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Abstract

Autonomic computing revolutionised the commonplace understanding of proactiveness in the digital
world by introducing self-managing systems. Built on top of IBM’s structural and functional
recommendations for implementing intelligent control, autonomic systems are meant to pursue high
level goals, while adequately responding to changes in the environment, with a minimum amount of
human intervention. One of the lead challenges related to implementing this type of behaviour in
practical situations stems from the way autonomic systems manage their inner representation of the
world. Specifically, all the components involved in the control loop have shared access to the system’s
knowledge, which, for a seamless cooperation, needs to be kept consistent at all times.

A possible solution lies with another popular technology of the 21st century, the Semantic Web,
and the knowledge representation media it fosters, ontologies. These formal yet flexible descriptions
of the problem domain are equipped with reasoners, inference tools that, among other functions, check
knowledge consistency. The immediate application of reasoners in an autonomic context is to ensure
that all components share and operate on a logically correct and coherent “view” of the world. At
the same time, ontology change management is a difficult task to complete with semantic technologies
alone, especially if little to no human supervision is available. This invites the idea of delegating
change management to an autonomic manager, as the intelligent control loop it implements is engineered
specifically for that purpose.

Despite the inherent compatibility between autonomic computing and semantic technologies,
their integration is non-trivial and insufficiently investigated in the literature. This gap represents the
main motivation for this thesis. Moreover, existing attempts at provisioning autonomic architectures
with semantic engines represent bespoke solutions for specific problems (load balancing in autonomic
networking, deconflicting high level policies, informing the process of correlating diverse enterprise data
are just a few examples). The main drawback of these efforts is that they only provide limited scope for
reuse and cross-domain analysis (design guidelines, useful architectural models that would scale well
across different applications and modular components that could be integrated in other systems seem to
be poorly represented).

This work proposes KAS (Knowledge-centric Autonomic System), a hybrid architecture combining
semantic tools such as:

• an ontology to capture domain knowledge,

• a reasoner to maintain domain knowledge consistent as well as infer new knowledge,

• a semantic querying engine,

• a tool for semantic annotation analysis

with a customised autonomic control loop featuring:

• a novel algorithm for extracting knowledge authored by the domain expert,

• “software sensors” to monitor user requests and environment changes,

• a new algorithm for analysing the monitored changes, matching them against known patterns and
producing plans for taking the necessary actions,

• “software effectors” to implement the planned changes and modify the ontology accordingly.

The purpose of KAS is to act as a blueprint for the implementation of autonomic systems harvesting
semantic power to improve self-management. To this end, two KAS instances were built and deployed
in two different problem domains, namely self-adaptive document rendering and autonomic decision
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support for career management. The former case study is intended as a desktop application, whereas
the latter is a large scale, web-based system built to capture and manage knowledge sourced by an
entire (relevant) community. The two problems are representative for their own application classes –
namely desktop tools required to respond in realtime and, respectively, online decision support platforms
expected to process large volumes of data undergoing continuous transformation – therefore, they were
selected to demonstrate the cross-domain applicability (that state of the art approaches tend to lack) of
the proposed architecture. Moreover, analysing KAS behaviour in these two applications enabled the
distillation of design guidelines and of lessons learnt from practical implementation experience while
building on and adapting state of the art tools and methodologies from both fields.

KAS is described and analysed from design through to implementation. The design is evaluated
using ATAM (Architecture Tradeoff Analysis Method) whereas the performance of the two practical
realisations is measured both globally as well as deconstructed in an attempt to isolate the impact of
each autonomic and semantic component. This last type of evaluation employs state of the art metrics
for each of the two domains. The experimental findings show that both instances of the proposed hybrid
architecture successfully meet the prescribed high-level goals and that the semantic components have a
positive influence on the system’s autonomic behaviour.
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CHAPTER 1

Introduction

1.1 Problem Statement

The beginning of the third millennium brings forward two remarkable challenges in the field of

computing. The first is formulated by Tim Berners-Lee et al. in their May, 2001 article [23], where

the authors observe the state of the web, analyse its limitations and suggest a foundational shift in its

structure. More specifically, this seminal piece of work advocates the transformation of the web of

documents, a heterogeneous collection of online resources chiefly meant for human consumption, into a

web of data, a network of uniformly formatted knowledge that can be processed by machines. This is

made possible by annotating every piece of information on the web with metadata, namely small units of

text (appropriately called tags), expressed in some well structured language, meant to bring context to the

resources they are attached to. By reading and interpreting these tags, machines are envisaged to break

the syntactic barrier of processing information and become capable of understanding its meaning. This

type of behaviour would bring about a new web, a semantic web. Later that same year, IBM publishes

a manifesto [81] issuing a strong warning about the galloping increase of IT systems complexity and its

backlash against the very heightened computing power it was meant to make possible. The proposed

solution is autonomic computing, a biologically inspired model that promotes self-managing IT systems.

Much like the human autonomic nervous system, self-managing IT structures are governed by a manager

that takes care of low-end yet vital operations such as integration with other systems, download and

installation of updates, protection against malware, etc. [101]. This would hide a significant portion of

the IT system’s complexity from the human administrator who is thus allowed to invest energy in high

level tasks such as goal/policy definition and business requirements management.

The semantic web and autonomic computing initiatives are connected by more than their date of

birth. There has been significant work on integrating semantic technologies into the Internet of Things

(IoT) application domain [190, 186, 16], that also makes use of autonomic elements – to provide just one

example of research that bridges the gap between the two fields. To further support this compatibility

claim, let us outline some of the key strengths and open challenges of both fields. As mentioned

before, the semantic web can be practically realised by annotating online resources with metadata

(semantic tags). Although some commercial applications, such as Flickr1 or Delicious2, support manual

tagging, given the size of the current web, an automated annotation solution would be preferable.

To address that, the semantic research community suggested extracting annotations from ontologies

1https://www.flickr.com/
2https://delicious.com/
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[23, 78, 73, 8, 54, 191]. Ontologies are formal models of a given domain, usually written in a language

from the Resource Description Framework (RDF3) family, such as the Web Ontology Language (OWL4).

Some well known examples of ontologies are Google Knowledge Graph [159], supporting the right hand

side display of the search engine’s results page, WordNet5, an English language lexicon, DBpedia6,

organising structured Wikipedia information in a semantic format for better querying, OpenCyc7, an

ambitious project to build a general ontology about everything in the world, etc. (other smaller, domain-

oriented ontologies can be found in dedicated libraries [49]). This wide acceptance is driven by the main

appeal of semantic technologies, stated below.

Ontologies are equipped with reasoners, semantic inference tools capable of automatically verifying

the logical correctness of the knowledge base.

Thus, there is a way to formally guarantee that metadata is extracted from a logically consistent

repository. However, the domains modelled by ontologies are dynamic, continuously changing by

incorporating new information, modifying existing data and discarding obsolete records. In this context,

an important challenge can be formulated, as follows.

Ontologies need to be (automatically) maintained to keep up with the frequent transformations of

the knowledge domain they are modelling.

A similar analysis can be carried out for autonomic systems. Autonomic behaviour (a four-

faceted concept [101] comprising self-configuration, self-optimisation, self-healing and self-protection)

is achieved by plugging an autonomic manager into a traditional (legacy) IT system, also called the

managed resource (Fig. 1.1). The operation of the manager is based on a closed control loop with

four stages: monitor, analyse, plan and execute, all of which entail some level of interaction with a

central repository of knowledge about the system itself and its environment. This set-up is referred to

as the MAPE-K loop and is widely used in both research (ranging from generic toolkits such as ABLE

[24] and GPAC [32] to concrete solutions for dynamic resource management in distributed systems [1],

smart home applications [172] and wireless sensor networks management [89]) and industry (IBM’s

autonomic computing toolkit [91], Fujitsu’s organic computing architecture [98] and other successful

implementations by Oracle, HP, Microsoft and Intel [103]). The lead advantage of the MAPE-K loop

is that it allows any system based on it to manage change, that is, adapt to environment dynamics in

order to continue achieving a set of goals prescribed in the policy document. In short, this is done by

monitoring the environment via sensors to detect changes, analysing the acquired data by matching it

against available models or previously detected patterns (usually, part of the system knowledge), planning

a set of actions to respond to the changes and executing those actions at a practical level via effectors.

The lead advantage (included below) of autonomic systems is a direct consequence of this process.

3http://www.w3.org/RDF/
4http://www.w3.org/2001/sw/wiki/OWL
5http://wordnet-rdf.princeton.edu/
6http://wiki.dbpedia.org/
7http://www.opencyc.org/
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Autonomic systems intrinsically maintain their knowledge base up-to-date with respect to changes

in the environment.

Self-managing computing is performed in realtime, therefore, the MAPE components will access and

modify the knowledge base concurrently. This gives rise to the following challenge.

Autonomic systems require a means to ensure that their knowledge repository is consistent (logically

correct) at all times.

Policy

Analyse Plan

Monitor Execute
Knowledge

Sensor Effector

Managed resource

Symptom

Change request

Change
plan

Fig. 1.1: The simplified architecture of a traditional autonomic computing element - adapted from
[90]

By analysing the previously identified strengths and challenges, it is fairly straightforward to notice

their overlap. One of the main open issues in semantic web research is the effective maintenance of

ontologies as the domains they model are continuously changing. Autonomic systems are designed to

accomplish just that: manage change whilst still optimally pursuing their prescribed goals. They are

however hindered by the likelihood of their knowledge base becoming inconsistent due to concurrent

access. Ontology reasoners are specifically built to prevent such a scenario by automatically verifying

the logical correctness of the knowledge repository. This alignment between the semantic and autonomic

fields invites further research into ways of combining the two technologies and thus improving them by

enabling the exploitation of features from the complementary domain.
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1.2 Research Questions

Knowledge is at the core of the autonomic control loop [90, 101], representing the manager’s model

of its environment and of its inner state. As shown in Fig. 1.1, all MAPE components use the central

repository of information, concurrently, to inform their operation. Thus, the knowledge model has to be

kept in a logically consistent state as well as up to date with the changes in the manager’s environment

and/or state. It follows naturally that the way knowledge is represented plays a key role in meeting

those two requirements, however, there is limited focus in the literature on the systematic description of

environment and inner state information. The existing approaches mainly fall under three categories.

• Knowledge is not permanently stored, instead, it is collected by sensors, during live operation,

used to inform the MAPE components in the current stage of the control loop and then discarded

[95, 165, 182].

• Knowledge is kept in some formal representation that usually takes the form of an architectural

design language (ADL) [88, 110, 152, 50]. Specifically, an ADL representation decomposes

knowledge in components linked by connectors, a graph-like structure that lends itself well to

live updates and computationally inexpensive integrity checks.

• Knowledge resides inside the manager and informs the MAPE loop, as can be deduced from the

overall system’s behaviour, but the details of knowledge storage and management are undisclosed

[27, 108].

There are several problems stemming from the knowledge representation strategies above. Firstly,

relying only on sensor data captured in the current cycle of operation implies that the manager cannot

learn from past experience, thus it becomes challenging to improve the MAPE components based on

patterns extracted from historical data. Secondly, using ADLs or other formal languages restricts access

to the data layer, as the knowledge model becomes difficult to understand by non-experts. Finally, if

the knowledge layer is used to underpin autonomic behaviour in some application-specific way that is

too complicated/trivial to be described in the relevant paper, then the proposed solution is unlikely to be

reused across different problem domains.

In contrast to these shortcomings, ontologies offer a more flexible and intuitive knowledge storage

solution. In effect, semantic knowledge repositories inherently support learning [23, 158] - reasoners

infer new information, in an unsupervised way, thus allowing the manager to base its decisions on a

comprehensive pool of data. Moreover, ontologies are usually written in RDF, a light logical language

based on 〈subject, predicate, object〉 triplets. Consequently, semantically stored knowledge lends

itself well to being visually rendered as a graph [58, 130, 164, 82, 167, 185], making ontologies more

intuitive to navigate by non-expert users. Ultimately, ontologies represent a versatile technology, used in

a variety of problem domains (see 3.2), and enjoy a wide industry acceptance as standardised solutions

for medium to large scale knowledge representation.

In light of these advantages, the research community has proposed hybrid architectures, fitting

autonomic managers with semantic knowledge layers. The recurring theme of these contributions

is highlighting the hybrid systems’ capacity to learn, that is, infer new information automatically

[39, 149, 9] and use it to inform the autonomic control loop. On their quest to increase the acuity of
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learning, the authors sometimes compromise good software engineering practices and seldom provide

substantive design recommendations and/or lesson learnt, making it difficult to replicate the proposed

hybrids in different problem domains. The evaluation of these semantically enhanced autonomic

architectures is also in-house.

Given the state of the art summarised above, the main research question of this work involves

the possibility of constructing effective, responsibly designed autonomic architectures, by storing the

manager’s knowledge in an ontology. This can be further broken down into two sub-questions:

• how to design an effective hybrid (autonomic and semantic) framework?

• how to implement the hybrid framework across different problem domains?

The first sub-question is approached in three stages. Firstly, a general purpose hybrid architecture,

namely, an autonomic manager implementing a MAPE-K loop informed by an ontology, is proposed

in chapter 4. The underpinning components are structured and assembled to meet the requirements, as

presented in the literature, for obtaining effective autonomic behaviour. Secondly, the tools necessary to

implement the architectural components are comprehensively described and implemented (chapter 4.3),

to ensure the practicality of the suggested design. Thirdly, the methodology to assemble the architectural

components coherently is provided in chapter 4.4, for the benefit of customising the suggested hybrid to

other problem domains.

The second sub-question is addressed by building practical instances of the proposed hybrid

architecture and deploying those in two different application domains - one where adaptability to the

environment and speedy decision making are key (chapter 5) and one where domain knowledge is

abundant, dynamic and community-curated (chapter 6).

1.3 Proposed Solution and Application Domains

In response to the research question formulated in the previous section, this work proposes a novel, hybrid

autonomic architecture, where the knowledge centrepiece in Fig. 1.1 is replaced by an ontology. Since

the focus of this research is on ways to exploit and enhance ontology properties (such as hierarchical

structure [136], reasoning and querying capabilities [19], etc.) in order to improve the runtime

performance of the autonomic ensemble, the suggested hybrid architecture can be viewed as knowledge-

centric and is thus titled KAS (Knowledge-centric Autonomic System). The KAS architecture was

customised for and tested in two different application domains, the first one dealing with self-adaptive

document rendering and the second with career related decision support.

1.3.1 Self-adaptive Document Rendering

In the first application domain (see chapter 5 for a detailed description), the legacy system is a traditional

document in electronic format, meant to be presented in front of an audience. Specifically, what is being

managed is not the content of the document (as that does not change throughout the presentation), but

its appearance, namely the size of the fonts used and the brightness of the display. These features are

captured within the ontology alongside information about the environment, such as the hour of the day

and the audience’s level of focus as picked up by a camera. The goal of KAS in this context is to

16



CHAPTER 1. INTRODUCTION

ensure that the presentation of the document is well received by maintaining the audience’s focus at a

satisfactory level. To exemplify the system’s operation, let us assume that it is 4 pm and that the detected

level of audience focus is medium. Since that level is likely to drop even more in the late hours of the

afternoon, KAS will automatically increase font size as well as screen brightness to make the contents of

the presentation easier to take in.

Media content adaptation was selected as an application domain for two reasons: it is a relevant

topic in recent research [52, 122, 144, 192] and several related open issues can be addressed via a joint

autonomic/semantic approach, as embodied by KAS. These issues are briefly presented below:

• The media content adaptation problem is formulated, chiefly, with respect to device constraints

(e.g., maximum allowed resolution) and network limitations (e.g., available bitrate) [122, 144,

192]. The consumption style of the media user, namely personal requirements/preferences

affecting the quality of experience, is not sufficiently considered [52]. In contrast, the proposed

KAS implementation takes into account the viewer’s level of concentration, as captured by sensors,

and adjusts document rendering accordingly.

• In order to provide rendering devices with sufficient information for content adaptation, the A/V

stream is accompanied by manifest files [52] - containing technical specifications, such as required

codecs and native resolution - or by metadata [192] - expressing precomputed relationships

between various sets of adaptation parameters. There is no mention about the language/format

used for representing this additional information, nor about the decryption process. Overall, the

authors of manifest files and/or metadata are most likely domain experts with a solid technical

knowledge of the problem environment. To open the content adaptation domain to application

developers who are not necessarily versed in the theory of A/V physics, KAS is structured in a

modular fashion, where each architectural component is easily configurable and semi-automated.

• In [52], the authors argue that content adaptation techniques would benefit from a unified standard,

in terms of rationalising their development, maintenance and evolution. Moreover, [192] advocates

the scalability of content adaptation frameworks, which should be applicable/extensible to a wide

range of media delivery/rendering system architectures. KAS answers these two challenges, as the

traditional infrastructure presented in Fig. 1.1 is a standards-based architectural building block (as

described in [90]). Several such building blocks may be coupled together to create a multi-layered

autonomic computing architecture (illustrated in [90], Figure 2) that can allegedly scale up to any

business model.

The core KAS architecture in Fig. 1.1 (where the knowledge block is an ontology) had to be tailored

in order to fit the requirements of the media content adaptation problem. One modification is the addition

of a discretisation mechanism (implemented by KAS’s bespoke ontology learning algorithm) capable of

classifying monitored data under several discrete categories, thus simplifying the definition of system

states (the State hierarchy in Fig. 5.1). Another customisation involves the plan bank, a repository

of known good quality plans, successful at driving the system to a state of increased utility (relative to

the initial one). These plans are recycled when possible and improved when needed, demonstrating that

KAS instances are capable of learning from their own experience. However, larger application domains

may be difficult to model with a State hierarchy of reasonable size and, on the other hand, may require
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a more detailed ontology representation of the managed resource entities and properties, a reality that the

KAS framework is flexible enough to support. To demonstrate that the proposed KAS architecture does

scale up to problems of a larger size (and of a different nature altogether), a second practical scenario is

introduced.

1.3.2 Career-related Decision Support

The second application domain (analysed at length in chapter 6) consists in an online career

recommendations platform (https://gcg-test.codevate.com8). Information about different

careers (e.g., the names of different professions and the number of associated jobs, standard higher

education codes assigned to career domains, relationships between careers, employer and job seeker

profiles, etc.) is stored in an ontology and presented to the end user in the form of a graph. Graph nodes

represent professions whereas edges illustrate the (parent to child or sibling to sibling) relationships

between them. This sets the platform apart from traditional job search engines, where results are

displayed in a list, thus obscuring the relationships between careers and ultimately failing to give the

end user a global perspective on the career universe.

The main features available for the job seeker are tagging visited webpages with concepts from

the ontology, querying the ontology for access to a graph segment relevant to a search keyword, editing

the ontology by adding/deleting career concepts along with their relationships and viewing a personal

ontology containing the network of career concepts used as tags in the user’s browsing history. From

an autonomic perspective, the career advice platform exhibits self-management (as a result of coupling

it with an autonomic manager based on the KAS architecture) in that it monitors user requests such

as ontology querying, editing or personal ontology generation, it analyses those requests in order to

select the appropriate plan for action, it plans operations such as ontology classification (consistency

verification) and segmentation (query running) and, finally, it executes the plan to display the appropriate

ontology view for the end user.

Large scale knowledge graph visualisation (with a focus on careers) was selected as an application

domain for the following reasons:

• Career related knowledge is voluminous (sourced by companies’ websites, job search engines,

statistics agencies9, etc.) and heterogeneous (each of the previously enumerated providers

publishes job information in a different format). Considering a central ontology imposes a

consistent knowledge representation (RDF/OWL), thus facilitating further semantic processing

such as reasoning (to automatically infer implicit information) and logical validation (difficult to

achieve otherwise, as logical conflicts may arise across separate career knowledge repositories,

even if they are formally correct individually).

• Another consequence of career knowledge being scattered across several platforms is the loss

of connections. For example, a front end developer job advert on indeed.co.uk requires

8Domain knowledge provided by Ralph Lucas with the Good Careers Guide; web interface built by David Bennett with
Codevate

9Statistical data about the UK higher education is available at https://www.hesa.ac.uk/, the American Institute
of Physics publishes data about employment in their field at http://www.aps.org/careers/statistics/, general job
statistics for the UK can be found at http://ons.gov.uk/ons/taxonomy/index.html?nscl=Job+Statistics, etc.
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specific computing skills. A simple way for the potential candidate to link those requirements

to courses she may have taken in university (and therefore determine if she is eligible for the job)

is tracking down the JACS classification for subjects such as computer science (I100) or software

design (I310)10. Even if the candidate is aware of both publishers (indeed.co.uk for the job

requirements and the HESA website for JACS information), other useful data, such as the average

number of jobs in front end development currently available, may require supplementary effort to

gather. A centralised ontology attaches all related information to the relevant career graph node

(users can access the JACS classification and associated volume of job offers by expanding the

COMPUTER SCIENCE node in the graph). This approach not only reveals the way careers are

related (e.g., computer science to software design and front end developing) but also provides

quick access to statistical data associated to nodes, thus giving the end user a global, connected

view of the career domain.

• The field of careers is constantly changing with professions being introduced or redefined to reflect

technological trends, business requirements or shifting views of the wider community with respect

to which careers are most needed in the current professional context. The ontology captures all

moving parts of the career domain by allowing job seekers, employers and other stakeholders

to edit the ontology in light of their latest developments. Another facet of change management

is the interactive nature of the platform. Rather than displaying a static list of job results like

most traditional providers, the proposed service is autonomic, therefore responsive to explicit cues

(e.g., user requests) as well as implicit ones (changing organisation profiles that may trigger a

modification in the compatibility score of job seekers registered on the system).

In order to fulfil the requirements of the large scale knowledge graph visualisation application

domain, the ontology component in the KAS architecture (the knowledge block in Fig. 1.1) has

to communicate with several other modules pertaining to the online functionality of the system (see

Fig. 6.1). This allows the platform to scale to a much larger problem domain than that of self-

adaptive document rendering and cater to the wider group of career recommendations seekers. Beyond

demonstrating the versatility of the KAS architecture, this high impact, large scale application domain

also enabled public domain deployment (outside the research community, thus benefiting from feedback

from a larger audience), sounder performance testing (6.4) and the involvement of industrial partners11

to keep development in line with realistic business needs.

1.4 Research Objectives and Contributions

The work briefly described in section 1.3 pursued the following SMART objectives in answer to the

research questions proposed in 1.2:

O1 Develop a framework for a conceptual hybrid system combining autonomic principles (the

MAPE-K loop) with semantic technologies (ontologies, semantic tagging and reasoning). The

framework (and its problem-specific instances) will be evaluated both pre-implementation (using

10Codes retrieved from https://www.hesa.ac.uk/content/view/102/143/1/8/
11Good Careers Guide http://gcgchangeworks.com/, Codevate https://www.codevate.com/ and Capgemini

https://www.uk.capgemini.com/
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the Architecture Trade-off Analysis Method – ATAM12 approach – detailed in 4.5) and post-

implementation, by testing the performance of the resulting practical systems. This objective can

be broken down as follows:

O1.1 Design the core KAS framework comprising an architectural blueprint, a set of tools to

implement the various components of the proposed architecture and a methodology to

describe the interactions between system modules and also act as a guide for application

developers wishing to create bespoke KAS instances.

O1.2 Identify relevant application scenarios and create instances of the core framework to fit

specific requirements of the chosen problems.

O1.3 Implement KAS instances by configuring and integrating all architectural components.

O2 Analyse the hybrid architecture by measuring offline features suggested in the literature as well as

investigating the runtime performance of the implemented instances. The proposed analysis has

three facets illustrated by the following sub-objectives:

O2.1 Evaluate KAS properties (such as design cohesion, learning capacity, domain knowledge

coverage, etc. – see 5.4 and 6.4 for a complete list) employing metrics suggested in the

literature. This will establish some common ground for comparing KAS against other

autonomic and semantic platforms.

O2.2 Test the robustness of KAS implementations by running performance-oriented experiments

and interpreting the numeric results.

O2.3 Reflect on the way autonomic and semantic principles influence the KAS architecture and

implementation. Compile a set of lessons learnt from the development and experimentation

process.

The pursuit of the objectives above has materialised in three types of contributions related to framework

design, tool-supporting algorithms (along with their implementation) and analysis (offline, experimental

and reflective). They are enumerated below:

D1 design of the KAS framework (architecture, tools and methodology);

D2 design of a KAS instance with a state-featuring ontology (Fig. 5.1);

D3 design of a KAS instance with a state-less ontology (Fig. 6.1);

I1 implementation for all autonomic and semantic components of the KAS instance with a state-

featuring ontology;

I2 implementation for all autonomic and semantic components of the KAS instance with a state-less

ontology;

E1 experimental performance analysis of the KAS instance with a state-featuring ontology deployed

on the self-adaptive document rendering application;

12http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm
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E2 experimental performance analysis of the KAS instance with a state-less ontology deployed on the

career-related decision support application;

R reflection on experimental results and overall development experience; synthesis of a set of lessons

learnt during design and implementation (with focus on the impact of autonomic and semantic

principles on platform building).

The mapping between the research objectives and the specific contributions of this work, along with the

thesis chapter where the latter are discussed at length, is presented in Table 1.1.

Table 1.1: Contributions to objectives mapping

Contribution Objective Chapter
D1 O1.1 4
D2 O1.1, O1.2 5.2
D3 O1.1, O1.2 6.2
I1 O1.2, O1.3 5.1, 5.2
I2 O1.2, O1.3 6.1, 6.2
E1 O2.1, O2.2 5.4
E2 O2.1, O2.2 6.4
R O2.3 7.2
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CHAPTER 2

Background

This chapter sets the core vocabulary and facilitates a basic understanding of autonomic systems,

semantic technologies and crossover platforms incorporating principles and tools from both fields. The

provided insight covers fundamental aspects such as structure, applications and open issues. Some

general reflection is carried out to outline the need for and usage of hybrid architectures as well as

the accompanying design challenges.

2.1 Autonomic Systems

The main purpose of autonomic computing is to partially shield the human operator from the complexity

of IT systems functioning (and interacting) in the modern digital universe [101, 90]. The menial yet

cumbersome tasks inherent to system administration can be made transparent to the human element in

several ways: automatic system configuration based on operating conditions (a), proactive optimisation

of resource use (b), unsupervised problem detection/diagnosis/correction (c) and intrinsic protection from

threats (d). These can be easily assimilated to low level processes in the human body, for instance,

contracting/dilating pupils in response to the intensity of light in the environment (a), increasing blood

flow for better absorption of nutrients and oxygen (b), which also contributes to tissue regeneration and

healing (c), and triggering the fight-or-flight reflex to respond to outside threats (d). If managed by the

conscious mind, these vital yet minute operations would be our main preoccupation, hindering higher

level, intellectual functions.

Fortunately, the human autonomic nervous system (ANS) is capable of effectively carrying out

all previously mentioned tasks without conscious intervention. In computing, the equivalent of the

ANS is the autonomic manager. When plugged into legacy systems (Fig. 1.1), it endows them with

autonomic behaviour, giving rise to an autonomic computing element. An autonomic system (Fig.

2 in [90]) is formed of one or several autonomic elements in interaction and is characterised by one

paramount quality: self-management. This is considered the essence of autonomic computing [101, 90]

and essentially refers to IT systems’ capacity of proactively pursuing high level goals with little or no

assistance from human operators. [90] best captures the essence of self-management by referring to it as

the process of “using technology to manage technology”.

The autonomic manager facilitates four types of self-management, addressing each of the

previously described facets of complexity: self-configuration (a), self-optimisation (b), self-healing (c)

and self-protection (d). According to IBM [88], depending on the way the MAPE-K loop is implemented,

the four autonomic properties may be attained to various degrees:
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• basic - the computing system is merely a monitor of its environment and it is up to human operators

to make configuration, optimisation, etc. decisions based on interpreting monitoring logs;

• managed - the computing system runs smart monitoring techniques by filtering out noise,

organising collected data based on its source and analysing it to highlight patterns, thus simplifying

the work of human operators;

• predictive - smart monitoring is followed by a comprehensive analysis of collected data resulting

in a set of suggested actions for human operators to approve and execute;

• adaptive - the computing system proactively carries out the previously compiled set of actions

in pursuit of high level goals, mostly in the form of service level agreements (SLAs), stating the

quality of service agreed upon by both providers and customers;

• autonomic - the computing system is capable of pursuing any prescribed goal (not just SLAs) in

a fully automated way, thus completely relieving the human operator from system administration

tasks.

Besides enabling a robust classification of self-managing systems based on their main attribute,

autonomicity, the items in the list above may also be used for the qualitative evaluation of autonomic

IT architectures in a comparable way (see 2.1.3).

Concretely, there exist several techniques [104] to implement self-management properties in

practical systems. We provide a mapping of those techniques against the five levels of attainment

introduced above:

• Hot swapping is a technique for self-configuration that injects monitoring and diagnostic routines

into live code. This operates on the predictive level.

• Data clustering, a machine learning technique, is used to infer efficient registry settings, also a

realisation of self-configuration at the predictive [105] and adaptive [24] levels.

• Control theory can potentially provide support for producing the desired system output, thus

realising self-optimisation at an adaptive level [125].

• Hardware and software redundancy is a self-healing mechanism, allowing the replacement of

faulty components with back-up ones. The back-up components may be dynamically created [20],

thus placing this technique on the adaptive level of attainment. A variant of this approach is

component level rebooting where the system unit affected by a failure rolls back to the latest

known stable state and restarts. This places the system in the basic category.

• Probes and sensors are used to collect data about the system state and feed it into an engine that

compares it against fault models and notifies system administrators about the result. This is a

self-healing technique that attains a managed level of autonomicity.

• Self certifying alerts endorse self-protection. Specifically, the state of system components is

periodically compared against known stable models. When anomalies are detected, their signatures

are dispatched in the form of alerts to all other system components. A system equipped with this

technique shows an adaptive level of autonomicity.
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At any level of self-management attainment, we note the following advantages of introducing

autonomic behaviour to IT systems [90]:

• the considerable reduction and potential elimination of tedious system administration labour

performed by human operators;

• the reduction of the level of IT knowledge and skills required of human operators (ideally, the only

human involvement with the autonomic process would be at policy level, for prescribing system

goals and operation constraints, a task that only requires high level knowledge of the underlying

architecture);

• the decrease in response time to critical situations, especially in environments where humans are

unlikely to intervene in realtime (e.g., space exploration [180]);

• a potential standardisation of system management, provided that autonomic architectures continue

to be developed under open standards (a comprehensive list of such standards, both well

established and emerging, may be found in [90]).

2.1.1 Structure

An autonomic element (Fig. 1.1), namely a computing entity (hardware, software or a combination

of the two) capable of some level of self-management, comprises an autonomic manager governed by

policies and connected to a managed resource via sensors and effectors. Each of the autonomic element’s

components is presented in the following.

The Managed Resource, Sensors, Effectors

The managed resource is any hardware (e.g., a cluster of computers in a network, an array of physical

devices in a pervasive computing environment such as a smart home, etc.) or software (e.g., an operating

system, an electronic resource such as a digital document, a database or a knowledge graph, etc.) entity

that is not (but should be) capable of self-management. The state of the managed resource is exposed

to other components (such as the autonomic manager) by sensors [90], either embedded (performance

monitors, native to the operating system, relaying information such as CPU speed or HDD capacity)

or external (bespoke monitoring software capable of detecting complex changes, such as edits in a

document). Effectors are defined in [90] as interfaces that allow changing the state of the managed

resource, by tuning parameters such as room temperature in a smart home or changing the size of text in

presentation slides.

