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SUMMARY

RECQL5 is thesolemember of theRECQfamilyof hel-
icases associated with RNA polymerase II (RNAPII).
We now show that RECQL5 is a general elongation
factor that is important for preserving genome stabil-
ity during transcription. Depletion or overexpression
of RECQL5 results in corresponding shifts in the
genome-wide RNAPII density profile. Elongation is
particularly affected, with RECQL5 depletion causing
a striking increase in theaverage rate, concurrentwith
increased stalling, pausing, arrest, and/or backtrack-
ing (transcription stress). RECQL5 therefore con-
trols the movement of RNAPII across genes. Loss of
RECQL5 also results in the loss or gain of genomic re-
gions, with the breakpoints of lost regions located in
genes and common fragile sites. The chromosomal
breakpoints overlap with areas of elevated transcrip-
tionstress, suggesting thatRECQL5suppressessuch
stress and its detrimental effects, and thereby pre-
vents genome instability in the transcribed region of
genes.
INTRODUCTION

Over the last decade it has become increasingly evident that

transcription is closely integrated with other DNA-related pro-

cesses, such as chromatin dynamics, DNA replication, and

repair. Indeed, the essential process of expressing genes comes

at a cost: the movement of RNA polymerases through DNA is

associated with genome instability (Aguilera and Gómez-Gonzá-

lez, 2008; Helmrich et al., 2013), and RNAPII stalling, pausing,

arrest, and/or backtracking (hereafter collectively referred to as

transcription stress) generates a cellular response akin to the

DNA damage response (Wilson et al., 2013).
Transcribing polymerases are potent modulators of other

DNA-related processes, such as DNA replication. For example,

transcription-associated DNA recombination involves clashes

between transcription and replication, and transcription is also

associated with mutagenesis and contraction of CAG repeats,

as well as breaks at chromosome fragile sites (Aguilera and

Gómez-González, 2008; Helmrich et al., 2013). However, the

mechanisms underlying transcription-associated genome insta-

bility remain largely obscure, and little is known about factors

that might have evolved to counteract it.

The RECQ proteins constitute a family of conserved DNA hel-

icases that are important for maintaining genome stability, from

bacteria to humans (ChuandHickson, 2009). Thehumangenome

encodes five RECQ family members: RECQL (RECQ1), BLM

(RECQ2), WRN (RECQ3), RECQL4, and RECQL5. Mutations in

three of these, namely BLM, WRN, and RECQL4, give rise to

hereditary disorders associated with cancer predisposition and

premature aging (Bloom’s,Werner’s, and Rothmund-Thomson’s

syndrome, respectively) (Chu and Hickson, 2009). Moreover,

Recql5 knockout mice exhibit elevated levels of sister chromatid

exchange and are predisposed to various types of cancer (Hu

et al., 2005;Hu et al., 2007), suggesting that RECQL5 is important

for maintaining genome stability as well. Indeed, RECQL5 has

been implicated in the prevention of replication fork collapse

and the accumulation of DNA double-strand breaks (Hu et al.,

2009; Popuri et al., 2012) and is also somehow involved in the

suppression or removal of endogenous DNA damage as well as

psoralen-induced interstrand crosslinks (Li et al., 2011; Tadokoro

et al., 2012; Ramamoorthy et al., 2013). Concomitant mutation in

RECQL5 and another RECQ family member typically has a more

severe effect thanmutation in just one (see, for example, Hu et al.,

2005; Popuri et al., 2013), suggesting that RECQL5 is active in

pathwaysdistinct from thosegovernedbyotherRECQmembers.

However, despite RECQL5 being phenotypically implicated in

the preservation of genome integrity at several levels, the mech-

anistic basis for its function remains poorly understood.

RECQL5 is unique among the RECQ family by interacting with

RNAPII, and it harbors two RNAPII interaction domains, which
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Figure 1. RECQL5 Depletion Changes the Profile of RNAPII across

the Genome
(A) Effect of RECQL5 knockdown with two different shRNAs on the RNAPII

ChIP-seq profile. TSS, transcription start site. CTR, control.

(B) As in (A), but after overexpression (OE) of RECQL5 (see Figure S1D).

(C) RNAPII ratio of traveling ratios for 5,140 genes after knockdown or over-

expression of RECQL5, relative to that in the control (set to 1). y axes indicate

percent of all genes. See also Figure S1 and Table S1.
are relevant for the phenotypes of different RECQL5-deficient

metazoan cell types (Aygün et al., 2008; Izumikawa et al.,

2008; Islam et al., 2010; Li et al., 2011). Intriguingly, transcription

reactions reconstituted with pure general transcription factors

and RNAPII suggest that RECQL5 might act as an inhibitor of

transcription (Aygün et al., 2009). However, the physiological

relevance, if any, of this surprising observation has not been

investigated. Likewise, the mechanistic relationship between

the effects of RECQL5 mutation on genome integrity and

RNAPII transcription has also remained unclear. Here, we report

that RECQL5 has genome-wide effects on transcript elongation

and that it suppresses genome rearrangements associated with
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common fragile sites and transcription stress in the body of

genes.

RESULTS

RECQL5 Affects RNAPII Progression Genome-wide
Previous experiments indicated that RECQL5 can inhibit tran-

scription, and transcript elongation in particular, in reactions

reconstituted with purified transcription proteins (Aygün et al.,

2009). To investigate its role in vivo, we performed RNAPII

ChIP-seq analysis after RECQL5 depletion. RECQL5 knock-

down was achieved using two different lentivirus-driven shRNAs

that substantially reduced protein levels, with higher knockdown

efficiency reproducibly achieved using shRNA7 than shRNA5

(Figure S1A available online). Upon RECQL5 depletion, a striking

genome-wide increase in RNAPII levels over transcription start

sites (TSS) was observed, with the increase in peak size

correlated with knockdown level (Figure 1A). However, RECQL5

depletion had little effect on total mRNA levels, and there

was no correlation between the effect of RECQL5 depletion on

promoter-proximal peaks and gene expression (Spearman

correlation coefficient �0.05; see Figure S1B and Table S1 for

expression data), indicating that RECQL5 does not significantly

affect transcription initiation frequency.

