demonstrated the ability of PBPK modelling to optimise dosing of antimalarial 

drugs in special population groups from sub-Saharan African nations (405, 500, 532), where 

the unique physiological and anthropometric differences of African subjects (when compared 

to Caucasians) were incorporated to simulations.  We have adapted this approach to now 

develop, for the first time, an appropriate virtual population group of the Malaysian population 

group for use in mechanistic pharmacokinetic modelling, with a focus on predicting the impact 

of CYP2C19 SNPs on clopidogrel and the active metabolite, clopi-H4, pharmacokinetic in the 

Malay and Malaysian Chinese population group.    

We adopted a robust 5-stage modelling approach which incorported key data from the 

Malaysian NCVD database to develop virtual population groups, following validation of the 

modelling approaches using repaglinide and tramadol compounds within healthy volunteers, 

Chinese and Malay population (Steps 1 and 2), followed by the simulation of clopidogrel and 

its active metabolite, clopi-H4 in the Malay and Malaysian Chinese population groups (Step 3). 

Next, the impact of SNPs CYP2C19 on the active metabolite, clopi-H4 in the Malay and 

Malaysian Chinese population groups were assessed with predictions of potential exposure to 

the clopidogrel therapy (Step 4). Finally, simulations were conducted to predict the potential 

impact of dosage optimisation in the CYP2C19 PM population (Step 5). 

4.4.1 Step 1: Malaysian population development 

In step 1 we attempted to develop a representative Malaysian population by extracting relevant 

data such as gender, weight, age and ethnicity from the NCVD database (460), with which to 

develop the populations.  For the Malay, Chinese and Indian population, the mean age, weight 

and BMI were significantly different between Malay and Chinese (P < 0.0001) and Chinese 

and Indian (P < 0.0001), whereas mean height was relatively consistent across all population 

group at 1.63 m and not statistically significantly different (Table 4.2). Since there was no 

significant difference between the heights of all the three populations, therefore, the default 

age-height relationship for the ‘Chinese Volunteer’ population group within Simcyp was used 

to represents these populations.   
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Using the customised age-weight relationships for the two populations, the predicted 

distribution of body-weight with age for both the Malay (Figure 4.2) and Malaysian Chinese 

(Figure 4.3) populations were well predicted and in good agreement with individual subject 

data extracted from the NCVD data over the range of 20 to 65 years of age.  This supports the 

development of appropriate population groups possessing suitable anthropometric age-weight 

relationship within the Malaysian population.  In addition, this step incorporated appropriate 

blood biochemistry metrics to describe Malay and Malaysian Chinese population groups, 

something which is critical for driving unbound drug fraction within plasma and essential as 

clopidogrel, and its metabolites are extensively protein bound (Table 4.1) (533, 534) 

4.4.2 Step 2: Adult simulations with repaglinide and tramadol 

Having established a Malaysian virtual population group for use in predictive pharmacokinetic 

modelling, we subsequently assessed the ability of the customized population groups to predict 

repaglinide and tramadol plasma concentrations and pharmacokinetics in the Malay (Figure 

4.7), Chinese (Figure 4.6) and Caucasian Healthy Volunteers (Figure 4.4 and 4.5) populations. 

In these simulations, model predictions were successfully predicted to within 2-to-3-fold of the 

reported Cmax, tmax, CL and AUC (Table 4.3) (507, 508), in addition to recapitulating an 

appropriate population distribution. It is also to be noted that due to lack of observed values in 

concentration-time profiles for healthy Malay adults for repaglinide, a full plasma profile 

comparison could not be conducted, therefore, comparison was only relied on Cmax value 

available on literature (508). Such absence of full observed concentration-time profiles values 

also leads to the slight under prediction of AUC values (2.3-fold) in repaglinide’s validation 

with Ruzilawati et al. (2010) (508) (Table 4.3). There was also a slight under prediction (2.2-

fold) of AUC values noted in Hatorp et al. (2002) repaglinide’s validation which might be due 

to an absence of observed CL values. Consequently, a model predicted CL values has to be 

utilised that resulted with this slight under prediction. However, in general, both simulations 

still performed within an acceptable predictive performance requirement (within 3-fold) 

(Section 4.2.3). 

Subsequently, the customised Malay and Malaysian Chinese population group were further 

validated against a study whereby an IV bolus dose of tramadol was dosed to Malaysian 

subjects (509).  Model prediction AUC and Clearance were within 2-fold of that reported (Table 
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4.3) with model predicted plasma concentration-time profiles spanning an appropriate range for 

the simulated population group when compared to the observed data (Figure 4.8). 