Policies

All the operations triggered by monitored changes and eventually leading to the actions implemented via

effectors are regulated by policies. These are “behavioural constraints” [90, 102] guiding the otherwise

independent operation of an autonomic element. Their main advantage is that they allow de-coupling

high level requirements from system implementation [87, 174, 11], such that the former could (ideally) be

modified without rewriting the latter. Traditional policy classification [102] relies on artificial intelligence

metaphors, namely “reflective agents”, that merely implement the actions prescribed by their governing
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policies, and “goal-oriented agents”, capable of devising their own actions in order to attain a given

goal. Drawing on that parallel, Kephart and Walsh identify two types of policies: event-condition-action

(ECA) and goal policies (with their enhanced variant, utility policies). The three types of policies, the

formal languages they are formulated in as well as policy conflicts are discussed in section 2.1.2.

The Autonomic Manager

The autonomic manager facilitates the realisation of self-* properties by implementing the MAPE-K

intelligent control loop. The monitor phase is closely related to the operation of sensors whereas the

execute one relies on effectors. Although displayed separately in Fig. 1.1, the analyse and plan stages

do not necessarily have dedicated hardware or software modules to support them. On the contrary,

analysis and planning tasks are usually tightly coupled and interleaved (e.g., during incremental plan

development, additional analysis is carried out to inform the selection of each new plan step). A

more detailed discussion about analysis, planning and knowledge within the autonomic control loop

is presented in the following.

• Analyse. The role of this component is to create models from monitored data, match them against

known patterns and decide whether a change is needed to drive the system to a state where the

prescribed objectives may be achieved [90]. The actual implementation of the analysis phase is

either vaguely described in the literature or omitted altogether.

• Plan. During this stage, the autonomic system constructs the (sequences of) actions needed to

achieve high level goals [90]. Thus, planning may be viewed as a search problem over the space of

all possible sequences of actions derived from the autonomic system’s knowledge base [182, 88].

To address the challenge of automated planning in partially known environments, Srivastava et al.

[165] suggest keeping records of previously executed plans and annotating them with metadata for

potential reuse (giving rise to the idea of “plan life cycles”).

• Knowledge. The operation of the autonomic control loop relies strongly on the knowledge that the

manager stores about itself (known data patterns used to analyse sensor input, previously utilised

plans, policies, etc.), the managed resource (legacy architectural models or some other form of

expert knowledge) and the outside environment (sensor logs). In order for the analyse and plan

phases to run smoothly, the knowledge repository needs to be kept up to date with the changes in

the system. Also, the chosen knowledge representation should support fast processing (information

retrieval and analysis/reasoning) at runtime. In light of these requirements, it is recommended

[88] to represent knowledge as a collection of components linked by connectors, restricted by

constraints and described in a bespoke Architectural Description Language (ADL), such as Darwin

[110, 88], ACME [152] or xADL [50].

2.1.2 Policies

ECA policies exhaustively list all the actions that an autonomic system should take in a given context. For

exemplification, consider the self-adaptive document rendering application introduced in section 1.3.1.

A possible ECA would be:
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When audience focus drops below the medium threshold event

AND

it is afternoon condition

THEN

increase font size and increase display brightness. action

The scenario that this policy describes is that of a presentation scheduled in the afternoon, where the area

of exposed iris, recorded by room cameras and averaged over all members of the audience, corresponds

to a previously defined level (i.e., medium) of focus. If this event-condition combination is detected,

the autonomic system should increase the size of all text and the brightness of the display. Note that

ECA policies formulated as above virtually eliminate the need for the analyse and plan phases of the

MAPE-K loop. The autonomic manager is made aware of the two triggers that should be reported by the

monitoring system at the same time (a camera feed pointing to a medium level of focus and the system

clock indicating a time in the PM range), thus making any further analysis unnecessary. The ECA policy

also provides a fully developed plan, namely the exhaustive set of actions that need to be performed

(increase font size and increase display brightness). This reduces the control loop to just two phases:

monitor and execute. The knowledge (what to modify, namely font size and display brightness) required

by this simplified model is also contained in the policy.

Unfortunately, ECA policies have a major disadvantage, in that they may contradict each other,

especially when prescribed in large numbers (as is the case with most realistic autonomic systems). Let

us illustrate such a conflict by referring to the second application, presented in section 1.3.2. An ECA

policy enforcing the correctness of the knowledge base is:

When the knowledge graph is edited by a user event

AND

the author of the edit has a credibility score higher than 5 condition 1

AND

all reasoner checks pass condition 2

THEN

commit change to live server. action

This policy ensures that all modifications made to the knowledge base through the user interface are

authored by reputable actors as well as logically consistent, as determined by the reasoner. Note that this

policy does not provide a safeguard against semantic violations, for example, it will not reject an edit

stating that GOOSE is a sub-career of PHYSICS, as long as it is consistently defined with respect to the

ontology structure.

Another goal of the system is to offer the public a complete version of the careers ontology, one

that captures the entire community’s views on the matter. Hence, a completeness ECA policy is defined:

When a user requests to view the knowledge graph or one of its sections event

THEN

display all available information (nodes, connections, meta-data) relevant to the user query. action
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The conflict between the correctness and completeness policies is subtle. Some of the users with a

credibility score under 5 are new to the system and still building a reputation as trust-worthy editors,

therefore their low rank is not necessarily a consequence of (semantically) bad edits suggested in the

past. However, their proposals will be rejected according to the correctness policy. This inherently

hinders the execution of the completeness policy, as the displayed knowledge will not reflect the views

of new users from the careers community.

Goal policies express the autonomic system’s objective, in other words, the desirable state that the

system is meant to reach. The sequence of actions to be executed in order to achieve the prescribed

objective is devised by the system rather than explicitly provided, as in the case of ECA policies. For

instance, the policy for the document rendering scenario defined above can be reformulated as a goal

policy.

Maintain audience focus at a medium level or above. goal

The correctness and completeness ECA policies for the careers network application can also be merged

into one goal policy:

Maintain and display a correct and complete version of the knowledge graph. goal

In order to reach the final state prescribed by the goal policy, the autonomic system will independently

analyse its knowledge base and plan the necessary actions, namely increase text size and adjust

brightness, within the confines of available battery levels, for the first scenario and accept/display

logically correct edits from all users with the appropriate credibility score for the second.

The main advantage of performing analysis and planning as distinct stages of the MAPE-K loop,

rather than delegating to ECA policies, is that policy authors no longer need to prescribe the exhaustive

list of actions necessary to fulfil a goal, as the autonomic system is capable of performing that task on its

own. However, increasing the degree of system autonomicity via goal policies does carry a significant

disadvantage, as compiling the sequence of actions during the planning phase is more computationally

intensive than directly retrieving it from the body of ECA policies. Furthermore, goal policies are still

affected by conflicts. To exemplify, consider the following two goal policies for the document rendering

application:

Maintain audience focus at a medium level or above. goal

Maintain battery charge at a medium level or above. goal

Modifying the way slides are rendered (increasing brightness, in particular) during a presentation in order

to capture the audience’s attention is likely to drain the battery at an accelerated rate. This makes the two

policies above inherently conflicting. One way of resolving the contradiction is to assign a numerical

value to each of the states described by the policies such that the system could unequivocally determine

which one is more desirable.

Utility policies disambiguate system states by assigning a numerical score (utility) to each of them.

In the example above, let us consider that a high/medium/low battery charge is associated to utility scores
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1/2/3, whereas a low/medium/high level of audience focus is evaluated to scores 1/2/3 as well. In this

case, the system attempts to maximise the focus-related utility and minimise the battery-related one, that

is, maintain a high level of attention without taking up too much power. If that is not achievable (e.g.,

due to hardware constraints), one of the remaining three combinations allowed by the policies will be

selected: medium focus with high battery charge, high focus with medium battery charge or medium

focus with medium battery charge. The advantage of this approach is that utility policies are inherently

conflictless [102]. The disadvantage lies with mapping the space of system states to that of utilities, a

task requiring in-depth familiarity with the managed resource and its environment [88].

Given that all previously discussed policies have both advantages and disadvantages, it is argued

[102] that autonomic systems should use a combination of all three types in order to strike a balance

between a high level of autonomicity and sustainable resource consumption. In this context, strategies

for deconflicting policies become important. Although some research, see [116], recommends this

task be externalised, that is, addressed by the issuing communities (of domain experts) prior to policy

deployment onto the autonomic system, the main body of work in the field promotes the idea that conflict

detection and, in some cases, resolution should be automatically performed, at runtime, by the autonomic

system itself. In what concerns ECA policy conflict resolution, the following general approaches are

suggested [102]:

• assigning priorities, a technique allowing the application of policies in order of importance,

ultimately similar to the utility-based approach;

• adding meta-policies meant to disable the trigger of all conflicting policies save one; more

specifically, the action part of the meta-policy represents the negation of the conflicting policy’s

condition;

• modifying the individual conflicting policies by transforming their condition into a conjunction of

the existing one and the inverse of the conflicting policy’s condition.

In practice, due to the intricacy of policy interactions, these approaches have limited applicability, thus

reducing conflict detection/resolution to spotting and resolving logical contradictions [11] (e.g., the same

action is both forbidden and required by different policies). This call for a bespoke formal language to

support policy description and analysis. Some of the widely used policy languages and the way they

support conflict detection/resolution are briefly discussed in the following.

The OWL-based Policy Language for Agent Reasoning, OWL-POLAR [155], describes policies

in a format based on conjunctive formulae. Each policy has an activation condition, an action and an

expiration condition. The actor executing the action as well as the action modality (obligatory, permitted

or forbidden) are also specified. The example below shows how the ECA policy for the self-adaptive

document rendering application would be formulated in OWL-POLAR:
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When audience focus drops below the medium threshold event

AND

it is afternoon condition

THEN

increase font size and figure resolution by one unit each. action

Focus(? f )∧ isBelow(? f ,medium)∧Time(?t)∧ in(?t, pm)→ activation

O?e:Effector(?e)?a1,?a2 : increaseFont(?a1)∧ increaseResolution(?a2)/ action

isAboveOrEqual(? f ,medium) expiration

All formulae in the conjunction above are atomic assertions that either indicate a type - Focus, Time,

Effector, increaseFont, increaseResolution - or represent a relation - isBelow, in, isAboveOrEqual.

All the symbols preceded by a question mark are variables, whereas medium and pm are predefined

constants. The expressions following a colon are constraints applied to the variables preceding it. Symbol

O in the OWL-POLAR policy action represents the obligation modality, stating that the action following

it is mandatory.

The supplementary effort of translating policies from natural language into conjunctive formulae

is justified by the fact that OWL-POLAR policies are machine readable, thus can be automatically

reasoned upon. To exemplify, [155] proposes two algorithms for policy reasoning: one for eliminating

redundant policies (algorithm 1 in [155], based on a reasoning technique called subsumption) and one for

anticipating policy conflicts (by utilising a type of reasoning called consistency checking, as illustrated

by algorithm 2 in the same paper). Once detected, conflicts can be resolved by developing plans, at

runtime, to activate the expiration conditions of all but one of the contradicting policies.

The Knowledgeable Agent-oriented System, KAoS [178, 28, 69], provides a graphical interface

(the KAoS Policy Administration Tool, KPAT) to assist stakeholders with defining policies. This way,

the translation of policies from natural language into DAML1, the formal language used internally by

KAoS, is hidden from policy authors, thus simplifying their task. KAoS utilises a collection of high

level ontologies, featuring specialised concepts for all policy components such as actions, actors and

required resources. These concepts are appropriately instantiated to represent bespoke policies, forming

an application specific ontology (for example, in the case of the self-adaptive rendering application,

instances increaseFont and increaseResolution would be created for concept action). The ontology

is afterwards used to detect policy conflicts via consistency checking and to assign policy actions to

specific actors (enforcers, in KAoS terminology). Policy deconfliction is performed with respect to

pre-set priorities. Although the acronyms are similar, KAoS is a concrete implementation of a policy

management system and is not to be confused with KAS, the template architecture for autonomic systems

hybridised with semantic technologies, proposed in chapter 4.

Rei [94] is a language built on top of Prolog that represents policies in a fashion similar to OWL-

POLAR. More specifically, Rei policies have actors, actions and modalities such as allowed, forbidden,

compulsory and dispensed (equivalent to postponed obligation). Like KAoS, Rei employs domain

independent as well as problem-specific ontologies to represent policy components and detect conflicts.

The latter are resolved by means of meta-policies and pre-set priorities.

1http://www.daml.org/about.html
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2.1.3 Applications and Evaluation

Autonomic computing applications rage from full system implementations [80, 95, 1, 182, 155, 27] to

bespoke practical realisations of the MAPE-K components (monitor [2], plan [39], analyse [36, 6]). A

detailed analysis of state of the art contributions is provided in 3.1, however, to paint a picture of the

range and diversity of autonomic applications, the major problem domains where such technologies are

applied are given below2.

• space exploration: NASA ANTS [88] supports collaboration between asteroid belts probes;

• distributed systems: load balancing and component repair [95], data collection frequency control

[2], dynamic resource management [1, 182, 150, 147], network compartmentalisation and

assembly [27], network parameter estimation [131, 148, 6], medical services in the cloud [4];

• electronic personal assistants: PC performance improvement via operating system’s processes

management [108];

• web services configuration [124, 184];

• military and security-critical applications: hierarchical policy management [37];

• middleware [57, 117, 187];

• autonomic database management [3];

• data centre management [182].

Given the wide range and the increased diversity of autonomic applications, it is not surprising

that a unified evaluation framework is yet to be formulated. The most common scenario is to test the

performance of the autonomic system in the context of the application it was designed for. This does

little in the way of enabling a rigorous performance comparison across a range of different systems.

However, there exist a few proposals of general assessment criteria for autonomic systems that can be

roughly classed as either qualitative or quantitative.

Qualitative Evaluation

Qualitative evaluation employs discrete, non-numeric scales for various system aspects [131]. IBM’s

five levels of autonomicity (2.1) represent such a scale, used both in [88] and as one of the classification

criteria in 3.1. Other qualitative metrics suggested in [131, 127, 113] are:

• architecture category: flat (horizontal) or hierarchical (vertical, where managers on a given level

are coordinated by one situated on the level above),

• adaptation approach: the strategy the system employs to adapt to changes in its environment

(can be policy based or utility function based),

2There is significant overlap between contributions: some papers should, in all fairness, be included in several categories.
This, as well as the abundance of evaluation criteria, makes it difficult to provide a clean classification of autonomic applications.
A more thorough categorisation than that given here is attempted in chapter 3.
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• learning ability: splits autonomic systems in two categories based on the presence or absence of

a learning mechanism (there is a quantitative evaluation metric to capture learning efficiency, as

shown in the next section),

• openness: autonomic services that are publicly available or with restricted access,

• evolvability: discriminates between autonomic systems that can be maintained and extended and

those that cannot (a trademark of an evolvable system is the fact that its core elements are designed

as middleware [131]),

• granularity: measures the modularity and coupling of system components [127] (either thick-

grained or fine-grained),

• robustness: refers to a system’s capacity of avoiding/ recovering from failures [127],

• validation: differentiates between systems assessed via simulation, mathematical modelling

or other qualitative/quantitative metrics, on the one hand, and systems without any associated

evaluation data, on the other hand.

Quantitative Evaluation

• Probabilistic verification techniques measure how well systems meet quality requirements,

such as “the probability of a successful attack must be lower than a given threshold”. The

availability of a probabilistic model (e.g., based on Markov chains [34]) of the system is a

prerequisite. This implies that system properties as well as quality requirements must be translated

from informal language into a probabilistic temporal logic, with substantial computational effort

[33]. ProProST [75], introduced to simplify the translation process, represents a collection of

specification patterns to be used as building blocks and assembled to formulate arbitrarily complex

probabilistic properties. A structured English grammar is also available to aid the translation of

quality requirements and system properties from natural language into ProProST.

• Application specific metrics measure system performance in the context of the problem they were

designed to solve. A list of such metrics [131] includes the quality of the autonomic response
(e.g., the increase in the speed of response, the decrease in the overall number of faults over

a given period of time, etc.), the cost of autonomy (the overhead introduced by the MAPE-K

loop), the flexibility ratio (the rate of failure decrease divided by the overhead), the speed of the
autonomic response (the total time necessary to adapt to change in the environment), the degree
of proactivity (the number of unsupervised decisions made by the system).

• Generic metrics give an objective, application independent evaluation of (theoretically) any type

of autonomic system. These metrics [131] may be relevant for comparing different autonomic

systems on the condition that they were built to achieve similar goals. The quantitative evaluation

criteria proposed in [131] have to do with the autonomic system’s efficiency at storing and

manipulating its knowledge base. The coefficient of learning, cl , is meant to assess the system’s

capacity to learn from experience (stored in the knowledge base) in order to enhance future

performance and is formally defined as follows:
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cl =
max(1− E{D′}

E{ND′} ,0)+min( E{D}
E{PD} ,1)

2
, (2.1)

where E{D} represents the average number of correct learning based decisions and E{PD} stands

for the average number of “target achievers”, namely decisions with a significant impact on

realising the system goal. E{D′} and E{ND′} are defined similarly, yet for incorrect decisions,

with the latter representing the number of “target damagers”, i.e., decisions with a strong negative

influence on the system (driving it away from a desirable state). Systems successful at learning

from their experience will score close to 1 on the cl scale, meaning that out of all target achievers,

most were learning based decisions, whereas out of all target damagers, almost none were learning

based decisions. Systems inefficient at learning from their knowledge base will have a cl value

close to 0. The efficiency of learning, el gives a numeric interpretation to the amount of progress

made by the system towards the target goal:

el =
K{PD}

K{PD}+K{ND′}
. (2.2)

Symbols PD and ND have the same significance as above, whereas K stands for “average

percentage”. These last two metrics are used to define the learning index:

Il =
L
M
· cl · el, (2.3)

where L represents the number of system parameters that can be learned and M stands for the total

number of system management parameters. A system with a learning index of 0 either has no

learnable parameters (L = 0) and/or is incapable of learning from knowledge (cl = 0) and/or makes

no target achieving decision (el = 0). In [131], such a system is termed closed adaptive system.

Open adaptive systems are situated at the opposite end of the spectrum, with an Il of 1. The

accuracy of awareness is a metric targeting the frequency of changes in the system’s knowledge

base (preferably high, to reflect environment dynamics) as well as the overhead introduced by

it (preferably low, to speed up execution). To assess the accuracy of awareness, [131] suggests

taking several measurements including the time required to insert a new data sample, the trust of

the update’s author (e.g., a credibility/reputation score) and the correctness of the knowledge base

(the number of other data samples corroborating the newly added one).

2.1.4 Reflection and Open Issues

The foundational concepts and techniques around autonomic systems’ purpose, structure, applications

and evaluation give rise to a series of reflection points discussed in the following.

Self-* properties are revolutionary: they represent a complete change in perspective relative to

classical system architectures and have the potential of unlocking genuinely autonomic behaviour in

practical contexts. The main reason why this has not yet happened in reality is that self-* properties are

also very abstract [90, 101], causing researchers to implement their own interpretation and ultimately

produce fit-for-purpose autonomic instances that are “locked” inside a particular application domain.

There are very few documented attempts at understanding self-* properties (e.g., the conceptual parallel
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to the human ANS [90]) and implementing them in an architected, reproducible manner (some high

level techniques are available [104]). To make autonomic systems more extensible and portable across

problem domains, there is a need for design guidelines as well as good practices and techniques for
implementing such systems (programming models [5]).

Standardised metrics to evaluate and compare autonomic systems’ performance are in short supply

[88, 5]. Some qualitative and quantitative evaluation techniques are available (2.1.3), but they are difficult

to retrofit to existing systems given that the elements that should be assessed are not described in

sufficient detail. For instance, the coefficient of learning (2.1) requires the number of learning based

decisions that were either correct or incorrect as well as their impact on the system’s goal, details that

are unavailable for most autonomic systems in the literature, ultimately making it impossible to use cl as

a benchmark metric. Authors tend to evaluate their systems by deploying them onto managed resources

and measuring the degree to which their bespoke application goal was met, an approach that does not

hold outside a narrow problem domain. A case for benchmarks for measuring self-* properties is

made [103, 150].

Reusable autonomic components will be integrated in larger applications, where other modules will

rely on their capability to achieve pre-set goals. This brings about the need for trust modules capturing

both the reliability of autonomic components as well as their adaptability to change [88]. This links to

the previous reflection point as it calls for evaluation criteria to measure these two features.

The nonlinearity of emergent behaviour [101] makes it difficult to predict how the interaction

between several autonomic elements will influence the performance of the entire system. Kephart and

Chess identify this as the main obstacle in the way of achieving truly autonomic behaviour (level 5

on IBM’s autonomicity scale). They approach the problem in a top-down manner and suggest the

development of a powerful modelling tool (e.g., an extension of distributed and hierarchical control

theory [103]) to model the behaviour of complex autonomic systems. Contrastingly, this work takes a

bottom-up approach, namely modelling individual autonomic elements using existing formalisms (state

hierarchies, DL, knowledge graphs) and then using the individual models to guide integration. This

is significantly simplified by functionally decoupling co-dependant MAPE stages, such as analysis and

planning.

Knowledge about system components and services should be stored inside the autonomic manager

and represented in a machine readable formalism that is expressive enough to allow for reasoning

[5]. This requirement becomes essential in the case of systems guided by ECA policies [88], since the

condition part implies investigating the system state and the action part entails modifying it. Therefore

the system state should be both accessible and programmable. This directly impacts the efficiency of

planning (plans being explicitly contained within ECA policies).

There is a need for open access, extensible autonomic tools veering away from the configuration

issues of heavyweight solutions such as ACT [150]. Architectures based on lightweight components
that can be used as building blocks elsewhere and fully disclosed in terms of implementation would

represent a significant step in that direction.
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2.2 Semantic Technologies

The majority of today’s Web is organised as a series of documents that are displayed by software (text

font and size are encoded in HTML/CSS scripts that are interpreted by browsers to control the appearance

of online content). However, interpreting the meaning of Web information (determining whether a piece

of text is a credit card number or a hotel review) is left exclusively to human readers. This becomes

particularly inconvenient in situations where data from various sources (and in different formats) needs

to be considered in order to reach a decision. For instance, when booking a holiday online, the Web 1.0

user needs to compile information from air carrier, hotel and tourist guide websites in order to match the

available offers against personal preferences and constraints and finally select the most suitable option.

What is, in the context of holiday booking, just a minor nuisance, escalates to a full scale, costly problem

in a business environment. On a daily basis, companies process unstructured information originating

from emails, news outlets, internal reports, legal documents, third party product specifications, etc., all

in different formats/styles and from separate sources/authors. Given the harsh time constraints placed

upon corporate decision making, the considerable effort behind analysing and integrating all that data

is unsuitable for (a team of) human experts. The direct consequence is that businesses have to base

important decisions on incomplete, possibly misunderstood knowledge.

One (partial) solution to the problem is the emergence of Web 2.0 [22, 45]. This new iteration

promotes user centric applications (YouTube, Delicious, Flikr) where human Web explorers add tags to

online resources as a by-product of social pursuits (publishing, sharing and commenting on videos, web

links and photos), a process referred to as “social tagging” [73]. Over time, user metadata builds into

rich contextual descriptions (e.g., the set of tags assigned to a Flikr photo by different viewers) enabling

machine processing over the space of Web 2.0 resources (one example is the algorithm that searches

for Flickr photos based on the popularity of their tags). However, Web 2.0 tags are not regulated by a

common vocabulary, encouraging tag synonymy (user A tags a photo with cinema and user B tags the

same photo with movie_theatre, with no way for a search algorithm to infer that the two annotations

are equivalent). Under these circumstances, the entirety of user tags for a given collection of Web 2.0

resources is called a folksonomy [179, 93].

Semantic technologies address that limitation by extracting annotations from shared repositories

of knowledge called domain ontologies [19, 73]. Written in a machine readable, logic-

based language (XML, OWL, etc.), ontologies store hierarchies of concepts (along with their

properties) representing physical entities from the modelled environment. This way, ontology

triples <cinema is_a projection_house> and <movie_theatre is_a projection_house> will

be used to infer that annotations cinema and movie_theatre are equivalent. Also, should a user run

a semantic search for cinema, the result list would contain resources annotated with cinema as well as

resources annotated with movie_theatre (along with all other related annotations stored in the domain

ontology). This process is called approximate querying [44] and can only be performed in the Sematic

Web (Web 1.0 search engines will only return exact cinema matches).

Besides avoiding the synonymity problem of folksonomies, ontology extracted tags allow computer

applications to perform knowledge management in lieu of the user [40], with the obvious benefits

of speed and convenience. In order to illustrate ontology driven semantic annotation and give some

examples of powerful computing algorithms that can be built on top of the resulting tags, let us consider
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the http://nasajobs.nasa.gov/ website.

• An expert builds a domain ontology modelling career fields along with their hierarchical

relationships such as “ENGINEERING is a sub-field of TECHNICAL SCIENCE” and

“SPACE ENGINEERING is a sub-field of ENGINEERING ”. Other related data, for instance

“ENGINEERING has JACS G1603”, where JACS G160 is the HESA code associated to the

engineering field, is also represented.

• The text content of the webpage is separated in words that are matched against ontology concepts.

• Every word on the website is annotated with the matching ontology concept. Specifically, every

occurrence of “space engineering” will be tagged with ontology concept SPACE ENGINEERING.

This makes it possible to infer , based on the relevant ontology assertions, that the associated JACS

value is G160.

A Semantic Web application that could be built on top of the semantically tagged content of http:

//nasajobs.nasa.gov/ would extract the JACS data from the website annotations, match it against

university programmes and produce a list of courses that a potential candidate would need to graduate

from in order to be able to apply for a job at NASA. That report would be difficult to produce manually.

Improved search over annotated resources [53] is another Semantic Web application example. This

outperforms Web 1.0 search in three ways:

• a more comprehensive list of results is returned (given that synonym tags, extracted from the

equivalence relationships stored in the domain ontology, are considered as well)

• each result is accompanied by a justification showing the semantic properties linking it to the initial

query

• a list (or knowledge graph, as is the case with Google) of recommendations [141] is also produced,

containing additional topics, semantically related to the initial query, that the user may be interested

in exploring.

Ultimately, semantic metadata allows search engines to capitalise on the context that knowledge appears

in, thus enriching the results list and presenting it in a more intuitive, connected way. To illustrate, the

reader is invited to compare the results provided by Swoogle for search term engineering4 against the

ones returned by Google.

2.2.1 Core Advantages

In light of the presented overview, the following highlights of semantic technologies emerge.

Better exploitation of online knowledge. Annotating web resources with semantic tags extracted

from ontology concepts supports the development of more powerful knowledge processing applications

capable of providing more insight into the data they analyse. This ultimately “maximises the value” of

information, as noted in [73]. For example, a semantic application tasked with planning a holiday is able

3https://www.hesa.ac.uk/component/content/article?id=1787
4http://swoogle.umbc.edu/index.php?option=com_frontpage&service=search&queryType=search_swt&

searchStart=1&searchString=engineering
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to process data with heterogeneous formats [143] (e.g., weather forecasts, hotel reviews and currency

exchange reports), by analysing the associated tags rather than the data itself. Moreover, a semantic

application is capable to infer new information [93] from the analysed data, for instance, the best time

of year to book into a specific hotel, based on online reviews (see [76] for a detailed discussion on the

benefits of semantic inference in another application domain, namely software engineering).

Integration. Just like in the case of autonomic systems, adding semantic support to an existing

application does not require extensive re-engineering of legacy resources. On the contrary, the semantic

layer (comprising domain ontologies, semantic annotations and middleware such as semantic reasoners

and search tools) is sufficiently lightweight to wrap around the existing data infrastructure with minimum

integration efforts [22].

Open standards. The World Wide Web Consortium (W3C) publishes and maintains a collection of

recommendations5 for linked data (ontologies) management, vocabulary languages usage (RDF, OWL,

XML) and good inference/querying practices as well as guidelines for developing “vertical” applications

connecting all layers of the semantic stack (2.2.2). This way, the integration of semantic support in

existing applications is regulated by a central authority (the W3C) at no monetary cost6 for the business.

Extensibility and cooperation. A domain entity is modelled within an ontology by an uniquely

identifiable concept, that is, the name of each concept is prefixed with a bespoke URI [76]. This

way, several ontologies can be merged/integrated in the same application [141] without needing to

disambiguate overlapping terms.

2.2.2 The Semantic Web Stack

Semantic technologies are designed to support the Semantic Web, thus the layered diagram presented in

Fig. 2.1 is a fitting visual support for their description.

Knowledge identifiers and representation languages

These are the first three layers of the stack, containing the specifications for URI (the prefix that makes

every name in the ontology unique), XML and RDF (the languages that ontology concepts and properties

are expressed in). These are considered to be well defined and complete semantic contributions with the

widest industrial and academic acceptance [22, 45], relative to the other layers of the stack. The main

reason behind the popularity of these identifiers/languages is that they are expressive enough to describe

complex entities and relationships, yet, at the same time, sufficiently flexible to hide that complexity

from the end user [121].

Taxonomies and ontologies

This level hosts the semantic models developed using the languages from the bottom layers of the stack.

More accurately put, ontologies, taxonomies and rules are written in higher level languages (ultimately

based on RDF/XML but with a simpler, more flexible syntax). Thus, the W3C recommended standard

ontology language is OWL, whereas taxonomies are usually developed in RDFS (RDF Schema - a

5https://www.w3.org/standards/
6For access to standards and documentation - actual development costs are not considered here.
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Fig. 2.1: The Semantic Web stack adapted from [84]

restricted set of RDF classes) and rules are build in either RIF (Rule Interchange Format) or SWRL

(Semantic Web Rule Language).

Apart from usually being defined in different languages, ontologies, taxonomies7 and rules [85]

are difficult to separate (taxonomies can be viewed as simplified ontologies where the only relationship

between concepts is hierarchical, whereas rules8 are more frequently formulated inside ontologies than as

stand-alone collections). This conclusion is easily reached by contemplating the multitude of (relatively

vague) definitions offered in the literature for the ontology concept alone. To illustrate, a few of the most

representative such definitions are listed in the following (the new ontology features introduced by each

definition are italicised).

• An ontology is a formal and shared representation of a knowledge domain [158].

• Ontologies are consensual models of domains of discourse implemented as formal definitions of

the relevant conceptual entities [77].

• Ontologies represent explicit, formal (as in machine readable) specifications of domain terms and

their relationships, generating a common vocabulary for people/businesses sharing knowledge

across the web [136, 143].

• Ontologies model both domain entities and tasks, namely the operations that are legal/allowed in

the domain [65].

Summarising the above definitions, the research community views ontologies as formal, explicit,

consensual and shared models of knowledge. Essentially, this means ontologies are self-contained,
7Although taxonomies are outside the scope of this work, the interested reader may consult [173] - slides 8 and 9 - for an

excellent comparison between taxonomies and ontologies in a military application context.
8It has been proposed [84] to reorganise the stack into two towers to better accommodate a more robust framework to define

and manage rules.
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written in some machine readable language, agreed upon by the wider community and shared amongst

its members. These key features can be treated as general design guidelines to support the ontology

engineering process (more detailed design patterns are presented in section 2.2.4). A closer look at the

final two definitions reveals what ontologies should contain, namely representations of domain terms

(entities) and their relationships. This highlights another subtle connection between ontologies and

autonomic systems, in the sense that ADLs (2.1.1), used to model the latter, describe components (which

can be viewed as terms) and connectors (an alternative name for relationships). The final definition also

mentions including system tasks in the ontology, that is, the operations that may be performed on the

entities and their relationships. In an autonomic context, this would translate into storing plan actions

and system goals in the knowledge base, such that they can be reasoned upon and potentially improved.

Querying, proof and trust

Semantic queries are expressed in SPARQL (Simple Protocol and RDF Query Language) [142], a

language similar to SQL, capable of returning both explicit and implicit matches as well as providing a

justification for the returned results. The justification will contain the axioms that were used to find the

ontology concepts matching the search topic.