Intriguingly, an inversion of the relative RNAPII levels across

genes was observed approximately 500 bp downstream from

the TSS, with less RNAPII being observed in transcribed regions

upon RECQL5 knockdown. This effect was again reproducibly

more severe with increasing knockdown efficiency, with the

highest level of RECQL5 knockdown resulting in a �25%

decrease in RNAPII density in transcribed regions (Figure 1A).

To further analyze quantitatively how RECQL5 affects tran-

scription at the genomic level, the density of RNAPII in the

promoter-proximal region relative to the gene body, previously

termed the traveling ratio (Reppas et al., 2006), was calculated.

In accordance with our observations, the traveling ratio was

globally higher in cells lacking RECQL5 compared to control

cells, again with a greater effect in cells with less RECQL5 protein

(Figure S1C).

We note that RECQL5 chromatin immuno-precipitation (ChIP)

and ChIP-seq analysis was also attempted, but that sites

of RECQL5 occupancy could not be reproducibly detected,

possibly because RECQL5 is lowly expressed and represents a

‘‘moving target’’ without appreciable DNA sequence preference.

Overexpression of RECQL5 Has the Opposite Effect of
Its Depletion
We repeated the RNAPII ChIP-seq experiments, but this time

after overexpressing RECQL5 (see Figure S1D). Gratifyingly,

the effect of RECQL5 overexpression on RNAPII distribution

was the opposite of that observed upon knockdown: it reduced

RNAPII density over the promoter and TSS and resulted in

increased levels across the transcribed regions (Figure 1B). In

further support of a genome-wide effect of RECQL5 overexpres-

sion, the traveling ratio moved toward lower values under these

conditions (Figure S1E).

The traveling ratios given above were for all genes, whether

they presented a clear promoter-proximal RNAPII peak or not.



Figure 2. RECQL5 Inhibits Transcript Elonga-

tion at a Number of Long Human Genes

(A) A system for regulating RECQL5 expression in

cells lacking the endogenous protein.

(B) Nascent mRNA production in different regions of

the KIFAP3 gene after release from DRB-inhibition.

(C) As in (B), but in different areas of different long

genes, after either reducing (KD, red), or increasing

(OE, green) the cellular level of RECQL5. Average

values of a minimum of three independent experi-

ments, with standard errors, are plotted.
Given that genes with a promoter-proximal peak are more likely

to be active, we next focused on 5,140 genes with clear pro-

moter-proximal peaks, and then asked how RECQL5 affects

the traveling ratio in this group of genes. Eighty percent (4,092

of the 5,140 genes) had a decreased traveling ratio upon

RECQL5 overexpression. Conversely, 76% and 88% had an

increased traveling ratio upon RECQL5 knockdown with

shRNA5 and shRNA7, respectively (Figure 1C). Importantly,

there was a substantial overlap between the genes that re-

sponded to either loss or increase of RECQL5 expression:
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among the 4,092 genes whose traveling

ratio decreased upon RECQL5 overex-

pression, 3,641 (89%) were affected in

the opposite direction by RECQL5

knockdown with shRNA7 (p value for over-

lap: 2.08 3 10�9). Thus, the same set of

genes responded to a change in RECQL5

levels.

RECQL5 Decreases the Elongation
Rate of RNAPII
We next tested whether RECQL5 might

play a role in RNAPII transcript elongation

in vivo. In order to first establish an effec-

tive and specific system for regulating

RECQL5 levels, we created a human cell

line in which an shRNA-resistant version

of RECQL5 was expressed under the con-

trol of a doxycycline-inducible promoter.

This allowed stable shRNA knockdown

of the endogenous version of RECQL5. In

this ‘‘RECQL5-shutoff’’ cell line, RECQL5

is expressed at near-normal levels, but

doxycycline removal results in its efficient

depletion (Figure 2A). Because the levels

of RECQL5 are controlled only by doxycy-

cline, this system effectively controls for

off-target effects of shRNA treatment.

This cell line was used in all subsequent

in vivo experiments.

Singh and Padgett (2009) previously

used 5,6-dichlorobenzimidazole 1-beta-D

ribofuranoside (DRB) to measure RNAPII

transcript elongation rates in vivo. DRB in-

hibits P-TEFb–dependent phosphorylation
of Spt5 and Serine 2 of RNAPII’s C-terminal domain (CTD), re-

sulting in a failure of newly initiated RNAPII to progress to the

elongation phase while permitting mature elongation complexes

to complete transcription. DRB thus reversibly blocks new tran-

script elongation and in effect synchronizes the transcription

cycle. Polymerases can then be concomitantly released by in-

hibitor removal, so that the time-resolved arrival of RNAPII at

different intron-exon junctions can be assessed. Figure 2B

shows how transcription through the KIFAP3 gene proceeded

after DRB removal. As expected, transcription over the first,
49, May 22, 2014 ª2014 The Authors 1039



Figure 3. DRB/GRO-Seq to Measure

RNAPII Progress across Genes, Genome-

wide

(A) Schematic of DRB/GRO-seq.

(B) GRO-seq reads of nascent RNA produced at

the CTNNBL1 gene at different times after release

from DRB-inhibition of transcript elongation.

