
Proposal of a Methodology for Implementing a Service-Oriented
Architecture in Distributed Manufacturing Systems
I. Medina, A. Garcia-Dominguez, F. Aguayo, L. Sevilla, and M. Marcos

Citation: AIP Conference Proceedings 1181, 622 (2009); doi: 10.1063/1.3273683
View online: https://doi.org/10.1063/1.3273683
View Table of Contents: http://aip.scitation.org/toc/apc/1181/1
Published by the American Institute of Physics

https://printorders.aip.org/?utm_source=Scitation&utm_medium=banner&utm_campaign=PDF%20Cover%20Page%20POD
http://aip.scitation.org/author/Medina%2C+I
http://aip.scitation.org/author/Garcia-Dominguez%2C+A
http://aip.scitation.org/author/Aguayo%2C+F
http://aip.scitation.org/author/Sevilla%2C+L
http://aip.scitation.org/author/Marcos%2C+M
/loi/apc
https://doi.org/10.1063/1.3273683
http://aip.scitation.org/toc/apc/1181/1
http://aip.scitation.org/publisher/


Proposal of a Methodology for Implementing a 
Service-Oriented Architecture in Distributed 

Manufacturing Systems 

I. Medina''', A. Garcia-Dominguez", F. Aguayo , 
L. Sevilla" and M. Marcos'* 

"Department of Computer Languages and Systems. University of Cadiz, c/Chile 1, E-11002, Cadiz, 
Spain 

Department of Design Engineering. University of Seville, c/ Virgen de Africa, 7, Seville, Spain. 
'Department of Materials, Manufacturing and Civil Engineering. University of Malaga.. Plaza el Ejido 

s/n, Malaga, Spain 
Department of Mechanical Engineering and Industrial Design. University of Cadiz, c/ Chile 1,E-

11002, Cadiz, Spain. 

Abstract As envisioned by Intelligent Manufacturing Systems (IMS), Next Generation 
Manufacturing Systems (NGMS) will satisfy the needs of an increasingly fast-paced and 
demanding market by dynamically integrating systems from inside and outside the 
manufacturing firm itself into a so-called extended enterprise. However, organizing these 
systems to ensure the maximum flexibility and interoperability with those from other 
organizations is difficult. Additionally, a defect in the system would have a great impact: it 
would affect not only its owner, but also its partners. For these reasons, we argue that a service-
oriented architecture (SOA) would be a good candidate. It should be designed following a 
methodology where services play a central role, instead of being an implementation detail. In 
order for the architecture to be reliable enough as a whole, the methodology will need to help 
find errors before they arise in a production environment. In this paper we propose using SOA-
specific testing techniques, compare some of the existing methodologies and outline several 
extensions upon one of them to integrate testing techniques. 

Keywords: Service-oriented architectures, web services, intelligent manufacturing systems, 
model-driven engineering, testing. 
PACS: 07.05.Bx, 64.60.aq, 89.20.Ff 89.20.Hh. 

INTRODUCTION 

Nowadays, manufacturing firms must compete in a market with ever shorter 
product lifespan and increasingly high expectations of flexibility and quality, at 
competitive prices. To be successful, they must continually adapt and improve their 
business processes according to the situation and available resources. However, the 
centralized software platforms generally used in most companies at the time cannot be 
changed as quickly as needed. These platforms end up defining the firm's practices, 
rather than the current market situation. 

CPl 181, Third Manufacturing Engineering Society International Conference 
edited by V. J. Segui and M. J. Reig 

O 2009 American Institute of Physics 978-0-7354-0722-0/09/$25.00 

622 

http://07.05.Bx


For this reason, a new approach for the information systems in the so-called Next 
Generation Manufacturing Systems (NGMS) is required. On an abstract level, the 
need to distribute tasks among several specialized information systems is currently 
acknowledged [1]. The holonic enterprise is one of the most common distributed 
enterprise protomodels [2]. It consists of a collection of holons: semiautonomous 
agents which collaborate at several stages. 