To illustrate, let us consider the holiday planning application described previously. Assuming that

the user wants to spend his/her vacation in East Sussex, UK, one of the tasks of the planning application

might be to compile a list of all hotels in that area. Running the SPARQL query in Fig. 2.2 will return all

East Sussex hotels in the (fictional) leisure_venues ontology. Prefix lsr is associated to the ontology

URI to be able to refer to ontology elements in a syntactically convenient way. The SELECT clause will

search through all ontology concepts, find the ones that are the subject of the two triples in the WHERE

clause, bind them to variable ?hotel and return them to the calling code. The WHERE clause contains

two typical RDF triples, where ?hotel is the subject (the data the query is meant to return), isIn and

isA represent the predicates, whereas Hotel and EastSussex are the objects.

PREFIX lsr: <http://xmlns.com/leisure_venues>
SELECT ?hotel
WHERE {

?hotel lsr:isA lsr:Hotel .
?hotel lsr:isIn lsr:EastSussex .

}

Fig. 2.2: A SPARQL query to find East Sussex hotels

The result generated by running the query will contain a list of hotels, each with the appropriate

justification, similar to the one in Fig. 2.3 - note that none of the three ontology axioms is an exact

match to the second triple in the query’s WHERE clause. The fact that the returned hotel is in East Sussex

is not explicitly stated, but inferred from the last two axioms in Fig. 2.3. If leisure_venues were a

relational database instead of an ontology, this infered result could not be returned without significantly

complicating the syntax of the employed SQL query (using foreign keys to join several tables) [129].

The same mechanism also supports semantic proof, namely the automated logical (in)validation of

statements such as “BrightonCentral hotel has an occupancy of 70% in the summer”. This is a powerful
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BrightonCentralHotel

lsr:BrightonCentralHotel lsr:isA lsr:Hotel
lsr:BrightonCentralHotel lsr:isIn lsr:Brighton
lsr:Brighton lsr:isIn lsr:EastSussex

Fig. 2.3: One entry in the SPARQL query result

feature (unavailable, at least not straightforwardly, for systems storing knowledge in relational databases)

that allows other applications to trust the validity of the results produced by semantic queries. Moreover,

human end users are also encouraged to trust the outcome of semantic search, by being provided with a

justification for each returned result.

However, semantic proof is not available for all ontologies. Ultimately, the more powerful the

ontology language, the looser the guarantees that reasoning over it will produce trustworthy results [19].

For instance, OWL Lite, a simpler yet decidable language in the OWL family, will be able to guarantee

the (in)validity of the statement about the summer occupancy of the Brighton hotel, whereas OWL Full,

which is more expressive yet undecidable, will only be able to provide partial proof.

Unifying logic, cryptography and user-oriented applications

The top layers of the stack contain open challenges that the interested community, both academic and

commercial, is still investigating (see 3.2). A representative example is cryptography, an ongoing,

still unstandardised pursuit of semantic researchers and practitioners alike. Despite the importance

of producing bespoke and efficient encryption algorithms to protect semantic data at all levels of the

stack, while still allowing it to be searched and inferred over by client applications, the development of

this component is still in its infancy [15]. This has a negative impact on the trust placed in semantic

technologies by human end users and other applications.

The unifying logic refers to middleware meant to bind together the knowledge representation layers

and the semantic querying component supporting inference and proof. Again, this is an open field, not

currently regulated by any W3C standards, where researchers/practitioners create application-specific

interfacing algorithms with little applicability outside the domain they were created for (3.2). This leads

to a very fragmented top layer of the semantic stack, hosting heterogeneous client-facing applications

(analysed in the state of the art chapter) optimised to successfully carry out a specific task with little

scope for portability across problem domains.

A critical afterthought about the Semantic Stack

Given that the purpose of this work is to investigate ways to support autonomic behaviour by making use

of semantic technologies, the knowledge representation and querying layers of the stack are of particular

interest (2.2.4). Hence, a more detailed discussion about reasoning services (underpinning semantic

queries amongst other functionalities) is presented in 2.2.3.

In a broader view, the core contributions of this research fit best in the user interface and

applications layer. Specifically, chapter 4 proposes a general architecture and methodology to bind
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semantic platforms (ontologies) and tools (reasoners, knowledge extractors) together with autonomic

components in a singular framework designed to exploit the benefits of both technologies. The algorithm

presented in Table 4.5 represents an implementation of that framework. To demonstrate how the

architecture and methodology apply to different problem domains, chapters 5 and 6 describe two separate

implementations, situated at the confluence between the semantic stack’s applications layer and the

practical segment of the autonomic computing domain.

2.2.3 Semantic Reasoning Services

Reasoning in DL [83] is a multi-faceted semantic service that may be broken down into five important

functions.

Subsumption

Based on existing ontology axioms, semantic reasoners may infer knowledge that is not

explicitly stated, but follows logically from previous assertions. For instance, let us consider

the definitions9 of ontology concepts FrenchRivieraCity, NorthernMediterraneanCity and

NorthernMediterraneanCountry (Fig. 2.4). Based on the fact that France is among the countries

to the north of the Mediterranean Sea, a semantic reasoner will infer that concept FrenchRivieraCity

subsumes (is a subclass of) NorthernMediterraneanCity. This automated inference would prove

very useful in the context of a travel planning application: should the user request a list of all vacation

destinations north of the Mediterranean Sea, the results list would contain all cities on the French Riviera,

including those that are not directly listed as Mediterranean cities.

Class: FrenchRivieraCity EquivalentTo:
VacationDestination
and (isLocatedIn value France)

Class: NorthernMediterraneanCity EquivalentTo:
VacationDestination
and (isLocatedIn some NorthernMediterraneanCountry)

Class: NorthernMediterraneanCountry EquivalentTo:
{Spain, France, Monaco, Italy, Slovenia, Croatia, Bosnia and Herzegovina,
Montenegro, Albania, Greece, Turkey}

Fig. 2.4: Concept definitions from an ontology describing vacation destinations - based on these,
the reasoner subsumes FrenchRivieraCity under NorthernMediterraneanCity

Subsumption simplifies the ontology design process, allowing the ontologist to focus on

formulating accurate class and property definitions rather that investing effort in determining the correct

place in the ontology hierarchy where a new concept should be inserted.

9All definitions of ontology concepts and properties are given in the Manchester OWL syntax, available at https:
//protegewiki.stanford.edu/wiki/Manchester_OWL_Syntax.
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Satisfiability

A common problem with large ontologies is that subtle, usually unwanted and difficult to detect

connections tend to appear between axioms. In this context, it is possible for a concept to become

inconsistent (or unsatisfiable), meaning that no instances could be created from it. The example

in Fig. 2.5 illustrates such a scenario: an ItalianRivieraCity is both an EuropeanCity and a

NorthernMediterraneanCity, however, the touristic appeal of European cities, on the one hand,

and northern Mediterranean cities, on the other hand, is reflected by different average ranks10: 3 and,

respectively, 5. Given that hasAverageRank is a functional property, it follows that Italian Riviera cities

have two average ranks, which is both conuterintuitive and logically incorrect. The reasoner will address

this situation by flagging concept ItalianRivieraCity as inconsistent.

Class: ItalianRivieraCity SubClassOf:
EuropeanCity and NorthernMediterraneanCity

Class: EuropeanCity EquivalentTo:
VacationDestination
and (hasAverageRank value "3"^^integer)

Class: NorthernMediterraneanCity EquivalentTo:
VacationDestination
and (hasAverageRank value "5"^^integer)

Fig. 2.5: Concept definitions from an ontology describing vacation destinations - based on these,
the reasoner infers that concept ItalianRivieraCity is unsatisfiable

Satisfiability checks are particularly useful during ontology design or when porting legacy

databases to a semantic format, as they expose design flaws, usually too subtle for human domain

experts to detect. Relative to the ItalianRivieraCity example, the ontologist is made aware that

hasAverageRank causes an inconsistency, prompting either a redefinition of the culprit property, or,

better yet, a reconfiguration of the concept hierarchy.

Synonymy

Ontology classes that have the exact same set of instances are called equivalent, a relationship that

is automatically detected by the reasoner. In some cases, synonymy is useful: for instance, in the

medical domain, determining that several terms refer to the same condition may support doctors with

prescribing the correct treatment. In other cases, equivalent classes signal a design flaw, such as

ambiguous definitions or insufficiently constrained axioms. The latter case is illustrated in Fig. 2.6,

where concepts EuropeanCity and AsianCity lack the isLocatedIn property, therefore the reasoner

will infer they are equivalent. Moreover, concept City is incorrectly defined as the intersection, rather

than the reunion of the five continents, leading the reasoner to infer that City subsumes EuropeanCity

and AsianCity. As the latter two concepts are asserted as subclasses of City, a cycle is formed. From

10Calculated, for instance, based on feedback left by travel websites’ users.
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a logical point of view, a cycle is not an inconsistency, therefore the reasoner does not flag such cases as

problems. However, in some situations, as is the one illustrated in Fig. 2.6, a cycle may mask a design

flaw. Specifically, the fact that concepts City, EuropeanCity and AsianCity are reported as synonyms

will allert the ontologist to the error in the definition of concept City (where and should be replaced by

or) as well as the ambiguity in the definitions of the other two concepts.

Class: EuropeanCity EquivalentTo:
City
and (hasAverageRank value "3"^^integer)

Class: AsianCity EquivalentTo:
City
and (hasAverageRank value "3"^^integer)

Class: City EquivalentTo:
EuropeanCity and AsianCity and AmericanCity
and AfricanCity and AustralianCity

Fig. 2.6: Concept definitions from an ontology describing vacation destinations - based on these,
the reasoner infers that concepts EuropeanCity, AsianCity and City are synonyms

Query Answering

Provided that the underlying ontology is consistent, semantic reasoners are capable of automatically

answering queries based on both asserted and inferred knowledge. Relative to the example in Fig. 2.4,

asking whether France is a northern Mediterranean country represents a query of the former type,

whereas requesting the list of all northern Mediterranean cities would fall under the latter category.

Queries based on inferred knowledge are particularly powerful, allowing entries such as Nice, defined in

Fig. 2.7, to be included in the results list, even though there is no explicit ontology axiom directly linking

them to NorthernMediterraneanCity, the only search criterion mentioned in the query.

Individual: Nice
Types: FrenchRivieraCity

Fig. 2.7: Individual definition from an ontology describing vacation destinations - based on this and
the concepts in Fig. 2.4, the reasoner infers that Nice is a northern Mediterranean city

The practical applications of answering queries based on inferred knowledge (ranging from

allowing Google to provide more relevant results to supporting Siri with better understanding questions)

come at a computational cost. Specifically, in order to determine that Nice is a northern Mediterranean

city, that statement needs to be verified for all states of the modelled domain that satisfy the ontology’s

axioms. In the example given here, that is not an intense computation, however, realistic ontologies are

of a much larger size. The complexity of semantic query answering can be traced back to the Open

World Assumption (OWA), according to which facts that are not explicitly asserted are not assumed
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to be false (as is the case with relational databases). Consequently, there is a compromise to be made

between the flexibility enabled by OWA - the only realistic option available when modelling uncertain

domains where missing knowledge is a given - and the effort entailed by computing entailments (query

answers), a process close in nature to theorem proving [83]. In contract, query answering is significantly

faster with relational databases, given that they operate under the Closed World Assumption (CWA).

Regardless, modern reasoner implementations, such as FaCT++ [175] and Pellet [161], are capable of

resolving ontological queries in a realistic time frame.

Inference Explaining

A fundamental service provided by semantic reasoners, tightly connected to the trust level of the

Semantic Stack, is that of explaining inferences. Every semantic operation, particularly queries with

counter-intuitive or unexpected results and computations that uncover design problems, such as concept

inconsistency, is justified by a reasoning chain. For instance, when inquiring whether Nice is a north

Mediterranean city, all axioms that support the result, namely the ones shown in Fig. 2.4 and Fig. 2.7,

will be available for inspection upon producing the answer. Revealing the reasoning chain supporting a

query answer is particularly useful when the ontology underpins an exploratory system, such as a career

management application. For instance, users searching for the academic qualifications necessary to get

a job in Physics, may come across other, related professional fields among the axioms in the reasoning

chain and thus expand their range of job options.

In case of detecting unsatisfiable classes, the explanation is akin to the debugger output for code

written in some programming language, in the sense that the ontologist can use the axiom trace to locate

and address design flaws.

2.2.4 Ontology Engineering

Ontology engineering (OE) is an umbrella term [158] that comprises:

• operations, such as ontology design, extraction, querying and maintenance

• methodologies, namely a set of principles, patterns and strategies employed while performing the

operations above

• tools (reasoners, knowledge extractors, etc.) and languages (OWL, SPARQL, etc.) supporting

operation execution.

A closely related term is ontology life cycle [136, 135] that, in addition to the three OE facets above, also

refers to ontology evaluation (2.1.3) and ontology reuse across problem domains.

The remainder of this section is structured with respect to OE operations, however, the focus

lies with analysing the underlying methodologies. By doing that, it becomes possible to identify the

design patterns/principles applied to build successful (expressive, maintainable, easily searchable, etc.)

ontologies and reuse them in different problem domains. Moreover, methodology-based ontologies can

be compared (structure and performance-wise), whereas bespoke ones, built without referring to design

patterns or known good strategies, can only be evaluated in the context of the application they were

designed for.
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Ontology Design

Formally, a DL (description logic) ontology contains terminological (general) knowledge about the

modelled domain, also known as the TBox, and assertional (specific) knowledge, referred to as the ABox

[19]. The TBox contains classes (concepts or terms) describing generic domain entities (such as Hotel

in the holiday booking example used previously), whereas the ABox comprises instances (individuals) of

those classes (e.g., BrightonCentral). Selecting the structure of the ontology, namely the depth of the

concept and instance hierarchies as well as the relationships (properties) that connect them, is performed

during the design phase of OE.

Besides business rules, that impose restrictions related to the goal of the application hosting the

ontology and the integration with other components, the structure selection process is informed by

design patterns. These are known successful conceptual solutions to recurrent modelling problems, in

other words, modelling “best practices” [65]. The usefulness of applying design patterns to solve any

type of modelling problem is fairly intuitive, however, qualitative evidence is available [25] to support

the claim that design patterns have a positive impact on ontology design (specifically, improve domain

coverage, increase reusability and simplify maintenance). A list of commonly used design patterns and

good practices (also applied while designing the ontologies for the systems presented in chapters 5 and

6) is included below.

Instantiation. Not all ontology concepts need be instantiated [136]. Although this may raise

questions about the need for a class with no individuals, there are two main advantages to take

into consideration. Firstly, “abstract” concepts (that do not model a physical entity in the problem

domain) are sometimes necessary to represent complex properties that cannot be directly expressed

as RDF triples (see the reification design principle for more details). These abstract concepts have

no individuals. Secondly, reasoning over instances is still experimental, therefore semantic querying

(ultimately performed by reasoners) is not as powerful on individuals as it is on concepts [19]. It thus

makes sense to model specific domain entities as ontology terms if searching is an important feature of

the host application.

Synonyms. If possible, it is preferable to define synonyms rather than equivalent classes [136, 143].

For instance, in the holiday booking ontology, EastSussex would be an instance of concept County,

which can also be referred to as Region. Rather than asserting that the last two concepts are equivalent,

Region could be made a synonym of County. Note that synonyms are values (in this case, strings)

and are therefore treated as data type fillers during reasoning, thus, in all likelyhood, speeding up the

querying process.

Cycles. Ontologies should not contain self-referencing concepts [136] (Hotel is a self-referencing

concept if, for example, it is asserted that Hotel is a HolidayFacility and that HolidayFacility is a

Hotel). Such cycles are not only logically redundant (or even inaccurate) but also impede (cause infinite

loops in) the inference algorithms that semantic reasoning (therefore querying) is based on. Ontology

cycles are difficult to detect and eliminate, since the self-referencing circle may span over many concepts

(the provided example illustrates a simple case, where Hotel refers to itself via one other concept only).

Cycle prevention at ontology learning time may prove computationally costly as it would require the

knowledge extracting algorithm to check for self-referencing concepts as they are being added to the

ontology. Cycle detection and elimination, however, is easier to perform after ontology learning has been
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completed, as the reasoner will infer that all concepts in a self-referencing circle are equivalent (relative

to the running example, triple <Hotel isEquivalentTo HolidayFacility> will be asserted). Thus,

detecting cycles is reduced to retrieving and analysing the equivalence relationships in the ontology,

which should not be many if the synonymy design pattern has been applied.

Reification. RDF triples relate a subject to an object via a predicate (in an ontology, the subject

and object are concepts or individuals and the predicate is a property). This is not sufficient to model

relationships between domain entities where the subject is related to multiple objects [166]. To illustrate,

let us consider sentence “BrightonCentral has an occupancy of 20% in the winter and of 90% in the

summer”. Modelling that in an ontology implies asserting property hasOccupancy which is multi-

faceted (has more than one filler, namely a percentage and a time of year). Reification addresses this issue

by making use of an additional, “abstract” concept that will take over the fillers. Thus, the ontological

translation for the previous sentence is the one in Fig. 2.8.

lsr:BrightonCentralHotel lsr:hasOccupancy lsr:OccupancyOne
lsr:OccupancyOne lsr:hasPercentageValue 20
lsr:OccupancyOne lsr:hasTimeOfYear "winter"

lsr:BrightonCentralHotel lsr:hasOccupancy lsr:OccupancyTwo
lsr:OccupancyTwo lsr:hasPercentageValue 90
lsr:Occupancytwo lsr:hasTimeOfYear "summer"

Fig. 2.8: A reified multi-faceted property

Libraries. Some researchers [65] view design patterns not as guidelines but as ontology building

blocks (mini concept hierarchies known from experience to model a relevant knowledge domain well).

Let us assume the domain being modelled is some text describing the physical realisation (book,

file, etc.) of informational objects (poem, formula, story). One of the design patterns relevant to

this scenario is a mini ontology where the concepts representing physical objects will inherit from

InformationRealization, the informational ones will extend InformationObject, and the two

hierarchies will be connected via property realizes. The authors of this approach provide libraries

of content ontology design patterns that the ontologist need only import. The remaining task to complete

the ontology is to create the leaf concepts. A strategy for selecting the best library pattern to import is also

suggested. It implies running a comparison between the modelling problem specification (particularly

the problem type description) and the design pattern intent (the type of problem it is designed to solve).

Ontology Extraction

Also known as ontology construction or learning, this OE phase implies asserting concepts and

relationships that model the problem domain. These can be defined manually (by the ontologist,

through an ontology IDE such as Protege), automatically (by an all-purpose, off-the-shelf or bespoke,

application-specific ontology learning tool that extracts knowledge from a legacy repository) or by means

of importing from another ontology [158, 143]. These approaches may be combined during the ontology

learning process (automatically extracting the initial ontology from a legacy document and enriching it

via manual edits is one of the options). Regardless of the chosen variant, the reasoner will automatically
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place each new concept in the correct level of the concept hierarchy [143], a process called subsumption

(detailed in the next section).

There are several methodologies proposed in the literature to guide the ontology learning process,

depending on existing descriptions of the domain to be modelled:

• If there is no such prior description available (i.e., an ontology must be built to model a social

or economic phenomenon that has not been previously observed), ontology learning is manually

performed by a human domain expert.

• If a free or loosely structured text description of the domain to be modelled exists, such as manually

written documentation for a piece of software, the ontology can be extracted by applying a machine

learning approach (mainly, statistical text analysis) as explained below.

• If a well structured text description of the domain can be accessed (for instance, automatically

produced software documentation, a standardised, computer generated report or even a manually

created spreadsheet), then the format of the document can be exploited to build a custom ontology

learning algorithm that is likely to run faster than machine learning based ones.

There is a broad body of research that analyses ontology extraction from free and loosely structured

text [143, 158, 72]. The proposed methods are inspired from data mining:

• noun-verb analysis [136]: the nouns in the legacy document become ontology concepts, whereas

the verbs will be made into ontology properties

• statistical analysis [143]: word occurrence frequency is calculated to determine the most likely

candidates to become ontology concepts, word co-occurrence (how often two words appear

together) is investigated to extract properties and clustering techniques are applied to detect

synonyms

• natural language processing [143]: morphological and syntactic analysis is performed on the

sentences in the text description, following that the parts of speech will be turned into ontology

concepts, whereas their syntactic roles (subject, predicate or object) will determine ontology

properties

The recommendation [143] to perform ontology learning from text in two phases (carry out shallow

extraction from a large corpus of documents followed by in-depth analysis using aggregate statistics

to refine the initial model) is particularly useful. The same approach can be adapted to extracting

information from websites about careers : well known, reliable models about professions (HESA

releases, JACS reports, etc.) can be analysed to build the shallow ontology that can be afterwards

refined by human users exploring new online resources and extracting in-depth data. The advantages

of outsourcing ontology enrichment to a community of interested users rather than a small group of

domain experts are also noted in [77], where ontology learning is viewed as a social process constrained

by technical bottlenecks, not the other way around.

To conclude this brief introduction to ontology learning, it is worth mentioning that this phase is

reiterated all throughout the OE process. Intuitively, ontology learning can be viewed as “bootstrapping”

[143], namely new, more complete and robust versions of the ontology will replace the old ones as the

ontologist’s understanding of the modelled domain improves.

46



CHAPTER 2. BACKGROUND

Ontology Querying

Strictly speaking, querying is not a phase of OE, however, it is discussed here given its relationship with

the underlying ontology structure. Semantic querying relies on inference, the process of deducing, by

means of logical consequence, facts that are not explicitly stated in the knowledge model [40] (see the

holiday booking example in 2.2.2). Inference can be straightforward or convoluted, depending on the

the complexity of the ontology’s design (redundant concepts/properties, storing equivalent classes in lieu

of synonyms, a large number of individuals, etc. may slow down the process or even prevent it from

completing). Thus, effective semantic query execution, such as the SPARQL example in 2.2.2, is tightly

reliant on good, design pattern compliant ontology structure.

The connection between ontology design and semantic querying can be better highlighted by

building a formal model of the inference process. Bayesian representations of explicit ontology

relationships are used in [64] to produce a set of weighted if-then inference rules, a process called rule

mining. A simplified version of the process can be illustrated on the following example (adapted from

[64]): if 8 out of 10 instances of ontology concept Manager are connected via property hasAge to a

number lower than 45 and via hasProject to an instance of concept Project featuring an Increased

level of Innovation, then the extracted inference rule (with a weight of 80%) would be: “if the

manager is under 45 then the innovation of the projects they are involved in is increased.” Thus, rule

mining supports the answering of queries such as “what is the degree of innovation of projects led by

young managers”, by drawing exclusively from the ontology structure (by means of link analysis to rank

concepts based on connectivity and frequent itemset mining to search for patterns in instance definitions).

As pointed out previously, semantic querying retrieves explicit and implicit (by inference)

knowledge from the web, thus satisfying the user query in a way that is unavailable in relational databases

(that do not provide native support for hierarchical relationships [114]). To increase querying speed as

well as maintain the broad coverage of the result set, [47] suggests combining ontology models with

database storage provided the two share a set of common individuals. Association rules are derived

between the two sources and are used to complete the knowledge in each of them based on related data

from the other.

Besides the structure of the underlying ontology, semantic querying is also influenced by the way

the user request is formulated. It is unrealistic to expect common web users to be capable of formulating

a query in SPARQL (or another language directly interpretable by ontology reasoners). This brings forth

the need to translate natural language into some sort of description logic language and also perform

the opposite for the query results. This invites the use of tools and technologies from the field of

natural language processing, ultimately introducing supplementary lags in the querying process [99].

Consequently, it is worth exploring alternative means of “exposing” the ontology knowledge to the end

user, such as making use of intuitive graphical interfaces (6.3).

Ontology Maintenance

The two main facets of maintaining an ontology are:

• editing: modifying the ontology by adding, deleting or redefining concepts and properties to reflect

changes in the modelled domain or in the interested community’s understanding of it and
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• alignment: merging several ontologies that describe overlapping domains, whilst resolving any

redundancies and ambiguities.

In the case of ontologies modelling large, dynamic fields of knowledge (as is the careers one), centralised

editing, that is, performed by the domain expert alone, is impractical and limiting. The mere size of the

universe of discourse that the ontology is meant to represent makes in impractical to expect one expert

(or a small group) to be aware of the need for as well as implement all the necessary modifications. Even

if this were possible in a realistic scenario, the resulting ontology would represent the expert’s view of

the modelled domain, which contradicts the very definition of an ontology, namely a shared consensus

about a particular field. Since a consensus cannot exist without a community, it is more feasible to have

that community edit the ontology (in a responsible way) rather than forfeit that prerogative in favour

of the domain expert. Of course, experts are not to be taken out of the process entirely. Instead, their

knowledge can represent the first iteration of the ontology, after which they should migrate to the role of

a curator, overseeing (and possibly validating) community edits.

Ontology alignment implies an additional level of meta-data, namely information about the

modelled subject, hierarchy depth, etc., that is consulted when integrating separate yet compatible

(describing semantically related domains) ontologies. Dictionaries are also necessary to eliminate

conflicting definitions and address redundancies by asserting synonyms when appropriate [137].

Ontology alignment is a technically complicated problem and one of the open topics of semantic web

research [45].

2.2.5 Applications and Evaluation

The acceptance of semantic web technologies is both industrial and academic, as confirmed by extensive

surveys targeting both communities [45, 141]. To give an idea of the extent of that acceptance, the

following is an enumeration of the main categories of semantic technology applications, accompanied

by a few relevant examples. A more detailed continuation is provided in chapter 3.2 that focuses on

ontology-related contributions.

• knowledge management: named entity recognition (matching news reel names with concepts

from relevant ontologies) [45], automated financial content (generated by bank employees)

processing (via referencing a backend ontology storing financial terms) [45], geospacial data

management (by UK’s national mapping agency, Ordnance Survey11), heterogeneously sourced

corporate data aggregation (implemented by Oracle12), digital music repository construction ( by

the Norwegian National Broadcaster13), automated documentation generation for car repair and

diagnosis (Renault14), subsystem mediation by means of an ontology modelling interfaces (BT15),

software requirements engineering and insightful documentation generation (containing contextual

data such as the places where variables are declared and used) [76], common vocabulary creation

for the medical community (Unified Medical Language System ontology [26])

11https://www.ordnancesurvey.co.uk/
12http://docs.oracle.com/cd/B28359_01/appdev.111/b28397/sdo_rdf_concepts.htm
13https://www.w3.org/2001/sw/sweo/public/UseCases/NRK/
14https://www.w3.org/2001/sw/sweo/public/UseCases/Renault/
15https://www.w3.org/2001/sw/sweo/public/UseCases/BT/
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• semantic browsers and wiki pages: Magpie [59, 13] allows the exploration of metadata

(annotations) alongside the actual web resources, SweetWiki [30] provides a folksonomy

that readers can use to annotate webpages as they browse and an interface for adding new

concepts/relationships to the ontology

• semantic search16: Swoogle [53] (a semantic search engine that indexes semantic web documents

and assesses their importance by computing ontology ranks), Watson [13, 48] (a more powerful

semantic search engine complete with a set of APIs allowing applications to manage/integrate

the knowledge that Watson finds), Search Thresher 17 (a Firefox plugin that discloses information

about the reliability of the webpages in the search result list), CRUZAR18 (the semantic tool for e-

tourism developed by the city council of Zaragoza), PowerAqua [13] (a natural language question

answering engine that runs Watson in the background), Scarlet [13] ( a semantic search tool that

runs Watson to identify relationships between query concepts across several ontologies), Xerox’s

FactSpotter19, IBM’s Omnifind20

• natural language processing: Boeing’s BLUE [43], other promising attempts [121]

• semantic web services and mobile applications: meeting scheduling assistant based on calendar

owner profile21, mSpace Mobile [45] (a geographical locator that reads GPS coordinates and

provides touristic and transport suggestions based on user preferences), BOTTARI [40] (an

application that compiles social media posts to offer suggestions to users visiting a new, unfamiliar

place)

• middleware: Semantic Web Framework [67] (features components for ontology engineering,

customisation, querying, etc. to assist users with building their own semantic applications), NeON

[168] (a family of nine methodologies for ontology engineering by reuse, a process described by

Suarez et al. as “collaborative development of ontology networks”), Watson [48] (described by

D’Aquin and Motta as a “complete infrastructure component for the development of applications

of the Semantic Web”, Watson provides APIs for searching ontologies, retrieving ontology

metadata, computing ontology metrics such as concept density, executing SPARQL queries, word

sense disambiguation, natural language question answering and others that can be used to build

complex semantic applications

• medical science: Genome-Wide Association Study [40] (uses semantic tools to analyse raw

biological data and rank marker-genes based on their relevance to a given condition), LarCK [40]

(used by the World Health Organisation to match prior gene knowledge against new experimental

data in cancer research), the Entity Describer [73] (collates several ontologies to give users a

common vocabulary for annotating biomedical resources)

16Consult [22] for detailed and easy to follow examples of how semantic search returns relevant documents that classic search
engines would not consider.

17https://www.w3.org/2001/sw/sweo/public/UseCases/Segala/
18https://www.w3.org/2001/sw/sweo/public/UseCases/Zaragoza-2/
19http://www.xerox.com/innovation/news-stories/text-mining/enus.html
20http://www-01.ibm.com/software/ecm/omnifind/
21https://www.cs.cmu.edu/ softagents/cal/
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• semantic tagging: automatic recommendation of tags for annotating text [8] (calculates ambiguity

and confidence scores for each candidate tag by matching it against a relevant ontology), Upper Tag

Ontology [54] (collects Web 2.0 tags from Flikr, Delicious and Youtube in a centralised ontology),

automated tag extraction via data mining [191], converting folksonomies into ontologies for tag

disambiguation [179, 153] (via lexicographic stemming).

The examples above are aimed to illustrate the great variety of semantic technology applications.

Given that, it is challenging to develop a coherent evaluation framework capable of measuring the

efficiency of semantic systems across application domains. A notable attempt is that direction [45]

analyses semantic tools by assessing their impact on both the research and industry communities. Two

Hype Cycle Curves (Fig. 3 and Fig. 4 in [45]) are developed for this purpose, displaying the maturity and

visibility of major semantic technologies as points on a graph. The curves represent the path from the

technological trigger that launched a certain semantic technology until the plateau of productivity where

the technology reached its practical potential. One of the conclusions drawn after comparing of the two

curves is that researchers view semantic technologies as evenly spread between the hype curve’s start

and end points, with knowledge management solutions and standardisation contributions well within the

productivity plateau. This contradicts the industry’s view, where most semantic technologies are grouped

around the early stages of acceptance (for instance standardisation is placed at the beginning of the slope

of the enlightenment phase and the plateau of productivity is remarkably empty).

Given this misalignment between the views that different communities have with respect to the

usefulness and progress of semantic technologies, it follows that commitment is a good metric to evaluate

semantic tools’ efficiency [77]. With respect to ontologies, commitment represents the number of users

(or user communities) in agreement that the ontology correctly represents a sufficiently large amount

of the modelled domain. Numerically, commitment is the ratio between the size of the ontology

specification file (the one the ontology is extracted from) and the number of semantic web documents

referring to the ontology [77]. The former is viewed as a measure of the level of ontology detail whereas

the latter indicates the size of the community using the ontology.

In terms of ontology evaluation, apart from some radical views (e.g., stating that the quality of

an ontology can be assessed only in the context of the application it is used for [136]) the techniques

suggested in the literature mainly fall under two main categories, quantitative and qualitative, and are

discussed in the following.

Quantitative Evaluation

• Basic metrics: class, parent and sibling counts are performed directly on the ontology in either a

specialised editor (such as Protege [82]) or online22 to assess the complexity of the ontology and

the domain coverage it provides. To have these structural metrics capture some of the ontology

semantics as well, a normalisation procedure is suggested [181], namely eliminating anonymous

classes and properties, instantiating the leaf level concepts and running the reasoner to materialise

the subsumption hierarchy.