(C) Profile of normalized GRO-seq reads across

8,529 genes in the human genome over time. The

insert represents an enlargement of the area close

to the TSS. PPP, promoter-proximal RNAPII peak,

observed by ChIP-seq.
promoter-proximal exon-intron junction was indistinguishable

between the two cell lines (red and purple graphs). In contrast,

pre-mRNA levels at an exon-intron junction 153 kilobases (kb)

downstream from the TSS rose markedly earlier in the cell line

depleted for RECQL5 (10–15 min; compare blue and green

graphs). This corresponds to an overall mean elongation rate

across the KIFAP3 gene of 2.34 kb/min in the knockdown

compared to 1.87 kb/min in the WT (i.e., a 25% rate increase

in the absence of RECQL5).

We similarly compared elongation rates over seven regions in

long human genes, and observed an increased transcript elon-

gation rate at most, but not all of them, with an increase of

�20% on average (Figure 2C, compare red and black bars).

Importantly, overexpression of RECQL5 gave rise to the oppo-
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site effect: it generally reduced elonga-

tion rates (compare green and black

bars). The decreases were consistently

more severe at genes in which greater

increases were observed upon RECQL5

depletion (e.g., ITPRex5-40 and IFT80),

suggesting that elongation in these re-

gions is particularly sensitive to RECQL5

levels. Conversely, regions in which little

or no change in elongation rates was

observed upon RECQL5 depletion were

also largely unaffected by overexpres-

sion (e.g., EFNA2 and OPA1). These

results are in line with those obtained

by measuring traveling ratios: the same

sets of genes are affected by RECQL5

depletion and overexpression. The re-

sults are also in agreement with the

RNAPII ChIP-seq results above, as faster

transcript elongation will result in lower

RNAPII density in the transcribed region

of genes (Ehrensberger et al., 2013).

DRB/GRO-Seq Measures RNAPII
Elongation Rates across Genes,
Genome-wide
We next used DRB in combination with

GRO-seq analysis (Core et al., 2008),

hereafter called DRB/GRO-seq, as a

new method to analyze RNAPII elonga-
tion rates genome-wide. In DRB/GRO-seq, the position of

RNAPII in the body of genes is analyzed by extending nascent

RNA with BrUTP in run-on experiments performed at different

times after DRB removal (Figure 3A). BrU-labeled RNA is then

purified and subjected to deep sequencing. Transcription at

the CTNNBL1 gene shows the potential of the technique (Fig-

ure 3B). Prior to the release from DRB inhibition (time = 0), the

vast majority of reads were observed over a narrow area near

the promoter. However, as time progressed, deep sequencing

reads were observed further and further into the gene (the tran-

scription ‘‘wave front’’ is indicated by vertical arrows). Likewise,

when assessing the data as averages across appropriately

long genes (8,529 genes, >30 kb), RNAPII activity was observed

at the beginning of genes at time = 0, 200–500 nucleotides



Figure 4. RECQL5 Loss Increases Transcript Elongation Rates across the Genome

(A) Profile of normalized GRO-seq reads across the human genome 40 min after release from DRB-inhibition.

(B) Normalized and smoothed spline profile across the CTNNBL1 gene. The read-depth differs across the gene, giving rise to apparently uneven activity

distribution.

(C) Positions of RNAPII wave fronts calculated over appropriately long genes 40 min after DRB removal. p value for differences between data sets <10�4.

(D) Transcription elongation rates in the indicated time intervals calculated from the position of RNAPII activity wave fronts. All genes included had to be long

enough for transcript elongation to not have reached the TTS at the time of measurement, so fewer genes could be tested at later time points (see Extended

Experimental Procedures). Box-plot representation shows median values ± 25% quartiles in the box and minimum/maximum distribution of the values in the

whiskers. See also Figure S2.
downstream from the TSS, but distinct from the promoter-

proximal peak (PPP) observed by RNAPII ChIP-seq (Figure 3C,

time = 0, see insert). It only moved into the body of genes

upon drug removal, in line with the idea that DRB inhibits phos-

phorylation events required for the full function of the RNAPII

elongation complex. The RNAPII wave front progressed 30–

40 kb into genes after 25 min (min), while it reached 80–90 kb

on average 40 min after DRB removal.

RECQL5 Depletion Increases Transcript Elongation
Rates, Genome-wide
Having established that DRB/GRO-seq can be used to charac-

terize transcript elongation in vivo, we now compared wild-

type cells with cells lacking RECQL5 (Figure 4). Significant

differences were difficult to detect at the early time points. After

40 min, however, the RNAPII-activity wave-shape was clearly

altered in the RECQL5 knockdown cells, with relative depletion

of polymerases in the area up to around 40 kb and with a corre-
sponding density increase in the region from 40 kb to the tran-

scription wave front at �100 kb (Figure 4A), indicating that

RNAPII generally transcribed further into genes in the absence

of RECQL5. Figure 4B shows a specific example in which

more nascent RNAPII transcript reads were detected 80–120

kb into the CTNNNBL1 gene in the absence of RECQL5 than in

normal cells (more examples in Figure S2A).

We also determined the positions of the RNAPII wave fronts at

10, 25, and 40 min in appropriately long genes (Figures 4C and

S2B, and data not shown). These were selected only on size

and other genomic parameters, and not on differential behavior

in the two cell types, but RECQL5 affected transcript elongation

rates at the majority of them. Indeed, with elongation rates

varying dramatically from gene to gene, only those at which

transcript elongation was very slow, or extremely fast, were un-

affected by RECQL5 depletion (Figure 4C). Moreover, using the

wave front positions, the median elongation rates could be

calculated (Figure 4D). In keeping with recent results (Danko
Cell 157, 1037–1049, May 22, 2014 ª2014 The Authors 1041



Figure 5. RECQL5 Depletion Results in Chro-

mosomal Instability

(A) Left: outline of CGH approach. Right: gains or

losses of genomic regions upon RECQL5 depletion

and in WT cells.

(B) Example of gene-rich region on chromosome

7p13, lost upon RECQL5 depletion. Each black dot

represents a different probe on the microarray and

the red lines their mean. Expanded area depicts

only some of the annotated transcripts in the lost

region.