4.4.3 Step 3: Prediction of the impact of CYP2C19 polymorphisms on clopidogrel 

pharmacokinetics in Malaysians 

Having successfully validated the predicting capability of the PBPK model using repaglinide 

and tramadol compounds within healthy volunteers in Step 1 and Step 2, Malaysian Chinese 

and Malay populations, the model was expanded to assess its application in the adult simulation 

with clopidogrel and its active metabolite, clopi-H4 (Figure 4.9 and 4.10). It was integral to 

assess the risks associated with cardiovascular drugs, such as clopidogrel, due to its 

pharmacokinetics variability in CYP2C19 polymorphisms within different ethnicity especially 

in the Asian population, whereby in poor metabolisers, could results in the alteration of 

clopidogrel plasma concentration, leading to unresponsiveness towards clopidogrel therapy 

(472). 

Having established the robustness of the model in the prediction of numerous compounds with 

a different mode of administration using the customised population group, we addressed the 

ability of the model to predict our compound of interest, clopidogrel and its active metabolites, 

clopi-H4 (Step 3). It is of note that the model was not validated for 2-oxo-clopidogrel due to 

the absence of plasma concentrations for this metabolite. Validation was attempted based on 

the report of a clinical study involving clopidogrel and clopi-H4 in four CYP2C19-defined 

metaboliser (EM, PM, UM and IM) groups (477, 511). For both clopidogrel (Figure 4.9), and 

clopi-H4 (Figure 4.10), overall 5th and 95th percentiles of the mean predicted profiles were 

within the range reported in existing published literature and contributed to our validation 

attempts. However, for clopidogrel, there was a slight overprediction at day 1 and day 5 for all 

genotypes when compared with the observed data (477). Similar disparity between the 

predicted and the same observed data can be seen in a study by Djebli et al. (2015) (477) in 

which he utilised a visual predictive check to confirm a good predictive performance of the 

PBPK model. This overprediction might be due to the complexity of clopidogrel 

pharmacokinetics, which involves numerous metabolic pathways including different P450s and 

esterase of which were difficult to predict using the model. Nevertheless, the model still 

confirmed a good predictive performance based on the visual predictive check (535-537).  



 

235 

 

In an attempt to establish the potential impact of CYP2C19 SNPs on clopi-H4 plasma 

concentration in Malay and Malaysian Chinese populations, we conducted simulations 

stratified across EM, PM, IM, and UM phenotypes. A statistically significant difference in the 

clopi-H4 Cmax was predicted between the EM and PM groups within the Malay and Malaysian 

Chinese population (Figure 4.11), with clopi-H4 Cmax decreasing by approximate 50 % in the 

PM population groups compared to the EM population group in both Malay and Malaysian 

Chinese (Figure 4.11).   

In a study by Simon et al. (2011) (538), clopi-H4 plasma concentrations were quantified for 

each phenotype in European subjects.  Following a standard dose (300 mg loading dose 

followed by 4 days of 75 mg once daily), last dose mean Cmax was 13 ± 7.33 ng/mL for EM and 

3.93 ± 1.93 ng/mL for PM. In both Malay and Chinese subjects, the median last dose Cmax was 

significantly lower for EM (2.60 ng/mL and 2.55 ng/mL) (Figure 4.11A). However the overall 

range of prediction Cmax were similar to those reported (538).  This difference, however, may 

be attributed to the anthropometric differences between Southeast Asian/Far East Asian 

population groups and European (Caucasian) populations (539) in addition to differences in the 

prevalence of each genotype (488-494). 

Similar reports for Malaysians subjects are currently lacking.  However, in mainland Chinese 

subjects, clopi-H4 Cmax for the study duration (i.e. first dose) was reported to be 18.9 ng/mL ± 

11.8 ng/mL in EM (*1/*1) and 11.8 ng/mL ± 5.1 ng/mL in PM (*1/*2 or *2/*2) (540), within 

3-fold of the simulated mean Cmax for EM (8.62 ng/mL ± 11.4 ng/mL) and PM (5.59 ng/mL ± 

3.92 ng/mL) (Figure 4.11B) whilst also being within a similar range of observed concentrations, 

when taking into account the standard deviations reported for Cmax (540). 

No significant differences observed in clopi-H4 plasma concentrations between the Malaysian 

Chinese and Malay populations were noted when comparing in relation to the CYP2C19-

genotyped groups (Figure 4.11). This finding is consistent with reports of a similar frequency 

of CYP2C19 metaboliser groups between the Malay and Malaysian Chinese in a cohort of 

Malaysian patients taking clopidogrel (495, 541, 542). Thus, although the impact of the 

CYP2C19 polymorphism on clopidogrel pharmacokinetic may lead to treatment failure in PM 

within the Malay and Malaysian Chinese population, due to the attenuation of clopi-H4 plasma 
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concentration, the magnitude of this impact between these populations is largely minimal, with 

insignificant differences observed between them (Figure 4.11). 

