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Abstract. Assuming that the dynamics of peptides and proteins can be

described by Markov transitions between different configurational states,

we present a method which can calculate the mean first passage time

(MFPT) between sets of initial and final states. The method is described

in detail and differences between this and a method commonly employed

[1] are explained. It is shown that the proposed method is (i) more general

in allowing sets of final states, (ii) significantly faster, (iii) more accurate

since it does not involve the calculation of infinite summations. Particular

attention is given to the biologically important case of multiple final

states.
1 Introduction
There are many methods which seek to simulate the folding of a peptide or pro-
tein. They range from the very course grained approaches like the HP model [2]
to models with atomic detail like the Molecular Dynamics approach [3]. While
the course grained method gives results which can be useful as guidelines when
designing proteins, they do not describe exactly how a specific protein folds. To
describe how a specific protein in atomistic detail folds, a model like Molecu-
lar Dynamics is needed. The problem with the latter is that for system sizes of
bio-chemical interest the computational task of making a single Molecular Dy-
namics simulation which shows a complete folding process is infeasible. However,
recently a method which combines several Molecular Dynamics simulations by
using clustering and a Markov model for the state transitions has been proposed
[1]. Using this method it is possible to reconstruct the overall dynamics of a
peptide from thousands of individual simulations. This can be done by first clus-
tering the configurational space into discrete states, and then count the number
of transitions between the different states from all the simulations. The Markov
model can be described by a state vector v and a transition matrix T. Given
that the system is described by a state vector v; at time t the state vector at
time ¢t 4+ 1 can be calculated as vy = Tv;.

One of the fundamental problems that arises in the analysis of such simula-
tions is the definition of the average folding times in cases when several states
assigned by the algorithm can be considered as ”final”. From the bio-chemical
point of view the native states of proteins are defined by their ability to per-
form biological functions. The latter is often assigned to a ”functional core” of
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the molecule while the rest of the molecule is allowed to ”breath” producing
configurations that differ sometimes very significantly [4]. Clustering algorithms
produce many states described above and formal coarse graining can not be used
here because of the high risk of loosing important details in the functionally rel-
evant parts of the molecule. Thus, the most natural solution of the problem lies
in assigning a set of final states rather than trying to artificially lump states
together.

In this paper, we present a method for calculating the average folding time
from a Markov model. This method generalises to calculating the folding time
between multiple initial and final states. This is different from the method [1]
previously and most commonly used (see, for example, [5, 6]) and we investigate
cases where multiple final states lead to significant differences in the folding
times. For degenerate cases, the differences turn out to be critical, however, the
differences are also shown to be very substantial (up to ~70%) for a Markov
model constructed from a Molecular Dynamics simulation.

2 Theory

To calculate the average transition time of a Markov model we need to define
initial and final states. Each of these can either be one state or a set of states.
Assuming that we have a set of initial states I and a set of final states I’ the
average transition time can be written as:

tip = Z nPrp(n) (1)

Here Prp(n) is the probability for all paths of length n which start in I and end
on F. We assume that the Markov process is described by a transition matrix
T and that there is a total of N states. The first problem in the calculation is to
find an expression for P;r(n). Below we introduce T,L,0 and v.

— From the transition matrix 7" remove the rows and columns for all states
in F to form a new matrix 7. This new matrix will have a dimension of
(N —d) x (N —d), where d is the number of states in F.

— Form matrix L which is of dimension d x (N — d) and holds the matrix
elements of T that give the probabilities for entering F' from all other states.

— Form row vector o which is of dimension 1 x d and holds ones in all places.

— Form vector v of dimension (N — d) x 1. The elements of v must describe
the initial distribution of states in I. If each starting state is equally likely
then their elements must be equal. For the states not in I the initial value
in v must be zero. The total sum of all elements in v must be 1.