(C) Recurrent lost regions and their correlation with

transcription, as well as CFSs.

(D) As in (C), but for regions of gain. See also Tables

S2, S3, and S4.
et al., 2013), transcript elongation rates close to the promoter

(i.e., at the early time points) were markedly lower than during

elongation further into the gene (25–40 min comparison at bot-

tom). This also helps explain the difference between elongation

rates obtained by qPCR (Figure 2C) and DRB/GRO-seq. More

importantly, elongation rates were significantly higher in cells

lacking RECQL5: the median elongation rate in the 25–40 min

interval was 3.96 kb/min in RECQL5-depleted cells and

3.13 kb/min in wild-type cells, a rate increase of 27% in the

absence of RECQL5 (p value 1.223 10�8) (Figure 4D). Moreover,
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among the randomly selected genes in

which elongation rates could be confi-

dently measured, 77.7% had increased

elongation rates in the mutant in the

25–40 min interval (and 78.4% in the 10–

40 min interval). Together, these experi-

ments indicate that RECQL5 moderates

transcript elongation rates genome-wide.

Chromosomal Rearrangements in
Cells Lacking RECQL5
Previous results implicated RECQL5 in

maintaining genome stability, but whether

this role is connected to the effects

on transcript elongation established

here was unclear. We used comparative

genomic hybridization (CGH) to investigate

whether chromosomal rearrangements

occur upon RECQL5 depletion, and, if so,

whether such rearrangements were asso-

ciated with transcription. CGH compares

two genomic DNA samples to detect dif-

ferences such as gains or losses of whole

chromosomes or, more likely, chromo-

somal regions (Park, 2008). A batch of

RECQL5-shutoff cells grown in the pres-

ence of doxycycline was split in two and

grown either in the continued presence of

doxycycline (to maintain RECQL5 expres-

sion [‘‘wild-type’’]), or without it to deplete

RECQL5. Genomic DNA from the two

cell populations was then compared (Fig-
ure 5A, left; and 5B). Because these cells were identical at the

outset, any change in copy number will have occurred during

this short period of growth (10 days, typically 10–14 cell divi-

sions). Strikingly, no less than 249 genomic losses and gains

occurred in response to RECQL5 depletion in the two indepen-

dent comparisons, using a log2 ratio threshold of 0.2 (Figure 5A,

right). This threshold signifies that more than�15%of cells in the

RECQL5-depleted cell population carry the particular rearrange-

ment and therefore provides a conservative measure of the

total number of genomic rearrangements taking place. The large



number of genomic alterations (161 losses and 88 gains; see also

Table S2) inspired us to check the basal level of genome insta-

bility in the wild-type cell line itself. This is relevant because in

CGH, one of the samples (the wild-type) is defined as unchang-

ing, and genomic rearrangements in the test sample are then

described relative to this reference. Again, the cell culture was

split in two, but with RECQL5 expression maintained in both,

before the genomes of the clones were compared. In this CGH

comparison, gains and losses cannot be distinguished, as the

reference sample is arbitrarily set (e.g., a loss detected in the

‘‘test’’ sample might equally well be a gain in the ‘‘reference’’

sample). A total of 25 genomic alterations were detected in

two independent experiments (16 and 9, respectively), 10-fold

less than observed when RECQL5 was depleted (Figure 5A,

right; Table S3).

Interestingly, although the size of the rearrangements

observed upon RECQL5 depletion was relatively small (median

was 45 kb for losses, and 37 kb for chromosomal gains), we

identified no less than 22 examples of loss (out of 65 and 96,

respectively) and 10 gains (out of 36/52) that occurred in both in-

dependent experiments (Figures 5A, right, 5C, and 5D). So,

around a third of the genomic rearrangements in one experiment

were also detected in the other. It is obvious that the likelihood of

such repetition happening by chance is miniscule. Indeed, the

p value can be estimated by a permutation test and is <3 3

10�4. In contrast, none of the rearrangements detected when

comparingWTwithWTwere recurring, and none of these unique

events overlapped with the recurring RECQL5-related events.

We surmised that the recurring genomic rearrangements (22

examples of loss, 10 examples of gains; Figures 5A, right; see

also Figures 5C and 5D) could be key to understanding RECQL5

function, so we initially focused on these high-confidence

events. When exploring common features of the regions

affected, we noted that almost a third (7 of 22; p value 0.033)

of the loss regions reside inside one of 124 replication-depen-

dent, common fragile sites (CFSs) mapped in human autosomes

(Fungtammasan et al., 2012). Replication programs are cell-

type-specific (Letessier et al., 2011), and CFSs have not been

extensively mapped in HEK293 cells. The overlap of RECQL5-

dependent genomic losses was thus with CFSs mapped in other

cell types (typically human lymphocytes), making it all the more

noteworthy. No statistically significant overlap was observed

between CFSs and RECQL5-related gains (p value 0.319) or

the events observed in wild-type cells (p value 0.217).

We also checkedwhether RECQL5-related genomic instability

was associated with transcription. Figure 5B shows an example.

