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Epilepsy is a common and serious neurological disorder, which manifests in seizures, and has 
an incidence of approximately 1% of the world population. In developed nations, most 
instances are relatively well controlled through the use of anti-epileptic drugs (AEDs). For 
around a third of cases, AEDs are ineffective, resulting in poorly maintained seizures otherwise 
known as refractory, or drug-resistant epilepsy (DRE). 
 
Currently, treatment of DRE often requires neurosurgery to be performed to resect seizure 
generating foci. Historically, such treatment was used as a last resort due to the invasive and 
higher risk nature of neurosurgery. More recently, however, surgical intervention has been 
performed much earlier in order to achieve better long-term patient outcomes. Notwithstanding 
this, DRE presents a major and as of yet, unmet clinical need for new and effective anti-
epileptic drugs to be found.  
 
In vitro and in vivo electrophysiological methods have been used investigate epilepsy for many 
years. Neuronal network oscillations and single cell patching recordings between physiological 
and pathophysiological samples provide a basis to compare alterations between normal and 
epileptic brain tissue. In terms of electrophysiological approaches, the hippocampus and 
entorhinal cortex (EC) are two of the most commonly studied areas of the brain, especially in 
relation to temporal lobe epilepsy (TLE).  
 
Plant derived cannabinoids – phytocannabinoids – have been proposed as effective AEDs for 
DRE cases. In particular the non-psychoactive phytocannabinoids cannabidiol (CBD) and 
cannabidivarin (CBDV), with recent clinical trials supporting this claim.  
 
The present study is an investigation into whether CBD and CBDV are suitable and effective 
AEDs, and to identify their mechanism(s) of action. Electrophysiological recordings of medial 
entorhinal cortex (mEC) layer II principal cells have been studied due to their relative 
importance and participation in TLE. Alterations in oscillatory rhythms and single cell 
responses were compared between RISE afflicted epileptic rats (SE rats) and wild type, age 
matched controls (AMC). Experiments on human tissue resected from children with TLE were 
also performed, concurrent with the rodent experiments. 
 
Key findings from this project show CBD(V) suppressant effects on induced gamma 
oscillations, in an age- and disease-dependent manner in rat tissue, suggesting damping of 
neuronal network excitability. Further to this, CBD induces increased GABA inhibition onto rat 
medial entorhinal principal cells as evidenced by increases in mean median decay times and 
inhibitory charge transfer across the postsynaptic membrane, while CBDV did not show this 
effect. The effects of CBD were effectively blocked by both GABAAR and NMDAR antagonists, 
suggesting interaction with both of these receptors to exert the response. CBD also showed 
additive effect to low-dose benzodiazepine and barbiturate agonists and a ceiling effect at 
higher doses, suggestive of an allosteric action on the GABAAR. Similar effects were also noted 
in the human tissue cells, suggestive of an analogous mechanism of action in humans.   
 
Hence, we postulate that CBD is acting at both postsynaptic GABAARs, as a positive allosteric 
modulator (PAM) and, at pre-/postsynaptic NMDARs, either directly or indirectly, to positively 
influence GABA signalling mechanisms causing an increase in inhibitory activity at 
postsynaptic principal cells resulting in decreased neuronal excitability.  
 
Keywords: oscillations, gamma, GABA, interneurons, phytocannabinoids   
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(n)AUC – (Normalised) Area under the 

curve  

BZ - Benzodiazepine 

CA - Cornu ammonis (1/2/3)  

Ca2+ - Calcium ion  

cAMP - Cyclic adenosine monophosphate 

CBD – Cannabidiol 

CBDV – Cannabidivarin 

CBN – Cannabinol 

CBR – Cannabinoid receptor 

CCK – Cholecystokinin   

Cl- - Chloride ion 

CNS – Central nervous system 

DG – Dentate gyrus  

DMSO - Dimethyl sulfoxide 

DRE – Drug resistant epilepsy  

eCB – Endocannabinoid 

(N)ECT – (Normalised) Excitatory charge 

transfer 

EEG - Electroencephalogram  

ECoG – Electrocorticography 

(s)EPSCs – (Spontaneous) Excitatory 

postsynaptic currents  

EPSP – Excitatory postsynaptic potential 

FAAH - Fatty acid amine hydrolysis 

FCD – Focal cortical dysplasia  

FFT – Fast Fourier transform  

g - Grams  

GΩ – GigaOhm  

GABA(R) - γ-aminobutyric acid (receptor) 

GPCR – G-protein coupled receptor  

hrs - Hours  

HFO – High frequency oscillations  

HT – Human tissue 

(N)ICT – (Normalised) Inhibitory charge 

transfer 

I/M – Intramuscular  

IEI – Inter-event interval  

ING – Interneuron-network gamma  

(s)IPSCs – (Spontaneous) Inhibitory 

postsynaptic currents  

IPSPs – Inhibitory postsynaptic potentials  

K+ - Potassium ion  

KA – Kainic acid  

KAR – Kainate receptor 

LFP – Local field potential  

LiCl – Lithium chloride  

M1 – Muscarinic acetylcholine receptor 

subtype 1  

mACh – Muscarinic acetylcholine  

MAGL - Monoacylglycerol lipase 

mEC – Medial entorhinal cortex 

MEG – Magnetoencephalography 

Mg2+ - Magnesium ion  

mGluR – Metabotropic glutamate receptor  

MF – Mossy fibres 

mIPSC - Miniature inhibitory postsynaptic 

currents 

min - Minutes  

mM – Millimolar  

mnths - Months  

MOA – Mechanism of action  
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ms – Milliseconds  

Na+  – Sodium ion 

NaCl – Sodium chloride  

NAM – Negative allosteric modulator 

NATS - N-acyltransferases 

NArPE – N-arachidonoyl-phosphatidyl-

ethanolamine 

nM – Nanomolar  

NMDA(R) - N-methyl-D-aspartate 

(receptor)  

NO – Nitric oxide 

NPY - Neuropeptide Y 

NREM – Non-rapid eye movement (sleep 

phase)  

PAM – Positive allosteric modulator 

PCA – Principal component analysis  

PHR – Parahippocampal region  

PING – Pyramidal-cell interneuron-network 

gamma 

PLI – Pyramidal looking interneurons  

PNS - Peripheral nervous system 

PSBB – Post status behavioural battery 

PSP – Postsynaptic potential 

PV – Parvalbumin  

RISE – Reduced intensity status 

epilepticus (model)  

sec - Seconds  

S/C – Subcutaneous  

SE – Status epilepticus  

SEM – Standard error of the mean  

SLE – Seizure-like events  

SOM – Somatostatin  

SRS – Spontaneous recurrent seizures  

TA - Temporoammonic pathway 

THC - D9-tetrahydrocannabinol  

TL – Temporal lobe 

TLE – Temporal lobe epilepsy  

VIP - Vasoactive intestinal polypeptide  

VFO – Very fast oscillations  

VPA – Valproic acid  

VSO – Very slow oscillations 

wks - Weeks
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Chapter 1  

 

 

Introduction 
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1.1 Aims and objectives 

Given the relative paucity of investigation in the effect of both CBD and CBDV in vitro, we were 

first interested to uncover whether any effect was visible on neuronal oscillations in the mEC 

layer II in normal brains. The mEC was chosen due to its importance and connections to the 

hippocampus as well as its role in temporal lobe epilepsy. Alongside this we were interested 

in the possible anticonvulsant effect of CBD(V) in epileptic brains. As such, we could compare 

the responses of each to look if any disease specific effects of CBD(V) were present. Further 

to this, study into any effect of CBD(V) on single pyramidal cells in the mEC layer II was also 

investigated. As such the following set of aims was produced: 

 

• Uncover whether an effect of CBD and CBDV was present on induced gamma 

oscillations in the mEC layer II 

• Produce dose-response curves for each phytocannabinoid for three defined age 

ranges of epileptogenesis and normal rats (24-hours post SE, 1-week post SE, 3-

months post SE) 

• Characterise any effect of CBD on single pyramidal cells of mEC layer II  

• Assess whether any effect could be modulated or inhibited, and if so, by what  

• Investigate human tissue principal cell responses to CBD 

  



14 

1.2 The temporal lobe 

The temporal lobe (TL) is one of four major lobes of the brain, situated within the cerebrum, 

the others include: frontal, parietal and occipital (visible in Figure 1.1). Its functions are largely 

sensory input processing for visual memory, language comprehension and emotional 

association (Squire et al., 2004).  

Figure 1.1 Schematic showing general subdivisions of the human brain into the four major lobes. 

Lobes are colour coded and labelled: frontal lobe (blue), par ietal lobe (yellow), occipital 
lobe (red) and, temporal lobe (green). Adapted from (Gray and Lewis, 1918).  

The lobe is generally divided between two cortices: the neocortex and the allocortex.  The 

neocortex is postulated to be the most evolutionary recent area of the mammalian brain, with 

neocortex translating to “new cortex” (Rakic, 2009). The neocortex is heavily involved in 

sensory perception and behavioural response, i.e. the generation of motor commands. Further 

split into two cortices, the true isocortex and the pro-isocortex, the structure and function of the 

neocortex is relatively well defined. The true isocortex has clear and well defined laminar 

structure and spans across much of all the four brain lobes, covering structures from the 

parahippocampal region and cingulate gyri as well as the insula (Zilles, 1990). The pro-

isocortex acts a transitional region between the true isocortex and the allocortex (Moser et al., 

2014). 

The allocortex contains the phylogenetically older parts of the cerebral cortex (Creutzfeldt, 

1995) including, for example, both the olfactory system and hippocampus. It contains three 

subdivisions: the archicortex, encompassing the hippocampus and subiculum, the 

paleocortex, essentially the olfactory system, and periallocortex, containing the entorhinal 
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regions. The periallocortex is the section of allocortex that has historically been viewed as the 

transitional section between the neocortex and the allocortex. The pro-isocortex of the 

neocortex and periallocortex of the allocortex are split by the rhinal fissure, which acts as a 

physical border for the regions, providing a transition between the two cortical divisions 

(Creutzfeldt, 1995).  

The neocortex is comprised of either five or six layers whereas the allocortex is characterised 

as having three or four layers, this allows each cortex division to be relatively easily identified 

(Creutzfeldt, 1995). Intervening between these subsections is the transitional area of pro-

isocortex and periallocortex, where the layers increase from three to six (Moser et al., 2014). 

Where the two cortices meet encompasses the parahippocampal region, including the 

entorhinal cortex, postrhinal and perirhinal cortices, where the cortical layers increase from 3 

in the hippocampal region to 6 in the parahippocampal region (Moser et al., 2014).  

Figure 1.2 Schematic showing the location of the temporal lobe in rodents and humans.  

The colours highlight different structures. Red – CA3, light blue – CA1, light green – 
Perirhinal cortex (PrC), dark green – Postrhinal/parahippocampal cortex (rodent/humans) 
(POR/ParaHIP), yellow – LEC, dark blue – MEC. Taken from (Sauvage et al., 2013).  

In rodents and other small mammals, the cortices are smooth, however in primates and larger 

mammals, the cortex is rugose, with grooves (sulci) and ridges (gyri) providing a dramatically 

larger surface area, as can be observed in Figure 1.2.  



16 

1.2.1 The hippocampal formation 

Figure 1.3 Schematic of the structures of the hippocampus. 

Structures include: DG, CA3, CA1 and entorhinal cortex (EC). Prominent connections 
between these regions are noted. Input emanating from the EC terminate in the DG (1) 
and CA3 (2). Mossy fibres (MF) connect the DG and CA3 (3). Schaffer collaterals shown 
between the CA3 and CA1 (SC; 4). Output from the CA1 passes back to the EC via the 
subiculum (S). CA3-CA3 recurrent collaterals are not shown. Taken from (Patten et al., 
2015)   

The hippocampus’s name is derived from the Latin for sea horse and is so-named due to the 

resemblance between the two. It is a component of the limbic system, a set of structures 

including: the amygdala, the olfactory bulbs, fornix, nucleus accumbens and, the 

hypothalamus (Hopper and Vogel, 1976). The limbic system is ascribed as being vital to a 

variety of functions such as, short-term memory, emotion, motivation and olfactory processing. 

The hippocampus is situated in the medial temporal lobe, beneath the cerebral cortex. Due to 

its connections with the entorhinal cortex it is able to communicate with all areas of the 

neocortex (Amaral & Lavenex, 2007).  

The hippocampal formation includes all constituent members of the hippocampus proper: 

cornu ammonis – literally translated to “Amun’s horns”, a reference to the Egyptian god Amun, 

a ram, of which the hippocampus bears a likeness to - (CA) 1, CA2, CA3, the dentate gyrus 

(DG), plus the subiculum. All are included within the allocortex due to their enduring presence 

in more primitive brain types (Hopper and Vogel, 1976). 

The DG is a single cell layer consisting of tightly packed granule cells which encircle the CA3 

region of the hippocampus. The DG is divided into two – the fascia dentata and the hilus. The 

fascia dentata is credited as being the oldest formation of the hippocampus. It receives the 

majority of its input via the perforant pathway from superficial EC layers (see Section 1.1.2.1) 
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and, receives GABAergic and cholinergic input from the medial septum (Amaral et al., 2007). 

It is estimated that rat fascia dentata contains 1,000,000 granule cells, from which mossy fibres 

emerge and synapse onto the hilus and CA3, receiving feedback from reciprocal mossy cells 

from the hilus (Amaral et al., 2007).    

 

The CA3 region is the “pacemaker” of the hippocampus as it provides the internal rhythm, 

described as a spontaneous gamma oscillation generator (Jackson et al., 2011). CA3 contains 

mostly pyramidal cells and receives input from the mossy fibres of granule cells in the DG. A 

majority of input in the CA3 is received from the perforant pathway emanating from superficial 

EC layer II and passing through the DG, via the tri-synaptic loop (Amaral and Witter, 1989). 

Aside from input provided by DG and EC cells, CA3 cells have recurrent connections – CA3-

CA3 – marking it apart from other hippocampal regions (Miles and Wong, 1986). CA3 outputs 

most notably via Schaffer collaterals that extend to the CA1, passing information along the 

perforant path (Arrigoni and Greene, 2004). 

 

The CA2 is a generally described as a transitional region between CA3 and CA1 due to its 

small size (Ishizuka et al., 1990; Woodhams et al., 1993). It does receive some input from the 

perforant pathway via mEC LII pyramidal cells, and also from CA3 Schaffer collaterals. Despite 

this, it is not thought to have a significant role in hippocampal function, though this view is now 

being challenged as further investigations into the CA2 region are underway (Arrigoni and 

Greene, 2004; Mercer et al., 2007).  

 

CA1 receives significant input from the CA3 Schaffer collaterals, and sends output to both the 

subiculum and layer V of the entorhinal cortices via the tri-synaptic pathway. Alongside this, 

layer III + V of the EC are able to interact directly with CA1 via the temporoammonic pathway 

(TA), described in a later section (Section 1.1.3). CA1 provides the main output of information 

to the cortical regions of the brain (Van Groen and Wyss, 1990).  

1.2.2 The parahippocampal region 

The parahippocampal region (PHR) encompasses the area surrounding the hippocampus and, 

it too, is part of the limbic system (Hopper and Vogel, 1976). Generally, the PHR is divided into 

5 disparate regions: the entorhinal cortex (EC), subdivided into medial and lateral entorhinal 

cortex (mEC/ lEC), the perirhinal cortex (PER), the postrhinal cortex (POS), the presubiculum 

(PrS) and parasubiculum (PaS). It is distinguishable from the structures of the hippocampal 

formation through two major features: the clear laminar organisation and increased number of 

cellular layers (6); and differences in connectivity, with PHR structures typically displaying 

more reciprocal connections.  
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There is some debate as to how to correctly categorise these two formations with some 

including the entorhinal cortices in the hippocampal formation (Schultz and Engelhardt, 2014), 

however for the purposes of this thesis, I shall be following the definitions of Moser et al, set 

out in the review and described above (Moser et al., 2014).  

Figure 1.4 Schematic showing hippocampal location in the rodent brain. 

A) Indicates the posit ion of both the hippocampal and parahippocampal structures within
the rodent rat brain on 3-axes, rostral-caudal, dorsal-ventral and lateral-medial
(labelled). Left panel shows lateral view and right, caudal. Colour coding corresponds as
follows: dentate gyrus (DG; dark brown), CA3 (middle brown), CA2 not shown, CA1
(orange), subiculum (Sub; light brown), presubiculum (PrS; light blue), parasubiculum
(PaS; dark blue), medial entorhinal cortex (MEC; light green), lateral entorhinal cortex
(LEC; dark green), per irhinal cortex (spl it in Brodmann’s area A35 (pink) and A36
(purple)), postrhinal (POS; blue-green).  B) Transverse slice taken from rat brain,
showing connected hippocampal-entorhinal structures.  Hippocampal formation l imited
to: DG, CA1, CA3, subiculum; parahippocampal therefore includes: pre-and para-
subiculum, mEC and lEC and postrhinal cortex. Cortical layer indicated by Roman
numeral.  Adapted from van Strien et al., 2009.

1.2.3 Hippocampal and parahippocampal connectivity 

The major hippocampal circuit is the tri-synaptic pathway, which describes the flow of 

information around the hippocampus, also sometimes known as the ‘hippocampal loop’. First 

described by Ramón y Cajal in the early twentieth century using Golgi staining techniques, the 

tri-synaptic pathway consists of three synaptic junctions covering the whole hippocampal 

region (Amaral and Witter, 1995).  

The basic pathway is as follows: 

Synapse 1: Pyramidal cell axons located within the superficial layers of the EC project down 

and synapse onto granule cells of the DG.  

Synapse 2: Mossy fibres from the DG synapse onto CA3 pyramids.  

Synapse 3: Schaffer collaterals from CA3 project onto pyramidal cells of the CA1, thus 

completing the loop of the hippocampal formation. Cells within CA1 are able to interact and 

synapse onto layer V cells of the EC but are also able to output to cortical regions as well.   

High amounts of multimodal information are delivered to the hippocampus mainly along the 

perforant pathway (PP), the pathway that connects the entorhinal cortex regions to the 

A B
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hippocampus proper and subiculum (Witter et al., 2000; Vago and Kesner, 2008). Axons from 

the glutamatergic stellate and pyramidal cells in the superficial layer II, and also possibly from 

small pyramidal cells deep in layer VI, project through the subiculum - hence the name PP. 

These axons terminate as synapses onto granule cells and mossy cells of the DG, as well as 

CA3 and CA1 and, possibly pyramidal cells of CA2 (Andersen et al., 1966, 1971; Amaral et 

al., 1990; Yeckel and Berger, 1990). This pathway forms the basis of the tri-synaptic pathway. 

The PP is split between medial and lateral depending on which part of the EC the axon 

originates from (either mEC or lEC), to give either medial PP (MPP) or lateral PP (LPP) (Bliss 

and Lømo, 1973; McNaughton and Barnes, 1977). The PP is crucial in memory consolidation 

and spatial learning and memory and, has been implicated in animal-based models of 

depression (Remondes and Schuman, 2004; Kallarackal et al., 2013).  

 

Axonal fibres from layer III, and also deep layer V, are able form a slightly altered pathway, 

branching off in the subiculum to form the temporoammonic (TA) pathway, which terminates 

in the CA1 (TA-CA1 pathway) (Aksoy-Aksel and Manahan-Vaughan, 2013). The TA-CA1 

pathway has been shown to be crucial in spatial memory consolidation and has also been 

implicated in some models of depression (Lisman and Otmakhova, 2001; Treves, 2004; 

Hasselmo and Eichenbaum, 2005; Rolls and Kesner, 2006).  

 

Efferent output from CA1 and the subiculum project to layer V cells of the mEC (Woodhams et 

al., 1993; Witter et al., 2000; van Groen et al., 2003). These connectivity pathways are identical 

for outputs from the lEC, with the single neuronal targets being the same as those of the mEC 

in CA2, CA3 and DG, but different in CA1 and subiculum (Moser et al., 2014).  mEC outputs 

originate in the PrS and PaS. The majority of the EC neurons synapse onto excitatory 

pyramidal cells in the DG and CA3 regions of the hippocampal formation, allowing for an 

excitatory/positive, forward feedback loop to be formed between the hippocampus and the 

PHR (represented in Figure 1.5). Some neurons project and synapse onto inhibitory 

interneurons, which produces an inhibitory or negative feedback loop between the two regions 

(Buzsaki, 2011).  

 

The destination and processing of information from the EC to the hippocampus are likely 

determined through the dynamic balance of inhibitory and excitatory synapses and level of 

neuronal excitability at each layer of the EC (Jones and Buhl, 1993; Witter et al., 2000).  
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Figure 1.5 Feed-forward excitatory pathway between regions of the EC and hippocampus.  

Alternating recurrent circuits (EC2, CA3 and EC5) and parallel-organised circuits 
(granule cells, CA1 and EC3) provides ample opportunity for the disassembly and 
integration of multimodal information. The main sources of input/output of information 
are indicated with arrows. Sub-cortical output is mainly handled by the subiculum (include 
the sub-c, as is the pre- and para-subiculum), while cortical output by the CA1. Taken 
from (Buzsaki, 2011). EC – entorhinal cortex, gc – granule cel l, PFC – prefrontal cortex. 
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Figure 1.6 Schematic of the tri-synaptic pathway. 

Typical participating cells, connections and direction of information flow all depicted. The 
PP is shown, where signal is passed from Layer II EC pyramidal cells to the DG (green 
path).  The tri-synaptic pathway is completed with flow to the CA3 (blue path), then CA3-
CA1 and CA1 to EC Layer V cells (blue path),  passing through the subiculum. Layer II 
EC are capable of synapsing directly onto CA3 cells, while layer III EC cells are able to 
synapse directly to CA1, bypassing the DG and CA3, to compose the TA pathway (shown 
in pink from EC3 to CA1). Simplif ied connections are visualised in the simplif ied arrow 
connections (bottom right) with the pathways indicated by coloured lines and partic ipating 
cell types colour coded (bottom). Taken from (Aimone et al., 2014).  
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Figure 1.7 Schematic of parahippocampal and hippocampal connectivity. 

A) Left: sections showing the hippocampal formation and several regions of the
parahippocampal region, colour coded and labelled, from rat hemisected brain. Right:
shows a mid-sagittal view of the rat brain, again with major regions colour coded and
placed in the estimated locations. B) Shows a more detailed account of the neuronal
connections between the parahippocampal region and the hippocampal formation. The
reciprocally connected entorhinal layers are indicated with the double-headed arrows.
Layer II projects to CA3, CA2 and DG, while layer III to CA1 and subiculum (green and
grey lines). Both the mEC and lEC pathways converge onto the same single neurons from
the layer II projection but are different in layer III projections. Taken from (Moser et al.,
2014).

1.2.4 Entorhinal cortex connectivity 

As highlighted in the parahippocampal region section above (Section 1.1.2) the EC lies on the 

border between allocortex and neocortex, indeed, it was once described as a simple 

transitional region between the two cortices. Further research into the area, however, revealed 

its highly connected nature. A multitude of intrinsic and extrinsic connections became 

apparent, as too, did its role as a key partner of the hippocampus controlling the flow of 

information to and from it.  

A

B
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As stated, the EC is composed of the lateral EC (lEC), the triangular shaped region located 

rostrolaterally, and the medial EC (mEC) composed of the caudiomedial section of EC. Both 

divisions of the EC have 6 independent layers. Each of these layers is distinct and comprised 

of different cell types and intrinsic and extrinsic connections. The functional differences of the 

regions and the precise targets of their extrinsic outputs split the two.  

  

The cell types of the entorhinal cortex were first described in 1933 using Golgi-silver 

impregnation staining techniques, which allowed neurons to be classified based on their 

morphology (Lorente de Nó, 1933). As techniques have improved, novel ways to classify 

neurons have too, with chemical markers and electrophysiology used alongside morphology 

as means to differentiate cell types.   

 

In the present study we are focused on the mEC, though more detail on the differences in cell 

types across the layers and their functional consequences between the mEC and lEC shall be 

briefly discussed here:  

1.2.4.1 Superficial EC layers 

1.2.4.1.1 Layer I  

The most superficial layer of the EC, layer I is relatively sparsely populated, however it has 

been noted to contain two distinct type of cells; non- or sparsely-spiny multipolar neurons 

(MPNs) and horizontal cells (Lorente de Nó, 1933; Germroth et al., 1989). The majority of the 

cells within layer I are the former, and often stain positive for calretinin (CR) and GABA 

(Wouterlood et al., 2000). The processes of these MPNs have been observed radiating 

throughout layer I, occasionally branching into layer II (Miettinen et al., 1997; Wouterlood et 

al., 2000). The axons are described as travelling towards layer II/III, possibly to provide 

feedforward inhibition for the principal cells in these layers (Canto et al., 2008).   

 

Of the horizontal cells, most are relatively spine free, with their dendritic trees spreading 

laterally across layer I into layer II. Many horizontal cells are located in the transitional area 

between layers I/II. Horizontal cells are GABAergic and therefore the source of inhibition within 

layer I. Indeed, there are differences between medial and lateral horizontal cells, with mEC 

dendritic terminals staining positive for cholecystokinin (CCK) while lEC for vasoactive 

intestinal polypeptide (VIP) (Kohler and Chan-Palay, 1983; Schwerdtfeger et al., 1990). 

1.2.4.1.2 Layer II  

Layer II of both subdivisions of EC are densely packed with medium and large pyramidal and 

other principal cells. There are, however, marked differences in the cellular make up of Layer 

II in the lEC and the mEC with regards to the principal neurons found in each.  
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In the mEC the most abundant neuron type are the principal stellate cells, with a relative 

abundance of 65% (Klink and Alonso, 1997) which morphologically can have a star-like soma 

– with Lorente de Nó dubbing them as such after observing the soma shape in his Golgi-silver

staining experiments (Lorente de Nó, 1933) – though this shape is no longer considered

compulsory for a cell to be defined as a stellate cell (Canto et al., 2008). The main

distinguishing feature of stellate cells is their highly spiny dendritic tree. Stellate cells are

preferentially located in superficial and mid-level positions of layer II, with their dendritic arbor

spread widely and evenly, extending up to and, running parallel with the pial surface. The

axons of stellate cells are relatively thick, branching off into collaterals that encompass and co-

localise with the dendritic tree to form a “net” around it (Kohler and Chan-Palay, 1983;

Germroth et al., 1991). 1-3 branching collaterals are sent towards the deeper mEC layers III-

VI and another 1-3 collaterals pass through the subiculum heading to the DG and CA3 (forming

the perforant pathway) (Canto et al., 2008). The vast majority of stellate cells found in the mEC

are glutamatergic (White et al., 1977; Yoshida et al., 1987; Mattson et al., 1988; Xie et al.,

1991) and stain for calbindin (Jones, 1994;  Wouterlood, 2002).

Figure 1.8 A stellate cell from a juvenile Long-Evans rat (P14). 

Filled with Alexa Fluor 488 displaying typical stellate morphology. Visible are strong 
primary dendrites extending superficially to the pial surface, dendrit ic spines, and 
perisomatic axon collaterals (the so-called “net”; arrowheads). The axon ramifies from a 
basal primary dendrite, extending collaterals to deeper layers III and VI (cropped). Taken 
from (Burton et al., 2008). 

Stellate cells can also be grid cells. Layer II has been demonstrated to contain the highest 

density of grid cells throughout the EC, and when depolarised spike to produce loose phase-

locked theta oscillations (Alonso and Llinás, 1989; Alonso and Klink, 1993; Klink and Alonso, 

1997; Sargolini et al., 2006). Grid cells are cells within the superficial layers of the EC that are 

activated upon entry into specific spaces (i.e. spatial representation) and, are represented and 

spaced upon an abstract lattice formation (Hafting et al., 2005). Theta rhythms are produced 

and, therefore, are argued as being important in grid cell activation and function (Blair et al., 
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2007; Burgess et al., 2007; Giocomo et al., 2007). Layer II is the most prominent site for theta 

oscillations across the EC (Quilichini et al., 2010). 

  

Separate to stellate cells, other non-stellate principal cells are found in the mEC. The majority 

of these cells are pyramidal-like principal cells, usually of medium size located in the deeper 

regions of layer II. Similar to stellate cells the dendritic trees of the pyramidal cells extend into 

the superficial layers of layer III. The axons extend down and branch into collaterals that spread 

across layers I-III, again similar to stellate cells, though less profuse (Jones, 1994; Canto et 

al., 2008).  

 

In contrast with the abundance of stellate cells in the mEC, they are relatively sparse in the 

lEC, whereas the comparable “fan” cells are highly abundant (Lingenhohl and Finch, 1991; 

Tahvildari and Alonso, 2005).  Fan cells are similar, in that they are composed of large somas 

and have thick primary dendrites, though they are sparsely spiny. Fan cells differ 

morphologically to stellate through their shallower, smaller descending dendrites.  

 

Though layer II is densely packed with excitatory neurons there is also a myriad of diverse 

interneurons. One being the bipolar horizontal interneuron, a sparsely spiny interneuron that 

straddles the border between layer I and II and synapses in either of the layers (Germroth et 

al., 1991). Alongside horizontal bipolar cells, vertical bipolar cells are also present, displaying 

a spindle shape soma with thin projections including one ascending and one descending 

dendrite that ramify distally (Wouterlood et al., 2000).  

 

Another important interneuron class is the fast-spiking basket cell, shown to be present in layer 

II by Jones & Bühl, (1993), which possesses thin dendritic projections that process into layer I 

to ramify. The axonal projections, however, are mainly contained in layer II and move to 

encapsulate somas of neighbouring cells – stellate or pyramidal cells – in a basket formation 

providing symmetrical inhibitory synapses (Kohler et al., 1986; Jones and Buhl, 1993). Basket 

cells have been found to stain extensively across all areas of the EC for parvalbumin (PV); it 

has been suggested that all basket cells in the EC are PV positive, therefore basket cells are 

commonly called PV+ basket interneurons (Kohler et al., 1986; Jones and Buhl, 1993; 

Wouterlood et al., 1995).  

 

Chandelier cells are another important GABAergic interneuron found in both layer II and III. 

Chandelier cells lack a consistent cell body shape, though are generally of medium size and 

stain positive for PV and, are distinguished by superficial vertical aggregations of axonal 

boutons, aptly named “candles”, a lack of dendritic branching and lack of spines. They can be 

either horizontal or vertical, with vertical cells usually being slightly smaller (Soriano et al., 

1993). They generally display bipolar (2 projections) or bitufted (3 projections) dendritic arbors 
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that remain in layer II/III to form symmetrical synapses with the early axonal segments of 

stellate/pyramidal cells (Somogyi, 1977; Freund et al., 1983; De Felipe et al., 1989; Hendry et 

al., 1989).   

1.2.4.1.3 Layer III 

Differences in the electrophysiological and morphological characteristics of cells in the mEC 

and lEC are not as pronounced in layer III as in layer II (Tahvildari and Alonso, 2005).  

Previously, authors investigating the mEC have split pyramidal cells of layer III into two 

separate groups: spiny pyramidal cells (SPCs) and non-spiny pyramidal cells (NSPCs) – 

whereas in the lEC only sparsely SPCs were observed (Germroth et al., 1989).  

 

This work was initially developed by Gloveli et al, (1997), who instead split the mEC cells into 

4 differing types (type 1-4); type 1 and 2 are excitatory cells whose axons project to the deep 

EC layers toward CA1, forming the TA-CA1 pathway (Amaral and Witter, 1989) (type 1 being 

the spiny pyramidal and type 2 being non-spiny). In these classifications type 1 cells have long 

apical dendrites that extend to the cortical surface and ramify extensively. The basal dendrites 

are always spiny and branch further horizontally than vertically, often by a factor of 2. The non-

spiny type 2 cells are similar morphologically to type 1, excepting a lack of spines, though their 

dendrites branch closer to the cell body. The axons of these cells normally extend into the 

deeper layers of EC. Types 3 and 4 are assumed to be local circuit cells, with type 3 cells 

possessing similar morphological structure to type 1 – a small pyramidal soma with circular, 

extending, branching non-spiny apical and basal dendrites, that do not reach the cortical 

surface with slightly less horizontal spread. These type 3 cells have been classified as 

interneurons that resemble pyramidal cells, and as such are named pyramidal looking 

interneurons (PLIs). The axons of these cells remain within layer III, highly suggestive of a role 

in regulation of local circuitry (Gloveli et al., 1997).  Type 4 resembles type 2 cells, with compact 

basal dendrites and an apical dendrite that reaches the cortical surface. Axons of these cells 

remain in the superficial layers, again suggesting a role in local circuitry (Gloveli et al., 1997).  

 

Stellate cells have also been recorded within layer III, always in the upper portion of the layer 

close to layer II. The stellate cells have variable somata morphologies, which confer some 

morphological differences onto the dendrites of the cells. Noted cell body shapes include: 

spherical, elongated and polygonal – with the first conferring evenly distributed spiny dendrites 

that enclose the soma, the other two shapes show either one or two spiny basal dendrites with 

ascending apical dendrites that terminate in layer I. The axons of each extend into the white 

matter, with collaterals ramifying in layer III and IV (Germroth et al., 1989). Alongside PLIs are 

bipolar interneuron cells, with extending ascending dendrites that transverse layer II to reach 

layer I.  The axon ramifies from the basal dendrite and extends throughout layer III and into 

layer IV. Bipolar interneuron cells most commonly stain for CR in the lEC and VIP in the mEC 
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(Miettinen et al., 1997; Wouterlood et al., 2000). Slow wave oscillations are most frequently 

and strongly observed within layer III, with those waves being akin to cortical up and down 

states (Cunningham et al., 2006). 
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Figure 1.9 Cell types of the superficial EC layers 
Split into lEC (top) and mEC (below), showing preferential location of different cell types and the common projections of both dendrites 
and axons shown. Dendrites and cell bodies in black whilst axons in red. Layers labelled with Roman numerals and colour coded. Taken 
from Canto et al., 2008.
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1.2.4.1.4 Layer IV (Lamina Dissecans) 

Layer IV is predominantly free of cells and normally ascribed as the layer that separates the 

superficial and deep layers of the EC. Layer IV is noted as being a densely packed layer of 

fibres.  

 

That is not to conclude that layer IV is completely devoid of any cells, as occasionally pyramidal 

or fusiform cells can straddle the border between layer IV and layer III or V. These cells always 

have the characteristics of the cell layer they are closest too (LIII or V) (Lingenhohl and Finch, 

1991; Canto et al., 2008).  

1.2.4.2 Deep EC layers 

1.2.4.2.1 Layer V 

Layer V is a layer packed with pyramidal cells, normally possessing large somata at the surface 

of the layer, while deeper portions contain more medium and small pyramidal cells (Canto et 

al., 2008).   

 

Principal neurons of layer V are consistent across both mEC and lEC, with an apical dendrite 

extending upwards toward the superficial layers of the EC, often reaching Layer II or the pial 

surface. Normally the basal dendrites ramify within the deeper layers while the axons travel 

toward the subiculum (Hamam et al., 2000, 2002). The large pyramidal cells observed at the 

surface of the layer consistently have large, thick apical dendrites that tuft in superficial layers 

II and III, while the thin basal dendrites spread extensively across the extent of layer V and VI 

(Lingenhohl and Finch, 1991; Gloveli et al., 2001).    

 

Deeper, smaller pyramidal cells are more densely spiny, with thin basal dendrites that 

preferentially remain in the deep layers, while the axons project to the dentate gyrus via the 

subiculum, while collateral axons also terminate in layer IV and even layer II/III (Hamam et al., 

2000, 2002; Gloveli et al., 2001).  

 

A second principal neuron is observed in layer V, an offshoot of horizontal cells, it extends with 

thin sparsely spiny dendrites upward towards layer I and the pial surface, while its axons 

collateralise in layer V and VI (Lingenhohl and Finch, 1991; Hamam et al., 2000, 2002; Witter 

and Moser, 2006).  A third, polymorphic MPNs are reported to be present in layer V, with axon 

bundles that project to the dentate gyrus, again via the subiculum (Hamam et al., 2000, 2002; 

Gloveli et al., 2001).  
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In addition to these cell types, layer V also contains both fusiform and bipolar cells (Lingenhohl 

and Finch, 1991; Wouterlood et al., 2000). Both cells axons project toward the hippocampus 

and dentate gyrus. The dendrites of bipolar cells are spiny and extend on one side toward the 

hippocampus and on the other toward layer I and the pial surface, as does the ascending 

dendrite of the fusiform cells (Lingenhohl and Finch, 1991; Gloveli et al., 2001).  Previous work 

suggests the bipolar/multipolar cells stain positively for GABA, neuropeptide Y (NPY) and 

somatostatin (SOM) (Kohler et al., 1986).  

 

Layer V is likely to contain conjunctive head direction cells, another cellular subtype proven to 

be integral to spatial memory and navigation processes (Witter and Moser, 2006). Alongside 

this, Layer V cells are either unable or reluctant to participate in slow-wave oscillatory events 

observed in the superficial layers II and III and, as a whole, the layer is less likely to produce 

either pharmacologically induced gamma or theta rhythms when compared to the superficial 

layers (Cunningham et al., 2003, 2006; Quilichini et al., 2010).  

1.2.4.2.2 Layer VI  

Layer VI borders the white matter and, has been shown to contain both MPN and small 

pyramidal cells (Lingenhohl and Finch, 1991). This layer is not a commonly investigated EC 

area and, as such, much is still unknown about its cell types and function. 

 

Several conclusions can be formed from the data available about the differing cell types of the 

entorhinal layers. Firstly, the differences, both morphological and electrophysiological, 

between the principal neurons of layer II mEC and lEC, as well as the interneuronal populations 

of layer I, are highly suggestive of separate microcircuits in each area. The differences wane 

in the deeper layers of the EC, with layer III and V cell populations becoming more uniform 

both in a morphological and electrophysiological sense, across the mEC and lEC.  

 

This data is suggestive of differential wiring, distribution and functions at the superficial layers, 

with the deeper layers having a more functionally similar role. Caution must be applied to these 

conclusions, however, as the data is reliant on pieced together conclusions from disparate 

experiments and applied as a whole. Whole entorhinal layering and circuitry is still an area of 

intense interest and further research may shed new light on the differing roles of the mEC and 

lEC.  
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Figure 1.10 Cell types of the deep layers of the EC.  
Preferential locat ions of different cel l types in lEC (top) and mEC (below), and the common projections of both dendrites and axons. Cell  
bodies and dendrites coloured black, axons red. Layers indicated with Roman numerals. Taken from (Canto et al., 2008). 
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1.2.5 Intrinsic organisation of the entorhinal cortex 

The EC is a large and evolutionary important region of associative connections with a primary 

purpose of linking the hippocampus to multiple regions of the brain. The extensive connections 

between the EC and the hippocampus probably relates to their reciprocal importance in spatial 

memory processes with place cells being located in the CA1 and CA3 and, grid cells in the 

superficial layers of the EC (Witter and Moser, 2006).  

The intrinsic organisation of the EC involves the intraentorhinal connections clustering into 

distinct bands (normally 3) The bands are comprised of associational connections and are 

orientated rostrocaudally, while connections linking these bands are sparse (Kohler, 1986; 

Witter et al., 1986; Dolorfo and Amaral, 1998a; Chrobak and Amaral, 2007).  

Anatomical tracing experiments have shown that projections occurring within the superficial 

layers II/III terminate within the superficial layers, whereas projections originating in the deeper 

layers terminate at both deep and superficial layers (Kumar and Buckmaster, 2006). This 

incidence of superficial-superficial innervation has been shown to be extensive, with both 

inhibitory and excitatory connections described in layer II (Kumar and Buckmaster, 2006). 

Collateral innervation has been described as rare in layer II, while layer III principal neurons, 

on the other hand, are highly collaterally innervated (Dhillon and Jones, 2000). Tracing 

experiments provided evidence for highly connected layers but do not describe whether these 

connections are excitatory or inhibitory in nature.  Further work has shown that these specific 

bands of the EC are connected to specific regions of the hippocampus, with, in rats, 

interconnected areas between mEC and lEC including: close to the rhinal fissure – connected 

to dorsal hippocampal formation; in the intermediate band of EC – connected to intermediate 

portions of the hippocampal formation; the medial band of EC is connected to the ventral 

portion of the hippocampus. These bands in the EC provide associational connections to cells 

contained within that band, but have not, as yet, been shown to have any substantive 

connections with cells outside of these bands, highly suggestive information integration and 

input specific responses at these regions.  (Witter, 1989; Witter et al., 1989; Dolorfo and 

Amaral, 1998a, 1998b).  

The layers of the EC are highly interconnected, as described in previous sections, with Ramón 

y Cajal the first to describe the nature of some of these connections, identifying cells from deep 

layers projecting and collateralising in the superficial layers (Kohler, 1986, 1988; Dolorfo and 

Amaral, 1998a; Hamam et al., 2000, 2002). Further detailed anatomical work performed on 

the intrinsic EC connections has shown connections arising from deep layers and terminating 

in the superficial layers are split equally between pyramidal and interneurons and are most 

likely excitatory over inhibitory, providing evidence for both feedforward inhibition pathways as 
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well as excitatory pathways (van Haeften et al., 2003). Many pyramidal cells from each layer 

branch dendritically into layer I, which is reminiscent of cells in the neocortex, though it has not 

yet been established if they possess functionally similar roles. Layer I in the neocortex is 

responsible for receiving feedback projections and input from subcortical brain regions, 

whereas layer I in the EC is the main input layer from cortical structures and deeper layers of 

the EC (layers II, III and V especially) (Wouterlood and Nederlof, 1983; Room et al., 1984; 

Douglas and Martin, 2007).  

It has been speculated that back propagating action potentials may arise from the connections 

between CA1 and layer V pyramidal cells, with back propagating action potentials moving up 

the layer V dendrites into the superficial layers of the EC. Evidence of back propagating action 

potentials has been documented in both CA1 and the neocortex though as of yet not in the EC 

(Kloosterman et al., 2003). Overall, connectivity between the layers of the entorhinal is much 

more noticeable from the deep layers connecting up to the superficial layers, while the 

superficial layers mainly interconnect amongst themselves, with only rare axons directly 

connected to deeper layers (Iijima et al., 1996; Kajiwara et al., 2003).  

Research into the electrophysiological properties of each of the layers of the EC has been 

ongoing for many years, with inhibition and excitation balance (I/E) across the layers of 

particular interest. To do so, spontaneous background synaptic activity has long been 

monitored to assess the I/E balance of the networks and used as a measure of neuronal 

excitability. Spontaneous release of glutamate has been shown to play an important role in 

overall neuronal network function and synchrony, as well as modulation of neuronal excitability, 

observed in the form of spontaneous EPSCs (sEPSCs) (Paré et al., 1998a, 1998b; Destexhe 

and Pare, 1999; Harsch and Robinson, 2000; Ho and Destexhe, 2000; Stacey and Durand, 

2000, 2001).  Spontaneous background inhibition is also present in the form of spontaneous 

GABA release manifesting as spontaneous IPSCs (sIPSCs) (Otis et al., 1991; Mody et al., 

1994; Salin and Prince, 1996). Background inhibition has been shown to decrease network 

excitability, and thus works to balance the effects of background excitation (Soltesz et al., 

1995; Hausser and Clark, 1997; Paré et al., 1998b; Stevens and Zador, 1998; Harsch and 

Robinson, 2000). Indeed, these principles apply to all areas of the cortex, including the 

hippocampus and entorhinal cortex. 

Excitation was found to disperse into a clear rank, with LV displaying the highest amounts of 

background excitation, followed by LIII and then LII. LV neurons showed larger sEPSC 

amplitude, a greater tendency for high frequency bursting and a greater NMDAR contribution 

to EPSCs than observed in LII (Berretta and Jones, 1996). All these factors have been 

speculated as playing a role in the greater propensity for synchronisation observed in LV over 

LII. In the layers where background excitation levels were high, inhibitory levels were still
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higher, displaying the overall inhibited nature of the EC as a structure (Berretta and Jones, 

1996; Bailey et al., 2004; Jones and Woodhall, 2005; Woodhall et al., 2005; Greenhill and 

Jones, 2007, 2010, Greenhill et al., 2012, 2014).  Further evidence has shown that inhibition 

exhibits a clear hierarchy of across the layers, with an order of LII>LIII>LV (Greenhill et al., 

2014). 

Background synaptic activity has also been suggested to highlight the processing of efferent, 

reentrant and afferent information within the EC (Paré et al., 1998a; Destexhe and Pare, 1999; 

Ho and Destexhe, 2000; Shu et al., 2003). This I/E balance therefore has an important role in 

the control of network excitability, as well as in epileptogenesis (Otis et al., 1991; discussed 

further in Section 1.4).  

The overall outline of the EC therefore, as we currently understand it, is in agreement with the 

research previously performed by Gloveli et al, (1997) and (2001), postulating that superficial 

layers are massively dominated by inhibition, while deeper layers are much less so (Jones, 

1993). Alongside the background synaptic activity work previously discussed a greater number 

of inhibitory terminals are present in the superficial layers, as shown by immunocytochemical 

approaches (Kohler et al., 1985).  

Further research into the exact functional and morphological differences between the divisions 

of the EC (mEC/lEC) and the effect they have on the overall scheme of the EC are required, 

as too is further work to establish the roles of the layering and the connections between the 

layers before a full picture of the complex role the EC has into cortical and subcortical flow of 

information.  
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1.3 Receptors of the entorhinal cortex 

1.3.1 Glutamatergic receptors 

Glutamate is the most abundant excitatory neurotransmitter in the brain (Meldrum, 2000). 

Receptors sensitive to glutamate are excitatory in nature and are said to be glutamatergic. 

Excitatory receptors are divided into two families: ionotropic receptors and metabotropic 

receptors. Ionotropic receptors include:  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate 

receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs) and kainate receptors 

(KARs), all of which have a reverse potential of ~0mV. Metabotropic glutamate receptors are 

G-protein coupled receptors known as mGluRs that effect responses through second

messenger signal transduction systems. These signal transduction mechanisms are slower

than ionotropic receptor mediated ion movement into neurons. As we are mainly interested in

phasic responses to stimuli the next section shall be focussed on ionotropic receptors.

Figure 1.11 Flow chart showing the different glutamate classifications. 
Receptor types and the subunits that compose them are shown. The general activat ion 
response time is shown for each receptor type. Metabotropic receptors are further divided 
into groups, which perform slightly different functions. Group 1 activates PLC when 
stimulated, whereas groups 2 + 3 are known to inhibit the enzyme adenylyl cyclase 
reducing cAMP production, among other transduction pathways (Pinteaux-Jones et al.,  
2008).  

1.3.1.1 AMPA receptors 

AMPARs are usually heteromeric tetramers, composed of a combination of 4 subunits from 

GluA1-4 (GluR1-4 in old terminology). Homomeric AMPARs, however, have been described 

in the literature though are exceedingly rare in nature (Lu et al., 2009). AMPARs are widely 
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distributed throughout the CNS and are commonly postsynaptic receptors, though there is 

evidence of their presence at the presynaptic terminal (Pinheiro and Mulle, 2008).  