4.4.4 Step 4: Sensitivity analysis for CYP2C19 hepatic abundances 

Despite CYP2C19 polymorphisms having been previously characterised for Malaysians, the 

hepatic abundance of CYP2C19, and how it varies from Caucasian subjects, is currently 

lacking.  Within the context of pharmacokinetic modelling, this is an important quantitative 

metric, allowing both the prediction of in-vivo clearance (from in-vitro hepatocyte/microsomal 

incubations) and, when combined with appropriate phenotype/genotype data, the ability to 

model the impact of polymorphisms on resultant drug pharmacokinetics.  However, for the 

Chinese population group, hepatic CYP2C19 abundance has been quantified along with 

phenotype-specific abundances (8, 0, 6 and 10 pmol/mg protein for EM, PM, IM and UM 

respectively), and these have been incorporated into the Simcyp population database and 

characterised/validated by Simcyp and other researchers (543) (544).  

However, comparisons to other Asian population groups (e.g. Japanese) show variations in the 

hepatic abundance for EM phenotypes (14 pmol/mg for Caucasians; 9 pmol/mg for Chinese; 1 

pmol/mg for Japanese) (544).  Given this variation, it was prudent to simulate the impact of 

variation in CYP2C19 EM and PM phenotype abundance, and this was accomplished through 

applying a 30 % increase and 30 % decrease of mean abundance values for all CYP2C19-

phenotyped groups in the Malay (Figure 4.12) and Chinese population (Figure 4.13).  

With a 30 % increase in mean abundances, there was a slight increase in patient’s response 

towards clopidogrel treatment based on the clopi-H4 minimum limit of 0.81 ng/mL, ranging 

from 10-20 % of the CYP2C19-phenotyped group in both populations. Similarly, with the 30 

% decrease of mean abundances, a slight decrease of patient’s response can be observed varying 

between 10-30 % of the CYP2C19-phenotyped group in both populations. Clearly, these 

observations are not novel, given that clopi-H4 plasma concentrations are related to the 

functional status of CYP2C19 within Asian populations (545). However, of note was the fact 

that there was also no significant difference in the clopi-H4 Cmax between the Malay and 

Malaysian Chinese population groups in relation to the CYP2C19-phenotyped group with the 

± 30 % mean abundances values (Figure 4.12-4.13), further confirming our earlier findings 
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4.4.5 Step 5: Dose optimization in CYP2C19 poor metabolisers 

In the final step, given the high percentage of subjects with a clopi-H4 Cmax below the minimum 

therapeutic concentration under standard dosing procedures (300 mg loading dose followed by 

75 mg for 4 days), we assessed the impact of a high-dose regimen on clopi-H4 Cmax.  Under 

these revised dosing conditions, the percentage of subjects with a clopi-H4 Cmax below the 

minimum therapeutic concentration decreased to 12 % (Malay) and 14 % (Malaysian Chinese) 

(Figure 4.14).  A number of previous clinical studies have considered the high dose versus 

standard dose clopidogrel treatment regimens, particularly for CYP2C19 PM, and identified no 

significant clinical concerns, with improved inhibition of platelet aggregation and clinical 

outcomes (546-549), and our simulation further agreed with these published findings.  Thus, a 

600 mg loading dose followed by a 150 mg maintenance dose may be appropriate for confirmed 

CYP2C19 PM Malay and Malaysian Chinese patients, particularly where platelet response is 

poor. 

4.4.6 Study limitations and future directions for clopidogrel use in Malaysia 

It is important to address several limitations of the present study. Firstly, although we were able 

to develop robust pharmacokinetic models, the limited availability of hepatic CYP2C19 

abundance data and phenotype/genotype specific abundance data in Malay or Malaysian 

Chinese was a primary limitation. We utilised existing data from the Chinese population group, 

which had been previously validated by Simcyp, as a surrogate for both Malay and Malaysian 

Chinese.  It could be possible that inter-ethnic differences exist between Malay and Malaysian 

Chinese which may alter the resultant simulations, although no significant differences in clopi-

H4 Cmax were noted in Step 4 (Section 4.3.4) of our modelling approach.  Further, there was a 

lack of robust genotyped pharmacokinetic data in Malaysian subjects, primarily plasma 

concentrations-time profiles, which may have aided in model validation of the clopidogrel 

predictions.  However, this has been completed by a prior group in Caucasian subjects (477).  

Despite this, further investment in research and development infrastructure is required to ensure 

pharmacokinetic modelling approaches are better integrated into clinical research to optimise 

study design and better utilise the clinical data obtained to provide evidence-based optimised 

therapy (550). 
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4.5 CONCLUSIONS 

Cardiovascular disease is a leading cause of mortality across regions and is increasingly 

prevalent in Malaysia, which places the Malaysian healthcare system at ever increasing risks 

and cost-burden of treatment of patients.  Given the unique ethnic diversity of the Malaysian 

population group, evidence-based approach should account for the individual characteristics of 

patients rather than focusing on an average patient from a carefully selected patient population.  