Once the basic conceptual framework has been established, it needs to be 
implemented in an information system. Fortunately, a new approach for information 
system architecture design, which fits this framework, has received considerable 
attention in the past few years: service-oriented architectures (SOA). The major 
underlying concept is not to build a single integrated system for each business unit or 
project, but rather develop a collection of services which can be reused across the 
organization or even from external business partners. These services can be integrated 
in higher-level services which provide their own added value and model entire 
business processes instead of individual tasks. These architectures are usually 
implemented using web services (WS). Web services help leverage existing tools and 
technologies and reduce the start-up costs. 

This approach and its implementation using WS offer attractive gains on both the 
technical and business sides, but also bring their own complications. Maximum 
flexibility is achieved through highly granular services, but deploying each service has 
an additional cost beyond simply coding the required functionality. For this reason, the 
best option in the short term is to deploy fewer services. Best results are obtained with 
a medium service granularity, but this is hard to locate. In addition, there are inherent 
difficulties in developing any distributed system of this magnitude. 

Several SOA-oriented methodologies [3-5] have been proposed to control the 
complexity of this process and ensure more controllable and repeatable results. Some 
of these modify existing object-oriented methodologies, while others have been 
created from the ground up around the concept of a "service", as known in SOA. It 
can be argued that the latter methodologies could provide the best results, as they 
operate under a higher level of abstraction and represent in a more direct way the 
business processes to be implemented. 

Whichever methodology we choose, there is one more problem: as services are 
integrated deeper and made more visible, the organization will rely more on their 
correct operation and potential damage in case of failure will also increase. 

This text proposes extending an existing SOA methodology with the models and 
techniques required to integrate various testing techniques for service-oriented 
architectures. Several extensions are suggested in order to help locate defects before 
they are manifested in the production environment in the manufacturing firms' 
information systems. The present paper is structured as follows: after introducing the 
basic concepts behind the ideas exposed in this paper, a comparison of the existing 
methodologies will be performed and one of them will be selected as a starting point 
for the new methodology. After proposing several extensions to accommodate testing 
models, this paper will be concluded by a discussion of related works and results 
obtained. 

623 



FOUNDATIONAL CONCEPTS 

In this section some of the basic concepts this work is built upon will be briefly 
described. First, existing approaches for modehng distributed organizations will be 
discussed. Later, the core elements of the present proposal will be introduced: service-
oriented architectures and model-driven development methodologies. 

Virtual Organizations: the Extended Enterprise 

No enterprise lives in a vacuum space: they must participate in their own ecosystem 
consisting of their supphers, designers, manufacturers, subcontractors, clients and 
other competing firms. To be successful, a company needs to add more value to its 
product than its competitors, and this usually means reacting more quickly to market 
demands using the available information. 

However, companies must now interact beyond the local geographical boundaries 
they used to work in. Communicating different information systems through the 
Internet is therefore essential, as well as standardizing on the business practices of 
each stakeholder and solving various logistics problems. The resulting organization is 
known as an extended enterprise [6]. There is a wide spectrum of models for 
representing the structure of an extended enterprise. According to IMS Consortium, 
most of them can be categorized either as bionic, fractal or holonic models [2]. 

Bionic models are inspired on biological systems. The enterprise consists of a 
collection of tissues (representing processes, products or services), built by cells which 
perform various tasks and take and produce genetically coded artifacts (parts and 
products). Likewise, cells are controlled by secreting enzymes (internal control 
information) and can influence or be influenced by hormones released to the 
environment (information of the current situation and other cells). 

On the other hand, fractal models are based on the mathematical configurations 
with the same name. As their mathematical counterparts, these models construct the 
enterprise from self-similar entities at various levels of abstraction. A new fractal is 
built upon another when the lower level fractal cannot perform all the required tasks 
by itself Conversely, the enterprise's goals become increasingly specific as they 
descend from the main fractal. Each fractal can reorganize and take decisions by itself 
up to a certain degree. 

Lastly, holonic models trace back to the theories about hierarchical systems 
proposed by Koestler. Koestler defines a holon as an entity which is at the same time a 
whole built up from lower level holons, and a part of several higher level holarchies. 
These holons are both partly independent and partly dependent on holons at the same 
or immediately higher levels. 