 

Activation of AMPARs requires two L-glutamate molecules to bind. The binding of L-glutamate 

effects conformational change of the receptor, opening the central pore, allowing ionic transfer 

into the postsynaptic bouton. Entry of positive ions into the cell generates fast excitatory 

postsynaptic currents (EPSCs), increasing the membrane potential a small amount with one 

EPSC, due to rapid activation and deactivation of the receptor. Multiple summed EPSCs can 

elicit an action potential if threshold potential is reached.  

 

AMPAR function and ionic permeability depends on the specific subunit composition of the 

receptor. The vast majority of AMPAR are Ca2+ impermeable, with Ca2+ entry wholly dependent 

on whether GluA2 is present or not, with its presence denying Ca2+ entry (Derkach et al., 2007). 

The majority of AMPARs in the mammalian CNS, especially in the CA1/CA3 of the 

hippocampus, are GluA2 containing tetramers, as GluA2 is preferentially incorporated into 

AMPARs (Sans et al., 2003; Derkach et al., 2007). Ca2+ entry, therefore, is unusual and can 

act as one the distinguishing factors between AMPARs and NMDARs, as NMDARs are 

perpetually Ca2+ permeable. AMPAR variants are seemingly differentially distributed 

throughout the brain, suggesting a link between subunit composition and location (Martin et 

al., 1993).  

 

To add, GluA2 incorporation into AMPARs is not always exclusive of Ca2+ permeability. 

Glutamine/arginine (Q/R) site RNA editing of the GluA2 subunit mRNA is required for AMPAR 

Ca2+ impermeability. Q/R editing refers to a post-transcriptional modification that alters a 

glutamine encoding codon to an arginine encoding codon (Hollmann et al., 1991; Hume et al., 

1991). Without this modification AMPAR containing GluA2 are permeable to Ca2+, though 

unedited GluA2(Q) containing AMPARs are relatively rare, with less than 1% of grey matter 

mRNA encoding for unedited GluA2 subunits (Kawahara et al., 2003). The function of unedited 

GluA2(Q) AMPARs are relatively unknown as they do not seem to have a role in brain function 

or disease, though have recently been linked to regulating excitotoxic neuronal cell death in 

ischemia and motor neurone disease (Kwak and Kawahara, 2005; Kwak and Weiss, 2006; Liu 

and Zukin, 2007; Kwak et al., 2010). 

 

AMPARs are heavily implicated in both synaptic plasticity and, learning and memory (Rioult-

Pedotti et al., 2000; Dragoi et al., 2003; Whitlock et al., 2006). 
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Figure 1.12 Schematic of AMPARs showing the tetrameric structure.  
Inclusion of the edited GluA2 subunit in AMPARs impedes Ca2+ permeabil ity of the 
receptor. Binding of glutamate or another agonist causes a conformational change 
allowing Na+ (and Ca2+ if GluA2 not present) into the neuron – causing depolarisation 
and excitation.  

1.3.1.2 NMDA receptors 

NMDARs are glutamatergic receptors formed of tetramers, generally composed of two GluN1 

and two N2 subunits (formally NR subunits), in a dimer of dimers formation (commonly 1-1-2-

2). A third subunit type is known, GluN3, though this subtype has been shown to have inhibitory 

effects on NMDA receptors. GluN1 is obligatory for the formation of a functional NMDAR, 

usually in collaboration with one or more of the N2 subunits (Schorge and Colquhoun, 2003; 

Furukawa et al., 2005), with the most common tetramer widely believed to contain 2 GluN1 

subunits, with 1 of both the N2A and N2B subunits (Parsons and Raymond, 2014). GluN3A-B 

must co-assemble with a GluN1 subunit to form a functional receptor, where, if present a 

reduced permeability to Ca2+ is noted (Pérez-Otaño et al., 2001). Recombinant homomeric 

GluN1 NMDARs have been demonstrated to be functional in Xenopus oocytes with low 

conductance and amplitude, with affinity values for agonists and partial agonists 4- to 16-fold 

weaker, but with a higher affinity for glycine (Grimwood et al., 1995). 

 

Within these subunit types there are many isoforms, with eight splice variants of GluN1 

produced by alternative splicing of GRIN1 (Durand et al., 1992, 1993; Sugihara et al., 1992; 

Hollmann et al., 1993; Mori and Mishina, 1995). There are four known isoforms of GluN2 (A, 

B, C and D) encoded by GRIN2A-D, while 2 isoforms of GluN3 are known, those being N3A 

and N3B, encoded by GRIN3A-B respectively (Moriyoshi et al., 1991; Meguro et al., 1992; 

Monyer et al., 1992; Mishina et al., 1993; Ciabarra et al., 1995; Sucher et al., 1995; Nishi et 

al., 2001).  Each subunit possesses a distinctive intracellular C-terminal domain, of differing 

amino acid lengths, which allow interaction with alternative signalling molecules. 
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The GluN2 subunits display differential developmental expression, with the embryonic brain 

expressing only GluN2B and N2D. Major alterations in expression rates are observed in the 

first two post-natal weeks, with GluN2A showing a rise immediately after birth and remains 

constant through to adulthood, while GluN2D falls to a low expression rate after birth. GluN2B 

expression remains relatively constant throughout, while GluN2C shows expression only on 

post-natal day 10 (P10) (Akazawa et al., 1994; Monyer et al., 1994; Sheng et al., 1994). In 

terms of GluN3 expression, expression is only noted post-natal, with GluN3A showing 

expression immediately before declining, while GluN3B rises slowly throughout development, 

with high expression in motor neurons. The expression profiles of GluN2B and ND, as well as 

GluN3A, suggest roles in synaptogenesis and synapse maturation (Henson et al., 2010; 

Pachernegg et al., 2012). The adult brain, meanwhile, shows predominant expression of 

GluN2A and N2B in the hippocampus among other regions, suggesting an integral role in 

synaptic plasticity (Watanabe et al., 1992; Akazawa et al., 1994; Monyer et al., 1994).  

 

GluN2A have been found to be express across all brain areas, in mature adult rat brains, while 

GluN2B was contained mostly in the forebrain. GluN2C was restricted to the cerebellum, 

olfactory bulb and thalamus areas, while GluN2D was constrained to the brain stem, 

mesencephalic and diencephalic structures. This data suggest GluN2A is the most 

predominantly expressed NMDAR subunit expressed throughout the brain, while the other 

GluN2 subunits appear to be more region specific in expression. The overlap of subunit 

expression highlights the possibility of multiple GluN2 subunits being present in a single 

NMDAR (Wenzel et al., 1995).  

 

GluN1 and GluN3 subunits bind to glycine, while GluN2 subunits bind glutamate. NMDARs are 

characterised by the voltage-dependent magnesium (Mg2+) block and the high permeability to 

Ca2+. The Mg2+ blockade of the central pore inhibits ionic transfer until the membrane potential 

threshold has been met through depolarisation of the neuron by AMPAR, the co-binding of 

glutamate to N2 subunits and, D-serine or glycine to the linked binding site present on N1 

subunits causing the voltage-gated Mg2+ to be removed.  Upon activation Ca2+, Na+ and K+ 

ions flow into the intracellular membrane, with Ca2+ entry triggering certain intracellular 

signalling molecules. An allosteric binding site for zinc is present and a known modulator of 

NMDARs (Rachline et al., 2005). NMDARs are the predominant receptors involved in synaptic 

plasticity and memory, cortical circuitry development and, synaptic function (McBain and 

Mayer, 1994; Tsien et al., 1996; Cull-Candy et al., 2001; Perez-Otano and Ehlers, 2004; Lau 

and Zukin, 2007). 

. 
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Figure 1.13 Schematic of the NMDARs 
NMDARs are composed of tetrameric assemblies of, generally, two GluN1 and two GluN2 
subunits expressing glycine and glutamate recognition sites, respectively (Hirai et al., 
1996; Laube et al., 1997). Binding of and co-agonists are required for receptor activation.  
Mg2+ block the central pore of NMDARs, relying on voltage change of the membrane to 
allow ion flux. Antagonist such as D-AP5 are competit ive and as such compete for the 
agonist binding site with glutamate and NMDA. Ifenprodil is a N2B specific antagonist,  
while PEA-QX (not shown) is a N2A selective antagonist. In addition, most NMDA 
receptors are influenced by Zn2+ ions in a voltage-independent manner. Taken from 
(Parsons et al., 2007).  

1.3.1.3 Kainate receptors 

KARs are also ligand-gated ionotropic tetramers, assembled from a pool of 5 subunit types 

(GluK1-3 + GluK4-5), able to form either homomers or heteromers. Like AMPARs, KARs 

mediate rapid excitatory transmission (Jane et al., 2009). KARs are expressed both on the pre- 

and postsynaptic terminals. Presynaptic KARs regulate both excitatory and inhibitory 

neurotransmission by interacting with coupled G-proteins and protein kinase C signalling 

mechanisms, while at postsynaptic locations, KARs enrich synaptic responses (Jane et al., 

2009).  

KARs are associated in various processes such as seizure generation and CA3 NMDAR-

independent long-term potentiation (Bortolotto et al., 1999; Fritsch et al., 2014). 

1.3.2 GABAergic receptors 

γ-amino butyric acid (GABA) is the primary inhibitory neurotransmitter in the CNS, with 

receptors sensitive to it known as GABAergic receptors. These receptors include GABAA and 

GABAB, and formally GABAC, though these have now been reclassified into a specific type of 

GABAA receptor (Olsen and Sieghart, 2008).  
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1.3.2.1 GABAA receptors  

Figure 1.14 Schematic detailing the most common GABAAR subunit configuration. 
The most common GABAAR conformation is composed of α, β, γ subunits in a 2:2:1 ratio 
(as shown). Two GABA molecules binding at their extracellular site between α and β to 
cause a conformational change in the shape of the receptor, opening the central pore 
and allowing negat ive chloride (Cl-) ions into the neuron, hyperpolarising and inhibiting 
it. GABAAR is modulated by barbiturates (Barb) and benzodiazepines (BZ), with their  
alloster ic sites located as displayed on the schematic. 

 

GABAA receptors (GABAARs) are ionotropic, heteromeric pentamers. The combination of 

subunits corresponds to receptor function. The most common isoform conformation of GABAA 

is 2 alpha, 2 beta and 1 gamma subunit (2a, 2b, 1g) (Farrar et al., 1999). There are slight 

variations in each of these subunit types, with 6a, 3b, 3g identified plus others including delta 

(δ) and omega (Ω). There are currently 19 configurations of the GABAA receptor known 

(Sieghart et al., 2012).  

 

GABAARs mediate the primary function of GABA, which is to inhibit neurons through inhibitory 

postsynaptic potential (IPSP) generation. This is achieved by 2 GABA molecules binding to 

their sites, causing a conformational change to open the central pore of the receptor, allowing 

anion influx (usually chloride ion (Cl-) influx), thereby lowering membrane potential and 

decreasing the likelihood of discharge.  
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GABAARs are expressed at both synaptic and nonsynaptic (extrasynaptic) locations, which 

mediate phasic and tonic inhibition respectively (Banks and Pearce, 2000; Mody, 2001; Petrini 

et al., 2004). Phasic inhibition arises from IPSP generation, through GABA binding to GABAAR. 

This process allows rapid, coordinated inhibition of neurons. Due to the sheer concentration of 

GABA released many GABAARs open synchronously. 

 

Alongside the GABA binding sites on GABAARs, a host of allosteric sites are also present, 

dependent on the specific subunit composition of that receptor. Taking the most common 

conformation of GABAARs (2a, 2b, 1g), barbiturate and benzodiazepine binding sites are 

present. The binding of either of these molecules, or certain neurosteroids, endogenous steroid 

ligands capable of binding GABAAR, are able to potentiate or modulate GABAAR response 

(Lambert et al., 2003).  

 

Extrasynaptic GABAARS are located outside of the postsynaptic density, providing tonic 

inhibition to the neurons (Mann and Mody, 2010). Extrasynaptic GABAARs have different 

configurations of subunits and, usually, though not essentially, possess a delta subunit (Belelli 

et al., 2009). They bind “spill over” from synaptic transmission to provide tonic inhibition to a 

separate dendrite. Spill over is GABA molecules that have escaped from the synaptic cleft of 

another pair of neurons and may bind to adjacent pre- or postsynaptic receptors. Extrasynaptic 

GABAARs activate at much lower concentrations of GABA to produce tonic inhibition of 

neurons, also known as GABAergic tone (Stagg et al., 2011). It is thought that the delta subunit 

found in many recombinant extrasynaptic GABAARs provides the machinery for this decreased 

GABA requirement, as well as the decreased desensitisation of the receptors (Saxena and 

Macdonald, 1994; Haas and Macdonald, 1999; Bianchi and Macdonald, 2002; Brown et al., 

2002). Tonic inhibition is also provided by low concentrations of GABA being released into the 

extracellular space causing persistent activation of GABAARs (Farrant & Nusser, 2005).  

 

The previously classified GABACRs, were reclassified into GABAAR (Olsen and Sieghart, 

2008), and contain the subunits ρ1-3. This class are non-responsive to the GABAAR antagonist 

bicuculline and not modulated by benzodiazepines, instead having their own selective ligands 

(TPMPA, CACA) (Johnston, 1996; Kirischuk et al., 2003). As with extrasynaptic GABAARs, 

these receptors show a higher sensitivity to GABA, do not become desensitised to GABA and, 

possess longer decay times than regular GABAARs (Johnston, 1996). 

1.3.2.2 GABAB receptors 

GABABRs are G-protein coupled, 7 transmembrane domain receptors and therefore, 

metabotropic. There are two types of GABABR: type 1 (Kaupmann et al., 1997) and type 2 

(Jones et al., 1998; Kaupmann et al., 1998). Both types of GABABR must be expressed within 

the cell for either to activate (Pierce et al., 2002). For functional GABABR formation and 
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activation, heterodimerisation is required. Interaction between the intracellular C-terminals of 

each type forms a coiled-coil, which helps ensure heterodimerisation of the receptor complex, 

but is nonessential for this process (Pagano et al., 2001). 

Figure 1.15 A simplified, monomeric structure of a post-synaptic GABAB receptor.  
The coupled G-protein and ion channels are shown. GABA binds to the “Venus fly-trap 
module” binding site, which is purported to close around the agonist, hence the name. 
Binding activates the G-protein complex, which then moves to activate the K+ channel, 
allowing K+ out, hyperpolarising the membrane. Ca2+ influx or adenylyl cyclase can also 
be inhibited. Successful dimerisation of GABABR is prerequisite to their activation. 
GABABRs are associated with slow or tonic inhibition of neurons.  

 

The GABA binding site is dubbed the “Venus fly-trap” module, due to its structure and ligand 

binding mechanism, as well as this, it is active only on type 1 GABABRs. Postsynaptic 

GABABRs are activated through GABA binding activating the coupled G-protein complex and 

causing K+ channels to open. This allows K+ to exit the intracellular membrane, hyperpolarising 

the neuron in a controlled and slow manner (Dutar and Nicoll, 1988; Lüscher et al., 1997). This 

action brings the neuron closer to K+ equilibrium potential. Besides this, GABABRs inhibit Ca2+ 

channel opening, decreasing Ca2+ conductance and Ca2+ spikes in the membrane (Mintz and 

Bean, 1993), and can inhibit adenylyl cyclase. In the presynaptic terminal, GABABRs have 

been shown to inhibit neurotransmitter release in both inhibitory and excitatory synapses 

(Bowery et al., 1980). This is most likely achieved through inhibition of Ca2+ channels in 

inhibitory neurons (Takahashi et al., 1998). GABABRs are identified through their sensitivity to 

the selective antagonist baclofen (Bowery et al., 1980). Defects in the GABABR can lead to 

various neurological disorders including epilepsy and spasticity (Bowery et al., 2002; Bettler et 

al., 2004; Froestl, 2010).  
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1.4 Neuronal Network Oscillations 
Neural oscillations are rhythmic waves of activity, produced through intracellular or 

extracellular mechanisms, from individual neurons or interactions between many neurons as 

part of neural ensembles. Brain rhythms represent the extracellular voltage changes produced 

by these mechanisms  (Buzsaki, 2006). Neural oscillations operate across large frequency 

ranges; from very low to very high (0.05Hz to 600+Hz).  

 

The first electrical activity from brains was recorded by Richard Caton in 1875. With the 

invention of the electroencephalogram (EEG), Berger recorded the same electrical signals 

from human brains some 50 years later. In 1929, Berger coined the terms alpha (a) and beta 

(b) waves (8-13; 12-25 Hertz/Hz) in his published work (Berger, 1929; Tudor et al., 2005). 

 

The study of oscillations encompasses both in vivo and in vitro approaches, with 

magnetoencephalography (MEG) and electroencephalography (EEG) being examples of in 

vivo whole brain techniques. MEG is a neuroimaging technique that provides a functional way 

to study electrical currents through the magnetic fields they produce. In vitro examples include 

the recording of brain slices through local field potentials (LFP), an electrophysiological 

technique that allows measurement of extracellular potentials and voltage changes. The 

evolution of brain slicing techniques over time has enabled living tissue to be better preserved, 

allowing more time for longer LFP recordings. 

 

Persistent oscillations can be induced via various agents in slices including, mGluR agonists 

(Whittington et al., 1995), kainate receptor agonists (Cunningham et al., 2003; Fisahn et al., 

2004), cholinergic agonists (Fisahn et al., 1998) and by tetanic electrical stimulation. Such 

persistent oscillations have been induced in many major areas of the brain such as, the CA1 

and CA3 regions of the hippocampus and, the entorhinal and motor cortices (Fisahn et al., 

1998; Gillies et al., 2002; Cunningham et al., 2003; Yamawaki et al., 2008). 

1.4.1 Mechanism of oscillatory events 

The current sources and sinks model (Figure 1.16) helps explain the rise of extracellular field 

potentials. That is to say, extracellular field potentials are generated through the summation of 

neural current loops across a large area. Sources and sinks arise from the requirement of 

neurons to remain electroneutral. An illustration of this is when an excitatory postsynaptic 

potential (EPSP) arises, for instance when an excitatory AMPAR is activated on postsynaptic 

distal dendrites. Activation of this receptor allows influx of extracellular Na+ ions into the 

dendrite, generating an active intracellular sink. To counter this and achieve electroneutrality, 

a passive return current sink arises. The sink is formed upstream, in the axon or 

perisomatically, by the efflux of positive potassium ions, moving from intracellular to 

extracellular space. The flow of charge across the membrane results in the formation of a 
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dipole.  A closed microcircuit is produced between net influx and efflux of positive ion 

movement. The circuit always summates to zero across the neuron, therefore, achieving 

electroneutrality. As the EPSP current moves down the dendrite toward the soma/axon, so too 

does the active sink. To counterbalance this, the passive return current source moves in the 

opposing direction, in this case towards the dendrite, thus maintaining the dipole and 

electroneutrality.  

 

The same principle holds true for IPSPs but in reverse. If a GABAAR is activated it allows for 

a net influx of anions. This generates an intracellular active source and therefore requires a 

passive current return to be established. An extracellular sink is achieved through the efflux of 

upstream chloride ions, providing current return. Again, electroneutrality is initiated through 

dipole generation. Determination of whether sources and sinks are active or passive 

mechanisms is difficult to uncover, unless the location and type of synapse are known (Buzsaki 

et al., 2003).   

 

Actions potentials (AP) have little to no role in LFP recordings, due to the rapid decay time, 

short attenuation distance and the lack of synchrony between AP firing. Also, the extracellular 

fluid that surrounds the neurons acts as a filter, negating the effect of APs. In contrast to 

postsynaptic potentials (PSPs), APs decay rapidly in both temporal and spatial dimensions, 

but have a larger effect on transmembrane potential. The LFP signal is largely achieved by 

PSPs, resulting from synaptic activity. Ca2+ spikes, electrical gap junctions and 

afterhyperpolarisations from APs, however, can all contribute as well (Buzsaki, 2006; Buzsaki 

et al., 2012). 
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Figure 1.16 Schematic of the current source and sinks model.  
As cations rush into the dendrites of a neuron, through an activated ion channels, a 
current sink is formed. To counterbalance this a source needs to be generated,  
extracellular ly toward the soma. Ions flow out of the membrane causing equil ibrium. In 
this example positive sodium ions are rushing in causing a net increase in charge 
intracellularly and a net decrease extracellularly, rectif ied by sodium leaving the cell. As 
the sinks progresses toward the soma the source will move upward towards the dendrites.   

1.4.2 Oscillatory frequency bands 

Specific frequency bands have been associated with different activities, for instance the delta 

frequency is associated with deep non-rapid eye movement (NREM) sleep phases, whereas 

gamma with attention and memory (Fell et al., 2001; Fries et al., 2001). Overlap between 
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bands occurs through, diversity in the brain region the frequency emanates from, the presumed 

mechanisms and, behavioural states.  

 

The table below (Table 1.1.) shows the most commonly studied and accepted bands. Perhaps 

the most widely investigated frequency band type in vitro is the gamma oscillation, which I 

shall briefly review here. 

  
Table 1.1 Oscillation frequency table. 

1.4.3 Gamma oscillations  

The term “gamma oscillation” emerged in the 1980’s and is generally accepted to cover the 

frequency band ranging from 30-70Hz (Bressler and Freeman, 1980).  

 

The CA3 region of the hippocampus is a popular target of study in vitro, due to its laminar 

organisation, presence of spontaneous gamma oscillations, ease of induction and visibility of 

pharmacological persistent gamma and, the similarity of profile to in vivo EEG waves. Cortical 

gamma oscillations are routinely studied, as they are believed to play a role in the processes 

of consciousness (Llinas et al., 1998; Varela et al., 2001), sensory binding (Singer, 1993; Gray, 

1994), memory (Fell et al., 2001) and attention (Fries et al., 2001).  

  

Gamma oscillations are ubiquitous occurrences throughout brain architecture, across a range 

of species, with each location producing kinetically similar rhythms. Gamma rhythm capable 

regions include: the hippocampus (Buzsaki et al., 1983; Whittington et al., 1995), the entorhinal 

cortex (Chrobak and Buzsaki, 1998), the amygdala (Halgren et al., 1977) and the thalamus 

(Pinault and Deschenes, 1992), along with many regions of the neocortex. Due to profile 

similarity amongst all these areas, details of what is required and what hinders gamma 



 47 

oscillation generation have been detected. Three requirements are deemed necessary to 

produce network gamma, these include: connected networks of inhibitory interneurons linked 

through electrical gap junctions, GABAARs to provide a time constant and, sufficient excitatory 

drive to cause interneuronal network firing (Wang and Rinzel, 1992; Whittington et al., 1995; 

Traub et al., 1996b).  

1.4.3.1 Models of gamma 

 
Figure 1.17 ING and PING models of gamma oscillations in vitro.  
A) ING, the drive behind the gamma oscil lations is coming from interconnected inhibitory 
interneurons setting the rhythm through narrow time windows through the firing of IPSPs 
onto themselves and pyramidal cel ls. Pyramidal cel ls respond by discharging in the 
intervals after decay of GABAAR inhibition, producing oscillations. B) PING, drive comes 
from excitatory pyramid cells, which stimulate the basket cell interneurons through 
EPSPs, which then in turn modulate pyramid cell f iring to achieve gamma wave 
oscillations through IPSP discharge. 

 

Two relatively well-defined models of in vivo and in vitro gamma oscillation generation exist. 

One relies on inhibitory interneurons (ING/I-I), the other, excitatory pyramidal cells (PING/E-

I).  

1.4.3.1.1 ING model of gamma oscillations 

The ING model (Figure 1.17.A) is predominantly seen in vitro and is unlikely to be applicable 

to in vivo conditions, though provides a useful tool for study of interneuron contribution to 

gamma (Traub et al., 1996b; Whittington et al., 2000). ING is capable of producing gamma 

oscillations through either tonic or stochastic input drives, as phasic excitation is lacking. Tonic 

inputs result in neurons firing at distinct intervals. Stochastic inputs cause irregular neuronal 

firing until sufficient synaptic interaction results in oscillation emergence. In either case, 

synchrony arises due to subsections of interneurons discharging concurrently, generating 

synchronous IPSPs in linked neurons. Inhibited neurons respond by spiking, once the 

GABAAR-mediated hyperpolarisation has decayed. This cycle will continually repeat to 

produce oscillations.  

 

The rate at which synchronous IPSPs fire is linked to IPSP kinetics and cell refractory periods 

(Whittington et al., 1995; Wang and Buzsaki, 1996). The duration of inhibitory postsynaptic 

A B 
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currents (IPSCs) depends on GABAAR subunit types (Farrant and Nusser, 2005). Experiments 

that cause an increase in the time decay of GABAAR hyperpolarisation period have shown a 

decrease in oscillation frequency (Traub et al., 1996a). Further evidence of the ING model 

supporting gamma oscillations in vitro is shown by pharmacological agents increasing coupled 

interneuron firing such as: mGluR agonists (Whittington et al., 1995), KAR agonists (Fisahn et 

al., 2004; Hajos and Paulsen, 2009) and muscarinic-cholinergic agonists (Fisahn et al., 1998). 

1.4.3.1.2 PING model of gamma oscillations 

Interconnected areas of excitatory pyramidal cells and inhibitory interneurons are the oldest 

models of gamma oscillation formation (Wilson and Cowan, 1972; Leung, 1982). In contrast to 

the relative simplicity of ING, PING (Figure 1.17.B) is a more complex model. The addition of 

excitatory pyramidal cells to the ING model enables neural networks to become phase locked 

to gamma rhythms (Buzsaki et al., 2012). Fast spiking PV+ basket interneurons project to 

pyramidal cell somas from the hippocampus to generate the gamma oscillation rhythm 

(Penttonen et al., 1998; Csicsvari et al., 2003). Basket cells have high mutual interconnectivity 

via gap junctions and GABAergic synapses (Peinado et al., 1993; Tamas et al., 2000; Deans 

et al., 2001; Galarreta and Hestrin, 2001; Szabadics et al., 2001; Meyer et al., 2002), a 

perisomatic location and, phase-locked firing of one action potential per gamma cycle (Sik et 

al., 1995; Gloveli et al., 2005). Excitatory pyramidal cells in the hippocampus are thought to be 

important in encoding, storing and processing information (Hajos et al., 2004). Inhibitory 

interneurons are thought to be involved in synaptic plasticity, network oscillations and spike 

timing (Buzsáki and Chrobak, 1995; Paulsen and Moser, 1998; Whittington and Traub, 2003).  

 

Basket cells impose IPSP rhythms onto pyramidal cells, orchestrating discrete time windows 

in which they may fire. The basket cells are indirectly stimulated through low frequency, 

rhythmic EPSP discharge from pyramidal cells. EPSP discharging onto the basket cells causes 

synchronous, fast frequency firing between individual interneurons; in turn generating IPSP 

discharge in both the interneuron and pyramidal populations, mediated through GABAAR 

(Cobb et al., 1995; Traub et al., 1996a).  

 

Gamma rhythm synchrony between interneuron-selective interneurons and basket cells 

discharge is due to mutual interconnectivity of synapses and electrical gap junctions (Cobb et 

al., 1997). Electrical gap junctions are not thought to be prerequisite to gamma but act to 

enhance coherence, as cells connected by gap junctions are able to pass ions much more 

rapidly (Bartos et al., 2002; Kopell and Ermentrout, 2004). Gap junctions selectively contribute 

to gamma oscillations, being able to affect amplitude, as demonstrated in connexin-36 

knockout mice studies (Buhl et al., 2003). 
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Investigations into phase-locked gamma oscillations, using the PING model, have yielded 

interesting results. Intracellular studies show pyramidal cells spike at low frequencies (~3Hz) 

when phase-locked, while interneurons fire at a higher rate, albeit with a slight delay when 

phase-locked (Fisahn et al., 1998; Hajos et al., 2004). The sparse firing of pyramidal cells 

shown here indicates that individual hippocampal pyramidal cells are not required to fire every 

cycle. Phase-coupled perisomatic interneurons fire at ~18Hz with a slight delay that 

demonstrates strong phase coupling. Dendritic interneurons were shown to fire at ~8Hz with 

a more significant time delay, suggesting weaker phase coupling (Hajos et al., 2004). Further 

to these studies, assays aiming to clarify whether low frequency discharge pyramidal cells 

could support gamma oscillations generation were attempted. The data generated supports 

the recurrent synaptic feedback mechanism, pyramidal excitation and then interneuron 

inhibition, of PING as a credible explanation of network synchronisation (Hajos et al., 2004; 

Mann et al., 2005). 

1.4.3.2 Slow wave modulation of brain-wide gamma oscillations 

Gamma oscillations are usually local in nature, with a low number of neurons participating in 

discharge windows, at a high frequency (Kopell et al., 2000). This contrasts with slower 

oscillatory events such as theta, alpha and beta, which have a larger population of neurons 

participating, at a lower frequency that can be used for information processing over a wider 

area (Kopell et al., 2000). The reasons for this are mainly due to the relevant time windows 

each rhythm has to fire in for instance, gamma is a fast oscillatory event with a time window of 

only 10-30ms per discharge. Theta is slower and therefore is accompanied by a longer time 

window (50-100ms) allowing integration of more neuronal discharges. However, local patches 

of gamma oscillations within the brain have been documented as being able to interact and 

synchronise with one another, begging the question, how does this synchrony arise?  

 

Cross-frequency phase coupling occurs when transient gamma oscillations are interlinked with 

slower oscillations. The basic premise behind this is that gamma oscillations are modulated or 

regulated by a slower oscillation. There are several aspects to cross-frequency phase coupling 

including, phase-phase, phase-amplitude and amplitude-amplitude coupling (Buzsaki and 

Wang, 2012). These indicate how the two rhythms are coupled in terms of wave dynamics and 

are measured by coherence. The most documented instance of this is by theta in a cross-

frequency phase-amplitude relationship with gamma frequencies from both local and distant 

brain regions (Buzsaki et al., 1983; Chrobak and Buzsaki, 1998).  

 

In the hippocampus, gamma activity is usually superimposed on theta rhythms, with nested 

theta-gamma waves being common. Nested theta-gamma rhythms occur when gamma fires 

within the peak of theta waves, and are thought to be essential for information processing 

within the brain (Lisman and Jensen, 2013). Data has shown that theta waves can modulate 
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the amplitude of gamma, and that frequency/amplitude changes between the two are positively 

correlated (Bragin et al., 1995). Phase coupled theta-gamma oscillations between the 

entorhinal and hippocampus are thought to provide an effective method of communication 

between the two regions of the brain. The exact mechanisms of theta generation in the 

hippocampus are as yet unknown, though it has been suggested that the signal is generated 

within the hippocampus (Orban et al., 2001).  

 

Other frequencies are also linked to gamma modulation including alpha (Cohen et al., 2009) 

and delta (Lakatos et al., 2005). 

1.4.3.3 Glutamate receptors in gamma oscillations  

Ionotropic AMPA receptors are the prominent driver of gamma oscillations, being the main 

transducer of all fast, excitatory neurotransmission. The excitatory drive provided to 

interneurons by pyramidal cells in PING occurs through fast glutamatergic synapses 

generating rhythmic EPSPs. Postsynaptic binding of AMPAR agonists such as glutamate, 

generate most EPSPs. This binding causes the ionic pore to open allowing cations, such as 

K+ or Na+, to enter and depolarise the postsynaptic terminal.  

 

The importance of AMPAR has been demonstrated through genetic reductions of AMPA 

current and by use of AMPAR antagonists (Fisahn et al., 1998; Hajos et al., 2004). Gamma 

oscillations have been induced in both hippocampus and medial entorhinal cortex in vitro in 

response to application of kainic acid. Kainic acid is a direct agonist of kainate receptors (KAR) 

(Cunningham et al., 2003) and agonist of AMPAR.  

 

Mounting evidence suggests that AMPARs are key players in oscillatory events. Carbachol 

(CCh)-induced, high frequency gamma events, performed in the CA3, showed AMPARs to be 

involved in network synchrony (Mann et al., 2005). Further to this, the selective blocking of 

AMPARs by antagonists such as GYKI 53655 in the presence of CCh and NMDA, showed that 

high frequency gamma oscillations, EPSPs and, rhythmicity in IPSP bursts are lost (Mann and 

Mody, 2010). Taken together these data suggest that AMPA-mediated currents are crucially 

important, providing the phasic drive for interneuron networks, but do not directly ensure 

synchrony of the gamma network.  

 

The addition of NMDAR selective antagonist D-AP5 to CCh induced oscillations produced no 

significant visible effects (Mann et al., 2005). This suggests that NMDARs do not have a critical 

role in gamma oscillation generation. Interestingly, however, application of NMDA agonists has 

been shown to increase interneuron firing speed in vitro, though this was possible to be 

counteracted by the introduction of tonic GABAAR inhibition (Mann and Mody, 2010). KARs 

are implicated in evoked gamma oscillations in the CA1/3, following low dose applications of 
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agonists such as kainic acid. At high concentrations however, KARs are thought to stimulate 

depression of gamma oscillations in the hippocampus. Both KARs and NMDARs are thought 

to be regulatory in gamma oscillation generation, whereas AMPA-mediated currents are vital 

for oscillogenesis.   

1.4.3.4 GABA receptors in gamma oscillations 

GABA is imperative for gamma oscillations, without its presence gamma oscillations would be 

impossible to achieve (Gray, 1994; Whittington et al., 2000; Laurent, 2002; Traub et al., 

2002; Bartos et al., 2007, Tiesinga & Sejnowski, 2009; Wang, 2010; Buzsaki & Wang, 2012). 

It acts as the inhibitory neurotransmitter required for the basket cell interneurons to orchestrate 

synchrony of pyramidal EPSP discharge (Mann and Mody, 2010).  

 

GABAARs mediate the primary function of GABA, which is to inhibit neurons through IPSP 

generation. IPSP generation is critical to the production of gamma oscillations, as their decay 

provides the discrete time windows for pyramidal cells to fire in (Johnston & Wu, 1994).  

 

GABABRs act too slowly to directly influence proceedings. Their lingering effects, however, 

have proved capable of modulating the amplitude of gamma and other fast oscillations, by 

generating network activity. Blockade of GABABRs showed prolonged induced gamma 

oscillations in hippocampal slices (Whittington et al., 1995), also additionally shown in a later 

kainate model of gamma oscillations (Brown et al., 2007). They also act to enhance the 

effectiveness of extrasynaptic GABAAR function, i.e. tonic inhibition (Tao et al., 2013). 

Collectively this work strongly suggests a modulatory role for GABAB in gamma oscillation and 

in GABAAR function. 

1.4.3.5 Physiological gamma oscillations 

In vivo gamma oscillations are most commonly observed in states of attentiveness, such as 

language perception, object recognition, sensory binding and, in learning and memory steps 

(Singer, 1993; Gray, 1994; Llinas et al., 1998; Fell et al., 2001; Fries et al., 2001; Varela et al., 

2001). It is also thought that due to their frequent occurrence in the hippocampus, they play a 

role in hippocampal input selection. This is due to their ability to quickly coordinate and select 

neuron firing groups – important for processes such as memory storage and retrieval (Headley 

and Paré, 2017) and, meaning that every hippocampal pyramidal cell is not required to fire 

every cycle. In vivo studies in the hippocampus have identified two independent hippocampal 

gamma oscillation generators, one in the DG, the other in CA3 propagating to the CA1 (Leung, 

1982; Buzsaki et al., 1983; Bragin et al., 1995; Charpak et al., 1995; Penttonen et al., 1998). 

Taken as a whole, gamma oscillations are seen during integration processes in the brain. As 

of yet, the full scale of gamma function in normal brain physiology is unknown. 
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1.4.3.6 Pathophysiological gamma oscillations  

Abnormalities in brain rhythms are usually allied to lack of synchrony in discharges and have 

also been associated with various neurological disorders including schizophrenia, Parkinson’s 

disease and autism (Buzsaki, 2006; Bernier et al., 2007; Traub and Whittington, 2010). 

Aberrant beta and gamma rhythms have been noted in schizophrenia, with it being thought 

that the loss of long-range synchronisation may be at the crux of the impairment found in 

cognitive function (Andreasen, 2000; Lisman, 2012; Pittman-Polletta et al., 2015; Uhlhaas and 

Singer, 2015). The reasons behind this loss in synchronisation are thought to be due to 

abnormalities in GABAergic neurotransmission and NMDAR dysfunction (Cohen et al., 2015). 

In addition to this, in Alzheimer’s disease, lack of long-range synchronisation paired with the 

neuronal cell loss may explain the deterioration in cognitive function (Uhlhaas and Singer, 

2006).  

 

In contrast to these neurological disorders, epilepsy is thought to be a disorder centred on 

hypersynchronous discharges of networks (Uhlhaas and Singer, 2006). High frequency 

gamma oscillations have been noted to arise prior, and upon, the onset of ictal or seizure-like 

events, as too, have very fast oscillations (VFOs) (Traub et al., 2001). VFOs are observed in 

both in vitro and in vivo models of epilepsy and, have been attributed as biomarkers of epilepsy 

(Zijlmans et al., 2012).  
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1.5  Epilepsy  
The World Health Organisation (WHO) defines epilepsy as “a chronic disorder of the brain… 

characterised by recurrent unprovoked seizures as a result of excess electrical discharge in a 

group of brain cells” (WHO, 2015). Epilepsy is stated as one of the oldest recorded diseases 

in human history, with records dating back to 4000 B.C (Mechoulam, 1986).  

 

Epilepsy has the highest abundance for neurological disease, with an incidence rate of roughly 

1% of global population (Leonardi and Ustun, 2002). The chance of developing epilepsy is 

highest among young children and the elderly, especially within the developing world (Bell and 

Sander, 2001). In developed nations it is estimated that ~70% of epilepsy cases can be 

successfully controlled with current anti-epileptic drugs (AEDs). Despite this fact, many of the 

mechanisms for seizure generation are still relatively unclear. 

1.5.1 Seizures 

The symptoms of epilepsy are uncontrollable seizures, of varying scale dependent on the type 

of epilepsy involved. Seizures are described by the International League Against Epilepsy 

(ILAE) as “a transient occurrence of signs and/or symptoms due to abnormal excess or excess 

synchronous neuronal activity in the brain” (Fisher et al., 2005). The nature of neuronal activity 

while in seizures can be readily segregated into categories: inter-ictal, pre- and post-ictal and 

ictal. Each of these are relatively easy to identify, though there is some natural overlap between 

them (Fisher et al., 2014). The basic mechanisms underlying seizure generation hinges on 

hyperexcitability of neurons. A hyperexcitable state can arise due to increased excitatory 

synaptic neurotransmission, a decrease in inhibitory neurotransmission, alterations to voltage-

gated ion channels or changes in ion concentrations either intracellularly or extracellularly that 

favour depolarisation.  

 

The ILAE recently updated seizure classification terminology (Fisher et al., 2017). Broadly 

speaking “focal” seizures are those limited to a specific region or area of the brain, while 

“generalised” seizures are widespread and are often bilateral.  

Figure 1.18 Raw data of a seizure-like event.  
Recorded using in vitro local f ield potential (LFP) and a magnesium free aCSF bath 
solution. Scale bar: 500pA by 10 seconds. 
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1.5.2 Current Anti-Epileptic Drugs (AEDs) 

Current AEDs are diverse in their mechanisms of action (MOA), and though are not generally 

classified by MOA clinically, due to off target and unknown MOAs, can be split into target based 

groups; such as ionic voltage gated sodium channels, voltage gated calcium channels and, 

synaptic transmission either by inhibiting synaptic excitation or increasing synaptic inhibition 

(GABA uptake, etc.) (Rogawski and Loscher, 2004; Margineanu, 2012).  

 

AEDs are also split between first and second generations, with second generation AEDs 

generally having less frequent side effects, fewer unwanted pharmacokinetic interactions, 

therefore, generally being more tolerable in patients. Despite this there are no real differences 

in the efficacy of seizure cessation between first and second-generation AEDs. The AED(s) 

selected for use in patients is wholly dependent on the type of epilepsy, age of patient and 

seizure class demonstrated. Initially, monotherapy with a single AED is trialled, but often more 

AED are added if monotherapy is unsuccessful.   

1.5.3 Drug Resistant Epilepsy   

A patient is said to have drug resistant epilepsy (DRE) when they are unable to become seizure 

free after adequate trials of two AEDs, as defined by the ILAE (Kwan et al., 2010). ~70% of 

worldwide epilepsy cases can sufficiently be treated by current AEDs, the remaining 30% are 

unable to be treated and are said to have refractory, intractable or drug resistant epilepsy 

(DRE) (Rogawski and Loscher, 2004). Further to this, another third of those initially responsive 

to AEDs will transition to DRE over the course of their treatment. Refractory epilepsy rates are 

higher in less economically well-developed countries, usually due to the substandard 

healthcare provisions available in these countries.  

 

Underlying mechanisms of DRE are difficult to establish, though have been linked to a failure 

of drugs hitting their targets, for instance having efficacy at more than one target or differences 

in bioavailibity from patient to patient or, due to differences in the sensitivity of patients to 

specific drugs, such as carbamazepine (Bourgeois, 2008). Patients can be labelled as DRE 

due to inappropriate diagnosis or treatment of their epilepsy type, which can lead to incorrect 

AED selection, vastly increasing the odds of those patients being progressed into DRE status 

(Kwan et al., 2011). Current treatments of refractory epilepsy involve neurosurgery to resect 

the seizure susceptible foci of the brain, as determined through a myriad of testing including, 

but not limited to, MRI, MEG and electrocorticography (ECoG). Resection depends on a risk-

reward basis, with placement of the foci in the brain a large factor in whether surgery is 

performed or not. Furthermore, the seizures must be focal in nature (affect one side of the 

brain only) for surgery to be considered. This treatment is used as a last resort due to the 
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invasive and higher risk nature of surgery. The numbers affected by DRE are substantial and 

demand a large and, as of yet, unmet medical response.    

1.5.4 Temporal Lobe Epilepsy 

Temporal Lobe Epilepsy (TLE) is one of the most frequently diagnosed epilepsy conditions, 

accounting for around 41% of all cases (Curia et al., 2014). TLE seizures are a form of focal 

onset seizures, able to arise through a variety of aetiologies, such as trauma, tumours, 

infection, cortical dysplasia or mesial temporal sclerosis (Camacho and Castillo, 2007; 

Pascual, 2007). Accordingly, TLE seizures arise in the temporal regions of the brain; though 

have the ability to generalise across the brain (Noebels and Jasper, 2012). 

 

Following the initial insult is a period of no seizures, otherwise termed the latent period. The 

length of the latent period is highly variable and thought to be dependent on a multitude of 

factors including age and severity of insult (French et al., 1993; Mathern et al., 1995; Annegers 

et al., 1998).  During the latent period the molecular, cellular and, network properties of the 

brain are remodelled, becoming seizure susceptible, in a process named epileptogenesis 

(Wong, 2009). The changes are observed mainly in the hippocampus and include; increased 

mossy fibre sprouting in the CA3, a loss of granular cell organisation in the DG and 

hippocampal sclerosis in the CA1 and subiculum (Babb et al., 1991; Lim et al., 1997; 

Buckmaster et al., 2002; Nadler, 2003; Dudek and Shao, 2004; Freiman et al., 2011). Upon 

conclusion of the latent period spontaneous recurrent seizures (SRS) appear (Turski et al., 

1983a, 1983b).  

1.5.5 The EC and TLE  

Much focus of TLE research has been centred around the hippocampus, though there is now 

increasing attention on the EC, with evidence from both basic and clinical studies suggesting 

the clinical importance of the EC in TLE, alongside many other neurological disorders (Rutecki 

et al., 1989; Lothman et al., 1990; Du and Schwarcz, 1992; Du et al., 1993, 1995; Bertram and 

Cornett, 1994; Spencer and Spencer, 1994; Bernasconi et al., 1999, 2000; Wennberg et al., 

2002). The EC has been linked with epileptogenesis, with a loss in the volume of layer III 

neurons and, demonstrable hyper-excitability in layer II of chronically epileptic rats observed 

(Du et al., 1993; Kumar and Buckmaster, 2006). Rat brain in vitro experiments have 

demonstrated EC susceptibility to induced acute epileptiform events, with pharmacologically 

induced seizures initiating in the EC and propagating outward to the hippocampus and other 

adjacent cortical regions (Walther et al., 1986; Jones and Lambert, 1990a, 1990b; Rafiq et al., 

1993; Avoli et al., 1996; Iijima et al., 1996; Jones, 1996; Buchheim et al., 2000; Weissinger et 

al., 2000; D’Arcangelo et al., 2001). The deeper layers are seemingly more vulnerable to 

pharmacologically induced seizure events (“seizure susceptible”) than the superficial layers 

(“seizure resistant”). Similar seizure activity differences have been found across the laminar 
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organisation of the neocortex (Hoffman and Prince, 1995; Yang and Benardo, 2002). The 

majority of epileptiform events originate in deeper layers and, are highly suggestive of potential 

pathological synchronisation being able to occur within the deep layers (Jones and Lambert, 

1990a, 1990b; Jones, 1988, 1994; Avoli et al., 1996; D’Arcangelo et al., 2001).  

1.5.6 Focal Cortical Dysplasia 

Focal cortical dysplasia (FCD) is defined as a congenital abnormality of cortical laminar 

structure and presents as one of three types (Type I-III) (Blumcke et al., 2011). Type I is the 

least severe form of FCD, with seizures usually manifesting in early adulthood. Type II 

generally manifests seizures during childhood, while type III cases usually present type I/II 

symptoms alongside another epileptic lesion (Palmini et al., 2004; Fauser et al., 2006; Blumcke 

et al., 2011; Kabat and Krol, 2012).  

 

FCD is more commonly diagnosed today in part due to vast improvements in imaging 

equipment. FCD is currently the highest operated on type of DRE in paediatric patients (Harvey 

et al., 2008), though was once thought of as rare (Taylor et al., 1971). Up to 75% of patients 

operated on are seizure-free a year after surgery, with the presented type of FCD being the 

most critical factor and indicator of success (Tassi et al., 2002; Colombo et al., 2003). 

1.5.7 Models of temporal lobe epilepsy  

Animal models of human disease are a vital area for medical research as they allow 

researchers to look intricately at both the progression and the mechanisms of diseases. By 

developing and studying animal models, researchers are better equipped to identify 

pharmacologically relevant targets.  

 

For temporal lobe epilepsy there are currently three commonly accepted models: the kindling 

model (Goddard, 1967), the kainic acid model (Nadler et al., 1978) and, the pilocarpine model 

(Turski et al., 1983a). Each is a model of acquired TLE, where an insult is applied to the brain 

causing a progression from initial seizures to epileptogenesis (latent period brain remodelling) 

and finally recurrent seizures to occur. Acquired models of epilepsy are normally used, instead 

of genetic, to study epileptogenesis and recurrent seizures development.   