• Comparative metrics [143]: ontologies are evaluated by comparison against gold standards

22http://mowl-power.cs.man.ac.uk:8080/metrics/
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(known good ontologies constructed by domain experts) or different types of knowledge

repositories (such as relational databases) covering the same domain.

• Data driven evaluation [79]: the accuracy of the ontology (how well it models the problem

domain) is measured over the temporal and category dimensions. Specifically, the domain

coverage provided by the ontology is analysed over time (as the modelled domain itself changes)

and with respect to the different categories (e.g., business workflow, resource layer, etc.) of the

modelled domain. The analysis implies decomposing both the domain corpus and the ontology

corpus over a set of representative elements in a vector space and comparing them by means

of cosine similarity. The process is applied to several open source ontologies and the statistical

results show a significant variance in ontology coverage both over time and from one sub-category

to another.

• OE cost assessment: ONTOCOM [157] evaluates the economical feasibility of the ontology

engineering process by performing a parametric cost estimation for every OE stage (requirements

analysis, conceptualisation, implementation, evaluation and documentation). The parameters

(weights) are calibrated by OE experts.

• Reasoner performance evaluation: Instead of evaluating the complexity of the ontology

classification procedure on the theoretical DL model (found to be NExpTIME-complete [96]), it

is suggested to perform the calculations while taking into account the properties of the ontologies

that the reasoners were deployed on. The prediction model found to best capture the performance

of several OWL reasoners (FaCT++, HermiT, Pellet and TrOWL) was RandomForest [96] and

it allowed the researchers to measure the impact that various ontology properties had on the

complexity of reasoning. It was found that the number of existential quantification axioms in

anonymous class expressions and the size of vocabulary had a strong influence, the number of

cycles, the class in and out degree (namely, the number of incoming and outgoing properties) and

the depth of inheritance had a medium impact, whereas the expression richness (the ratio between

the number of anonymous classes and the total number of class expressions), and the number of

equivalent properties had little to no influence. This is a discovery of high practical value as it

states which properties should be measured and which should be ignored in order to estimate, with

good accuracy, how effective reasoning will be over a given ontology.

Qualitative Evaluation

• ONTOMETRIC [123]: suggests several high level criteria, such as the number of concepts,

whether n-ary relationships and/or instances are supported, etc., to measure the flexibility and

expressivity of the ontology. These values are associated (manually, by the person running the

analysis) to a discrete category (very low/ low/ medium/ high/ very high). Using fuzzy logic,

ONTOMETRIC measures the impact of each criterion on achieving the system goal and ranks

ontologies based on the results. The highest ranking ontologies are recommended by the system

as the best candidates to model a given system.

• OOPS! (OntOlogy Pitfall Scanner) [145]: is an online ontology evaluation tool that maintains

a library of “pitfalls” (e.g., creation of is_a properties rather than using rdfs:subClassOf,
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creating classes for what should be asserted as synonyms, presence of “orphans”, namely concepts

with no links) in the back end. Ontologies can be either pasted into OOPS! or presented to the tool

via their URI and the automatically identified pitfalls will be shown in the interface.

• Human-led evaluation [136, 143]: is still a popular way of assessing ontology performance.

Some guidance exists with respect to the aspects of the ontology that should be evaluated

[133], namely intelligibility, fidelity (accuracy of domain representation, termed “coverage” or

“similarity” in [79]), craftsmanship (compliance with design patterns), fitness (compliance with the

initial requirements of the modelling problem) and deployability (ease of integrating the ontology

in the information system it supports). In this context, it would be beneficial to superimpose an

autonomic manager to the semantic layer in order to simplify, if not altogether eliminate, the effort

involved by manual ontology evaluation.

2.2.6 Reflection and Open Issues

The research carried out in the field of semantic technologies leaves room for a series of open issues,

briefly analysed below.

Ontology learning is viewed as a problem of paramount importance, referred to as the “knowledge

acquisition bottleneck” [13, 22]. It is a known problem that most ontology learning methodologies (given

a broad range of relevant EU research projects analysed in [93]) are domain dependant. Thus, there is

a pressing need for a knowledge extraction algorithm that scales well to legacy repositories of different

sizes and formats and can be successfully applied across problem domains [158], thus challenging the

supremacy of ontology learning from text [143].

Web 2.0 and the Semantic Web have complementary features: unregulated, socially invested Web

2.0 annotations encourage users to contribute to folksonomies whilst also promoting repetition and

ambiguity, whereas the Semantic Web requires a more rigorous formalism yet offers a well curated

common vocabulary in the form of ontologies. A solution that combines the strengths of both approaches

would employ well motivated users [77] to responsibly maintain an ontology, thus redefining the role

of users altogether. As noted in [45], the end-beneficiary of the Semantic Web is no longer either a

producer or a consumer of online content, but a “prosumer”, a new identity that has to be catered for in

new generation semantic applications.

Ease of use - querying on the Semantic web must allow the user to benefit from increased

expressiveness while hiding the inherent complexity via user-friendly interfaces [22, 45, 121]. The

limited availability of such interfaces is one of the causes for the technology transfer problem [45, 93],

namely the reluctance of industry to convert research outputs into marketable products. Thus, besides

placing focus on technology problems, there is a need to also address business needs by providing

captivating, clean interfaces to engage and motivate users.

Decentralised and dynamic content management implies that semantic data should be

(unpredictably) created, modified and discarded by various authors, whilst the semantic infrastructure

adapts to the changes without compromising the consistency of the underlying ontology [22]. It is not

feasible to depend on domain experts to curate the ever changing repository of semantic knowledge

given that the maintenance effort would be too high and the result would fail to reflect the views of the

entire community [121]. A suitable approach to address these issues, especially when modelling quickly
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evolving domains [77], would be to combine expert input (for example, to build the initial version of the

ontology) with community edits (in order to maintain it in the face of change).

Formal support should be developed to describe ontologies and reasoning algorithms as well as

standardise semantic technologies [45].

Semantic applications should migrate from research projects and small scale commercial

endeavours taken on by early adopters into open domains [45], where the advantages of semantic

technologies can make a significant impact. In order to cope with the competitiveness of open application

domains, ontology engineering should be carried out in a methodological, expert-overseen, collaborative

way that steers away from Web 2.0 [158].

Evaluation metrics need to be improved and extended to allow comparing semantic technologies

deployed to solve different problems [158]. It is also noted [77] that no proper analysis is done (at

least not consistently across a wide range of applications employing ontologies) to determine whether

the effort involved in creating the ontology is worth the benefits it brings. In the view of application-

oriented specialists, interviewed in [141], that effort mostly consists in surmounting obstacles such as

the increased complexity of semantic technologies, the insufficient quality of the available supporting

software and the scarcity of success stories.

Reasoner scalability to big data is seen as a principal challenge in the field of web semantics

[40, 93], as the algorithmic principles behind reasoners need to be adapted in order to cope with ever

increasing volumes of data in realtime. Incomplete reasoning is proposed as a solution, as not all new

data is relevant to a given query.

2.3 Hybrid Approaches

Hybrid systems implement the basic autonomic control loop with an ontology for knowledge storage

and management. The rationale behind hybrids, as well as the most popular application domains they

are deployed in, are presented in this section, with a few considerations about evaluation at the end.

Unlike semantic and autonomic work considered separately, research into hybrids has materialised

into a relatively limited number of contributions. That fact, combined with the practical, application-

specific nature of hybrid research, has prevented the extraction of general trends, common technologies

or underpinning methodologies as was the case in the previous two sections. More in depth critical

analysis will become possible after investigating the specific contributions, thus, the reflection and open

issues section was relocated at the end of the state of the art chapter (3.3.1).

2.3.1 The Need for Hybrids

The “causal relationship between the way a system represents knowledge and its level of intelligence”

[13] calls for the development of powerful knowledge models that can capture contextual information

from the domains they represent and reason on it, thus further developing it. If we think of autonomic

systems as problem solving engines, then semantics is the fuel they should run on.

In terms of the fit for purpose formalism that the autonomic manager’s knowledge should be

represented in, the intuitive choice is one comprising components, connectors and constraints [88]. This

is directly compatible with the way ontologies store knowledge, namely with concepts, properties and

restrictions (axioms). It is also advocated [88] that a flexible and expressive knowledge format should
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facilitate updating information and reasoning on it. Specifically, setting up the knowledge repository as

an architectural model (that can be reasoned on) of the autonomic system would permit the verification of

the managed resource’s consistency after applying changes and before they actually go live (are deployed

on the physical system). Injection of semantics in autonomic systems is explicitly recommended [103]

to allow reasoning about autonomic features and requirements. A case is made in the same paper for

mapping the connections between system components to allow for better problem diagnosis.

2.3.2 Applications and Evaluation

The vast majority of hybrid systems target the smart home (or Internet of Things) application domain

[7, 70, 149, 55]. The emphasis is on coordinating pervasive devices by matching their semantic

descriptions (including the services they provide) against the current active requests in the environment.

There are also notable efforts geared towards anomaly detection (be it in sensor data [56] or in the wider

managed resource operation [56]) and semantically enabled self-configuration of autonomic systems

[38, 9].

Evaluation predominantly consists in deploying the hybrids to solve specific problems (such

as mobile robot training [9], server pool size and content rendering mode management for a news

website [39], smart metering [7, 56]). The way environment information is extracted and reasoned

upon is explained step by step, yet, quantitative performance analysis is usually missing. There are two

exceptions: FRAMESELF [7] measures the scalability of a smart metering system, whilst Construct

[56] employs an aggregate function that measures sensor data precision, decay and confidence (this

leads to the development of a trust measure for input readings collected by autonomic systems during

monitoring).
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State of the Art

The main contributions in the fields of autonomic computing, semantic technologies and hybrid

approaches are discussed in this chapter. Relevant autonomic systems, components and methodologies

described in the reviewed literature are grouped by the stage of the MAKE-K loop they (mostly) address.

On the other hand, semantic contributions are classified with respect to the stage of the ontology

engineering process that they fit best. Some critical analysis of the state of the art is also provided,

by means of comparing the main features of the reviewed work and highlighting both strengths and open

issues.

Running example. To better illustrate the main features of the existing approaches as well identify

areas of improvement, a smart environment application scenario will be used throughout this chapter. The

same example will be analysed in chapter 4 as well, to highlight the ways in which implementing the

proposed Knowledge-centric Autonomic System architecture would address the issues existing within

the state of the art. In brief, the smart environment to be used as a running example collects sensor

information (temperature, pressure, etc.) from various monitored objects such as household appliances.

Given the data available at a given moment in time, an autonomic decision maker, regulated by a set

of high-level policies (or rules) and informed by a knowledge base describing the environment and its

possible states, suggests an (a sequence of) action(s) to drive the managed system towards the prescribed

goal state (e.g., where overall power consumption is under a given threshold). The details of this

architecture and its behaviour will be gradually added throughout the Summary and running example
paragraphs at the end of each section in this chapter.

3.1 Autonomic Systems

Given the wide range of autonomic computing applications (see 2.1.3), suggesting a clear cut

classification is challenging. Some attempts to group contributions in the field consider the degree of

autonomicity (see the introduction for 2.1) [88], discriminate based on system architecture (flat and

hierarchical) [131], or suggest a separation based on unrelated criteria, resulting in categories such as

biologically inspired, large scale distributed, component based, technique focused, etc. [104].

In the following, we suggest separating and analysing the implementation of each MAPE-K loop

component from the set of applications covered in this literature review. This is particularly difficult

since the stages of the MAPE-K loop are usually tightly knit [155] (most likely one of the reasons why

this classification approach has not been taken before). Organising autonomic contributions based on

the monitor, analyse, plan and execute stages is primarily justified by the fact that MAPE-K is one of

the few pre-set, well defined autonomic structures with a wide acceptance by the relevant academic
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as well as industrial communities (the other discrimination criteria used in the literature to classify/

compare autonomic applications are subject to their authors’ personal bias with respect to importance

and completeness). Also, this approach will highlight good practices, challenges and shortcomings with

respect to specific MAPE-K stages as well as the loop as a whole, thus setting the scene for the hybrid

architecture proposed in this work and the advantages it brings.

3.1.1 Monitor

All autonomic systems implement some form of monitoring that collects data from the environment and

from the managed resource via sensors. The types (sources) of input data as well as the purpose it serves

are illustrated in the following, on several applications.

• Reports. Tactical data from ground and aerial sensors as well as soldiers from the field are

compiled in early autonomic systems [88].

• Logs. Data is collected from system logs to inform the analysis phase [80, 189] or do diagnose

an operation error [41]. The systems that provide the log data range from instant messaging to

geographic information applications [95].

• Personal computers. The autonomic desktop manager [108] monitors operating system log data

in order to identify hanging processes and kill them.

• Web services. Data produced by web services running over a distributed network is read in and

processed for load balancing [182]. Also, resident services operating in smart home environments

feed their requests into Virgil [94] in order to be granted access to a specific area. AutoI [21]

and 4WARD [188] are two other examples of applications retrieving data from web resources and

online services.

• Distributed, large-scale systems. IBM’s Oceano [62] collects server load data over distributed

networks. CogNet [148] receives communication systems parameters (such as operating

frequencies, interference magnitude, etc.). Load information with respect to medical services

distributed on virtual machines in the cloud is also read in [4]. Information from databases storing

system usage data is tracked by IBM’s SMART [119] and Microsoft’s AutoAdmin [3].

In terms of actual operation, most autonomic system sensors simply pass the collected data onwards to

the subsequent stages of the MAPE-K loop. One exception is the autonomic monitor suggested in [2],

that adjusts its data collection frequency to improve overall system performance.

Summary and running example. Most monitored data is retrieved from distributed networks

(be it of web services or virtual servers running medical applications) via software sensors (some API

support is required to read server load information and application runtime logs). There is limited scope

for physical sensors, especially in smart home environments, where pervasive devices directly monitor

physical inputs, such as temperature or humidity. Very little data filtering is performed, one exception

being [2], that leads to the conclusion that most of the load of sifting through input data will be passed on

to the analysis phase. Thus, considering specialised sensors capable of reading a limited type of inputs

would help simplify the analysis module. Plan selection would also be reduced to identifying the type of

sensor that provided the latest batch of data.
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In the context of the running example, providing specialised interfaces to handle each physical

sensor in the environment is not a scalable approach. Specifically, if the smart environment is a power

plant instead of a home, new monitoring interfaces would need to be added to interpret input from

industrial sensors that would not exist in private residences. This outlines a problem with exiting

monitoring solutions, namely that they do not usually transfer well from one problem domain to the

next.

3.1.2 Analyse

Analysis consists in matching monitored log data against a database of symptoms (namely snapshots of

parameter values) associated to known problems occurring during system operation [41]. The strategy

employed in the past to treat the identified symptom, if available, is re-applied or improved. This general

description has been customised to fit specific frameworks or application environments, resulting in a

series of bespoke implementations of the analysis module. Some of the most representative ones are

briefly explained below.

• Formal data representation. Unstructured log data is parsed and translated into an event

based format [189] using IBM’s Generic Log Adapter (a tool available as part of the Autonomic

Computing Toolkit). This makes monitored data easier to compare against known patterns from

previous system experience in order to identify the most appropriate action plan.

• Utility assignment. An utility value is assigned to each service competing for dynamically

allocated resources inside a grid architecture [182]. The utility is continuously recalculated in

response to the increase/decrease of demand for a given service. This informs the resource

allocation plan.

• Discretisation. A reduction function is used to turn continuous domains of values for monitored

parameters into discrete sets (e.g., low, medium, high) [39]. The thresholds separating the sets

are determined based on heuristics. A second analysis stage is interleaved with planning: after a

section (tactic) of a plan is executed, the state of the system is explored to decide which tactic to

apply next.

• Delay modelling. The speed of the connections between different distributed network components

is estimated by collecting response delay data from probes reacting to a test signal [188]. The

delays are modelled as a Gamma distributed set and compensated by automatically tuning the

remaining network parameters.

• Probabilistic parameter tuning. The values of monitored network parameters are compared

against known performance indicators for several network configurations [148]. The value that

best meets the performance requirements is used as a seed to randomly generate the new value

of the parameter in question. A related approach is employed by Oceano [12], where monitored

events are correlated via statistical techniques in order to produce a model for input data where

patterns can be identified more easily.

57



CHAPTER 3. STATE OF THE ART

• Control theory. A prediction model is used to forecast all possible system states and pass the

optimum one as a reference to a controller [147]. The former implements a feedback reaction that

would bring the actual state of the system to the reference one.

Summary and running example. Given the tight connection between analysis and planning, it is

sometimes difficult to extract the analysis logic from systems that fully implement the autonomic loop

[95, 108]. As can be seen from the examples above, irrespective of the underlying implementation,

analysis informs every step of the planning process (selecting plan steps, deploying plans on a temporary

model of the system, investigating the effects and deciding whether to proceed with plan construction

or backtrack to a previous version), an interaction that has a significant impact on the performance of

the overall system. Thus, it would be useful to propose a methodology that captures the collaboration

between the two phases of the MAPE-K loop, with the added benefit of tractability across application

domains.

Referring to the concrete running example, the analysis phase would typically consist in running a

query to determine, for instance, if the overall energy consumption is under a given threshold or if the

pressure sensors in the fridge door indicate that the milk bottle is running low. Whereas, in the latter

case, the ensuing action is straightforward (put “buy milk” in the home owner’s calendar), the former

situation requires more complex planning. Simply switching all electrical appliances to a low power

operation mode is unrealistic, as that might conflict with other high level goals, such as keeping the room

temperature above a given level. That prompts the autonomic manager to loop back to the analysis phase

after implementing (or, better yet, simulating) each step of a candidate plan to make sure that none of the

active policies is broken. Providing a computational framework to support this tight cooperation between

the analyse and plan stages of the MAPE loop is an area of research in need of more investigation.

3.1.3 Plan and Execute

As described by IBM [90], planning represents the autonomic control loop stage when actions (selected

from a set made available by the domain expert or extracted directly from the policy document) are

dynamically combined to form an executable sequence (plan). The purpose of carrying out the sequence

of actions via the system effectors is to get closer to the goal state. The literature describes various

implementations for the planning logic suggested in IBM’s blueprint, some of which are described in the

following (the way plans are stored in each contribution is highlighted in bold).

• Java beans. CHAMPS [165] creates plans from user defined Java methods implementing legal

actions. The plans are used for installing middleware (e.g., Java2EE, Tomcat, MySQL) necessary

to run an online book store based on host system and middleware vendor specifications.

• Trees. Plans (strategies) are stored as tress [39], where branches (tactics) are dynamically selected

based on analysing the current system state and its closeness to the objective.

• PDDL (Planning Domain Definition Language). The outcome of past actions (user defined

PDDL routines) is used to advise the selection of new ones to append to the current plan [147].

Execution follows immediately after planning and consists in deploying plan actions on the

managed resource or on the autonomic manager itself (usually by modifying the knowledge base). Some

of the realisations of the execute stage are presented in the following.
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• Course correction. Trajectory management plans are executed to allow autonomous vehicles to

avoid obstacles while exploring uncharted space [88].

• Configuration fixes. Solutions produced during planning are implemented to address

configuration issues for large scale enterprise systems [80] or for back-end databases supporting

online services [41].

• Load balancing. In Kinesthetics eXtreme [95], the execution phase implies marking emails as

spam or accepting/ rejecting tasks in order to meet a load quota for instant messaging and online

services employed by geographical information systems. Actions having to do with maintaining

the desired load balance are executed in Unity [182] as well. Oceano [62] controls server load by

executing server-to-task allocation plans in distributed applications.

• Parameter configuration. In 4WARD [188] and CogNet [148], execution consists in setting new

values for system parameters.

• Online application maintenance and desktop management. CHAMPS [165] executes plans

about the installation of middleware for an online book store. The actions carried out by the

personal autonomic desktop manager [108] consist in terminating hanging processes on a PC.

Summary and running example. The most popular trend is to delegate planning to policy authors

(ECA policies directly encode plans), as this is computationally cheaper than employing a dedicated

planning algorithm - the contributions taking this approach were not discussed here. Even applications

that provide bespoke planning logic rarely describe it in detail [148, 39, 27]. However, it is possible to

sketch a general planning process largely followed by most contributions: plan actions are selected (from

a set of candidates defined by users in various formats or imported from existing libraries), combined to

form a sequence (given a set of user prescribed rules and/or policies) and tested on a temporary copy of

the domain model (this last task belongs to the analysis phase). This logic inspired the relevant segment

of the methodology presented in 4.4.

Relative to the running example, should the energy consumption in the smart home exceed a

prescribed threshold, the plan meant to drive the managed system back to the goal state would be

compiled from previous successful actions taken in such situations and stored in the autonomic manager’s

knowledge base. For instance, if, in the past, powering down the TV, stereo and dimming the porch lights

while keeping the radiators and fridge on a high setting managed to bring down the energy output without

compromising ambient temperature and food quality, the same actions would be considered again for

inclusion in the current plan - a decision that would either be validated or not by re-running the analysis

algorithm.

3.1.4 Knowledge

The efficiency of the autonomic control loop relies heavily on the accuracy of the available knowledge.

Either provided by the domain expert (state models of the managed resource, policies, rules), extracted

from the controlled system (sensor logs) or produced by the autonomic manager itself (symptom

databases, plan templates), the knowledge repository informs every step of the analysis and planning
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stages and should therefore be stored in a format that facilitates access and maintenance. There are

numerous such formats proposed in the literature.

• Collection of symptoms. Known issues (previously encountered and documented) of large

enterprise applications form a knowledge base of symptoms [80] to be consulted during analysis.

The idea is extended in [41] where the symptoms database also stores common causes for the

issues on record as well as previously applied solutions.

• Plan elements. In the context of dynamic plan selection, knowledge represents a collection of

tactics (building blocks for plans) to reuse when formulating strategies [39].

• Spanning trees. In 4WARD [188], knowledge consists in a mathematical model (spanning tree)

supporting the computation of threshold levels for performance indicators during analysis. A

hierarchical prediction model for forecasting possible system states is used in [147].

• Parameter configuration data. The knowledge base of CogNet [148] stores the most commonly

used value along with the acceptable range for system parameters. These are updated after the

analysis phase completes.

• Classes in an OOP language. Policy & Profile [36] is an object oriented platform specifically

designed to store knowledge for autonomic applications. Classes are built to model policy concepts

(Event, Condition, Action), profiles for managed resource components (e.g., Account,

Service) and roles, namely abstact classes capturing facets of profiles in specific contexts (the

GP role represents the Account profile in a medical context, granting exclusive access to patient

data). During analysis, policy related classes are used to determine which role is applicable to a

given profile under specific circumstances.

Summary and running example. All autonomic applications circulate data between MAPE

components. Some systems do not organise or permanently store knowledge in any way (data is passed

from the sensors to the interested MAPE component and then discarded) [95, 165, 182]. In other cases

[108, 27], the way knowledge is managed is not disclosed, although, from the platform description, it can

be deduced that some layer of knowledge organisation exists. As the examples above show, the format

knowledge is stored in (mathematical models, databases, classes in a programming language) as well as

what it refers to (symptom - solution pairs, managed resource state, plan building blocks) varies from

one problem domain to the other. This heterogeneity makes it difficult to assess the impact of knowledge

base contents and representation on the efficiency of planning and analysis. Another conclusion drawn

from analysing the contributions above is that knowledge is a shared resource within the autonomic

system’s economy (all MAPE components consult and modify it concurrently, increasing the risk of data

inconsistency). To address these issues, proposing a common yet flexible format for storing knowledge

(such as an ontology) would be beneficial.

To provide a practical argument in favour of using ontologies, let us refer to the running example,

namely the way that information about the smart environment is modelled, retrieved and maintained

in/from the knowledge base:

• Modelling. Representing electrical appliances as concepts in an ontology (along with

the appropriate properties) would allow the reasoner to automatically infer useful implicit
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relationships, such as the fact that a fridge is a cooling device. By contrast, in an OOP model, class

Fridge would have to be explicitly defined as a subclass of CoolingDevice, whereas classic

relational databases do not provide any native support at all for modelling hierarchies.

• Retrieval. Let us assume that all cooling devices in the kitchen have a maximum capacity of 150L.

If a query is run on the underlying ontology to retrieve the list of all devices with a capacity of

under 200L, the reasoner would automatically include the fridge in the results list, even if the

corresponding concept has no capacity property attached. This is because, as seen above, ontology

term Fridge is subsumed under CoolingDevice. A database would not accept the Fridge record

without a specific capacity (a consequence of the CWA), whilst, in an OOP class hierarchy, a

bespoke search algorithm to find all objects meeting the requirement in the query would have to

be written by the application designer.

• Maintenance. In a scenario where acceptable cooling devices have an A+ energy rating, the home

owner orders a freezer with an A rating. If the knowledge base is stored in an ontology, the

reasoner will subsume Freezer under CoolingDevice, causing the former concept to have two

fillers for the hasEnergyRating property: A+, inherited from the parent, and A, prescribed by

the manufacturer. This would cause the ontology to become inconsistent, prompting the system

to warn the owner against completing the freezer purchase. In an OOP model, the A rating would

simply override the A+ one in the superclass, causing the inconsistency to go unnoticed. The same

would happen in a relational database, where the record inserted to model the freezer and the one

representing a generic cooling device would simply co-exist with conflicting values (an explicit

restriction would have to be put in place to prevent that).

3.1.5 Policy

The high level knowledge meant to guide the operation of the autonomic loop is usually prescribed by

the domain expert in the form of policies. The various forms of policy languages as well as the main

issues around policy definition and deconfliction were discussed in 2.1.2. The following provides more

insight into the use of policies to regulate autonomic systems’ behaviour.

• Policies as the managed resource. OWL-POLAR, introduced in [155] and extended in [11],

is described as a policy language. However, considering the case studies described in [155], it

is more appropriate to view OWL-POLAR as a platform for reasoning on policies, allowing the

development of a fully fledged (meta) autonomic system where policies are the managed resource.

The goal of this system is to eliminate policy redundancies and conflicts. The Generic Policy

Analyser [87] is a similar (meta) autonomic system based on policy decomposition into atomic

formulae. Those are matched against a bank of benchmark formulae to detect and eliminate

policy conflicts. The same autonomic take on policy deconfliction is applied for systems roaming

over several domains (e.g., mobile phones operating @home and @work) [154] as well as for

heterogeneous networks [27].

• Smart environment control. Ponder2 [176] applies autonomic policy management to pervasive

environments. Virgil [94] is a security system controlling access requests to smart spaces, based

on policy language Rei. Deconfliction is performed either by prioritising policies or setting up
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meta-policies (indicating which of several conflicting policies is to be considered in a specific

context). The DRAMA system [37] introduces hierarchical policies, where each level corresponds

to a military rank.

Summary and running example. A significant amount of effort has been invested in

defining and managing policies (formulating languages with a complex enough syntax to represent

sophisticated policies, building strategies, mostly involving semantic reasoning, to eliminate conflicts

and redundancies, etc.). Given the reviewed body of literature, there seems to be very little focus on

how policies help guide the autonomic manager with controlling a managed resource. Specifically, the

connection between policies and the manager’s knowledge base as well as the impact of policies on the

analysis and planning stages1 requires more exploration.

To illustrate this on the running example, let us explore a few ways to represent the main non-

functional requirements of the autonomic system managing the smart environment, namely:

• keeping overall energy consumption under a prescribed threshold and

• maintaining optimal temperature levels in rooms as well as inside food storage devices.

The first option is to represent the two requirements as policies in a dedicated language such as OWL-

POLAR. This would offer support for capturing and managing dependencies (in our case, the policies are

conflicting, as reducing energy consumption implies powering down appliances, however, radiators and

coolers implementing the second requirement are usually heavy consumers). The downside of such an

approach is the introduction of a secondary ontology to model policy related concepts (such as Action

and Precondition - see [155]) and allow reasoning for the purpose of policy deconfliction. Should the

smart environment be a power plant rather than a home, where too high an energy output would cause

a critical event, the computational overhead may become unacceptable. The second alternative implies

defining the two requrements as rules in SWRL, resulting in faster reasoning than in the previous case, but

requiring a SWRL expert to formulate the rules in the first place. Finally, the requirements may be kept

outside the ontology altogether and implemented in an OOP language instead. A simple deconfliction

mechanism, such as setting a higher priority for the second non-functional requirement, would efficiently

avoid the reasoning overhead entailed by heavyweight solutions such as OWL-POLAR.

3.1.6 Middleware

There are several frameworks (methodologies) available in the literature for implementing the autonomic

control loop. They can be viewed as generic architectures, accompanied by a set of tools to support their

practical realisation, meant to guide (and sometimes automate) the autonomic manager’s construction

process.

• IBM’s ACT (Autonomic Computing Toolkit) [91] is a collection of tools designed to help

developers build autonomic managers from scratch. The core framework elements are: the

Autonomic Management Engine, a JavaScript implementation for the four MAPE components

sharing knowledge stored in the IBM Cloudscape database, the Generic Log Adapter that parses

1Beyond the trivial case of ECA policies, where no separate planning logic is needed.
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unstructured log data and translates it to a standard Common Base Event format and the Log and

Trace Analyser that analyses translated messages and builds a correlated view. ACT has been

implemented for network services configuration [128], resource allocation in public health supply

chains [14] and large system diagnosis [80, 41] (mostly exploiting the Generic Log Adapter and

its parallelised version suggested in [189]).

• IBM’s ABLE (Agent Building and Learning Environment) [24] provides autonomic managers

implemented by agents that are specialised in a specific set of tasks. After appropriate

configuration, the agents may be deployed to work towards a specific goal in a legacy application.

• Ponder2, KAoS and Rei [174] can be seen as middleware platforms as they provide a formal

policy language derived from the ECA format along with a set of algorithms to run in order to

build an autonomic policy reasoning engine.

• Autonomia [57] provides a set of bespoke components, each fitted with its own autonomic

manager, for integration in distributed autonomic systems. Accord [117] caters to a similar

purpose by providing configurable components for autonomously managing applications in a grid

computing environment.

• Web services are not clear-cut autonomic frameworks as the other items in this list, however they

are fit for purpose with respect to implementing MAPE-K components. Given that analysis and

planning are versatile procedures (with different implementations and behaviours, depending on

the problem domain) that need to function in realtime and, often, in collaborative environments,

web services are good candidates to provide them with a practical realisation. This potential has

been noted [90] and explored [184] in the research community.

Summary and running example. Most middleware solutions offer some degree of flexibility (as

demonstrated by the wide acceptance of ACT to build autonomic systems for a variety of application

domains), however, they are difficult to configure for custom components of the autonomic control

loop (i.e., there is no direct way to integrate ontologies as knowledge storage platforms in the ACT

architecture). Off the shelf solutions can be heavyweight (translating monitored data into the Common

Base Event format to ensure compatibility with ACT’s engine is more resource consuming than directly

processing lightweight semantics or interpreting system logs in standard format). It is also worth

noticing that not all middleware is a success story (ABLE has had no noticeable uptake in the relevant

community).

Providing a practical implementation for the smart environment in the running example by

instantiating a template architecture such as ACT would most likely introduce a significant design

overhead without the added benefits of storing the knowledge base in an ontology.