These three models follow different approaches, but have in common their view of 
the enterprise as a dynamic network of agents with a hmited degree of autonomy and 
collaboration with others. When implementing one of these models, a recurring 
problem is how to estabhsh the required communication channels. Most information 
systems tend to be deployed according to short-term plans specific to each business 
unit in the organization. Additionally, it might be too risky to replace existing mission-
critical legacy systems. These situations present problems in collaborating with firms 

624 



in other countries and taking advantage of the new processes and other advantages that 
could be obtained. 

Service-Oriented Architectures 

Normally, enterprise information systems are divided into several layers, which are 
then deployed across several machines. A database collects all the information, which 
is handled by a business logic layer and then manipulated by the user through a 
presentation layer. This sort of architecture has been successfully used to create many 
large computer systems to this date. It naturally fits with centralized, hierarchical and 
stable organizations. 

Nevertheless, it has its drawbacks. These systems tend to be designed to satisfy 
short-term needs of parts of the organization. They often do not take into account the 
mid- and long-term need to change the business practices: the business logic tends to 
be coupled to the design and implementation. Similarly, they usually are not designed 
to help collaborate with previously unknown companies. Over time, enterprises end up 
working around the system to innovate, or lose their capability to react to unexpected 
situations. 

For these reasons, a new approach based on service-oriented architectures has 
received considerable attention recently. Rather than a new set of technologies, it is a 
different way to organize information systems [7]. Instead of using rigid and 
centralized structures, information systems are modeled as a collection of reusable 
services which can be recombined as required to define new business process or refine 
the existing ones. The underlying ideas are quite similar to those from the holonic or 
agent-based models: a lower-level service can be part of several higher-level services 
or business processes by collaborating with other services while having a certain 
degree of autonomy. This similarity suggests that it would be appropriate to use 
service-oriented architectures in distributed manufacturing systems. 

The technologies most commonly used currently to implement service-oriented 
architectures are based on web services. These technologies take advantage of many 
existing tools and open standards to reduce the technological barriers involved. 

A common mistake when adopting a SOA is assuming it only takes acquiring and 
instalhng the latest version of the chosen SOA software platform. The only way to 
reap its full benefits is to apply its basic concepts to define a global vision of all 
services and processes in the organization, and use it to define a catalog of high-
quality services. As this is a non-trivial process, it is important to define 
methodologies which guide its execution, just as when any other sort of software is 
developed. We will compare some of the existing alternatives in a later section. 

Model-Driven Engineering 

One of the problems while developing software is that there is only a very weak 
hnk between the high-level models (closer to the way we normally think) and the code 
which implements them. In practice, modeling languages are only used as 
communication tools between developers and most models are thrown away after the 
code or the requirements have been changed. This presents problems for several 

625 



common tasks, such as verifying if requirements are met, optimizing a design after 
initial assumptions are changed, take advantage of the latest technologies or checking 
if the system meets certain properties. 

An emerging perspective on software development known as model driven 
engineering (MDE) and advocated by the Object Management Group (OMG) as 
model driven architecture (MDA) [8] attempts to change this situation. It suggests 
implementing the system from a succession of increasingly detailed models, which 
map between each other in various levels of automation. It is argued that this would 
raise the abstraction level at which systems are implemented, in a similar way to what 
the high-level programming languages achieved in comparison to their low-level 
counterparts. 

Specifically, OMG's proposal defines three types of models for every system. 
Computation-independent models (CIMs) only describe the business environment, 
ignoring how it will be later reflected in the information system. Platform-independent 
models (PIMs) indicate how to meet the business requirements through the system, 
without going into the details of how it will be implemented in terms of a particular 
software and hardware platform. Lastly, platform-specific models (PSM) fill the rest 
of the gaps, in order to simplify their final translation to code. 

SERVICE-ORIENTED ARCHITECTURE METHODOLOGIES 

In this section some of the existing methodologies for developing information 
systems based on service-oriented architectures will be reviewed. Specifications and 
methodologies which only cover specific parts of the software development process, 
such as the Business Process Modeling Notation (BPMN) [9] will be discarded. For 
instance, the latter specification only describes how to model business processes, and 
not how they should be implemented. 