1.5.7.1 Kindling 

The kindling model involves repeated electrical stimulation of certain brain regions. Devised 

by Goddard et al, (1969), repetitive electrical stimulation (60-100Hz) of the hippocampus over 

the course of a week eventually resulted in afterdischarges (ADs), abnormal behaviour (that 

normally corresponds to the Racine scale (Racine, 1972). Currently spontaneous recurrent 

seizures (SRS) can be obtained if an overkindling model is used (McIntyre et al., 1982; Milgram 

et al., 1995).  The amount of stimulus and intensity of the seizures seemingly corresponds to 
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the brain region that is kindled (McIntyre and Gilby, 2006). Kindling models result in subtle 

neuronal loss and cellular alterations of brain circuits, which eventually manifest as seizures 

and seizure-like events (Morimoto et al., 2004). The time constraints and laborious nature of 

kindling models mean they are not widely used, also as there is no set protocol many labs 

have taken to creating their own. This has led to vast differences in many aspects of the 

protocol such as stimulus duration and strength, brain region kindled, interstimulus intervals 

and AD thresholds (McIntyre and Gilby, 2006). The kindling model’s strength is in studying the 

progression of epileptogenesis and response to AEDs but has drawbacks, through the time 

required and the lack of consistency across laboratories. As the classical kindling model does 

not produce SRS, which are characteristic of TLE models, it is therefore unsuitable for its study. 

1.5.7.2 Kainic Acid 

Kainic acid is an L-glutamate analogue, which when delivered either systemically or focally 

can induce seizures and neuronal depolarisations, culminating in SE, preferentially targeting 

the hippocampus (Nadler et al., 1978).  Systemic application of KA results in generalised brain 

injuries, whereas intracerebral injections to the hippocampus provide a more focused lesion in 

the hippocampal region (Ben-Ari et al., 1980; Lancaster and Wheal, 1982; Drexel et al., 2012). 

KA is widely used as a model of TLE, as it mirrors human TLE closely, especially with focused 

hippocampal injections, whereby inducing SE (or initial insult to generate first seizure events) 

is followed by a latent or silent period where no seizures are observed, before finally 

progressing into SRS or chronic seizures (Dudek et al., 2005; Levesque and Avoli, 2013).  

 

Seizure generation in the KA model is thought to arise via several mechanisms, though notably 

via activation of GluK2 subunit containing KARs in the CA3 post-synapse of DG mossy fibres        

(Ben-Ari and Cossart, 2000). The morbidity rate of KA can be low, with some animals making 

a recovery from SRS, which has been ascribed to the use of certain anaesthesia. Without 

anaesthesia the morbidity rate does increase, but so too does the mortality rate (Cavalheiro et 

al., 1982; Behrens et al., 2005).  

1.5.7.3 Pilocarpine  

Pilocarpine is another chemoconvulsant used to generate a model of TLE. Pilocarpine is a 

non-selective acetylcholine agonist acting upon muscarinic M1 receptors that mediates the 

transition into SE (Clifford et al., 1987; Hamilton et al., 1997). The pilocarpine model itself is 

the third most commonly used model of TLE (Turski et al., 1983a, 1983b).   High doses of 

pilocarpine are administered to the rats (~300-400mg/kg) to induce intense epileptic seizures 

that can last for up to 3 hours.  Due to high mortality rates associated with the pilocarpine 

model, researchers have sought a way to increase the efficiency of the protocol while 

decreasing mortality. This lead to the reduced intensity status epilepticus (RISE) utilised by 

the host lab and used throughout the present work (Modebadze et al., 2016).     
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1.5.7.3.1 RISE 

The model of RISE TLE is a continuation of the pilocarpine model. Lithium chloride (LiCl) is 

applied 24 hours pre-pilocarpine dose, it is thought that lithium acts to potentiate the 

cholinergic response without acting as a proconvulsant alone (Ormandy et al., 1991).    

 

As the name suggests, the RISE model aims to decrease both the severity of seizure and the 

mortality rate of the protocol, without losing any of its effectiveness. Instead of using large 

doses (300-400mg/kg) to induce SE, smaller doses (20-30mg/kg) are used in combination 

with LiCl. SE is a stage defined by two or more stage 4 as defined by the modified Racine 

scale (Table 2.1) seizures, a stage where mortality is common in the normal pilocarpine 

model. In the RISE model SE has a much lower mortality rate (~5%), in part due to the lower 

pilocarpine load applied.   

 

Once in SE, xylazine, a potent muscle relaxant and agonist of α2 adrenergic receptors is 

applied, helping to limit seizure severity and decrease mortality rates (Glien et al., 2001; Curia 

et al., 2008). The rats are relieved from SE one hour later by use of a ‘stop’ solution, containing 

MPEP, MK801, diazepam; a mGluR5 antagonist, NMDAR antagonist and GABAAR agonist 

respectively (Tang et al., 2007). Rats are then monitored to mark progression through the 

epileptogenic stages before being used for experiments.  

 

The use of lithium chloride, xylazine and the STOP solution, as well as the lower dose of 

pilocarpine used, are the main differentiators between the standard pilocarpine model and the 

RISE model we have used in this project.  
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1.6 Cannabinoids  
Cannabinoids are the main constituents of Cannabis Sativa plant, usually termed 

exocannabinoids or phytocannabinoids. Presently over 100 phytocannabinoids have been 

isolated from the Cannabis sativa plant (El-Alfy et al., 2010), each with their own distinct 

pharmacological profile and structure. Tetrahydrocannabinol delta 9 (∆9-THC) and cannabidiol 

(CBD) are the most prominent and abundantly used of these (Gaoni and Mechoulam, 1964).  

1.6.1 The history of cannabis and cannabinoids 

Cannabis Sativa has long been used both medicinally and recreationally, with some 

publications suggesting at least 5000 years of recorded medicinal use (Mechoulam, 1986). 

The earliest recorded usage of marijuana comes from 2727BC Chinese documents, written by 

Emperor Shen Nung, who experimented with botanical products on himself to discover if there 

were any medicinal benefits (Abel, 1980). The Chinese were also the first to record recreational 

use of cannabis (Abel, 1980). Cannabis is first noted in medicine in 1839, where it was 

marketed as a highly flexible drug, with purported effects including: sedation, analgesia, anti-

inflammation, anti-spasticity and anti-convulsant. Many of these effects have been recently 

demonstrated in preclinical models.  

 

Investigations into the active ingredients present in cannabis were conducted, fruitlessly, for 

over 100 years (for review see Mechoulam and Hanus, 2000). In 1896, the first real 

breakthrough into cannabinoids was made, with an Oxford group managing to distil a 

crystalline structure, later identified as cannabinol (CBN), from Indian charas (Wood et al., 

1897). In the 1930’s the chemical structure of CBN was elucidated, moreover, so too the first 

isolation of cannabidiol (CBD) (Mechoulam et al., 2014). Further investigation into CBN 

determined that it was not the primary active ingredient of cannabis. It wasn’t until the 1960’s, 

with the advent of modern chromatography techniques, that Δ9-tetrahydrocannabinol (THC) 

was elucidated and identified as the active component in cannabis (Gaoni and Mechoulam, 

1964). The discovery of dedicated cannabinoid receptors (CBRs) was due to their action as 

the primary mediators of THC  (Devane et al., 1988; Matsuda et al., 1990; Munro et al., 1993).  

CBR existence was confirmed through complementary molecular biological assays. 

Application of exocannabinoids to neuroblastoma cells resulted in decreased cyclic adenosine 

monophosphate (cAMP) production, which implied G-protein coupled receptor signal 

transduction (specifically Gi/o protein) (Howlett and Fleming, 1984; Howlett et al., 1986; Howlett, 

1987). Radioligand binding studies, using the synthetic cannabinoid analogue of THC 

CP55950 in rats, confirmed CBR as being present in mammalian brains (Devane et al., 1988), 

with later genetic analysis confirming CB1R existence in rat brain and, subsequently, in 

humans (Matsuda et al., 1990; Gerard et al., 1991; Chakrabarti et al., 1995).  
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1.6.2 The endocannabinoid system  

As previously discussed, cannabinoid receptors (CBRs) are a small family of presynaptic G-

protein coupled receptors (GPCRs), with only CB1R and CB2R having been formally 

characterised as CBRs. Genetic analysis indicates that a third CBR is unlikely (Pertwee et al., 

2010). Recent evidence is suggestive of other receptors sensitive to cannabinoids, with the 

orphan GPCRs GPR55 (Pertwee, 2007; Ryberg et al., 2007; Lauckner et al., 2008; Kapur et 

al., 2009) and GPR18 (Alexander, 2012; McHugh et al., 2012a, 2012b) activated by certain 

cannabinoid ligands, leading to discussion as to whether these should also be included as 

CBRs (Moriconi et al., 2010; Pertwee et al., 2010; Alexander, 2012).  

 

CB1Rs and CB2Rs are sometimes classified as “neuronal” and “non-neuronal” respectively, 

though this is not strictly correct, as CB1Rs are commonly found throughout the nervous 

system, whereas CB2Rs are most generally associated with the immune system (but see 

Morgan et al, (2009) for evidence to the contrary).  

1.6.2.1 Endocannabinoids 

With the advent of CBR discovery and THC as a lipid molecule, it was assumed that any 

endogenous ligands would also be lipids.  A candidate was extracted from pig brain tissue and 

was subsequently identified as a CB1R partial agonist, classified as anandamide (AEA), 

Sanskrit for “bliss” (Devane et al., 1992; Howlett et al., 2002). AEA was classified as an 

endogenous cannabinoid (eCB) as it was able to inhibit electrically evoked contractions of 

mouse vas deferens, while being insensitive to naloxone, a potent opioid receptor antagonist 

(Devane et al., 1992). This step was crucial as opioid receptor agonists were also able to inhibit 

electrically evoked contractions in the vas deferens. Further bioassays confirmed the 

classification of AEA to be correct through use of synthetic cannabinoid receptor antagonist 

such as SR141716A, which acts to inhibit action of AEA at CB1Rs. Further bioassays 

confirmed the classification of AEA to be correct through use of synthetic cannabinoid receptor 

(Rinaldi-Carmona et al., 1994).  

Figure 1.19 Skeletal chemical structure of AEA (A) and 2-AG (B). 
 

Following the discovery and classification of AEA, reports arose claiming that other fatty acid 

derived compounds also acted as CBR sensitive cannabinoids (Di Marzo et al., 2005). The 

A B 
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CB1R agonist, 2-Arachidonoyl glycerol (2AG) was identified soon after (Mechoulam et al., 

1995).  

 

eCBs are eicosanoids-like lipophilic molecules, synthesised on-demand via the breakdown of 

acrachidonic acid (AA) phospholipid derivatives (Wang and Ueda, 2009; Luchicchi and Pistis, 

2012). AEA synthesis is mediated by the conversion of N-arachidonoyl-phosphatidyl-

ethanolamine (NArPE) catalysed by Ca2+-sensitive N-acyltransferases (NATs) and 

phospholipase D (PLD). 2-AG synthesis is dependent on the hydrolysis of diacylgylcerols 

(DAGs) by DAG lipases (DAGLα/β), modulated by phospholipase Cβ (PLCβ) (Mechoulam et 

al., 1995; Köfalvi, 2008; Marinelli et al., 2008).  AEA and 2AG are the most commonly 

investigated eCBs, though other eCBs have since been illuminated, mainly CBR agonists 

(Pertwee, 2006), though recently a CB1R inverse agonist was identified in virodhamine 

(Pertwee, 2005). The discovery of eCBs marked the existence of the once unknown 

endocannabinoid system. eCBs possess powerful regulatory powers on GABA 

neurotransmission, as shown by decreasing both IPSPs and IPSCs (Szabo et al., 1998; Hajos 

et al., 2000). 

 

eCBs are retrograde messengers, diffusing backward across the synaptic cleft to bind 

receptors on the presynaptic membrane, or within the neuronal matrix (Kreitzer and Regehr, 

2001; Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001). Following cellular reuptake 

processes, eCBs are metabolised by fatty acid amine hydrolysis (FAAH) in the case of 

anandamide or by monoacylglycerol lipase (MAGL) for 2AG (Figure 1.20; Di Marzo et al., 

2005). 
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Figure 1.20 Schematic demonstrating both the catabolic and anabolic pathways of eCBs at the 
synapse.  
AEA is synthesised from glycerophosplipid and phosphatidylethanolamine precursors,  
with the biosynthetic enzymes responsible for its synthesis NArPE, N-acyltransferases 
(NATs) and PLD all located on postsynaptic intracellular locations, though the exact  
location is currently unknown. Alongside this, enzymes required for the inactivation of  
AEA are also located in the postsynapse, with fatty acid amine hydrolyse (FAAH) 
mediating the conversion of AEA to ethanol amine and arachidonic acid. Conversely, 2-
AG is inactivated within the presynapse by monoacylglcerol lipase (MAGL). The synthesis 
of 2-AG also occurs within the postsynapse, catalysed by membrane bound PLC and 
diacylgylcerol lipases (DAGL), localised on the post-synaptic plasma membrane from a 
glycerophosopholid precursor. Release of 2-AG into the synaptic cleft is facilitated by an 
as of yet unknown eCB membrane transporter (EMT). Taken from (Di Marzo et al., 2004).  
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1.6.3 CB1 Receptors 

As mentioned, CB1Rs are observed throughout the CNS, and are also present at various sites 

in the peripheral nervous system (PNS) (Howlett et al., 2002). Aside from this, CB1Rs have 

also been detected in a number of organs and tissues: heart, liver pancreas and adipose 

tissues; as well as throughout the cardiovascular, gastrointestinal and reproductive systems 

(Croci et al., 1998; Szabo et al., 1998; Pertwee, 2001a, 2001b; Wagner et al., 2001; Kunos et 

al., 2009). CB1Rs are involved in a vast range of physiological functions including: nociception, 

appetite, learning and memory and neurite outgrowth (Pertwee, 2009; Katona and Freund, 

2012). 

 

CB1Rs are abundantly expressed GPCRs in the rodent brain, with particular emphasis in the 

cerebellum, hippocampus, cortex, amygdala and basal ganglia (Howlett, 1998; Pettit et al., 

1998; Tsou et al., 1998). Of these the highest areas of CB1R expression, using 

autoradiography studies, were found at the cerebrum, hippocampus and entorhinal cortex 

(Herkenham et al., 1990, 1991; Glass et al., 1997). In addition, CB1Rs are commonly found 

clustered in the plasma membrane of the axonal perisynapse of both GABAergic and 

glutamatergic neurons (Katona et al., 1999, 2006; Kawamura et al., 2006). Further to their 

surface axonal presence, intracellular vesicles of CB1Rs have been exposed in both soma 

and dendrites from whole cell immunostaining experiments (Irving et al., 2000; Coutts et al., 

2001).  

 

Activation of CB1R-coupled Gi proteins, the most predominant G protein coupled to CB1R, 

inhibits production of cAMP through inhibition of adenylate cyclase and subsequently, protein 

kinase A (PKA) phosphorylation pathways (Howlett, 2002, 2004, 2005). Further signal 

cascades that modulate various kinases activation have been described as occurring at this 

step (Glass et al., 1997; Lauckner et al., 2005), however the classical effect of CB1R is the 

inhibition of N-, P- and Q-type voltage gated Ca2+ channels through interaction with the Gi βγ-

subunit and, activation of Gi coupled inwardly rectifying potassium channels (Kir/GIRK). CB1R 

activation, therefore, results in decreased Ca2+ and increased K+ conductance, and as such, a 

decrease in neurotransmission from the presynaptic terminal. This has been described as 

depolarisation-induced suppression of excitation (DSE) or inhibition (DSI) depending on the 

neuron type (GABA-/glutamatergic) (Llano et al., 1991; Pitler and Alger, 1992, 1994; Kreitzer 

and Regehr, 2001; Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001; Diana and Marty, 

2004).  

 

CB1Rs are often described as being “promiscuous” due to their ability to interact with various 

members of the G protein family, commonly with Gi α subtypes as mentioned, but also with 
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Go, Gq and Gs. These interactions allow CB1Rs to have differing responses, which have been 

related to the cell type or compartment location, hetrodimerisation of the receptor and, off-

target agonist effects (Howlett, 2004; Pertwee, 2009). Responses to interactions with different 

G proteins allow CB1R to effect PLC and Ca2+ intracellular signalling pathways (Netzeband et 

al., 1999; Lauckner et al., 2005; De Petrocellis et al., 2007). In the hippocampal formation, 

CB1R activation depresses presynaptic GABA release (Hajos et al., 2001; Wilson and Nicoll, 

2001). CB1R agonists, both endo-/exogenous, reduce amplitude and frequency of GABAergic 

spontaneous inhibitory postsynaptic currents (sIPSCs), but not the amplitude of action-

potential-independent miniature inhibitory postsynaptic currents (mIPSCs) (Inada et al., 2010; 

Kovacs et al., 2012). Other studies indicate that CB1R activation enhances network oscillatory 

activity in the hippocampus (Bragin et al., 1995). In the parahippocampal region, CB1R 

activation is able to modulate both GABA release and neuronal network oscillations (Morgan 

et al., 2009).  

1.6.3.1 CB1R pharmacology and ligands 

CB1Rs have a complex pharmacology, in part due to the ligands commonly being small 

lipophilic molecules, able to cross the lipid bilayer effectively, with inhibitors usually being 

inverse agonists not neutral antagonists (Pertwee, 2005; Pertwee et al., 2010). Inverse 

agonists block the receptors constitutive activity and stabilise the receptor in its inactive 

conformation. As a consequence of the lipophilic nature of its ligands, CB1Rs are not required 

to be embedded in the membrane to be activated, demonstrated using the non-permeable 

peptide hemopressin, which allowed intracellular CBRs to be investigated (Rozenfeld and 

Devi, 2008; Gomes et al., 2009; Benard et al., 2012) – the results raised the suggestion of 

subtly distinct physiological roles between intracellular and membrane CBR populations.  

 

Currently, the majority of CB1R pharmaceuticals of use in the clinic are synthetic derivatives 

of THC including: Sativex® (GW pharmaceuticals), dronabinol (Marinol®; Solvay 

Parmacuetiucals) and nabilone (Cesamet® Eli Lilly), prescribed for their analgesic properties 

or as anti-emetics and appetite stimulants for patients with cancer and acquired 

immunodeficiency syndrome (AIDs) (Di Marzo et al., 2004). CBR inhibitors include the well-

known ligand SR141716A or ‘rimonabant’ (Acomplia®; Sanofi-Avent), an inverse agonist of 

CB1R, marketed in Europe in 2006 as an effective anti-obesity treatment, but withdrawn in 

2008 due to unwanted side-effects, such as depression and contemplation of suicide (Wong 

et al., 2012). Several endocannabinoid-manipulating drugs, which can indirectly modulate 

cannabinoid receptor activity, through activation or inhibition of the endocannabinoids, have 

already been developed and are either on the market or undergoing clinical trials (Piomelli, 

2003; Di Marzo et al., 2004), including the FAAH inhibitor URB597, developed for the treatment 

of neuropathic pain, anxiety and depression (Di Marzo, 2008). 
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Interestingly, THC only possesses partial agonist activity at CB1Rs, which is thought to 

account for the increasing dependency observed in habitual users of Marajuana (Howlett et 

al., 2004). CBD is a very low affinity antagonist at CB1Rs, so much so, that specific binding is 

uncommon.  

Figure 1.21 Schematic for the mechanism of action of endocannabinoids at CB1Rs. 
Neurotransmitters (NT) bind to postsynaptic receptors (glutamatergic or GABAergic 
triggering an increase in neuronal activity (example given increase in Ca2+ inf lux as seen 
with glutamatergic receptor act ivation). Increased neuronal activity results in 
upregulation of AEA/2-AG synthesis. The eCBs are then released from postsynaptic 
terminal where they bind to presynaptic CB1R. CB1R activation causes adenylyl cyclase 
(AC) and Ca2+ channels to become inhibited (while K+ channels activated). As a result, 
neurotransmission is decreased due to the lowering of Ca2+ concentration and 
hyperpolarisation of the membrane (MP = membrane potential). 

1.6.4 CB2 Receptors 

CB2Rs share 44% amino acid sequence homology with CB1Rs and were initially identified in 

rat spleen and cloned HL-60 cells (Munro et al., 1993). Historical immunohistological evidence 

associates CB2R with the immune system, glia and peripheral tissues only (such as mast cells, 

β-lymphocytes etc) (Galiegue et al., 1995; Schatz et al., 1997; Carayon et al., 1998; Bouaboula 

et al., 1999), new work however indicates a role and function in the CNS. A steady stream of 

immunohistological work has been published demonstrating the presence of CB2Rs in CNS 
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areas such as human and cultured sensory nerves (Ross et al., 2001; Stander et al., 2005), 

rodent brain stem (Van Sickle et al., 2005), with CB2R mRNA present in human spinal nerves 

(Beltramo et al., 2006). Gong et al., (2006) identified CB2R mRNA in rodent spinal cord and 

CB2R protein throughout rodent brains (Gong et al., 2006). Published work from the host lab 

added to this, with CB2Rs discovered to be have significant functional roles in neurons across 

the layers of the EC, being able to modulate action potential dependent GABA release (Morgan 

et al., 2009).  

1.6.5 Cannabinoids as novel antiepileptic agents  

THC is the most prominent exocannabinoid, in part due to its psychoactive nature imbuing the 

feel of a “high” when inhaled as cannabis smoke for instance. THC has shown some promise 

as an anticonvulsant itself, however, its unwanted psychoactive effects as a therapeutic agent 

ensure it is not an eligible candidate for medicinal use in children and many adults (Hill et al., 

2012). Indeed, in some animal models THC has proven to be a proconvulsant at low doses, 

though this was inhibited through the use of matching doses of CBD (Boggan et al., 1973). 

CBD and its propyl analogue cannabidivarin (CBDV) have both recently shown promise as 

anti-epileptics (Jones et al., 2010, 2012; Hill et al., 2012). Neither displays psychoactive 

properties, making them prime candidates for further research.  

  

Figure 1.22 Skeletal chemical structures of prominent cannabinoids.  
CBN was the first cannabinoid to be isolated and have its chemical structure elucidated,  
THC is the most prominent of all phytocannabinoids, whereas CBD is purported to have 
the highest number of medical applications. CBDV is a propyl analogue of CBD linked to 
possessing anticonvulsant effects.  
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1.6.6 CBD 

CBD is a water insoluble crystalline solid at room temperature, though is soluble in organic 

solvents, such as DMSO. It is synthesised in the cannabis plant initially from cannabigerolic-

acid (CBGA), which is converted to CBA-caroxylic acid (CBDA) by CBDA synthase. 

Decarboxylation of CBDA then occurs to produce CBD. THC synthesis utilises them same 

precursor, CBGA, with THCA synthase substituting in for CBDA synthase to produce 

tetrahydrocannabinol acid (THCA) which is then decarboxylised to produce THC (Figure 1.23; 

Marks et al., 2009). 

 

CBD is a low affinity allosteric antagonist at both CB1R and CB2Rs (Pertwee, 2008)  and acts 

as an antagonist at GPR55 (Pertwee, 2008). It acts as a partial antagonist at 5-HT1A 

receptors, which may be how it exerts its purported anti-depressant, neuroprotective and 

anxiolytic effects (Mishima et al., 2005; Russo et al., 2005; Hayakawa et al., 2007; Campos 

and Guimaraes, 2008; Resstel et al., 2009; Zanelati et al., 2010). CBD has also been shown 

to an allosteric modulator at both and delta and mu (δ, μ) opioid receptors (Kathmann et al., 

2006). Alongside these effects CBD has also displayed inhibitory effects on fatty acid amide 

hydrolysis enzyme (FAAH), which may be responsible for increased AEA levels in the 

presence of CBD (Bisogno et al., 2001; Massi et al., 2008; De Petrocellis et al., 2011; Ibeas 

Bih et al., 2015). Recent work has also shown that CBD has a benzodiazepine-like effect on 

GABAAR though does not bind to the classical benzodiazepine site to exert this effect (Bakas 

et al., 2017).  

 

As well as potential in epilepsy, CBD has shown much promise in other disease states 

including: cancer, neuroprotection, anxiety, analgesia and Type-1 diabetes (Bakas et al., 

2017).   In the UK, Sativex (GW Pharmaceuticals), a combination of 50% THC and 50% CBD, 

has been granted a licence for treatment of spasticity in patients afflicted with multiple 

sclerosis. Sativex is also licensed for pain relief in cancer patients undergoing chemotherapy 

in Canada.  
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Figure 1.23 Schematic of the precursor molecules for THC and CBD.  
The synthesis of both THC and CBD from precursor molecules and the enzymes required 
for their synthesis depicted by their skeletal chemical structures. Taken from (Taura et 
al., 2007).  

1.6.6.1 CBD as an anticonvulsant  

Several in vivo animal models of epilepsy studies have shown CBD has a propensity to reduce 

seizure occurrence and intensity (Consroe et al., 1982; Wallace et al., 2001; Jones et al., 2010, 

2012). Limited historical studies have shown similar in humans (Cunha et al., 1980).  Recent 

studies utilising CBDV have also shown similar results in vivo (Hill et al., 2012, 2013). 

Mediation of the responses to CBDV has been shown to be independent of CB1R (Hill et al., 

2013). Elucidation of the MOA of these cannabinoids is difficult as they act promiscuously, with 

varying effects and affinities across a wide range of receptors (Ibeas Bih et al., 2015). Current 

thinking of receptor targets includes GPR55, 5-HT1A and 5-HT2A as potentially playing a role in 

the anti-epileptic effects of both CBD and CBDV (Russo et al., 2005; Mechoulam et al., 2007; 

Devinsky et al., 2014) 

.  
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In vitro studies of CBD and CBDV are a less common, though some research has corroborated 

the in vivo work in the case of CBD. In completed in vitro studies CBD has been shown to have 

a powerful effect on DRE models, using the magnesium free (Mg2+ free) models (Jones et al., 

2010). 

 

Trials of CBD efficacy are, and have, been conducted on human patients with epileptic 

encephelopathies including Lennox Gastaut and Dravet Syndromes using Epidiolex (a 

proprietary oral solution of pure plant–derived CBD produced by GW Pharmaceuticals). The 

investigator-initiated open label study, reported in Rosenberg et al, (2015), spans 10 epilepsy 

centres in the USA, collecting data on 213 patients with DRE (Rosenberg et al., 2015). The 

mean age of this population is 10.8, with a range of 2.0-26.0. Epidiolex/CBD was added 

supplementary to the patients existing AED treatment plans, with an average of three 

concomitant AEDs. Average total seizure frequency per month was 60, while the average for 

convulsive seizures was 30. In total, 137 patients followed the program for 12+ weeks and 

were included in the efficacy study. The results of which showed an average decrease in 

seizures of 54% at week 12. In that sample were 23 Dravet syndrome patients who showed 

an average decrease in seizures of 55%, while 16% reached complete cessation of seizures 

by week 12. Patients afflicted with Lennox Gastaut syndromes (n=10) showed a median 

decrease of 52% in seizures by week 12. Investigators concluded CBD is a generally well 

tolerated and effective means of seizure reduction, with mild adverse effects including 

somnolence, fatigue, decreased appetite and diahorrea. 9% of the sample curtailed their 

involvement in the study due to adverse effects.   

  

A further clinical trial, reported by Devinsky et al, (2016), produced a similar conclusion to the 

previous. 214 patients with DRE enrolled in the trial, with an age range of 1.0 to 30.0. Adverse 

effects were higher this time, with reports from 128 (79%). Serious adverse effects were high, 

with 48 (30%) patients reporting. There was also one unseen death in the study, though this 

was ruled not to be associated with CBD usage, with cause of death status epilepticus (SE). 

The most common serious adverse effect was status epilepticus (SE) with 9 reports (6%). The 

median monthly motor seizures were 30.0 (11.0-96.0) baseline and 15.8 (5.6-57.6) after 12 

weeks, with a median decrease of 36.5%. The authors came to a similar conclusion as the 

previous, that CBD might be tolerable and generally effective at decreasing seizure frequency 

in children and young adults (Devinsky et al., 2016).  
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Chapter 2  
 
 
Materials and Methods 
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2.1 Animal and Ethical Approval 
All procedures carried out were performed in accordance with the Animals (Scientific 

Procedures) Act 1986 UK, European Communities Council Directive 1986 and Aston 

University ethical review documents. 

2.2 RISE model of temporal lobe epilepsy 
Lithium chloride (LiCl) (127mg/kg) was administered, subcutaneously (S/C) 24-hours prior to 

induction, to male Wistar rats (0-1 day post-weaning/18-19 days postnatal; ≤55g). (-) 

scopolamine methyl bromide (1mg/kg, S/C) was delivered 30 minutes before administration of 

pilocarpine (25mg/kg, S/C). The rats were continually observed for the onset of status 

epilepticus (SE) – defined as two stage 4 or above seizures using a modified Racine scale 

(Table 2.1.). Stage 4 seizures include rearing, sitting back onto hind limbs with both forelimbs 

shaking. Stage 5 seizures are identical, but rats fall either backward or sideways. If any rats 

had not entered SE after 45-60 minutes another dose of pilocarpine (25mg/kg was then 

administered (up to a maximum of 3 doses total). Once rats had entered a second stage 4 

event, they were dosed with xylazine (2.5mg/kg) intramuscularly (I/M). Extra (-) scopolamine 

methyl bromide could also be administered at this point if rats displayed foaming at the mouth. 

After one hour in SE 0.05ml “STOP” solution was delivered, containing (in mg/kg): 2.5 

diazepam, 0.1 MK801 and 20 MPEP, dissolved in ethanol. Post-op, the rats were allowed to 

recover on a heat pad at 33°C, under constant observation and were rehydrated once every 

two hours for 10 hours with the administration of 0.5ml 0.9%/5% NaCl saline solution (S/C) 

until fully recovered. Furthermore, rats were fed with high calorie food to try and mitigate weight 

loss (e.g. milkshakes, peanut butter etc). 
 

Stage Symptoms 

1 Oroalimentary movements 

2 Head nodding 

3 Anterior limb clonus 

4 Forelimb clonus, dorsal extension (rearing) 

5 Falling, loss of balance whilst rearing 

 
Table 2.1 Modified Racine scale (Cordeiro et al., 2009) 
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Figure 2.1 Flow chart representative of the RISE epilepsy induction model.   
Detail ing drugs administered, and rough estimates of t ime taken to reach spontaneous 
recurrent seizures (SRS). Figure courtesy of R. Jones (University of Bath).  

 

 
Table 2.2 Drugs administered in RISE model of epilepsy.  
The concentrations used (mg/kg), solvent and, suppliers are all listed 

  

Drug Concentration Used; Solvent Supplier 

(-)-scopolamine methyl bromide 1mg/kg; Water Sigma 

Diazepam 2.5mg/kg; Ethanol Hameln 

Lithium Sulphate 127mg/kg; Water Sigma 

MK801 0.1mg/kg; Water Abcam 

MPEP hydrochloride 20mg/kg; Ethanol Sigma 

Pilocarpine 25mg/kg; Water Sigma 

Xylazine 0.1mg/kg; Water Bayer 

+23 hours 
Methyl 

Scopolamine 
 1mg/kg 

LiCl 

+24 hours 
pilocarpine 
 25mg/kg 

Diazepam/MPEP/MK801 
to arrest  
seizures  

4-10 week quiescent period 

spontaneous  
recurrent 
seizures 

Acute status 
epilep*cus 

60 min 

Xylazine 
SE stage 4 

0-1% mortality 

Moderate severity banding 
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2.2.1 Post-Seizure Behavioural Battery (PSBB) 

Rats were tested for the onset of chronic epilepsy using a modified version of the PSBB. This 

involved touching the posterior of the rat with a blunt object (e.g. pen) and scoring its response 

against a predefined list of expected behaviours (listed in Table 2.3 touch column). Rats were 

then gripped around their forelimbs and their responses were scored (listed in Table 2.3 pick 
up column). The scores were multiplied together to give a final total score. If this score was 

over 10 for 4 sessions in a row the rat was deemed to be chronically epileptic or spontaneous 

recurrent seizures (SRS). PSSB sessions were performed twice weekly with rotating 

examiners each session to limit bias.  

  
Table 2.3 The scoring table used for PSBB. 
The tests used and the definit ions for each score are listed.  

 
  

Score Touch Pick Up 

1 No reaction Very easy pick up 

2 Rat turns toward instrument Easy pick up 

3 
Rat moves away 

from instrument 

Some difficulty in pick up (rat rears and 

faces hand) 

4 Rat freezes Rat freezes 

5 Rat turns toward touch 
Difficult pick up (rat moves away from 

hand) 

6 Rat turns away from touch 
Very difficult pick up (rat behaves 

defensively or attacks hand) 

7 
Rat jumps (with or without 

vocalisation) 
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2.2.1.1 Rodent “Big Brother” System 

8 rats were individually filmed following confirmation of chronic epilepsy by PSBB to ensure 

independent confirmation of behavioural seizures. All rats were housed separately and 

recorded 24 hours a day using high-resolution infrared video cameras and infrared light 

provided by the rodent big brother system (AstraZeneca, UK). The recordings were saved to 

individual computer systems. This system is currently under development by AstraZeneca to 

enable automatic detection of seizures. As this system is currently being developed lab 

members and AstraZeneca employees watched the videos and marked seizure events when 

they arose, which they eventually did in all rats. Once a seizure had been observed the rat was 

categorically defined as chronically epileptic and, a new rat was introduced to the enclosure, 

up to the eighth and final rat, with three enclosures recording simultaneously. Upon conclusion 

of the observations, the equipment was returned to AstraZeneca for further development.   
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2.3 Extracellular experiments  

2.3.1 Brain slice preparation and storage 

Rats were anaesthetised using isoflurane. After loss of consciousness, deep anesthesia was 

induced using pentobarbital (60mg/kg, S/C) and co-application of ketamine/xylazine 

(100/10mg/kg respectively, I/M). Upon loss of pedal reflex, transcardial perfusion was 

performed using carbogen (95%O2/5%CO2) bubbled ice-cold saCSF. After perfusion sufficient 

to fully decolourise the nares, paws and ears, rats were decapitated, and the brain quickly 

resected and placed into cold saCSF.  

 

The cerebellum was dissected away, as too, was a small section of the frontal lobe allowing 

for easier orientation. The brain was then hemisected, and the dorsal surface cut away in a 

parallel plane to the base of the brain. The cut surface was then glued to a steel platform, using 

cyanoacrylate glue (Loctite 480, USA). The brain was sliced using a ceramic blade (Campden, 

UK) until the ventral portion of the hippocampus and the rhinal fissure were observable; both 

used as indicators that slices will contain the parahippocampal regions of interest (i.e. mEC). 

Combined hippocampal-entorhinal slices were then cut in the horizontal plane using a 

Vibrotome slicer (Campden Instruments, UK) to a nominal thickness of 450μM. Vibrotome was 

set to a speed of 7, with a slow manual speed of cutting used.   

 

The best slices were immediately placed onto the recording chamber (Figure 2.2) on small 

sections of lens tissue, while the rest of the slices were placed in an interface holding chamber, 

both containing normal aCSF again bubbled with carbogen. A Parafilm (Chicago, USA) 

covering was used to ensure adequate humidity and viability of slices.  

2.3.1.1  Sucrose-based cutting aCSF (mM) 

The recipe for the sucrose cutting solution was as follows (in mM): 180 Sucrose, 2.5 KCl, 10 

MgSO4, 1.25 NaH2PO4, 10 D-Glucose, 0.5 CaCl2, 1 Absorbic Acid, pH 7.3, 300-310 osmolarity. 

saCSF also contained several neuroprotectants to increase slice viability (mM): 0.3 uric acid, 

0.045 indomethacin, and 0.13 ketamine.  

2.3.1.2  Normal aCSF (mM) 

The recipe for the normal aCSF solution was as follows (in mM): 126 NaCl, 2.5 KCl, 1 MgCl2, 

2.5 CaCl2, 26 NaHCO3, 2 NaH2PO4, 10 D-Glucose, pH 7.3, osmolarity 280-290. aCSF was 

used in both the holding chamber and the LFP rigs. aCSF in the holding chamber had added 

(in mM): 0.045 indomethacin and 0.3 uric acid to prolong viability of slices.  
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2.3.2 Local Field Potential (LFP) recordings 

Microelectrodes were pulled from borosilicate glass (1.2mm diameter) with a resistance of 1-

5 MΩ using a Flaming-Brown microelectrode puller (P-2000, Sutter Instruments, CA, USA). 

Electrodes were filled with normal aCSF and placed in holders connected to EXT-02F 

headstages (NPI, Germany). After one-hour recovery and acclimatisation at 30-32°C in the 

interface recording chamber (BSC-1, SSD, Canada), with a flow rate of ~2ml/min, 

microelectrodes were placed into Layer II of the mEC of 2-4 separate slices.  

 

An Olympus SZ51 field microscope (Olympus, UK) was used to locate Layer II and ensure 

contact between electrodes and slice. Signals were amplified x100 initially by EXT-02F 

amplifiers and then further amplified x10 by LHBF-48X amplifiers (NPI, Germany), with Bessel 

filters set at 700Hz low pass, 0.3Hz high pass, with a sampling rate of 8.3KHz. 50Hz noise was 

removed via a Humbug (Quest Scientific, Canada). Analogue signals were then digitised using 

a Digidata 1440a (Axon CNS, Molecular Devices, USA). Each of these components is shown 

in Figure 2.3.  

 

Persistent gamma oscillations were induced in rats using 400nM KA, applied as two separate 

200nM doses roughly 10 minutes apart, as anecdotal experience by this researcher had found 

this to be the most effective method for inducing stable gamma oscillations consistently.  

 

Recordings were made using Clampex 10.3 and saved to the local hard drive. Backups were 

made externally upon completion of the experiments. Subsequent analyses were made using 

Clampfit 10.3, Spike2 7.3, Microsoft Excel and GraphPad Prism 7 (further details in Section 
2.11.1.). 
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Figure 2.2 Schematic of LFP interface chamber.  
Numbers highlight distinct sections of the rig and are listed as fol lows: (1) Upper l id of  
chamber (2) Wells for liquid dispersal onto nett ing (3) Air holes to allow oxygen to pass 
from across surface (4) Wells allowing aCSF out of platform to be wicked away ready to 
be recycled (5) Wicking exit, would be lined with filter paper to ensure proper wicking (6) 
PVC plastic covering ensuring even distribution of oxygen, with hole to allow electrode 
entry (7) Electode filled with aCSF (8) Heating element, heats water to ensure correct 
temperature and humidity in chamber (9) Tubing connecting to liquid wells at rear of  
platform and rear of chamber providing the aCSF (10) Air stone providing carbogen. 
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Figure 2.3 Electrical component set up LFP rig.  
(1) 50Hz Humbugs (Quest Scientif ic, Canada) for removal of 50Hz noise (2) EXT-02F 
amplif ier x100 amplif ication of 2 headstages (NPI, Germany) (3) LHBF-48X amplif iers 
x10 amplif ication of individual headstage signal (NPI, Germany) (4) Digidata 1440A for 
conversion of analogue signal to digital (Axon CNS, Molecular Devices, USA) (5) 
Computer running Clampex software (Axon CNS, Molecular Devices, USA).  
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All drugs used in LFP experiments are detailed in Table 2.4. Drugs were applied for 30 

minutes, in LFP experiments (with the exception of kainic acid which was used to induce 

persistent oscillations in LFP). 

 

 
Table 2.4 Drugs used in LFP experiments.  
Listed with suppliers, concentration used at and solvent type.  

  

Drug 
Stock Concentration; 

Solvent 
Concentration Used Supplier 

CBD 60mM; DMSO 0.3-30μM GW Pharma 

CBDV 60mM; DMSO 0.3-30μM GW Pharma 

DL-AP5 25mM; Water 50μM Abcam 

Flumazenil 10mM; DMSO 500nM Abcam 

Kainic Acid 1mM; Water 200-400nM Abcam 

MK801 20mM; Water 100nM Abcam 
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2.4 Whole cell voltage-clamp experiments 
Whole cell patch clamp experiments were implemented to allow for the CBD/V effect on single 

mEC layer II principal cells to be observed. Postsynaptic principal neurons were investigated 

using voltage-clamp techniques as this allowed for the visualisation of presynaptic 

neurotransmitter (NT) release as well as observing the corresponding postsynaptic current 

alterations, through the observation of spontaneous inhibitory/excitatory postsynaptic currents 

(sI/EPSCs). This method provides some advantages over intracellular recordings (sharps 

recordings), those being an increased resolution as well as providing control to alter the 

internal cellular environment to the experimenter. The drawbacks are the reverse, with artificial 

manipulation of the internal environment difficult in sharps recordings.  

2.4.1  Brain preparation and slicing 

Patching slices were prepared in the same way as the LFP preparation previously described, 

though were cut to a thickness of 350μm. The slices were submerged in a holding chamber 

(Figure 2.4) containing bubbled aCSF and allowed to recover for a minimum of one hour at 

room temperature.   

 

Patching slice storage involved the assembly of a custom storage facility. This required the 

use of a 5ml syringe being cut into 1cm circular sections. 6 sections were then orientated 

around a central section to provide 7 slice storage units and glued together. Fine netting was 

then glued to the base of this collection and allowed to dry overnight making up the chamber, 

where the slices were stored. A chimney portion was fashioned using a cut 10ml syringe, which 

was then wrapped in Parafilm (Chicago, USA) laboratory film until an appropriate width was 

achieved which would allow the chamber section to be suspended when both were placed into 

a 250ml beaker together. The chimney acted to allow an air stone to be placed into the beaker 

without overtly disturbing the slices placed in the chamber but still allowing circulation of the 

aCSF by providing a path for the air bubbles (see Figure 2.4 below for an accurate 

representation).   
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Figure 2.4 Storage facility for patching slices.  
Numbered portions show different parts and, are as follows: (1) 1cm circular netted 
syringe pieces used to hold slices. Slices laid flat on top on netting and left for 1-hour 
recovery. (2) 10ml syringe section wrapped with Parafilm to create chimney for air stone. 
(3) Assembled storage facil ity in 250ml beaker,  complete with air stone.   

2.4.2 Whole cell voltage-clamp visualisation 

After an hour recovery time, a single slice was transferred to a submerged recording chamber 

mounted on the stage of an Olympus U-CAMD3 microscope (Olympus, Japan). Once 

submerged, the slice was allowed to recover in the chamber for 5-10 mins. The chamber was 

continuously perfused with aCSF at 30°C with a flow rate of ~2ml/min. Cells were viewed using 

a x40 water immersion objective and visualised using DIC optics and an infrared camera. 

 

Cells were chosen based on a number of factors including their depth within the slice, size and 

morphology. Cells in layer II were generally large, nominally principal in shape and just below 

the surface, as these generally provided the best results.  
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2.4.3 Whole cell voltage-clamp recording 

Microelectrodes were pulled from borosilicate glass (Harvard Apparatus, UK) with a tip 

resistance between 3-6MΩ (open tip diameter ~1μm), using a Flaming-Brown puller (P-2000, 

Sutter, USA) and filled with IPSC or EPSC solution (Section 2.9.1/2). When patching onto 

cells the seal between the membrane and the electrode was allowed to reach a resistance of 

at least 1GΩ (gigaOhm) before breaking through. This allowed for a more stable baseline and 

consistent access resistance to be achieved. Upon breaking through, the seal test was applied 

for a minimum of 10 minutes to facilitate filling with the internal solution and ensure adequate 

space-clamp.  

 

Cells were held at -64mV for sIPSCs/sEPSCs to be recorded and, once broken through, gain 

was altered from 1 to 5. A mutliclamp 700A amplifier (Axon Instruments, USA) was used for 

recordings, with a low-pass Bessel filter at 5KHz engaged, and a sampling rate of 10KHz. 

Figure 2.5 shows the patching set up used for recording. 

 

All drugs were prepared according to their safety and information profiles and, stored for 

suitable amounts of time (approximately 3-6 months depending on the drug).  All drugs were 

bath applied and allowed to perfuse for 15 minutes (solvents and concentrations used listed in 

Table 2.4). Due to the highly lipophilic nature of the two cannabinoids that are the focus of this 

project, washing out of the drugs from the slices was found to be impossible. This was found 

to be true for each of the experimental set ups used, therefore it was decided to not perform 

wash steps in these experiments.  

 

Recordings were deemed adequate for analysis if the access resistance (series resistance) 

did not alter by 25% of the original access resistance. The reason for this is large changes to 

the access resistance can cause alterations to the amplitude and kinetics of events, distorting 

the validity of recordings. For instance, a decrease in access resistance can lead to a decrease 

in the amplitude of events which, if in a drug treatment, can be misconstrued as a drug effect. 

Monitoring the access resistance, therefore, is critical to maintaining reliability of experimental 

data. This policy resulted in discarding roughly 30% of all recordings. Access resistance was 

measured roughly every 10 minutes of recording time and measured using the dedicated 

access resistance (seal test) switch on the Axoclamp amplifier (for at least 10 seconds at a 

time). Clampex 10.3 was again used for live recording, with MiniAnalysis, Microsoft Excel and 

GraphPad Prism used for data analysis (Section 2.6).  
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Table 2.5 All drugs, concentrations and suppliers used in patch experiments. 
  

Drug 
Stock Concentration; 

Solvent 
Concentration Used Supplier 

17-PA 1mM; DMSO 1μM Bio-Techne 

AM251 25mM; Water 1μM Bio-Techne 

AM630 66mM; Water 50nM Bio-Techne 

CBD 60mM; DMSO 30μM GW Pharma 

CBDV 60mM; DMSO 30μM GW Pharma 

Clobazam 10mM; DMSO 1μM Sigma 

D-AP5 25mM; Water 50μM Abcam 

Flumazenil 10mM; DMSO 500nM Abcam 

Ifenprodil 20mM; Water 10μM Bio-Techne 

MK801 20mM; Water 100nM Abcam 

PEA-QX 10mM; Water 1μM Bio-Techne 

Pentobarbital 100mM; Water 40μM Sigma 

URB597 2mM; DMSO 1μM Bio-Techne 

Zolpidem 10mM; Ethanol 100nM/1μM Bio-Techne 

β-Carboline-3-

carboxylic acid N-

methylamide 

100mM; Water 5μM Sigma 
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Figure 2.5  Schematic of patching rig set-up.  
(1) Chamber and coverslip holder (2) Heater thermometer (3) Liquid aspirator (4) 
Coverslip and submerged chamber (example of slice placement (5) Patch rig table (6) 
Olympus microscope (7) Infrared camera (8) Electrode and electrode holder (9) 
Micromanipulator PatchStar (NPI, Germany) (10) Camera control ler (11) Light controller 
for microscope (12) Television for visualisation (13) Computer running Clampex software 
(Axon CNS, Molecular Devices, USA) (14) Multiclamp 700A amplif ier (Axon Instruments, 
USA) (15) Heater (16) Digidata 1440A for conversion of analogue signal to digital (Axon 
CNS, Molecular Devices, USA) (17) Micromanipulator control box   

  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 12 

13 

14 

15 

16 

0.100 

17 



 85 

2.4.3.1 IPSC solution (mM) 

IPSC solution recipe was as follows (mM): 90 CsCl, 33 HEPES, 5 QX-314, 0.6 EGTA, 5 MgCl2, 

10 TEA-Cl, 7 phosphocreatine, 4 ATP, 0.4 GTP, 1 IEM. Osmolarity 275mOsmol and pH 7.3. 

CsCl and TEA-Cl block potassium channels and were included to decrease the loss of current 

caused by propagation to the soma from the dendrites, partially unavoidable due to inherent 

space-clamp issues. As we were utilising a single electrode method of voltage-clamp, the more 

distal regions of the cell to the electrode were less influenced by its presence. 