3.1.7 Reflection

The reviewed applications are included in Table 3.1 to support an in-depth comparative analysis carried

out in the remainder of this section. The criteria considered for each contribution are:

• MAPE separates the applications that provide a full implementation of the autonomic control loop

from the ones that target a specific component, be it monitor (M), analyse (A) or plan (P).
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Table 3.1: Autonomic applications

MAPE Level Application domain K Formal Middleware
full 2 space exploration [88] none no none

3 self-configuring network services [128] none no ACT
3 public health supply chains [14] none no ACT
3 system diagnosis [80, 41, 189] DB no ACT
3 component repair [95] none no none
3 desktop management [108] none no none
3 policy reasoning [178] ontology DAML none

3
distributed systems management
(medical) [4]

none no none

4 distributed systems management [1] none no Globus

4 distributed systems management [12] none
statistical
correlation

none

4 network management (military) [37] policies no none
4 network management [27] none no Minmex

4 network management (online) [188] none
spanning trees
Gamma distrib

none

4 data centre resource allocation [182] none utility theory none
4 middleware installation [165] none no ABLE

4
communication systems
optimisation [148]

none no none

4 policy reasoning [155, 87, 154] ontology
DL

OWL-POLAR
Protege

OWL API
4 policy reasoning [94] ontology Prolog/Rei none
4 policy reasoning [176] policies PonderTalk javac

M 2 autonomic monitoring [2] none no none
A 3 knowledge modelling [36] classes OOP none

3 system diagnosis [6] none recursive NN none

P 3 resource management [147] none
state forecast
control theory

none

A, P 4 architecture-based self-adaptation [39] strategies utility theory none

• Level represents the degree of autonomicity on the IBM scale [88] (explained in 2.1).

• Application domain states the field the system was deployed in.

• K (Knowledge) shows the type of model (if any) used to store information for the benefit of the

analysis and planning stages.

• Formal refers to any structured language or mathematical framework utilised to represent the

knowledge model.

• Middleware reveals whether an autonomic development framework, API or some other third-party

software was used to build the application.

The overwhelming majority of applications provide an implementation for the full MAPE-K loop.

This shows an inclination towards using autonomic technology as a means to solve a specific task, rather
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than investing in perfecting specific components involved in the control loop and making them available

for use across problem domains (out of 28 applications included in the comparison, only two focus on

analysis and two on planning). The study of the autonomic infrastructure (namely, investigating MAPE-

K components in isolation as well as their interaction) is an attention-worthy gap in the field.

Most applications are situated in the middle of the IBM autonomicity scale (levels 3 - predictive

and 4 - adaptive), which shows a competitive maturation speed for autonomic technology. To set a

reference line, we can consider two other major technologies that have had a significant impact on the

history of IT, namely the internet (that has taken around 20 years to evolve from ARPANET2 to the

WWW3) and mobile operating systems (with a roughly 15 year timeline between the release of the first

smart phone4 and the introduction of iOS5 and Android6). In comparison, autonomic computing is 15

years old (considering IBM’s 2001 manifesto as a starting point) and is already approaching the final

milestone on the path towards achieving its full potential (the fifth and final level of autonomicity).

The most popular application domains seem to be system diagnosis/configuration and load

balancing over distributed/grid architectures (each targeted by 9 contributions from the analysed set).

These are “traditional” areas of interest for autonomic technology deployment and have been consistently

targeted by the research community over the years. There is little coverage of fields such as desktop

application management or large scale knowledge graph maintenance and visualisation (1 contribution

for each). These are also the two application domains considered in chapters 5 and 6.

Less that half (12 out of 28) of the analysed applications use some form of resident storage for the

autonomic manager’s knowledge. Out of these, 7 employ some structured syntax (logic or programming

language) to describe the knowledge whereas 1 uses a mathematical formalism (namely, utility theory).

What is also striking is the fragmentation in the set of approaches to knowledge modelling: there are

only 3 applications [155, 87, 154] in the entire table that employ the same ontology language (OWL-

POLAR). The way that knowledge representation and management influences autonomic behaviour is

thus difficult to analyse.

In terms of middleware, ACT has the most pronounced uptake, however, it is popular chiefly with

applications targeting the distributed network management domain7. Besides standard tools (editors -

Protege, compilers - javac and java libraries - OWL API), the use of which is inherent to the type of

knowledge model employed, autonomic application reliance on middleware is limited (16 contributions

do not use it at all). This raises some concerns around the flexibility and extensibility of existing

frameworks (how well they adapt to different problem domains) and also the reusability of individual

autonomic components (linking back to the first point of this discussion).

To conclude, it is worth mentioning that other reviews [88, 104, 131] provide an excellent coverage

of autonomic applications, however, they focus on the in-depth description of each contribution (up to

2The first message was sent over ARPANET between the University of California Los Angeles and the Stanford Research
Institute in 1969.

3The World Wide Web crystallised in 1990, with the completion of the first web browser and the first web server by Tim
Berners-Lee.

4IBM Simon in 1994
52007
62008
7This study has not found evidence of ATC use in other problem domains, but that is not to say that this framework is not

extensible.
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and including the implementation level). That is only partially relevant, especially since one of the

gaps in the area, identified by the previously mentioned surveys themselves, is the lack of a common

framework for evaluation, design principles, and configuration of autonomic frameworks. Also, flexible,

extensible tools that would successfully play te role of autonomic building blocks get little to no attention.

These topics would be better addressed by running a high level comparisons aimed at extracting trends,

common pitfalls and good practices. This would allow for the main challenges in the field to be accurately

formulated such that the appropriate research directions could be suggested. This is what the presented

analysis attempted to achieve.

3.2 Semantic Technologies

This section focuses on contributions in the field of ontology engineering. However, other semantic

technologies, such as reasoning and querying, as well as representative applications built on top of

a knowledge repository stored in the form of an ontology are also discussed. The reviewed work is

classified with respect to the addressed OE phase, in order to extract good practices and eventually

compile a set of guidelines on how to design, query and maintain an ontology. The categories

considered here also match the four types of business value brought by semantic technologies [93]: (1)

semantic metadata discovery and acquisition (maps to ontology learning); (2) meaning representation and

integration (maps to ontology design); (3) reasoning, interpretation, inference and query answering; (4)

presenting, communicating and acting upon knowledge (maps partially to querying, specifically results

visualisation, and to decision support).

3.2.1 Ontology Extraction

The main methods utilised by semantic applications for ontology content extraction, along with the

source knowledge repositories, are presented in the following.

• Automated ontology learning from text employs statistical tools such as word frequency

measurement to extract ontology concepts and co-occurrence (two words appearing together)

analysis to define properties. Applications using this approach to extract ontologies range from

dedicated tools, such as Text2Onto [42], to broad spectrum ontology engineering platforms, such

as GATE [46], equipped with annotation tools and natural language processing modules.

• CS Aktive Space [156] extracts data about UK computer science research from databases,
webpages and other ontologies. The application allows ontology exploration through an

interactive interface.

• Garlik [13] extracts financial data related to a given person from various web-available sources
(credit reports, employment history, etc.) and allows the management of that data to prevent

identity theft and financial fraud.

• Ontologies are extracted from Wikipedia pages [78]. Wikipedia URIs are used to prefix ontology

elements for disambiguation.

• SPY [71] is a method for extracting software component specifications from data generated
during runtime.
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Summary and running example. As the above examples show, methods have been perfected to

extract ontologies from a variety of sources. When the original data is stored in an unstructured way

(free text, webpages), the ontology learning logic relies on standardised, data mining techniques meant

to identify relevant concepts and the semantic links between them. On the other hand, if the legacy data

is well structured (databases, other ontologies, system logs), the computational cost of statistical analysis

is no longer justified. Instead, bespoke OL algorithms are developed to exploit the format of the source

repository and extract concepts/relationships significantly faster. Of course, this gain in efficiency is

obtained at the cost of portability, as the OL algorithm is specialised to interpret one specific format only.

Addressing this separation would require an extraction technique that is both computationally efficient

(exploits the structure of the source data) and flexible (is capable of parsing a variety of formats). A

template for such an algorithm is proposed in 4.3.2 (parsable formats are row organised, with each row

describing a property with its name, filler and domain).

In what concerns the running example, a good efficiency - flexibility trade-off may be achieved

by implementing the ontology extraction algorithm in a non-DL language (such as Java). Since the

equipment in the smart environment is likely to be documented in a standardised format (namely, the

products’ description would be made available by the manufacturer in the form of spreadsheets or a

similar document type), a third party tool capable of parsing that data would be relatively easy to set

up, would run at a low computational cost and would transfer well to other application domains (where

legacy knowledge is stored in a compatible way).

3.2.2 Semantic Reasoning

Semantic reasoning is exploited in several stages of the software engineering process [138, 139], as

illustrated by the applications below. Besides the examples in this section, semantic querying, also a

reasoning-related function (see 2.2.3), is widely used for web-based question answering – a few of the

most important semantic search engines underpinned by this type of querying are presented in section

3.2.3.

• Domain specific modelling. A domain specific language, the syntax restrictions of which are

stored in an ontology, is used to formulate models for telecommunications networks [183]. To

aid the process, reasoning services are employed at various stages: satisfiability verification is

carried out to check whether a candidate model complies with the syntactic restrictions held in

the ontology, an explanation for inference results is provided to suggest contingency measures for

pre-set faults (such as a missing component in the structure of a physical device) and querying is

supported to determine whether a network model can be extended with a specific component while

guaranteeing that the syntax ontology remains consistent.

• Web design support. A common path taken by non-expert users building their own websites

is to aggregate ready made web components published by vendors such as Google, Microsoft,

etc., with the expectation that their efforts will not require advanced technical knowledge. The

currently available catalogues of such software tools are heterogeneous and have interfacing

issues (a Yahoo-published component may not play well with one from a Google catalogue). In

response, a universal repository is proposed [118], centralising components from all publishers.
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The solution is underpinned by a universal model (developed in DL by translating the XML meta-

data accompanying component descriptions) capable to represent all web tools, regardless of their

publisher. A reasoner (HermiT) is used to determine whether a given component is a subclass

(subsumption) of a concept in the universal model or an instance (query answering) of it.

• Runtime selection of software implementation variants. The different runtime states of the

software supporting a modular video platform are represented in an OWL 2 ontology [74]. When

the software is running, reasoning services (namely, subsumption) are employed to detect its

current state (low or high energy consumption). If a non-functional requirement is broken (the

energy consumption is too high) the reasoner is used (via semantic querying) to determine which

of the available implementations for the active software components would bring the system to

an energy efficient state. The authors note that semantic reasoning, specifically the open world

assumption it implements, is particularly useful in this case, as representing software runtime states

implies handling incomplete information without sending the model in an invalid state. Another

application that reports the increased performance of OWL 2 reasoners, this time when compared

against graph traversal execution environments, implies executing ontology-modelled clinical

practice guidelines [92]. In some applications, a reasoner is the only technology available, as

is the case with debugging logically erroneous knowledge bases modelling a medical terminology

about intensive care patients [151].

• Streamlining intelligent agents communication. Third party reasoning engines (R-DEVICE and

Prova, as well as services capable of dealing with incomplete information, such as DR-DEVICE

and SPINdle) are used to translate the semantics of messages exchanged between intelligent agents

[111], an approach that is reportedly computationally cheaper than providing all agents with

local implementations of a translation algorithm. The proposal is demonstrated on a brokering

application, where one agent uses an automated real estate service to find properties that fit a set

of pre-determined criteria. Another application using bespoke reasoning algorithms to manage

intelligent agent systems uses the Narrative Knowledge Representation language to model the

environment (e.g., objects such as a fridge and its contents) and a set of rules [18]. Based on this

model, a reasoner suggests actions for the assisted person, for instance, buying more food.

• Pervasive environment service personalisation. User preferences and needs are represented in

an OWL ontology feeding into a personalisation service, supported by the Pellet reasoner [162].

Based on a SWRL rule base, the tool matches profile information against services available in the

environment (e.g., switching the language used by a ticket machine, given the user’s nationality).

In another application, reasoning services are employed to match (incomplete) user profiles, this

time against each other, on a dating platform [31].

• Meta-reasoners. A common interface, TrOWL, is proposed to support a number of different

reasoners [171]. It is meant to facilitate the translation of, for example, conjunctive queries (by

using semantic approximation) between OWL 2 DL and OWL 2 QL, but can support other reasoner

implementations, such as FaCT++ and Pellet. The authors argue that the TrOWL infrastructure

enables the reasoning over and querying of large scale OWL 2 ontologies at organisational level.
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Summary and running example. Most applications use reasoning services in their standard

implementation to support the desired high-end functionality. Semantic reasoning is rarely employed in

conjunction with some autonomic decision making mechanism (for a few exceptions, see section 3.3) –

a research gap worthy of further investigation, as autonomic elements rely on the accuracy (consistency)

and accessibility (fast and easy to understand answers to queries) of their knowledge base. All these are

standard reasoning services, as shown in 2.2.3.

Let us illustrate how semantic reasoning services may be used to support the autonomic decision

process in the case of the running example:

• Subsumption. A shown in 3.1.4, the reasoner infers automatically that the ontology concept

modelling a fridge subsumes the one representing a generic cooling device. Thus, when a new

appliance is installed in the smart environment, the corresponding ontology term is inserted in the

right spot of the concept hierarchy, without the direct implication of the (human) domain expert.

• Satisfiability. The typical interaction between the analysis and planning stages of the autonomic

control loop implies simulating candidate plans and observing their effects before approving or

further improving them. In this process, the outcome of a given step inside a candidate plan is

modelled by adding the appropriate concepts to a copy of the ontology. For instance, if one of the

plan’s actions is to buy a more energy efficient freezer, the concept representing the new appliance

will be inserted in the simulation copy of the ontology. If the home owner misguidedly chooses a

freezer with an energy rating that is lower than that allowed for cooling devices, the discrepancy

would prompt the reasoner to flag the simulation copy of the ontology as inconsistent. This would

inform the analysis module to reject the unsuitable freezer model and consider another action for

insertion in the candidate plan.

• Synonymy. Let us assume that the fridge in the smart home is replaced with a newer model that

is called “refrigerator” in the accompanying technical specification. Given that all properties for

the new concept are correctly set, the reasoner will infer that the newly inserted Refrigerator

concept and the previously existing Fridge one are synonyms. In addition to maintaining the

simplicity of the ontology’s structure, synonymy detection improves querying, as both terms are

now recognisable as search keywords.

• Querying. In order to reduce the overall energy consumption of the smart house, one candidate

plan may prescribe switching off all appliances with a capacity grater than 150L. While this plan

is being analysed, it becomes relevant to determine which devices have a capacity that exceeds the

given limit. A typical reasoner would resolve that query automatically, thus supporting the MAPE

loop (in)validate the plan under consideration.

• Inference explaining. Implementing the actions, such as buying a new freezer, of the plan

suggested by the smart home’s autonomic manager is, ultimately, the home owner’s responsibility.

Providing the reasoning chain (2.2.3) in support of a recommended plan would help the owner

better understand the system’s suggestions before carrying them out (or ignoring them).
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3.2.3 Ontology Querying

Extracting relevant data on the Semantic Web provides the user with much more than a set of exact

syntactic matches to the keywords in the initial query.

• Partial matches to the query keywords complement the exact ones. This is possible due to

semantic tag synonyms, stored in the underlying ontology, that are likely to match resources an

exclusively syntactic comparison could not have identified.

• Suggestions are also provided alongside the query results to guide the user towards new

relevant resources to explore. The (semantically enabled) Knowledge Graph displayed by

Google on the right hand side of the results page contains such recommendations in the

People also search for section.

• Visualisation of semantic query results has the potential of being more intuitive than the syntactic

alternative. Of course, some semantic search engines (for instance, Swoogle) display results in the

classic list format, yet, RDF graphs lend themselves well to symbolic representations, that show

both the matching ontology nodes and their links (e.g., OWLViz output in Protege).

• Natural language processing is a fast developing area that is enhancing query answering with the

capacity of interpreting questions formulated in the user’s language of choice. IBM’s Watson is a

remarkable breakthrough in this field.

A selection of relevant applications featuring semantic querying capabilities is presented in the

following, with a special section dedicated to results visualisation.

• Corese [44] is a semantic search engine that crawls web resources provisioned with graph

annotations. These are complex semantic tags containing graphs with nodes representing ontology

concepts (that apply to the annotated resource) and edges describing relevant ontology properties.

Semantic search is done by “projecting” the query graph against annotation graphs. The projection

can either yield an exact match or an approximate one, measured in terms of “semantic closeness”

via a metric called “ontological distance”. Simply put, that represents the shortest of the

subsumption paths between the two given ontology concepts and their nearest common super-

type (a formula is provided in [44]). Corese can also measure “contextual closeness”, where the

two ontology concepts are semantically distant but share other common features (via properties

other than inheritance).

• LarKC (Large Knowledge Collider) [17] is a distributed infrastructure that enables interleaving

reasoning threads thus improving scalability. The underlying logic relies on incomplete reasoning,

a type of reasoning that targets only the segment of the ontology that is relevant to the user query.

LarCK relies on plug-ins, each implementing a certain aspect of the reasoning logic and equipped

with their own API. It is the responsibility of the LarCK users to build a workflow from these

plug-ins to fit the task they need to solve.

• WebPIE [177] is an inference engine, therefore it implements the reasoning logic supporting

semantic querying. It is based on MapReduce, a programming model that pre-processes the data
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to undergo logical inference, thus facilitating effective distributed reasoning (running on clusters

of up to 64 machines and linearly scaling to datasets of 100 billion triples).

Query Result Visualisation

The major challenges concerning the application of semantic technologies to big data have to do

with parsing (extracting ontologies from large volumes of legacy information), reasoning (performing

computationally expensive logical operations, such as inference, to support query answering) and

visualisation (exposing the data to the end user in a clean, connected and navigable view). The last of the

three is of particular importance, because, regardless of the computational power, elegance and scalability

of the algorithms running in the background, the advantages of employing semantic technologies cannot

be experienced (not even acknowledged) in full without an intuitive interface to display their output.

Hence, this section is dedicated to contributions that target the visualisation of semantic query results

(for an alternate classification, see [97]).

• Visualising query output can be made more flexible by enhancing the display with a recommender

[58]. Viewers can use this tool to indicate which features (zooming, focusing, incremental

expansion, etc.) they consider important (with weights). A score is computed accordingly and the

appropriate view of the ontology is produced. The main benefit is that users have the possibility to

customise their ontology viewing experience, depending, for instance, on the size of the underlying

RDF graph (smaller ones are better viewed on one zoomable screen, whereas larger ones should

be incrementally explored).

• KC-Viz [130] is an ontology visualiser offering features such as high level overview, zoom

capability and filtering of irrelevant details. This tool reduces ontology visualisation to the focus

vs context problem, namely allowing the viewer to get relevant information displayed clearly and

in full size while still being aware (having a perspective) of the entire ontology. The provided

solution is termed “key concept extraction” and applies psycho-linguistic criteria to identify the

most knowledge rich concepts in the ontology. Those concepts are included in the initial view that

the user can afterwards customise.

• Optique VQS (Visual Query System) [164] uses an graphical interface for users to express their

query in an intuitive, informal way. Specifically, the platform offers a set of graphical widgets

that users have to assemble - like a visual jigsaw puzzle - to form a query. This is subsequently

translated into SPARQL by a software layer and passed on to the reasoner. The graphical primitives

approach to query construction is also taken in the case of VOWL2 [120] a visualiser designed

specifically for OWL ontologies.

• Single feature driven, less configurable ontology visualisers are also available. The Protege [82]

class explorer offers an indented list of ontology concept hierarchies, whereas the GraphViz tool,

also available in Protege, displays concept and properties in a node-link (graph) view. Jambalaya

[167] and CropCircles [185] provide good quality zooming (the latter strays from the classical

node-link pattern and displays concept hierarchies as concentric circles). Ontology rendering in

3D is available in OntoSphere [97]. In Cytoscape [163], a tool developed for biomedical ontology
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visualisation, nodes are automatically repositioned on the canvas to eliminate overlaps and ensure

maximum visibility.

Summary and running example. Based on the reviewed literature, there are two main approaches

to ontology visualisation: displaying the concepts and properties as an indented list or as a graph

(node-link view). The former provides a clean, easy to understand overview of the class hierarchy,

however, other types of relationships between concepts (that is, every ontology property, besides “is_a”)

are displayed in a separate indented list. In contrast, graph views include both the concepts and their

links (hierarchical or of a different type) in the same view. However, in the case of sizeable ontologies,

providing such a complete outlook compromises clarity, as the canvas may become overcrowded.

It is thus justified to ask which of the two visualisation approaches is better suited from the end-

users’ viewpoint. This has been thoroughly analysed [63] in an experiment where users were presented

with an ontology in indented list format (displayed in Protege) and another in node-link view (generated

with a JavaSvript tool). The participants were asked to correlate the two ontologies (map them against

each other) to establish overlaps, gaps and inconsistencies. The conclusion of the study was that

indented lists allowed the correlation task to be performed better (the two ontologies were mapped more

accurately), whereas, with node-link views, the task was performed faster. The authors of the study

state that the statistical differences between measurements taken on the group that worked faster and

the one that performed better were very small, thus there is no numerical evidence to recommend one

visualisation technique over the other.

The outcome of the above experiment gives rise to another question about the investment in

graphical tools for ontology visualisation being worthwhile or not. The answer is most likely negative,

if the purpose of the experiment is ontologies’ correlation, a task that could be achieved without a sound

overall understanding of the individual ontologies involved. However, the verdict is less straightforward

when the goal is ontology exploration and curation. This new context implies providing viewers with

a coherent perspective of the ontology, one that is difficult to gain from an indented list where concept

connections are displayed separately. It is also worth mentioning that the graphical tools reviewed above

offer no support for editing (currently this is done through editors such as Protege, which is easier than

directly editing the ontology’s support xml file but still requires text manipulation). Research efforts

is this area seem to have been concentrated on simplifying query formulation and providing ways to

configure the manner in which the ontology in displayed, rather than facilitating ontology modification

through the displayed graph.

In reference to the running example, the main beneficiary of the autonomic manager’s operation

is the home owner. Besides those actions that can be performed automatically (e.g., powering off

devices over a given capacity), certain tasks (such as purchasing more energy efficient appliances) are

likely to be left at the discretion of the human user, who thus takes on (part of) the role of the execute

component in the MAPE-K loop. To aid the home owner in this new capacity, it would help to expose

the knowledge that the autonomic manager based its analysis and planning algorithms on, in order to

suggest an actionable plan. Being able to explore the manager’s underpinning onotlogy in a graphical,

intuitive format would increase the user’s level of trust in the autonomic decision process.
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3.2.4 Reflection

To set some common ground between this analysis and the one presented in the previous section, roughly

the same criteria were used to categorise semantic contributions as in Table 3.1 (the two that have been

omitted are Level, as all reviewed semantic applications are meant for the Semantic Web rather than

Web 2.0, and K (Knowledge), as that is universally stored in an ontology). Thus, Table 3.2 describes the

reviewed applications with respect to the items in the list below.

• OE separates contributions based on the phase of the ontology engineering process they (mostly)

target (ontology learning, querying, reasoning and visualisation).

• Application domain states the field the system was deployed in.

• Formal refers to any structured language or mathematical/ description logic framework

underpinning the contribution.

• Middleware reveals whether a support tool, API or some other third-party software was used to

build the application.

• Explore indicates whether the knowledge model is exposed to the user (can be explored through

an interface) or transparently processed by other application layers.

Table 3.2: Semantic applications

OE Application domain Formal Middleware Explore

OL text parsing [42, 46]
statistical analysis

data mining
none no

online research data parsing [156] no none yes
financial data compilation [13] no none yes
Wikipedia data extraction [78] no none no
specification generation [71] no none no

query semantic search [44] graph comparison none no
semantic search
(incomplete reasoning) [17]

none
inference
plug-ins

no

semantic search [53, 159] graph modelling none yes
visualisation
[58, 130, 167, 191, 97, 163]

no graphics plug-in yes

visualisation [164] SPARQL graphics plug-in yes
visualisation [120, 82] no OWL API yes

reasoning distributed reasoning [177] MapReduce
LarKC
Hadoop

no

Application domains. The reviewed applications were selected based on their practical nature:

they are used by either the academic or industrial community to effectively solve (an aspect of) a

real problem. Thus, by analysing the data in Table 3.2, it follows that most semantically powered

practical implementations target two areas: the retrieval of data from heterogeneous legacy collections

and semantic search (including semantic querying and reasoning, which semantic search is ultimately
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based on). This conclusion is supported by wider-scope semantic technology applicability assessments

[93] where it has been found that data integration tools represent 67% of all Semantic Web applications

(with semantic tag generation accounting for 24%) whilst semantic search takes up a segment of 45%.

What is worrying about these statistics is that there is no significant percentage allocated to “complete”

applications (to populate the topmost level of the stack in Fig. 2.1) that reuse and integrate these

tools. That is not to say that top level applications are entirely absent, just that they employ in-house

ontology learning, querying and visualisation tools that are built from scratch and customised to fit the

requirements of a specific problem domain only.

Semantic search. Well established semantic search engines such as Swoogle display a justification

for each result they produce in response to a user query. A justification is a simplified logical consequence

thread that explains how each result was found, in other words, why it is relevant/ connected to the

keywords in the search query. That insight is somewhat dwarfed by the fact that the results are displayed

in a list, thus masking the very connectivity that the justification is meant to bring forward. On the other

hand, other search engines display query results in a list as well as in the form of a graph, e.g., Google

Knowledge Graph, thus aiding the user in forming a better understanding of the field by exposing the

connections between topics. This shows, at a practical level, the added value that semantic technologies

bring to the user’s experience and calls for a similar incrementally expanding8 visualisation system to be

made available for other, more specialised fields (e.g., career related knowledge).

Ontology learning. Current automated OL techniques (first five rows in Table 3.1 are relevant

examples) do not entirely eliminate human experts from the information extraction process. At the

very least, human input is required in the ontology validation stage. Rather than pursuing the complete

automation of OL techniques, it is worth considering delegating this task (at least partially) to humans,

following the Amazon Turk9 principle. This is not a return to the “old ways” of giving domain experts

exclusive authorship of ontologies, on the contrary, it addresses the main issues related to that approach,

namely effort and bias. By having an entire community extracting knowledge from web resources and

storing it in the ontology, the effort that would have been required from one (or a limited number of)

experts is divided. Also, the ontology will no longer reflect the view of one person (a problem known as

author bias) but that of the entire community (termed “community contract” [78]). Instead of money (as

is the case with Amazon Turk), the “extractors” may be motivated by the very knowledge they discover

(especially if it is about a field such as the careers one, where professional assistance is usually paid for).

Ontology size. Successful ontologies, that is, with a reported positive impact on the performance

of the systems they support, are small and shallow (with a limited hierarchy depth) [77]. This minimises

the commitment costs, namely the effort required of the user in order to become familiarised with the

ontology content. Since small, shallow ontologies cannot accurately model large knowledge repositories,

in order to minimise the commitment cost, it is sensible to display one portion of the underpinning graph

at a time. A visualiser that allows incremental exploration and quality zooming is critical in this context.

Evaluation. The reviewed contributions are evaluated implicitly, by testing the application they

operate in (the experimental results obtained for the host system are assumed to apply to the semantic

8Clicking on an item, for instance, the photo of Rooney Mara, in the Knowledge Graph generated by a search for director
Steven Soderbergh will display a new Knowledge Graph with linked data about the actress. The process can be continued
indefinitely.

9https://www.mturk.com/mturk/welcome
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components as well). Moreover, the availability of data driven (quantitative) analysis methods is

restricted (see 2.2.5) whereas the qualitative evaluation options fail to reach the level of acceptance

necessary to form a coherent platform for (semi-) standardised semantic technologies assessment

[133, 145]. To better understand the role played by semantic tools (especially ontologies) within the

complex information systems they are integral to, experimental analysis should also target the interaction

between semantic elements and other architecture components (such as autonomic managers).

Unifying logic. This layer of the semantic stack is meant to provide a framework for the integration

of rules and queries as well as a standard for how they are to be deployed on ontologies and taxonomies.

This endeavour is still under way [140], with efforts targeting the integration of rules into the OWL DL

logic [106], a formal way of running SPARQL queries over OWL ontologies [107] or a framework for

developing trust in the social web [132]. These represent remarkable contributions on the unifying logic

layer, that nevertheless fail to reach the necessary critical mass to be endorsed as a W3C standard.

3.3 Hybrid Approaches

The various contributions in the covered literature that feature both an autonomic and a semantic layer

will be described in the following, with emphasis on the interaction between the two layers (namely, the

way semantic value is exploited to enhance autonomic behaviour).

FRAMESELF

This platform [7] supports self-configuring machine-to-machine systems in the wider application domain

of the Internet of Things. For example, in a smart metering application, light sensors, lamp actuators

and smart phones communicate with each other to monitor energy consumption in the house. The

goal of FRAMESELF is to automatically build the communication channels to support that. Semantic

descriptions (in terms of both configuration and behaviour) of each of the involved machines are available

for the autonomic manager to compile and use to react to change. Each module in the MAPE loop has

a fixed, application independent part (inference engine) and a knowledge model specific to the problem

domain. The monitor gets information, via specialised sensors from the managed machines and matches

that input against an M2M ontology to detect if anything has changed in their configuration/behaviour.

The detected changes are passed on to the analyser that matches the profiles of the machines where

the changes originated to its own specific ontology to detect the appropriate communication channel

to deploy in order to communicate the change to other system components. The planner receives that

information and matches it against its ontology to extract the communication services and configuration

parameters necessary to deploy the communication channel in the real M2M system. The deployment

graph is passed on to the execute component that matches it against its ontology to find a description of

the appropriate actuators to use in executing the actions (nodes in the deployment graph) provided by the

planner. The actuators are then used to run the plans and build the appropriate communication channel.

Autonomic-semantic interaction. Every MAPE component uses a specific part of the available

ontology to inform its operation (SWRL rules are employed in the process). New information is being

inferred at every step, yet there is no actual danger of corrupting knowledge via concurrent access.
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Construct, Systems Management Ontology

The Construct framework [56] reduces uncertainties in sensor data by modelling it in an ontology used

for disambiguation. Specifically, log data is saved as RDF triples and compared across sensors: for

instance, one sensor states that Waldo isIn RoomA, according to another, UserAbc isLoggedOn PC1

and the ontology also contains axiom PC1 isIn RoomA, therefore it can be inferred that Waldo is the

user logged on PC1. The same mechanism can be used to detect errors in sensor data: if a third sensor

states that PC1 isOff true, then Waldo cannot be logged on and one of the sensors is malfunctioning.

This supports autonomic systems where the operation of the control loop is based on discrete events

monitored via separate sensors. This is done by semantically aligning event data that would otherwise

be difficult to interpret and, more importantly, trust. The paper also provides some means (an aggregate

function that measures sensor data precision, decay and confidence) to compute a log data trust score.

This places Construct on the trust level of the semantic web stack (Fig. 2.1). IBM’s Tivoli Monitoring

solution employs the Systems Management Ontology [115] to map raw data collected from the managed

resource against stored logical objects to detect, correct and predict anomalous behaviour.

Autonomic-semantic interaction. Ontology consistency (performed by the reasoner) is used to

identify sensor malfunctions. In Tivoli Monitoring, the ontology facilitates a preliminary analysis of

sensor data to detect anomalies in the operation of the managed resource.

Autonomic Semantic Desktop

This is an application [29] that aids users with the management of their personal data (e.g., updating

webpage profiles, organising large photo collections, etc.) The autonomic manager monitors the web for

resources that are relevant to the user (relevancy is determined by matching the metadata associated to

those resources against the user’s profile ontology). The data is then used to maintain the user’s local

information (e.g., if an event that is in the user’s Outlook calendar has changed venue on the official

website, the calendar appointment will be updated accordingly). The autonomic manager also detects

patterns in the user’s browsing activity that are later on used to customise their experience (for instance,

by automatically disabling cookies if the user has manually done so, repeatedly, in the past).

Autonomic-semantic interaction. An ontology is build to store the user’s profile (in a broader

sense, including friends, browsing preferences, calendar appointments, etc.) by extending schemas

and taxonomies available online, such as the FOAF (Friend of a Friend) ontology, the Dublin Core

vocabulary, with individuals specific to the user. The ontology is constantly updated and consulted to

decide whether detected web updates are relevant to the user or not.