Precedents in Component Based Development 

As said above, SOA is not a revolution, but an evolution due to the lessons learned 
in the field of Software Engineering. There are similarities between SOA and the 
immediately previous conceptual step: component based development (CBD) [3]. 
Many definitions exist for "componenf, but it can be broadly described as a self-
sufficient "black box" which provides some service without detaihng how it is 
realized, and which can be integrated with other components. The main difference 
between SOA and CBD is how those services are used: in CBD, the component 
becomes an indivisible part of the main program, while in SOA it remains as an 
independent entity which exchanges messages with other programs. Moreover, SOA's 
services implement business-level logic, while components may implement lower-
level logic. 

SOMA Methodology 

The Service Oriented Modeling and Architecture (SOMA) methodology developed 
at IBM [4] defines an integrated approach over the SOA development process. SOMA 

626 



spans from its conception to its monitoring and maintenance. It is organized as an 
iterative improvement cycle, which is further divided into several stages. 

First, a business model is defined, along with a set of templates for each of the 
possible integration solutions. Next, the services to be included in the architecture will 
be collected, using information from several sources: the organization's goals, a 
conceptual model of the environment, and existing information systems. 

Later, all services will be re-factored, rationalized and specified as a part of a 
coherent architecture. As a large number of services might have been identified, a 
subset containing those with the highest returns on investment will be selected, and the 
rest will be postponed. Finally, the selected services will be implemented, debugged, 
deployed and monitored. 

The methodology has been implemented as a set of extensions to the Rational 
Unified Process (RUP), and uses a shghtly extended form of the Unified Modeling 
Language (UML) [10]. This implies several advantages and disadvantages: though it 
has been successfully used in several projects and is based on a well-known process, it 
is a complex methodology which requires producing a large volume of documentation 
and using many tools. For this reason, it may not be the most adequate option for 
medium and small manufacturing firms, with fewer resources to dedicate to modeling. 
A more lightweight approach would be more effective in these cases. 

SOD-M Methodology 

The Service Oriented Development Method (SOD-M) [5,11] is also model-driven 
and centered on services. It covers the three OMG MDA viewpoints over the business 
aspects (CIM) and the information system (PIM and PSM). The business viewpoint 
includes models of the value exchanges between the organization and its environment 
[12] and descriptions of the existing business processes as UML activity diagrams. 
These diagrams are similar to the well-known flow diagrams. 

A set of use case models for the information system is defined at the PIM level. 
Later on, these models are extended into service process models, which detail the 
activities required for their completion and their relationships with other processes. 
These activities will be then distributed among the stakeholders in the service 
composition models. Both of these two models use UML activity diagrams. 

At the PSM level, the extended service composition models specify what activities 
from the original service composition models will be exposed as web services. 
Interfaces will be defined for each of these services. 

This methodology is simpler than SOMA, and some of the mappings between the 
different models are partially automated [II], unlike other approaches, such as [3]. A 
diagram of the relationships between the different models is shown in figure I. SOD-
M uses simpler notations, helping clients and developers communicate. However, 
unlike SOMA, SOD-M does not include all the steps in the development process. 
Specifically, it does not integrate software testing activities. 

Nevertheless, it can be considered as a good basis for an integrated methodology 
for the development of service-oriented information systems, where the current 
business practices of the organization can be reflected. 

627 



Computation 
Independent 

Models 

Value model 
Business 

Process Model 

Platform 
Independent 

Models 

Business 
Viewpoint 

Use Case Model 

Extended Use 
Case Model 

+ Service 
Process Model 

+ Service 
Composition Model 

Platform 
Specific 
Models 

•o- ••O" 

3 System 
? Viewpoint 

Web Service 
Interfaces 

Extended Service 
Process Model 

FIGURE 1. Diagram of the models used in SOD-M 

INTEGRATION OF TESTING MODELS INTO SOD-M 

In the previous section some of the existing methodologies were reviewed, and 
SOD-M was selected as a valid starting point for defining a lightweight integrated 
SOA methodology. However, it lacked an important activity: testing the software. In 
this section several extensions to SOD-M in order to cover that gap are proposed. 

Test Categories 

Broadly speaking, there are six kinds of tests for information systems [13]: 
installation, acceptance, system, function, integration and module (also known as unit) 
testing. Installation and module testing do not require a different approach in the 
context of SOA, so they will not be discussed any further in the present paper. 