This region (Chr7p13) is indeed gene-rich and positioned inside

CFS FRA7D. Regions of recurring genomic loss generally con-

tained genes or annotated transcripts: 20 of the 22 recurring los-

ses encoded at least one RNAPII transcript, and the remaining

two were within a few kilobases of a gene (Figure 5C;

Table S2). Moreover, genomic losses not only overlapped

with transcription, but either one or both of their breakpoints

were within an annotated transcript in 82% of cases (p value

4.87 3 10�5). No statistically significant overlap with genes

was observed with the breakpoints of recurring genomic gains

(p value 0.9997) (see also Figure 5D), or with rearrangements in

wild-type cells (p value 0.621).
We now analyzed the entire set of RECQL5-dependent

genomic alterations (not only recurring events) to establish

whether the associations were generally observed. Gratifyingly,

the 161 RECQL5-related genomic losses were generally associ-

ated with CFSs and genes: 36 events (22%) overlapped with

CFSs (p(permutation) 0.048), and 87% overlapped with genes

(p(permutation) < 10�4). In contrast, no statistically significant

association was observed with RECQL5-dependent genomic

gains, or with rearrangements observed in wild-type cells

(p(permutation) 0.420 and 0.217, respectively, for CFSs; and

p value 0.902 and 0.171, respectively, for genes). Again, either

one or both of the breakpoints of the genomic losses were

typically within the transcribed region of an annotated gene or

transcript (in 80% of cases; p value 3.21 3 10�11), while no sig-

nificant general association was observed for genomic gains, or

for the wild-type (p values of 0.902 and 0.621, respectively). We

failed to detect overlap between RECQL5-dependent genome

instability and so-called early replicating fragile sites (ERFSs)

(p values 0.162 and 0.585, respectively, for losses and gains),

with the caveat that these ERFSs were characterized in the

mouse (Barlow et al., 2013), so that our comparisons could

only be made in a limited number of syntenic regions.

Together, these data show that RECQL5 depletion gives rise

to genome instability associated with common fragile sites and

the transcribed region of genes.

Characteristics of Genes Containing Sites of RECQL5-
Dependent Genome Instability
We now investigated the possible relationships between tran-

script elongation and genome instability, focusing primarily on

genomic loss-associated chromosomal breaks as these were

correlated with genes and CFSs. All in all, 164 well-defined

genes or long noncoding transcripts with a total of 212 genomic

loss-associated breakpoints in their transcribed region were

suitable for such examination.

Bioinformatic analysis showed that genes with genomic loss-

associated chromosomal breaks in their coding regions were

inconspicuous with regard to their gene expression level (i.e.,

they were neither particularly highly nor lowly expressed genes),

and their change in expression upon RECQL5 depletion (i.e.,

they did not represent a sub-group whose expression was

particularly RECQL5-dependent). Moreover, the breakages

observed were at varying distances from the TSS and TTS,

and not, for example, enriched at either end (see Table S4 for

information on individual break sites in genes).

We noted that there was a tendency for genes with loss-asso-

ciated chromosomal breaks in their coding regions to be long,

with the mean length of such genes being 123 kb, compared

to 58 kb for all human genes (median length was 74 kb,

compared to 23 kb for all human genes). As an aside, although

the RECQL5-dependent genomic gains were not associated

with genes to a statistically significant degree (see section on

CGH above), either one or both gain-associated chromosomal

breakpoints were nevertheless inside the transcribed region of

a gene in no less than 80% of cases. These genes were typically

very long, with a median length of 105 kb and a mean length of

254 kb; indeed, 23% (15 of 64) were more than 300 kb long

(against �3.4% in the entire human genome). However, all else
Cell 157, 1037–1049, May 22, 2014 ª2014 The Authors 1043



Figure 6. RECQL5 Depletion Results in

Transcription Stress across the Tran-

scribed Region

(A–E) Mean AT frequency distribution of ±1 kb

regions around RNAPII peaks in (A) wild-type, (B)

RECQL5 knockdown cells (shRNA7), (C) exons,

(D) introns, and (E) transcribed regions overall. See

also Figure S3.

(F) CHIPMOD simulation of stochastic RNAPII

pausing by 1% of the polymerase population.

Parameters used, other than default: 9.99 kb gene;

pause start at 5 kb; width 2.5 kb; 40% of normal

(3.8 kb/min) elongation rate. Mean width of actual

RNAPII ChIP-seq peaks is 2.7 kb; see Figure S4 for

examples.
being equal, long genes would also be more likely to be hit be a

damage-event occurring at random, and although the enrich-

ment of long genes might well be biologically meaningful, it

was not statistically significant.

Most importantly, however, we were unable to find a connec-

tion between elongation speed and chromosomal breakage. In

both loss- and gain-associated breakage genes where it could

be estimated or calculated via DRB/GRO-seq, the elongation

rate was thus close to themedian rate established for all measur-

able genes in Figure 4 (i.e., their rate did not change in a way that

distinguished them in the background of changes that occurred

when RECQL5 is lost). In agreement with this, the traveling ratios

of genes with chromosomal breaks were also unremarkable

compared to control genes without breaks. Together, these

data show that although genes with RECQL5-dependent chro-

mosomal breaks in their coding region may be long, they do

not stand out as unusual by a number of other parameters

compared to the much larger group of control genes that did

not display genome instability.

RECQL5-Related Transcription Stress
The absence of a clear connection between genome instability

and elongation rates prompted us to investigate the role of

RECQL5 in transcript elongation in more detail. Besides

providing an overview of polymerase density across genes

genome-wide, RNAPII ChIP-seq also uncovers local areas of

increased density (peaks) within individual genes. RNAPII peaks

are typically broad, often comprising several kilobases of DNA,
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with those in the transcribed region

of genes indicating areas of increased

pausing or arrest (i.e., transcription

stress) (Ehrensberger et al., 2013). Some-

what unexpectedly, individual RNAPII

peak-calling using MACS (Zhang et al.,

2008) uncovered a marked increase in

the number of individual peaks with

increasing RECQL5 knockdown (2.4-

and 3.2-fold more after shRNA5 and

shRNA7 knockdown, respectively). Given

that RECQL5 depletion results in higher

promoter-proximal peaks (Figure 1), a

trivial explanation for these increases
could be that more promoters start to display detectable pro-

moter-proximal peaks upon RECQL5 loss. We therefore exam-

ined the 5,140 genes that already had a promoter-proximal

RNAPII peak. Interestingly, instead of calling a decreased num-

ber of RNAPII ChIP-seq peaks in these genes as might have

been expected from the metagene-analysis (Figures 1A and

1C), MACS called a markedly increased number of individual

gene body peaks upon RECQL5-depletion (4.0- and 5.2-fold

more after shRNA5 and shRNA7 knockdown, respectively; p

values both <10�4). These data suggest that although RNAPII

on average traverses genes more rapidly in the absence of

RECQL5, this is accompanied by incidents during which poly-

merase is paused or arrested in the transcribed region of genes.