Using the quantities given above Prp(n) can be written as oliT”’lv (an expla-
nation for this is given in Appendix A). Let us assume that 7" has eigenvectors
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e; with corresponding eigenvalues \;. We then expand v in this basis. This gives
v =), a;e;. The average transition time (1) can then be written as:

tirp = inP[F(n) = inoLT”_lv (2)
n=1 n=1
o0 o0
= Z noLT™ ! Z e, = Z Z noLai)\?_lei (3)
n=1 i n=1 1
= Z (i n)\zﬁ_1> a;oLle; = Z (1_0[7;)201161‘ (4)
i n=1 v

%

The method proposed differs from the commonly used method [1] in (i) it
allows sets of final states, while the latter one only permits a single final state,
(ii) it does not involve the calculation of infinite summations, thus reducing the
calculation time significantly, (iii) for the same reason our method is more accu-
rate since the calculation of the eigenvectors and eigenvalues is a well developed
area of applied mathematics.

3 Results

In this section we apply the method described to three examples. Firstly we
investigate two artificial degenerate cases which describe extreme folding situ-
ations. One case is when only one folding path exists and the other extreme is
when transitions between all states exist so that all paths are possible. There-
after we investigate how the computational time scales with the number of states
in a given transition matrix.

The situation with only one folding path can be described by the transition
matrix (5). There are a total of five states in this matrix. Labeling with numbers
from 1 to 5 we consider a situation where the initial state is 1 and the set of
final state is 4,5. Using the method given in the literature [1] the average folding
times from state 1 to 4 and from state 1 to 5 can be found. They can then be
compared with the time of reaching the set of states 4 and 5. The average folding
time from state 1 to 4 is 45.0 time steps and the average folding time from state
1 to 5 is 80.0 time steps. Thus, it is critical which state to consider as a ”final”
one even though they are the neighbouring states on the folding path.

Using the method proposed in this work, the average folding from state 1
to the set of states 4 and 5 is found to be 45.0 time steps. This is the same as
the average folding time between states 1 and 4. The reason why this result is
correct is that there is only one folding path between states 1 and 5. This means
that it is not possible to reach state 5 from state 1 without first passing through
state 4. Hence, only the time taken to arrive to state 4 which is of importance
defines the folding time to the set 4,5.
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0.8000 0.1000 0.0000 0.0000 0.0000
0.2000 0.8000 0.1000 0.0000 0.0000
0.0000 0.1000 0.8000 0.1000 0.0000 (5)
0.0000 0.0000 0.1000 0.8000 0.2000
0.0000 0.0000 0.0000 0.1000 0.8000

The other limiting case, the situation with multiple folding paths can be
represented by the transition matrix (6). Again there is a total of five states in
the matrix and we take state 1 to be the initial state and states 4 and 5 to be the
final states. By using the method from [1] the calculated average folding time
from state 1 to 4 is 20.0 time steps and from state 1 to 5 is also 20.0 time steps.
Our method, however, results in 10.0 time steps for the 4,5 set. The reason why
this result is correct is because compared to a single final state the probability of
entering two final states from all other states is doubled. Since this probability
is doubled in each time step the average folding time is halved.

0.8000 0.0500 0.0500 0.0500 0.0500
0.0500 0.8000 0.0500 0.0500 0.0500
0.0500 0.0500 0.8000 0.0500 0.0500 (6)
0.0500 0.0500 0.0500 0.8000 0.0500
0.0500 0.0500 0.0500 0.0500 0.8000

Thus, in both limiting cases it is fundamentally important to consider mul-
tiple final states as sets of states. Considering them individually leads to signif-
icantly different results in the mean passages times.

The cases discussed above are constructed examples. To test a realistic situa-
tion a transition matrix was obtained from a Molecular Dynamics simulation of
the four residue peptide VPAL solvated in 874 water molecules. The simulation
box was 3.0x3.0x3.0A. The system was equilibrated before it was sampled for
500ns. The force field was 53a6 [7, 8, 9] and the temperature was held at 300K
during the simulation. The Molecular Dynamics trajectory was then clustered
in configurational space and the number of transitions between these states was
counted. From this the transition matrix (7) was calculated.

As in the previous cases we take state 1 to be the initial state and states 4
and 5 to be the final states. Following the method from [1] the average folding
time from state 1 to 4 was calculated to be 277.7 ps and 384.7 ps for the 1 to
5 transition. The average folding time from state 1 to the set 4,5 obtained with
our method is 220.0 ps. The difference demonstrates that not only limiting cases
can produce substantial differences in calculated average folding times.