Pharmacokinetic modelling can provide this approach through carefully developed and 

validated population models which can be applied to study a drug’s pharmacokinetics in 

different geographical regions.  This approach was applied to clopidogrel and illustrated the 

impact of a PM phenotype on reducing clopi-H4 Cmax, which could be partially recovered using 

a high-dose strategy (600 mg loading dose followed by 150 mg maintenance dose), which 

resulted in an approximate 50 % increase in subjects attaining the minimum clopi-H4 plasma 

concentration for a therapeutic effect.  Further, we illustrated limited variation clopi-H4 

pharmacokinetics between the two key ethnic groups, Malays and Malaysian Chinese, 

suggesting inter-ethnic differences within Malaysia may not impact upon clopidogrel therapy. 

However, this study has illustrated that Malaysia has the infrastructure to consider 

pharmacogenetics-based dose recommendations, although the current lack of its application 

within a pharmacokinetic modelling should be addressed to better aid clinical drug therapy. 

Further, this study also addresses our final aim to explore further application of PBPK models 

in the context of CYP2C19 polymorphism on clopidogrel in multi-ethnic populations. 

. 
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5.1 CONCLUSIONS 

The overall aim of this work was to illustrate, explore and facilitate the application of 

mechanistic PBPK modelling towards a diverse range of population based data analysis. 

In the first part of this thesis, we develop a region-specific PBPK model to assess the 

hippocampus and frontal cortex pharmacokinetics using customised coded regional brain 

pharmacokinetic modelling with MATLAB. We then extrapolated the model to predict human 

regional brain pharmacokinetics, using morphine as a case study. To develop the model and to 

assess its ability to predict the human brain pharmacokinetics, a stepwise approach was applied 

to developing a PBPK model for CNS drug delivery using a mechanistic platform.  

Firstly, cellular, biochemical and physiological parameters required to develop system-based 

models were harvested from the literature and incorporated into a generic whole-body human 

PBPK model. The model was also populated with relevant pharmacogenetic data. Validation of 

the WB-PBPK examined the ability of the model to predict Kpuu,brain in rats for 10 compounds 

demonstrating passive absorption across the BBB which were previously used in previous 

PBPK modelling. Model predictions were all within 5-fold of the observed Kpuu,brain, except 

benzylpenicillin compound being 5.5-fold over predicted which may be a result of the 

involvement of unclarified molecular active transport mechanism through the BBB where the 

rapid CNS elimination was not captured during the simulation.   

Secondly, the PBPK models were established by correlating drug concentration to rodent and 

human CNS drug pharmacokinetics for a range of compounds, forming a test-data set. Finally, 

the developed model was validated and qualified by comparing model-predicted CNS profiles 

with published literature PK data. For this step, we adapted the basic CNS PBPK model to 

include two further tissue compartments, namely the frontal cortex and hippocampus and using 

phenytoin and carbamazepine for our model validation. The predictions of plasma and regional 

concentrations were found to be within the range of concentrations reported for both 

compounds with the majority of model predicted pharmacokinetic parameters within 2-fold of 

that observed. 

Once developed and qualified, our model successfully predicted human brain region-specific 

temporal drug concentrations from a limited set of routinely available pre-clinical and in vitro 

drug-specific parameters albeit with several caveats that need to be addressed for future studies. 
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To address the feasibility of the model to predict the distribution of drugs within the human 

brain region-specific area, we utilised data reporting morphine brain concentrations in patients 

who suffered from traumatic brain injury using microdialysis cerebral catheter insertion in 

‘better’ or ‘worse’ brain tissues, as determined by computed tomography scanning. The plasma 

concentration-time profile was well predicted with Cmax, tmax and AUC all within 2-fold of the 

reported values. However, the prediction of the terminal elimination phase was poorer than 

expected, due to the absence of any reported regional brain fubt data. Nonetheless, the research 

has successfully proposed a simplified first-principle approach to the development of a regional 

brain CNS PBPK model. This approach has significant implications for assessing drug 

disposition across the human CNS and provides an opportunity for exploring the relationship 

between regional brain drug concentration, pharmacodynamics effects, and interspecies 

extrapolations. 

In the second part of this thesis, we developed a population-based PBPK model capable of 

predicting the impact of efavirenz-mediated DDIs on lumefantrine pharmacokinetics in a 

Ugandan paediatric population groups with consideration of the polymorphic nature of 

CYP2B6. The population-based PBPK modelling was conducted using the virtual clinical trials 

simulator Simcyp, and a five-stage stepwise approach was implemented for model 

development, validation and model refinement. The model was developed using nine studies 

looking at lumefantrine and efavirenz pharmacokinetics in adults, young healthy volunteers and 

Ugandan malaria subjects. 