 

IEM 1460 was included to block AMPA and NMDA receptors internally, dispelling the need to 

apply dedicated blockers via the bath and thus allowing network effects to be studied.  

2.4.3.2 EPSC solution (mM) 

EPSC solution recipe used was as follows (mM): 100 D-Gluconate, 40 HEPES, 1 QX-314, 0.6 

EGTA, 2 NaCl, 5 Mg-Gluconate, 5 TEA-Cl, 10 Phospohocreatine, 4 ATP-Na, 0.3 GTP-Na. 

Osmolarity 25mOsmol and pH 7.3.   

2.5  Human Tissue  
Human tissue samples were collected from the Birmingham Children’s Hospital, one of four 

UK centres for epilepsy surgery services (CESS) that perform neurosurgery to resect epileptic 

foci in children with chronic drug resistant epilepsy. The age range for patients was 18 months 

to 17 years. Note the human tissue samples were not entorhinal cortex tissue, instead were 

from disparate brain areas and separate patients.   

 

The removed tissue was immediately placed into bubbled choline solution (see Section 
2.5.1.1) for transport to the lab, where samples were sliced in the choline solution and tested 

under identical conditions as the rodent tissue voltage-clamp recording experiments.  

2.5.1.1  Choline solution (mM) 

Choline solution recipe used was as follows (mM): 26 Choline Chloride, 10 NaHO3, 10 D-

glucose, 11.5 Ascorbic acid, 7 MgCl2, 3.1 Sodium Pyruvate, 2.5 KCl, 1.25 NaHPO4, 0.5 CaCl2. 

To increase slice viability 0.3 Uric Acid, 0.045 Indomethacin were added). Choline solution was 

preferred to standard saCSF to standardise HT protocols across other HT epilepsy research 

institutes in the UK.  
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2.6   Data Analysis 

2.6.1 LFP Data Analysis 

Clampex 10.3 was the recording software for LFP experiments, with recordings being made 

directly to the computer hard-drive. Offline external back ups were made upon completion of 

experiment. LFP oscillation data was then transferred to Spike2 7.1 for further offline analysis, 

including Fast-Fourier Transforms (FFT) measurements (see Section 2.6.1.1.) at each drug 

time point. Data from Spike2 7.1 was transferred to Microsoft Excel for storage. All statistical 

analysis for LFP experiments was performed in Prism 7.0, with either student’s t-test or 

Friedman’s test with Dunn’s multiple comparisons post-hoc test used to assess statistical 

significance of results depending on the number of groups being analysed (*<0.05, **<0.01, 

***<0.001, ****<0.0001).  

2.6.1.1 FFT Algorithms 

Fast-Fourier Transforms (FFTs) are a widely used method of decomposing a signal into its 

frequency components. The purpose of this type of analysis is to uncover information not 

readily observable in the time domain representation of the signal. FFTs are centred on the 

basis that non-periodic signals are considered integrals of non-harmonically related sinusoids. 

Unlike a digital signal, which is sampled in the time domain, FFTs sample in the frequency 

domain, producing a set of spectral coefficients, representing the underlying continuous 

spectral function. FFTs are so widely used throughout many areas largely due to the speed at 

which they can be performed. 

 

The in-built FFT algorithm of Clampfit 10.3 was used to build FFTs to test the stability of the 

oscillations during the experiments. On completion of experiments and in analysis the FFT 

function of Spike was used, which allowed data to be copy and pasted into Prism 7.0 and 

pooled FFT figures to be made.  

2.6.1.2 Peak Gamma  

Peak Gamma was found from collating and normalising the n numbers for each weight 

category to form a normalised FFT. The highest value power (shown by the normalised area 

under the curve (nAUC) from within the gamma frequency (30-60Hz) was extracted from this. 

The power at the selected frequency was found for each slice recording performed and 

subsequently pooled together resulting in an overall peak gamma output for each 

age/condition. 

2.6.2 Patch Data Analysis  

Patch data were analysed in MiniAnalysis (Synaptosoft, USA), though were recorded in 

Clampex 10.3. Again, external hard-drive back-ups were made upon completion of 
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experiments. Experimental files were converted to ABF 1.8 Integer files in Clampfit 10.3, 

allowing them to be opened in MiniAnalysis.  

 

Minianalysis allows for detection parameters to be set individually for each experiment, to 

define which deflections from the baseline were to be considered genuine events and to allow 

for variation across the population. This was done by first manually selecting a number of 

events and then entering their characteristics as the parameters for peak detection. The 

parameters available were: amplitude, threshold for peak, area, minimum and maximum 

periods for rise and decay times and, direction of event. In this case IPSCs and EPSCs were 

both being downward deflections. IPSCs/EPSCs required 200 events for each condition.  

 

Analysis provided detailed information on: amplitude (pA; in patch), inter-event intervals (IEI; 

ms), rise time (ms), decay time (ms), area, baseline as well as variations upon these.   

 

Statistical analyses were mainly performed in Prism 7.0. Again, most of these data were 

nonparametric, tested using D’Agostino-Pearson omnibus K2 normality test, the 

recommended normality test suggested by the in-built statistical analysis compatibilities 

present in Prism 7.0. This normality test computes both skewness and kurtosis first, which 

quantifies how far from Gaussian the data is in terms of shape and asymmetry. These values 

are then used to calculate distance to expected Gaussian values, with a single P value 

provided to show distance. In most cases, unless otherwise specified, mean median values 

for each drug treatment have been calculated for each dataset. The normality tests were then 

performed on the pooled mean median values for each experiment.  

 

Due to the nonparametric nature of much of the data, paired Wilcox matched pairs signed-

rank test was used for data with two experimental conditions, whereas one-way ANOVA, 

Friedman’s test with Dunn’s multiple comparisons test post-hoc was employed for data with 

three or more parameters. As with the normality tests, statistical analysis was performed on 

pooled mean median values, unless otherwise stated.   

2.6.2.1 Normalised Inhibitory Charge Transfer (NICT) 

Inhibitory charge transfer (ICT; ms*pA) is a method of measuring the amount of charge that 

has crossed the membrane, which in turn is a representation of the level of neurotransmitter 

that has been released. It may be calculated by measuring the area under the curve of each 

event (Hollrigel and Soltesz, 1997), which is proportional to the decay time (ms) of a single 

event multiplied by its amplitude (pA). The advantages of this method of analysis include an 

indication of drug effect on NT release. 
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Normalised inhibitory charge transfer (NICT), used here, was formulated from summing the 

area parameter values, a multiplication of amplitude (pA) and decay time (ms) for each set of 

200 events. This calculation provided the raw overall value of inhibitory charge passing across 

the membrane for the duration of 200 events. This number was then divided by the time taken 

to reach 200 events (final event time (ms) minus initial event time (ms) and multiplied by 1000, 

to provide a value of cumulative charge transfer per second (coulombs per s or, NICT).    

2.6.2.2 Principal Component Analysis (PCA) 

Principal component analysis (PCA) was performed to assess which parameters of IPSC 

kinetics were the source of the largest variance and therefore, most affected by the application 

of CBD. We postulated that once we had been determined we could theorise hypotheses for 

the mechanism of action of CBD and select appropriate drugs to target possible 

interaction/binding partners of CBD. 

 

PCA measurements possess certain advantages over normal x-y data, as principal 

components allow elucidation of the factors causing the largest amount of variance within the 

results. Principal components can be described as the data’s underlying structure and the 

means of variation across the data, for instance, in this report decay time is a principal 

component. Every dataset is able to be deconstructed into a set of eigenvalues and 

eigenvectors, with the two existing as pairs, every eigenvector corresponds to an eigenvalue.  

 

Eigenvectors are directional, indicating an axis of some description and its direction (horizontal, 

vertical, or angled), while eigenvalues are a number value that correspond to the variation 

produced in the dataset for that eigenvector. The eigenvector with the largest eigenvalue 

becomes the first principal component, as it represents the largest amount of variance, the 

second largest becomes the second principal component, and so on. Eigenvalues, therefore, 

indicate the spread of the data and the parameter responsible for the largest variation between 

the values. For data to be eligible for use in PCA, it must first be transformed orthogonally, 

ensuring the principal components are perpendicular, allowing the axes to represent the 

spread of data and the variation across it effectively. The number of eigenvectors & 

eigenvalues determines the number of dimensions the dataset possesses. Here, 5 variables 

have been utilised (amplitude (pA), interevent interval (IEI; ms), rise time (ms), decay time (ms) 

and, area (amplitude * decay time)) meaning our PCA is a 5-D dataset, with 5 pairs of 

eigenvectors and eigenvalues.        

 

All PCA calculations were performed in R, with the RCommander and ggbiplot2 repositories 

installed. The visual output of the PCA calculations was as concentric rings, each representing 

a different drug condition, with the size and position of the ring alongside the arrow size and 
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direction indicating the largest source of variance within the dataset.  A sample of the exact 

code used for the PCA computation is included in Appendix 1. 
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Chapter 3  
 
 
Further verification of the RISE 
model  
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3.1 Introduction 

3.1.1 RISE as an effective model of TLE 

In this study, the RISE model of TLE was utilised, described by this lab in Modebadze et al, 

(2016). The RISE model features low mortality and high morbidity, with mortality reduced to 

~1%, while high epileptogenicity and spontaneous recurrent seizure development (SRS) are 

retained. The RISE model promotes lower levels of global neuronal damage, in particular in 

terms of neuronal network function in the CA3 region of the hippocampus. At 1%, RISE shows 

much lower mortality in comparison to previous models (~10-50% in the low-dose lithium-

pilocarpine models (Glien et al., 2001; Curia et al., 2008) and ~50-80% in high dose pilocarpine 

models (Moser et al., 1988).  

Due to the lower levels of brain damage presented, the RISE model allows for the detection of 

subtle changes occurring during epileptogenesis. The low mortality rate of this model is also 

in line with the 3R principles of animal use in scientific procedures. 

Figure 3.1 Average PSBB scores for AMC (n = 12) and SE (n = 36) rats. 
Taken from (Pennifold, 2016).  

Validation of SRS in the RISE model has been performed using a modified Post-Seizure 

Behavioural Battery test (PSBB – described in the Materials and Methods chapter (Chapter 2, 
Section 2.3). Analysis of this work is presented in Figure 3.1, showing an average of 20.3 ± 

0.86 weeks for SRS to develop. SRS is defined as scores remaining over 10, when multiplied 

together, over 4 sessions. 

Comparisons between network and cellular changes between the RISE afflicted and AMC rats 

have been observed as a by-product of other work performed in this thesis. Here they are 

presented as they demonstrate further validation of the RISE model as an alternative to the 

most commonly used epilepsy models.  
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3.2 Results  
To verify the effectiveness of our RISE epilepsy model, baseline (400nM KA only) responses 

have been compared between the AMC and SE rats. These comparisons have been 

performed in various experimental scenarios including: LFP, where all ages have been 

compared, and in voltage-clamp recordings of both IPSCs and EPSCs (p18-26).  

3.2.1 LFP data 

Commencing with the LFP data (Figure 3.2), we have compared all ages of rats used later in 

this body of work to determine the differences between the AMC and SE rats in LFP responses 

in baseline conditions. We have utilised 3 analysis parameters to observe differences between 

the two disease conditions, which are, peak frequency, peak power and, peak gamma 

measurements, the procurement of which has been described previously (Chapter 2).  

 

Peak frequency was found by taking the frequency with the highest power at baseline 

conditions from a normalised FFT, while peak power took the power from this frequency. Peak 

gamma took the highest power from only the gamma range (30-60Hz) from the normalised 

FFT (explained further in Chapter 4) .  

 

The n numbers used for this section are as follows for the AMC population: 24-hours: n =13, 

animal n = 4; 1-week: n = 13, animal n = 7; 3-month: n = 15, animal n = 7. For the SE population 

the n numbers were: 24-hours: n = 13, animal n = 4; 1-week: n = 17, animal n = 8; 3-months: 

n = 16, animal n = 6.  

 

Comparing the 24-hour age groups (P18-19) a highly significant difference between the two 

peak frequencies was visible (Figure 3.2.Aii), with the AMC population possessing a peak 

frequency of ~42Hz, while the SE population had a peak value of ~36Hz. The box and whisker 

plot show the minimum to maximum values with the bars, with 95% confidence limits making 

up the box. The line across represents the mean value. No significance was observed in either 

the peak power or peak gamma measures (Aiii – Aiv). 
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Figure 3.2 Comparison between baseline AMC and SE LFP data. 
Raw LFP data from each age and disease state, indicated by age range and, AMC or SE tags, with scale bars (A-Ci). Box and whisker 
plots (black AMC; red SE) from left to right: peak frequency analysis (Hz; A-Cii), peak power analysis (A-Ciii) and peak gamma responses 
(A-Civ). ** p < 0.01.
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The 1-week post-induction populations (P26; Bi-Biv), showed no significant differences across 

any of the measures. Interestingly the mean peak frequency of the AMC population decreased 

to ~35.5Hz, very similar to that of the SE population. The SE peak frequency did not shift 

greatly from what was observed in the 24-hour post-induction animals previously. The peak 

power and peak gamma figures both showed an obvious outlier as the maximum value, though 

despite this there was no significance between the values of the two populations in either 

measure. 

 

The chronic or 3-month time point, represented in the final row (Ci-Civ), again showed no 

significant differences in any measure. Both population peak frequencies increased to a similar 

value (~41Hz). The peak power values showed little differences in the mean value or 95% 

confidence limits, though the SE population did have a large maximum value. This was 

repeated in the peak gamma where no significant differences were observed, though 

differences were present in the size of the respective box and whiskers, with the SE population 

having a smaller box but a larger range, suggestive of high clustering in the majority of the 

responses but with several outliers.   

3.2.2 Whole-cell voltage-clamp data 

Alongside the LFP results previously discussed, whole-cell voltage-clamp experiments were 

also performed on both control and SE tissue (P18-26). Spontaneous inhibitory post-synaptic 

currents (sIPSCs) and spontaneous excitatory post-synaptic currents (sEPSCs) were 

recorded. The results are graphed in Figure 3.2.Ai-Biv, with A showing sIPSCs and B showing 

sEPSCs.  

 

In sIPSC conditions, AMC: n = 12, animal n = 9; SE: n = 26, animal n = 19. In sEPSC 

conditions, AMC: n = 5, animal n = 4; SE: n = 6, animal n = 5. 

 

Aii showed the mean median inter-event intervals, which relates to the frequency of currents 

by showing the time between each event in milliseconds (ms). As can be observed, no 

significant difference was present between the two populations, though differences in the size 

and shape of the box and whisker plots were observed, with a trending decrease noted (AMC: 

86.8ms; SE: 67.5ms; p = 0.07). Aiii highlights the mean median amplitude of each event, again 

no significance was observed between the two populations, though differences were observed 

in the size/shape of the box and whisker plots again, with the AMC data showing a slightly 

lower mean median value but a larger range than the SE data (AMC: 21.1pA; SE: 23.22pA; 

p=0.29). Aiv represents a measure of inhibitory charge transfer (ICT), which was produced 

from the sum area of 200 events divided by the time taken to achieve 200 events (final event 

time minus initial event time). This number was then multiplied by 1000 to give a charge 

transfer per second value (femtocoulombs (fC)).  Again, no significant difference between the 
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two populations were noted (AMC: 2202fC; SE: 3016fC; p = 0.20), though the size and shapes 

of the box plots themselves were somewhat different, with the SE ICT displaying a smaller 

range but larger box than that of the AMC. 

 

The sEPSC data follows the same order as that of the sIPSC data just discussed. Again, in 

the mean median IEI (Bii) no significant differences were noted (AMC: 296ms; SE: 136ms; p 

= 0.09). Moving onto the amplitude results (Biii), significant differences were observed (p < 

0.01), with the SE population presenting both a larger mean median value (SE: 23pA; AMC: 

9pA), larger box plot as well as a larger range in responses. Biv shows excitatory charge 

transfer, which is found using the same formula used for ICT. Once more, significance was 

observed between the two populations here (AMC: 151fC; SE: 561fC; p < 0.01), with the SE 

population showing a larger mean median value, box plot and range than that of the AMC 

population.      

 

Kolmogorov-Smirnov tests were performed on pooled data for both IPSC and EPSC 

parameters (IEIs and amplitudes; Figure 3.4) to observe if the distributions show any 

significant changes. The cumulative frequencies have been shown as a percentage and, here, 

significant differences were noted in both the EPSCs, as the mean median analysis of Figure 
6.3 showed, but also in the IPSC analysis, with every KS test showing a p value of p < 0.0001 

(****). The KS-D, the vertical deviation between the two curves, was different for each however, 

with Ai showing a value of 0.12, Aii = 0.14, Aiii = 0.19 and, Aiv = 0.64. Indeed, here the EPSC 

data still showed the largest effect, especially with regards to amplitude, suggesting more 

profound changes occurring to the excitatory mechanisms in the SE animals.   
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Figure 3.3 Comparison between baseline AMC and SE sIPSC/sEPSC data.  
Raw data taken from sIPSC (Ai) and sEPSCs (Aii) in both AMC and SE rats (label led). Box and whisker plots detail ing any differences 
between AMC (black) or SE (red) rats in: mean median IEI (Aii), mean mean amplitudes (Aii i) and inhibitory/excitatory charge transfer 
(I/ECT; Aiv). ** p < 0.01.
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Figure 3.4 Cumulative frequency of IPSC and EPSC parameters 
Cumulative frequency for pooled IPSCs (Ai-i i)  & EPSCs (Aiii-iv) events including both 
IEIs (Ai & Aiii) and amplitudes (Aii & iv). Al l events collected were pooled together for 
AMC (black line) and SE (red line) conditions for each analysis.  
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3.3 Discussion  

3.3.1 Differences in frequency apparent at early time points are lost 

with development 

The data presented in Figure 3.2.Aii shows a significant difference between the two juvenile 

rat populations, with the AMC population showing a higher peak frequency value than the SE 

population. This is highly suggestive of a change to neuronal firing and synchronicity in Layer 

II mEC neurons early post-SE induction. This is indicative of RISE-induced changes to 

neuronal receptor composition in the mEC, suggested by the collaborative protein expression 

studies and also by various previous studies (Chapman, 1998; Meldrum and Rogawski, 2007). 

Another possibility is due to damage caused through the induction process itself, though this 

may not be plausible due to the lack of change to both peak power and peak gamma measures, 

which are suggestive of normal neuronal function.  Significant changes between the two 

populations are lost with development, though differences/trends can be observed with the 

size and shape of the box + whisker plots, suggestive of possible slight changes, though 

obviously due to the lack of significance no conclusions can be drawn about this. This recovery 

in peak frequency with maturation of the SE rat population highlights the plasticity and 

recoverability of neuronal networks, being able to endure a traumatic event (i.e. status 

epilepticus) and recover with time. 

 

Interestingly, the peak frequency data shows a slowing in adolescence of the AMC population 

from 43Hz in the juvenile rats to 35Hz in adolescence, a pattern not observed in the SE 

population. This may suggest that the AMC animals are undergoing neuronal rewiring 

associated with adolescence, which is blunted in the SE animals, which have most likely 

undergone neuronal rewiring in response to the RISE induction process. No significant 

changes were observed at any of the age range when peak power and gamma were analysed.  

3.3.2 No significant effects on inhibition 

As can be observed in Figure 3.3.Ai-iv no significant effects were observed between AMC 

and SE populations when investing sIPSCs from Layer II mEC pyramidal cells from p18-26 

rats. Non-significant differences are visible between the size and shapes of the box and 

whisker plots across the parameters. In Aii, the SE data shows a tighter clustering and lower 

mean median value and range compared to the AMC data, with a trending decrease noted 

here. This is contrasted in the mean median amplitude data presented in Figure 3.3.Aiii, 

where the SE population displays a higher mean median value than the AMC data, though as 

previously the AMC population possesses the higher range. The final comparison between the 

two populations is the ICT measure (Aiv), where both populations have visually similar 

size/shapes, though again the AMC data has a slightly higher range, while the SE data shows 
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a higher ICT value and a larger box plot. The lack of significance in each of these analyses 

suggests that the overall inhibition of Layer II mEC cells is relatively unperturbed by the SE 

protocol.   

 

Significant changes in the distribution of the responses are noted in Figure 3.4, with changes 

in both IEI and amplitudes noted, with a highly significant p value, suggesting alterations are 

present in the distribution of event values, though these do not present themselves in the mean 

median comparisons of Figure 3.3.  

3.3.3 Significant alterations observed on excitation  

Data presented in Figure 3.3.Bi-iv shows the analysis of sEPSCs performed in the same area 

as the sIPSCs just discussed. Bii displays the two populations mean median IEIs, which show 

no significant changes, though a visible change is seen in the box and whisker plots – with the 

SE population demonstrating a tighter clustering and smaller range and mean median value 

than the AMC population. As this data is non-significant, no definitive conclusions can be borne 

out of it. This is in contrast to the adjacent figure (Biii), which displays mean median amplitude 

values, and possesses a significant difference between the two groups, with the SE population 

demonstrating a significantly higher amplitude value than the AMC population. These changes 

are further cemented when looking at the data presented in Figure 3.3.Biv which shows 

excitatory charge transfer (ECT), where once more the SE population displays a significantly 

higher value when compared to the AMC. Furthermore, Figure 3.4 displays the KS tests 

results for sEPSCs, showing highly significant differences between the AMC and SE 

populations, with profound changes noted in the amplitude distributions especially. Both 

parameters display large amounts of significance, backing the mean median findings of Figure 

3.3. These results strongly suggest that fundamental changes occur to excitatory transmission 

in the RISE model.    

 

It is difficult to state whether one test takes precedent over another when comparing the mean 

median analysis and changes to distributions. KS tests are prone to giving overly positive 

results due to taking each event as a separate n number, while it is probable that the mean 

median analyses have less of a connection physiologically to network function than analyses 

of amplitudes and IEIs distribution. Here, however, the EPSC results obtained show both the 

variance box plots and cumulative probability are significantly altered in the RISE model, while 

the IPSC parameters show significant differences only in distributions. This is highly suggestive 

that excitation is the key element of change in the RISE model, with significance achieved in 

both analysis methods. Of course, no single test is a better description than another and so 

here we have tried to provide a holistic overview of all changes for comparison.    
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When allied with the protein expression work discussed in the previous chapters (Chapter 4), 

rises in the expression of the NMDAR subunit GluN1 are noted in the TLE in the immediate 

24-hours following RISE induction, which is the same time point these rats are taken from 

(Appendix 2). It may be this apparent rise in NMDAR expression that is responsible for the 

increased excitation noted here. A significantly increased GluN1 subunit expression suggests 

a greater number of NMDARs present at both the pre- and postsynaptic membranes, and as 

such, a greater density of NMDARs is suggestive of an increased response to glutamatergic 

transmission. 

3.4 General discussion and future experiments 
Epilepsy is widely regarded as a neurological disease caused by an imbalance in excitation-

inhibition balance, with excitation dominating inhibition. The data presented in this chapter 

suggest that the RISE induction protocol is successfully able to mimic this imbalance, 

supporting RISE as a valid model of TLE. Here, little or no difference between AMC and SE 

baselines in sIPSC or LFP experiments have been demonstrated, suggestive of no changes 

to inhibitory balance upon initial insult, whereas sEPSC experiments have noted significant 

differences in both the mean median amplitudes and excitatory charge transfer (ECT; 

femtocoulombs (fC)). Further electrophysiological experiments would most likely concentrate 

on increasing the n number of sEPSCs recordings, to increase statistical significance and 

further validate the findings.  

 

When combined with the preliminary protein expression work (Appendix 2), increases to the 

NMDAR subunit GluN1 are noted early after SE induction, which could explain the increased 

excitatory charge crossing the postsynaptic membrane. Further experiments here could 

include, recording miniature postsynaptic currents to investigate if this effect noted in the SE 

population is action potential independent and, therefore, whether it is presynaptic in nature. 

Further to this, a broader range, and higher n number, of proteins could be screened for 

including, GluN2, mutations of which have been strongly implicated in seizure generation and 

epilepsy (Bledsoe et al., 2017), CB1Rs, mGluRs and GABA receptors, each of which is noted 

for their ability to establish or maintain seizure events.  
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Chapter 4  
 
 
Dose-response of CBD and CBDV on 
mEC Layer II using LFP recordings 
in SE and AMC rats. 
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4.1 Introduction 
Neural network oscillations have been observed in humans in vivo since 1929, expanded with 

the invention of the electroencephalogram (EEG) by Hans Berger in 1939 (Berger, 1929; Tudor 

et al., 2005). This work was expanded to allow investigation of neuronal activity in vitro, while 

the development of brain slicing techniques over time has enabled living tissue to be well 

preserved, allowing oscillations to be recorded from in vitro preparation to be taken using LFP 

(Aghajanian and Rasmussen, 1989). Tetanic electrical stimulation experiments produced the 

first in vitro oscillations observed in 1995 (Whittington et al., 1995, 1997, Traub et al., 1996, 

1999). This discovery allowed a new field of investigation to be opened; in vitro rhythmogenesis 

and its mechanistic study. 

 

Persistent oscillations are inducible via various agents in in vitro slices by: mGluR agonists 

(Whittington et al., 1995), kainate receptor agonists  (Cunningham et al., 2003; Fisahn et al., 

2004), cholinergic agonists (Fisahn et al., 1998) and by tetanic electrical stimulation. Persistent 

oscillations have been induced in many major regions of the brain such as, the CA1 and CA3 

regions of the hippocampus and the entorhinal and motor cortices (Fisahn et al., 1998; Gillies 

et al., 2002; Cunningham et al., 2003; Yamawaki et al., 2008). 

 

The study of neural oscillations provides a good source of information about how neuronal 

networks perform their natural function. As such, neural oscillations have been chosen to 

observe the effects of CBD(V) at a network level. Our interest in epilepsy, specifically temporal 

lobe epilepsy, lead us to investigate the mEC, an important area for both oscillations and 

epilepsy, with epilepsy being a disease of pathological network oscillation.     

 

The work in this chapter has been collected using LFP recordings in layer II of the mEC of 

AMC and SE rats. The aim of this work was to investigate the effect of CBD and CBDV on 

pharmacologically induced gamma oscillations, as a prelude to similar investigations of the 

pathological oscillations seen in epilepsy, and to find the most effective working concentration 

for subsequent investigations. Hence, dose-response investigations were performed, with 

increasing phytocannabinoid dose over the course of the experiments, using a half-log unit 

cumulative regime: 0.3μM, 1μM, 3μM, 10μM, 30μM. Each dose was bath applied for a 30-

minute period and, was added upon stabilisation of network oscillations. Oscillation 

stabilisation was judged by performing FFTs every ten minutes, with a less than 10% overall 

change in the power of the gamma oscillations adjudged to confirm stable oscillations. KA was 

added at least an hour before addition of first cannabinoid doses, dependent on the presence 

of stable gamma oscillations. 1-minute epochs of data were used for analysis of gamma using 

FFTs. 
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Exclusion criteria was commonly related to unstable gamma oscillations, observed using FFTs, 

with usually one or two slices out of four displayed a lack of stability, as such the results from 

those slices were excluded. Other datasets were excluded if large outliers were observed in 

more than one dose (e.g. a four-fold increase in power at 0.3μM with another large increase 

in 1μM, while little change was noted in the other slices – though again this was usually related 

to oscillatory instability).  

 

As no experimental work had been done on our model of epilepsy and cannabinoids, we used 

animals from different time points along the epileptogenesis pathway, those being – 24-hours 

post induction (p19-20), 1-week post induction (p26-27), and chronically epileptic (usually 

around 3-months post induction – confirmed with PSBB (Section 2.3)) – with age-matched 

controls (AMCs) taken from comparable time points. This selection allowed us to cover a 

multidimensional space of epilepsy progression and the effectiveness of CBD(V) at these 

points in comparison to AMC responses.     

 

Specific protocols, materials and analysis techniques utilised are detailed in Chapter 2.  
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4.2 Results 

4.2.1 Effects of CBD on pharmacologically induced persistent 

gamma on 24-hour (~P19) AMC and SE rats  

As stated, we used rats from the 24-hour post induction time point (24hr SE), and similarly-

aged control rats (AMC) to test CBD effect on epileptic and physiological neural oscillations. A 

total of 2 animals were used for each of the AMC and SE experiments, both with an n of 6 

overall, with each n referring to the results of a single slice.  

4.2.1.1 FFTs and split frequency histogram analysis  

Our data analysis efforts first concentrated on the effects of CBD on three broadly-defined 

oscillatory ranges (0-29Hz, 30-60Hz and >60Hz), as we hypothesised that CBD might cause 

a reduction in gamma power (30-60Hz), perhaps with the power shifting from gamma down to 

slower bands such as beta or alpha.  

 

FFT were produced for individual slice responses, examples of which can be observed in 

Figure 4.1.Aii-Bii, which show the maximal effect of 30μM CBD against the cannabinoid free 

KA induced gamma oscillations. Here no real effects were observed in the AMC slice response 

(Aii), while the SE showed a shift leftward, indicating a decrease in gamma frequency, as well 

as a decrease in power (Bii). To gauge the FFT responses from each population, each slice 

response in that population was pooled, normalised and compiled into average FFTs.  

 

A similar FFT to that presented in Aii-Bii, is shown in Aiii-Biii, though this highlights the effect 

of the maximal CBD addition on pooled population gamma oscillations of both AMC and SE 

rats, with the SEMs depicted as the slightly transparent fill area on either side of the respective 

lines. These FFTs continued to show little to no effect on either the size or shape of the FFT 

line at the maximal CBD dose in the AMC animals (Aiii), similar to the individual slice response 

observed in Aii. In contrast, the SE population (Biii) showed an active effect of CBD, with the 

power and frequency of the FFT peak decreasing substantially at the maximal CBD dose, 

showing an average effect comparable to that observed in the single slice (Bii).  The full drug 

dose addition responses and their effects on the FFT are shown in Aiv-Biv for the AMC and 

SE populations respectively, with each dose representing a different coloured line (clarified in 

the legend). Due to the large number of doses performed clear trends on the shape and sizes 

of the FFTs are hard to observe, however clear decreases can be observed upon subsequent 

doses in the SE animals (Biv), while little change is noted in the AMC population (Aiv). 
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Figure 4.1 Raw traces and FFTs for CBD 24-hour post-induction.  
Ai-Bi Representative raw traces of pharmacologically induced gamma oscil lations in both 
AMC (left) and SE (right) rats at 400nM KA and the maximal 30μM CBD.  Aii-Bii A single 
slice response to the maximal 30μM CBD addition, for both the AMC (left) and SE (r ight)  
rats. Aiii-Biii Normalised FFT displaying the normalised area under the curve (nAUC) for 
both the 400nM KA and maximal 30μM CBD for the AMC (left) and SE right) data set, 
SEM is represented by the coloured fill area flanking the line. Aiv-Biv Normalised FFT 
data for all CBD doses applied in AMC (left) and SE (right). Coloured l ines and fill refer 
to: red (400nM KA), orange (0.3μM CBD), yellow (1μM), dark green (3μM), light green 
(10μM), blue (30μM), purple (wash).  
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To clarify if these effects were significant, FFT data for the area under the curve in each of the 

defined frequency bands (0-29Hz, 30-60Hz, 60+Hz; the spectral power for that band) was 

calculated and pooled to produce a split frequency histogram (Figure 4.2). The control portion 

translates to the cannabinoid free (baseline) 400nM KA only segment of the experiments – this 

control section was then normalised to 100 across ranges. The specified CBD concentrations 

were then added, and differences calculated. Where mean values have been shown, the 

standard error has also been shown (with ± used for this). 

 

As can be seen in Figure 4.2.Ai, there were no real differences observed across any of the 

frequency bands at low doses of CBD in the AMC animals. Significant, though slight, increases 

were observable in the low frequencies at both 30μM CBD (p < 0.01) and in the wash step (p 

< 0.0001), though the 30-60Hz and 60+Hz frequencies remained unaffected. The mean of the 

low frequencies (0-29Hz) at 30μM CBD was 112.13 ± 3.60 (range: 100.5-124.5), and 116.57 

± 3.12 (101.7-123.6) in the wash. 

 

In the 24hr SE rats (Figure 4.2.Aii), no significant evidence of gamma suppression was noted 

as dose of CBD increases. At the maximal 30μM dose, no significance was observed, despite 

the decrease previously observed in the normalised FFT. The only significance observed in 

this analysis method was an increase in the final wash step (when compared to 400nM KA) to 

the slow frequencies (0-29Hz), with a mean of 158.24 ± 24.01 (106.28-256.11). The mean 

value of both the gamma and fast frequencies (60+Hz) slightly decreased from the 30μM doses 

in the wash, at 68.87 ± 2.60 (24.32-91.01) and 133.51 ± 37.12 (60.11-288.45) respectively, 

though neither is significant.  

 

This analysis method seemed to be at odds with the seemingly obvious effect noted in the raw 

SE FFTs presented previously, where a clear shift leftward and down was noted at high CBD 

doses. The lack of similarity between what was observed in the FFTs and what was found in 

the split frequency histograms suggests this particular analysis method was not providing an 

accurate representation of CBD effect. As such, different analysis methods were utilised to try 

and represent the data, including both peak frequency and peak power comparisons, the 

results of which are detailed in the next section. 
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Figure 4.2 Split frequency histograms for CBD 24-hour post-induction.  
Ai showing the band specific nAUC response to increasing doses of CBD plus wash in 
the AMC condition, with population responses included. Data was normalised, with the 
400nM KA response set to 100%. Aii Same histogram data shown for the SE dataset,  
with population responses included. Legend: low frequency (0-29Hz) - red bars; gamma 
(30-60Hz) - green bars; high frequency (60-1000Hz) - blue bars. Black capped bars show 
standard error. ** p < 0.01, **** p < 0.0001. 
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As the analysis did not seem to represent the data well in the previous analytical method, we 

investigated the effect of CBD on peak frequencies for each experiment within the population. 

We hypothesised from the initial normalised FFT figures (Figure 4.1) that we would see a 

decrease in the frequency in the SE rats – as there is a leftward trend that is seemingly dose 

dependent – and no effect in the AMC population.  

 

For peak frequency analysis we took the frequency displaying the highest power (largest AUC 

in our datasets) at each drug dose condition for each n within the two populations. These data 

were then entered into GraphPad Prism 7 and averaged at each drug condition. The resulting 

data from both disease conditions were plotted onto a mean line graph with the individual 

responses, to display the differences between both the conditions and the drug dose, shown 

in Figure 4.3.  

 

As shown, there was quite a large disparity between the two peak frequencies of the AMC and 

SE rats, with AMC having an initial peak frequency of 43.74Hz ± 1.62 and SE of 34.59Hz ± 

1.66. Statistical analyses (Mann-Whitney test) were performed on this difference and returned 

a significant p value (p < 0.0043). No discernible effect of CBD on AMC peak frequency at any 

dose was observed, with a low variability present (depicted by population responses). The SE 

animals displayed a significance decrease only in the maximal 30μM CBD dose, with a final 

frequency of 29.09Hz ± 2.30 (p < 0.05).  The wash step produced a frequency of 24.41Hz ± 

2.82 (p < 0.01). This analysis method seemingly fits with what was observed previously in the 

FFT data regarding the frequency decrease noted with higher applications of CBD. 

 

As we had investigated the peak frequency of both sets of data, we also decided to look at the 

peak power of each of the conditions. This was performed in a way similar to peak frequency 

measurements, though instead of taking the frequency value the power was instead taken. 

Peak power calculations were performed with highest AUC value being taken, regardless of 

the frequency, for each cannabinoid dose, for every slice. The results were then normalised to 

their initial 400nM KA (baseline) peak in each slice (set to a value of 100). Once a full set was 

achieved the data was averaged to produce an overall, normalised mean value for each 

condition, complete with population responses. Both conditions were then charted on a 

combined line graph for comparison (Figure 4.3.Aii).  
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Figure 4.3 Mean peak frequency and power line graphs for CBD 24-hour post-induction. 
Ai Mean peak frequency line graph with AMC (black line) and SE (grey line) averages.  
AMC (red squares) and SE (green triangles) population frequencies are also plotted. Aii 
Normalised peak power responses across the CBD doses for both the AMC (black line) 
and SE (grey line). Again, population responses are also plotted (AMC: red squares; SE: 
green triangles). * p < 0.05, ** p < 0.01, with grey asterisks referring to SE significance.  
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As with the peak frequency, normalised FFTs and, histograms presented previously, the AMC 

data showed remarkable stability across all drug doses, with no changes and a lowest value 

of 97.67 ± 7.97 returned in the wash step. No significance was noted in any of the drug dose 

additions. The SE data also showed no significant change to peak power upon the addition of 

CBD, once more in contrast to the observable effect noted in the raw FFT analysis (Figure 

4.1). 

 

As this analysis compared peak power regardless of its frequency, another method of analysis 

was formulated to look specifically at only the power loss within gamma range.  
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4.2.1.3 Peak gamma measurements 

The measuring of peak power across doses showed a more promising approach to assessing 

CBD responses but included the whole range of frequencies present. As we were specifically 

interested in gamma oscillations in the mEC we decided to limit the range of frequencies to 

just those that fall within our defined gamma range (30-60Hz).  

 

We applied a modified approach to finding the peak frequency across datasets, with the 

gamma frequency being taken from the normalised FFT work previously presented (Figure 

4.1). Therefore, the highest pooled, normalised power in 400nM KA was taken from the FFT. 

To be able to perform rigorous statistical analyses on the data it was decided that the nAUC 

would be taken from the specified frequency in each individual slice, that is, the frequency that 

showed the largest nAUC measurement. The frequencies found were 40.2Hz in the AMC, and 

35.4Hz in the SE, similar to the peak frequencies found previously. 

 

Figure 4.4 Mean normalised peak gamma response to CBD 24-hour post-induction.  
Each condition is plotted on the same dose point, with AMC in grey and SE in red, with 
population responses also plotted. Black capped bars show standard error. * p < 0.05, ** 
p < 0.01. 
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These data were then plotted into a joint histogram displaying the mean, SEM and population 

responses of both conditions at each dose (Figure 4.4). This measure showed the differences 

between the two disease populations, with a relative amount of stability across all drug doses 

in the AMC animals. 

 

A gradual fall in power in the SE animals was observed. The differences are most pronounced, 

and significant, at 30μM CBD (64.80 ± 14.30; range: 29.53-125.1; p < 0.05) and wash steps 

(60.97 ± 13.01; range: 17.45-105.2; p < 0.01) in the SE animals.  

 

This analysis method showed the most comparability with the FFT produced for each dataset 

and, as such, was determined to be the best way of comparing cannabinoid effectiveness on 

gamma oscillations.      
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4.2.2 Effects of CBD on pharmacologically induced persistent 

gamma on 1-week old (~P26) AMC and SE rats  

We were interested in the processes of epileptogenesis and the effect this process may have 

on the responses and effect of CBD. As such, we used a time point of 1-week post-induction 

to assess CBD effectiveness in the “latent period”, the point where no seizures are observed 

within animals or humans (Modebadze et al., 2016; further confirmed in the PSBB data 

performed in this project). 

 

The AMC population is comprised of 4 animals in total, providing an n of 7, while the SE 

population is composed of 5 animals in total to give an n of 10 (though the “wash” step was 

only performed in 8 of these). The experiments are analogous as those conducted in the initial 

section of this chapter (Section 4.2) and will be presented in the same manner. 

4.2.2.1 FFTs and split frequency histogram analysis  

As with the 24-hour SE rats and AMCs, we conducted initial analysis focusing on producing 

FFTs and normalised split frequency histograms. FFT were produced for individual slice 

responses, examples of which can be observed in Figure 4.5.Aii-Bii, which show the maximal 

effect of 30μM CBD against the cannabinoid free baseline gamma oscillations. Here, effects 

were observed in both the AMC slice response (Aii), and SE response (Bii) with a shift 

leftward, indicating a decrease in gamma frequency, as well as a decrease in power. 

Interestingly this effect appeared more prominent in the AMC dataset than the SE population.  

 

Again, to gauge the FFT responses from each population, each slice response in that 

population was pooled, normalised and compiled into average FFTs. As can be seen in Figure 

4.5.Aiii, the normalised FFT of the AMC condition at control and 30μM CBD, the shift in both 

power and frequency endures – indicative of a slowing of the rhythm and less neuronal 

excitability within the network. This trend was also notable in the full dose FFT (Aiv), where 

what appeared to be a dose-dependent decrease in both power and frequency was 

observable. In contrast, Figure 4.5.Biii shows CBD effect on the SE condition, which though 

present, was clearly lesser than that seen in the AMC data. Alongside this, in the 30μM dose 

it appears that the peak becomes broader, suggestive of less synchronous neuronal firing 

producing a wider spread of frequencies. Despite this, a trend towards a decrease in power, 

though not frequency, was observed at high doses of CBD when compared to the lower doses 

(Biv).  
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Figure 4.5 Raw traces and FFTs for CBD 1-week post-induction.  
Ai-Bi Representative raw traces of pharmacologically induced gamma oscil lations in both 
AMC (left) and SE (right) rats at 400nM KA and the maximal 30μM CBD.  Aii-Bii A single 
slice response to the maximal 30μM CBD addition, for both the AMC (left) and SE (r ight) 
rats. Aiii-Biii Normalised FFT displaying the normalised area under the curve (nAUC) for 
both the 400nM KA and maximal 30μM CBD for the AMC (left) and SE right) data set, 
SEM is represented by the coloured fill area flanking the line. Aiv-Biv Normalised FFT 
data for all CBD doses applied in AMC (left) and SE (right). Coloured l ines and fill refer 
to: red (400nM KA), orange (0.3μM CBD), yellow (1μM), dark green (3μM), light green 
(10μM), blue (30μM), purple (wash).  
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The split frequency histograms are displayed in Figures 4.6.Ai-Aii. These data were intriguing, 

as it clearly followed the previous FFTs and, showed CBD had a far larger effect on the AMC 

animals than on the SE rats. In the AMC animals (Figure 4.6.Ai) it is clear the drug dose 

significantly decreased the gamma and above frequencies (60+Hz; green and blue bars), while 

the slower frequencies (0-29Hz; red) trended toward increase, though are not significant. 

Comparing the mean increase in the slow frequencies (a high of 138.2 ± 26.97) to that of the 

decrease in the higher frequencies (60+Hz) (low of 41.93 ± 7.83 at 30μM; 51.73 ± 8.59 in 

60+Hz) it is possible to state that the increase observed was not proportional to the decrease 

of the fast frequencies.  

 

In contrast, the SE rats (Figure 4.6.Aii) show no significance at any dose of CBD in any 

frequency, though high significance in the wash for both, gamma (60.97 ± 12.07; p < 0.01) 

and, 60+Hz frequency bands (70.3 ± 11.48; p < 0.0001) were observed.  

 

When these histograms are compared to those observed from the 24-hour time point the 

differences are quite stark, with a tangible effect observed in the AMC animals, and a relatively 

smaller effect in the SE animals, contrasted to no effect in the AMC animals and a relatively 

large effect in the SE population at 24-hours post induction.  
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Figure 4.6 Split frequency histograms for CBD 1-week post-induction. 
Ai showing the band specific nAUC response to increasing doses of CBD plus wash in 
the AMC condition, with population responses included. Data was normalised, with the 
400nM KA response set to 100%. Aii Same histogram data shown for the SE dataset,  
with population responses included. Legend: low frequency (0-29Hz) - red bars; gamma 
(30-60Hz) - green bars; high frequency (60-1000Hz) - blue bars. Black capped bars show 
standard error. ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 4.7.Ai visualises the peak frequencies for both the AMC and SE populations. 

Surprisingly both populations initially had very similar starting peak frequencies (Hz) (36.79 ± 

1.34 compared to 37.0 ± 1.0, AMC to SE). Differences became apparent upon the first dose 

of CBD however, with the frequency dropping to 34.5Hz ± 1.61 in AMC but remaining stable 

in the SE population. This trend continued, with further drops in peak frequency occurring in 

the AMC animals, and significance arising at 10µM CBD (p < 0.01), falling to a low of 25.30Hz 

± 3.45 at 30μM CBD (p < 0.0001), before recovering somewhat to 30.0Hz ± 1.60 in the wash 

(p < 0.01). The SE peak frequency however remained remarkably consistent, in contrast to 

both the AMC data and, also, the data for the 24-hour SE peak frequency (Figure 4.3.Ai). In 

the 24-hour SE frequency comparison, major differences were observed between both the 

AMC and SE initial peak frequencies (43.74Hz ± 1.62 – 34.6Hz ± 1.66, AMC to SE) and, in the 

drops of these frequencies, with stability remaining in the AMC, while the SE showed falls in 

this frequency, particularly at 30μM and in the wash, in contrast to what was observed here.  

 

Analogous to peak frequency measures, peak powers for both AMC and SE populations were 

also analysed (Figure 4.7.Aii). As indicated by the presented histograms and normalised FFT, 

the AMC population showed a gradual dose dependent decrease in peak power as CBD dose 

was increased. Significance arose at 10µM CBD (p < 0.05), while peak power fell further, to 

44.58 ± 8.16, at 30μM CBD (p < 0.001). The wash step again saw a fall in peak power to 41.60 

± 9.94, though the significance was slightly lower (p < 0.01), Similarly, the SE data showed a 

gradual decrease upon higher doses of CBD, with significance achieved at 10µM CBD (79.70 

± 12.50; p < 0.05), and 30μM CBD (74.11 ± 17.51; p < 0.05) was found. The wash appeared 

to decrease this peak further to 62.35 ± 13.66, though significance was unable to be calculated 

due to the lower n number provided.  
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Figure 4.7 Mean peak frequency and power line graphs for CBD 1-week post induction.  
Ai. Normalised peak frequency line graph, AMC (black line) and SE (grey line). AMC (red 
squares) and SE (green triangles) populat ion frequencies are also plotted onto a line 
graph. Aii Normalised peak power responses across the CBD doses for both the AMC 
(black line) and SE (grey line). Again, population responses are also plotted (AMC: red 
squares; SE: green triangles). Significance denoted by black (AMC) or grey (SE) 
asterisks, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, black aster isks for AMC, 
grey for SE. 
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4.2.2.3 Peak gamma measurements 

The peak gamma measurements produced 37.8Hz for the AMC peak gamma frequency and 

36.6Hz as the SE, again very similar to the peak frequencies yielded in the peak frequency 

section previous. 

Figure 4.8 Mean normalised peak gamma response to CBD 1-week post-induction.  
Each condition is plotted on the same dose point, with AMC in grey and SE in red, with 
population responses also plotted. Black capped bars show standard error. * p < 0.05, 
*** p < 0.001, **** p < 0.0001. 

 

The histogram displays a clear dose-dependent drop caused by CBD in the AMC population 

(Figure 4.8), with significant decreases in peak gamma produced by 3μM CBD (p < 0.05), 

which decreased further at both 10μM and 30μM CBD to remain highly significant through to 

the wash (p < 0.0001).  