Autonomic and Ontology Driven Architecture, Aesop

Service oriented and event driven systems represent a collaborative environment where producers and

consumers engage in transactions [70]. This interaction is managed with the help of an “eco-system-

wide” ontology capturing the semantic descriptions of services and events. A Semantic Bus is in place

to allow the manager to read the semantic annotations (about the type, role, location, etc.) associated

to each of the connected entities (in a smart home, they are washing machines, lamp, window blinders’

controllers, etc.). The plans developed by the manager are communicated to actuators via the same

Semantic Bus. In Aesop, the way end users engage with services is monitored via terminal-generated
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reports [61]. The extracted information is compared against an ontology containing service models and

the outcome of that analysis is used to plan improvements in service configuration.

Autonomic-semantic interaction. The description of a device that reported a new event in the

environment is matched against the ontology and used to activate the condition part of one of the available

semantic rules. The action part of the triggered rule will identify the services that are capable to manage

the event. The devices that offer those services will then be notified by sending the appropriate message

over the Semantic Bus.

Learning Design Support Environment

In education theory, learning design is the process of integrating elements such as taught content, learning

styles and educational resources (books, diagrams, digital media) in a coherent framework. An ontology

is proposed [38] that captures the generic description of these elements. At runtime, the user (learning

designer) instantiates the relevant part of the ontology by creating individuals modelling the current

learning context (e.g., specific learning outcomes or session formats). A “context path” is created to

match the user input to other relevant parts of the ontology and suggest the most appropriate learning

design.

Autonomic-semantic interaction. The generic ontology instantiated at runtime supports self-

configuration. Specifically, the elements of the learning environment are assembled automatically, based

on the context information relayed by the user.

Architecture-based Self Adaptation

This platform [39] employs an ontology derived from known system administration tasks to

automatically adapt the server pool size and the content rendering mode (between graphical and textual)

of a fictional news website Z.com. The goals are minimum response time to the user requests, quality

of delivered content and low server provisioning expenses. The autonomic manager uses a reduction

function (similar to the discretisation technique employed by the KAS instance in the SAR problem

domain - 5.2.1) to control the size of the state space. When a change (e.g., an increase in response

time) is detected in the environment , the system will select a response strategy (treat it as a performance

issue or a security issue, such as a DoS attack) based on the experiential knowledge of human system

administrators available in the ontology. A mechanism from utility theory is used to select from several

strategies suitable to address a given symptom.

Autonomic-semantic interaction. The ontology serves as an intermediate layer between human

system administrators and autonomic machines, translating the experience and reasoning patterns of the

former into a format interpretable by the latter.

Context Inferring in the Smart Home, Autonomic Service Bus

Contextual information (e.g., the level of brightness, the temperature, etc.) is collected from a smart

environment via sensors [149]. The data is stored in an ontology where it is reasoned upon in order to

compile a set of actions - they will be executed to “correct” the environmental state with respect to a

prescribed goal. Similarly, the Autonomic Service Bus [55] employs an ontology for storing semantic

descriptions of providers and requesters of services (unlike AODA, that stores descriptions of the services
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themselves). This knowledge may also be viewed as contextual, in a service oriented architecture. ASB is

the only hybrid application, within the scope of this literature review, that stores policies in the ontology.

Autonomic-semantic interaction. Reasoning on the ontology knowledge facilitates the analysis of

context in different environments (connected devices in a smart home and service oriented architectures)

thus allowing the construction of effective plans (in terms that the actions they contain are targeted

specifically at the current context).

OASys

This is an ontology that captures the vocabulary for the autonomic systems engineering process [9].

It contains common elements that all autonomic architectures share, thus supporting the process

of instantiating them in different problem domains. Specifically, an autonomic system engineering

methodology can be extracted from OASys, in an attempt to create bespoke implementations with

limited input from a human software architect. The ontology is used to design an autonomic system

for controlling mobile robots.

Autonomic-semantic interaction. As in the case of LDSE [38], the ontology supports self-

configuration of autonomic systems. Specifically, the semantic descriptions of architecture elements

and their connections are used to select building blocks and assemble them in working designs. It is

important to understand that OASys stores knowledge about the architecture of the autonomic manager

and not about the managed resource that the manager will be deployed to control.

3.3.1 Reflection

The reviewed hybrid contributions are centralised in Table 3.3 and organised with respect to:

• Application domain: the problem/ environment that the hybrid solution is deployed in.

• Formal: any mathematical, logic or structured language formalism that the hybrid solution

employs.

• Middleware: support tools, platforms or pre-existing systems that the hybrid solutions are based

on.

• Learning: whether the semantic layer featured by the hybrid solution supports the unsupervised

inference of new knowledge.

The main points distilled from the set of hybrid contributions covered in this section are presented

in the following.

Learning. The most important conclusion drawn from analysing the presented hybrid architectures

is that they all support unsupervised learning. This highlights the importance of inference (the operation,

performed by the reasoner, that underpins learning) in facilitating autonomic behaviour. To mention just

a few examples, context inference is performed in [38, 149, 39]. Alternative knowledge representation

platforms (relational or NoSQL databases, object oriented models) do not natively support learning in

the described sense.

Middleware. There is a pronounced trend that consists in building hybrid systems from scratch.

Apart from one, none of reviewed frameworks make use of the design suggestions or tools available in

78



CHAPTER 3. STATE OF THE ART

Table 3.3: Autonomic-semantic hybrid applications

Application domain Formal Middleware Learning
Internet of Things [7] SWRL no yes

log data disambiguation [56] no no yes
anomaly detection [115] no Tivoli Monitoring yes

personal data management [29] no no yes
smart environments [70, 149] OWL-S, WSDL, SWRL no yes

service session configuration [61] no no yes
learning design [38] no no yes

response strategy selection [39] utility theory no yes
service management [55] no no yes
architecture selection [9] no no yes

semantic web agents [170] no SERSE yes

the separate autonomic and semantic research fields (at least, not the ones identified in 3.1.7 or 3.2.4).

There is thus a need for more flexible, configurable “building blocks” (autonomic and semantic alike)

easy to assemble in an effective hybrid design.

Evaluation. The “inner mechanics” (ontology querying, configuration of communication channels

between the semantic layer and the MAPE modules, etc.) of every reviewed hybrid system is explained

in great detail, with focus on specific implementation scenarios. In sharp contrast, there are very few

performance measurements available (the only exception is a quantitative study of the way monitoring

and analysis scale to a large number of system events detected at the same time [7]).

Summary and running example. The reported efficiency of the reviewed applications

demonstrates that hybrid architectures, combining autonomic elements and semantic technologies, can be

successfully implemented in realistic problem domains. Beyond this conclusion, there is little value that

can be extracted from the above systems and used to design and implement a hybrid autonomic manager

for the smart environment in the running example. The applications presented above do indeed use

reasoning services (particularly subsumption and querying) to aid autonomic decision making at some

level, yet the way these interact with the MAPE components is specific to the targeted application context.

There are no generic guidelines or algorithmic building blocks (tools) applicable across problem domains

that may be used to manage a smart home. Also, the evaluation carried out to measure the performance of

the reviewed hybrids is only pertinent to the specific problem being addressed. Concretely, the evaluation

results (qualitative and quantitative alike) presented in the papers consulted for this section offer nothing

that would inform the designer of the smart environment management system about adopting a semantic-

autonomic hybrid approach or opting for something else altogether. The following chapter attempts to

address these gaps by proposing a general architectural framework for ontology supported autonomic

elements alongside a more extensive evaluation approach, with the potential of being relevant to more

than one application domain.
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CHAPTER 4

A General Framework for Knowledge-centric Autonomic Systems

KAS (Knowledge-centric Autonomic System) is a blueprint supporting the creation of autonomic

managers where knowledge is represented and maintained within a semantic layer. The open issues

and research challenges, extracted from the autonomic computing literature, that motivate the KAS

architecture are presented in 4.1. The same section also analyses two main problem classes and their

main characteristics that call for a knowledge-centric autonomic management solution. The following

sections (4.2, 4.3 and 4.4) focus on the KAS components:

• an architecture featuring passive components (that are written) and active components (that are

executed)

• a set of tools (software applications in their own right) that implement the active architecture

components and generate the passive ones (or use them in some other way)

• a methodology describing the execution flow of the proposed tools.

Emphasis is placed on the interaction between the semantic and autonomic layers with appropriate

justification for every design decision involved in the development of KAS. The overall purpose of KAS,

reflected in the way components are structured and connected, is maximising the advantages of semantic

technologies (chiefly, reasoning) in order to support and enhance autonomic behaviour.

4.1 Rationale

The relevant literature contains numerous references to insufficiently addressed research questions

directly related to autonomic management, specifically the design of the underpinning architecture

and the practical implementation of the appropriate components and algorithms. These open issues

outline the need for a knowledge-centric architectural framework designed to support autonomic decision

making, as discussed in the following.

• Knowledge is a key piece in the design of the autonomic element, as it informs the operation

of all MAPE components [101, 88]. It is thus paramount to identify a semantics sufficiently

expressive to capture the subtleties of the available knowledge, whilst structurally simple enough to

allow autonomic components to interpret and reason upon it in a computationally feasible manner

[5]. An ontology, along with the accompanying OWL reasoning services, makes for an attractive

candidate, as it inherently supports unsupervised learning (automated logical inference) as well as

satisfiability checks to maintain the knowledge base consistent under concurrent access. This is

relevant to the architectural aspect of research objective O1.1. (1.4).
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• The autonomic computing proposal has known a wide practical acceptance (as shown by the

variety of implementations analysed in 3.1), yet most of the existing renditions are application

specific, offering little insight that is transferable to other problem domains [5]. This calls for a

set of open, extensible tools that can be easily integrated in the general autonomic architecture and

perform its functions in a variety of practical scenarios [150, 112]. As set out in research objective

O1.1., KAS encompasses several active components supporting autonomic operations (such as

knowledge acquisition or analysis and planning algorithms) that feature a generic structure – that

transfers well to different applications – and, a the same time, may be customised to fit the specifics

of a given problem domain.

• In spite of the clear architectural blueprint of the classic autonomic element suggested by IBM

[90], complex practical implementations are structurally brittle, relying on subtle co-dependencies

between non-standard components that are difficult to understand and challenging to replicate

[5, 103]. Consequently, it would be beneficial to propose a consistent methodology that captures

such interactions in an algorithmic way and can be used to inform autonomic design across

application domains. This is in line with the methodology aspect of research objective O1.1.

• One of the reasons behind lack of cross-domain applicability of autonomic implementations is the

in-house nature of the evaluation techniques. In other words, the reported metrics, quantitative

and qualitative alike, tend to be relevant solely to the problem the system was designed to solve –

based on these alone, it is difficult to gage how the same implementation would fare in a different

practical context [150]. KAS components are configured to rely on mechanisms (e.g., dynamic

plan construction and reuse) that can be evaluated via metrics (such as the index of learning that

measures the system’s capacity of exploiting its own experience) relevant to a variety of problem

domains. These evaluation considerations are captured by research objectives O2.1 and O2.2.

The problem classes analysed in section 1.3 feature a set of common requirements that provide additional

(practical) motivation for developing a knowledge-centric autonomic framework. These are outlined

below, alongside the proposed solutions (relevant to research objectives O1.2 and O1.3).

• A sizeable group of everyday applications operate in realtime (such as server network

configuration, where load has to be balanced while maintaining the quality of the provided service,

or media display adaptation, where the appearance of text and images needs to be tuned in line with

the needs of the audience without any perceptible lag). Under these circumstances, in order to

ensure a realistic response time, the system is required to promptly answer questions (to determine

the impact of adding a server to the middle layer on the overall load distribution – an example

provided in [103] – or the effect that an increase in display brightness will have on the audience’s

level of attention). One semantic service that is suitable for this task is querying, performed

efficiently by all standard reasoner implementations (FaCT++, Pellet, etc.), which invites the use

of an ontology to represent the knowledge base of such systems.

• With the increasing popularity of online decision support systems, gaining significant traction in

the field of career management support, it becomes necessary for automated online tools to deal

with large repositories of incomplete and continuously changing knowledge. In cases where that

knowledge is both consulted and curated by the wider community (as opposed to a small group
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of domain experts), it is crucial to maintain its consistency (at stake, since community editors

are unlikely to be well versed in description logic) as well as display it in a visually intuitive

way (for instance, as a graph, where nodes represent professions, rather than a dull database-style

table/list). An ontology is based on RDF triples, easily translated from a formal description to

a visual representation (concepts correspond to nodes and properties to edges). In addition, the

analysis and plan stages of the MAPE control loop can work alongside the reasoner to answer

user queries in line with their profiles/preferences and/or in tune with their current circumstances

(monitored, for instance, by system sensors).

4.2 Architecture

Analyse

Monitor

Plan

Execute

Policy

Managed resource

Reasoner

Onto++
instance

KT

Knowledge

Sensors Effectors
Onto++

Heuristics Actions

Utilities

values

Entity
managed
resource
model

Link
hasLink

hasArgOne

hasArgTwo

hasWeight

hasValue
hasProperty

State

hasEntity

hasUtility

Fig. 4.1: KAS architecture - component view

The architectural components presented in Fig. 4.1 can be divided in three categories.

• Passive: Onto++, Onto++ instance and Policy. Onto++ is a template describing the fixed part of all

Onto++ instances that are built from it. Onto++ instances are distinct, real ontologies, modelling

specific problem domains, yet laid out in the same structure, namely that of the Onto++ template.

The policy is a document containing experiential knowledge authored by the domain expert to

guide system behaviour towards a desirable state.

• Active: Monitor, Analyse, Plan, Execute, KT and Reasoner. The first four components represent

the classic stages of the autonomic control loop [90, 101]. KT (Knowledge Translator) is an

ontology learning algorithm that dynamically generates Onto++ instances. The Onto++ template

is programmed into KT, but the algorithm will only instantiate those parts that apply to a given
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problem domain. The reasoner is a semantic inference engine that maintains the Onto++ instance

logically consistent and automatically deduces new, implicit facts from the explicit knowledge

generated by KT. The algorithms developed by the author of this research to implement the active

components of KAS are presented in 4.3

• Miscellaneous: Sensors, Effectors and Managed resource. Strictly speaking, sensors and effectors

are active components that read information from the managed resource and, respectively, effect

changes onto it. However, relative to KAS, it is only the data produced by the sensors and the

actions performed by the effectors that are of interest, not the inner logic of those two components.

Similarly, the managed resource may contain active processes that will be captured, to an extent,

in the ontology. Yet, KAS does not provide the logic that underpins those processes, although it

may indirectly influence it via the changes operated by the effectors. In a nutshell, the complexity

of sensors, effectors and the managed resource is abstracted away by the APIs that KAS uses to

communicate with those components.

Design justification. The proposed architecture is motivated by compatibility with the traditional

structure of the autonomic manager [90] and by portability to various application domains. Compatibility

is ensured by providing implementations for all MAPE modules as well as for the tool generating the

knowledge they operate on. Cross-domain applicability is endorsed by making all supporting tools

configurable: the methodology (4.4) that integrates all tools controls the way knowledge is generated

by KT and used by the autonomic manager in order to meet the requirements of a given application.

4.2.1 Onto++ Template

The fixed part of every Onto++ instance consists in a set of concept and property hierarchy roots shown in

the right hand side diagram of Fig. 4.1. The subconcepts and subproperties populating these hierarchies

will be partially asserted by KT and partially subsumed (inferred) by the reasoner, to accurately represent

specific entities from the modelled domains. Inferred knowledge represents the dynamic part of Onto++

instances and is not contained in the template. The hierarchy roots are presented below.

• Entity is the root of the ontology hierarchy modelling the problem domain. Entity subconcepts

are application specific and are connected to each other via inheritance (e.g., in an Onto++

instance that models a chemical reaction, OrganicCompund and InorganicCompund directly

subsume Entity, Water inherits from InorganicCompund, Carbohydrate inherits from

OrganicCompound, etc.) or via bespoke properties (e.g., hasMolecule connects Carbohydrate

and Water). Inheritance relationships are implicit and will be deduced by the reasoner. Bespoke

properties are rooted in hasProperty and are explicitly asserted by KT. If Entity subconcepts

have connections to numbers (hasNumberOfAtoms), strings (hasChemicalSymbol), boolean

values (isStable), etc., those properties will be asserted under hasValue.

• State is the base concept for the ontology segment modelling possible system states. If the

targeted domain is a chemical reaction, then the state of the system may be defined in terms of the

resulting substance’s composition (State1 would correspond to a molecule of one Carbohydrate

subconcept, State2 to two molecules of another, etc.). The connections between State and

Entity subconcepts are realised by the hasEntity property. Each state has an associated
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preference score, called utility, that indicates its desirability from the autonomic manager’s

perspective. Utilities (block values in the architecture) are numbers, not concepts, therefore do

not form a hierarchy. States are connected to utilities via the hasUtility property.

• Link is an abstract concept, in the sense that it does not model a physical entity from the target

domain. Instead, it serves as an auxiliary building block to represent multifaceted properties with

no natural support in RDF, a process called reification (a detailed example is provided in 4.3.2).

The reificated property inherits from hasLink. hasArgOne and hasArgTwo connect the Link

concept to the domain and filler of the reificated property. The extra facet of the reificated property

(a number or a string from the values block) is associated to the Link concept via property

hasWeight.

Design justification

The Onto++ structure is designed to meet the autonomic manager’s requirements with respect to the

representation of the knowledge repository. Specifically, the problem domain should be modelled as

a graph [88, 90], where nodes represent physical entities and edges model their connections. These

are the roles of the Entity and hasProperty hierarchies, respectively. The State hierarchy (when

it is computationally feasible to store it) supports the analysis (4.3.4) and planning (4.3.5) stages of the

MAPE loop, whereas the Link hierarchy makes it possible to model more complex relationships between

entities. Note that these last two hierarchies are included in the Onto++ instances only if they are needed.

Another issue that requires justification is the choice of an ontology for knowledge storage. A case

has been made in the introduction (1.1) for the inherent compatibility between semantic technologies

(particularly ontologies and reasoners) and autonomic computing, yet a more convincing explanation

is required relative to the dismissal of other knowledge management alternatives such as relational

databases or object oriented models. The most compelling reason in favour of ontologies is best

formulated by Soylu et al: database schemas and object-oriented models “are not meant to capture a

domain per se and are not truly natural for end users” [164]. This comes down to these platforms’

incapacity to learn, that is, infer implicit knowledge from explicit facts, as a reasoner does with ontology

data. Humans implicitly infer knowledge when they experience new environments, therefore semantic

models are one step closer to the way organic brains build models of the world. To further strengthen

this argument, a comparison between the performance of an autonomic manager storing knowledge in a

relational database against that of the same autonomic manager featuring a semantic layer is presented

in 5.4.1.

The reason for selecting reification as a means to represent multifaceted properties over other

alternatives1 is twofold. Firstly, a significant portion of the covered literature employs reification in

practical applications [169, 35, 66, 60, 134] and secondly, it is recommended as an ontology design

pattern [65, 136].

The final argument relates to the absence of plans and policies from Onto++, since other approaches

[147, 155, 87, 11] provide semantic representations for those two components as well. Within the

KAS framework, policies and plans are not reasoned on. They are generated by the domain expert

and, dynamically, by the plan algorithm (4.3.5), respectively, but are not subject to semantic inference.

1See https://www.w3.org/wiki/PropertyReificationVocabulary#Alternatives for a W3C endorsed list.
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Therefore, including them in the ontology would bring no computational gain. Acording to the covered

literature, a consensus is yet to be reached with respect to the cost-benefits ratio of reasoning over plans

and policies, thus this approach will be further investigated in future work.

Running example

The very simple smart environment considered for illustration features two cooling devices (a fridge

and a freezer) and two room heating appliances (a radiator and an air conditioning unit). These are

represented by concepts of the Entity hierarchy, in the Onto++ instance shown in Fig. 4.2. Cooling

devices have a capacity expressed in litres, whereas heating appliances feature a temperature output

in degrees Celsius - these properties are modelled by hasCapacity and hasOutput, respectively.

Both types of machines use power in a specific amount expressed in Watts - this is represented by the

hasWattage property. All properties mentioned thus far have numeric fillers, therefore their graphical

representations in Fig. 4.2 are connected to the values box.

EnergyConsumption

HighEnergy
MediumEnergy
LowEnergy

Comfort

State1

State9

hasEnergyConsumption values

hasUtility

hasComfort

hasRange

hasFoodTemp

hasRoomTemp

State EntityhasEntity hasValue

CoolingDevice

Fridge
Freezer

HeatingDevice

Radiator
AirConditioner

hasCapacity

hasWattage

hasOutput

hasWattage

HighComfort
MediumComfort
LowComfort

Fig. 4.2: The Onto++ instance modelling the smart environment - concept hierarchies are
presented as indented lists

To get a better picture of how the above concepts and properties are connected, the complete

definitions of ontology concepts Fridge and AirConditioner are given in Fig. 4.3 (Freezer and

Radiator can be described in a similar fashion).

The two ontology classes, along with their sub-concepts, towards the bottom of the Entity

hierarchy, namely EnergyConsumption and Comfort, support the definition of all possible states that

the smart environment can be found in. In this case, there are nine possible states, one for every

combination of energy consumption and comfort levels. For instance, State7 (Fig. 4.4) is reached when

the overall energy consumption is low and the level of comfort (room temperature and food preservation)

is high. Since maintaining a comfortable ambient temperature and ensuring that kitchen appliances are
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Class: Fridge EquivalentTo:
CoolingDevice
and (hasCapacity value "150"^^integer)
and (hasWattage value "200"^^integer)

Class: AirConditioner EquivalentTo:
HeatingDevice
and (hasOutput value "20"^^integer)
and (hasWattage value "2000"^^integer)

Fig. 4.3: Fridge and AirConditioner concept definitions

cool enough to keep food fresh, at a low energy cost, is an ideal situation, concept State7 represents the

goal state and is thus awarded the maximum utility.

Class: State EquivalentTo:
hasEnergyConsumption some EnergyConsumption
and (hasComfort some Comfort)
and (hasUtility some xsd:integer)

Class: State7 EquivalentTo:
State
and (hasEnergyConsumption some LowEnergyConsumption)
and (hasComfort some HighComfort)
and (hasUtility value "9"^^integer)

Fig. 4.4: State and State7 concept definitions

The values used to define the EnergyConsumption and Comfort subclasses (in other words, the

range a temperature value would have to be in to be considered high) are either prescribed manually or

discretised automatically (e.g., when given the upper and lower limits of the energy consumption value

range – for instance, 1000W and, respectively, 4000W – and the number of desired classes – say, 3 – the

manager will automatically determine that a high energy consumption is over 4000W, a medium one is

between 1000W and 4000W and low one is under 1000W). To illustrate, the definitions of HighEnergy

and MediumComfort are given in Fig. 4.5.

Concepts EnergyConsumption and Comfort (specifically, its two facets, room and food

temperature) correspond to the environment signals that the autonomic manager is capable of monitoring.

Provided that a new sensor is installed to measure, for instance, humidity, a new ontology class will be

asserted with the appropriate sub-hierarchy (for a discretisation factor of 2, sub-concepts LowHumidity

and HighHumidity would be considered).

4.2.2 Policy

The KAS policy document is created by the domain expert and has three sections:
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Class: HighEnergy EquivalentTo:
EnergyConsumption
and (hasRange some xsd:integer[>4000])

Class: MediumComfort EquivalentTo:
Comfort
and (hasFoodTemp some xsd:integer[>3 , <=5])
and (hasRoomTemp some xsd:integer[>15 , <=20])

Fig. 4.5: HighEnergy and MediumComfort concept definitions

• utilities. These are numerical values associated to system states. In the most common scenario,

the system state is given by the values of the monitored inputs. For example, one of the states that

a system monitoring temperature and humidity may be in is described by:

temperature <= 10 AND humidity <= 100 5

In this example, a utility of 5 is associated to the state where the environment temperature is lower

than 10 units and the humidity is under 100 units. All relevant system states must be provided

with a utility in this section of the policy document. Input discretisation (a task performed during

ontology learning - see 4.3.2) is directly relevant to utility definition as it significantly reduces

the size of the state space. Unless otherwise specified, the autonomic system goal is defined as

achieving the state with the highest utility.

• actions. This section of the policy document is related to the managed resource parameters

modified by the autonomic system’s effectors. Relative to the previous example, let us assume

that the controlled parameter is the environment’s pressure, leading to three possible actions:

increasing, maintaining or decreasing it. At each step of the MAPE loop’s planning stage, an

action is selected from the available set and inserted in the plan under development.

• heuristics. These represent high level knowledge prescribed by the domain expert to deal with

safety-critical situations (like in the example to follow) or help expedite the analysis and planning

stages of the MAPE loop (see 5.2.3). An example of a heuristic policy expressed in the ECA

formalism is given below:

When the temperature is above 150 event

AND

the pressure valve is faulty condition

THEN

switch off power. action

All policy sections are optional apart from the goal definition (given by the maximum utility state as in

the example above or by a goal policy as in 6.2).

87



CHAPTER 4. A GENERAL FRAMEWORK FOR KAS

Running example

In the case of the smart environment application, the policy document would contain:

• utility values for all nine states (a low level of comfort obtained at a high energy cost is intuitively

the minimum utility state, just as a high level of comfort at a low energy cost – Fig. 4.4 – is

the system goal and, consequently, the highest utility state; however, it takes a human system

administrator to assign utilities for less clear-cut states, as, in some scenarios, high comfort at a

medium energy cost may be preferable to medium comfort at a low energy cost, whereas, in others,

the situation may be reversed)

• actions that the autonomic manager can operate on the environment (for example, switching

appliances on or off and commuting to a low power state or back to regular operation parameters)

• heuristics such as the one below.

When the energy consumption is medium event

AND

the comfort level is high condition

THEN

switch all electrical appliances over 200L to low power mode. action

4.2.3 Managed Resource, Sensors and Effectors

The managed resource is a hardware and/or software system (such as the chemical reaction in the

example above, assuming that the reactants are added by dedicated, programmable hardware) that the

autonomic manager controls. The legacy system is capable of functioning independently from the

manager, only not as efficiently. The clear separation between the managed resource and the manager

is an important criterion when investigating whether an applications is truly autonomic (for this reason,

the managed resources of the two systems that implement KAS will be clearly outlined). Similar to the

negative feedback loop in classic control theory, the autonomic manager reads some parameters (e.g.,

the molecular composition of the compound produced by a certain chemical reaction) from the managed

resource, via sensors, and controls other parameters (e.g., the amount of light that the reaction is exposed

to), via effectors. The purpose of the control process is to drive the managed resource to the goal state

(a certain chemical composition of the resulting substance that the domain expert assigns the maximum

utility to).

4.3 Tools

4.3.1 Reasoner

KAS makes use of FaCT++ [175], a reasoner implemented in C++ and supported by the OWL API

(http://owlapi.sourceforge.net/). The reasoner features exploited by KAS are:

• subsumption. This is the logical operation of automatically determining the superclass of

a newly asserted concept. To illustrate, consider a scenario where the time of day is a
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monitored input, updated every hour. At 9 am, a new ontology concept will be created,

namely crtTime hasHour 9. Based on that definition, the reasoner will infer that crtTime

is a subconcept of earlyMorning hasHour [>=9 <11]. Thus, the reasoner automatically

concluded that 9 am is an hour in the early morning (and not in the late afternoon), which represents

a new piece of domain knowledge. Subsumption supports KAS’s ability to learn new facts about

its environment, even those that human experts did not explicitly programme into the problem

domain description.

• classification. The reasoner automatically verifies the logical correctness of all ontology axioms.

In case the ontology contents is extracted from a legacy description (e.g., a file listing system

entities that were manually compiled by a domain expert), the classification operation will flag up

logical contradictions such as timeStamp (hasTime earlyMorning) and (hasHour 14) by

declaring concept timeStamp unsatisfiable.

• sensor data verification. This is a consequence of classification. Given that the ontology concepts

modelling the system’s state are defined in a logically robust way (see 5.2.2 for details), the

reasoner will detect an illegal input value such as hour -1.

• cycle detection. This feature stems from subsumption. A cycle is a circular “is_a” relationship

connecting two or several ontology concepts (an example of a cycle with three concepts is “A is_a

B, B is_a C, C is_a A”). This situation is very likely, especially when learning the ontology from

a large, manually curated legacy description. A cycle is not a logical error per se, however, the

reasoner will deduce that the concepts involved are equivalent (in the previous example, A ≡ B

≡ C). A software tool can be set up to retrieve all equivalence relationships in the ontology and

investigate whether they represent a cycle or not.

• querying. This is useful for searching the ontology for a specific concept and its direct neighbours.

For that purpose, a DL query is built, namely a logical definition that all concepts being searched

for have to meet (query State and hasTime EarlyMorning will match all subclasses of State

connected via the hasTime property to concept EarlyMorning or one of its subclasses). The DL

query can be viewed as an anonymous ontology concept subsumed by all the classes that meet the

search criteria.

The use of the reasoner in terms of supporting autonomic decision making will be illustrated on the

running example at the end of section 4.3.4, as it is tightly coupled with the analyse and plan stages of

the MAPE-K loop.

4.3.2 Knowledge Translator

The Knowledge Translator (KT) is an ontology learning algorithm (Table 4.1) that automatically

generates an ontology from an initial repository of domain knowledge.

Inputs and Outputs

Besides the initial knowledge repository, KT takes two other inputs, a boolean flag to distinguish between

discrete ant continuous data and a collection of discretisation thresholds to deal with the latter data type.
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Table 4.1: The Knowledge Translator (KT) algorithm

KT (inputFile, isDiscrete, thresholds) returns o
1 Entity, State, Link = {}
2 hasEntity, hasProperty, hasLink, hasArgOne, hasArgTwo, hasWeight, hasUtility, hasValue = {}
3
4 if isDiscrete = false then
5 for each t in thresholds do
6 e = assertConcept(Entity);
7 if hasWeight(t) = true then
8 reificate(e, t, getWeight(t));
9 else
10 assertProperty(hasValue, e, t);
11 end if
12 end for
13 else
14 for each [domain, filler, prop] in inputFile do
15 e1 = assertConcept(Entity, domain);
16 e2 = assertConcept(Entity, filler);
17 if hasWeight(prop) = true then
18 reificate(e1, e2, getWeight(prop));
19 else
20 assertProperty(hasProperty, domain, filler);
21 end if
22 end for
23 end if
24
25 for each utility in inputFile do
26 s = assertConcept(State);
27 assertProperty(hasUtility, s, utility);
28 for each e in getDirectSubclasses(Entity) do
29 assertProperty(hasEntity, s, e);
30 end for
31 end for
32
33 o = [Entity, State, Link,
34 hasEntity, hasProperty, hasLink, hasArgOne, hasArgTwo, hasWeight, hasUtility, hasValue];

The return value of KT is the generated ontology. The algorithm’s inputs and output are detailed in the

following.

Input inputFile. This represents the problem knowledge repository. It contains the names

of domain entities and those of the propeties that connect them. A typical row in the inputFile

is entityName1 propertyName entityName2 propertyWeight, describing two entities in the

problem knowledge space, namely entityName1 and entityName2 linked by property propertyName

with a weight given by propertyWeight. Entity entityName1 is refered to as the property

domain, entity entityName2 is the property filler and weight propertyWeight is most commonly the

probability or the strength of the property. For instance, Student hasDegree ComputerScience 95

could be interpreted in plain English as “A student will graduate from a Computer Science course with
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Table 4.2: Link hierarchy and associated properties construction

reificate(e1, e2, weight)
1 l = assertConcept(Link);
2 assertProperty(hasLink, e1, l);
3 assertProperty(hasWeight, l, weight);
4 assertProperty(hasArgOne, l, e1);
5 assertProperty(hasArgTwo, l, e2);

a probablity of 95%”. The inputFile may also contain utilities, namely numbers associated to each

possible state of the system. These are usually extracted from the policy document.