System tests in SOA would test the whole architecture, that is, the ecosystem 
created from all the exposed services and their consumers. They could check whether 
our system would at some point invalidate some of its performance constraints, such 
as the expected number of transactions processed per minute, logged in users or 
maximum data throughput, or fail to enforce some access restriction rule, among 
others. These properties are usually part of its Service Level Agreement (SLA). 

Function tests, on the other hand, only consider a single business process, which 
generally composes a collection of smaller web services into a more comprehensive 
single web service (using the Web Service Business Process Execution Language or 
WS-BPEL, for instance). Testing must ensure that the desired functionality has been 
implemented and that other restrictions have been met. These restrictions are usually 
those from the system tests, but applied at a lower level. 

628 



Integration tests are limited to a single web service, usually implemented by 
assembling multiple modules. The tests to be performed are again both similar and 
more specific than those in the upper levels, except for the fact that in most cases, the 
elements under test will be written using general purpose programming languages, 
rather than using domain specific languages to compose services, such as WS-BPEL. 

Proposed Extensions 

Acceptance tests can be assisted by the traceability relationships between the 
models in the CIM and PIM levels. If we follow the relationships from each business 
process activity up to the web service level and verily that these have been 
implemented correctly, we will have a high degree of confidence that the requirements 
have been met. Therefore, there is no need to change the model in this case, but rather 
the tools that manipulate it. 

System testing could use an extended version of the service process PIMs which 
would include assertions about the expected service level (in terms of performance, 
response time, etc.) and access restrictions. These annotations would be performed at a 
global level and then propagated through the structure of all business process to each 
individual activity. Every activity would need to aggregate the annotations from each 
business process it participated in, producing information for the PSMs. Test cases to 
verily whether some of the requirements were not met at some point in time could be 
derived from these specific requirements. 

Figure 2 shows a sample service process model for attending to a request from a 
client. The model has been decorated with several stereotyped comments, indicating 
the minimal number of transactions per second which should be processed and placing 
a time limit on each of them. Conditional branches include probability estimations for 
each branch. From the information manually specified by the designer (inside 
comments with colored backgrounds) new information could be automatically derived 
(comments with clear backgrounds). For example: if the probability of accepting the 
request is p=0.8, each of the two concurrent execution paths should be able to process 
5p=4 transactions per second. 

There are two options for performing the function and integration tests: either 
generating and running test cases with inputs and their expected outputs, or checking 
several properties on the implemented code without running it. In both, models listing 
what test cases to run or what checks to make will be useful. Compositions in their 
service composition models and activities to be exposed as web services in the 
extended service composition models could include sets of logical conditions [15] 
defining the expected relationships between inputs, outputs, and changes on the stored 
information. SOD-M by itself does not include models to represent the information 
stored in the system, but its authors have already taken it into account, integrating 
SOD-M with the Web information system development methodology MIDAS [5]. 
MIDAS includes a conceptual data model at the PIM level. 

Figure 3 illustrates a sample service composition model which has been derived 
from the previous business process model. The conditions to be met at the beginning 
and end of the execution of the composition have been marked with the standard 
stereotypes «precondition» and «postcondition». Likewise, the conditions to 

629 



be met before and after the ''Create receipt" web service has been invoked are listed 
with the «localPrecondition» and «localPostcondition» stereotypes. The 
conditions for this web service specify that the request should initially be in an open 
state, accepted, not empty, and should not already have a receipt created for it. After it 
has been invoked, a new receipt with the correct articles, prices and total sum should 
have been created and sent to the ''Perform paymenf activity for later processing. 

« a c t i v i t y » 
transactionsPerSec = 
timeLimit = 0.2 

« d e c i s i o n » 
probability = 0.8 

« d e c i s i o n » 
probability = 0.2 

« a c t i v i t y » 
transactionsPerSec = 4 
timeLimit = 0.7 

« a c t i v i t y » 
transactionsPerSec = 5 
timeLimit = 0.1 

Attend to Request 

Sequesf l -
Evaluate 
request -̂ 0 

[output.accepted = false] 

>0^ 

-̂ 1 
[output.accepted = true] 

Send 
contents 

^ 
Create 
invoice 

Perfbmi 
payment 

^1 

Close 
request ^® 

« b u s i nessProcess» 
transactionsPerSec = 5 
timeLimit = 1 

« a c t i v i t y » 
transactionsPerSec = 4 
timeLimit = 0.35 

« a c t i v l t y » 
transactionsPerSec = 4 
timeLimit = 0.35 

FIGURE 2. Service process model decorated with manual and automatic service level expectations 

Attend to Request «precondit lon» request.open = true 
«postcondlt ion» request.open = ^Ise 

Request \-

Input 

Evaluate 
request 

BUtjiUt 

[output.accepted = felse] . 