 

The analogous SE data showed a wider variety in individual responses; certain slices 

displayed no change, while some increased in peak gamma, while furthermore, a cluster of 

slices decreased in peak gamma very effectively. Statistical analyses were performed, and 

indications of significance are depicted on the histogram, with the highest significance reached 

at the maximal 30μM CBD (p < 0.001). It must be noted that the wash step had not been 

performed in one set of experiments for the SE animals, resulting in the exclusion of the wash 

step in the analyses of this data (as repeated measure ANOVAs require equal numbers in 

each group). 
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4.2.3 Effects of CBD on pharmacologically induced persistent 

gamma on 3-month(+) old  AMC and chronically SE rats  

As our model provides an effective transition into SRS or chronic epilepsy, we also looked at 

the effect of CBD in this time point. As stated in the Materials and Methods section (Chapter 

2), we tested SE animals in our experiments once they had been confirmed to be in SRS, 

using the modified PSBB tests (Section 2.3). AMC animals were also used for comparison. 

The data here is in accordance with the other data presented within this chapter.  

 

A total of 4 animals were used for the AMC population, with an overall n of 9, though differences 

in software and equipment resulted in different frequency ranges being used. This meant that 

only an n of 6 could be used for the analysis after the split frequency ranges and scatter plots 

(Figure 4.10-11-12). 3 animals were used for the SE population producing an overall n of 9. 

4.2.3.1 FFTs and split frequency histogram analysis  

As with the previous sections, single slice FFT responses are presented in Figure 4.9.Aii-Bii, 

where seemingly smaller effects of CBD are observed, though they appeared similar for both 

the AMC and SE populations. An interesting observation here was that in the AMC population 

(Aii) showed a slight shift leftward in frequency alongside a small decrease in power at the 

maximal CBD dose. Meanwhile, the SE population suggest a shift to the right in frequency with 

a decrease in power, suggesting an increase in the peak frequency upon 30μM CBD 

application. Normalised FFTs for both conditions were again produced (Figure 4.9.Aiii-Biv). 

For reference, the AMC n number in this graph is now 6, not 9.  

 

Figure 4.9.Aiii highlights the effect 30μM CBD has on population gamma oscillations, where 

a decrease in power, though not frequency, was observed (Figure 4.5.Aiii-iv). The overlap of 

error bars, suggests there may not be a significant difference between the two.  The full dose 

FFT (Aiv) appeared to show a dose-dependent decrease in power, not frequency, with 

increasing additions of CBD. This was comparable to what appears to again be a dose-

dependent decrease in the SE data, observed in both Biii and Biv. The pooled normalised 

400nM KA line shows a high amount of variability, especially so at frequencies below 35Hz, 

resulting in a high standard error fill area, obvious in Biii. Despite this, a gamma peak was 

notable, as too was a decrease in the power of this peak at 30μM CBD, alongside a complete 

loss in the low frequency variation (as indicated by the now narrow standard error area around 

the 30μM CBD line). The full dose FFT (Biv) suggests once more a dose-dependent decrease 

of gamma by increasing CBD doses.  
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Figure 4.9 Raw traces and FFTs for CBD 3-months post-induction.  
Ai-Bi Representative raw traces of pharmacologically induced gamma oscil lations in both 
AMC (left) and SE (right) rats at 400nM KA and the maximal 30μM CBD.  Aii-Bii A single 
slice response to the maximal 30μM CBD addition, for both the AMC (left) and SE (r ight) 
rats. Aiii-Biii Normalised FFT displaying the normalised area under the curve (nAUC) for 
both the 400nM KA and maximal 30μM CBD for the AMC (left) and SE right) data set, 
SEM is represented by the coloured fill area flanking the line. Aiv-Biv Normalised FFT 
data for all CBD doses applied in AMC (left) and SE (right). Coloured l ines and fill refer 
to: red (400nM KA), orange (0.3μM CBD), yellow (1μM), dark green (3μM), light green 
(10μM), blue (30μM), purple (wash).  
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The AMC data is presented as a normalised split frequency histogram in Figure 4.10.Ai, and 

as with the 24-hour time point AMC animals, there was no significant effect on any of the 

frequency bands. When compared to the FFT of Figure 4.9.Aiii, this analysis seems not to 

represent the decrease observable at 30μM CBD. 

 

Similarly, Figure 4.10.Aii displays little significant changes to any of the frequency bands in 

the SE condition, until the wash step where a dramatic, and significant, rise in the low 

frequencies was visible (p < 0.01) due mostly to the rise of 2 population responses. 

Disregarding the large responses in the wash step, there was visual similarity between the 

histograms of Figure 4.10.Ai-Aii, though neither represents the normalised FFT data 

presented in Figure 4.9.Aiii-Biii, which was suggestive of a comparable suppressive effect of 

CBD in both conditions.  
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Figure 4.10 Split frequency histograms for CBD 3-months post-induction.  
Ai Split frequency histograms, showing the band specific nAUC response to increasing 
doses of CBD plus wash in the AMC condition, with population responses included. Data 
was normalised, with the 400nM KA response set to 100%. Aii Same histogram data 
shown for the SE dataset, with population responses included. Legend: low frequency (0-
29Hz) - red bars; gamma (30-60Hz) - green bars; high frequency (60-1000Hz) - blue bars.  
Black capped bars show standard error. ** p < 0.01.  
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4.2.3.2 Peak frequency and peak power comparisons 

Again, the peak frequency and powers were analysed, with the results presented in Figure 

3.11. 

Figure 4.11 Mean peak frequency and power line graphs for CBD 3-months post induction.  
Ai Mean peak frequencies for both the AMC (black line) and SE (grey line). AMC (red 
squares) and SE (green triangles) populat ion frequencies are also plotted onto a line 
graph. Ai i Normalised peak power responses across the CBD doses for both the AMC 
(black line) and SE (grey line). Again, population responses are also plotted (AMC: red 
squares; SE: green triangles). Significance denoted by black (AMC) or grey (SE) 
asterisks. * p < 0.05, *** p < 0.001, grey asterisks denote SE significance.   
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The AMC data shows relative stability in peak frequency (44.9Hz ± 0.97), with no significant 

changes observed. Similarly, the SE data (41.5Hz ± 0.84) shows a seesaw distribution through 

the doses, but no significance observed. When both of these results are compared to the 

normalised FFT data presented in Figure 4.9 this outcome is not surprising.  

 

Similarly, the peak power comparisons between the two conditions (Aii) show the AMC peak 

power not to significantly change across the drug additions. The SE data however, showed a 

prolonged decrease in normalised power, which may be dose-dependent, though significance 

only first occured at 10µM (p < 0.05), while a value of 56.3 ± 10.37 was found at 30μM (p < 

0.001). The wash step saw a large increase to 213.0 ± 102.7 (with SEM greatly increased) 

with a corresponding loss of significance.  

4.2.3.3 Peak gamma measures 

As previously, peak gamma was our final method of analysis. The AMC data had a peak 

gamma frequency of 46.3Hz, while the SE, 41.5Hz.  

Figure 4.12 Mean normalised peak gamma response to CBD 3-months post-induction.  
Each condition is plotted on the same dose point, with AMC in grey and SE in red, with 
population responses also plotted. Black capped bars show standard error. ** p < 0.01, 
*** p < 0.001, **** p < 0.0001. 

 

The AMC population only displayed a significant response to CBD at 30μM, though the 

response was extremely significant (p < 0.001). Conversely, the SE population displays 

significance at 1μM CBD (p < 0.01), which continued to become more significant as the doses 

increased (p < 0.0001 in 30μM CBD and wash).  
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Although the AMC population responses show what appeared to be a dose-dependent 

decrease at increasing CBD levels, this was not matched in the statistical analysis, which 

suggested that only the maximal CBD dose was effective. A higher level of sensitivity to CBD 

appeared to be present in the SE data, with apparent and significant decreases in peak gamma 

occurring at much lower dose of CBD. This is suggestive of a higher sensitivity or affinity for 

CBD in the mature SE brains, though this is still present in AMC brains to a lower extent.  

 

4.2.3.4 Summary of CBD effects of gamma oscillations 

Table 4.1 below shows the overall effects noted on induced gamma oscillations at each of the 

ages used here, for both AMC and SE animals, when cumulative doses of CBD were applied. 

As can be noted, 1-week AMC showed the highest sensitivity to CBD from the AMC animals, 

while 3-months SE showed the highest sensitivity from the SE population, and indeed overall.  

 

 
Table 4.1 Summary of CBD dose effects on the rats used in this section. 
Ages and condition of animals are noted on the left, with the increasing CBD doses noted 
horizontally across the top. The arrows have been used to show the level of significance 
achieved at that dose (1 arrow = 0.05, 2 = 0.01, 3 = 0.001, 4 = 0.0001), with the direction 
of the arrow also representing the direction of change in gamma.  
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4.2.4 Effects of CBDV on pharmacologically induced persistent 

gamma in 24-hour (~P19) AMC and SE rats  

In parallel to the CBD LFP experiments just described, CBDV, a CBD analogue that has also 

previously shown promise as an anti-epileptic (see Section 1.7.3 for further information) was 

also tested at the same time points, in the same manner.  

 

In the first time point (~p19), a total of 2 AMC animals were used to provide an n number of 7. 

A total of 3 SE animals were used to produce an n of 7, though the wash step was only 

performed in 3 of these therefore the wash step is not included in any statistical analysis. 

4.2.4.1 FFTs and split frequency histogram analysis  

Single slice FFTs are presented in Figure 4.13.Aii-Bii, where drops in both the power and 

frequency are noted in the AMC slice (Aii), however, the decrease in power especially was 

slight. There was also a drop presented in the SE slice (Bii), though a more broadband trace 

was visible in the 30μM CBDV dose.  

 

Once again, a normalised FFT was produced for both epilepsy conditions between the 

baseline and 30μM CBDV dose (Figure 4.13.Aiii-Biii). The AMC FFT (Aiii) showed a large 

overlap of standard errors between the 400nM KA baseline and 30μM CBDV, suggesting that 

the drop observed may not be significant. Assessment of the normalised peak suggests 

multiple peaks occurring in the gamma range. The full dose FFT (Aiv) suggests that as dose 

increased the power decreased, but interestingly, the peak shifts to the right, thereby indicating 

an increase in frequency. This is viewed more easily in Figure 4.3.13.Aiii, showing only the 

400nM KA and 30μM CBDV doses.  

 

The broad range of frequencies observed in the AMC data was even more pronounced in the 

SE population (Biii), with close to parity in power across a very wide spectrum of frequencies 

(~10-50Hz). Again, this was highly suggestive of multiple peaks being produced in the 

individual experiments at a wide range of frequencies, therefore, upon normalisation each of 

these is given equal weighting producing what is observable in the figure.  A decrease in power 

can be identified between 400nM KA and 30μM, easily seen in Biii, though a dose-dependent 

decrease was not observable, with many of the traces remaining equal with the initial 400nM 

KA trace, visible in the full dose FFT (Biv).   
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Figure 4.13 Raw traces/FFTs for CBDV 24-hour post-induction.  
Ai-Bi Representative raw traces of pharmacologically induced gamma oscil lations in both 
AMC (left) and SE (right) rats at 400nM KA and the maximal 30μM CBDV.  Aii-Bii A 
single slice response to the maximal 30μM CBDV addition, for both the AMC (left) and 
SE (right) rats. Aiii-Biii Normalised FFT displaying the normalised area under the curve 
(nAUC) for both the 400nM KA and maximal 30μM CBDV for the AMC (left) and SE right)  
data set, SEM is represented by the coloured fill area flanking the line. Aiv-Biv 
Normalised FFT data for all CBDV doses applied in AMC ( left) and SE (right). Coloured 
lines and fil l refer to: red (400nM KA), orange (0.3μM CBDV), yellow (1μM), dark green 
(3μM), light green (10μM), blue (30μM), purple (wash).  
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The AMC data here presented a general trend toward decrease across all the doses in all of 

the frequency bands (Figure 4.14.Ai). Significance was only achieved in the 30μM CBDV dose 

at all frequency bands, something not seen in the CBD data (Figure 4.2.Ai). As can be 

observed, varying levels of significance at 30μM were produced, with the low frequency (0-

30Hz) and gamma range both showing high levels of significance (p < 0.01) (low: 69.91 ± 

12.28; gamma: 65.29 ± 14.39) and the high frequency range displaying extreme levels of 

significance (p < 0.001) (high: 77.37 ± 4.79).  At all frequencies the mean increased into the 

wash, though both the gamma and high frequencies retained significance (p < 0.05) (gamma: 

68.91 ± 16.56; high: 83.53 ± 7.38).  

 

In contrast, the SE responses (Figure 4.14.Aii) showed significance earlier in the gamma 

frequency bands (3μM: p < 0.05). Alongside this, there was a clear trend toward decrease in 

the high frequencies, which achieved significance at 30μM (80.25 ± 6.19; p < 0.001). The low 

frequency band showed no significant changes at any dose of CBDV. The data showed a 

dose-dependent decrease in the gamma band (3μM: 87.29 ± 3.69; 10μM: 81.37 ± 3.44; 30μM: 

58.38 ± 6.78). There was a large increase in the low frequency in the wash step, but as this 

condition only had an n of 3 the results here were not entered into the statistical analysis and 

will not be discussed here. 
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Figure 4.14 Split frequency histograms for CBDV 24-hour post-induction.  
Ai Split frequency histograms, showing the band specific nAUC response to increasing 
doses of CBDV plus wash in the AMC condition, with populat ion responses included. 
Data was normalised, with the 400nM KA response set to 100%. Aii Same histogram data 
shown for the SE dataset, with population responses included. Legend: low frequency (0-
29Hz) - red bars; gamma (30-60Hz) - green bars; high frequency (60-1000Hz) - blue bars.  
Black capped bars show standard error. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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4.2.4.2 Peak frequencies and peak power 

The peak frequencies of both the AMC and SE populations are represented on Figure 4.15.Ai. 

As with the 24hr CBD peak frequencies (Figure 4.3.Ai) there was a clear difference between 

the two populations at the 400nM KA (AMC: 34.35Hz ± 4.17; SE: 23.72Hz ± 4.26). Again, a 

Mann-Whitney test was performed returning a p value < 0.0001, once more suggesting that 

the epilepsy model itself has an effect on networks in the mEC providing the persistent 

oscillations.  

 

The AMC population showed no significant differences when any dose of CBDV was applied. 

In contrast, the SE line remained relatively stable, until a significant decrease was observed at 

30μM (21.28Hz ± 4.42; p < 0.05).  

 

The normalised peak power data are plotted as a line graph on Figure 4.15.Aii containing both 

AMC and SE data. Initial effects of CBDV are very similar in both populations, with no 

significance observed in either. At 10μM the two diverge, with the AMC peak power remaining 

non-significant, while the SE showed a significant decrease (p < 0.05), before falling further to 

a low at 30μM of 61.87 ± 6.56 (p < 0.001). No significance was noted at any dose of CBDV in 

the AMC data. 
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Figure 4.15 Mean peak frequency and power to CBDV 24-hour post induction.  
Ai. Mean peak frequencies for both the AMC (black line) and SE (grey line). AMC (red 
squares) and SE (green triangles) populat ion frequencies are also plotted onto a line 
graph. Aii. Normalised peak power responses across the CBDV doses for both the AMC 
(black line) and SE (grey line). Again, population responses are also plotted (AMC: red 
squares; SE: green triangles). Significance denoted by black (AMC) or grey (SE) 
asterisks, * p < 0.05, *** p < 0.001, grey asterisks denote SE significance.   
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4.2.4.3 Peak gamma measurements 

As with the CBD measures, peak gamma was determined to be the most effective way to 

assess CBDV effect on network responses. The AMC data had a peak gamma frequency of 

34.17Hz, while the SE data had a peak frequency of 30.51Hz. The histogram produced from 

these responses are shown in Figure 4.16. where both the AMC and SE mean responses, 

SEMs and, population responses are plotted.  

 

Figure 4.16 Mean normalised peak gamma response to CBDV 1-week post-induction.  
Each condition is plotted on the same dose point, with AMC in grey and SE in red, with 
population responses also plotted. Black capped bars show standard error. **** p < 
0.0001. 

 

Surprisingly, none of the AMC peak gamma decreases are significant, with the lowest value, 

at 30μM CBDV, possessing a mean of 71.09 ± 18.41. In the SE data, only the 30μM CBDV 

showed any significance, with p < 0.0001 (63.9 ± 12.49), which is surprising as both peak 

power and normalised split frequencies showed significance at 10μM for the SE dataset (p < 

0.01).  
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4.2.5 Effects of CBDV on pharmacologically induced persistent 

gamma on 1-week old (~P26) AMC and SE rats  

This next section will provide the data collected from the effect of CBDV on the latent period 

aged rats (~p26). The total number of animals used for the AMC data was 3 giving a total n of 

6, while the SE data came from a total of 3 animals to give an n of 7. As has been described 

in previous animals, the wash step was only performed in 5 of these slices, and as such the 

wash has been disregarded for statistical analysis and some of the figures presented here, 

with those figures labelled to reflect this. 

4.2.5.1 FFTs and split frequency histogram analysis  

Once more, single slice FFTs are presented (Figure 4.17.Aii-Bii) for both AMC (Aii) and SE 

(Bii). In both, a decrease in power was visible, though it appeared as though no shift in 

frequency was present in either. Pooled normalised FFTs are presented next, with 400nM KA 

and 30μM CBDV only shown first. In the AMC data (Aiii), a clearly defined peak in the 400nM 

KA dose at a frequency of 35.4Hz was visible. The decrease noted in the single slice FFT was 

preserved in the pooled dataset and, once again, no frequency change was noted. A dose 

dependent decrease appeared to be present when the full dose FFT is observed (Aiv)  

 

Dose-dependent decreases to the largest gamma frequency power appeared to be present in 

the SE population (Bii), though these were not as well-defined as those observed in the AMC 

data. A secondary, lower frequency peak was visible, showing the higher frequency variance 

produced in this population. A possible slight slowing in frequency and decrease in power is 

observed in the 400nM KA vs. 30µM CBDV figure (Biii), though there was substantial overlap 

between the two doses, suggestive of a lack of significance. The large overlap in both the 

average line and standard error fill area which make assessment of the cumulative CBDV 

effect difficult to visualise fully (Biv).    
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Figure 4.17 Raw traces/FFTs for CBDV 1-week post-induction.  
Ai-Bi Representative raw traces of pharmacologically induced gamma oscil lations in both 
AMC (left) and SE (right) rats at 400nM KA and the maximal 30μM CBDV.  Aii-Bii A 
single slice response to the maximal 30μM CBDV addition, for both the AMC (left) and 
SE (right) rats. Aiii-Biii Normalised FFT displaying the normalised area under the curve 
(nAUC) for both the 400nM KA and maximal 30μM CBDV for the AMC (left) and SE right)  
data set, SEM is represented by the coloured fill area flanking the line. Aiv-Biv 
Normalised FFT data for all CBDV doses applied in AMC ( left) and SE (right). Coloured 
lines and fil l refer to: red (400nM KA), orange (0.3μM CBDV), yellow (1μM), dark green 
(3μM), light green (10μM), blue (30μM), purple (wash).  
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Figure 4.18 Split frequency histograms for CBDV 1-week post-induction.  
Ai Split frequency histograms, showing the band specific nAUC response to increasing 
doses of CBDV plus wash in the AMC condition, with populat ion responses included. 
Data was normalised, with the 400nM KA response set to 100%. Aii Same histogram data 
shown for the SE dataset, with population responses included. Legend: low frequency (0-
29Hz) - red bars; gamma (30-60Hz) - green bars; high frequency (60-1000Hz) - blue bars.  
Black capped bars show standard error. *** p < 0.001.  
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The split frequency histogram for the AMC population dataset is displayed in Figure 4.18.Ai. 

Visually there appears to be a trend toward decrease in the higher frequency bands (gamma 

and 60+ Hz), while there was also a trend toward increase in the low bands as the cannabinoid 

dose increase. Despite this, there was no significant difference between any of these doses 

and baseline (400nM KA).  

 

A similar sequence occurs in the SE data (Aii), with increasing low frequencies (though no 

significance was shown) and decreasing gamma and high frequencies corresponding to 

increasing doses of CBDV. Significance was achieved in both the gamma and high (60+Hz) 

frequency ranges, at 10μM and 30μM, with a mean of 86.26 ± 6.49 (p < 0.05) and 69.34 ± 8.28 

(p < 0.001) respectively.  

 

With regards to wash step, all bands had a lower mean value, but as there was not an equal 

number of n in this data repeated measures ANOVAs were unable to be performed.  

4.2.5.2 Peak frequency and peak power comparisons 

The peak frequency analysis (Figure 4.19.Ai) shows the SE population had a higher baseline 

frequency (37.43Hz ± 2.26) compared to the AMC data (34.88Hz ± 0.70), though this was not 

significant, it is interesting, as it was similar to the 1-week CBD peak frequency (Section 

4.2.2.2). 

 

Increasing CBDV doses had little effect of the AMC peak frequency, which remained relatively 

stable throughout. Indeed, no significance was noted upon any of the drug doses. The SE data 

was also remarkably stable across all doses, and once more, no significant changes were 

produced at any CBDV dose. 

 

The peak powers (Figure 4.19.Aii) of both conditions trend downward, with the both conditions 

reaching significance at 30μM. In the AMC data there was relative stability, until a low of 59.36 

at 30μM (p < 0.05). The SE data reach a value of 73.72 ± 9.89 (p < 0.001) at the same dose. 

The wash step caused an increase in both mean and SEM though again this was only an n of 

5 and as such, no statistical analyses were performed due to this lack of n.  
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Figure 4.19 Mean peak frequency and power line graphs to CBDV 1-week post induction.  
Mean peak frequencies for both the AMC (black line) and SE (grey line). AMC (red 
squares) and SE (green triangles) populat ion frequencies are also plotted onto a line 
graph. Aii. Normalised peak power responses across the CBDV doses for both the AMC 
(black line) and SE (grey line). Again, population responses are also plotted (AMC: red 
squares; SE: green triangles). Significance denoted by black (AMC) or grey (SE) 
asterisks, * p < 0.05, *** p < 0.001, black and grey asterisks denote significance (AMC, 
SE respectively).  
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4.2.5.3 Peak gamma measurements 

The AMC population was determined to have a peak gamma frequency of 35.4Hz, while the 

SE data was found to be 32.5Hz.  

Figure 4.20 Mean normalised peak gamma response to CBDV 1-week post-induction.  
Each condition is plotted on the same dose point, with AMC in grey and SE in red, with 
population responses also plotted. Black capped bars show standard error. ** p < 0.01, 
*** p < 0.001. 

 

The combined histogram of the peak gamma for both the AMC and SE data is presented in 

Figure 4.20. As can be noted, both AMC and SE populations only showed significant 

decreases at 30μM CBDV (AMC: p < 0.01; SE: p < 0.001).  
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4.2.6 Effects of CBDV on pharmacologically induced persistent 

gamma on 3-month(+) old AMC and chronically SE rats  

As with the CBD results, we were interested in the effect of CBDV on SRS animals, which had 

a general age of around 3 months. Both AMC and SE populations consisted of 2 animals each, 

with total n numbers being 8 and 7 respectively (AMC wash step n = 6).  

4.2.6.1 FFTs and split frequency histogram analysis  

Figure 4.21.Aii-Bii shows single slice response FFTs, the AMC (Aii) and the SE (Bii) slices 

both showed a drop in both frequency and power upon maximal CBDV dose application. 

Figure 4.21.Aiii shows the AMC average responses to 30μM CBDV as a normalised FFT. As 

with the single FFT previously, a decrease in power was evident, though the decrease in 

frequency does not appear to have endured. The peak frequency (41.5Hz) appeared to be 

consistent across the doses until the wash step where, alongside an increase in frequency 

(46.4Hz), the power of the peak was also mostly recovered (mean – 57.29). The full dose FFT 

(Aiv) appeared to show the decrease as dose-dependent.  

 

In contrast to the clear peak observed in the AMC population (Figure 4.21.Aiii), the SE data 

(Figure 4.21.Biii) showed another broadband oscillation, again highly suggestive of multiple 

competitive peaks within the population. The peak occurs at 50.04Hz and, as there was a 

gradual increase and decrease in the power before and after the peak, it was determined to 

not be electrical noise. The averaged responses of the SE 400nM KA baseline to 30μM CBDV 

are displayed in Figure 4.21.Biii, where a large decrease in power was observable. Any 

decrease in frequency was hard to clarify due to the broadband nature of the peak. A dose-

dependent decrease was very visible in the full dose FFT (Biv), with a gradual decrease in 

nAUC observed from 0.3μM to 10μM. A larger decrease was noted at 30μM, with a further 

subsequent decrease shown in the wash.  
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Figure 4.21 Raw traces and FFTs for 3-month conditions.  
Ai-Bi Representative raw traces of pharmacologically induced gamma oscil lations in both 
the AMC (left) and SE (right) rats at 400nM KA and the maximal 30μM CBDV.  Aii-Bii A 
single slice response to the maximal 30μM CBDV addition, for both the AMC (left) and 
SE (right) rats. Aii i-Bii i. Normalised FFT displaying the normalised area under the curve 
(nAUC) for both the 400nM KA and maximal 30μM CBDV for the AMC (left) and SE (right) 
data set, SEM is represented by the coloured fil l area flanking the line. Aiv-Biv.  
Normalised FFT data for all CBDV doses applied in AMC (left) and SE (right).  
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Figure 4.22 Split frequency histograms for 3-month post-induction rats.  
Ai. Split frequency histograms, showing the band specific nAUC response to increasing 
doses of CBDV plus wash in the AMC condition, with populat ion responses included. 
Data was normalised, with the 400nM KA response set to 100%. Aii Same histogram data 
shown for the SE dataset, with population responses included. Legend: low frequency (0-
29Hz) - red bars; gamma (30-60Hz) - green bars; high frequency (60-1000Hz) - blue bars.  
Black capped bars show standard error. * p < 0.05, *** p < 0.001.  
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Once more histograms splitting the frequencies into designated bands showing the area under 

the curve (AUC) data after normalisation (nAUC) were produced. The results for the AMC 

population are presented in Figure 4.22.Ai, while the SE in Aii. The AMC data showed no 

significant changes upon the application of increasing doses of CBDV, in contrast to the FFTs 

previously presented.  

 

This data was remarkably different to that observed in the SE data, where significance was 

achieved in the gamma oscillatory band at 10μM (p < 0.05), with extremely significant 

decreases at 30μM (p < 0.001). The high (60+Hz) band also showed significance at 10μM (p 

< 0.05), enduring into the 30μM CBD (p < 0.001). The low frequency band (0-29Hz), 

meanwhile, displayed no significance at any dose. 

4.2.6.2 Peak frequency and power comparisons 

The peak frequencies of both conditions are presented in Figure 4.23.Ai, which showed the 

similarity in starting peak frequency between both populations. The AMC animals produced a 

peak frequency of 41.4Hz ± 2.08, while the SE 38.36Hz ± 3.08, with no significance between 

the baseline conditions. The appearances of the two lines followed similar trends, with general 

stability across all doses, the AMC population showed a peak frequency of 39.38Hz ± 1.84 at 

30μM CBDV, while the SE had a peak of 35.40Hz ± 4.01. No significance at any of the CBDV 

additions were observed in either population.  

 

The dose-dependent decrease noted in the SE data is an obvious stand out from the peak 

power line graph (Figure 4.23.Aii), with significant differences noted at 0.3μM (p < 0.01), 

reduced further at 1μM through to the wash (p < 0.0001). This trend was not observed in the 

AMC data, where no significance was noted at the early doses. A large and significant 

decrease, however, was observed in 30μM CBDV (p < 0.01) in the AMC dataset. The wash 

step plateaus, though due to the loss of n, no statistical analysis could be performed.   
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Figure 4.23 Mean peak frequency and power line graphs for CBDV 3-month post induction.  
Ai Mean peak frequencies for both the AMC (black line) and SE (grey line). AMC (red 
squares) and SE (green triangles) populat ion frequencies are also plotted onto a line 
graph. Aii Normalised peak power responses across the CBDV doses for both the AMC 
(black line) and SE (grey line). Again, population responses are also plotted (AMC: red 
squares; SE: green triangles). Significance denoted by black (AMC) or grey (SE) 
asterisks, ** p < 0.01, **** p < 0.0001, black and grey asterisks denote significance (AMC, 
SE respectively).  
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4.2.6.3 Peak gamma measurements 

The AMC population was determined to have a peak gamma frequency of 41.5Hz, while the 

SE data was found to be 50Hz. 

Figure 4.24 Mean normalised peak gamma response to CBDV 3-months post-induction.  
Each condition is plotted on the same dose point, with AMC in grey and SE in red, with 
population responses also plotted. Black capped bars show standard error. * p < 0.05, 
*** p < 0.001, **** p < 0.0001. 

 

The joint peak gamma histogram (Figure 4.24) shows the mean, SEM and population 

response data from both conditions, effectively highlighting the dose-dependent decrease 

CBDV had on the slices, especially in regards to the SE population. Significance was reached 

at 3μM (p < 0.05), with higher levels of significance achieved at 10μM (p < 0.001) which 

endured through to the wash. In contrast, the AMC data showed significance only at 30μM 

CBDV (p < 0.001).  

 

 

 

 

 

 

 

 

 



 146 

4.2.6.4 Summary of CBDV effects on gamma oscillations 

Table 4.2 shows the overall effects noted on induced gamma oscillations at each of the ages 

used here, for both AMC and SE animals, when cumulative doses of CBDV were applied. As 

can be noted, 3-month AMC showed the highest sensitivity to CBDV from the AMC animals, 

while 3-months SE also showed the highest sensitivity from the SE population, and indeed 

overall.  

 

 
Table 4.2 Summary of effects of increasing CBDV doses on the rat used in this section. 
Ages and condition of animals are noted on the left, with the increasing CBDV doses 
noted horizontally across the top. The arrows have been used to show the level of 
significance achieved at that dose (1 arrow = 0.05, 2 = 0.01, 3 = 0.001, 4 = 0.0001), with 
the direction of the arrow also represent ing the direction of change in gamma.  
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4.2.7 Maximal doses of CBD and CBDV effects in similarly aged AMC 

and SE rats  

Once a completed dataset for each age group, condition and, phytocannabinoid used was 

obtained, comparisons between the two cannabinoids and their comparative effectiveness 

were made. As such, the responses from the most effective dose, 30μM in the case of both 

CBD and CBDV, were plotted together in histograms along with a normalised control (baseline) 

set to 100. This was performed for each age group and each condition (AMC v SE) separately, 

so drug performance within comparable parameters were plotted together. The histograms 

produced from these analyses are presented in Figure 4.25. 

 

As can be observed in the 24-hour AMC data, neither CBD or CBDV had any significant effect 

(CBD – 101.4 ± 11.28; n = 6; CBDV – 71.09 ± 18.41; n = 7, respectively). In contrast, both 

exocannabinoids had significant effects in the SE population, with negligible differences 

between the two means, though CBDV achieves a higher level of significance (CBD: 64.80 ± 

14.30; n = 6; p < 0.05; CBDV: 63.90 ± 12.49; n = 7; p < 0.0001). 

 

In the 1-week age range, the AMC populations show extreme changes to the addition of either 

exocannabinoid. CBD caused a highly significant decrease to 37.67 ± 10.89 (n = 7; p < 0.0001), 

while CBDV did also, to 48.92 ± 13.82 (n = 7; p < 0.01). In the 1-week SE population, significant 

decreases were again observed by both cannabinoids, with a CBD induced decrease to 60.06 

± 13.51 (n = 10; p < 0.001) and CBDV to 67.74 ± 9.77 (n = 8; p < 0.001).  

 

As observed in the 1-week category, both cannabinoids induced extremely significant 

decreases in the chronic (~3-month old) animals, at 30µM. Both induced highly similar 

decreases. CBD in the AMC animals caused a drop to 57.44 ± 11.26 (n = 6; p <0.001) and 

CBDV to 58.78 ± 9.16 (n = 8; p < 0.001).  Meanwhile, in the SE dataset CBD perpetuated a 

drop to 45.64 ± 7.85 (n = 9; p < 0.0001), while CBDV a similar drop to 50.45 ± 9.75 (n = 7; p < 

0.0001). 
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Figure 4.25 Normalised peak gamma responses to maximal 30μM doses of CBD and CBDV.  
Maximal CBD (red) and CBDV (purple) response shown at each epilepsy condition (AMC 
left; SE right) and age group (vertically 24-hour, 1-week, 3-months). * p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001. 
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4.2.8 Comparison of peak gamma power deltas across disease and 

age populations 

To understand whether the differences in sensitivity to phytocannabinoid application across 

the disease conditions and between the different time points were significant, the peak gamma 

power deltas for each slice were calculated (the amount of change caused by CBD(V) to the 

initial value). These were then pooled and statistically analysed using unpaired Mann-Whitney 

or, Kruskal-Wallis tests, depending on number of variables (Mann-Whitney for comparisons 

between the two epilepsy conditions, Kruskal-Wallis for comparisons across age range).   

 

Comparing the peak gamma power deltas between the AMC and SE responses to CBD at 3-

months, no significant differences were present (p = 0.82). This was also true for comparisons 

at 1-week (p = 0.36) and, 24-hours though a trending difference was noted here (p = 0.07), 

unsurprising given the lack of effect noted in the 24-hour AMC population.  

 

In addition, the peak gamma deltas were compared between each of time points, using a 

Kruskal-Wallis test (unpaired non-parametric test). Here, significance was noted between the 

AMC responses (p = 0.0034), but not between the SE dataset (p = 0.74). Again, unsurprising 

given the lack of effect at 24-hours AMC and then subsequent effectiveness at both 1-week 

and 3-month time points. 

 

Mann-Whitney tests were again performed for each of the peak gamma power deltas for the 

CBDV datasets; with the 24-hour AMC and SE comparison showing no significance (p = 0.71), 

as neither did the 1-week (p = 0.23) nor 3-month comparison (p = 0.32). Comparing the peak 

gamma power deltas between all of the time points of each population to CBDV, using a 

Krusal-Wallis test, no significance was returned in either the AMC dataset (p = 0.47) or the SE 

dataset (p = 0.18).   
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4.2.9 Dose-response curves based on peak gamma responses  

Figure 4.26 Dose-response curves (DRC) of CBD using peak gamma measurements.  
Responses were only taken from experiments where CBD showed a decrease to peak 
gamma over the doses. Graphs display individual responses at each dose (symbols; with 
each symbol type representing a different n) with individual non-linear regression curves 
for each (grey dashed lines). The overall mean non-l inear regression response is 
represented by either a solid black (AMC) or red line (SE). The n numbers for each are 
as follows: AMC:  24hrs (5), 1wk (5), 3mnth (6); SE: 24hrs (5), 1wk (9), 3mnths (4).  
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Figure 4.26 shows the responses to CBD over the dose range for each disease and time 

condition. This figure shows that both developmental and disease related changes influence 

the response to CBD. Illustrating this, looking solely at the AMC data no effect was observed 

at the 24hr age, while large, significant effects were observed in the 1wk time point, indeed the 

most dramatic response observed. These effects were then diminished at the 3mth/chronic 

time point, though some sensitivity to CBD remained at the high doses. In contrast, the SE 

data showed an increasing sensitivity to CBD with development, especially into adulthood (3+ 

months), as well as effects being initially observed at the 24hr time point.  

 

Comparable analysis was also performed for the CBDV data (Figure 4.27), which showed 

more consistent responses to CBDV in both the AMC and SE data across development. The 

largest response is in the chronic (3 month) SE population, though all age and disease 

populations demonstrate similar responses to CBDV.  

 

Data have been omitted from these dose-response curve figures, with any responses that lead 

to a prolonged increase in gamma oscillations being excluded. This was done so that pertinent 

information about the suppressant effects of both phytocannabinoids could be extracted. 

Obviously, the exclusion of data results in an incomplete representation of the cannabinoid 

effect, which seemed to be somewhat variable from slice to slice.   
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Figure 4.27 Dose-response curves (DRC) of CBDV on peak gamma measurements for both AMC 
and SE populations.  
AMC data is shown with a black solid line indicating the mean non-linear regression 
response, with the SE as a red solid line. AMC n numbers: 24hr (7), 1wk (7), 3mnth (6); 
SE: 24hr (6), 1wk (6), 3mnth (6).  
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4.3 Discussion 
Looking at the results presented in the previous chapter as a whole, it is easy to see that both 

CBD and CBDV have an effect on in vitro oscillations in Layer II mEC networks. In this next 

section some points of key observations are highlighted and discussed.  

4.3.1 Benefits of using peak gamma to measure phytocannabinoid 

effects 

The decision to utilise “peak gamma” as a reference of network activity and then as a marker 

for the effect of exocannabinoids was taken as the previous measures had proven to not 

display particularly robust results. As mentioned previously, the peak gamma data were as 

composed of normalised area under the curve (nAUC) readings for the highest frequency point 

within the 30-60Hz range at 400nM KA (baseline) and then followed at each step in these 

experiments for each individual slice.  

 

The peak gamma could be interpreted in two ways, either by identifying the highest frequency 

in the 30-60Hz range for each slice and collating those to give a peak gamma power change 

at disparate frequencies within the 30-60Hz range or; by collating all the nAUC for each n into 

a normalised dataset (as had already been performed for the normalised FFT figures) and 

finding the normalised peak frequency for each age and population. Once identified, the peak 

frequency nAUC was collected from each separate n and normalised to 100 for the 400nM KA 

(baseline) result. Changes from baseline across the cannabinoid doses were normalised to 

this, providing a percentage of 100 for each dose.  Once all the data for each separate n, age 

and condition was amassed, they were averaged within these variables to provide the 

averages, SEMs and ranges. Statistical analysis was then also performed.  

 

This method was employed as the initial method of splitting the bands into frequency ranges 

provides an idea of changes across whole frequency sections but lacked the specificity to 

display changes in the gamma region. Relatively high frequency oscillations, such as gamma, 

are most effective at synchronising local networks when a defined peak is present, while 

broadband oscillations are unable to synchronise activity in local networks effectively (Sedley 

and Cunningham, 2013). Broadband oscillations were observed here in only the SE juvenile 

mEC networks used for CBD (Figure 4.1.Biii-iv). In the CBDV experiments both juvenile 

networks showed some broadband oscillations in the normalised FFT (Figure 4.13), while both 

the SE adolescent and mature networks did also (Figure 4.17.Biii-iv, 4.21.Biii-iv). As such 

the peak gamma measurement used here is a useful tool, as it dilutes the effect of these 

broadband oscillations on CBD(V) effectiveness. By using the peak gamma measure we are 

able to see discrete and clear effects of CBD(V) in the induced oscillatory band in the mEC. 
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4.3.2 Ability of CBD(V) to alter the frequency of gamma oscillations 

The peak frequency analysis was performed as several of the normalised FFTs showed 

changes in the frequency alongside a suppression of the power of gamma oscillations. As 

described the peak frequency (that is, the frequency with the largest power) was collected from 

each individual slice for each of the cannabinoid doses and then averaged to produce a 

collective “peak frequency” for each age and disease population.  

 

Notable occasions where a slowing in oscillation frequency occurred included the 24-hour SE 

(Figure 4.3.Ai) and 1-week AMC (Figure 4.7.Ai) when CBD was applied. The 24-hour SE 

showed a slowing in oscillation frequency at the maximal 30μM CBD dose, which remained in 

the wash step. The 1-week AMC showed a slowing at 10μM CBD enduring through to the 

wash. CBDV application caused a slowing only in the 24-hour SE condition (Figure 4.15.Ai) 

when 30μM CBDV was applied. Upon each of these occasions, a significant decrease peak 

gamma power was noted, suggestive of a link between gamma power suppression and peak 

frequency decrease. This is a fallible conclusion however, as only three of twelve disease/age 

conditions showed a significant alteration to peak frequency, whereas ten of twelve conditions 

showed a significant decrease in peak gamma at the maximal 30μM cannabinoid dose. 

Interestingly, both post-induction 24-hour SE populations show a decrease in frequency upon 

the maximal dose of CBD(V), which may be linked to changes by the RISE induction.  

4.3.3 Possible changes to rat neuronal networks immediately after 

RISE induction and confirmation of RISE as an epilepsy model 

The most interesting results produced by this series of experiments arises when comparing 

the peak gamma responses in the 24-hour time points (Figure 4.4 & 4.16).  

 

Assessing first the peak gamma CBD data (Figure 4.4), no effects are present in the AMC 

data, while a significant decrease was found in the 30μM CBD and the wash steps of the SE 

population, with a general trend towards dose-dependent decreases observable across the 

earlier doses too. This is highly suggestive of an effect of the RISE induction process 

stimulating a change in the expression of potential drug targets of at least the EC, if not more 

areas of the rodent brain. The differences between the two populations were also clearly visible 

in  

Figure 4.1. These clear differences are perhaps analogous to the human condition of acquired 

TLE, where initial insults to the head and brain induce seizures or seizure-like events (as the 

RISE model does in rats) (Modebadze et al., 2016).  

 

CBDV showed no significant changes to the 24-hour AMC rats, similar to the data observed 

for CBD. CBDV did, however, produce a significant decrease in peak gamma in the SE data. 
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This result suggests similar effects of CBDV and CBD are present in the recent SE induced 

rats.  

 

Current collaborative investigations between the host lab and the Henley lab at the University 

of Bristol are being undertaken to assess protein expression levels at the epileptogenesis time 

points used here (24-hours, 1-week and, 3-months post-induction) compared to the 

corresponding AMC expression levels. Preliminary data has suggested significantly altered 

expression levels of GluN1 in the temporal lobe 24 hours post-induction, with a clear 1.5-fold 

increase noted in comparison to the corresponding AMC data (p < 0.05). Significant decreases 

of AMPAR subunits GluA1 (40%; p < 0.01) and GluA2 (25%; p < 0.05), as well as the KAR 

subunit GluK2 (35%; p < 0.0001) are also noted in the hippocampus after 24-hours 

(unpublished work; see Appendix 2). When paired with the peak gamma data from the 24-

hour SE animals, this indicates a possible role of GluN1 for the action of CBD(V) in suppression 

of mEC gamma oscillations.    

4.3.4 Age dependent effects of CBD(V) 

Further to the last section discussed, obvious changes in CBD and CBDV sensitivity were 

notable from the first 24-hour time point to the 1-week time point, especially in the AMC data.  

 

As stated the 24-hour AMC data showed no effect of CBD addition, in stark contrast to 1-week 

AMC data where dose-dependent CBD effects are visible, indeed the most notable of all 

populations tested here (Figure 4.5, Figure 4.8, Figure 4.26). This distinction lends support 

to the idea that there are neuronal changes and development between these two time points. 

Indeed, the brain is still developing at this point, with a recent study suggesting an increase in 

brain size of 25% from P12 to P24 (Ray et al., 2016).   

 

Specific developmental alterations are noted across a plethora of receptor expressions with 

excitatory AMPARs, NMDARs, KARs and, mGluRs all shown to differ dependent on 

developmental time point. For instance, AMPA receptors switch from mainly GluA2-

independent compositions to mainly GluA2-containing in rat by the second postnatal week 

(p14), imbuing an inability to pass Ca2+ onto the majority of AMPARs, with all AMPAR 

expressing synapses noted to express GluA2 by this time point (in rat) (Monyer et al., 1991; 

Pellegrini-Giampietro et al., 1992). Further changes are noted after this, with a decline in the 

number of GluA1-containing AMPARs, replaced by GluA3-containing AMPARs occurring by 

p21, the arrival of which most likely causes the increase duration in AMPAR response and 

postsynaptic excitability, as GluA3-containing AMPARs are noted for displaying decreased 

deactivation and desensitisation (Suzuki et al., 2008; Blair et al., 2013). KARs have also been 

shown to change depending on the maturity of the brain, with for instance, the Q/R editing of 

KARs shown to be dependent on developmental regulation (Chittajallu et al., 1999). Further to 
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this, there is also evidence of stunted excitatory mechanisms in general across juvenile brains 

(Kleckner and Dingledine, 1991). 

 

These instances are but a small fraction of the known changes in receptor expression with 

maturity in the specific time point we are looking at and, as such, complex biochemical 

experiments would be required to locate the target of CBD(V) here. By assessing known 

interactions CBD(V) have with any of these receptor systems, however, we are able to narrow 

down possible targets. Indeed, later in this report, we demonstrate CBD interactions at 

NMDARs. A multitude of alterations in NMDAR expression and function are noted during 

development, for instance, overexpression of NMDARs in the hippocampus, overexpression 

of recurrent collateral excitatory synaptic connections and, increased contribution of NMDARs 

to postsynaptic responses in the neocortex have all been found in juvenile animals (Hamon 

and Heinemann, 1988; Tremblay et al., 1988; Jones and Heinemann, 1989; Burgard et al., 

1990; Luhmann and Prince, 1990; Swann et al., 1993). Furthermore, there is evidence that 

juvenile NMDARs may display a lower Mg2+ sensitivity then that of adult animals (Bowe and 

Nadler, 1990; Kleckner and Dingledine, 1991). In addition, there is a noted switch in NMDA 

subunit composition with development, from NR2B to NR2A, thought to be indicative of 

synaptic maturity, related to neuronal activity and experience (Monyer et al., 1994; Sheng et 

al., 1994; Sans et al., 2000). This switch in subunit composition is linked to the mechanisms of 

synaptic plasticity, though the exact nature of this relationship remains controversial (Liu et al., 

2004; Bartlett et al., 2007; Morishita et al., 2007; Xu et al., 2009). It is possible that any of these 

changes in NMDA expression may contribute to the age-dependent effects of CBD(V) 

observed here. Possible links may occur indirectly through interactions between cannabinoid 

receptors (CBRs) and NMDARs (Sánchez-Blázquez et al., 2013; Rodríguez-Muñoz et al., 

2016), or via direct binding at the NMDARs, though there is currently no concrete evidence for 

this. These possible CBR-NMDAR interactions, when combined with recent research 

postulating that CBD may act as a high affinity negative allosteric modulator (NAM) at CB1R, 

may help explain the actions of CBD(V) as either or both of these exocannabinoids could be 

interacting at NMDARs, directly or indirectly, to modulate excitatory or inhibitory synaptic 

transmission (Xue et al., 2011; Laprairie et al., 2015). 

         

Aside from the clear and obvious differences within the AMC data, the SE data showed only a 

slight change (with 10μM CBD now enough to elicit a significant decrease in oscillatory power) 

from 24-hour to 1-week (Figure 4.8). The differences between the two populations were also 

interesting, as stated there was a slight increase in the CBD sensitivity in the SE data, while 

the AMC showed a large increase in sensitivity. This again lends support to the neuronal 

rewiring through epilepsy induction, as if the networks have been altered via the RISE 

induction, they have remained that way through to one week (or are continuously developing) 

and, as such, the dramatic dose-dependent decrease seen in the AMC data was not observed 
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in the SE data, with only a slight increase of the 24-hour effect observed. The 3-month 

populations showed, again, apparent heightened sensitivity to CBD in the SE data, with 

significant decreases to oscillatory power observed at 1µM, while the AMC data does show a 

trending dose-dependent decrease, though significance was only displayed at 30µM (+ wash). 

These changes in response may correspond to alterations in benzodiazepine (BZ) site 

expression and function early after SE induction, as GABAARs are noted as displaying large 

changes after SE induction. Indeed, a decrease in BZ efficacy has been noted in some forms 

of TLE and is commonly observed in DRE. Causes for this are namely thought to be a loss of 

BZ sites, with previous studies in humans showing the loss in BZ sites was greater than the 

loss of neurons in sclerotic area (Savic et al., 1988; Hand et al., 1997; Koepp et al., 1997). 