To gain further insight into the nature of the intragenic RNAPII

peaks, we aligned the underlying sequences in the hope of un-

covering similarities. Neither sequence consensus elements,

nor strongly over- or under-represented oligonucleotides given

the background frequencies were uncovered (Figure S3A; data

not shown). However, regions affected by RECQL5 depletion

had a distinct mononucleotide frequency distribution, with the

peaks in RECQL5-depleted cells generally being more AT-rich

than those in wild-type cells (Figure 6, compare A and B). In

general, exons are significantly more GC-rich than introns and

also—because introns are typically 10-fold longer than exons –

than transcribed regions in general (Louie et al., 2003) (Figures

6C–6E). In apparent agreement with the finding that RNAPII

tends to pause at intron-exon junctions (Kwak et al., 2013), the

sequence-signature of RNAPII-peaks in wild-type cells looked



more similar to that of exons than introns (Figure 6, compare A

with C and D). In contrast, RNAPII peaks in RECQL5-depleted

cells had an AT-signature more similar to that of introns or tran-

scribed regions in general (Figure 6, compare B with C, D and E),

suggesting that the increased transcription stress observed

upon loss of RECQL5 is distributed across transcribed regions.

It is worth noting that genomic areas containing an RNAPII

peak in the wild-type cells also typically harbored increased

RNAPII density after RECQL5 depletion. The opposite was less

obvious, but still noticeable (Figure S3B). The much higher fre-

quency of detectable RNAPII pausing and arrest in RECQL5-

depleted cell therefore does not imply that transcription stress

only occurs in RECQL5-depleted cells, nor that RNAPII only

pauses at intron-exon junctions in wild-type cells. Rather, it sug-

gests that while the same causes underlie pausing and arrest in

RECQL5-depleted cells, wild-type cells can better buffer imped-

iments to elongation.

It may appear counter-intuitive that RECQL5 depletion results

in both elevated transcription stress and faster transcript elon-

gation. However, computer modeling by an updated version of

CHIPMOD (Ehrensberger et al., 2013), which can now also simu-

late stochastic and rare polymerase behavior, supports the idea

that transcription stress can be detected even if such events are

very rare. Indeed, even if merely 1%percent of transcribing poly-

merases experience modest pausing through, or transcriptional

arrest in, a gene region, this has a striking effect on the predicted

RNAPII density profile (Figure 6F, data not shown).

Together, these results suggest that RECQL5-depleted cells

suffer from substantial transcription stress, so that although

elongation rates are higher, this is accompanied by a more inter-

rupted transcript elongation process: events during which elon-

gating RNAPIIs stochastically pause or arrest.

Evidence that RECQL5-Related Transcription Stress
Causes Genome Instability
We finally investigated whether RECQL5-dependent genome

instability might be connected to transcription stress. In an ideal,

imaginary experiment, transcription stress would be measured

at positions of chromosomal gene breakage, but immediately

prior to these events taking place in the individual cells that

react to RECQL5 depletion. This is obviously not practically

feasible. We were instead restricted to comparing the position

of RNAPII transcription stress events detected by ChIP-seq

with the position of chromosomal breakages detected by CGH

(Examples of such events are shown in Figure S4). As a con-

trol, computer-generated chromosome breaks were made, at

random, across the genome (100 trials) in a quantity that yielded

random breaks in genes in numbers that were similar, on

average, to those observed in the actual experiments (see

Extended Experimental Procedures for details).

We initially focused on genomic breaks in the transcribed re-

gion of the 5,140 genes containing a clear promoter-proximal

peak. Moreover, only RNAPII peaks that were in the transcribed

region of the same gene as the loss-associated chromosomal

break site were considered. This left 26 individual loss-associ-

ated chromosome breaks for the analysis. Remarkably, when

compared to the computer-generated, random breakpoints in

genes, the actual breakpoints were clearly positioned very close
to the RNAPII peaks detected byChIP-seq (Figure 7A), indicating

a connection between transcription stress and genome insta-

bility in RECQL5-depleted cells.

We note that regions of transcription stress are not ever-pre-

sent. Indeed, even upon RECQL5 loss, less than half of the anno-

tated genes in the human genome had one or more RNAPII

peaks called in their transcribed region. This was true whether

they had breakpoints or not, and similar observations were

made for genomic loss- and gain-associated breaks. When cor-

rected for gene length (relevant since long genes would be ex-

pected to have more RNAPII peaks), genes with breakpoints

actually had somewhat fewer RNAPII peaks than control genes

(�2-fold fewer), indicating that breakpoint genes were not gen-

eral hotbeds of transcription stress.

We also expanded the analysis to all chromosomal loss-

associated break sites and the accompanying nearest area

of RNAPII transcription stress, irrespective of origin. This is

relevant because RNAPII transcription is pervasive and also

produces noncoding RNA, for example in enhancers and down-

stream from the coding region of genes. We here compiled

a list of the distances between genomic loss-associated

chromosomal breaks and their nearest RNAPII peak, in order

of increasing distance (observed distances). A similar list was

compiled for the random computer-generated chromosomal

breaks (expected distances). These two distance lists were

then plotted together in a scatter plot, from the shortest to

the longest distance-pair (Figure 7B). In this analysis, if the dis-

tance between observed chromosomal loss-associated break

sites to an RNAPII peak were no closer than would be expected

by chance, the distance-pairs would lie on the diagonal line of

the plot. Instead, the points were consistently below the diago-

nal, showing that RNAPII peaks were closer to the observed

chromosomal loss-associated break sites than would be pre-

dicted by chance (Figure 7B). Intriguingly, the subgroup of

genomic gain-associated chromosomal breakpoints that

occurred inside genes were also closer to RNAPII ChIP-seq

peaks than would have been expected (Figure S5), suggesting

that RECQL5-dependent genome instability in genes is gener-

ally associated with areas of increased RNAPII transcription

stress.