>< 

[else] 

- * ^ 

Close 
request 

« local Precondltlon» 
request.accepted = true 
and request.open = tme 
and request.articles->count() > 0 
and not lnvoice.alllnstances(} 
->exlsts(f I f.request.ld = request.ld) 

«localPostcondltlon» 
request.ccllsNew() 
and Invoice.entries->count() 
= request. artlcles->count() 

and Invoice.entries 
->fbrAII(e | e.price = e.artide.cunBntPrice) 

and Involce.total = 
Invoice, entries 
->collect(e I e.price * (1 -•- e.tax) * e.quantlty)->sum() 

FIGURE 3. Sample service composition model annotated with OCL assertions 

630 



Once the behavior of all service processes and web services has been specified, the 
specifications can be used to integrate various testing techniques. For instance, a 
cause-effect graph [13, 16] from which test cases could be semiautomatically 
extracted could be derived, among other testing oriented models, such as those in [17]. 

Only generating a large number of test cases is usually not enough: the test suite 
must meet a minimum level of quality. Parts of this evaluation can be performed over 
the specification (that is, our models), and other parts need to be done by running the 
implemented code [18]. For instance, [19] helps finding potential coding mistakes that 
the test cases would not detect, and [20] identifies properties which can differ from 
those expected from the composition. There are other options, such as calculating the 
percentage of all instructions which were run by a set of test cases, for instance. 

Ultimately, after running the tests over the final executable versions of the services 
and compositions and locating defects and gaps in the test suites with them, the 
intermediate models could be refined to integrate our new knowledge. This knowledge 
could then be ported to another platform or serve as the base for the new tests to be 
performed after the next change, making sure everything that worked before still 
works as expected. 

CONCLUSIONS AND FUTURE WORKS 

To be competitive, manufacturing firms must integrate the latest technologies in 
manufacturing processes and revise their business practices according to market 
demand. This requires the organization to change from a single centralized and 
hierarchical entity to a collection of dynamically interrelated elements, which integrate 
the supphers, chents, designers, subcontractors and other stakeholders in a so-called 
extended enterprise. The importance of this fact can be seen in the emergence of 
distributed enterprise models in the field of Manufacturing Engineering, such as the 
holonic, fractal and bionic enterprises. 

It is argued in this paper that such an extended enterprise should have an 
information system fitting that vision. It would follow a service-oriented architecture, 
where the whole system is defined as an ecosystem of services produced and 
consumed by different parties, which can be freely recombined to change the current 
business practices and integrate external systems. However, it needs to be done 
carefully, as it involves the whole organization, and a defect in a widely reused service 
could have grave consequences. Therefore, it is required to follow a well-defined 
methodology to simplify communication between developers and users and ensure the 
development of an architecture whose services meet the defined requirements. 

Future work will start by integrating the techniques which provide the most 
immediate benefits. These would be the modifications to the service process models to 
integrate requirements over response time, expected performance, and the probability 
distributions for the conditional branches. They would require extending the 
metamodels included in the SOD-M methodology, and implementing of the automatic 
inference logic in the selected modehng tools. 

Later on, a notation ([15] is a first candidate) will be selected for specifying the 
behavior of each service composition model according to the relationships between 
their inputs and outputs and the changes over the stored information. This notation 

631 



will then be adapted to generate test cases and perform various checks against 
implementations of those compositions using domain specific languages such as WS-
BPEL [14]. The previous adaptation of the notation to WS-BPEL will be then 
extended to individual web services. 

Finally, test coverage evaluation techniques will be added into the methodology, to 
provide measures of the quality of the tests run. Several coverage criteria, based on the 
code of the program, could be combined with more advanced tools, such as [20], 
which could consider the coverage of the logic itself, rather than only its structure. 