Furthermore, other publications have demonstrated BZ sites that display decreased affinity, 

with PET studies showing areas with BZ site deficient GABAARs as an indicator for epileptic 

foci (Ryvlin et al., 1998; Bouvard et al., 2005). 

 

In pilocarpine induced SE rodents, 24 hours post-SE isolated DG cells displayed decreases in 

mRNA expression levels for GABAA subunits α1 and β1, while the α4, δ, and ε subunit mRNA 

levels were increased, with these changes remaining apparent through to chronic stages 

(defined as 1-4 months here), with reductions in zolpidem efficacy also noted (Brooks-Kayal 

et al., 1998). In situ hybridisation analyses of CA3 neurons were in agreement with this, 

showing depleted α1 mRNA subunit expression (Friedman et al., 1994). Conversely, 

flumazenil binding studies displayed increase binding efficacy at 24 hours post-SE across all 

hippocampal regions, which subsequently decreased in some areas with progression into the 

chronic period, though here a KA model of epilepsy was used (Vivash et al., 2011). Other 

reports show similar mIPSC levels at 24-48 hours and 3-5 months post-SE, with a limited 

sensitivity to diazepam at 24-48 hours and, a loss of diazepam sensitivity at 3-5 months in DG 

cells. Despite this, modulation by flumazenil remained constant in both time points, though in 

this model of epilepsy no seizure cessation drugs were applied (Leroy et al., 2004). Latent 

period studies of the BZ site in DG neurons, show an initial decrease in mIPSC amplitudes (6-

8 days post-SE), which later recover, though become insensitive to zolpidem, with a trend 

towards decrease in γ2 expression at 4 days noted, which subsequently increases significantly 

at 60 days post-SE; a similar pattern is noted in α4 subunit expression also, though the rise 

was noted as early as 30 days here (Cohen et al., 2003; Peng et al., 2004).  

 

Work completed later in this project (Chapter 6) shows a role for the BZ site in CBD 

effectiveness, with CBD possessing similar qualities to those of BZ site agonists. From this 

published work, however, it appears as though affinity of the BZ site, to BZ agonists at least, 

decreases as time from induction increases, whereas CBD displays the opposite effect, with 

its sensitivity increasing as epileptogenesis progresses, more similar to the apparent 

effectiveness of the BZ site inverse agonist flumazenil, suggested in Cohen et al, (2003). 
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Indeed, the early change in subunit expression from α1 to α4 would suggest a loss in the 

number of BZ sites present, which are classically located at the interface between α1g2 

subunits. CBD is not binding to the BZ site directly to deliver its effects (Bakas et al., 2017), 

though its blockade does have a negative effect on CBD, suggesting there is a requirement 

for the BZ site to be unimpeded for CBD to produce its effects.  

 

Taken together, these results suggest a bell-shaped efficacy of CBD in AMC animals with age, 

where no effects are noted in juvenile animals (~p19), peak sensitivity at 1-week in AMC 

animals (~p26), which diminishes somewhat with maturity, though to state with certainty more 

n numbers would be required. The SE data meanwhile, was suggestive of increasing sensitivity 

to CBD with age, with limited significance observed early, increasing efficacy at 1-week post 

induction, and a very high sensitivity in the chronic animals.  Statistical comparisons between 

the disease conditions using an unpaired Mann-Whitney test showed no significance in CBD 

sensitivity, however comparisons between all time points in the AMC population, using the 

unpaired non-parametric Kruskal-Wallis test, showed significance. This is indicative of a 

time/age dependent effect of CBD, with increased sensitivity at adolescence and in mature 

networks. The lack of significance in the SE dataset was unsurprising, as significant decreases 

were noted in the 24-hour population upon maximal CBD dose, and suggests that the initial 

epileptic insult was sufficient for CBD effectiveness.  

 

Significant differences were noted in age related responses to CBDV, with what appeared to 

be an increase in sensitivity in the SE population from both the 24-hour and 1-week responses, 

to the chronic 3-month responses, most likely explained by neuronal alterations due to 

epileptogenesis in the SE population. The AMC data only showed response to CBDV at the 

maximal dose in adolescence and maturity, though albeit with a higher significance at the 

mature age, which was most likely due to the full maturation of the neuronal circuits. The 

comparisons of the peak gamma power deltas, however, showed no significant differences in 

either the time point comparisons or the disease comparisons for CBDV application.  

 

Further to this, the collaborative protein expression data showed significant decreases in 

GluA2 (p < 0.05), GluK5 (p < 0.01) and, GluN1 (p < 0.01) in the temporal lobe (TL) in the 1-

week time point, with significant decreases in GluA1 (p < 0.0001) and GluK5 (p < 0.05) still 

present in the hippocampus. At the 3-month time point a significant decrease in the TL was 

shown in the expression of GluA1 (p < 0.0001), with the significant decrease in GluA1 (p < 

0.0001) still present in the hippocampus (unpublished work; see Appendix 2). This work 

highlights some of the effects epileptogenesis is having on neuronal networks and synaptic 

reorganisation within the TL and hippocampus, thought to play a pivotal role in the 

development of TLE (Sutula et al., 1989; Lee et al., 2007). When all time points are observed 

clear roles for each of the ionotropic glutamate receptors are noted. An immediate 
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downregulation in the expression of GluA1 is shown upon the induction of SE, while a similar 

downregulation in the TL is only present upon SRS, raising the possibility of the loss of GluA1 

being vital for seizure initiation, onset and spread, which is in agreement with other studies, 

with GluA1 downregulation noted in medial TLE (Sutula et al., 1989). GluA2 is only 

downregulated in the latent period for the TL, while in the hippocampus SE induction causes 

its downregulation, here previous studies show agreement with GluA2 downregulation noted 

upon initial insult (Lorgen et al., 2017).  

 

The KAR subunit GluK5 is only downregulated in the latent period in both the hippocampus 

and the TL, suggesting a role in seizure generation, which is also concurrent with work showing 

GluK5 antagonists as being anti-convulsant in pilocarpine-induced epilepsy studies (Smolders 

et al., 2002). GluK2 is downregulated in the hippocampus immediately upon SE induction, 

though may be due to neuronal or synaptic damage incurred by the insult. GluN1 

downregulation is noted only in the TL and only initially after SE induction, alongside the 

downregulation of AMPAR and KAR subunits previously described. It may be possible that 

these downregulations act as a compensatory decrease in excitation following seizure initiation 

to induce the latent period, with an increase in excitatory receptor subunits incurring SRS 

generation and chronic epilepsy.  

 

Expression levels of the pre- and postsynaptic markers, synaptophysin and postsynaptic 

density 95 (PSD-95), were explored at each of the time points. No changes are noted in either 

in the TL until a significant decrease in PSD-95 noted in the mature, chronically SE animals (p 

< 0.05). In the hippocampus immediate significant decreases in PSD-95 were noted in the 

juvenile brain upon SE induction (p < 0.01), which remained in the adolescent animals (p < 

0.05), no changes to synaptophysin were noted in either the juvenile or adolescent ages. At 

the 3-month time point a reversal was noted, with a large increase in the expression of PSD-

95 noted (roughly a 3-fold increase; p < 0.05) while a significant decrease in synaptophysin 

was observed (p < 0.001). These differences are suggestive of a large increase in the number 

of postsynaptic elements, but a fall in the number of presynaptic elements in the hippocampus 

upon chronic epilepsy establishment. No changes to the presynaptic number were noted in 

the TL though a significantly lower number of postsynaptic boutons is noted at the chronic 

stage. Both of these alterations are suggestive of RISE induced neuronal rewiring in both the 

hippocampus and TL. These changes could relate to the higher significance of gamma 

suppression noted at the chronic time points presented here.   

 

4.3.5 Disease condition dependent effects of CBD/V 

The differences between the AMC and SE populations and cannabinoid effectiveness in each 

disease condition, showed the largest differences occur in the early age groups (24-hour). As 



 160 

mentioned the CBD data showed a clear difference between the two, with no changes at all 

present in AMC data due to CBD, while there was a decrease which achieves significance at 

30µM in the SE data, suggesting an increase sensitivity to CBD is caused by a RISE induced 

change.  

 

In the CBDV data, in the AMC data of the 24-hour group, no significance was achieved. In the 

SE data a significant decrease was found at 30µM, again highly suggestive of a RISE induced 

change in CBDV responsiveness.  

4.3.6 CBD v CBDV effectiveness 

Comparing the effect of maximal CBD(V) doses (Figure 4.25), a larger variance in CBD 

response was notable, whereas CBDV appeared to produce a generalised decrease. This was 

also highlighted when observing the DRC results produced in Figure 4.26 & 4.27. 

 

Looking initially at the AMC data, the lack of significance both cannabinoids showed suggests 

that the drug targets responsible for the suppression of gamma noticed in later AMC time 

points have not yet been established.  Comparing the two phytocannabinoid responses at 1-

week AMC highly suggests either a differing mechanism of action or different affinities for the 

target, due to the disparity in gamma suppression each achieves.  Both CBD and CBDV are 

similarly effective at gamma suppression in the mature (3-month) AMC population, indicating 

the target for each is fully established by this time point. The decrease in effect between CBD 

treatments between the 1-week and 3-month time points raises an interesting question about 

the nature of mEC network change between adolescence and maturity in terms of CBD binding 

targets.  

 

The SE responses suggest an increasing sensitivity to CBD once more, with gamma 

suppression increasing as evidenced by the peak gamma responses, though comparison of 

the deltas contradicts this somewhat. CBDV, on the other hand, delivers a more consistent 

decrease in peak gamma, with the 24-hour and 1-week populations showing similar values. 

The 3-month SE population does provide a slightly lower peak value, and one that is similar to 

that provided by CBD under comparable conditions. 

4.4 General conclusions and future work  
Here we have successfully shown that both CBD and CBDV are able to significantly suppress 

gamma oscillations in mEC layer II neuronal networks in adolescent and mature AMC rats in 

vitro, though not in juvenile rats. Beyond this, we have also shown CBD and CBDV as able to 

suppress gamma oscillations in all age ranges of rats tested using a maximal dose of 30μM. 

Moreover, we have shown that CBD especially is able to act in a dose-dependent manner in 

adolescent and above AMC and SE rats, with striking effects observed in the SE animals. 
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Taken together the above data suggests an age and disease dependent mechanism of action 

for CBD, though maybe not CBDV.  

 

Future experiments could involve performing receptor mRNA screening across our defined 

time points, further to the protein expression work already carried out, to highlight temporal 

protein expression profiles that match, or are similar to, the relative effectiveness of CBD(V). 

Particular focus could be given to both GABAAR and NMDAR subunits, due to their importance 

in the development and maturity of the brain and, their significance in TLE and possible role in 

CBD(V) MOA. In addition, double label immunocytochemistry could be performed to 

investigate the effect of RISE model and CBD(V) on mEC GABAergic neurons in controlling 

rhythmogenesis.   
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Chapter 5  
 
 

The effect of CBD(V) on single cell 
currents using voltage-clamp 
electrophysiology   
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5.1 Introduction  
In response to the initial LFP data, we determined to focus investigation on the age-range 

where the differences in the effects of CBD were most pronounced, specifically, the time 

between 24-hour post induction (p19) and 1-week post induction (p26).  

5.1.1 Whole-cell voltage clamp 

The historical gold standard technique for investigation of inhibitory synaptic function has been 

whole-cell voltage-clamp. Hence, alongside the LFP experiments, we also investigated the 

response of individual mEC Layer II principal neurons to CBD and CBDV, employing the use 

of both spontaneous inhibitory post-synaptic currents (sIPSCs) and spontaneous excitatory 

post-synaptic currents (sEPSCs). No discrimination between p19-p26 animals has been made 

for the experiments performed throughout the rest of this project. 

      

As discussed in the Methods and Materials chapter (Chapter 2), using the voltage-clamp 

method of whole cell patch clamp electrophysiology allowed observation of the postsynaptic 

currents and any alterations made by the application of either CBD or CBDV.   

5.1.2 Human tissue whole-cell voltage-clamp  

As well as testing rat responses, through collaboration with Birmingham Children’s Hospital, 

we were able to obtain and test human tissue, resected from children with severe refractory 

epilepsy where surgery is the only treatment option. This tissue was obtained immediately 

upon resection and was then processed in exactly the same manner as the rat tissue – though 

a choline based aSCF was used to allow standardisation of protocols across all human tissue 

laboratories across the UK (detailed more thoroughly in Chapter 2).  

 

Usually this tissue was resected from the frontal or temporal lobes of the patients, with common 

epilepsy types being frontocortical dysplasia and temporal lobe epilepsies as detailed in the 

methods section above. In patch clamp experiments on both rat and human tissue, slices were 

visualised using IR-DIC optics and principal neurons with a pyramidal morphology and smooth 

membrane appearance were selected. All recordings were made using similar pipettes pulled 

from borosilicate glass and filled with a standard solution.  
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5.2 Results 

5.2.1 Rat sIPSC responses to CBD   

Figure 5.1 sIPSC raw traces before and after 30μM CBD addition 
Representative raw traces taken from AMC (left) and SE (right) rat populations, before 
and after CBD addition.  

 

Our first voltage-clamp experiments were to investigate the effect of CBD on both AMC (n = 

12; animal n = 9) and SE (n = 26; animal n = 19) populations, to observe any differences in 

responses of mEC Layer II pyramidal cells between the two conditions in p19-26 animals.  

 

Figure 5.1 shows two representative traces for each of the AMC and SE populations. There 

is visually a difference apparent between the two disease conditions in the sIPSC control 

condition (baseline), with a higher frequency of sIPSCs noticeable in the SE trace. Upon the 

addition of CBD, there is little change visually in the AMC population, though in the SE 

population a slight increase in IEI and amplitude looks to have occurred. As these are 

representative traces and not averaged traces, little information can be truly posited from these 

figures alone.  

 

Further analyses of these experiments are presented in Figure 5.2, with each AMC histogram 

presented on the left, and SE correspondingly on the right. Ai and Bi highlight the mean 

median amplitude (pA) for each condition in the control sIPSC and 30μM CBD. Looking first at 

the AMC data (Ai), no change in mean median amplitude was observed (29.9 ± 9.28 – 34.8 ± 

11.5; p = 0.11). The range for these data remained relatively consistent (9.0-126.3; 9.64-

132.5). Similarly, the SE population (Bi) displayed no change in mean median amplitude (26.8 

± 2.29 – 29.8 ± 3.12; range: 9.74-53.8; 11.2-73.2; p = 0.12).  

 

The next parameter presented is the mean median IEI (ms) in figures Aii and Bii. The AMC 

data (Aii), showed no change in IEI (112 ± 17.8 – 120 ± 25.1; p = 0.54; range: 56.9-233; 38.9-
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262). In contrast, a significant decrease in mean median IEI was present in the SE data (77.8 

± 6.59 – 71.9 ± 5.73; 35.5-166; 32.1-146; p = 0.022).  

 

Aiii/Biii presents the mean median decay time (ms) for each population. Aiii shows the AMC 

data, which displayed no change in decay time upon CBD addition (8.99 ± 0.97 – 9.20 ± 1.06; 

p = 0.39; range: 5.40-18.1; 4.5-19.1). In contrast, a significant increase was observed in the 

SE population decay time upon CBD addition (8.62 ± 0.5 – 9.30 ± 0.68; range: 4.0-14.9 to 

4.30-19.9; p = 0.045).  

 

Finally, the NICT values are presented in Aiv/Biv. In Aiv, the AMC data showed no change 

upon CBD addition, with a mean value of 115 ± 12.4 (range: 50.3-179), which produced a p 

value of 0.27. In contrast, the SE dataset (Biv) showed a significant increase in NICT upon 

CBD application, returning a mean value of 131 ± 11.7 (range: 31.7-727; p = 0.012). The 727 

value looks to be an anomalous result, however the values it provides for each of the other 

parameters are within the normal range set by the other responses here. Inclusion of this result 

in this statistical analysis does not alter the p value drastically (0.012 when included, 0.02 

without) and, therefore, it has been kept in the analysis pool. 
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Figure 5.2 Histograms showing the effect of CBD on each of the sIPSC parameters.   
Ai/Bi show mean median amplitude (pA) comparisons. Aii/Bii represent mean median IEI 
comparisons (ms). Aiii/Biii highl ight mean median decay time comparisons (ms). Aiv/Biv 
show comparisons of NICT values. AMC left, SE, right. * p < 0.05.   
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Figure 5.3 Binned decay time frequency histograms 
Decay time frequency histograms showing 2ms bins for AMC (Ai) and SE (Aii) populations 
from 2-40ms and the number of value in each bin. Legend shows baseline/sIPSC (grey 
columns) and 30µM CBD (red columns).  

 

To analyse whether all, or only certain population of cells were being affected by the increase 

in decay time induced by CBD addition, decay time response distributions have been 

observed, with 2ms bins defined and presented for all decay times analysed in the AMC and 

SE populations (Figure 5.3.Ai-ii respectively). Here decreases are noted in the fast decay 

time bins (<6ms) with increases noted in decay times above (>6ms) when CBD is applied in 

both the AMC (Ai) and SE (Aii) populations. This alteration in decay time is most noticeable 

upon CBD application in the SE population, where a larger number of values are observed in 

the >6ms bins than in baseline, though the change looks to be very slight.  

Ai 

Aii 
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Figure 5.4 Cumulative frequency line graph for decay times.   
AMC (Ai) and SE (Aii) populations. Legend shows baseline/sIPSC (black line) and 30µM 
CBD (red line).   

 

The alteration of decay times is shown again as a cumulative frequency line graph (Figure 

5.4) for both AMC (Ai) and SE populations (Aii). Here a very subtle shift to the right is 

noticeable in the SE population, recapitulating the data shown in Figure 5.3.  The AMC data 

in contrast, does not show this, though a shift is somewhat visible between 8-10ms.  

 

The shift to the right observable in the SE analysis is suggestive of a change in decay time of 

all cells synapsing onto the recorded cell, not just a specific population of cells, something 

supported by the binned histograms presented in Figure 5.4.Aii, as notable alterations in each 

bin are observed up to 12ms.  

Ai 

Aii 
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Figure 5.5 Principal component analysis (PCA) of CBD effects.  
AMC (Ai) and SE (Aii) experiments. The direction and size of the arrows coupled with the 
movement of the ring (blue – baseline/control; red – CBD) indicates the components most 
responsible for the variation between the before and after drug treatment.  

  

Figure 5.5 represents two separate PCA computations, one for AMC (Ai) and one SE (Aii). 

PCA was performed to allow us to gain an insight into which of the analysed parameters was 

most responsible for the increased inhibition observed upon CBD. In both, the main sources 

of variation are amplitude, decay time and area, as shown by the direction of the arrows for 

each of these parameters alongside the shift in the position of the circle – each of these 

components are integral to our NICT analysis, detailed in the Materials and Methods chapter 

previous (Chapter 2).   

Ai 

Aii 
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5.2.2 Rat sIPSC responses to CBDV 

Figure 5.6 Representative sIPSC raw traces to maximal 30μM CBDV dose. 
Before and after raw traces shown for the AMC (left) and SE (r ight) populations in 
response to 30uM CBDV 

 

Figure 5.7 followed the same experimental formula, with both AMC (n = 6; animal n = 3) and 

SE (n = 6; animal n = 5) populations investigated, though CBDV has been applied in place of 

CBD. Here no significant changes, except for the SE NICT value, are observed in any of the 

parameters analysed, though a lower n number than that of the CBD experiments has been 

performed.  

 

Figure 5.7.Ai/Bi highlight the mean median amplitude responses of both the AMC (Ai) and 

SE (Bi) populations. Ai shows no change in amplitude upon the addition of CBDV (37.6 ± 8.1 

– 35.5 ± 6.2; range: 10.9-54.9; 11.0-49.4; p = 0.69). A trending decrease was observed in the 

SE dataset (Aii; 31.8 ± 5.58-27.9 ± 5.09; range: 15.5-54.0; 15.5-51.5; p = 0.063). Aii shows 

the responses of the AMC mean median IEIs, where no changes were observed upon CBDV 

application (83.9 ± 14.8 – 78.6 ± 17.1; range: 39.7-129; 35.2-150; p = 0.84). Again, in the SE 

population, no change to the mean median IEI was observed (56.1 ± 10.0 – 61.1 ± 8.96; range: 

32.8-102; 34.9-101; p = 0.22). 

 

The next parameter analysed was the mean median decay time, in Aiii/Biii. The AMC data 

(Aiii), showed no change when CBDV was present (10.3 ± 1.73 – 11.5 ± 2.47; range: 6.20-

17.3; 4.80-21.9; p = 0.31). A similar result was observed in the SE population (Biii) response 

to CBDV, where no alterations in decay time occurred (7.39 ± 0.50 – 7.69 ± 0.25; range: 5.85-

9.10; 7.20-8.90; p = 0.68). The final analysis parameter for the CBDV addition was NICT values 

(Aiv/Biv). Here the AMC dataset showed no changes in value, 119 ± 26.6, range: 50.6 – 218 

(p = 0.56). The SE data (Biv), on the other hand, presented a significant decrease in NICT 

value upon CBDV application (79.0 ± 8.94; range: 39.3 – 97.4; p = 0.03). 
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Figure 5.7 Histograms showing the effect of CBDV on sIPSCs. 
AMC (left) and SE (right). Ai/Bi show mean median amplitude (pA) comparisons. Aii/Bii  
represent mean median IEI comparisons (ms). Aiii/Bii i highlight mean median decay time 
comparisons (ms). Aiv/Biv show comparisons of NICT values. * p < 0.05. 
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Figure 5.8 PCA for the addition of 30μM CBDV in SE rats 
The direction and size of the arrows coupled with the movement of the ring (blue – 
baseline/control; red – CBDV) indicates the components most responsible for the 
variation between the before and after drug treatment. 

 

Figure 5.8 shows the PCA for the SE dataset, which seemingly returns a different set of 

parameters causing the variation to that of the CBD addition. The first principal component 

appears to be the amplitude, with the second being rise time, in stark contrast to the CBD PCA 

computations. This is highly suggestive of CBDV acting via a different MOA to CBD.     
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5.2.3 Human tissue whole-cell voltage-clamp sIPSC responses to 

CBD 

 

Figure 5.9 Representative sIPSC raw trace of a HT cell in response to CBD.  
Raw traces before and after 30μM CBD addition in a HT pyramidal cell  

   
Figure 5.9 shows a representative trace of HT pyramidal cells in both control sIPSC and 30μM 

CBD. Visually there looks to be a slight increase in amplitude and possibly frequency as well, 

though no valuable data can be drawn from this alone.  

 

We therefore have analysed the human tissue (HT) data (n = 9; sample number n = 7) in the 

same manner as the rat CBD and CBDV data previously, displayed in Figure 5.10.Ai-iv.  

 

Figure 5.10.Ai shows the responses of HT mean median amplitude (pA) upon the application 

of CBD. No change was noted when CBD was applied (26.7 ± 3.96 – 25.8 ± 3.49; range: 10.1-

47.2; 11.3-43.1; p = 0.50). Aii shows the response of the mean median IEI (ms), where again 

no changes were present (101 ± 16.5 – 88.7 ± 8.02; range: 49.4-208; 57.5-128; p = 0.57). Aiv 

highlights the mean median decay time (ms), where a significant increase was present once 

CBD was added (8.08 ± 0.67 – 9.31 ± 0.95; range: 4.10-11.2; 4.45-14.5; p = 0.009). The final 

histogram (Aiv) displays the NICT values, where again a significant increase was observed 

upon CBD application (148 ± 25.2; range: 88.5 – 308; p = 0.039). 
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Figure 5.10 Histograms showing the responses of HT cells to CBD.  
Mean median amplitude (Ai), IEI (Aii) and decay time comparisons (Aiii), as well as NICT 
analysis (Aiv) for HT samples all analysed. * p < 0.05, ** p < 0.01.  

 

Figure 5.11 shows the PCA for the HT cells, showing a highly similar relationship to that 

observed in the SE tissue, where area and decay time show the highest variations between 

the baseline and CBD addition. This analysis suggests that in both the HT and SE rat 

conditions CBD is affecting similar responses, most likely through a similar mechanism.  

 

 

 

 

 



 175 

Figure 5.11 PCA of HT cells when exposed to 30μM CBD.  
The direction and size of the arrows coupled with the movement of the ring (blue – 
baseline/control; red – CBD) indicates the components most responsible for the variation 
between the before and after drug treatment. 
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5.2.4 Rat sEPSC responses to CBD 

Figure 5.12 Representative raw sEPSC traces in response to 30μM CBD. 
Raw traces from AMC (left) and SE (right) animals, before and after CBD addition.   

 

Alongside the sIPSC data performed with CBD, we also observed spontaneous excitatory 

postsynaptic currents (sEPSCs) in both AMC and SE rat populations using whole cell voltage-

clamp recordings. sEPSCs were investigated as epilepsy is a neurological disease caused 

through an imbalance of excitation and inhibition, usually citing a lack or dysfunction in 

inhibitory signalling leading to an excessive amount of neuronal excitation. As decreases in 

gamma oscillations have been shown, as too increasing inhibition on pyramidal cells by the 

application of CBD, it is plausible that CBD may act via excitatory receptors or excitatory 

neurotransmitter release mechanisms to exert this effect. As such, sEPSCs are a clear method 

of looking at the effect, if any, CBD has on neuronal excitation.  

 

Representative traces from both the AMC (n = 8; animal n = 5) and SE population (n = 5; 

animal n = 4) are displayed in Figure 5.12, for both the sEPSC baseline period and 30μM CBD 

condition. There are little differences between the two traces visually when the CBD is added, 

though definite differences between the two disease conditions are visible in baseline, 

something discussed more thoroughly later (Chapter 6).  

 

The same data analysis has been performed on the sEPSC data as with the sIPSC data, the 

results of which are presented in Figure 5.13.Ai-iii/Bi-iii. As before, Ai shows the mean 

median amplitude response of the AMC dataset, where no effect was observed when CBD 

was applied (9.40 ± 0.61 – 10.1 ± 0.95; range: 6.99-12.0; 7.32-15.8; p = 0.38). Bi highlights 

the SE dataset mean median amplitude responses, where again no effect was observed (21.7 

± 3.04 – 30.1 ± 2.15; range: 12.2-30.6; 12.8-25.3; p = 0.44).  
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Figure 5.13.Aii shows the mean median IEI responses for the AMC population, where no 

alterations were observed upon CBD addition (282 ± 75.6 – 245 ± 65.0; range 72.9-610; 28.5-

550; p = 0.31). Bii also shows no change in SE mean median IEI upon CBD application (193 

± 37.8 – 189 ± 23.7; range: 125-304; 156-282; p = 1). 

 

The final set of parameters analysed were the NECT values, comparable to the NICT values 

described previously. Aiii shows the NECT value for the AMC population, where no change 

was shown (127 ± 26.4; 78.9-308; p = 0.46). Biii shows the comparable data for the SE 

population, where there was no alteration in NECT value upon CBD addition (101 ± 21.2; 51.8-

151; p = 0.81). 
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Figure 5.13 Histograms showing the responses of sEPSCs to CBD.  
Mean median amplitude (Ai/Bi), IEI (Aii/Bii) and NECT analysis (Aiii/Biii) for AMC and 
SE samples, with AMC (left) and SE (right).   

Ai 

Aii 

Aiii 

Bi 

Bii 

Biii 
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5.3 Discussion 

5.3.1 Rat sIPSC show increased decay time and inhibitory charge 

transfer in response to CBD  

The results presented from the CBD sIPSCs (Figure 5.2) show no significant change to any 

of the parameters in the AMC dataset (Ai-iv), though there are arguably trending increases in 

the amplitude and NICT values upon the application of CBD, though as there is already quite 

a substantial number of ns performed for this dataset which would make this difficult to argue 

(n =12; animal n = 9). As these data correspond to the 24-hour post-induction LFP data, this 

is perhaps not surprising as there was no effect of CBD in this age group. When viewed in 

conjunction with the PCA presented in Figure 5.5, however, both AMC and SE PCA tests 

show similar variation caused by CBD addition, especially in regard to the area, amplitude and 

decay time components, so the lack of any significant effect is somewhat interesting.  

 

In contrast, the SE data (Figure 5.2.Bi-iv) shows significant changes in three of the four 

parameters, with only the mean median amplitude showing no effect. The mean median IEI 

significant decrease is suggestive of an increased frequency in post-synaptic currents upon 

the addition of 30μM CBD. Whether this decrease is a physiologically relevant decrease is 

debatable, with a drop of only 5.8ms presented. There is also a subtle, yet significant, increase 

in the mean median decay time, suggestive of a prolonged receptor opening time, something 

symptomatic of benzodiazepines and benzodiazepine-like compounds. These changes are 

recapitulated in the NICT values, where again a significant increase is noted. There is an 

overall average increase in NICT upon CBD addition, which is representative of higher 

inhibition levels. This increase may be due to increased pre-synaptic GABA release, higher 

GABA uptake or increased GABAAR opening time – suggested by the noted increase in decay 

time in the SE population.  

 

The decay time differences were explored further in Figure 5.3, where decay times from the 

AMC and SE populations were binned at 2ms intervals, with number of events plotted on the 

y-axis. Here fast decay times (>6ms) seem to decrease in the SE dataset, while slower decay 

times (<6ms) seem to increase, suggestive of an increased GABAAR open time caused by the 

application of CBD in the SE animals. This is recapitulated in the next figure (Figure 5.4) where 

the cumulative frequencies of the decay times for both the AMC (A) and SE (B) populations 

have been plotted. Here, no real change is noted in the AMC populations, while a very subtle 

shift to the right is observed in the SE data.   

 

The differences present between the two populations once again indicate a disease specific 

action of CBD, especially in these young juvenile/adolescent animals – as was suggested by 

the LFP data present in the previous chapter (Chapter 4).  
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Taken together, the LFP and sIPSC data proffered demonstrate CBD as an age- and disease-

specific compound, which decreases network excitability (observed in the LFP data through 

the suppression of gamma oscillations) and, neuronal excitability (sIPSC data presented here). 

The significant results obtained in the SE data are suggestive of a subtle effect of CBD on the 

IEI and kinetics of inhibitory events, one similar to that of a benzodiazepine agonist.  This effect 

is most likely caused by increasing the inhibition on pyramidal cells, either on the postsynaptic 

terminal, through increasing the GABAAR opening time (increased decay time observed here) 

or through increased GABA neurotransmission from presynaptic interneurons. 

5.3.2  Rat sIPSC show decreased inhibitory charge transfer in 

response to CBDV 

In contrast to the LFP data, CBDV causes no effect on either the AMC, or much of the SE 

sIPSC kinetics. This is somewhat surprising as CBDV produced a general suppressive effect 

across the LFP data in each population and disease condition (excepting the 24-hour AMC 

animals). There is however one area of this analysis where CBDV does produce an effect, 

especially in the SE population, which is in the relative NICT values (Figure 5.7.Biv).  

 

The SE NICT response shows a significant decline in value, indicative of an actual drug 

induced effect, both from the small standard error but also the tighter range and consistent 

decrease in NICT value across all respondents. As well as being a significant effect, it is also 

a surprising one, as it is suggestive of CBDV inducing less inhibition of pyramidal cells, which 

would subsequently indicate a higher excitation of the neurons. When paired with the LFP data 

previous, which suggests CBDV causes a flat decrease in gamma oscillation regardless of 

age/disease, plus other studies (Hill et al., 2013), it is puzzling as to how CBDV is able to 

possess an anti-convulsant effect.  

 

The PCA presented (Figure 5.8) for this dataset is slightly different to those produced for the 

addition of CBD, with alterations to amplitude and rise time appearing to have more of an effect 

on the differences between baseline and cannabinoid addition, highly suggestive of differing 

MOAs between CBD and CBDV.  

 

A considerably smaller n number is presented for each population here compared to the CBD 

data, mostly due to time constraints, as well as greater interest in the CBD portion of this 

project and, as such, this is the final experiment on the CBDV portion of the project. 
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5.3.3 Human sIPSC responses to CBD are similar to those of the rat  

The human tissue samples we receive provide some of the most interesting results of this 

chapter, and indeed this whole project, as it is difficult to obtain and study in the manner we 

have been fortunate to.  

 

The data obtained from, nominally, principal HT cells (determined by morphological 

observations and location within the slice, therefore not fool proof; Figure 5.10) are largely, 

and intriguingly, in agreement with the SE rat tissue data. That is, there are no significant 

differences after CBD application in the mean median amplitude nor in the mean median IEI 

in HT, though a significant decrease in IEI was observed in the rat data. There is however, a 

highly significant increase in the current decay times similar to the rat observation, though the 

change itself was relatively small, alongside a significant increase in the NICT value as well.  

 

The significance relationship is the reverse of that present in the rat data, with the decay 

showing a lesser significance while the NICT value showed higher. Nonetheless, both 

experimental samples display increased decay times and increased NICT values. This allows 

several observations to be made, one, that the RISE model is successfully mimicking the 

human epilepsy condition (as touched on in the AMC v SE section previously, Chapter 3), 

through the common responses to CBD, not observed in the rat AMC population. Secondly, 

that CBD is interacting, directly or indirectly, with GABAAR in some manner to produce 

increased decay times, reminiscent of a benzodiazepine effect. Thirdly, that either through 

increased decay times or via another mechanism, CBD is able to produce increased inhibition 

transfer into the neurons. Most likely this is due to the increased open time of the GABAAR, 

though that is not necessarily the only mechanism responsible, as suggested before, it could 

also be due to larger presynaptic GABA release.  

 

Due to human tissue being so infrequent and rare as a resource, more n numbers could not 

be achieved within the timeframe of this project. With a higher number it is possible that the 

IEI would see a similar significant decrease to that observed in the rat data. It would also be 

possible to run specific experiments to try and determine the cause of increased inhibition in 

HT neurons. Interestingly, significance in the HT cells has been achieved with a much lower n 

than that of the SE rat data, which may suggest CBD is more effective in raising inhibition in 

HT cells than in the rat. 

5.3.4 No effect of CBD on sEPSC responses  

Due to the success of the sIPSC experiments with regards to CBD effect, we explored its effect 

on excitatory mechanisms by recording spontaneous excitatory post-synaptic currents 

(sEPSCs). These were performed in both the AMC and SE populations (Figure 5.13). The 



 182 

same analysis parameters were utilised again, with NICT converted to normalised excitatory 

charge transfer (NECT), though the formula used was the same.  

 

Here no significant effects of CBD were observed in either population in any of the parameters 

observed, with no real trends observed either. These data are highly suggestive that CBD is 

not inducing its observed effect in SE afflicted tissue, noted in the LFP and sIPSC experiments 

so far, through excitatory mechanisms. Due to this, no further sEPSC data was collected.  

 

It is interesting to note, however, that the SE animals show higher amplitudes and lower IEI 

(higher frequency) than the AMC rats, even in the baseline (sEPSC) portion of the 

experiments, which again is another indication that this epilepsy model is a successful imitation 

of that observed in humans, where hyperexcitability is noted (Scharfman, 2007). This 

implication has been further discussed in Chapter 3.  

5.4 General discussion and future work 
Here we have demonstrated CBD as increasing SE mEC layer II single pyramidal cell inhibition 

through, most likely, increasing mean median decay time and as such greater Cl- entry. Further 

to this, we have shown that this response is successfully observed in epileptic HT cells in 

response to CBD addition. Moreover, we have demonstrated that CBD application has no 

effect on AMC mEC layer II pyramidal cell sIPSC recordings or, spontaneous excitatory 

currents (sEPSCs). All of which is highly suggestive of the reported anti-convulsant CBD effect 

occurring through inducing increased inhibition in pyramidal cells. These data also further 

support the disease specific effect postulated in Chapter 4, as SE responses at 24-hours post-

induction show significance while the AMC population does not. Interesting directions this data 

could be used in in future include: expanding the HT work to show CBD responses in specific 

epilepsy cases (FCD vs. TLE etc.), binding study assays to assess the binding site of CBD 

and, developmental studies to assess possible targets shown in the juvenile SE tissue that are 

not present in the comparable AMC population.   

 

CBDV responses here do not display any effects on the AMC sIPSC recordings. Indeed, CBDV 

only displayed a significant effect on the normalised inhibitory charge transfer parameter in the 

SE tissue. In contrast to the CBD data, a decrease in NICT value was observed suggestive 

that CBDV may produce its noted effect of Chapter 4 via excitatory mechanisms of some 

description. A somewhat interesting experiment for the CBDV data may be to perform CBDV 

responses in AMC and SE sEPSC recordings to note any differences between the two.    
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Chapter 6  
 
 
Pharmacological modulation of the 
CBD effect  
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6.1 Introduction 

6.1.1 CBD has a benzodiazepine-like effect on GABAAR 

The previous chapter implicates CBD as having a benzodiazepine-like effect on GABAAR, as 

noted through the increased decay time present in both the SE rat and HT neuronal responses. 

This effect has been noted in a recent study on CBD binding (Bakas et al., 2017), where CBD 

was found exert a benzodiazepine (BZ) effect on GABAAR, though it does not bind to the 

classical BZ binding site at the alpha/gamma subunit interface of GABAARs. This observation 

concurs with our own experiments, presented below (Section 5.2), raising the question of 

where and how is CBD able to bind to influence this response? 

 

The classical BZ binding site of the canonical GABAAR composition (α, β, γ in a 2:2:1 ratio), 

shown in Figure 1.14, is at the interface between the αγ2 subunits. 1,4-benzodiazepine 

agonists, such as diazepam, increase Cl- entry into the neuron, through increasing the receptor 

ion channel open time, resulting in augmented hyperpolarisation and a suppression of 

neuronal excitability (Otis and Mody, 1992). Subsequent addition of BZ antagonists/inverse 

agonists, such as flumazenil, work in reverse to this, decreasing the length of time GABAAR 

remain open and thereby decreasing Cl- entry and reducing hyperpolarisation. This effect was 

only noted as being observed in the presence of a BZ agonist, flumazenil having shown no 

effect when applied alone (Otis and Mody, 1992). More recent research, however, has shown 

flumazenil is capable of possessing augmentation effects in the absence of BZs most likely 

through competition with endozepines. Indeed, it appears as though flumazenil may act as an 

inverse agonist at the BZ site due to its inhibition of tonic GABA, instead of as a benzodiazepine 

antagonist, as it is commonly described (Cortelli et al., 2005; Prokic et al., 2015).  

  

Alongside BZ modulation of GABAAR open time, barbiturate agonists are also noted as 

capable of increasing receptor open time (Otis and Mody, 1992). It was a reasonable 

suggestion to surmise that CBD was binding to the BZ/barbiturate site to affect an increased 

opening time of the receptor, as observed in Chapter 4 upon CBD addition, explaining the BZ-

like effect CBD possesses. Due to recent binding studies we now know this is unlikely, as CBD 

has been demonstrated to not show affinity at the BZ site (Bakas et al., 2017; plus, recent 

unpublished GW pharma binding data), while our work here suggests no affinity at the 

barbiturate site either. An alternative theory may suggest CBD is binding to different allosteric 

site on GABAARs, of which there are many, as suggested in Bakas et al, (2017).  

6.1.2 Neurosteroids and the GABAAR  

Neurosteroids are a class of endogenous steroids synthesised in multiple areas of the body, 

including the brain, gonads and adrenal glands (Wang, 2011). There are a variety of different 

neurosteroids, with most acting as positive or negative allosteric modulators (PAM or NAM)l 
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either positively or negatively modulating receptor function in the presence of a classical 

agonist. Many neurosteroid allosteric modulators have potent effects on GABAARs, for 

example the PAM allopregnanolone (3α-OH-5α-pregnan-20-one), increases GABA-mediated 

Cl- entry. Neurosteroids are thought to bind at sites different to the GABA, BZ, picrotoxin or 

barbiturate sites (Mitchell et al., 2008; Wang, 2011).  

 

It has been proposed that every different subunit composition of GABAAR is able to bind some 

neurosteroid ligands. This has been demonstrated through neurosteroid modulation of GABA 

signalling across a variety of neuronal types many of which possess distinct compositions of 

GABAARs (Mitchell et al., 2008). Recombinant GABAAR binding studies previously performed 

also back this assessment, with neurosteroids displaying a plethora of effects on a variety of 

GABAAR compositions, all of which suggest that neurosteroid binding sites are conserved 

across GABAAR compositions (Puia et al., 1993; Lambert et al., 1996; Maitra and Reynolds, 

1999; Belelli et al., 2002). It has been demonstrated that the α subunit is critical for the binding 

of neurosteroid PAM, explaining the conservation of neurosteroid binding across GABAAR 

compositions (Hosie et al., 2006, 2009; Akk et al., 2008; Li et al., 2009). The binding of NAM 

is rather more disputed, with several mechanisms proposed, though current thinking highlights 

two amino acids (α1 V256S and β2 A252S) as critical in C. Elegans studies, though whether 

this translates to mammalian GABAAR is as of yet unknown (Akk et al., 2001; Wang et al., 

2006, 2007; Wardell et al., 2006). A definite neurosteroid binding site location, for either PAM 

or NAM is yet to be discovered.  

6.1.3 CBD directly or indirectly interacting with NMDARs to influence 

GABA signalling/release 

Published work by Xue et al, (2011), has raised the possibility of NMDARs being able to 

modulate GABA signalling and GABA release probabilities. This study showed that focal 

application of NMDA induced an enhancement of GABAAR mediated inhibitory transmission in 

CA1 neurons (between interneuron and pyramidal cells). Two mechanisms for NMDAR 

modulation of GABA neurotransmission were defined, one highlighted the activation of 

presynaptic NMDARs which contributed to NMDA-induced GABA release. The other was a 

postsynaptic mechanism, whereby activation of postsynaptic pyramidal cell NMDARs was 

linked to the synthesis/release of retrograde messengers, most likely nitric oxide (NO), which 

diffuses across the synaptic cleft to enhance presynaptic GABA release from interneurons 

(Xue et al., 2011).  

 

This work is pertinent to this project, as the results presented in Chapter 4 could be explained 

by CBD interacting with NMDAR receptors to produce an effect similar to the NMDA 

modulation of GABA response observed in this publication.   
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6.1.4 CBD has a lack of affinity for CBRs  

As mentioned in the introduction section of this project (Section 1.6.6), CBD lacks affinity for 

both CB1 and CB2 receptors (Showalter et al., 1996; Thomas et al., 1998; Pertwee, 

1999; Bisogno et al., 2001; Thomas et al., 2004), which would suggest that the CBD induced 

effect noted in the previous chapter as not arising via either CB receptors. This suggestion is 

further enhanced by recent published work, which states that the action of both CBD and 

CBDV are independent of CB1Rs (Wallace et al., 2008; Hill et al., 2013), while CBD has also 

previously been shown to compete weakly with the synthetic cannabinoid 3[H] CP55940 at 

CB1R and CB2R (Griffin et al., 1998; Thomas et al., 1998). CBD, however, has recently been 

demonstrated to possess high affinity for the allosteric site of CB1R and, is purported to be a 

negative allosteric modulator at this site (Laprairie et al., 2015). Furthermore, CBD has also 

been shown to be a high affinity antagonist for the agonists at the orthosteric CB1R binding 

site (Thomas et al., 2007). Either of these findings may have implications in the anti-convulsant 

effect of CBD. Though CB2Rs have been documented to be located in the mEC (Morgan et 

al., 2009), the lack of affinity CBD displays for these receptors would suggest they are not 

involved in the CBD effect observed. Both CBR1 and CB2R are, however, able to modulate 

GABA signalling and therefore we probed for potential indirect roles at these receptors in the 

observed CBD effect.  

6.1.5 FAAH as an intracellular target of CBD and modulator of GABA 

signalling 

As CBD is a highly lipophilic molecule, it is able to diffuse across the cell membrane. This fact 

may mean that CBD is able to interact with a multitude of intracellular targets, any number of 

which may be able to alter GABA signalling via second messenger systems or signalling 

cascades. 

 

One intracellular interaction partner of CBD is thought to be the enzyme, fatty acid amine 

hydrolyse (FAAH) (Bisogno et al., 2001; Massi et al., 2008; De Petrocellis et al., 2011; Ibeas 

Bih et al., 2015). FAAH is involved in catabolism of fatty acid amides, such as anandamide. 

CBD interaction with FAAH is somewhat disputed across literature, with only limited studies 

on the interaction. Some of these studies report an inhibitory effect at higher doses, with 

excitatory or stimulatory effects upon lower dosages (Bisogno et al., 2001; De Petrocellis et 

al., 2011). Cell culture systems suggest a CBD induced FAAH activation, whereas membrane 

extract assays depict CBD induced inhibition, which suggest that CBD induced effects are 

reliant on the physiological environment. These data imply that more than one mechanism is 

involved, one producing fast-acting effects, and the other longer-term effects (Massi et al., 

2008). 

 



 187 

Due to the relatively high concentration of CBD required to produce a result in our in vitro 

experiments and in the previous studies, we were interested in whether CBD interaction with 

FAAH may be responsible for the induced effects we have observed. A possible mechanism 

for these effects through FAAH inhibition could be a rise in anandamide, due to decreased 

catabolism, with anandamide acting to increase GABA release and uptake, resulting in a 

higher amount of inhibition and a subsequent decrease in neuronal excitability.  

 

Here we have performed preliminary experiments to look at whether interaction between FAAH 

and CBD could be responsible for the effects of CBD on IEI, decay time and NICT values noted 

in the SE animals. As such, we have used the FAAH inhibitor URB597 to inhibit FAAH and 

then subsequently added CBD afterward. The data presented once more has a small n number 

(animal n = 3; n = 4). 

 

All of the experiments performed in this chapter have only been done so on SE animals of the 

same age as the previous chapter (p19-26) due to the observed lack of effect of CBD on the 

AMC animals.  
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6.2 Results  

6.2.1 Modulation of the GABAAR  

6.2.1.1 Benzodiazepine site modulation 

Figure 6.1 Raw sIPSC traces from SE rat tissue with BZ-site blockers.  
Left 500nM flumazenil, right 1µM β-carboline.  

 

Here we have applied BZ inverse agonists, in the form of flumazenil and b-carboline, and 

agonists at the BZ site, clobazam and the non-BZ BZ-site agonist zolpidem, to observe their 

effects on sIPSC in the presence and absence of CBD. Alongside BZs, we also investigated 

whether CBD was binding to the barbiturate binding site by the addition of the barbiturate site 

potentiator pentobarbital. 

 

As stated, we probed the possible CBD interaction with GABAAR at the benzodiazepine (BZ) 

binding site, due to the increased decay times observed upon its addition in SE rats and HT 

samples. We therefore blocked the BZ site using 500nM flumazenil (n = 7, animal n = 5), and 

separately, 5µM β-carboline (n = 5, animal n = 3), both benzodiazepine site inverse agonists. 