Input isDiscrete. The data in the inputFile can refer to discrete entities in the knowledge

space, such as Student and ComputerScience in the previous example, or continuous inputs, for

example the time of day or the level of a laptop’s battery. In the former case, corresponding to

isDiscrete being true, KT will build the ontology by extracting inputFile data and directly

translating it to concepts and properties. In the latter case, KT will automatically discretise the continuous

inputs (ususally provided by the autonomic manager’s monitor) into categories of values and assert each

one as a concept in the ontology.

Input thresholds. An array of numbers, representing cut-off limits for defining dicrete categories

of continuous inputs’ values, that is ignored when isDiscrete is true, but must be provided in the

opposite case.

Output o. This is an instance of the Onto++ template. It contains all components illustrated

in Fig. 4.1: Entity, State and Link are initially empty concept hierarchies (containing just

the base eponymous classes), whereas hasEntity, hasLink, hasArgOne, hasArgTwo, hasWeight,

hasUtility and hasValue are property hierarchies, initially holding the base property only. The

concepts linked by these properyies are of the types depicted in 4.1 (where the arrows representing

the properties point from the ontology class representing the property domain to the one that stands for

the property filler). Hierarchies hasEntity, hasProperty and hasLink contain object properties, that

is, both their domains and their fillers are ontology concepts. Hierarchies hasWeight, hasUtility and

hasValue comprise data properties, where the domain is a concept and the filler is a numerical value.

Properties subsuming hasArgOne and hasArgTwo can be either object properties, when the input file

contains discrete data, or data properties, in the case of continuous data that has been discretised. Since

the former case is most common in automatic applications, hasArgOne and hasArgTwo are represented

as object properties in Fig. 4.1.

Running Example

To aid the reader with understanding the algorithm logic presented in the following section, this is what

the KT algorithm inputs and output would be, in the case of the smart environment application.

Input inputFile. The first lines, used to assert the CoolingDevice sub-hierarchy in Fig. 4.2, are

given below (no weights are assigned, as this example does not require multi-faceted properties). The

rest of the input file would follow a similar template.
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CoolingDevice hasCapacity [0 200]

CoolingDevice hasWattage [50 5000]

Fridge hasCapacity 150

Fridge hasWattage 200

Freezer hasCapacity 100

Freezer hasWattage 250

Inputs isDiscrete and thresholds. The boolean is false, as the monitored signals (wattage

and temperature) are continuous. Therefore, the thresholds passed in to discretise overall energy

consumption, room temperature and food storage temperature, are, respectively: [1000 4000], [15 20]

and [3 5].

Output o. This is the Onto++ instance presented in 4.2. Note that there is no Link hierarchy, as

that is only relevant in the process of reification (illustrated in chapter 6).

Algorithm Logic

The KT algorithm has three main parts, each responsible with the creation of one concept hierarchy in

the ontology along with the associated properties. Those parts are described in the following, starting

with a short note about the pseudo-code in Table 4.1.

Notations. Method assertConcept (lines 6, 15, 26) creates and returns a new class in the

hierarchy given as parameter. That is to say that e = assertConcept(Entity) creates a new

subclass (referred to, later in the algorithm, as e) of Entity. Method assertProperty (lines

10, 20, 27, 29) creates a new property, in the hierarchy given as the first parameter, connecting

the domain given as second parameter to the filler given as third parameter. That is to say that

assertProperty(hasValue, e, t) creates a new subproperty of hasValue connecting previously

asserted class e to numerical value t. Method assertProperty has no return value. Although omitted

from the psuedo-code for simplicity, all assertConcept and assertProperty methods may take an

extra parameter holding the name of the new class/property. If that is missing, the name will be generated

automatically.

Entity, hasProperty and hasValue hierarchies creation (lines 4 - 23 in Table 4.1). If the

system is monitoring continuous data, the values in the thresholds array will be used to discretise it.

One Entity subclass will be asserted for each of the resulting discrete categories. For example, if the

thresholds array holds values 10, 20 and 30, associated to monitored input M1, KT will assert concepts

M1_1 (line 6) connected via hasValue to interval [10 20] (line 10) and M1_2 linked to [20 30] by means

of the same property. It is possible to specify the names of the new Entity concepts to replace the

default generated ones (for simplicity, the extra name parameter was excluded from the pseudo-code). It

is also allowed to construct more complicated ranges of values for each discrete category corresponding

to a monitored signal (an example using logical operators is used for the SAR system in chapter 5). If

the data read in from the inputFile is discrete (presented as a sequence of rows, each containing the

domain, filler and name for a given property - line 14), KT will directly translate it in the appropriate

ontology elements (lines 15, 16, 20).

Link, hasArgOne, hasArgTwo, hasWeight and hasLink hierarchies creation (Table 4.2). It is

common for properties to have several facets. For instance, the polar covalent bond between a water
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moecule’s hidrogen atoms and its oxygen one can be described by property hasBond with domain

Hydrogen and filler Oxygen. To make for an accurate model, the property would need two extra facets:

one stating that the bond is covalent and another describing the bond as polar. Unfortunately, this

goes beyond the modelling possibilities of RDF, making it necessary to introduce the extra facets via

reification [166]. This ontology design pattern implies inserting an extra concept on the connection path

between the domain and the filler, as illustrated in Fig. 4.6. KT implements a similar process (lines 8

and 20) by calling the reificate method described in Table 4.2. There, the extra concept introduced

on the connection path between e1 and e2 is l, a subclass of Link, the multifaceted property is asserted

in the hasLink property hierarchy and the extra facet is hasWeight.

Hydrogen
hasBond

Oxygen
covalent
polar

Hydrogen

hasBond
Link

Oxygen
hasArgOne hasArgTwo

hasValue

covalent

hasValue

polar

Fig. 4.6: Reification example

State, hasUtility and hasEntity hierarchies creation (lines 25 - 31 in Table 4.1). A new

concept is created in the State hierarchy for every possible combination of concepts in the Entity

hierarchy. To exemplify, consider a simple Entity hierarchy with two subclasses: Absenteeism

and Progression. After discretisation, each subclass has been provided with two categories:

LowAbsenteeism, HighAbsenteism and LowProgression, HighProgression, respectively. It

follows that the system described by this Entity hierarchy may be in one of four states, each associated

with a utility (a number measuring the “desirability” of the state), as shown in Fig. 4.7. Assuming that the

modelled system is a university, low student absenteeism and high student progression is the preferred

state, hence the associated utility will be the highest of the four.

Should the number of Entity concept combinations be too high, a simplified State hierarchy

(where irrelevant entity combinations have been eliminated) may be explicitly added by the ontology

user. It is also possible to omit the State hierarchy altogether, however that will impact the functionality

of the autonomic manager (4.3.4). The utility associated to each State class is extracted from the

inputFile.

Advantages

The key benefits of KT are discussed below.

Automated ontology learning. KT extracts knowledge from existing descriptions of the managed

resource (the system to be controlled by an autonomic manager) and stores it into an ontology, with
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LowAbsenteeism

HighAbsenteeism

LowProgression

HighProgression

hasAbsenteeism

hasProgression

hasProgression
hasProgression

hasProgression

hasAbsenteeism

hasAbsenteeism

hasAbsenteeism

hasUtility

hasUtility

hasUtility

hasUtility

State1

State4

State2

State3

2

3

4

1

Fig. 4.7: State hierarchy example - leaf level classes and properties only

limited or no human intervention. This approach also enables the semantic processing (4.3.1) of that

knowledge, potentially generating more insight than what could be obtained from traditional knowledge

models (such as databases).

Discretisation. Signals monitored by autonomic managers are usually continuous. Analysing

continuous data models (e.g., time series, continuous probability distributions etc.) can be

computationally expensive [88, 103]. To help speed up the autonomic analysis phase (4.3.4), KT

automatically discretises continuous inputs in several categories of values, given some provided

thresholds.

Reification. To overcome a limitation of RDF representation, KT applies an ontology design

principle called reification. This adjusts the semantic hierarchies to allow the modelling of multi-

faceted properties, ultimately allowing a more powerful autonomic analysis process. This comes at a

cost, namely that of increasing the ontology size.

System state modelling. Autonomic analysis and planning rely heavily on analysing system state

[88] (in order to compare the current one against the goal state, extract patterns of previous system

behaviour or even detect sensor anomalies). To facilitate analysis and planning, KT provides support for

automatically generating and storing the complete set of system states.

Polynomial complexity. The complexity of KT is:

O(E ∗L+
m

∏
i=1

EMi) (4.1)

where E is the number of concepts in the Entity hierarchy, L represents the number of Link classes

and EMi stands for the number of Entity subclasses associated to monitored input Mi. In terms of KT

inputs, E is given by either the size of the thresholds array (if isDiscrete is false) or by the number

of rows in inputFile (if isDiscrete is true). L is the number of weights associated to either each

treshold or each property on an inputFile row. The final term of the addition in (4.1) represents the

number of State concepts. In the example in Fig. 4.7, there are two monitored inputs: absenteeism

(M1) and progression (M2), each discretised in two classes. Thus, EM1 and EM2 are both 2, leading to a

State hierarchy with 4 concepts.
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4.3.3 Monitor and Execute

The monitor module is an interface between the sensors reading information from the managed resource

and its environment, on the one hand, and KAS’s autonomic manager, on the other hand. It samples the

monitored signals at prescribed intervals of time and passes the values either to the ontology (in order

to maintain the State hierarchy) or directly to the analysis component (if the set of system states is too

complex to represent within the ontology). When deploying an instance of KAS in a specific application

domain, a bespoke monitor implementation must be provided to read data from physical devices such as

cameras or “software sensors” such as graphical user interfaces.

The execute component provides a shell for implementing planned actions (such as increase font or

decrease brightness) within the managed resource (for example, an electronic document rendered

in a text editor). This module requires a problem-specific implementation (most likely reliant on the

appropriate APIs to control system effectors).

4.3.4 Analyse

The analysis algorithm (Table 4.3) identifies the system’s current state and uses the high level heuristics

in the policy document to refine the set of available actions for the planning phase.

Table 4.3: The analyse algorithm

analyse (o, policy) returns (u, actions)
1 s = findCrtState();
2 u = getFiller(s, hasUtility);
3 actions = applyHeuristics(policy, s);

Inputs and Outputs

Input o. The system ontology may contain a State hierarchy with concepts representing each

relevant state of the system. During analysis, the State subclass modelling the current system state will

be identified. In case the State hierarchy is absent from the ontology, analysis will be based on raw

sensor input (see 6.2.5).

Input policy. The heurisics defined by the domain expert as part of the policy document are used

during analysis to discard some of the actions to be considered during planning.

Output u. The utility associated to the current system state is determined and returned by the

analysis algorithm.

Output actions. The final set of actions to be considered during planning (after eliminating the

ones that do not comply with the policy heuristics) is also determined during analysis.

Algorithm Logic

Current state identification (line 1). Every time a new set of input values is read by the

monitor, method findCrtState will identify the State subclass that matches those values. With
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reference to the example in Fig. 4.7, if the monitored values are subsumed under LowAbsenteeism

and HighProgression, the current state of the system will be identified as State2.

Current state utility retrieval (line 2) . Method getFiller takes two parameters, namely an

ontology concept and one of its properties. Here, the former is the class representing the current system

state, whereas the latter is the hasUtility property (Fig. 4.1). The returned value is the filler of that

property, in this case, the utility associated to the current state. In in Fig. 4.7, the utility of State2 is 4.

Action set construction (line 3) . The action segments of relevant policy heuristics will be

consulted to form a set of plan actions (that the planning component will use to formulate plans).

Specifically, method applyHeuristics will find all policy heuristics where the event and condition

segments match the current system state, s. The action segments of these heuristics will be executed to

eliminate non-conforming plan actions from the second section of the policy document (4.2.2), resulting

in a simplified actions set that the method returns. Relative to the example heuristic provided in 4.2.2,

all policy actions apart from switch off power will be excluded from the set of candidate plan actions.

Running Example

With reference to the smart environment application, the inputs, logic and outputs (presented in that order

for continuity) of the analysis algorithm are explained in the following.

Input o. This is the Onto++ instance, illustrated in Fig. 4.2, that features a State hierarchy.

Input policy. The utilities, actions and heuristic given in the running example section in 4.2.2 are

passed into the analyse algorithm.

Algorithm logic. Let us assume the monitor detects average temperatures of 20 degrees Celsius

in the rooms of the smart home and of 2 degrees Celsius in the cooling devices where food is kept.

This will trigger the assertion of concept CurrentComfort, with the numerical fillers above, which the

reasoner will subsume under HighComfort. The measured overall energy consumption, at the current

sampling moment, is 1000W. Consequently, concept CurrentEnergyConsumption is asserted with

the appropriate filler and subsumed under MediumEnergyConsumption. Classes HighComfort and

MediumEnergyConsumption are the fillers of State4, which is thus detected as the current system state

(see 4.2.1 – the running example paragraph – for the full concept definitions). This situation matches

the event and the condition of the heuristic in the policy document, therefore the analysis algorithm will

filter out all other actions save powering down all devices with a capacity greater than 200L.

Output u. In this case, th utility associated with state 4 will be retrieved from the policy document

and returned.

Output actions. The set will solely contain the action of the only heuristic in the policy document.

Advantages

Simplicity. According to the general IBM specifications [90], the second MAPE stage is

responsible for matching sensor data against known models of the system state and using the results

of that analysis to inform the planning process. In the KAS architecture, the state model is stored in

the ontology and much of the complexity of comparing sensor data against that model is delegated to

the reasoner. Specifically, via subsumption (4.3.1), the reasoner will automatically infer the correct

categories that the latest inputs from the managed resource belong to (e.g., 9 am is EarlyMorning).
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The analysis component is thus left with the simpler task of matching those categories against the filers

of State properties (find the State subclass linked to earlyMorning). Consequently, the application

developer need not be an expert in Markov chains [34], time series [182] or other complex mathematical

modelling approaches in order to implement the anaysis component. This can be performed with an

off-the-shelf reasoner and the algorithm in Table 4.3.

Polynomial complexity The complexity of the analyse algorithm is:

O(m+S+h∗ah) (4.2)

where m is the number of monitored inputs and S denotes the number of State classes in the ontology.

The sum of these two terms represents the computational complexity of line 1 in Table 4.3. Line 3 is

executed in h ∗ ah steps, where h is the number of policy heuristics and ah stands for the number of

candidate plan actions to be excluded by executing each heuristic.

4.3.5 Plan

The KAS planning algorithm is described in Table 4.4 and is responsible with dynamically creating

plans (sequences of actions) to execute in response to changes in monitored data. An efficient plan will

improve the utility of the system’s state, ideally to the point of reaching the maximum utility.

Table 4.4: The plan algorithm

plan (p, planBank, u, actions) returns p
1 q = getPlan(planBank, u);
2 if q != {}
3 p = p ∪ q;
4 else
5 p = p ∪ selectAction(actions);
6 end if

Inputs and Outputs

Input and output p. A plan p = {ai, i = 1..N} is a sequence of N actions ai selected from the set

available in the policy document. The current plan is developed by dynamically adding new actions or

entire known good plans from the plan bank.

Input planBank. This is a collection of efficient plans developed by the plan algorithm throughout

the operation of the KAS instance. Formally, the plan bank is a set of triples {(p,u0,u)}, each

representing a plan p that evolves the system state from utility u0 to utility u, where u > u0.

Input u. This represents the utility of the current system state and is provided by the analyse

algorithm.

Input actions. Also an output of the analyse algorithm, this is the set of eligible actions remaining

after the consideration of policy heuristics.
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Algorithm Logic

Output p, namely the current plan, is constructed by adding actions from the avilable set or entire known

good plans from the plan bank. The algorithm in Table 4.4 describes one step of the process. For the

complete creation of a plan, the algorithm will run in a loop as shown in 4.4.

Plan bank consultation (lines 1 - 3). If the bank contains a plan q that, during the system’s previous

operation, proved successful at increasing initial utility u, all of q’s actions will be added to current plan

p.

Dynamic plan construction from action set (line 5). Alternatively, if the bank contains no suitable

plan for the given initial utility, an action will be selected from set actions and added to plan p, currently

under development.

Running Example

The inputs, logic and output of the plan algorithm, including some discussion around connections with

the analysis phase, are presented below, in the context of the smart environment application.

Inputs p and planBank. Let us assume that, initially, the action in the current plan is the

one extracted from the policy heuristic (according to the logic explained in 4.3.4 – running example

paragraph). The plan bank starts out as an empty set.

Input u. The utility of the current system state is the one associated to state 4 (medium energy

consumption and high comfort).

Input actions. The full set of actions from the policy document is passed into the plan algorithm.

Algorithm logic. As the plan bank is empty (there is no previously executed sequence of actions

that successfully drove the system from state 4 to a state of higher utility), a random element will be

selected from set actions and added to plan p. As explained in the KAS methodology section (4.4),

the analyse algorithm takes over at this point and deploys candidate plan p. If the ensuing system state

matches the system goal (state 7), the current MAPE iteration stops and p is included in planBank. If

that is not the case, but the resulting state is of higher utility than that of state 4, the plan algorithm is

run again in an attempt to improve p by adding another action. Finally, if the initial utility drops, p is

discarded and the action selection process re-commences.

Output p. The sequence of actions that increases the system state’s utility will be returned by the

plan algorithm.

Advantages

Learning from experience. Plan composition is the process of integrating a known good plan

in the current one (lines 1 - 3 in Table 4.4). The current plan will be afterwards improved, if possible,

by adding other available actions, in an attempt to further increase the utility of the final system state

(this becomes apparent when the plan algorithm is integrated in the KAS methodology, as shown in 4.4).

Recycling plans is another facet (besides the reasoner’s subsumption feature) of the process of learning,

this time from previous experience, as implemented by KAS.

Lightweight storage. The plan bank is stored outside the ontology (in a Java object model) thus

eliminating the overhead implied by reasoning on plans [146]. This is beneficial in terms of reducing the

runtime of the MAPE control loop.
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Polynomial complexity The computational complexity of the plan algorithm is given below.

O(P+max(Nq,N)) (4.3)

where P is the number of plans in the bank, Nq represents the number of actions contained by bank plan

q (if such a plan exists) and N stands for the length of the actions set.

4.4 Methodology

The components in the KAS architecture (Fig. 4.1) along with the tools supporting them (described in

4.3) are to be integrated as shown in the general KAS methodology (Table 4.5). The algorithm is meant

to be used by application developers as a guide to implementing KAS instances in various application

domains (two of which are illustrated in 5 and 6).

Table 4.5: The KAS methodology

KAS()
1 policy = createPolicy();
2 inputFile = createInputFile();
3 o = KT(inputFile, isDiscrete, thresholds);
4
5 planBank = {};
6 while true
7 o = monitor(sensors);
8 (u0, actions) = analyse(o, policy);
9
10 u = u0; p = {};
11 while u < uG and size(p) < L and actionsLeft = true
12 p = plan(p, planBank, u, actions);
13 execute(p, effectors);
14 o = monitor(sensors);
15 (u, actions) = analyse(o, policy);
16 end while
17
18 if u0 < u
19 planBank = planBank ∪ (p, u0, u);
20 end if
21 end while

Algorithm Logic

Setup and ontology learning (lines 1 - 3). Before running the actual MAPE cycle (the “infinite”

while loop on lines 5 - 22), two preliminary tasks need to be performed, namely defining the

policy document and creating/preparing the legacy description of the managed resource. Method

createPolicy on line 1 implies formulating the utilities, actions and heuristics described in 4.2.2,

an operation performed by the domain expert. Method createInputFile (line 2) generates or retrieves
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the legacy description (authored by the domain expert) of the managed resource and adapts its format to

the one accepted by KT. This last task is performed by the application developer (the one implementing

a KAS instance to fit a specific problem domain) and should ensure that every row in the inputFile

describes one entity of the managed resource, alongside its properties, their fillers and weigths (if any)

- an example of an inputFile row was provided in the inputs description in 4.3.2. Once all KT

input parameters have been provided and appropriately formatted, the initial ontology is automatically

extracted (line 3) from the inputFile according to the ontology learning algorithm described in Table

4.1.

Monitoring and analysis (line 7 - 8). The necessary APIs for capturing physical sensor feeds and

turning them into numeric data need to be set in place by the application developer. If the ontology stores

the system state, the monitor component (4.3.3) will automatically assert (line 7) new ontology concepts

to represent the data read in from each sensor. If the number or relevant system states is too high to store

in the ontology, the monitored data will be passed directly to the analysis module. Here, the utility of the

system’s current state along with a (potentially) simplified set of actions is made available (line 8), in an

unsupervised way, for use during the planning stage.

Planning (lines 11 - 16). After each incremental addition to the current plan p (line 12, where

the method being called is described in Table 4.4), the actions it contains are executed (line 13) via the

effectors (programmed by the application developer). The system’s response is monitored and analysed

(lines 14 - 15) in order to determine whether the utility u of the new system state is closer to that of the

goal state, uG. This condition alongside a size restriction (namely the number of actions in plan p being

capped at L) constritutes the planning termination criterion (line 11).

Maintaining the plan bank (lines 18 - 20). If plan p drives the system to a state with a utility

higher than the initial one, then it will be stored in the repository of known good plans, planBank, for

later reference. Plan p will replace any existing plan in the bank associated to the same initial utilty u0

but with a lower final utility.

Advantages

On top of the advantages of each KAS tool (KT - 4.3.2, monitor and execute - 4.3.3, analyse - 4.3.4, plan

- 4.3.5), some new benefits become visible by analysing the general KAS methodology.

Required expertise. Most steps of the KAS methodology are (semi-)automated. The most costly

manual operations are porting the managed resource’s legacy description into a KT-compatible format

and explicitly programming the monitor/execute APIs. However, the computationally intensive stages

of KAS operation (ontology learning, analysis and planning) are fully automated. A complete list of

actors (stakeholders) responsible for each KAS phase is provided in Table 4.6. The domain expert is a

person intimately familiar with the business rules as well as the full set of requirements the KAS instance

needs to meet in a given application domain. By authoring the policy document (especially the heuristics

- 4.2.2), the domain expert communicates his/her insight in a non-technical language. The application

developer is a technical professional, with the necessary skills to translate data between different formats,

implement software APIs for interfacing various KAS components and define algorithm inputs (such as

KT’s thresholds). In some situations the input of both the domain expert and the application developer

is needed, for instance, when defining parameters like L, the upper bound for the number of actions in a

plan.
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Table 4.6: KAS methodology - stage authors

Stage Line in Table 4.5 Author
Policy definition 1 domain expert

Input file creation 2 domain expert
Input file formatting 2 application developer

Ontology learning 3 automated
sensor APIs 7, 14 application developer
monitoring 7, 14 automated

analysis 8, 15 automated
planning 12 automated

effector APIs 13 application developer
execution 13 automated

plan bank management 19 automated

Semantic-autonomic cooperation. The components of the autonomic manager are supported by

semantic technologies. Storing the managed resource description in an ontology allows for a more

flexible model, in that limitations such as databases’ closed world assumption [129] are not applicable

to semantic representations and design patterns such as reification [65] are available to represent

weighted properties. The reasoner directly supports ontology learning (concept hierarchy management

via subsumption), monitoring (sensor data verification) and analysis (subsumption facilitates the retrieval

of current system state).

4.5 Evaluation

The Architecture Tradeoff Analysis Method (ATAM) [100] is the leading IT system architecture

evaluation technique in modern software engineering. It provides a well structured procedure to evaluate

an architecture’s fitness taking into account a set of non-dominant quality attributes (in the sense that

improving one attribute will implicitly worsen another). ATAM has been applied to refine the KAS

architecture as shown in the following.

4.5.1 Problem Definition

An autonomic architecture is needed to control a range of legacy IT systems from different domains.

Two specific legacy applications will provide the initial test cases to help shape the architecture

and deploy/evaluate/improve it in realistic scenarios. Those applications are: self-adaptive document

rendering (SAR) and career decision support (CDS), introduced in (1.3.1) and (1.3.2), respectively.

The stages of ATAM described next rely on input from project stakeholders present in the meetings.

The stakeholders in attendance for KAS evaluation were:

• clients: Dr Hai Wang, Aston University (SAR) and Lord Ralph Lucas, Lucas Publishing and Good

Careers Guide (CDS)

• domain expert: Lord Ralph Lucas (CDS)

• project managers: Alina Patelli, Aston University (SAR), Prof Ian Nabney, Aston University

(CDS)
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• developers: Alina Patelli (SAR and CDS), David Bennett (CDS)

• technical consultant: Dr Hai Wang - on semantic technologies (CDS).

4.5.2 Business Drivers

In the SAR domain, the architecture would have to enable unsupervised, realtime operation. Specifically,

the way the document is rendered should adapt to variations in the monitored inputs without human

calibration nor significant lags. In the CDS domain, the architecture should allow heterogeneous

information integration, intuitive navigation of that information and personalisation of reports and search

results.

4.5.3 Architectural Plan

The proposed architecture is an ontology supported autonomic manager. It addresses the previously

identified business drivers in that autonomic managers are specifically designed for unsupervised,

realtime operation, ontologies store heterogeneous information uniformly (thus supporting integration)

as semantic graphs (intuitively navigable structures) and reasoners support semantic querying, a powerful

instrument for providing insightful, personalised results.

4.5.4 Architectural Approaches

To verify the robustness of the plan, the following alternatives were investigated with respect to the

architecture (A) of the autonomic manager as well as the type (T) and structure (S) of the knowledge

layer.

A1 hierarchical vs flat autonomic system

A2 distributed (networked) vs local autonomic system

A3 off-the-shelf autonomic development platform (such as IBM’s ACT)

T1 relational databases for knowledge management

T2 NoSQL database (object oriented or graph model) for knowledge management

T3 formal models (e.g., temporal logic) for knowledge representation

S1 inclusion vs exclusion of plans and policies from the main knowledge repository

S2 inclusion vs exclusion of system states in the knowledge repository

S3 multifaceted vs <subject, predicate, object> property representation.
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4.5.5 Quality attributes and usage scenarios

The following quality attributes2 were elicited, prioritised (the list below is presented in ascending order

of priority) and illustrated with practical scenarios.

Proactivity

Systems with the proposed architecture should make and implement decisions without human

intervention. In the SAR problem domain, font size and brightness should be adjusted according

to changes in the monitored variables without the presenter’s explicit input. In the CDS context,

heterogeneous information should be collated, interpreted and displayed in the absence of human

supervision.

Usage scenarios. In the SAR problem domain, when the audience focus drops, the font and

brightness are increased without disturbing the presenter. In the CDS context, users are exploring and

tagging career related resources, while their annotations are captured by a sensor and integrated in the

underlying knowledge base without interrupting their browsing.

Adaptive Transparency

In some application spaces, the knowledge base should be hidden from the end user to minimise

disruption. In others, allowing user access to the knowledge stored by the autonomic manager may prove

beneficial, especially when understanding the underlying data is vital to the type of service provided.

Usage scenarios. Presenters deliver their talk to the audience without being aware of the autonomic

manager’s knowledge about battery level and audience focus, as that would only distract them from

their task. Career advice seekers, on the other hand, benefit from having access to data about various

professions and how they relate to each other, jobs, relevant university courses, etc., as that provides

them with a perspective of the field.

Realtime Operation

The systems underpinned by the proposed architecture must respond to change without significant lags.

The presented document will be re-rendered as soon as a relevant trigger (e.g., a focus or battery

charge drop) has been detected, with a maximum delay of the order of seconds. Although some career

knowledge base maintenance may be performed offline (for instance, complete consistency checks

usually take place once a day), data must be collected as it is published on job sites or annotated by

career resource explorers.

Usage scenarios. During the presentation of the document, the battery level reaches a critically

low level, thus, regardless of the level of focus, the system will reduce brightness to prevent power loss,

before the battery is completely depleted. People doing online research about careers annotate a webpage

while a new job is advertised on indeed.co.uk - both streams of data are captured by the appropriate

sensors and included in the knowledge base as they become available.

2ATAM does not offer a clear distinction between business drivers and the quality attributes. For instance, in the
method’s description retrieved from http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm, availability
and security are listed as both business drivers and quality attributes. Here, we assume that the latter reflect the former, only at
a higher level of granularity.

103

indeed.co.uk
http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm


CHAPTER 4. A GENERAL FRAMEWORK FOR KAS

Structural Simplicity

No additional level of complexity (at hardware or software levels) should be necessary to allow the

system to meet a satisfactory standard of quality. This is of paramount importance, because simplicity

supports flexibility, making the architecture adaptable to various problem domains.

Usage scenarios. The speaker does not need to plug extra hardware into the computer that the

presentation is running on, nor execute any additional algorithms in order for the autonomic manager to

be able to operate. Career information management (by the system) and exploration (by the user) does

not require a complicated “translation” layer to turn the language of the user into one interpretable by the

machine. Besides a web server configuration that is appropriate for the expected user load, the manager

operating in the CDS domain does not require additional hardware to run on.

4.5.6 Architectural Approaches’ Analysis

The alternative realisations (4.5.4) of the architecture were analysed with respect to the identified quality

attributes. The resulting tradeoffs (that is, the quality attributes improved by a certain architecture as

opposed to the ones damaged by it) were evaluated and a decision was made either in favour or against

each architecture candidate.

A1 A hierarchical autonomic system (comprising several managers on different levels of abstraction,

controlled by hierarchical superiors) would improve the coordination of tasks throughout the

system, potentially enabling the recognition of a wider range of symptoms and a more accurate

response (increased proactivity). However, that would also damage realtime operation given the

lags implied by the communication between managers on different layers of the hierarchy. Since

the latter quality attribute takes priority over the former, a flat architecture was adopted.

A2 A distributed autonomic system would help process large volumes of information faster (beneficial

in terms of proactivity and realtime operation) yet the additional hardware and software inherent

to a networked design would compromise simplicity. Thus, the architecture will contain one

autonomic manager (as opposed to several spread across a grid), yet, the underpinning algorithms

will be modular (configured as services) and capable of running on a PC as well as on a web server.

A3 A third party autonomic development platform would most likely improve proactivity (according

to the way professional frameworks, such as ACT or ABLE, are advertised). At the same time,

“one-size-fits-all” solutions tend to be heavyweight and difficult to configure, which damages

the simplicity and adaptive transparency quality attributes (at the time of writing, ACT does not

allow the exposure of the underlying knowledge base to the user). Consequently, the proposed

architecture will be built from modular tools, that are flexible both in operation as well as in the

way they can be assembled together.

T1-T3 Relational databases provide no native support for hierarchical knowledge (crucial when modelling

related careers) and do not facilitate learning (only explicitly asserted facts are considered to be

true). Therefore, this sort of system would have a limited capability of making decisions without

being prompted (proactivity would be low). NoSQL or a formal model prove more flexible,

yet would require a bespoke inference engine to support learning (damages simplicity). Also,
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a supplementary translation layer would be necessary to allow non-specialist users to understand

knowledge expressed in a mathematical/logical formalism. The final decision was in favour of

ontologies, as they are equipped with embedded inference engines (reasoners) and lend themselves

well to intuitive visualisation techniques, by exploiting the graph-like structure of RDF.

S1 Storing plans and policies in the ontology would allow the system to reason on these two

components, thus increasing the accuracy of responses to complex triggers from the managed

resource. At the same time, the additional reasoning complexity would damage realtime operation

and simplicity. Hence, in the proposed architecture, the two components are stored separately from

the main knowledge repository.

S2 The availability of system states in the knowledge base would improve the efficiency of autonomic

tasks such as analysis and planning (thus increasing proactivity and improving realtime operation).

Yet a complete state model of the managed resource is not always possible to extract, not to

mention the ensuing increase in the size of the knowledge base (hence decreasing proactivity

and damaging realtime operation). Since this design alternative seems to be both beneficial

and detrimental relative to the same quality attributes, the final conclusion was to include a

state model in the knowledge repository, yet instantiate it only when needed in the context of

a given application (e.g., modelling the states of the managed resource in the SAR domain is

straightforward, whereas the same task in the context of CDS is not computationally feasible).