We also noted that not only the RNAPII peaks detected upon

RECQL5 knockdown (Figure 7B, blue and green spheres), but

also those observed in wild-type cells (red spheres) were closer

to the chromosomal breakpoints than would have been ex-

pected by chance. Somewhat surprisingly, it actually appeared

that the latter, much less abundant RNAPII peaks were even

closer to sites of chromosomal breakage than those arising in

RECQL5-depleted cells. Remarkably, however, these wild-type

peaks simply represented highly consistent sites of RNAPII

transcription stress, also observed after RECQL5 loss: out of

the 51 RNAPII peaks plotted for wild-type cells, 49 were thus

also called as peaks and plotted in either one or both the

RECQL5 shRNA knockdown samples. This result is important

as it implies that sites of transcription stress in wild-type cells

may also give rise to genome instability. In the absence of

RECQL5, however, there is both a great increase in transcription

stress, and an inability to suppress the deleterious consequence

for genome stability of such stress.
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Figure 7. RECQL5-Dependent Genome Instability Occurs in Areas of

Elevated Transcription Stress

(A) Plot of distances from genomic loss-associated chromosomal breakpoints

to the nearest RNAPII peak in the same gene. Left: breakpoints observed in the

RECQL5 shut-off experiments. Right: simulated examples (100 independent

trials, averaged by rank) of computer-generated breakpoints in genes across

the human genome (as represented on the Nimblegen chip). Note that there

will be fluctuation in the number of computer-generated distances due to the

frequency of simulated breakpoints landing in genes with RNAPII peaks

varying from simulation to simulation. Horizontal lines indicate median values

(of the observed distances on the right, of the averaged randomized on the

right).

(B) Plot of distances from chromosomal breakpoints (observed breakpoints on

y axis and random computer-generated breakpoints on x axis) to their nearest

RNAPII peak, regardless of either being in a gene.

(C) Model for the role of RECQL5 at the interface between transcription and the

maintenance of genome stability. See text for details.
DISCUSSION

The data presented here provide evidence that RECQL5 plays a

general role in the control of transcript elongation in human cells.

In its absence, transcript elongation rates increase, the distribu-

tion profile of RNAPII is markedly altered across the genome,

and higher levels of RNAPII pausing or arrest (i.e., transcription
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stress) are detected. Cells lacking RECQL5 also exhibit

increased genome instability in the transcribed region of genes

and at common fragile sites, and this is correlated with an in-

crease in transcription stress in these particular regions.

RECQL5, a General RNAPII Elongation Factor
A large number of cofactors are required for normal transcript

elongation by RNAPII (reviewed by Selth et al., 2010). However,

most of these factors do not appear to affect the rate of transcript

elongation in vivo. For example, rate determination in yeast

failed to detect an effect of factors such as Set1, Set2, Elongator,

Chd1, Elongin (ELA1), transcription-coupled repair factor Rad26,

the Paf1 and THO complexes, Spt4, TFIIS, and Bye1 (Mason and

Struhl, 2005). This in no way implies that these factors are not

important for transcription, but forms a basis for appreciating

the surprising discovery that RECQL5 affects transcript elonga-

tion rates at the vast majority of human genes. Moreover, using

this effect as criterion, RECQL5 is a negative elongation factor:

its depletion has the surprising effect of increasing RNAPII elon-

gation rate compared to wild-type cells. Nevertheless, RECQL5

does also have a significant positive effect on transcript elonga-

tion in that it decreases transcription stress and the negative

effects thereof. We propose that RECQL5 may ‘‘smoothen’’ or

‘‘buffer’’ transcript elongation, resulting in a somewhat slower,

but more robust and less interrupted transcription process (Fig-

ure 7C). In any case, RECQL5 represents a new type of general

RNAPII elongation factor.

We note that the genome-wide analysis suggests that

RECQL5 also affects not only promoter- (Figure 1), but also

terminator-proximal transcription events (to be published else-

where), but how this relates to its elongation effects remains

to be investigated. It is, however, an obvious possibility that

the underlying biochemical mechanism is the same.

RECQL5 and the Maintenance of Genome Integrity
The results presented here indicate that genomic rearrange-

ments in RECQL5-depleted cells are correlated with regions

of elevated transcription stress, implying that suppression of

such stress and its immediate consequence is crucial to main-

tain genome stability. As indicated above, it seems possible,

even likely, that the involvement of RECQL5 in suppressing

transcription stress (and thus maintaining genome stability) in

effect comes at the cost of reducing average elongation speeds

(Figure 7C).

It is worth emphasizing that transcription stress is not, in itself,

genome-destabilizing. Indeed, RNAPII ChIP-seq experiments

detect RNAPII pausing and arrest throughout the human

genome, but this only infrequently results in genome rearrange-

ments. Importantly, there is compelling evidence that transcrip-

tion-associated genome instability requires clashes between

RNAPII transcription and DNA replication (Aguilera and Gómez-

González, 2008; Helmrich et al., 2013). Our results suggest that

it is not transcription per se, but more specifically transcriptional

pausing and arrest, which represents a challenge to genome sta-

bility during DNA replication. Recent results, albeit in bacteria

(Dutta et al., 2011), support the idea that transcription stress, in

this case specifically RNAP arrest and backtracking, can give

rise to replication-derived genome instability.