0.9940 0.0080 0.0018 0.0220 0.0001
0.0023 0.9802 0.0000 0.0000 0.0232
0.0016 0.0003 0.9973 0.0073 0.0006 (7)
0.0020 0.0000 0.0007 0.9505 0.0152
0.0000 0.0115 0.0000 0.0201 0.9610

From the matrix we can see that it is not of the form of either of the matrices
5 or 6. The new matrix can be described as a combination of the two. Therefore,
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the difference in average folding time can also be understood by a combination
of a limited number of folding paths (5) and an increase in the probability at
each time step for reaching the final states (6). For larger peptide and protein
systems possibly involving thousands of states the difference in the calculated
average folding times may be less significant, however, for a given example this
is difficult to quantify without calculating the correct average folding time given
by Equation 1.

To investigate how the computational time of the algorithm scales with the
number of states in the transition matrix we have done simulations with transi-
tion matrices of different size. The transition matrices are chosen so that after
each time step there is an 80% chance of staying in the same state and there is
an even probability of entering all other states. The transition matrix is there-
fore of the same form as the transition matrix (6). As the transition matrix is
symmetric any choice of initial and finial states will give the same results.
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Fig. 1. Running time against the number of states in the transition matrix for the new
algorithm.

The results can be seen in Figure 1. It is found that the running time of the
algorithm increases with the number of states in the transition matrix. In the
algorithm most time is spent calculating the eigenvectors. Calculating eigenvec-
tors scales as O(n?). For large n this behavior will therefore describe the running
time of the algorithm. Once the eigenvectors are found calculating the MFPT
is done easily by Equation 2 and given that the eigenvectors are calculated ac-
curately the MFPT will also be accurate. In Figure 2 the equivalent results are
shown for a method which involves computing an infinite sum. For this method
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the running time depends on the accuracy needed. Here we have chosen a cutoff
of 0.0001. This is accurate enough for transition matrices with few states. How-
ever, as the number of states increases the cutoff will have to be decreased to
maintain the accuracy. Therefore the linear behavior in Figure 2 is artificial. It
is also noted that even with the modest accuracy chosen the new algorithm are
orders of magnitude faster.
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Fig. 2. Running time against the number of states in the transition matrix for a method
which involves an infinite summation.

4 Conclusions

In this work we present an efficient method for obtaining the average folding time
between sets of states. By applying the method to two constructed degenerate
transition matrices we demonstrate that the results are fundamentally different
from the individual transitions to the states in the final set. The method was also
applied to a transition matrix of a four residue peptide obtained from a Molecular
Dynamics simulation. Our method predicted an average folding time of 220.0 ps
to a set of two states whereas the commonly used method from [1] resulted in
277.7 and 384.7 ps for the states individually. It should be stressed that taking
the average of the times for the individual states is incorrect. The only solution in
this situation would be joining together all final states by forming a single one and
then applying the method [1]. This, however, would involve recalculation of the
transition matrix and that would result in significant computational overheads
for realistic molecules having thousands of states.
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A Calculation of Prr(n)

To illustrate how Prp(n) is calculated let us consider a three state system. Let
the initial state be 1 and the final state 3. The transition matrix for the system
is given as:
ail a1z ai3
T = | a1 a2 az; (8)
a31 a32 as3

First we form the matrices T, L, o and v:

f:[gigz], L=[aga], o=][1] :m (9)
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For n =1 we have: R
Plg(l) = OLTOU = as1 (10)
Since Py3(1) is the probability to go from state 1 to state 3 in one step there is

only one possible path, 1-3. The probability for this is simply as;. For n = 2 we
have:

Py5(2) = oLT"v = agya11 + aszaz (11)

There are two possible paths 1-1-3 and 1-2-3. The probability for each of these
is agiay1 and aggoag respectively. The sum, therefore, gives the total probability.
For n = 3 we have:

Pi3(3) = oLT?v = azjai1a1; + az1a12a21 + az2az1a11 + azgagaas; (12)
In this case there are four possible paths from state 1 to 3. These are 1-1-1-3,

1-2-1-3, 1-1-2-3 and 1-2-2-3. P;3(3) is the sum of the probabilities for each of
these paths.
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