REFERENCES 

1. M. Marcos, F. Aguayo, M. Sanchez Carrilero, L. Sevilla and J.R. Lama, "Toward the Next Generation of 
Manufacturing Systems. Frabiho: a Syntiiesis Model for Distributed Manufacturing", in Proceedings of the 
FirstI^proms Virtual Conference, Elsevier, 2005, pp. 35-40. 

2. A. Tharumarajah, A. Wells and L. Nemes, "Comparison of emerging manufacturing concepts", in Proceedings 
of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, California, USA, 1998, pp. 325-
331. 

3. Z. Stojanovic, "A Metiiod for Component-Based and Service-Oriented Software Systems Engineering". Ph. D. 
Thesis, Delft University of Technology, 2005. 

4. S.G. A. Arsanjani and A. Allam, "SOMA: a method for developing service-oriented solutions", IBM Systems 
Journal 47, 377-396, 2008. 

5. M.V. de Castro, "Aproximacion MDA para el desarroUo orientado a servicios de sistemas de informacion web: 
del modelo de negocio al modelo de composicion de servicios web". Ph. D. Thesis, University Rey Juan Carlos, 
2007. 

6. J. Browne, L Hunt and J. Zhang, "The Extended Enterprise (EE)", in Intelligent Systems for Manufacturing: 
Multi Agent Systems and Virtual Organizations, edited by L.M. Camarinha-Matos, H. Afsarmanes and V. 
Merik, Kluwer Academic Publishers, London, 1998, pp. 3-30. 

7. T. Erl, SOA: Principles of Service Design, hidiana, USA: Prentice Hall, 2008, ISBN 0-13-234482-3. 
8. Object Management Group, "MDA Guide version 1.0.1", June 2003. See: http://www.omg.org/mda/. 
9. Object Management Group, "Business Process Modeling Notation 1.2", January 2009. See: 

http ://www. omg. org/spec/BPMN/1.2/. 
10. Object Management Group, "Unified Modeling Language 2.1.2", November 2007. See: 

http://www.omg.org/technology/documents/modeling_spec_catalog.htm. 
11. J.M. Vara Mesa, E. Marcos and M.V. de Caslro, "Obteniendo modelos de sistemas informacion a partir de 

modelos de negocios de alto nivel: un enfoque dirigido por modelos", in Proc. IV Jornadas Cientiflco-Tecnicas 
en Servicios Web y SOA, Seville, Spain, 2008, pp. 15-28. 

12. J. Gordijn, "Value-based requirements engineering: Exploring Innovative e-Commerce Ideas", Ph. D. Thesis, 
Vrije Universiteit, 2002. 

13. G.J. Myers, The Art of Software Testing, John Wiley & Sons, second edition (2004), ISBN 0471469122. 
14. OASIS, "WS-BPEL 2.0 Standard", April 2007. See: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-

OS.html. 
15. Object Management Group, "Object Constraint Language Specification 2.0", May 2006. See: 

http://www.omg.org/technology/documents/formal/ocl.htm. 
16. A. Paradkar, M.A. Vouk and K.C. Tai, "Specification-based testing using cause-effect graphs", in Annals of 

Software Engineering 4, 133-157, January 1997. 
17. Y. Zheng, J. Zhou and P. Krause, "An Automatic Test Case Generation Framework for Web Services", Journal 

of Software 2, 64-77, September 2007. 
18. H. Zhu, P. Hall and J. May, "Software Unit Test Coverage and Adequacy", ACM Computing Surveys 29, 366-

427, December 1997. 
19. J. J. Dominguez Jimenez, I. Medina Bulo and A. Estero Botaro, "A framework for mutant genetic generation 

for WS-BPEL", in Proceedings of the 35th Conference on Current Trends in Theory and Practice of Computer 
Science (SOFSEM 2008), Spindleruv Mlyn, Czech Republic, 2008. 

20. M. Palomo-Duarte, A. Garcia Dominguez and I. Medina-Bulo, "Improving Takuan to analyze a meta-search 
engine WS-BPEL composition", in Proceedings of the 4th IEEE International Symposium on Service-Oriented 
System Engineering, Jhongli, Taiwan, 2008. 

632 

http://www.omg.org/mda/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0OS.html
http://www.omg.org/technology/documents/formal/ocl.htm