In our model simulations across all weight bands for subjects aged 0.25-13 years of age, we 

demonstrated a significant reduction in Cd7 of lumefantrine when it was dosed with efavirenz, 

which resulted in significantly lower (P <0.001) lumefantrine in Cd7 in the *6/*6 compared to 

*1/*1 population group. The change in dosing schedule from 3-day standard regimen to 7-day 

regime resulted in a greater number of *6/*6 subjects attaining the target Cd7, with 28-57% of 

subjects attaining this across the age bands studied and the highest increase is evident in 1-4 

years old (3-day: 1%; 7-day: 28%). 

We demonstrated that an extension of the current artemether-lumefantrine treatment regimen 

from 3-days to 7-days would counteract the reduction in efavirenz metabolism common with 

the *6/*6 genotype and hence enhance the attainment of the target day-7 lumefantrine 
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concentration in both *1/*1 and *6/*6 genotype groups, thereby reducing the risk of 

recrudescence. 

The final part of this work focussed on exploring further application of PBPK models for 

specific population data analyses in the context of CYP2C19 polymorphism on clopidogrel in 

multi-ethnic populations, with Malaysian population as a case study. The purpose of this 

population group would be to model the inter-individual variability in serum concentration for 

drugs. Specifically, clopidogrel, observed within a mixed population group where factors such 

as patient demographics and genetic polymorphisms would significantly alter the clinical 

outcome. A Malaysian population group was developed from reported age-weight relationships 

for Malaysian Chinese, Malays and Indians males and females in the NCVD Registry which 

consists of 33,043 anonymise and voluntary patients. The model was validated using clinical 

studies from Malaysian subjects and predicting the impact of inter-ethnic differences in 

clopidogrel and its active metabolite, clopi-H4 pharmacokinetics in healthy volunteers. 

We demonstrated that there was a significant difference with regards to clopidogrel response 

within a genotyped Malay and Chinese population albeit no significant differences can be 

observed between these populations across CYP2C19 genotyped group. The most significant 

differences can be observed in a CYP2C19*1/*1 and ∗2/∗2 carriers within the Malay and 

Chinese population. The ‘what-if’ scenario in which we assumed a variability of ± 30 % of 

mean abundances values for all CYP2C19-phenotyped group in both population also resulted 

in similar observation, further confirming our findings. In addition, the number of PM 

individuals with peak clopi-H4 concentrations below minimum therapeutic level was partially 

recovered using a high-dose strategy (600 mg loading dose followed by 150 mg maintenance 

dose), which resulted in an approximate 50 % increase in subjects attaining the minimum clopi-

H4 plasma concentration for a therapeutic effect. In this part of the work, we managed to 

conclude that population-based PK modelling may provide a cost-effective and practical 

approach towards providing a preliminary overview of interindividual variability in drug 

response. These preliminary findings would assist in improving cost-effectiveness and time in 

conducting clinical trials by minimising exploratory clinical study and concentrating more on 

confirmatory analyses. 

 

 



 

243 

 

5.2 FUTURE WORK 

In conclusion, we have demonstrated that PBPK modelling is capable of providing accurate 

predictions regarding CNS drug disposition and inter-individual variability in specific 

populations thereby assisting in clinical data interpretation and dose evaluation predictions. 

However, further work is required around in vitro analysis from human tissues and animal 

models to provide sufficient and quality data for in vitro-in vivo extrapolation thereby 

increasing the accuracy of the PBPK model predictions in non-Caucasian population groups. 

Furthermore, for a PBPK model to be highly accurate and dependable, a concerted effort is 

required integrating several disciplines including pharmacy, medicine, physiology, molecular 

biology, mathematics and pathology to develop a robust and comprehensive platform to predict 

PK behaviour in populations. 

In the Malaysian perspective, PBPK modelling can be a stepping stone that will bridge the gap 

towards becoming a clinical trials hub within the South East Asian region. Regulatory 

authorities, academician and health providers can utilise this technology in assessing PK 

profiles of compounds and its relationship within our multi-racial population, at the same time, 

able to reduce cost and resources required which are a necessity in a developing country.  In 

the context of regulatory authorities, PBPK modelling could provide a complementary 

approach towards the evaluation of new drug products especially in areas of predicting DDI, 

drug formulation, and ethnic-related changes in PK and disposition. Consequently, the 

acceptance of PBPK modelling approaches as part of evaluation process not only meeting the 

demand and current trends of pharmaceutical industries but also facilitating accessibility of new 

drugs to the public.  Since PBPK modelling requires a robust biological system data to generate 

a reliable prediction, regulatory authorities, academician and health providers within Malaysia 

could collaborate in generating local population system biology data that will be beneficial to 

address key public health regulatory issues. 
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APPENDIX A 

Calculating tissue partition coefficients 
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APPENDIX B 

Advantages and disadvantages of in vitro models available for BBB permeability.   