Common fragile sites (CFSs) are genomic regions, frequently

deleted in human cancer, which are predisposed to breakage

when exposing cultured cells to replication stress (Debatisse

et al., 2012). Recent results argue for a connection between

CFSs and transcription-replication collision in long human genes

(Helmrich et al., 2011; Le Tallec et al., 2013), with CFSs often sit-

uated in areas of high AT content that contain long genes (Durkin

and Glover, 2007; Debatisse et al., 2012). They are also typically

located in regions depleted of DNA replication origins, making

replication rely on long-traveling forks, the breakdown of which

cannot be compensated for by other origin firing (Letessier

et al., 2011). However, the role played by transcription in CFS

generation has remained unclear. Our striking finding RECQL5-

dependent genomic rearrangements overlap with both CFSs

and the transcribed region of long RNAPII genes points to a

role for RECQL5 in suppressing breakage at CFSs. It is an

obvious possibility that at least a subset of CFSs is associated

with, or a direct consequence of, transcription stress. Indeed,

we note that transcriptional pausing and arrest may largely be

stochastic, and that it does not necessarily increase with rising

gene expression levels, potentially helping to explain why the

occurrence of CFSs, although typically occurring in genes, is

not correlated with their transcription level (Le Tallec et al., 2013).

The biochemical mechanisms underlying DNA recombination

are starting to emerge, but the possible explanations for the

difference between chromosomal losses and gains remain theo-

retical (Arlt et al., 2012). With that in mind, we do not presently

understand why RECQL5-driven genomic losses overlap much

better than genomic gains with CFSs and genes. We note, how-

ever, that although the overlap between genomic gains and

genes did not satisfy typical statistical confidence levels, a

very large proportion of these events (80%) did occur inside

genes. It is potentially important that the genes involved were

typically very long and harbored regions of transcription stress

near the chromosomal breakpoints, reinforcing the impression

that RECQL5-dependent genomic rearrangements typically

occur as a consequence of transcription-associated events.

Work in chicken DT40 cells indicate that mutation of RECQL50s
RNAPII-interaction domain does not have the same severe

phenotypic effect as a complete RECQL5 knockout, suggesting

that RECQL5 also has a transcription-independent function in

suppressing genome instability (Islam et al., 2010), which might

help explain the remaining, apparently transcription-unrelated

genome instability events we observed.

We note that compounds such as camptothecin and psora-

len, and even endogenous DNA lesions would affect transcript

elongation and result in considerable transcription stress, likely

resulting in a need for the transcription function of RECQL5

described here. This might explain the intriguing connection

between RECQL5 and these causes of DNA damage (see, for

example, Li et al., 2011; Tadokoro et al., 2012; Ramamoorthy

et al., 2013). Finally, our data potentially shed light not only

on the function of RECQL5, but also on the mammalian

RECQ family as a whole. These proteins evolved to enable

the suppression of genome instability, including that derived

from transcription-associated DNA recombination during

replication. In outline, such suppression might occur by modi-

fying the behavior of either of the proteins governing these
processes, namely the replicating DNA polymerase(s), the

recombination proteins, or RNA polymerase II. At this simpli-

fied, conceptual level, factors such as RECQ4 and BLM would

suppress undesirable activity by DNA replication- and recombi-

nation factors, respectively (Liu, 2010; Larsen and Hickson,

2013), while RECQL5 would control elongating RNAPII, help-

ing explain the additive or sometimes synergistic effects on

genome instability levels attained when the function of RECQL5

and another RECQ gene is eliminated concomitantly (Hu et al.,

2005; Popuri et al., 2013).

EXPERIMENTAL PROCEDURES

Cell Lines

HEK293, HEK293T-Rex, and derived cell lines were grown under standard

conditions. RECQL5 shRNAs were from Thermo Scientific. For generating a

stable cell line in which endogenous RECQL5 was depleted so that virtually

all RECQL5 was from a doxycycline-regulated gene, a RECQL5-expressing

plasmid was mutagenized to make the produced mRNA shRNA-resistant.

This RECQL5 form was stably expressed in HEK293T-Rex cells that were

subsequently infected with lentiviral particles carrying the RECQL5 shRNA

construct depleting endogenous RECQL5. Single colonies were selected

with puromycin in the presence of 0.2 ng/ml of doxycycline to allow physio-

logic expression level of the shRNA-resistant version of RECQL5.

Gene-Specific and Genome-wide Analysis of Transcription

RNAPII ChIP-seq was performed, with sequencing on the Illumina platform.

DRB/GRO-seq integrates DRB inhibition to measure transcript elongation

(Singh and Padgett, 2009) with GRO-seq (Core et al., 2008). Cells were treated

with DRB for 3.5 hr, then released into DRB-free medium, with aliquots taken

for GRO-seq at different time points.

Comparative Genomic Hybridization

RECQL5 shut-off cells were grown for 10 days, either with or without doxycy-

cline. Genomic DNA from the compared clones was isolated, labeled, hybrid-

ized to 3 3 720K human arrays, and washed according to the manufacturer’s

recommendations (Nimblegen-Roche). The array was scanned by the Nimble-

gen MS200 micro-array scanning system. Primary data extraction, analysis,

and visualization were performed using the DEVA software (Roche).

Bioinformatic Analysis

Reads were aligned to the reference genome using Bowtie (Langmead et al.,

2009) and BWA (Li and Durbin, 2009) for ChIP-seq and GRO-seq, respectively.

Mapped reads were sorted and indexed using SAMtools (Li et al., 2009).

RNAPII peaks were called using MACS v1.4.2 (Zhang et al., 2008) and under-

lying sequence comparison done with XXmotif (Hartmann et al., 2013). Gener-

ation and normalization of read depth profiles was performed in Bioconductor

(Gentleman et al., 2004).

For further details, please see Extended Experimental Procedures.
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Hartmann, H., Guthöhrlein, E.W., Siebert, M., Luehr, S., and Söding, J. (2013).
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