Each was bath applied and left for at least 15 minutes before 30µM CBD addition. The results 

of each are presented in Figure 6.2.Ai-Biv.  
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Figure 6.2 Histogram showing the responses of sIPSCs to BZ site blockers previous to CBD. 
The BZ site inverse agonists flumazenil (Ai-iv) and β-carboline (Bi- iv) were applied.  
Parameters analysed include mean median amplitude (Ai/Bi), IEI (Aii/Bii) and decay time 
(Aiii/Bii i) as well as NICT values (Aiv/Biv).  
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Figure 6.2.Ai highlights the mean median amplitude response of the sIPSCs upon flumazenil 

addition, and subsequently CBD application. The mean median values showed no significant 

decreased upon 500nM flumazenil addition and no significant change after CBD application 

either (29.2 ± 10.5 – 21.9 ± 6.63 – 20.6 ± 4.79; ranges: 13.0-82.0; 11.8-53.1; 11.1-42.7 

respectively). The overall p value returned was 0.052, while the post-hoc test reveals a p value 

of 0.063 when comparing the baseline to 500nM flumazenil, with the same p value shown for 

the comparison between baseline and 500nM flumazenil + 30μM CBD. Aii shows the mean 

median IEI responses, where no change was observed between the flumazenil or CBD 

additions and baseline (86.0 ± 15.3 – 115 ± 39.0 – 110 ± 31.1; range: 54.6-172; 44.8-344; 

58.1-292). An overall p value of 0.49 was returned for this dataset, with the multiple comparison 

post-hoc also producing no significance.  

 

The mean median decay times are presented in Aiii and, though a trending increase upon the 

addition of flumazenil was shown, no significance was noted in either flumazenil or once CBD 

was applied (8.54 ± 1.06 – 9.15 ± 0.85 – 8.59 ± 0.85; range: 3.8-12.7; 4.2-13.7; 4.15-10.5). 

This dataset produced an overall p value of p = 0.051, with the post-hoc analysis highlighting 

the comparison between baseline and 500nM flumazenil as having a p value of 0.069, 

suggestive of a trending increase. Aiv presents the mean NICT values for each drug condition. 

No change in value was shown in 500nM flumazenil (80.9 ± 10.2; range: 53.8-124), which 

continued when CBD was applied (72.6 ± 8.60; range: 48.6-114). An overall p value of 0.19 

was produced from this dataset, while the post-hoc analysis shows no significance either. 

 

Bi-iv represents sIPSC responses to the addition of 5μM β-carboline-3-carboxylic acid N-

methylamide (β-carboline) previous to the addition of CBD. Bi shows the mean median 

amplitude response, where no change upon the addition of β-carboline was observed (37.0 ± 

5.84 – 29.8 ± 2.09 – 34.1 ± 2.23; range: 21.2-53.3; 24.7-36.0; 27.6-38.9). The overall p value 

for this data was 0.69, with the post-hoc analysis showing no significance here either. Bii 

highlights the mean median IEI response, where no change was noted in either β-carboline or 

CBD (72.9 ± 16.5 – 77.9 ± 23.6 – 63.1 ± 13.5 - 42.8-116; range: 33.4-124; 36.6-169. The 

overall p value here was 0.37, with no post-hoc comparisons approaching significance.  

 

Biii represents the mean median decay time responses, where the addition of β-carboline had 

no effect (6.74 ± 0.41 – 7.12 ± 0.50; range: 5.40-7.85; 5.60-8.15). The addition of CBD also 

provided no change (7.43 ± 0.38; range: 6.55-8.40). A p value of 0.69 was returned, with the 

post-hoc analysis showing no significance. Biv shows the relative NICT values for each drug 

condition, where the addition of β-carboline caused no change (87.9 ± 17.4; range: 39.9-133), 

while the application of CBD caused a visually large increase, however this was not reflected 

in the statistical analysis, most likely due to the large variance among the responses (154 ± 
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39.4; range: 56.9-273). The overall p value was 0.52, with no significance shown in the post-

hoc analysis either.      

Figure 6.3 PCA of flumazenil data.  
Green circle is the baseline, blue is flumazenil and, red CBD.    

 

PCA computations were also performed for the flumazenil experimental data, to observe the 

components responsible for the largest variation (Figure 6.3). As with the CBD only addition 

(Chapter 5), the area component was the first principal component, as evidenced by the 

shifting of the circle and size of arrow (red circle against blue circle). Amplitude and decay time 

are the second and third principal components, which are the two parameters used to find the 

area. This again, therefore, highly suggests that increases in event area, through alterations 

to decay time and amplitude, are occurring in the presence of CBD. The addition of flumazenil 

does not seem affect variation here too much, though the circle has shifted downward 

somewhat, suggesting that amplitude many be the component causing the most variance here. 
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A ‘positive control’ experiment was then performed, applying CBD before flumazenil to see if 

it is able to inhibit CBD induced effects on sIPSC responses (n = 8, animal n = 8), the results 

of which are presented in Figure 6.5.Ai-iv. 

 
 

Figure 6.4 Raw trace of sIPSCs from a flumazenil positive control experiment 
Here 30µM CBD has been added before 500nM flumazenil 

 

As can be observed in Ai, there was no change to the mean median amplitude when CBD or 

flumazenil was applied (27.9 ± 4.06 – 28.4 ± 4.07 – 29.6 ± 4.46; range: 14.2-46.6; 15.4-48.8; 

16.2-49.8). The overall p value returned was 0.53, with no significance in the post-hoc analysis. 

Aii highlights the mean median IEI, where a significant decrease is noted upon CBD addition 

(59.7 ± 5.80 – 51.7 ± 4.83; range: 33.5-84.5; 29.5-65.8). This significance was lost once 

flumazenil was added, with a recovery back toward the baseline value (58.0 ± 5.26; range: 

32.8-71.8). The overall p value for this dataset was 0.001, with the post-hoc Dunn’s multiple 

comparison showing significance between baseline and 30μM CBD (p = 0.0035). When 30μM 

CBD was compared to 30μM CBD + 500nM flumazenil condition the p value was 0.053, 

suggesting a trending increase.  
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Figure 6.5 Histogram of flumazenil positive control experiments  
Parameters analysed include Ai - mean median amplitude; Aii - mean median IEI; Aii - 
mean median decay time; Aiv - NICT values. ** p < 0.01. 

 

Aiii shows the mean median decay time responses, where surprisingly there was no change 

when CBD was added (8.62 ± 0.53 – 8.61 ± 0.48; range: 6.1-10.8; 6.3-10.3). Similarly, the 

addition of 500nM flumazenil also caused no alteration to the mean median value (8.50 ± 0.40; 

range: 6.70-9.65). The p value returned here equalled 0.76, with the post-hoc showing no 

significance. Aiv presents the relative NICT values, with again no change upon CBD (118 ± 

9.56; range: 85.3-174), or flumazenil addition (117 ± 13.9; range: 83.8-206) noted. The overall 

p value was 0.36, with the post-hoc analysis shows no significance between any of the 

comparisons.   
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6.2.1.2 Additive effects of CBD at GABAAR  

Figure 6.6 Raw traces of sIPSC from 100nM, 1µM zolpidem and 40µM pentobarbital treatments.   
 

To test whether the effect of CBD observed was acting at the BZ site or at another allosteric 

site varying zolpidem doses were applied (a well-known BZ site agonist). Two doses of 

zolpidem were employed for this, a minimal 100nM dose (n = 6, animal n = 5) and a maximal 

1µM dose (n = 6, animal n = 5), as this would allow us to observe whether the effect of CBD 

would be additive with the zolpidem effect, suggesting a differential binding location, or 

competitive (Figure 6.7.Ai-Biv). An additive effect would be observed by CBD increasing the 

decay time and NICT values when added after the 100nM zolpidem dose, a competitive effect 

would most likely show no change. A third drug treatment was also employed, 40µM 

pentobarbital (n = 4, animal n = 3), a potentiator at GABAAR receptors, specifically binding to 

the α1 subunit barbiturate site. Pentobarbital was selected to investigate whether CBD was 

interacting at the barbiturate binding site present on many GABAAR conformations to exert its 

effect (Ci-iv).   

 

The first histograms presented are the 100nM zolpidem addition (Ai-iv), where no significant 

effect was observed in relation to the mean median amplitude responses (Ai) (29.8 ± 3.79 – 

35.0 ± 5.34 – 36.0 ± 5.17; range: 20.0-41.6; 23.7-59.3; 25.3-59.9). An overall p value of 0.14 

was returned from this dataset, with the lowest p value observed in the post-hoc comparison 

between the baseline and 100nM zolpidem + 30μM CBD (p = 0.13). Aii shows the mean 

median IEI responses, with little differences observed across either zolpidem or CBD 

treatments (57.0 ± 9.60 – 54.1 ± 10.8 – 53.2 ± 10.1; range: 33.1-100; 29.9-104; 33.0-103). A 

p value of 0.43 overall was returned, with no significance shown in the post-hoc comparison.  
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Figure 6.7 Histograms for BZ/barbiturate site agonists effect on SE tissue.  
Parameters analysed for the addition of BZ and barbiturate agonists, being 100nM 
zolpidem (A), 1μM zolpidem (B) and, 40μM pentobarbital (C) including Ai-Ci: mean 
median amplitude; Aii-Cii: mean median IEI; Aii i-Cii i: mean median decay time; Aiv-Civ: 
NICT values. * p < 0.05, ** p < 0.01. 

 

Aiii highlights the mean median decay time responses, where an increase was observed upon 

100nM zolpidem addition (9.58 ± 1.10 – 10.8 ± 1.06; range: 6.8-14.5; 7.5-15.4). A slight 

decrease to lose significance was then noted upon CBD application (10.4 ± 0.99; range: 7.65-

14.9). A p value of 0.006 overall is returned, with Dunn’s multiple comparison post-hoc analysis 

showing significance between the baseline and 100nM zolpidem (p = 0.012). A p value of 
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0.0628 was shown for the comparison of baseline to 100nM zolpidem + 30μM CBD suggesting 

a trending increase from baseline. Relative NICT values are presented in Aiv, with a significant 

increase observed in only the CBD condition (100nM zolpidem: 154 ± 19.1; range: 82.8-218; 

CBD: 197 ± 11.5; range: 146-219). A p value of 0.012 was returned overall, with significance 

observed only in baseline vs. 100nM zolpidem + 30μM CBD (p = 0.012).   

 

Bi-iv presents the 1µM zolpidem sIPSC responses. Bi highlights the mean median amplitude 

responses, where no changes were noted upon the addition of zolpidem (31.2 ± 5.56 – 34.8 ± 

6.18; range: 12.6-51.2; 12.6-54.8), or CBD (32.7 ± 6.18; range: 13.7-57.6). No significance 

was noted for this dataset, either overall (p = 0.43), or through post-hoc analysis. Bii shows 

the mean median IEI responses, with again no alterations noted upon zolpidem addition (52.0 

± 3.95 – 45.9 ± 3.34; range: 41.6-65.2; 39.1-56.8), or CBD addition (52.3 ± 5.03; range: 39.5-

73.5). A p value of 0.14 overall was returned, with the post-hoc comparison showing a p value 

of 0.13 between baseline and 1μM zolpidem. 

 

In Biii the mean median decay times are represented, where a visually large, trending increase 

was observed upon the addition of 1µM zolpidem and, remained high after the addition of CBD 

(8.93 ± 0.54 – 11.0 ± 0.19 – 11.0 ± 0.40; range: 7.00-11.0; 10.6-11.9; 9.80-12.2). A p value of 

0.052 overall was returned suggesting a trending increase, with the multiple comparison post-

hoc also producing a trending p value of 0.063 between the baseline and zolpidem + 30μM 

CBD. The final histogram (Biv) shows the mean NICT value for each drug treatment, with a 

large, highly significant increase observed upon zolpidem addition (187 ± 24.1; range: 128-

274), which subsequently decreased once CBD was applied to lose significance (152 ± 20.3; 

range: 87.6-214). The overall p value was 0.0017, with the post-hoc returning a value of 0.0045 

for the comparison of baseline and 1μM zolpidem. There was no significance observed 

between the baseline and 1μM zolpidem + 30μM CBD condition. 

 

Figure 6.7.Ci-iv highlights the effect of 40μM pentobarbital on the various kinetic parameters. 

Ci shows the mean median amplitude response, which showed a relatively large visual 

increase upon the addition of pentobarbital (33.5 ± 2.62 – 42.9 ± 2.82; range: 29.1-40.9; 36.6-

48.9). A subsequent significant increase was observed upon the application of CBD 

(45.3±3.37; range: 38.1-51.9). An overall p value of 0.0046 was produced by this dataset, with 

the post-hoc analysis highlighting significance arose only between the baseline and 40μM 

pentobarbital + 30μM CBD condition. The mean median IEI responses are shown in Cii, where 

little alterations were noted in either the pentobarbital or CBD treatments (66.1 ± 15.1 – 69.2 

± 13.0 – 65.8 ± 17.1; range: 36.0-93.4; 39.7-101; 36.9-116). The p value for this dataset was 

0.43 overall, while the post-hoc analysis displayed no significance.  
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Mean median decay time responses are presented in Ciii, where no changes were present 

upon the addition of pentobarbital (8.75 ± 0.84 – 12.1 ± 0.66; range: 7.25-11.0; 10.9-13.2 

respectively) or following CBD addition (12.1 ± 1.06; range: 10.0-14.9). Despite the seemingly 

large increase between baseline and 40μM pentobarbital, the returned p value was 0.27, with 

no significance observed in the post-hoc analysis. The final histogram of this set displays the 

mean NICT values (Civ), where surprisingly no change was noted upon pentobarbital addition 

(377 ± 14.8; range: 344-413), though a significant increase was noted once CBD was applied 

(468 ± 54.4; range: 361-617). The overall p value produced was 0.0046, though in spite of the 

large increase noted upon pentobarbital addition, no significance was noted (p = 0.47). 

Significance was, however, presented between baseline and 40μM pentobarbital + 30μM CBD 

(p = 0.014). The reason for the lack of significance when pentobarbital is added is due to the 

statistical test used, non-parametric, chosen as NICT values are composed of not normally 

distributed data (amplitude (pA) * decay time (ms)).  

Figure 6.8 Raw traces showing the addition of clobazam before CBD.  
 

Clobazam is a member of the 1,5-beznodiazepine class and, binds to an allosteric interface 

(the BZ site) between the α- and γ2- subunits of GABAARs, as a partial agonist. As an agonist 

of the GABAAR, clobazam binding causes an increase in ionic channel opening, resulting in 

hyperpolarisation and enhancement of the postsynaptic GABA effect.  

 

The effect of CBD in collaboration with clobazam has been investigated here as clobazam is 

currently used as an anti-epileptic drug. Clobazam is specifically used in the treatment of 

Lennox-Gastaut syndrome, a syndrome CBD purportedly has beneficial effects in as well, 

therefore opening the possibility of co-application of these two drugs if applicable. Alongside 

this, collaborators investigating CBD in vitro in cell culture using recombinant human GABAAR 

in HEC cells, have noted clobazam is able to potentiate the CBD effect (R Harvey, personal 

communication). 
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Figure 6.9 highlights the results found from the application of 1μM clobazam previous to the 

addition of CBD to the sIPSC parameters. An n of 10, animal n = 6 has been used in these 

results. 

 

 
Figure 6.9 Histograms showing the effect of 1μM clobazam on sIPSCs 
Parameters analysed include, Ai: mean median amplitude; Aii: mean median IEI; Aiii: 
mean median decay time; Aiv: NICT values. * p < 0.05. 

 

Ai shows the mean median amplitude responses, where the addition of clobazam and CBD 

had no effect (25.0 ± 2.80 – 29.8 ± 3.68 – 28.6 ± 4.04; range: 15.1-38.8; 14.6-56.4; 14.3-59.6). 

A p value of 0.19 was presented overall, with the lowest p value returned in multiple 

comparison post-hoc shown when clobazam was added (p = 0.22). Aii highlights the mean 

median IEI responses, where little alterations were noted upon the application of clobazam or 

CBD (94.5 ± 17.0 – 92.4 ± 14.8 – 114 ± 21.5; range: 38.4-199; 38.8-184; 33.8-229). An identical 

p value to that of the mean median amplitude was noted here (p = 0.19), both overall and from 

the post-hoc analysis.  
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Aiii presents the mean median decay time, where no differences were noted with clobazam 

addition, though a significant increase was shown when CBD was applied (9.54 ± 1.25 – 11.7 

± 1.21 – 12.5 ± 1.34; range: 4.90-19.5; 6.30-17.3; 7.05-18.3). A p value of 0.012 was returned 

overall, with baseline vs. 1μM clobazam + 30μM CBD showing significance (p = 0.011). The 

final histogram presented shows the NICT values (Aiv), where no effect of the addition of 

clobazam was observed (196 ± 53.6; range: 46.9-647), nor when CBD was applied (177 ± 

32.9; range: 54.9-334). The overall p value was 0.19, with a low occurring between baseline 

vs. 1μM clobazam + 30μM CBD in the post-hoc (p = 0.22).  
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6.2.1.3 Modulation of the neurosteroid site 

 
Figure 6.10 Raw traces of 17PA addition before (left) and after (right) CBD addition.  
 

As our data suggest a GABAAR binding site for CBD that is not one of the well-known sites, 

we investigated whether CBD was binding at a neurosteroid site. To investigate this, we 

applied the known neurosteroid NAM, 17-Phenylandrostenol (17PA) to observe its effects on 

CBD action. 17PA was applied at a dose of 10μM, bath applied, either before (n = 3, animal n 

= 2) or after (n = 4, animal n = 3) the 30μM CBD application. The n numbers for this 

experimental dataset are low due to time constraints of the project, though some useful 

information can be interpreted despite this, though they are limited in nature.   

 

Figure 6.11 presents the results for this dataset, with Ai-iv showing the 17PA application 

before CBD and Bi-iv the reverse.  

 

Ai shows the effect on mean median amplitude, where little change was shown (33.9 ± 3.86 – 

36.3 ± 4.12 – 35.0 ± 2.71; range: 28.1-41.2; 31.4-44.5; 30.0-39.3). An overall p value of 0.36 

was produced, with the post-hoc analysis showing this was derived mainly from the initial 17PA 

addition (p = 0.31).  Once more, no alterations were noted in the mean median IEI response 

(Aii) by either 17PA or CBD addition (37.9 ± 3.98 – 40.0 ± 5.47 – 37.5 ± 5.45; range: 30.6-

44.3; 30.6-49.6; 28.8-47.5 respectively). The overall p value was 0.19, with the multiple 

comparison post-hoc showing a p value of 0.31 between the baseline and 17PA condition. 
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Figure 6.11 Histograms showing the effect of the neurosteroid 17PA on sIPSCs. 
Parameters analysed with 17PA addition before (left) and after (right) CBD addition,  
include, Ai-Bi: mean median amplitude; Aii-Bi i: mean median IEI; Aiii-Bi ii: mean median 
decay time; Aiv-Biv: NICT values.  
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No effect on mean median decay was observed upon 17PA or CBD addition (Aiii; 8.38 ± 0.66 

– 7.57 ± 0.59 – 7.88 ± 1.01). Observing the distribution of population responses, CBD 

application caused a wider spreading of responses post 17PA addition, with one increasing, 

one remaining constant and one decreasing (range: 7.65-9.70; 6.40-8.35; 6.00-9.45 

respectively across the conditions). The NICT (Aiv) parameter showed no change upon either 

17PA or CBD addition (110 ± 29.0 – 117 ± 15.4; range: 78.6-168; 99.5-148). The overall p 

value returned p = 0.94, with no significance among the post-hoc comparisons.  

 

Bi displays the mean median amplitude, where little differences were noted upon CBD addition 

(30.5 ± 2.63 – 30.0 ± 3.88; range: 22.8-34.3; 19.3-37.9). The subsequent addition of 17PA also 

displayed no effect on the value (27.9 ± 3.32; range: 18.4-32.7). A p value of 0.13 overall was 

returned, with the post-hoc analysis showing a p value of 0.10 between the baseline and 30μM 

CBD + 10μM 17PA condition. Bii highlights the mean median IEI responses, where no 

alterations were noted upon CBD addition (63.9 ± 11.3 – 63.8 ± 14.1; range: 37.3-92.3; 39.3-

101). The 17PA addition caused no change to the response either (69.3 ± 17.8; range: 40.3-

121). There was no hint of significance here, with an overall p value of 0.93 and no trends 

observed in the post-hoc calculations. 

 

This pattern is repeated in the mean median decay time (Biii), with no changes upon CBD or 

17PA addition (7.70 ± 0.52 – 8.04 ± 0.63 – 8.80 ± 0.54; range: 6.40-8.60; 6.80-9.70; 8.00-10.4. 

Biv highlights the NICT responses, where no change was noted upon CBD addition (121 ± 

15.8), with the range showing 2 of the 4 responses increased relatively substantially, while 

another rose slightly, and the final response remained unchanged (range: 95.3-166). This lack 

of effect endured upon 17PA application (123 ± 44.6), though closer examination showed a 

large increase of one response while the other three all decreased from their CBD values 

(68.0-255). With an increased n number it would be interesting to observe what the results of 

this experiment may be.  

6.2.1.4 Summary of GABAAR modulation on CBD effects 

Table 6.1 below shows a summary of the effects noted by CBD with (and without) GABAAR 

modulation. In brief, there was a lack of effect on the AMC animals by CBD, while the SE 

animals showed a significant decrease in IEI and, significant increases to both decay time and 

NICT values. All experiments after were only performed in SE animals.  

 

The use of GABAAR inverse agonists in SE animals inhibit the effects of CBD (Flumazenil and 

b-carboline rows). A low dose of zolpidem (100nM) alone increases the decay time, while the 

subsequent addition of CBD increases the NICT value significantly, while the decay time 

alteration is lost. The larger zolpidem dose (1µM) showed a large increase in NICT value, 

which was subsequently lost after CBD addition. Pentobarbital addition showed no significant 
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changes to any parameter alone, while the subsequent addition of CBD showed significant 

increase in both amplitude and NICT values. Finally, the addition of clobazam showed no effect 

alone, while the addition of CBD afterward showed an increase to decay time.  Modulation of 

the neurosteriod site using 17-PA showed no effect at all when added previous to CBD.  

 

Two positive controls were also performed (where the drug was added after CBD). The 

flumazenil control showed a significant decrease in the IEI when CBD was applied (+ 

Flumazenil row), but otherwise no other effects in either CBD or + flumazenil conditions. The 

17-PA control showed no effect on kinetics in either drug.  

 

Table 6.1 Summary of GABAAR modulation effects on CBD influence on sIPSC kinetics 
Ages, condition of animals and, drugs used are noted on the left, with the sIPSC kinetic 
parameters noted horizontally across the top. The arrows have been used to show the 
level of significance achieved at that dose (1 arrow = 0.05, 2 = 0.01), with the direction 
of the arrow also representing the direction of change in value. 
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6.2.2 Modulation of the NMDAR  

Figure 6.12 Raw traces of sIPSC responses when two separate NMDAR antagonists are added.  
One non-competit ive (MK801; left) and one competit ive (D-AP5; right).  

 

Concurrently with the GABAAR investigations, we also examined the possible role of NMDAR-

CBD interactions, due to the possible links between NMDARs and their possible modulation 

of GABAAR function detailed in the previous section (Section 6.1). With regards to this possible 

NMDAR interaction, we were interested in the effect antagonistic inhibition of NMDARs had on 

the CBD response. As such we added a variety of NMDAR antagonists, both competitive and 

non-competitive, as well as subunit specific antagonists to observe their effect on the induced 

CBD effect. To do so, we used two NMDAR antagonists initially, one non-competitive 

antagonist (100nM MK801; n = 8; animal n = 6), the other a competitive antagonist (50μM D-

AP5; n = 6; animal n = 3), the results of which are displayed in Figure 6.13. 

 

Exploring first the effects of 100nM MK801 on CBD response (Ai-Aiv), it is obvious that its 

application is sufficient to block the CBD responses observed in Figure 5.2.Ai displays the 

mean median amplitude responses, where no effect of either MK801 or CBD was observed 

(26.1 ± 3.60 – 26.7 ± 4.56 – 28.2 ± 5.50). The ranges of response did increase slightly upon 

application of both MK801 and CBD however (15.2-46.7; 11.3-54.3; 12.2-63.4). The overall p 

value returned here was 0.97, with no effects observed in the post-hoc analysis. Examining 

next Aii, no change in mean median IEI was observed upon the addition of MK801, with CBD 

unable to exert an effect either (75.5 ± 18.9 – 88.4 ± 21.7 – 90.5 ± 24.8), the ranges of the 

responses remained relatively stable (32.4-180; 34.1-198; 30.5-207). A p value of p > 0.99 

was returned with no trends noted in the post-hoc.  

 



 205 

Figure 6.13 Histograms showing MK801 and D-AP5 experiment responses.  
Mean median amplitude (Ai-Bi), IEI (Aii-Bii), decay time (Aiii-Bi ii) as well as NICT values 
(Aiv-Biv) have been analysed. MK801 (left), AP-5 (right).  
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The mean median decay time responses are highlighted in Aiii, where again, no changes were 

noted in either of the drug conditions (7.99 ± 0.62 – 8.11 ± 0.51 – 8.08 ± 0.42; range: 6.10-

11.8; 5.30-9.75; 6.00-9.60). The p value for this dataset was 0.97, with no significance 

observed in the post-hoc analysis. Aiv notes the NICT values, where neither the MK801 or 

CBD treatments showed any effect (91.3 ± 18.3 – 116 ± 36.5; range: 18.2-169; 20.7-356). A p 

value of 0.79 was returned, with no trends noted in the post-hoc. If the possible anomalous 

data from the CBD treatment is removed (356) along with its paired data points the mean NICT 

values fall to 87.1 ± 20.5 in MK801 and 82.2 ± 14.9 in CBD, while the overall p value becomes 

0.62 with no trends of note in the post-hoc analysis. Due to the lack of change from its removal 

and consistent values displayed from this respondent in the other parameters analysed, this 

dataset has been kept in the analysis pool.  

 

Bi displays the mean median amplitude response upon addition of D-AP5 prior to CBD. Little 

change was noted when D-AP5 was added, or upon the application of CBD (33.2 ± 5.72 – 32.6 

± 6.63 – 26.6 ± 5.37 respectively), the ranges also remained relatively constant (20.6-55.5; 

19.3-53.6; 18.4-53.0). The overall p value was 0.14, with the lowest p value in the post-hoc 

observed between baseline and 50μM D-AP5 + 30μM CBD at p = 0.13. Bii highlights the mean 

median IEI responses, with no change observed in either the D-AP5 or CBD applications (113 

± 33.18 – 126 ± 37.7 – 146 ± 40.6; range: 48.8-248; 48.6-278; 44.8-314). The overall p value 

returned for this dataset was 0.43, with the lowest p value in the post-hoc observed between 

baseline and 50μM D-AP5 + 30μM CBD at p = 0.45. 

 

Examining next the mean median decay times (Biii), no changes were noted in either drug 

application (7.68 ± 1.21 – 8.16 ± 1.35 – 8.08 ± 1.47; range: 3.20-11.9; 3.20-12.9; 3.30-12.4). 

An overall p value of 0.52 was found for this dataset, with no change in the post-hoc. The final 

histogram presented here represents the NICT values (Biv), with no change in either D-AP5 

(83.8 ± 8.66; range: 55.9-105) or CBD (81.9 ± 14.0; range: 24.8-114.1) shown. A p value of 

0.96 was found here, with no trends observed in the post-hoc analysis.   
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Figure 6.14 PCA of MK801 application effect on CBD response.  
The green circle is the baseline, blue MK801 and red CBD.  

 

PCA was performed on the MK801 dataset to observe whether the inhibition of the CBD effect 

was due to a restriction in area, amplitude and decay time by MK801. Figure 6.14 represents 

this, and as can be observed, the amount of variation between the concentric rings is lower 

than that of the PCA of CBD alone (Figure 5.5), highly suggestive of MK801 successfully 

blocking CBDs ability to increase decay time, amplitude and, therefore, area values.   
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Figure 6.15 Raw traces of both NMDAR antagonists being added after CBD.  
MK801 on the right, D-AP5 on the left.  

 

As with the GABAAR dataset, positive controls were also performed on the NMDAR 

antagonists at the same concentrations used previously (Figure 6.16), with CBD being applied 

before the antagonist (MK801: n = 7; animal n = 5; D-AP5: n = 5, animal n = 4).  

 

As presented, there was no change in the mean median amplitude (Ai) upon CBD addition 

(22.7 ± 5.07 – 19.7 ± 3.41 – 21.3 ± 4.81; range: 9.74-45.9; 11.2-37.5; 11.0-47.9). A p value of 

0.49 was shown, with a lowest p value of 0.54 observed post-hoc between the baseline and 

30μM CBD + 100nM MK801. Examining the mean median IEI responses (Aii), no effect was 

observed in the presence of CBD (94.7 ± 13.3 – 84.2 ± 10.9; range: 35.5-126; 44.8-116), or in 

the presence of MK801 (104 ± 17.6; range: 42.5-183). No significance was found, with an 

overall p value of 0.19 returned and a low of p = 0.18 produced by the post-hoc test comparison 

between CBD alone and CBD + MK801 treatments. Aiii displays the mean median decay time 

responses, where little change was present across the drug treatments (7.97 ± 1.03 – 7.96 ± 

0.78 – 7.77 ± 0.88; range: 4.00-11.3; 4.30-10.6; 4.45-10.9 respectively). Here, a p value of 

0.96 was shown, with no trends observed in the post-hoc test. The final histogram of the 

MK801 positive control dataset highlights the comparative NICT values (Aiv), where once 

more no effect by CBD (125 ± 25.7; range: 34.3-250), or MK801 was present (107 ± 27.1; 

range: 27.0-249). The returned p value here was 0.19, with the comparison between the two 

drug treatments producing the lowest p value (p = 0.18).  

 

The mean median amplitude for the D-AP5 positive control responses are shown in Bi, where 

no effects of CBD or the subsequent addition of D-AP5 were noted (25.3 ± 3.50 – 20.5 ± 1.68 

– 19.7 ± 1.76; range: 16.9-34.2; 17.8-27.0; 16.6-26.6). A p value of 0.37 was shown, with a 

lowest p value of 0.34 observed post-hoc between the baseline and 30μM CBD + 50μM D-
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AP5 condition. Bii shows the mean median IEI responses, where little change was observed 

upon CBD or D-AP5 addition (80.1 ± 22.6 – 81.2 ± 17.6 – 87.8 ± 12.0; range: 37.7-166; 42.9-

146; 50.5-119 respectively). Here a p value of 0.99 was shown with, unsurprisingly, no trends 

in the post-hoc analysis.  

 

Biii presents the mean median decay times for this dataset, with no changes again presented 

for either the addition of CBD or D-AP5 (8.47 ± 1.19 – 8.97 ± 1.06 – 8.98 ± 0.95; ranges: 5.25-

12.4; 5.75-12.0; 6.45-11.7 respectively). The p value produced overall was 0.37, with the 

lowest p value in the multiple comparisons being 0.34 observed between baseline and the 

30μM CBD + 50μM D-AP5 condition. The final histogram of this figure (Biv), once more shows 

the NICT values, where no change was produced by CBD (105 ± 15.4; range: 73.2-148) or 

observed in AP-5 (86.7 ± 19.3; range: 26.7-139). This returned an overall p value of 0.69, no 

trends were noted in the post-hoc analysis. 
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Figure 6.16 Histogram showing MK801 and D-AP5 positive control experiment responses  
Mean median amplitude (Ai-Bi), IEI (Aii-Bii), decay time (Aiii-Bi ii) as well as NICT values 
(Aiv-Biv) presented. Ai-iv shows MK801 addition, while Bi- iv shows D-AP5. 
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6.2.2.1 Subunit specific modulation of the NMDAR  

Figure 6.17 Raw traces from sIPSC with NMDAR subunit specific antagonists and CBD.  
 

Due to this possible inhibition of the induced CBD effect by NMDAR antagonists, we were 

interested to uncover whether a specific NMDAR subunit was responsible. NMDARs are 

composed of two GluN1 subunits plus two NR2 subunits, most commonly in mature CNS one 

each of GluN2A and N2B (Chapter 1, section 1.3.1.2); therefore, we utilised subunit specific 

antagonists for this purpose (10µM ifenprodil targeting NR2B, Ai-iv; and 1µM PEA-QX for 

NR2A, Bi-iv). The outcomes of these experiments are displayed in Figure 6.18.  

 

As can be observed in Ai, ifenprodil application (n = 8; animal n = 8) had no effect on the mean 

median amplitude, neither did addition of CBD (23.9 ± 0.69 – 23.6 ± 0.72 – 20.8 ± 0.53; ranges: 

12.1-63.8; 3.20-101; 9.46-57.0). The overall p value was p = 0.79, with no trends observed in 

the post-hoc. Aii displays the mean median IEI responses, where once more ifenprodil and 

CBD both had little effect on the overall value (61.7 ± 11.5 – 63.6-14.5 – 59.9 ± 10.2; range: 

33.2-128; 32.6-151; 32.3-114). The resulting p value was 0.53, with the lowest p value found 

in the post-hoc analysis between baseline and 10μM ifendprodil + 30μM CBD at p = 0.63.  

 

The mean median decay time comparison is presented in Aiii, where relative stability across 

the drug treatments was observed in terms of mean median values (8.21 ± 0.51 – 8.29 ± 0.73 

– 8.59 ± 0.71; range: 5.70-10.8; 5.50-12.5; 5.70-11.9). The p value returned for this dataset 

was p = 0.35, with the lowest p value observed between the two drug treatments (10µM 

ifenprodil vs. 10µM ifenprodil + 30µM CBD; p = 0.51). NICT values are shown in Aiv, where 

again no change was found in either ifenprodil or CBD (102 ± 9.97 – 108.4 ± 17.0; range: 61.9-

147; 37.3-170), with a p value return of 0.97 overall with no changes noted in the post-hoc 

analysis. 

 

The right-hand side of this figure (Bi-iv) displays the sIPSC responses when exposed to the 

NR2A antagonist PEA-QX (1μM; n = 10, animal n = 8). Bi presents the mean median amplitude 
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comparisons, where no change was shown in either PEA-QX or CBD addition (28.9 ± 2.52 – 

29.7 ± 2.38 – 31.4 ± 2.53; range: 16.3-38.9; 20.0-41.6; 22.6-43.7 respectively). The resulting 

p value was 0.83, with no alterations observed in Dunn’s multiple comparison post-hoc test. 

The mean median IEI values are highlighted in Bii, where neither the addition of PEA-QX or 

CBD caused any changes to be observed (63.2 ± 8.40 – 58.5 ± 8.96 – 61.6 ± 8.04; range: 

29.8-106; 30.6-119; 35.9-106). The p value here was 0.14, with the lowest p value of the post-

hoc analysis occurring between the two drug conditions (1μM PEA-QX vs. 1μM PEA-QX + 

30μM CBD; p = 0.13).  

 

The penultimate histogram shows the mean median decay time values (Biii), where once more 

there was little change from baseline when PEA-QX or CBD were applied (8.54 ± 0.79 – 8.46 

± 0.69 – 8.44 ± 1.40; range: 6.45-14.2; 6.40-12.7; 6.80-11.2). A p value of 0.37 was produced 

here, with both the baseline vs. 1μM PEA-QX + 30μM CBD, and the 1μM PEA-QX vs. 1μM 

PEA-QX + 30μM CBD comparisons producing an identical p value of 0.54. Biv presents the 

NICT values for both drug groups, where PEA-QX returned a value of 117 ± 14.0 (range: 75.7-

205) whilst the addition of CBD produced a value of 122 ± 17.8 (range: 61.7-261), neither of 

which are significant. A p value of 0.60 was shwon overall, with the lowest p value produced 

by the post-hoc occurring at the baseline vs. 1μM PEA-QX + 30μM CBD comparison (p = 

0.79). 
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Figure 6.18 Histograms displaying NMDAR subunit antagonist experiments. 
Parameters analysed include: mean median amplitude (A-Bi), IEI (A-Bii), decay time (A-
Biii) as well as NICT values (A-Biv) presented. Ai-iv shows ifenprodil effect, Bi-iv shows 
PEA-QX.  

6.2.2.2 Summary of NMDAR modulation on CBD effects 
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A summary of the effect NMDAR modulation had on CBD is shown in Table 6.2 below. Once 

more the AMC and SE results are shown to act as a reference, with no effects observed in the 

AMC when CBD was applied. Changes to IEI, decay time and NICT values are noted in the 

SE population when CBD was added.  

 

Modulation of the NMDAR by MK801 and D-AP5 antagonists showed no changes to sIPSC 

kinetics in either drug or CBD conditions. This was also true for the subunit specific antagonists 

ifenprodil and PEA-QX. Furthermore, CBD before drug or “positive controls” were also 

performed, with no effect of either CBD or MK801/D-AP5 noted.  

 

 
Table 6.2 Summary table of NMDAR modulation and its influence on the CBD effect. 
Ages, condition of animals and, drugs used are noted on the left, with the sIPSC kinetic 
parameters noted horizontally across the top. The arrows have been used to show the 
level of significance achieved at that dose (1 arrow = 0.05, 2 = 0.01), with the direction 
of the arrow also representing the direction of change in value. 

6.2.3 The role of CBRs and FAAH in the effect of CBD 

Alongside the GABAAR and NMDAR specific investigations, we also tested the possibility of 

interaction at other known CBD targets, as well as other cannabinoid-interacting targets, such 

as CB1R. CBRs are known modulators of neurotransmission and as such we determined that 

they may be responsible for the changes observed in this report. Furthermore, CBD has been 

shown to interact with FAAH, and here preliminary investigations into the effect of this 

interaction in vitro were performed. Specifically, both CB1R and CB2R were targeted using the 

inverse agonists AM251 (n = 5, animal n = 4) and AM630 (n = 3, animal n = 3) at doses of 1μM 

and 50nM respectively. In addition, fatty acid amine hydrolase (FAAH) was also inhibited, 

employing 1μM URB597 (n = 4, animal n = 3) to do so. The effects of these drugs addition are 

shown in Figure 6.20. 
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Figure 6.19 Raw traces of 1μM AM251, 50nM AM630 and 1μM URB597 on sISPCs.  
AM251 left, AM630 middle, URB597 right.   

 

The effect of AM251 on mean median amplitude is observed (Ai), where neither AM251 

addition nor CBD had any significant effect (21.7 ± 3.50 – 26.3 ± 2.94 – 20.2 ± 3.07; range: 

14.5-34.6; 16.7-32.9; 14.0-30.9). The p value was 0.37, with the comparison between AM251 

addition and AM251 + CBD producing a p value of 0.34. This lack of effect was also observed 

in the mean median IEI comparisons as well (Aii) (62.2 ± 7.91 – 54.1 ± 4.75 – 63.5 ± 4.20; 

range: 35.3-83.7; 36.8-64.0; 55.5-76.8).  The p value returned here was 0.37, with the baseline 

vs. 1μM producing a p value of p = 0.34. Aiii displays the mean median decay times, where 

once more no alterations upon AM251 addition were noted, with no change observed upon 

CBD addition either (7.78 ± 0.20 – 8.38 ± 0.36 – 8.03 ± 0.20; range: 7.34-8.50; 7.66-9.70; 7.58-

8.80). The p value produced for this dataset was 0.74, with no changes noted in the post-hoc 

analysis. Aiv shows the NICT values, where visually a very large, though ultimately non-

significant increase was present in AM251 (241 ± 81.5; range: 85.5-636), which was then 

decreased by the addition of CBD (133 ± 34.8; range: 26.3-275). A p value of 0.14 was 

produced here, with the baseline vs. 1μM AM251 showing the lowest p value (p = 0.13).     
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Figure 6.20 Histograms showing sIPSC responses to CB1R, CB2R and FAAH inhibitors. 
Parameters analysed include: mean median amplitude (A-Ci), IEI (A-Cii), decay time (A-
Ciii) as well as NICT values (A-Civ) presented. AM251 shown Ai-iv, AM630 Bi-iv and,  
URB59 Ci- iv. 

 

AM630 application (Bi-iv) delivered no significant change in response across any of the 

analysed parameters. In the mean median amplitude (Bi) no alterations were present in either 

50nM AM630 addition or the subsequent 30μM CBD addition (46.7 ± 10.1 – 34.3 ± 8.35 – 39.0 
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± 7.92; range: 28.5-63.5; 25.8-51.0; 26.1-53.4), with a p value of 0.39 returned and no trends 

in the post-hoc. The mean median IEI values are presented in (Bii) where a similar pattern iwa 

observed (72.1 ± 21.8 – 55.0 ± 13.4 – 57.9 ± 12.6; range: 30.3-103; 31.3-77.5; 33.5-75.8). A 

p value of 0.94 is returned, with no trends in the post-hoc. The mean median decay time (Biii) 

shows a similar lack of effect in either AM630 or CBD (9.67 ± 1.99 – 8.48 ± 1.04 – 9.63 ± 1.74; 

range: 6.20-13.1; 6.40-9.60; 6.50-12.5). A p value of 0.36 was produced, with AM630 vs. 

AM630 + CBD comparison providing the lowest p value in the post-hoc analysis (p = 0.31). No 

significant changes are noted in NICT (Biv) values upon AM251 application (83.7 ± 13.6; 

range: 61.5-108), where the presence of CBD showed no alterations (95.1 ± 13.6; range: 81.4-

122). The resulting p value was 0.94, with no trends observed in the post-hoc test. 

 

The inhibitory effects of URB597 on FAAH, and their subsequent influence on CBD effects are 

displayed in Ci-iv. The application of URB597 had very little effect on mean median amplitude 

values (Ci), as neither did CBD (25.0 ± 3.66 – 23.5 ± 3.89 – 25.4 ± 3.54; range: 17.8 - 34.6; 

14.8-33.6; 16.0-31.6). A p value of 0.65 was shown, with baseline vs. URB597 and, baseline 

vs. URB597 + CBD treatment showing identical p values of 0.87. In the mean median IEI 

comparison (Cii), neither URB597 or CBD were able to elicit a significant response (167 ± 39.8 

– 153 ± 38.9 – 142 ± 36.3; range: 55.6-227; 51.5-241; 47.9-219). A p value of 0.13 was noted 

overall, with baseline vs. 1μM URB597 + 30μM CBD producing p = 0.10 in the post-hoc 

analysis. The mean median decay time responses (Ciii) were again unaffected by either the 

application of URB597 or the subsequent addition of CBD (7.65 ± 0.32 – 7.39 ± 0.38 – 8.45 ± 

1.04; range: 7.10-8.55; 6.65-8.25; 6.90-11.45). A p value of 0.28 was produced with the lowest 

p value shown to occur between baseline and 1μM URB597 (p = 0.34). The NICT values are 

presented in Civ, where URB597 produced no effect (85.6 ± 12.3; range: 58.1-108), as neither 

did CBD (117 ± 14.2; range: 78.5-147). A p value of 0.27 was produced overall with the post-

hoc showing the comparison between the two drug treatments producing the lowest p value 

(p = 0.23).  
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6.2.4 The response of human cells to antagonism of NMDAR or 

GABAAR before CBD application is similar to those observed in rat 

tissue 

In addition to the rat data presented previously, we have also been fortunate enough to be 

able to perform some preliminary experiments of MK801 (n=4; sample n = 4) and flumazenil 

(n = 2; sample n = 1) effects on CBD response in HT samples. The results of these initial 

experiments are laid out in Figure 6.22.  

 
Figure 6.21 Raw traces showing the application of MK801 and flumazenil previous to CBD.  
MK801 addition on the left, f lumazenil on the right. 

 

Ai-iv show the MK801 drug treatment responses. In general, similar results to those presented 

in the rat tissue are observed (Figure 6.14.Ai-iv), with MK801 addition sufficient to block CBD 

effects. No changes were observed in the mean median amplitude parameter (Ai), though 

MK801 and CBD addition caused a larger variation in population responses (25.5 ± 2.41 – 

25.6 ± 3.64 – 26.3 ± 5.28; range: 19.0-30.5; 18.9-33.8; 16.5 – 38.6). A p value of p > 0.99 was 

returned, with the same result in the post-hoc. MK801 had a no effect on sIPSC mean median 

IEI (Aii), as neither did CBD addition (200 ± 79.2 – 188 ± 66.1 – 252 ± 74.7; range: 73.1-429; 

94.1-376; 100-421). A p value of 0.43 was produced, with the post-hoc showing the lowest p 

value between the two drug treatments (p = 0.47). The mean median decay time (Aiii), showed 

little effect by MK801 or CBD addition (8.71 ± 1.04 – 9.16 ± 1.43 – 10.75 ± 1.93; range: 5.95-

10.8; 6.65-12.9; 7.60-15.9). A p value of 0.27 was produced, with the lowest p value noted 

from the post-hoc analysis being baseline vs. 100nM MK801 + 30μM CBD (p = 0.23) No 

change to NICT (Aiv) was present when MK801 was added (110 ± 20.9; range: 58.0-156), 

though visually a very large increase was observed when CBD is added, the standard error is 

similarly large (280 ± 206; range: 39.3-898). A p value of 0.93 is returned, with no change in 

the post-hoc test observed. This substantial increase is due to one, most likely anomalous 

result (126 – 896 MK801 to CBD response). This result has been included due paucity of HT 
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cells obtained, and the similar nature of this data set to the other collected in the other 

parameters when compared to the other results. Despite the large increase, the error bars are 

correspondingly large, ensuring this is apparent increase is not statistically verifiable. For 

reference, the results without this most likely anomalous result produced an NICT value of 105 

± 28.5 in MK801 (range: 58.0-156) and, 75.2 ± 25.8 in CBD (range: 39.3-125). This provided 

an overall p value of 0.53, with the multiple comparison post-hoc showing the base vs. MK801 

+ CBD and, MK801 vs. MK801 + CBD treatments having an identical p value of 0.66.  

 

The more limited flumazenil data is presented from Figure 6.22.Bi-iv. Again, the data shown 

here was similar to that found in the rat mEC data. No effect on the mean median amplitude 

was observed upon flumazenil addition (Bi), consistent with the lack of CBD effect (23.3 ± 1.79 

– 26.1 ± 3.48 – 25.2 ± 1.13; range: 21.5-25.1; 22.6-29.6; 24.1-26.4). No changes to the mean 

median IEI (Bii) were shown with flumazenil or CBD addition (130 ± 34.8 – 103 ± 22.0 – 115 

± 37.7; range: 95.0-165; 81.0-125; 77.5-153). Decay times were also relatively unaffected 

(Biii), by either the addition of flumazenil or CBD (9.40 ± 1.90 – 9.10 ± 1.55 – 9.76 ± 2.00; 

range: 7.50-11.3; 7.55-10.7; 7.80-11.8). The addition of flumazenil had little effect on the NICT 

value (Biv; 128 ± 6.45), with both responses closely clustered together (range: 121-134), which 

remains at a similar level upon CBD addition (133 ± 36.6), though the two responses have 

separately increased and decreased resulting in a much larger variance (range: 96.7-170). 