MODEL DESCRIPTION ADVANTAGE/ 

DISADVANTAGE 

REFERENCE 

NON CELL-BASED 

Immobilized Artificial 
Membrane 
Chromatography (IAM) 

 

• Monolayer 
phosphatidylcholine that 
is bound covalently to 
inert silica support. 

• Simulates lipid phase of 
cell membrane. 
 

• Ability to predict drug 
permeability across 
intestinal tissue, human 
skin, caco-2 cells, and 
BBB. 

• Poor predictive power 
whenever there is 
another factor affecting 
brain uptake occurs such 
as metabolism, active 
transport or protein 
binding. 

• Does not represent 
diffusion across 
membrane bilayer. 

• Does not represent fluid 
membranes dynamics, 
i.e., lateral diffusion. 
 

Stein (551), Ong, 
Liu (552), Reichel 
and Begley (553) 

Parallel Artificial 
Permeability Assay 
(PAMPA) 

 

• Artificial membrane 
barrier derived from 
porcine brain lipid 
extract dissolved in 2% 
w/v n-dodecane. 
 

• Good representation of 
passively permeating 
compounds. 

• Only useful for 
representation of BBB 
penetration without 
active transport. 
 

Di, Kerns (554), 
Carrara, Reali 
(555) 

CELL-BASED (CEREBRAL ORIGIN) 

Isolated Brain 
Capillaries 

 

• Derived from animal 
and human sources 
using mechanical and/or 
enzymatic isolation 
procedures. 
 

• Good representation of 
in vivo situation. 

• Not suitable for BBB 
permeability screening 
since it has limited 
accessibility at the 
luminal surface of 
microvessels. 
  

Pardridge (556), 
Joo (557) 

Primary or Low Passage 
Brain Capillary 
Endothelial Cells 
(BCECs) 

 

• Isolated brain capillaries 
from human and animal 
brains. 

• Brain capillaries are then 
cultured and plated. The 
BCECs, which grows 
from the capillaries, are 
then isolated and 
cultured with or without 

• Closest representation of 
in vivo situation. 

• Ethical constraints when 
using human BCECs. 

• Time and resource 
consuming to incubate, 
seed and isolate the 
cells. 

Reichel, Begley 
(208) 
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an astrocytes-cultured 
medium. 
 

• Difficult to standardize 
due to inter- and intra-
batch reproducibility.  

Immortalized Brain 
Endothelial Cells 

 

• Cell lines that form 
monolayers, resembling 
tight junctions. 

• Most frequently used are 
the immortalized rat 
brain endothelial cell 
line (RBE4). 
 

• Useful for biochemical 
and mechanistic 
research. 

• Limited use in BBB 
transport studies due to 
the leakiness of the 
paracellular membranes.  

de Boer and 
Gaillard (558), 
Gumbleton and 
Audus (207) 

CELL-BASED (NON-CEREBRAL ORIGIN) 

Madin-Darby Canine 
Kidney (MDCK) 

 

• Commonly used cell 
line. 

• Low permeability to 
sucrose and relatively 
high TEER 
reproducibility with 
more than 2000 Ωcm2. 
 

• High TEER 
reproducibility. 

• Easy to grow. 
• Better representation of 

P-gp transporter due to 
the ability of the cells 
transfecting with 
multidrug resistance 
gene (MDR1). 

• Best representation of 
BBB permeability 
compared to other in 

vitro models. 
• Important model in 

facilitating drug 
discovery. 

• Disregards other 
important transporters 
such as BCRP and 
MRP. 
 

Feng (559), 
Garberg, Ball 
(560) 

Caco-2 Cell Line 

 

• Derived from human 
colon adenoma. 
 

• Not a good 
representation of BBB 
permeability due to a 
significant difference 
found when compared 
with brain endothelial 
cells cocultured with rat 
astrocytes. 

Lundquist and 
Renftel (209), 
Lohmann, Huwel 
(561) 
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APPENDIX C 

In vivo methods used to determine BBB permeability of compounds. 

METHOD PARAMETER DESCRIPTION REFERENCE 

INVASIVE 

Sampling of the CSF  CSF free drug concentration, 
kinetic profile  

 

Measurement of drug 
concentration from CSF 
samples 

Collins and 
Dedrick (562) 

Intracerebral 
microdialysis 

Brain interstitial fluid free 
drug concentration, kinetic 
profile 

 

Measurement of drug 
concentration from 
microdialysis samples 

deLange, Danhof 
(563) 

In situ brain perfusion Permeability-surface area 
(PS or log PS), 
unidirectional uptake 
coefficient (Kin) 

 

Drug is infused directly via 
carotid artery. Brain and 
perfusate samples are taken 
to represent drug 
concentrations. 

 

Smith (564) 

Bolus injection Brain/Plasma concentration 
ratio (Kp or log BB) 

Measurement of drug 
concentration from brain 
samples and plasma at single 
or multiple time points. 

 

Ohno, Pettigrew 
(565) 

NON-INVASIVE 

Positron emission 
tomography (PET) 

Permeability-surface area 
(PS or log PS), uptake 
kinetics profile. 

 

Drug labelled with positron 
emitting radiotracer is 
injected systemically and 
quantified by dynamic 
scanning at the brain. 

 

Lockwood (566) 

Magnetic resonance 
imaging (MRI)  

Permeability-surface area 
(PS or log PS), uptake 
kinetics profile. 

Drug labelled with 
paramagnetic spin or contrast 
media is injected 
systemically and quantified 
by dynamic MRI in the 
brain. 

 

Tofts and Kermode 
(567) 
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APPENDIX D 

Molecular Approaches and Parameters involved in BBB Drug Penetrability in silico Models 

and Eligibility of Drugs Candidate. 

MODEL DESCRIPTION PARAMETER REFERENCE 

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP (QSAR) 

Non-Linear Predictive-based molecular 
descriptor 

Bayesian Modelling  

Substructure Analysis  

Neural Networks  

Recursive Partitioning  

Gaussian Processes  

Support Vector Machine  

k Nearest Neighbour Method  

 

Li, Yap (568), 
Engkist, Wrede 
(569),  

Chen, Zhu (570), Li, 
Yap (568), 
Obrezanova, Csanyi 
(571), Kortagere, 
Chekmarev (572), 
Konovalov, Coomans 
(573) 

 

Linear Predictive-based molecular 
descriptor 

Linear Discriminant Analysis  

Multiple Linear Regression  

Comprehensive Descriptors for Structural 
and Statistical Analysis 

Partial Least-Squares  

Variable Selection and Modelling Method 
based on Prediction  

 

Katritzky, Kuanar 
(574), Konovalov, 
Coomans (573), 
Bendels, Kansy 
(575), Li, Yap (568) 

MOLECULAR DESCRIPTORS  

P-glycoprotein 
substrate 

 Efflux transport through the BBB 

 

Adenot and Lahana 
(576) 

Classic 
descriptors 

Physicochemical parameters Molecular weight  

Polar surface area 

Molecular size, shape, and flexibility 

Charge  

 

Levin (577) 

logD Log distribution coefficient Lipophilicity (0 < logD < 3)  

 

Pajouhesh and Lenz 
(578) 

logPOCT Octanol/water partition 
coefficient 

H-bond donor potential, hydrophobicity  

 

Glave and Hansch 
(579) 

∆logP Diffference in octanol/water 
and cyclohexane/water 

Low overall H-bonding ability  Young, Mitchell 
(580) 
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partition coefficients 
(LogPOCT-logPCYC) 

 

Quantum 
chemical 
descriptors 

Calculations explaining 
geometric and electronic 
properties of 
compounds/molecules and its 
interactions 

 

Molecular electronegativity, 
electrophilicity, molecular 
hardness/softness  

Polarizability, dipole moment 

Covalent H-bond acidity and basicity 

Dipole moment, polarizability 

Molecular electrostatic potential derived 
properties  

Van Damme, 
Langenaeker (581) 

BRAIN PENETRABILITY PARAMETERS  

logPS BBB permeability surface 
area 

Interrelated with QSAR data  Liu, Tu (582) 

logBB Brain to plasma ratio 
(logCbrain/logCblood) 

Interrelated with QSAR data  

 

Konovalov, Coomans 
(573) 

logCSF Cerebrospinal fluid to plasma 
ratio (logCCSF/logCblood) 

 

Interrelated with QSAR data  Bendels, Kansy (575) 

RULE-BASED MODELS  

CNS active drugs Predictive-based molecular 
descriptor 

Molecular weight < 450 Da 

H-bond donors < 3 

Polar surface area < 90 Å2 

2.0 < logPOCT < 5.0  

Hitchcock and 
Pennington (583) 

Hansch’s rule of 
2  

Predictive-based 
octanol/water partition 
coefficient 

Optimum brain penetration for molecules 
that have logPOCT ~ 2.0 

 

Glave and Hansch 
(579) 

Modified 
Lipinski’s rules 
for CNS 
penetration 

Predictive-based molecular 
descriptor 

Molecular weight ≤ 400 Da 

7.5 < pKa < 10.5 

H-bond acceptors ≤ 7 

H-bond donors ≤ 3 

LogPOCT ≤ 5.0  

 

Pajouhesh and Lenz 
(578) 
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APPENDIX E 

Physicochemical and pharmacokinetic parameters used in Simcyp for repaglinide, tramadol, 

clopidogrel, 2-oxo-clopidogrel and clopi-H4 (active metabolite). 