Due to the limited data set no statistical analysis could be performed. 
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Figure 6.22 Histograms of MK801 and flumazenil effects on CBD responses in HT tissue.  
Parameters analysed include: mean median amplitude (A-Bi), IEI (A-Bii), decay time (A-
Biii) as well as NICT values (A-Biv) presented. Ai-iv shows MK801 effect, Bi-iv shows 
flumazenil.  
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6.3 Discussion 

6.3.1 CBD interaction with GABAARs  

Due to the BZ-like effect of increased decay times and increased NICT values observed when 

CBD was applied to SE rat and HT tissue (Chapter 5), the effect of CBD in the presence of 

BZ antagonists/inverse agonists (flumazenil and β-carboline) investigated. Here, block of the 

BZ-site also blocked of the effects of CBD on both decay time and NICT, with the effect of CBD 

blocked when flumazenil was added either before or after CBD. This action is suggestive of 

direct interaction between CBD and the BZ site of GABAARs. Recently, a study by Bakas et 

al, (2017) has postulated that CBD possesses a BZ-like effect, though rules out binding to the 

classical BZ-site of canonical GABAARs. The Bakas study utilised two-electrode voltage clamp 

experiments performed on 10 recombinant human GABAARs expressed in Xenopus oocytes. 

The data showed both CBD and 2-AG acted as positive allosteric modulators (PAM) at each 

of the GABAARs expressing an a subunit, though each displayed a higher efficacy for a2 

containing receptors. Indeed, CBD displayed a higher efficacy at the α2β2γ2L and α2β3γ2L 

containing receptors than α2β1γ2L receptors, indicating a preference for β2/3 over β1 

subunits, with a rank order of β3 > β2 > β1. To demonstrate that CBD activity does not rely 

upon the classical BZ-site located at the α-γ2L interface, the modulatory effects of CBD on 

binary α1β2 and α2β2 receptors were observed. Here, no significant change in relative EC50 

was noted when α1β2 were used, while a significant increase in potency was noted in α2β2 

studies. In addition, unpublished work by GW pharmaceuticals utilising radioligand binding 

studies, with radioactive 3[H] flunitrazepam show a similar lack of binding between CBD and 

the BZ-site. 

6.3.1.1 An additive effect of CBD and BZ agonists on GABAARs 

Previous to the publication of the Bakas et al, (2017) data, confirming no direct binding 

between CBD and the classical BZ site, we were interested in whether CBD acted in a 

competitive or additive manner at the BZ-site (as well as the barbiturate site). By determining 

whether CBD acted in collaboration or competition with BZ/barbiturates, information on the 

specific interaction between CBD and GABAARs could be inferred. Here we have shown that 

at low doses of zolpidem CBD displays an additive effect, increasing both decay time and NICT 

values, while at near maximal zolpidem levels this effect of CBD is occluded. Furthermore, 

experiments with clobazam highlight a similar relationship, with CBD addition subsequent to 

clobazam inducing increased decay time values, though not an increase in NICT. These data 

suggest that CBD and BZ have a similar final common path in augmenting channel function, 

though not achieved through binding at identical binding sites. CBD also displayed an additive 

effect with pentobarbital, with significant increases noted in both amplitude and NICT values 

when CBD is added subsequent to pentobarbital, again suggestive of CBD also operating 

allosterically to augment GABAAR function.  
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BZ are able to functionally modulate the canonical GABAARs composed of alpha/beta/gamma 

(abg), binding with a high affinity to the allosteric BZ-site, located on the extracellular N-terminal 

at the alpha/gamma (ag2) interface  (Sigel, 2002). The extracellular N-terminal of GABAAR 

subunits is noted in receptor assembly and the formation of orthosteric and allosteric binding 

sites, three of its four transmembrane spanning domains are linked with small loops (TM1-3), 

while TM4 is connected to TM3 via a larger cytoplasmic loop – implicated in cell signalling and 

trafficking pathways (Kittler and Moss, 2003). TM2 is the domain that lines the central pore (Xu 

and Akabas, 1996; Goren et al., 2004).  

 

The exact mechanism of BZ interaction is still under intensive examination. Traditionally, BZ 

agonist binding “locks” the GABAAR into a conformational shape, where the affinity to GABA 

is much increased, eliciting a potentiation of Cl- currents and, indeed this is still a popular notion 

(Berezhnoy et al., 2005). The two GABA binding sites of the abg GABAAR are located in the 

extracellular domains of the ab interface (Sigel et al., 1992; Amin and Weiss, 1993; Westh-

Hansen et al., 1997; Wagner and Czajkowski, 2001; Boileau et al., 2002). BZ action was 

thought to occur due to BZ increasing the affinity of GABA agonists, though did not affect 

channel open time (Study and Barker, 1981). A more concise mechanism was proposed of BZ 

action, with diazepam specifically thought to increase the opening of mono-ligand bound 

GABAARs, though generally two GABA molecules must bind to cause an opening of the pore 

(Twyman et al., 1989; Rogers et al., 1994). Further to this, publications have proposed that the 

binding of allosteric BZs causes an increase in GABA affinity at, at least, one of the GABA 

agonist binding sites (Gallager and Tallman, 1983; Serfozo and Cash, 1992; Lavoie and 

Twyman, 1996). BZ agonists are described as positive allosteric modulators (PAMs), 

enhancing GABAAR currents, while BZ antagonists are generally inverse agonists, inhibiting 

GABA currents, most likely through structural mechanisms (Hanson and Czajkowski, 2008).  

 

At saturating concentrations of partial GABA agonists, however, BZs are able to potentiate 

GABA responses, as well as directly gate spontaneously active GABAARs (Maksay et al., 

2000; Bianchi and Macdonald, 2001; Downing et al., 2005; Rusch and Forman, 2005; Campo-

Soria et al., 2006). The emergence of these effects suggests that the traditional view of BZs 

as solely increasing GABA binding affinity was incomplete and another allosteric mechanism 

of BZ was considered. Indeed, later published work has shown that BZs are able to modulate 

GABAARs channel opening by modulating the equilibrium between ligand-bound resting states 

and pre-activated states, suggesting it is this switch to pre-activated states that produces an 

appearance of increased GABA affinity (Gielen et al., 2012).  This translates to BZs agonists 

increasing the frequency of channel, and burst, opening at non-saturating concentrations of 

GABA and, increased decay time in saturating GABA concentrations (Lévi et al., 2015).  
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Conformational changes in GABAAR are an accepted part of its activation, with the three most 

commonly discussed being resting/closed, active/open and desensitised, which occur in the 

presence of GABA agonists. Activation of a resting GABAA receptor induces conformational 

change at the extracellular domains of the alpha/beta/gamma subunits to trap the agonist 

(Bianchi and Macdonald, 2001; Teissere and Czajkowski, 2001; Wagner and Czajkowski, 

2001; Bera et al., 2002; Boileau et al., 2002; Newell and Czajkowski, 2003) and, subsequently 

cause movement in the transmembrane (TM) portions of the receptor, with TM2-3 linker 

changes causing movement in the TM2 segments to open the central pore (Xu and Akabas, 

1996; O’Shea and Harrison, 2000; Horenstein et al., 2001; Kash et al., 2003, 2004). BZ binding 

alone has been demonstrated to be unable to open the pore of GABAAR, but may possibly 

cause a conformational change, to a transitional pre-activated state, between the resting and 

open states, that potentiates GABAAR function (Gielen et al., 2012).  

 

From the data presented so far, CBD is able to mimic certain aspects of BZ effects, most 

notably the increased decay time, which would suggest that CBD is able to bind the GABAAR 

at an allosteric site to produce a similar effect. From the information known about how BZs 

exert their effect on GABAARs, namely eliciting a conformational change in the receptor to 

increase apparent GABA affinity, one would assume CBD is having a similar conformational 

effect. Indeed, from our own data and those of Bakas et al, 2017, it seems most likely that CBD 

is acting as a PAM at the GABAAR, being able to functionally modulate inhibitory signalling 

mechanisms through this interaction. A notable feature of CBD presented in Chapter 5 & 6, is 

the lack of consistency of response and seemingly subtle nature of the effect. A possible factor 

in this is the presence of endozopines, interacting or inhibiting the CBD effect by binding to the 

BZ site, leading to variation in the CBD effect across the experiments performed. Previous 

work in the laboratory has shown that endogenous dopamine levels vary greatly between 

slices in vitro (G Woodhall, personal communication), and this may also be true for 

endogenous BZ ligands. 

    

Endozepines are endogenous benzodiazepine-like ligands and have been theorised since the 

discovery of the GABAAR BZ site (Iversen, 1977; Costa and Guidotti, 1985). Indeed, several 

molecules fitting this description have been uncovered since including: oleamides, non-

peptidic enzodiazepines and, a protein dubbed diazepam-binding inhibitor (DBI), with DBI 

being the most extensively studied of these (Costa and Guidotti, 1985; Rothstein et al., 1992; 

Cravatt et al., 1995). The majority of endozepines are NAMs at the GABAAR (Costa and 

Guidotti, 1985; Alfonso et al., 2012), though more recent research now suggests DBI as 

possessing some PAM capabilities (Christian et al., 2013). Taking DBI as an example of an 

endozepine, the NAM capabilities of this molecule have been widely detailed, with reports 

suggesting increases in anxiety, aggression and, neurogenesis (by a DBI fragment peptide), 

while also decreasing sleep (Guidotti et al., 1983; Kavaliers and Hirst, 1986; De Mateos-
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Verchere et al., 1998; Dong et al., 1999; Alfonso et al., 2012). Examples of PAM by DBI are 

less numerous, though have also been shown, with DBI demonstrated as potentiating 

GABAergic synaptic transmission in thalamic reticular nucleus neurons (Christian et al., 2013). 

Endozepines, such as DBI, may be binding at GABAAR to alter functional conformations of the 

receptor, precluding CBD from binding or, CBD actions from occurring, which may be a factor 

in the variation noted across the single cell CBD experiments performed here.  

 

Taken together, the presented data are suggestive of an importance of the BZ site within the 

action of CBD. The use of inverse agonists here, flumazenil and β-carboline, fits with our 

assessment of CBD as a PAM; there is, though, speculation over the correct status of 

flumazenil, with it historically defined as an antagonist at BZ site of GABAAR. Flumazenil has 

been comprehensively shown to competitively bind at the BZ site, blocking action of NAMs 

and PAMs, and was thought to not display any intrinsic effect on GABA actions itself 

(Hunkeler et al., 1981), however a more recent study by the host lab has shown flumazenil to 

display more inverse agonist-like effects on tonic GABA actions (Prokic et al., 2015), possibly 

through constitutive activity at the BZ site by endozepines (Christian et al., 2013). Similarly, a 

recent study on recombinant receptors has shown that long-term exposure to flumazenil may 

cause GABAAR internalisation (Kuver and Smith, 2016). Classical inverse agonists at the BZ 

site, such as β-carboline, cause  reductions in GABA actions  and have been theorised to be 

able to lock GABAARs in a conformational state that precludes the effects of any allosteric 

modulation (Farzampour et al., 2015). If CBD were acting in an allosteric modulatory role the 

inclusion of inverse agonists would abolish these effects, as has been observed here.   

The barbiturate, pentobarbital, is a potentiator at the GABAAR at low micromolar doses, able 

to open the central pore at high micromolar doses, while at millimolar doses it is able to block 

the channel (Akaike et al., 1987; Akk and Steinbach, 2000; Serafini et al., 2000). Barbiturates 

bind at an allosteric site on GABAAR to induce their effects; here a low micromolar dose of 

pentobarbital has been applied and, caused potentiation of the GABA currents. The 

subsequent addition of CBD has shown a further potentiation of the GABA response, again, 

highly suggestive of an additive effect for CBD at the GABAAR via allosteric mechanisms.     

 

It seems likely then, that CBD acts as a PAM at the GABAAR to produce the effects described 

in this project. One clear candidate for endogenous allosteric modulation of GABAAR function 

is the neurosteroids. As such, we performed investigations into a possible CBD effect via the 

steroid binding site on the GABAAR. Using the negative modulatory neurosteroid, 17PA, we 

blocked the steroid binding site. As of yet, no work on the effect of 17PA on sIPSCs has been 

published, as such we determined to characterise its effect on sIPSCs and, the CBD effect. 

The presented data shows there is little effect of either CBD or 17PA on sIPSCs, though this 

is most likely due to the limited n number provided. The data presented here requires further 
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replication before any definite conclusions could be made about the actions of 17PA on sIPSCs 

and, any influence it may have on the CBD effect.  

 

The results presented here, in conjunction with the findings of Bakas et al, (2017), are highly 

suggestive of a direct interaction of CBD at the GABAAR, most likely acting as a PAM. The 

mechanism of this action though, is not accomplished through binding of CBD at the classical 

benzodiazepine site (located at the interface between α-γ2L subunits), nor the barbiturate site, 

and most likely not, the neurosteroid site, though it cannot yet be definitively ruled out. Our 

hypothesis, therefore, is that CBD most likely binds to another, as of yet, unknown allosteric 

site on postsynaptic pyramidal cell GABAARs to induce increased decay time by prolonging 

channel open time, and as such, increased inhibitory charge transfer into the neuron, resulting 

in decreased neuronal excitability.  

6.3.1.1.1 Possible anomalous results  

In the 1µM application of zolpidem there interestingly appears to be what should be a 

significant increase again in the mean median decay times (Figure 6.7.Biii) when zolpidem is 

applied (p = 0.13). There is what could be constituted as an outlier, apparent when viewing the 

baseline especially (11.00 – 10.60 – 12.20), which when removed does allow significance to 

be reached (8.51 ± 0.43 – 11.01 ± 0.23; p = 0.034), however, this cell produces ‘normal’ values, 

in line with those observed in the other cell responses, across the other parameter analyses, 

making its exclusion difficult to justify. 

 

It could also be argued that there is an outlier present in the NICT values of the clobazam 

experiment (Figure 6.9.Aiv), especially notable in the clobazam condition, where a value of 

647.3 is present, this decreases once CBD is applied to 334.2, which is more in line with some 

of the other values observed in the CBD condition. If this result set is removed from the 

population, the means change quite dramatically, with a value of 146.1 ± 21.26 returned for 

clobazam only and, 159.6 ± 31.34 in the clobazam + CBD treatment. In these circumstances, 

an overall p value of 0.28 returned, with the multiple comparison post-hoc showing a value of 

p = 0.72 for clobazam only and, p = 0.30 once CBD is also applied. 

6.3.2 Direct CBD interaction with NMDARs 

Due to the factors discussed in the introduction (Section 6.1.3), we also pursued whether CBD 

was interacting with NMDARs to exert its effect. Little published work has been performed on 

the effect of CBD at NMDARs and as such, there is little to compare this work with. Previous 

published work however, has demonstrated links between CB1R and NMDARs, which may 

provide some indication of how CBD exerts the noted effect it has on sIPSCs (Sánchez-

Blázquez et al., 2013; Rodríguez-Muñoz et al., 2016). Recent effects discovered between CBD 



 226 

and CB1Rs have been documented in the section below. It may be possible that CBD is able 

to interact either, directly with NMDARs to influence GABAergic signalling, as detailed in Xue 

et al, (2011) or alternatively, indirectly via CB1R, acting as a NAM, as suggested in Laprairie 

et al, (2015), to influence NMDAR signalling via CB1R-NMDAR interactions or, at another 

target to modulate NMDAR signalling.  

 

To test possible direct CBD interactions at NMDARs, we initially employed the use of two 

NMDAR antagonists, one competitive (D-AP5), the other non-competitive (MK801). Indeed, 

both orthosteric and allosteric inhibition of the NMDARs were sufficient in abolishing the CBD 

effect (Figure 6.13.Ai-iv). In the ‘positive control’ experiments for each of these antagonists 

(Figure 6.16), CBD was once more unable to replicate the results observed in Chapter 5 on 

decay time and NICT. Due to this, it is difficult to assess the ability of MK801 and D-AP5 to 

reduce CBD induced inhibition. This lack of CBD response with smaller n numbers once more 

highlights the need of a large n number pool, to allow detection of the significant increases 

observed in both decay time and NICT values and, is highly indicative of CBD possessing only 

subtle effects.  

 

As both competitive and non-competitive NMDAR antagonists were successful in blocking 

CBD, we were interested to ascertain whether a certain NMDAR subunit was responsible. As 

such, GluN2A and N2B were targeted, with PEA-QX and ifenprodil used to inhibit each 

respectively. The data presented in Figure 6.18 show either subunit antagonist is sufficient in 

blocking the induced CBD effect, with no real alterations in any of the values observed across 

the dataset in either of the antagonists, nor upon CBD addition  

 

The data collected from the NMDAR inhibition experiments suggest that blockade of the 

orthosteric, allosteric and, specific GluN2 subunits of NMDARs are sufficient to inhibit the CBD 

effect in SE tissue, however, we must admit that the CBD response is unseen in the positive 

control experiments. It is somewhat plausible that CBD may be able to bind to GluN1 subunits 

in some manner and, as the canonical CNS NMDAR is composed of 2x GluN1, 1x GluN2A, 1 

x GluN2B, inhibition of either GluN2 subunits is thus able to cause a conformational change 

that limits CBD access to this site. Indeed, a recent publication has shown that ifenprodil 

addition causes a change in conformational state of NMDARs from open to closed (Tajima et 

al., 2016). Perhaps this conformational change is sufficient to block the GluN1 site for CBD, 

ergo no effect of CBD noted after the inclusion of specific GluN2 antagonists.  

 

Reasons for why NMDAR inhibition is effective in blockade of CBD effects could be due to the 

link between NMDAR and GABAergic signalling discussed in the introduction and highlighted 

in Xue et al, (2011), with inhibition of presynaptic NMDARs able to lower GABA release from 

interneurons. It may be a case of CBD enhancing NMDAR-mediated GABA release from the 
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presynaptic terminal by activating presynaptic NMDAR located on mEC, therefore, increasing 

inhibitory ion entry into the postsynaptic bouton and, decreasing neuronal excitability. NMDAR 

inhibition would interrupt this CBD-NMDAR interaction, reducing NMDAR mediated GABA 

release and inhibiting the observed CBD effect on sIPSCs. Postsynaptic CBD interactions with 

NMDARs are also possible causes of the noted effects here. Plausible mechanisms by which 

this may occur may include CBD interaction with NMDARs to influence production of 

postsynaptic signalling molecules, for instance nitric oxide (NO), increasing NO synthesis and 

retrograde transmission across the synapse. This retrograde signalling would then result in 

increased uptake presynaptically and, subsequently, elevated GABA neurotransmission, this 

is another signalling pathway suggested in Xue et al, (2011). Blockade of NMDARs in this case 

reduces NMDAR-CBD interaction, ceasing or limiting synthesis of postsynaptic signalling 

molecules enough to sufficiently inhibit the noted CBD effect.  

6.3.3 CBRs, FAAH and the effects of CBD  

Previous published studies have ruled out CB1R interaction with CBD (and CBDV) to produce 

the anticonvulsant effects observed by each (Wallace et al., 2008; Hill et al., 2012). Each of 

these studies utilised orthosteric antagonists, which were unable to inhibit the actions of either 

phytocannabinoid. As specified in the previous section CBD has a well-established low affinity 

for the CB1R orthosteric site however, recent work has demonstrated that at low doses (< 

2µM) CBD possesses high affinity as a NAM for CB1R in vitro (Laprairie et al., 2015). At higher 

doses (> 2µM), CBD has been noted to possibly possess weak partial agonist capabilities, with 

CBD documented to increase PLCb3 signalling and, ERK phosphorylation while limiting CB1R 

internalisation, though evidence for this is limited (Mechoulam et al., 2007; McPartland et al., 

2015). Alongside this CBD has been shown to potentiate the effect of THC at CB1Rs via a 

CB1R-dependent mechanism (Hayakawa et al., 2008). These factors may be implicated in the 

noted CBD effect, for instance it is possible that CBD is causing an increased internalisation 

of CB1Rs, which would result in a greater amount of neurotransmission.  

   

Blockade of CB1Rs by the inverse agonist AM251, which competes at the orthosteric site of 

CB1R, was sufficient in inhibiting the CBD effect here, though a relatively small n number (n = 

5) was completed. A suggestion of interaction between CBD and CB1R can be taken from this 

as the noted CBD effect is lost, though this may be more due to the lack of n, as CBD has 

been shown to only possess subtle effects noticeable across a high population of responses. 

The pattern of the responses is interesting however, as AM251 seemingly increases both 

amplitude and decay times, while decreasing IEI, resulting in a larger NICT value, while CBD 

appears to reverse these trends, conversely to the effects observed by CBD previously. None 

of these AM251 effects are significant, and as such it is impossible to be sure of these results, 

however it may be that the loss in CB1R function due to inverse agonism of the receptor allows 

for greater synaptic transmission, which leads to an increase in inhibition at the postsynapse. 
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The subsequent addition of CBD and its reversal of these effects is puzzling, as if it were acting 

upon solely GABAARs and NMDARs to produce its effects, CB1R blockade should not impede 

this. It would be interesting to increase the n number of this experiment to observe whether 

the initial effects remain in a more robust sample. Completion of which would clarify any 

interaction between CBD and CB1Rs, and whether it is of importance for the subtle effects 

noted in this project. 

 

A limited set of experiments were also run on CB2R interaction with CBD, again employing the 

use of an inverse agonist, in this case AM630, though the n number provided here was very 

small (n = 3). Little previous work has been performed on CB2R and CBD in the CNS, most 

likely due to the well reported lack of affinity CBD possesses for CB2R (Thomas et al., 2007). 

The data provided here is unable to support any definite conclusions, due to the low nature of 

the sample, however, observing the population responses suggests that blockade of CB2R is 

unlikely to inhibit CBD effect, most likely confirmed if performed on an adequate n number.  

 

Recent research has also implicated CBD as interacting with FAAH (Ibeas Bih et al., 2015), 

and as CBD is a highly lipophilic molecule it could be possible that this interaction with FAAH 

is inducing the effect of CBD we have observed. CBD interaction with FAAH, generally thought 

to be an inhibitory one, would result in an increased amount of AEA, AEA binding to CB1Rs 

would then decrease neurotransmission from the postsynapse, which is a plausible 

explanation of the anticonvulsant nature of CBD (Pertwee, 2005; Vaughan and Christie, 2005; 

Campos et al., 2012; Patel et al., 2016). This possible interaction would not provide the effects 

noted due to CBD throughout this project, increased decay times and NICT values, as those 

findings are highly suggestive of either increased GABA release and uptake or, increased 

GABA sensitivity.  

 

Here the FAAH inhibitor URB597 has been applied, though again only a small n number has 

been produced (n = 4). The single cell population responses show FAAH inhibition as generally 

decreasing baseline values, while CBD is able to reverse this effect in many of the cells tested. 

Again, more n numbers are required to state this as a complete conclusion, though it looks as 

though FAAH inhibition is not responsible for the CBD effects we have observed. 

6.3.4 Human tissue neurons follow a similar pattern to the rat tissue 

The human tissue data, Figure 6.22, shows a similar pattern to that presented in the rat tissue 

(Figures 6.2 & 6.13), albeit with an understandably smaller n (n = 4). Here, MK801 (Ai-iv) 

shows adequate blockade of the CBD effect observed in the previous HT data (Figure 5.11), 

though slight increases are noted in both the decay time and NICT values. These increases 

are largely due to the increase in one respondent, as explained in the results section previous 

(Section 5.2.5). The removal of this result shows a decrease in NICT value upon CBD addition, 
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though decay time remains elevated. As such, these data are very similar to the rat tissue 

results presented previously, and it would be interesting to be able to observe this data at a 

similar n (n = 7/8). The flumazenil addition (Bi-iv), shows a different pattern to that identified 

in the rat tissue, with increases in amplitude and NICT values and, decreases to IEI and decay 

time upon flumazenil addition. CBD appears to reverse these effects; however, these data are 

highly speculative due to only an n of 2; a much larger n is required for any concrete conclusion 

to be drawn here.  

6.4 General discussion and future experiments 
It is possible that CBD is acting upon a multitude of different receptor targets to exert the 

increased postsynaptic inhibition shown here due to its inherent promiscuous nature, indeed, 

many different research groups are investigating purported CBD effects at a variety of 

receptors including: GPR55, 5HT1A, 5HT3, glycine receptors (Russo et al., 2005; Pertwee, 

2008; Xiong et al., 2014) alongside other intracellular targets such as mTOR, vDAC and, NPY 

(Gamber et al., 2005; Shrivastava et al., 2011; Rimmerman et al., 2013; Giacoppo et al., 2017). 

Further to this, recent publications have shown CBD interaction with the epilepsy-associated 

sodium channels NaV1.6 channels that are mutated in the Dravet syndrome form of epilepsy 

(Patel et al., 2016). Here CBD acts to reduce neuronal excitability by selectively inhibiting the 

resurgent current over the peak transient current, in both wild-type and mutated NaV1.6 

channels. As CBD has been noted to reduce seizure number in clinical trials of children with 

Dravet syndrome (Devinsky et al., 2016), this link may be crucial for understanding the 

anticonvulsant mechanism of CBD.   

 

The work presented here, however, shows CBD’s BZ-like response is able to be effectively 

inhibited by either GABAAR BZ site inhibition, via inverse agonism, or NMDAR inhibition by 

both general and subunit specific antagonists. CBD has also been demonstrated to act in an 

additive manner when applied subsequent to BZ-site agonists, which is indicative of allosteric 

binding by CBD to the BZ site, something corroborated by recent binding studies (Bakas et al., 

2017). Together these data suggest an interaction between CBD and, both GABAAR and 

NMDARs. Most likely, there is a direct interaction of CBD in the case of GABAAR, though both 

direct and indirect interaction with NMDARs could be possible. Our current working hypothesis 

is that CBD has a plethora of multimodal effects which combine to provide the anticonvulsant 

effects noted, and the increased levels of inhibition shown throughout this report. We theorise 

that CBD is able to interact either directly or indirectly with presynaptic NMDARs, most likely 

on GABAergic interneurons to positively modulate GABA neurotransmission, possibly through 

mechanisms similar to those proposed in Xue et al, (2011). Concomitantly, we also suggest 

that CBD is directly interacting with postsynaptic pyramidal cell GABAARs at an as of yet 

unknown allosteric binding site as a PAM, to increase one, or a combination of, GABA binding, 

uptake and, sensitivity, thereby increasing inhibitory activity in the postsynapse terminal, and 

as such decreasing neuronal excitability. Roles for CB1R, CB2R and FAAH seem unlikely 
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given the data provided here and published elsewhere, though interaction at CB1R, possibly 

as an NAM looks likely.  

 

Future experiments that could be performed here include, further binding studies to try and 

elucidate the binding site of CBD on GABAAR, specifically looking at whether application of 

inverse agonists such as flumazenil or β-carboline are able to diminish CBD binding at 

GABAARs compared to control. Alternatively, similar binding experiments could be run with 

zolpidem instead of an inverse agonist to look at CBD binding, again compared to control. 

Binding studies could also be performed between CBD and NMDAR which would help to 

distinguish whether this interaction is direct. Moreover, CBD could be applied in collaboration 

with NMDA, to establish whether an additive effect in NMDA-mediated GABA 

neurotransmission, reported by Xue et al, (2011), is noted.  
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Chapter 7  
 
 
General Discussion  
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The overarching aim of this project was to characterise the reported anti-epileptic mechanism 

of CBD(V) in vitro (Jones et al., 2010, 2012, Hill et al., 2012, 2013; Devinsky et al., 2016). Little 

in vitro investigation has been performed with either CBD or CBDV, and as such we sought to 

determine the effect of CBD(V) on neural oscillations and single cell properties.   

 

To do so, we utilised the RISE model of TLE (Modebadze et al., 2016) alongside AMC animals, 

focusing our attention on the mEC, due to its crucial link to epileptogenesis and its role as a 

gatekeeper for information processing to the hippocampus (Amaral and Witter, 1995; Witter et 

al., 2000; Vago and Kesner, 2008). Furthermore, we endeavoured to assess CBD(V) at several 

time points along the epileptogenesis pathway, to observe whether a consistent cannabinoid 

effect was observed.  

 

Initally, comparisons between the AMC and SE rat tissues were made across both LFP and 

whole-cell voltage-clamp techniques to uncover any induced changes in the baseline 

conditions caused by the RISE model (Chapter 3). Here, little effects were noted in the LFP 

experiments, with only the peak frequency significantly decreased in 24-hour SE animals 

compared to AMC rats of this time, most likely a result of the procedure itself causing insult to 

the mEC neurons. No significant effects were observed across any of the sIPSC patch-clamp 

experimental parameters. Significant changes were noted, however, in the sEPSC baseline 

conditions, with an increase in mean median amplitude and excitatory charge transfer (ECT), 

indicative of an increase in excitatory neurotransmission and, when coupled with the sIPSC 

data, a shift in inhibitory-excitatory balance (I-E) towards excitation. This shift is present and 

known in human epilepsy conditions (Scharfman, 2007), and as such highlights the 

effectiveness of the RISE model as a template for human TLE.   

 

Our initial phytocannabinoid experimental work focused on the pharmacologically induced 

gamma response of both AMC and SE rat mEC to CBD(V), using gamma oscillations as a 

marker of neuronal activity. The application kainic acid reliably induced persistent gamma 

oscillations within the mEC layer II networks of rats at all ages (Chapter 4). Network neuronal 

oscillations were used as a sensitive measure of network function that includes both inhibitory 

and excitatory aspects, as epilepsy is a neurological disease characterised by pathological 

oscillations and abnormal synchronous activity (Uhlhaas and Singer, 2006). Also, no 

information was available on whether CBD(V) were able to effect both physiological and 

pathological oscillations in a similar manner and, as such, we endeavoured to investigate 

whether this occurred.     

 

Application of CBD(V) reliably decreased gamma oscillation power (using nAUC as a measure) 

in each age group and disease state, excepting the 24-hour AMC populations for both CBD 

and CBDV, at the maximal 30μM dose. The lack of response to CBD(V) in the AMC juvenile 
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(24-hour) animals may be due to the lack of maturity in glutamatergic and GABAergic signalling 

systems, including the inhibitory and excitatory receptor presence at this time and, their 

responses to neurotransmitters (Walther et al., 1986; Kriegstein et al., 1987; Ben-Ari et al., 

1989; Michelson et al., 1989; Cherubini et al., 1990; Luhmann and Prince, 1990a, 1990b; 

Kleckner and Dingledine, 1991). Indeed, with regards to CBD, an increasing sensitivity is noted 

with age in the AMC rats, with the delta peak gamma power showing a high amount of 

significance across the time points tested. It is most likely that these changes are due to the 

receptor targets of CBD(V) being expressed at these time points and, are influential in the 

mechanisms of gamma oscillations.  

 

On the other hand, the SE population shows no significant difference in sensitivity with age to 

CBD. This lack of difference with regards to CBD sensitivity with age in SE animals, is 

indicative of disease specific effects of CBD, with these data highlighting changes occur upon 

the initial insult. This change seemingly results in alterations to neuronal or synaptic 

organisation and composition, allowing targets of CBD to be present before they would 

normally appear, as CBD only shows an effect in the AMC animals from the 1-week time point 

(P26), while is present from the earliest SE time point. Collaborative investigations with the 

Henley lab have shown differing level of protein expression for each of the ionotropic glutamate 

receptors at various time points on the epileptogenesis pathway used here (Appendix 2).  

 

Alongside LFP investigation, we also employed use of whole-cell voltage-clamp 

electrophysiology techniques to assess single mEC layer II pyramidal cell current responses 

to CBD(V) 24-hours to 1-week post-induction (Chapter 5). Assessing CBD effect on 

spontaneous excitatory postsynaptic currents (sEPSCs), no differences were observed in any 

parameter of sEPSC analysis in either AMC or SE populations, indicative of CBD having no 

effect on excitatory neurotransmitter release to exert its effect.  

 

In contrast, a significant decrease in the interevent interval (IEI) and, significant increase in 

decay time was noted in SE populations when spontaneous inhibitory postsynaptic currents 

(sIPSCs) were exposed to 30µM CBD. Alongside this, an overall normalised inhibitory charge 

transfer (NICT) increase was noted. Such increases were not noted in the comparable AMC 

animals when assessing sIPSCs (Chapter 5). These results suggest that CBD is able to 

increase inhibitory activity onto the postsynaptic neuron, either through increased GABAAR 

receptor open time, indicated by longer decay times of sIPSC events or, through increased 

GABA neurotransmitter release by presynaptic interneurons. Previous work has also shown 

NMDARs are able to influence and modulate GABA release, via both pre- and postsynaptic 

mechanisms (Xue et al., 2011). When this information is combined with the protein expression 

assays performed by the Henley lab on 24-hour SE rats, where an upregulation in GluN1 is 

noted, the two may be related, especially once CBD is applied. It is plausible that CBD is either 
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directly or indirectly interacting with GluN1-containing NMDARs, on either the presynaptic 

element or postsynaptic terminal, to cause a modulation or, increase in GABA release from 

the presynapse, mostly likely through NOS retrograde signalling presynaptically, or indirectly 

through second messenger systems postsynaptically (Xue et al., 2011).  

 

To explore these results further, we investigated whether direct inhibition of either of these 

receptors were sufficient for blockade of the CBD response noted in sIPSC experiments 

(Chapter 6). As such, both GABAAR inverse agonists and NMDAR antagonists were 

employed. The blockade of the GABAAR benzodiazepine site by inverse agonists 

(flumazenil/β-carboline) was successful in blocking the induced CBD effect. This result was 

highly suggestive of CBD binding either directly to this site or at an allosteric site on the 

GABAAR. Furthermore, the use of competitive (D-AP5) and non-competitive (MK801) NMDAR 

antagonists proved to be sufficient for inhibition of the induced CBD effect, once more 

suggesting that NMDARs are influential in its mechanism.  

 

These GABAAR/NMDAR results provided us with two viable targets for CBD mechanisms of 

action, and as such we investigated their involvement further. In terms of the influence of 

GABAAR, we were interested to observe whether CBD produced an additive or competitive 

effect at the benzodiazepine (BZ) site, as this would provide information on whether CBD was 

binding directly at the BZ site. We therefore used a benzodiazepine site agonist (zolpidem) at 

two different concentrations to observe CBD effects when it was added subsequently. The 

results achieved here were indicative of CBD displaying an additive effect, as CBD acted to 

enhance the response when a minimal (100nM) zolpidem dose was used and, had little effect 

when a maximal (1µM) dose was applied. The additive effect observed lends support to the 

hypothesis of CBD binding to an allosteric site as a positive allosteric modulator (PAM) on 

GABAARs to exert an effect similar to a benzodiazepine, a finding also posited in Bakas et al., 

(2017). Further to this, possible CBD binding at the barbiturate site was observed, using 

pentobarbital, a potentiator at this site, the results of which showed CBD providing an additive 

effect here also. Finally, we used a neurosteriod site NAM to observe if its addition was 

detrimental to CBD influence. Unfortunately, only a small n number was performed here, so 

little can be taken from this data as is. The current trends would suggest that a neurosteriod 

NAM may be not be sufficient for CBD inhibition, though this conclusion requires further n 

numbers to be stated with confidence.  

 

To investigate NMDAR involvement in the observed CBD effect, we utilised subunit specific 

antagonists to observe whether CBD inhibition by MK801 + D-AP5 was subunit related. The 

most common NMDAR subunits expressed in the mEC, alongside GluN1 isoforms, are N2A 

and N2B (Schorge and Colquhoun, 2003; Furukawa et al., 2005; Parsons and Raymond, 

2014). As such we inhibited both of these subunits in individual experiments, using the subunit 
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specific antagonists PEA-QX (N2A) and ifenprodil (N2B). Initially, PEA-QX was described as 

a highly selective N2A antagonist, displaying >100-fold selectivity for N2A over N2B (Auberson 

et al., 2002). More recently however, the activity of PEA-QX at N2A has been suggested to be 

more in the region of ~5/10 fold selectivity over N2B and, as such, the 1µM PEA-QX used 

here, may have also inhibited N2B (Neyton and Paoletti, 2006; Lind et al., 2017). Ifenprodil is 

a well characterised N2B blocker, displaying ~400 fold selectivity for N2B over N2A (Williams, 

1993, 2001). Nevertheless, the results from the antagonism of N2B, and possibly N2A, was 

sufficient to block CBD induced effects on sIPSCs. This result shows that CBD’s action is 

definitely blocked by antagonism at N2B and, possibly N2A subunits, which suggests 

interaction for CBD at N2B and, possibly at GluN1 subunits, if antagonism of both GluN2 

subunits is sufficient for inhibition of the CBD effect this may suggest a role for GluN1 in the 

CBD effect, though whether this is via specific binding would require further experiments to be 

completed. Indeed, further work could be performed here, with the CBD added after the 

application of NMDA to observe the effect of CBD on NMDA-induced GABA neurotransmission 

(Xue et al., 2011), similar to the GABAAR experiments performed with zolpidem. This may 

allow an assessment of whether CBD is directly or indirectly interaction/binding to NMDARs. 

Specific NMDAR-CBD binding studies could also be performed to assess whether this 

interaction is via direct binding of CBD to NMDAR or indirect via second messenger/cell 

signalling pathways.   

 

Alongside these NMDAR and GABAAR experiments, we were interested in whether CBD was 

interacting with CBRs in the mEC to produce an effect, with recent evidence has suggested 

CBD has high affinity NAM abilities at CB1R (Laprairie et al., 2015). As such, known orthosteric 

inverse agonists to both CB1R (AM251) and CB2R (AM630) were used to block the 

cannabinoid binding site on these receptors (Pertwee, 2005). Low n numbers were performed 

for each of these drug treatments making any definite conclusions difficult to state, though the 

addition of both was sufficient in blockade of the CBD effects noted previously. Whether these 

results were due to low n numbers or inhibition of the CBD effect by CBR blockade requires 

further replication. Alongside these data, the FAAH inhibitor URB597 and its effect on CBD 

addition was also investigated. Once more, a small n number was produced, however 

observation of the population responses suggests that this inhibition looked to have little effect 

on CBD. Again, for these experiments to have definitive conclusions further n numbers are 

required, though for reference, GW pharmaceuticals believe there to be no involvement of 

CBRs in the anticonvulsant effect of CBD.  

 

In addition to rat experiments, human tissue (HT) samples where sIPSCs had been recorded 

from pyramidal cells show remarkably similar results to those of the SE rats, with increased 

decay times and NICT values when CBD was added alone (Chapter 5). Indeed, a lower n 

number than the rat data was performed, suggestive of CBD possessing a higher efficacy in 
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the HT samples. This result suggests similar mechanisms of CBD action between the two 

species, as well as validating the RISE model of epilepsy as an adequate model of TLE and 

human epilepsy. Due to this, preliminary antagonist experiments were also performed on HT 

samples (Chapter 6), however the scarcity of this resource has meant that only a small n could 

be provided here. Despite that, similar responses to those observed in the SE rat tissue have 

been seen here. The MK801 addition appears effective at blocking any CBD induced 

responses in the HT samples, especially so in the decay time and NICT parameters (though 

here only once an obvious anomalous result is removed). This is indicative of the importance 

NMDARs have in CBD responses, as this effect is present in both SE rat tissue and HT cells. 

Flumazenil appears to block CBD induced increases in decay time and NICT, though as only 

an n of 2 is shown here this is difficult to state with any certainty.  

 

CBDV was only used briefly in whole-cell voltage-clamp experiments (Chapter 5), where no 

changes in sIPSC responses were noted in AMC tissue. In the SE tissue CBDV appeared 

ineffective across the event kinetic parameters, though a significant decrease in NICT values 

was observed, highly suggestive of a different mechanism of action to that of CBD. This 

decrease in NICT also possibly indicates a role in excitatory neurotransmission machinery for 

CBDV effects noted in the LFP data (Chapter 4). Further experiments could involve looking at 

the effect of CBDV on sEPSC kinetics to uncover whether this is where CBDV is effective.  

 

From the results we have achieved, we hypothesise CBD as acting concurrently at either 

presynaptic or postsynaptic NMDARs and, postsynaptic pyramidal cell GABAARs. At 

NMDARs, CBD may be interacting directly or indirectly to influence NMDAR gating and 

increase NMDAR-mediated GABA release, through driving Ca2+ entry presynaptically to result 

in increased presynaptic GABA release. If acting at postsynaptic NMDARs, CBD interaction is 

most likely fuelling second messenger systems, eliciting the synthesis of retrograde signalling 

molecules, such as NO, which subsequently diffuse across the synaptic cleft to drive the 

release of GABA from presynaptic boutons. At postsynaptic GABAARs, CBD is most likely 

acting as a PAM, binding to an as of yet unknown allosteric site to decrease IEI times and, 

increase channel open times, resulting in an increase in inhibitory activity at the postsynaptic 

terminal and, therefore, a decrease in neuronal excitability. CBD certainly displays subtle 

effects, requiring a large number of n to be visible on a single cell level, the result of which has 

made its study more difficult as significant effects are not often noted at low n number (n =7/8). 

CBDV is most likely causing a suppression of gamma oscillations through excitatory 

mechanisms in SE tissue, suggested by the decrease in mean NICT values noted in sEPSC 

experiments (Chapter 5), though what these may be has not been clarified in this report. The 

RISE model of epilepsy shows significant changes in excitatory neurotransmission, suggesting 

it is a competent model of TLE. 
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9.1 Appendix 1   
Principal component analysis code: 

 
Performed in R with the Rcmder (Rcommander) and ggbiplot packages installed.  
 
Here ht refers to the dataset used (in this case all human tissue cell parameter responses). Included parameters: Amplitude (pA), Rise time (ms), 
Decay time (ms), Area (AUC) and, IEI (ms), which represented columns 1 – 5 respectively. These responses were sorted into categories based 
upon which condition they were selected from (baseline or CBD) and labelled in column 6.  
 
The first line of code shows the parameter responses being logged. The second shows the categories being used to label the two groups. The 
third is the PCA computation, with “prcomp” the command for this.  
 
The final line is how the graphs were displayed with the arguments corresponding to the list below: 
 

scale - covariance biplot (scale = 1), form biplot (scale = 0).  
obs.scale - scale factor to apply to observations 
var.scale - scale factor to apply to variables 
groups - optional factor variable indicating the groups that the observations belong to. If provided the points will be coloured according to 

groups 
ellipse - draw a normal data ellipse for each group? 
alpha - alpha transparency value for the points (0 = transparent, 1 = opaque) – show all data points or not 
circle - draw a correlation circle? (only applies when prcomp was called with scale = TRUE and when var.scale = 1
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9.2 Appendix 2 
Protein expression investigations performed by the Henley lab at the University of Bristol were 

described in Chapter 3 of this thesis. The following figures have been reproduced with the 

permission of the lab, showing the changes in protein expression levels over the course of 

epileptogenesis from the RISE induction. Here the same time points as presented throughout 

this thesis have been used, with time point 1 referring to the 24-hour post-induction, time point 

2 the latent period or 1-week post-induction phase, with time point 3 relating to the chronic/SRS 

population (3-months post-induction). 

 

The histograms presented here show the responses of the SE rats when compared to 

normalised AMC animals (shown with the dotted line). Western blots show individual protein 

expression comparisons between AMC and SE rats.    

 

Materials and methods  
 

AMC and SE rat brains were provided by this lab, from three epileptogenesis time points (24-

hours post, 1-week post, 3-months post/SRS). The brains were dissected after decapitation 

and placed into ice-cold normal aCSF (Chapter 2). From here the brains were separated into 

individual brain regions (cerebellum, frontal lobe, somatosensory cortex, temporal lobe, 

hippocampus and striatum), placed into 1ml Eppendorf tubes and snap frozen in liquid nitrogen 

to prevent degeneration and in preparation for travel.  

 

All rat brain samples were homogenised using liquid nitrogen to keep samples from 

degenerating, and a pestle and mortar for crushing into a fine powder. Samples were 

resuspended in lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 1% Triton, 1X Protease Inhibitor) 

then sonicated, vortexed briefly, and left on ice for 30 minutes. Samples were then centrifuged 

(13.2 rpm, 20 minutes, 4oC) and the pellet discarded. Total protein concentration was 

quantified using a bicinchoninic acid (BCA) assay.   

 

Following preparation, protein samples were boiled at 95oC for 5 minutes in the presence of 

sample buffer (2X). 30μg of total protein was loaded on 10% SDS-PAGE gels, separated 

(150V, 1.5 hours), and transferred onto PVDF membranes (activated with methanol) with 

transfer buffer (29mM glycine, 58mM Tris-HCl pH 7.5, 0.0375% (w/v) SDS, 20% (v/v) 

methanol) using a wet transfer system (400mAmps, 70min). Membranes were blocked for 1 

hour in milk (5% w/v in T-PBS) and incubated overnight in milk (5% (w/v) in T-PBS) containing 

the appropriate primary antibody (see figure legends) at 4°C. Membranes were washed 

extensively with T-8  
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PBS (10X PBS, 1% (v/v) Tween) and probed with appropriate secondary HRP-antibodies (RT, 

1 hour). Blots were washed extensively with T-PBS and developed using an Odyssey Fc 

Imaging System (LI-COR). For reprobing, membranes were stripped by incubating for 15 

minutes at 55oC with Restore PLUS Western Blot Stripping Buffer (Thermo Scientific), then 

washed extensively with T-PBS and blocked in milk (5% w/v in T-PBS) for 30 minutes at RT. 

Membranes were then incubated with the appropriate primary and secondary antibodies and 

developed as above. Blots were analysed, and bands quantified using Image Studio Lite (LI-

COR). A list of proteins probed for, along with their molecular weights and function or role in 

this study are shown in Table 1.1. 

 

GraphPad Prism 7 software was used to perform statistical analysis on results of all 

quantitative experiments, as detailed in figure legends. One sample t-tests were used to 

calculate and determine statistical significance between observed differences. Error bars show 

the standard deviation. A p-value less than 0.05 was considered significant for all experiments 

(p<0.05 = *, p<0.01 = **, p<0.001 = ***, p<0.0001 = ****). 

 

 

Table 9.1 Summary of proteins screened.  
All proteins for which expression levels were measured in SE and AMC rat brains using 
appropriate pr imary and secondary antibodies, their molecular weights in kDa for 
reference, and a description of their function or role in this study.  
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Figure 9.1 Protein expression changes in the TL.  
Western blotting analysis was carried out on the TL of SE and AMC rat brain samples (n=4 (time point 1), n=5 (time points 2 & 3)) from 
across 3x time points, using appropriate pr imary and HRP-conjugated secondary antibodies to compare protein expression levels for the 
proteins listed in Table 1. Histograms show expression levels of all proteins relative to the average expression level for the AMC, and 
blots are shown for proteins displaying altered relative expression levels in SE samples. See Table 8.2 for p-values. 
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Figure 9.2 Protein expression change in the hippocampus. 
Western blotting analysis was carried out on the hippocampi of SE and AMC rat brain samples across 3x time points (n=4 (timepoint 1),  
n=5 (timepoints 2 & 3)), using appropriate primary and HRP-conjugated secondary antibodies to compare protein expression levels for 
the proteins listed in Table 1.1. Histograms show expression levels of all proteins relative to the AMC, and blots are shown for proteins 
displaying altered relative expression levels in SE samples. See Table 8.2 for p-values  
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Table 9.2 Protein expression changes.  
A summary of the region, time point, level of significance, and p-values for al l proteins 
whose expression levels were altered in SE rats compared to AMC rats (graphs and blots 
shown in Figures 8.1 (temporal lobe) and 8.2 (hippocampus).  

 
 

 
 