 Parameters Value 

Repaglinide 

Physicochemical  MW (g/mol) 452.6 
Log Po:w 3.98 

Compound type Ampholyte 
Pka 4.16; 6.01 

Absorption Absorption model ADAM 
fa; Ka (h-1) 0.984; 1.696 

Peff, man (10-4 cm/s) 3.886 
fuGut 0.4 

Distribution Distribution model Full PBPK model 
Vss (l/kg) 0.238 
B/P ratio 0.62 

fup 0.023 
Metabolism Clearance type Enzyme kinetics 

In vitro metabolic system Human recombinant P450 isoforms 
rhCYP3A4 Vmax (pmol/min       

per mol) 
958.2 

KM (µM) 13.2 
fumic 1 
CLint 137a 

rhCYP2C8 Vmax (pmol/min       
per mol) 

300.8 

KM (µM) 2.3 
fumic 1 

Tramadol 

Physicochemical MW (g/mol) 263.38 
Log Po:w 1.35 

Compound type Monoprotic base 
Pka 9.6 

Absorption Absorption model ADAM (oral); First order (IV) 
fa; Ka (h-1) 0.813; 0.568 

Peff, man (10-4 cm/s) 1.3a 
fuGut 1 

 PSA 33b 
 HBD 1b 
Distribution Distribution model Full PBPK model 

Vss (l/kg) 2.842 
B/P ratio 1.09 

fup 0.8 
Metabolism Clearance type Enzyme kinetics 

In vitro metabolic system Human recombinant P450 isoforms 
rhCYP3A4 0.01538 
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rhCYP2B6 CLint (µl/min 
per mg) 

0.02949 
rhCYP2D6 0.30114 

Clopidogrel 

Physicochemical MW (g/mol) 321.8 
Log Po:w 3.89 

Compound type Monoprotic acid 
Pka 4.55 

Absorption Absorption model First order 
fa; Ka (h-1) 0.5; 0.5 

Peff, man (10-4 cm/s) 0.466 
fuGut 0.02 

Distribution Distribution model Full PBPK model 
Vss (l/kg) 0.217 
B/P ratio 0.72 

fup 0.02 
 Kp scalar 2.67a 
Metabolism Clearance type Enzyme kinetics 

In vitro metabolic system Human recombinant P450 isoforms 
rhCYP1A2 Vmax (pmol/min       

per mol) 
2.27 

KM (µM) 1.58 
fumic 0.015 

rhCYP2B6 Vmax (pmol/min       
per mol) 

7.66 

KM (µM) 2.08 
fumic 0.015 

rhCYP2C19 Vmax (pmol/min       
per mol) 

7.52 

KM (µM) 1.12 
fumic 0.015 

Additional systemic clearance (l/h) 600 
2-Oxo-clopidogrel (primary metabolite) 

Physicochemical MW (g/mol) 337.8 
Log Po:w 2.96 

Compound type Monoprotic acid 
Pka 3.41 

Distribution Distribution model Minimal PBPK model 
Vss (l/kg) 0.10 
B/P ratio 1 

fup 0.03 
Metabolism Clearance type Enzyme kinetics 

In vitro metabolic system Human recombinant P450 isoforms 
rhCYP2B6 Vmax (pmol/min       

per mol) 
2.48 

KM (µM) 1.62 
fumic 0.18 

rhCYP2C9 Vmax (pmol/min       
per mol) 

0.855 
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KM (µM) 18.1 
fumic 0.18 

rhCYP2C19 Vmax (pmol/min       
per mol) 

9.06 

KM (µM) 12.1 
fumic 0.18 

rhCYP3A4 Vmax (pmol/min       
per mol) 

3.63 

KM (µM) 27.8 
fumic 0.18 

Additional clearance HLM CLint 
(µl/min per mg) 

50 

fumic 0.18 
Active uptake into hepatocyte 2 
Clopi-H4 (secondary metabolite/active metabolite) 

Physicochemical MW (g/mol) 355.8 
Log Po:w 3.60 

Compound type Diprotic acid 
Pka 1; Pka 2 3.20; 5.10 

Distribution Distribution model Minimal PBPK model 
Vss (l/kg) 0.23 
B/P ratio 0.82 

fup 0.018 
Metabolism Clearance type In vivo clearance 

CLpo (l/h) 500 
a. Sensitivity analysis and parameter estimation 
b. Ono et al. (2016) (584) 
All values were from Simcyp (503) (repaglinide), T’jollyn et al. (504) (tramadol) and Djebli 
et al. (477) (clopidogrel and its metabolites) unless otherwise specified. 

 
 

 