S3 The inclusion of multi-faceted properties yields the same discussion as in the case of system states.

Including them would allow for a more accurate representation of the managed resource with

benefits in terms of proactivity, and, at the same time, would add a layer of complexity to the

ontology, damaging the same quality attribute. As previously, the final decision was to provide a

mechanism for multi-faceted property formulation, with an optional practical realisation.

4.5.7 Additional Usage Scenarios

A prototype implementing the proposed architecture in the CDS problem domain was piloted during

several advisory group meetings, where Good Careers Guide employees and Aston University students

experimented with the platform and gave feedback. The additional usage scenarios that were formulated

with this opportunity prompted minor operational changes (e.g, while exploring the knowledge base in

the form of a graph, the edges should not be labelled with the type of relationship they represent, as

that would clutter the display). However, those were accommodated without any modifications to the

architecture agreed upon in the previous ATAM step.

4.5.8 Threats

During the process of applying ATAM to analyse the KAS architecture in the CDS domain, several risk

factors were identified.

• Stakeholder bias. The domain expert providing the legacy knowledge base (that the ontology is

extracted from) has a clear and comprehensive view of the careers domain, stemming from years of

experience in the field. However, the way the initial pool of information is structured (for instance,
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the fact that there are only three types of relationships between career fields: inheritance, sibling-

to-sibling and synonymy) may, at least in the early stages of using the system, bias the perception

of the relevant community. Non-specialist curators may be tempted to think that the three existing

types of properties are the only options available, which may stall the development of the ontology.

• Community speciation. As individual curators become aware of and even rely on each other’s

contributions to the ontology, groups may form that are driven by an interest in a specific sub-

domain of the career field, for instance, that of science. If the edits suggested by these groups are

sound, their influence may grow to the detriment of other fractions of the community, interested

in non-scientific professions, that are either less efficiently coordinated or less reliable in their

ontology editing activities. This may lead to some parts of the ontology being better curated than

others, resulting in an uneven level of decision support service for the average job seeker.

• Industrial interest. The success of the system relies to an important extend on the interest of

employers. This interest will most likely be expressed in the form of ideal candidate ontologies that

job applicants can compare against their own to measure their suitability for a particular role. This

feature can only be available if sufficiently important job providers are attracted by the visibility

that the CDS system may offer.

All these points will be considered in the future development of the KAS architecture.
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Autonomic Systems with State-featuring Ontologies

This is the description and analysis of a bespoke autonomic system built in compliance with the

KAS architectural template by using (and extending) the KAS tools and by implementing the KAS

methodology. The system’s autonomic manager controls document rendering in response to changing

environmental conditions, a case study designed to show that KAS is not just an abstract theoretical

framework, but one with applicability in practical domains. For exposition continuity, the KAS tools

used in this case study are described alongside the architectural components they support and not in a

separate section as done in the previous chapter.

5.1 Application Domain

The Self-Adaptive Document Rendering (SAR) problem consists in automatically modifying the way an

electronic document is being displayed in response to changes in the environment (namely the audience

and the machine used for the presentation). In this context, the electronic document’s display medium

can be identified as the managed resource (Fig. 5.1), as the document itself is not modified.

Specifically, the way the document is being rendered adapts to:

M1 the level of audience focus - extrapolated, for instance, from the exposed eye surface (detected by

a camera) of the people in the presentation room

M2 the time of day - provided by the system clock

M3 the level of energy consumption - namely, remaining battery life.

In response to to changes in the factors above, the document display may change with respect to:

E1 font size - that may be increased to make document contents easier to see

E2 screen brightness - that may be increased (for the same reason as above) or decreased (to preserve

battery levels).

In its classic form, document rendering adaptation is a manual process, that is to say that the human

operator/presenter observes the battery levels and the audience’s focus and explicitly changes font sizes

and screen brightness accordingly. Deploying a KAS instance to automate these tasks would allow the

speaker to focus exclusively on the contents of the presentation. This addresses the core requirements

of the SAR application domain in the following ways (relevant to the second research question in 1.2,

specifically objectives O1.3 and O2.2):
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• The document must be rendered in realtime, therefore the underlying autonomic manager needs to

sense the changes in the environment and respond accordingly in a limited time window. Hence,

the algorithms supporting MAPE components are implemented in a fast executing environment

(Java) and configured in a way that ensures a sensible order of computational complexity.

• The manager is required to ascertain that the changes to the way the document is rendered have

a positive effect. In other words, questions need to be answered to determine, for instance,

whether decreasing display brightness successfully preserved battery levels. Since KAS employs

an ontology to store the system’s knowledge, this task can be delegated to the semantic query

answering service.

• In order to improve its performance, the autonomic manager should be able to learn from its

experience. Specifically, a plan that successfully improved the utility of the managed resource’s

state in the past should be stored and reused is necessary. The plan algorithm included in the KAS

framework supports this feature by maintaining a bank of known effective plans.

5.2 Architecture Description

Analyse

Monitor

Plan

Execute

Policy

Managed resource

Reasoner

SAR
ontology

KT

Knowledge

Sensors Effectors
SAR Ontology

Heuristics Actions
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values

Entity
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Plan
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Fig. 5.1: KAS with state-featuring ontology - component view
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5.2.1 SAR Ontology and KT

The SAR ontology engineering process may be partially mapped against most state of the art ontology

learning (OL) methodologies. For instance, the enrichment, consistency resolution and evaluation OL

subtasks suggested by Petasis et al. [143] were performed during SAR ontology construction by inferring

new domain knowledge, eliminating cycles as well as logical contradictions and measuring the efficiency

of the ontology design, respectively. However, the most intuitive methodology to describe the SAR

ontology engineering process is NeOn [168]. The way that the first NeOn scenario (for OL from scratch)

is implemented in the SAR problem domain is described in the following.

Ontology requirements specification

• Purpose definition. The goal of KAS when deployed to solve the SAR problem is to “maximise

audience focus while minimising power consumption”. The purpose of the ontology is to enable

and support the realisation of that goal. To achieve it, the system should be able to evaluate

audience focus and battery consumption, which prompts the need for modelling those two concepts

in the ontology.

• Scope definition. Given the purpose definition, it follows that the ontology should represent all

possible states of the SAR environment, namely all combinations of legal values for M1, M2 and

M3. This is done by automatically asserting a hierarchy of State concepts, one of which is shown

in Fig. 5.21.

Class: <SARonto#State1> EquivalentTo:
<SARonto#hasTimeOfDay> some <SARonto#EarlyMorning>
and (<SARonto#hasFocus> some <SARonto#MediumFocus>)
and (<SARonto#hasBattery> some <SARonto#HighBattery>)
and (<SARonto#hasUtility> some xsd:integer)

Fig. 5.2: State1 concept definition

Classes and properties are prefixed with the ontology URI - in this case, SAROnto# - to make every

name unique (for simplicity, since SAR uses only one ontology, the URI will be omitted in text).

EquivalentTo shows that State1 is a defined class (as opposed to a primitive class), namely

that the four conditions to follow are both necessary and sufficient. Defining classes this way is

compulsory, as semantic reasoning can not be performed on primitive classes. The actual definition

of class State1, namely the conjunction of the four necessary and sufficient conditions, makes

use of object properties hasTimeOfDay, hasFocus and hasBattery as well as data property

hasUtility. The first three properties link State1 to specific values of M1 (MediumFocus),

M2 (EarlyMorning) and M3 (HighBattery). These are discrete classes of values for the three

continuous inputs and will have to be properly defined in the ontology conceptualisation step. The

1All ontology excerpts presented from here onwards are formulated in Manchester OWL syntax (https://www.w3.org/
TR/owl2-manchester-syntax/), a frame-based format that is more compact and easier to understand than axiom-based
ones, such as XML, Turtle or most forms of predicate logic.
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fourth property associates a numeric utility (prescribed in the policy document) to each possible

system state.

• Ontology language selection. The SAR ontology is developed in OWL 2 (the latest, industry

standard version of the Web Ontology Language). This is the most recent W3C ontology language

recommendation2 for the Semantic Web. OWL [10, 86] is built on top of the RDF schema but

is more expressive, allowing more complex descriptions of domain knowledge. Two examples of

OWL semantics that are not available in RDF Schema have already been illustrated in the definition

of class State1 above, namely using properties to define restrictions for individual subclasses

(RDF would have allowed restrictions for the entire State hierarchy only) and defining a class as

a boolean combination (conjunction) of other classes (all four restrictions in the State1 definition

are actually anonymous classes). For a full list of OWL features that are not available in RDF

Schema, see [10]. The final reason for choosing OWL 2 is the availability of convenience tools,

such as Protege [82], a powerful editor for OWL ontologies, and the OWL API3, a comprehensive

library allowing the manipulation of OWL ontologies from Java applications.

• Intended users definition. The SAR ontology is meant to store the autonomic manager’s knowledge

base. There is no direct interaction between the human users of this KAS instance and the ontology,

therefore no visual interface is in place. However, the ontology content is processed by the Java

modules underpinning the MAPE components, a connection facilitated by the OWL API.

• Requirements definition. The SAR ontology stores information about the state of the environment

(battery life, audience focus and system time). However, the State hierarchy concepts cannot

be created manually, since the ontology is not exposed to the end user of the KAS instance,

the only human stakeholder with access to state information. Thus, the first requirement for

the SAR ontology is that it is automatically created (the tool responsible with automated OL is

discussed in the ontology implementation section). Moreover, the autonomic manager drawing

knowledge from the ontology needs to operate in realtime, implying a swift identification of the

current state of the system (analysis), the selection the appropriate plan and the execution of the

necessary operations with minimum delay in order to ensure a seamless presentation. To enable

this, the second requirement of the SAR ontology is compactness: a lightweight knowledge base,

unburdened by concepts that are not reasoned on. Consequently, plans and policies are stored in

the Java engine powering the MAPE control loop and not in the ontology.

Ontology Life Cycle Configuration

The SAR ontology goes through three main stages:

• Creation. SAR ontology learning is performed automatically and implies two sub-stages:

discretisation, namely asserting classes to represent categories of values for the continuous M1,

M2 and M3 inputs, and State hierarchy generation, containing concepts such as State1 above

(the utilities associated to each state are taken from the from the policy document).

2https://www.w3.org/TR/owl2-overview/
3http://owlapi.sourceforge.net/
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• Enrichment. At given intervals of time (depending on the monitoring frequency), M1, M2 and

M3 values are read from the environment. The reasoner will automatically infer (see 5.2.2 for an

example) which discrete class those values belong to, thus allowing the identification of the current

system state (necessary during analysis).

• Verification. After reading each new set of M1, M2 and M3 values, the reasoner verifies that

the values are in range. This prevents sensor malfunctions, as hour 26 or battery level -10 would

render the State concept unsatisfiable (this is illustrated in 5.2.2).

Ontology Conceptualisation

The SAR ontology in Fig. 5.1 instantiates the Onto++ template in Fig. 4.1. Since there are no

multifaceted properties (e.g., no weights), there is no need for reification, hence the Link hierarchy has

been omitted. The remaining two hierarchies, Entity and State, as well as the properties connecting

them are depicted in more detail in Fig. 5.3 and described in the following.

TimeOfDay

EarlyMorning
LateMorning
EarlyAfternoon
LateAfternoon

Focus

LowFocus
MediumFocus
HighFocus

Battery

LowBattery
MediumBattery
HighBattery

State1

State36

hasTimeOfDay

values

hasUtility

hasFocus

hasBattery

hasTime

hasDay

hasArea

hasLevel

State EntityhasEntity hasValue

Fig. 5.3: The SAR Ontology in more detail - concept hierarchies are presented as indented lists

• The Entity hierarchy The Entity class is directly subsumed by TimeOfDay - modelling M2,

Focus - representing M1, and Battery, describing M3. The time of day falls in one of four

categories (details about defining these categories are provided in the ontology implementation

section): EarlyMorning (Fig. 5.4), LateMorning, EarlyAfternoon and LateAfternoon.

Concept TimeOfDay (Fig. 5.4) is defined by two value properties: hasDate links the concept to a

month of the year, namely an integer between 1 and 12, and hasTime relates it to an hour of the

(working) day, an integer between 9 and 17. Concept EarlyMorning refers to a more restrictive set

of times, namely between 9 am and 10 am in the summer (that is, between the third and ninth month

of the year) or between 9 am and 11 am in the rest of the year. This provides a flexible definition

for what constitutes “early morning”, in that it allows for an extra hour in the winter. The other

TimeOfDay subclasses are defined in a similar fashion to EarlyMorning. LateMorning starts at

10 am in the summer / 11 am in the winter and finishes at noon. EarlyAfternoon starts at noon

and ends at 3 pm in the summer / 2 pm in the winter, which is also when LateAfternoon starts.

LateAfternoon ends at 5 pm.
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Class: <SARonto#TimeOfDay> EquivalentTo:
<SARonto#Entity>
and (<SARonto#hasDate> some xsd:integer[>0 , <=12])
and (<SARonto#hasTime> some xsd:integer[>=9 , <=17])

Class: <SARonto#EarlyMorning> EquivalentTo:
<SARonto#Entity>
and (((<SARonto#hasDate> some xsd:integer[>0 , <=3])

and (<SARonto#hasTime> some xsd:integer[>=9 , <11]))
or ((<SARonto#hasDate> some xsd:integer[>3 , <=10])

and (<SARonto#hasTime> some xsd:integer[>=9 , <10]))
or ((<SARonto#hasDate> some xsd:integer[>10 , <=12])

and (<SARonto#hasTime> some xsd:integer[>=9 , <11])))

Fig. 5.4: TimeOfDay and EarlyMorning concept definitions

Class: <SARonto#State> EquivalentTo:
<SARonto#hasTimeOfDay> some <SARonto#TimeOfDay>
and (<SARonto#hasFocus> some <SARonto#Focus>)
and (<SARonto#hasBattery> some <SARonto#Battery>)
and (<SARonto#hasUtility> some xsd:integer)

Fig. 5.5: The State hierarchy root

Note that, given the discretisation threshold values (10 am/11 am for mornings and 2 pm/3 pm for

afternoons) the TimeOfDay hierarchy can be easily built automatically (the algorithm to do that

is described in the ontology implementation section). This is true for the Focus and Battery

hierarchies as well. The discretisation threshold that separates LowFocus from MediumFocus is

10 units of exposed eye area, whereas the separation between MediumFocus and HighFocus is

done at 20 units. Similarly, the level of charging goes from LowBattery to MediumBattery once

over 25%, and from MediumBattery to HighBattery once over 75%4.

• The State hierarchy. Classes State1 (Fig. 5.2) up to State36 each represent a combination of

discrete values for the three monitored inputs. In addition, each state class has an associated utility

(provided in the policy document), a number that can be used to evaluate the closeness to the goal

state. All state concepts are automatically generated and subsume State (Fig. 5.5).

• The hasEntity, hasProperty and hasValue properties. State hierarchy concepts are related

to concepts from the Entity hierarchy, namely TimeOfDay, Focus and Battery via object

properties, specifically hasTimeOfDay, hasFocus and hasBattery, respectively. Relative to 5.1,

these properties are instances of the generic hasEntity root property. Data properties hasTime,

hasDay, hasArea, hasLevel and hasUtility connect Entity and State subconcepts to

numerical values. They are instances of the generic hasValue property in Fig. 5.1 and 5.3. The

only top level property in the general view of the SAR ontology (Fig. 5.1) that does not appear in

4The formal definitions for the Focus and Battery hierarchies are very similar to the TimeOfDay one and have been
omitted from the main text
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the detailed view (Fig. 5.3) is hasProperty. In the SAR scenario, Entity concepts are connected

to each other by means of inheritance only, a type of relationsip that OWL asserts silently (there is

no explicit hasParent property).

Ontology formalisation and implementation

In the original NeOn methodology [168], the output of this OL phase is a “computable model” of the

ontology. This is generated automatically within the KAS framework, by the Knowledge Translator (KT)

(described in 4.3.2), an OL algorithm from the KAS tool set that is portable across application domains.

In order to create the SAR domain ontology, the KT algorithm receives a specific set of input values.

Input inputFile. There is no legacy description of the SAR system, therefore this parameter is

null. The Entity hierarchy will be created via discretisation and the utilities associated to each state of

the system will be extracted from the policy document.

Input isDiscrete. Since SAR monitors three continuous signals (M1, M2 and M3 introduced in

5.1), the value of this input is false.

Input thresholds. The threshold values may be directly used for discretisation or combined

in more complex boolean expressions. Consider the thresholds for the M1, M2 and M3 monitored

inputs, given in Table 5.1. The concepts asserted for M1 are straightforward: LowFocus corresponds

Table 5.1: KT thresholds values - an example

M1 0 30 60 100
time date

M2
9 10 12 15 17
9 11 12 14 17
9 11 12 14 17

3 10
1 3
10 12

M3 0 25 75 100

to less that 30% exposed eye surface, MediumFocus to the 30% - 60% interval and HighFocus to

over 60%. Similarly, there will be three categories of values to represent M3: LowBattery - under

25%, MediumBattery - between 25% and 75% and, respectively, HighBattery - over 75% battery

charge. In the case of M2, the threshold values on the same row but in different boxes are combined

using the and logical operator, whereas values on separate rows are aggregated using or, ultimately

leading to four concepts: EarlyMorning, defined in Fig. 5.4, and similarly constructed LateMorning,

EarlyAfternoon and LateAfternoon.

Output o. The SAR ontology returned by KT will contain the Entity and State concept

hierarchies, along with their associated properties, as shown in Fig. 5.3. The construction of output

o follows the KT algorithm logic explained in 4.3.2 (except for the stage concerning Link hierarchy

creation, which is omitted since there are no multi-faceted properties in the SAR problem domain).

5.2.2 Reasoner

Out of the set of reasoner features exploited by KAS (described in 4.3.1), the SAR problem domain

makes use of two:
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Subsumption. This is exploited by KT during discretisation and by the MAPE monitor component.

The KT algorithm asserts a direct Entity subconcept for every monitored input (in the case of SAR,

they are TimeOfDay, Focus and Battery, as shown in Fig. 5.3). To illustrate subsumption, let us

analyse the TimeOfDay hierarchy, obtained by discretising the M2 monitored input and comprising

concepts EarlyMorning, LateMorning, EarlyAfternoon and LateAfternoon. Initially, these last

four concepts are asserted under Entity, however, the reasoner is able to infer that they are, logically,

subconcepts of TimeOfDay. Indeed, given the formal definitions of TimeOfDay and EarlyMorning

(Fig. 5.4), it is straihforward to conclude that the latter refers to a subcategory of TimeOfDay instances,

namely certain hours of the day in certain months of the year. The process is graphically illustrated in

Fig 5.6, where earlyMorning is asserted as a direct subclass of Entity but inferred as a direct subclass

of TimeOfDay.

Fig. 5.6: The Entity hierarchy before (Asserted) and after (Inferred) subsumption (Protege
ontology view, where hierarchies are displayed as indented lists)

The monitor component exploits subsumption while asserting ontology concepts for newly read input

values. Let us continue relating to M2 and assume the current time is 10 am in November. Even

though CurrentTime (Fig. 5.7) is initially asserted (by KT) as a direct subclass of Entity, the reasoner

will infer its appropriate place in the hierarchy, namely under EarlyMorning (Fig. 5.6). This has an

important impact on KAS’s capacity of processing knowledge, as it allows the system to “understand”,

without being explicitly “told”, that 10 am on a November day qualifies as early morning, whereas in

July, the same time belongs to the late hours of the morning.

Sensor data verification. Let us assume that the sensor reading M2 values is defective and returns

hour -1 (the month is irrelevant for this example). The currentTime concept in Fig. 5.7 is asserted

with filler [>=-1 <= -1] for property hasTime, which does not match any of the TimeOfDay class

definitions. Consequently, CurrentTime will be inferred under OWLThing (the base of the OWL concept

hierarchy). The current state of the system will therefore violate the definition of the State (Fig. 5.5)
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Class: <SARonto#CurrentTime> EquivalentTo:
<SARonto#Entity>
and (<SARonto#hasTime> some xsd:integer[>= 10 , <= 10])
and (<SARonto#hasDate> some xsd:integer[>= 11 , <= 11])

Fig. 5.7: The CurrentTime concept definition

class (since the hasTimeOfDay filler is OWLThing instead of a subclass of TimeOfDay), thus making the

State concept unsatisfiable. Sensor data validation is not an implicit feature of the resoner, instead it

is facilitated by the structure of the ontology (provisioned with a State hierarchy with the appropriate

property restrictions).

5.2.3 Policy

The SAR policy document contains all three sections described in 4.2.2.

Utilities. The domain expert (and author of the policy document) may express preference towards

SAR system states by assigning numeric utilities to each of them, as shown in Table 5.2. Monitored

input M2 is not taken into account, as the time of day when the document is shown to the audience

does not directly influence the quality of the presentation (it does so, indirectly, as illustrated by the

policy heuristics). Hence, the same utility is assigned to a group of four states to account for all discrete

categories of M2 values (early/late morning/afternoon). The goal states are s33-s36, corresponding to

high audience focus and high levels of battery charge, which are assigned the maximum utility. Note that

Table 5.2 is not the only way to associate utilities to states, as, in some other practical scenario, it may

be the case that states s5-s8 are more valuable than states s13-s16 and their utilities should be swapped.

Table 5.2: SAR policy document - state utilities

State M1 (focus) M3 (battery) Utility
s1 - s4 low low 1
s5 - s8 low medium 2

s9 - s12 low high 3
s13 - s16 medium low 4
s17 - s20 medium medium 5
s21 - s24 medium high 6
s25 - s28 high low 7
s29 - s32 high medium 8
s33 - s36 high high 9

Actions. Given the two effectors presented in 5.1, the autonomic manager may alter the managed

resource by carrying out the actions in Table 5.3. The set of actions was compiled under the following

assumptions:

• decreasing the font size will not enhance audience focus nor impact battery charge levels, therefore

this operation is not included in any of the actions

• increasing the font size will likely increase audience focus without impacting battery charge levels
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• increasing brightness may increase audience focus at the cost of accelerating battery depletion

• decreasing brightness will likely decrease audience focus yet slow down the battery depletion

speed.

Admittedly, the assumptions may change from one domain expert to another (it is, after all, plausible to

expect a smaller font size and a dim display to entice the audience to focus more). However, the list given

above is not intended to cover all possible scenarios, but merely to illustrate this section of the policy

document and to highlight the fact that the two components of the goal (s9 in Fig. 5.2) are conflicting,

that is, aiming for high audience focus will most likely reduce battery charge levels.

Table 5.3: SAR policy document - plan actions

Action E1 (font) E2 (brightness)
a1 increase increase
a2 increase maintain
a3 increase decrease
a4 maintain increase
a5 maintain maintain
a6 maintain decrease

Heuristics. This section of the policy document contains high level knowledge used to simplify

the analysis and planning stages of the MAPE loop. To illustrate, let us consider the two heuristics given

in Table 5.4 (in ECA format).

Table 5.4: SAR policy document - heuristics

(a) heuristic 1

When focus is low event
AND
the time is late morning condition 1
OR
the time is early afternoon condition 2
THEN
exclude a2, a3, a5 and a6. action

(b) heuristic 2

When battery is low event
THEN
exclude a1 and a4. action

When the level of light in the environment is high (in the late morning and early afternoon), that

may interfere with the display, therefore decreasing or maintaining the brightness will compromise the

visibility of the document. Heuristic 1 eliminates those actions from the list of candidates to consider

when formulating plans. Also, when the battery is low, increasing brightness will only drain it faster.

To preserve battery levels, heuristic 2 eliminates all actions implying an increase in screen brightness.

Note that, should both heuristics be simultaneously activated (in case audience focus is low and so is the

battery charge level), there would be no actions left to consider during planning. To prevent the system

from going idle, the heuristics are prioritised: in the provided example, heuristic 2 takes precedence over

heuristic one.
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5.2.4 Monitor, Execute and the Managed Resource

The monitor samples inputs M1 (audience focus), M2 (time of day) and M3 (battery charge level). In the

KAS implementation for SAR, the data for M1 is simulated, whereas M2 and M3 values are read in from

the actual host PC via APIs. In terms of output, the monitor component asserts one ontology concept for

each of the inputs, specifically CurrentTime, CurrentFocus and CurrentBattery, and links them,

via the appropriate properties, to the values read in by the sensors. The definitions provided in Fig. 5.7

(currentTime) and Fig. 5.8 (currentFocus and currentBattery) assume that the current time is 10

am in November, that the average exposed eye area of the audience is 45% and that the battery charge

is 30%. The ontology concepts asserted during monitoring will be used during analysis to determine the

current state of the system.

Class: <SARonto#CurrentFocus> EquivalentTo:
<SARonto#Entity>
and (<SARonto#hasArea> some xsd:integer[>= 45 , <= 45])

Class: <SARonto#CurrentBattery> EquivalentTo:
<SARonto#Entity>
and (<SARonto#hasLevel> some xsd:integer[>= 30 , <= 30])

Fig. 5.8: The CurrentFocus and CurrentBattery concept definitions

The execute component implements APIs for controlling effectors E1 and E2. It will carry out the

sequence of actions developed during planning.

The managed resource is represented by the document rendering media (e.g., Adobe Acrobat) and

the computer hosting the presentation5. Sensors will read M2 and M3 values from the host computer,

whereas effectors will control E1, a parameter of the rendering system, and E2, a feature of the host

computer. The sensor reading M1 does not operate on the managed resource per se, but rather on its

environment (where the audience is).

5.2.5 Analyse

The analyse algorithm is a KAS tool described in Table 4.3. The specific implementation of this tool

within the SAR problem domain is explained in the following by discussing each of the algorithm’s

inputs and outputs, namely their initial values and the way they are processed throughout analysis.

Input o. During the monitoring stage, the reasoner will have subsumed the sensor data from the

M1, M2 and M3 signals in their rightful categories. Thus, CurrentTime (Fig. 5.7) is inferred to be

a subclass of EarlyMorning, whereas CurrentFocus and CurrentBattery (Fig. 5.8) are placed

under MediumFocus and MediumBattery, respectively. Given this setup of the ontology, method

findCrtState (line 1 in Table 4.3) will compare the three Entity subclasses above against the fillers

of all 36 states and identify the matching one, shown in Fig. 5.9.

5The actual electronic document is not considered to be part of the managed resource as its content on the disk does not
change.
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Class: <SARonto#State17> EquivalentTo:
<SARonto#hasTimeOfDay> some <SARonto#EarlyMorning>
and (<SARonto#hasFocus> some <SARonto#MediumFocus>)
and (<SARonto#hasBattery> some <SARonto#MediumBattery>)
and (<SARonto#hasUtility> some xsd:integer[>=5, <=5])

Fig. 5.9: The State17 concept definition

Input policy. There are two heurisics (Table 5.4) in the policy document, neither of which refer

to State17. Therefore the set of candidate plan actions in Table 5.3 cannot be simplified.

Output u. This is the utility associated to the current system state, State17 in Fig. 5.9, namely 5.

Output actions. The full set of actions in the policy document is returned by the analyse

algorithm to be considered during planning.

5.2.6 Plan and the Plan Bank

The planning stage of the MAPE control loop, as implemented by KAS, is described in Table 4.4. In the

SAR problem domain, the general plan algorithm receives specific inputs, discussed in the following.

Input u. Assuming that the current system state is State17 (Fig. 5.9), the associated utility, u,

will be 5.

Input actions. Since the analyse algorithm was not able to eliminate any of the actions defined in

the policy document, the actions set passed into the plan algorithm will contain all six actions in Table

5.3.

Input and output p. The first time the plan algorithm is run, p will be empty. It will be populated

with either a sequence of actions that is known to be effective in increasing the system’s state utility

(namely, a plan from the bank) or, if no such sequence exists for the given initial utility, with a randomly

selected action from the actions set.

Input planBank. Initially, the plan bank is also empty. After executing the plan algorithm in a

loop, the current plan p will be saved in the bank, if the utility of the system state reached after executing

the sequence of actions in p is higher than the initial utility u. Relative to the running example, a plan

will be saved in the bank if it drives the system to a state with a utility greater than 5.

5.3 Implementation Scenario

One step of the generic KAS methodology in Table 4.5 is illustrated on the running example used

throughout this chapter. This will show how the KAS architecture can be instantiated and run in the

SAR problem domain by following the algorithm logic in 4.4. The process is captured by the flow

diagram in Fig. 5.10.

5.3.1 Setup and ontology learning

Policy formulation. KAS deployment in the SAR problem domain starts with defining state

utilities, candidate plan actions and heuristics, a task performed by the domain expert. System states
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createPolicy

KT

monitor

analyse

plan

execute

null, false, thresholds

u, actions

o

p

policy
reasoner

planBank

Fig. 5.10: The KAS methodology instantiated in the SAR problem domain - the architecture tools
are displayed in the centre and connected via linear arrows to show the sequence in which they are
executed; the tools’ inputs and outputs are displayed on either side and connected via block arrows

are combinations of value ranges applicable to monitored inputs (audience focus and battery charge

level), whereas plan actions are generated with respect to the controlled (output) parameters (font size

and display brightness). Heuristics capitalise on the expert’s previous knowledge and can be viewed as

known good strategies to apply in order to drive the system into a state with a utility higher than the

current one. The recommended complete layout of the SAR policy document is available in Tables 5.2

(utilities), 5.3 (actions) and 5.4 (heuristics).

Creation of the initial ontology. Since SAR is a domain with continuous monitored inputs, no

legacy description (input file) is necessary. The KT algorithm will create the Entity hierarchy via

discretisation (as explained in 5.2.1), hence the first input parameter (inputFile) will be null and the

second (isDiscrete) will be false. The third KT input, thresholds, containing the values used for

discretisation, is prescribed by the application developer (an example is provided in Table 5.1). The

initial ontology produced by KT and illustrated in Fig. 5.3 is an instance of Onto++ from the general

KAS architecture (Fig. 4.1), in that all Onto++ concept hierarchies are present in the SAR ontology, save

Link, since this problem domain can be modelled without multi-faceted properties. Note the role of the

reasoner during the discretisation process, as illustrated in 5.2.2.

5.3.2 Monitoring and analysis

Input processing. In the SAR application domain, KAS processes three inputs during the

monitoring phase: the time of day and the battery levels are read from the computer (that the presentation

is running on) clock and power manager, respectively, whereas the data representing the area of exposed

eye (averaged over the entire audience) is simulated. At 10 am on a November day, with 30% battery

charge and an average exposed eye area of 45%, the monitor will assert three concepts in the ontology,

CurrentTime (Fig. 5.7), CurrentFocus and CurrentBattery (Fig. 5.8). After the monitor phase, the

ontology in Fig. 5.3 is enriched with the three concepts above, each subsumed by the reasoner as shown

in Fig. 5.6. Additionally, the reasoner implicitly validates sensor data as explained in 5.2.2.

Analysis. Given the inferred super-classes for the three concepts asserted in the ontology during

monitoring, the analysis module will identify the current state of the system as State17 (Fig. 5.9). The

associated utility will be returned for the use of the planner. Since there are no heuristics in the policy
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document adivising which actions to avoid early in the morning, when the audience focus and battery

level are both in the medium range, the analyser will return the full set of candidate actions (Table 5.3)

to be considered during planning.

5.3.3 Planning

Let us assume that a plan may be, at most, three actions long (L = 3) and illustrate the planning loop

from the general KAS methodology (Table 4.5, lines 11 - 16) on the running example.

Iteration 1. The utility of State17 (medium focus and medium battery level) is 5, thus lower

than that of the goal state (Table 5.2 shows that the maximum utility, 9, is associated to high focus and

high battery level). Since the plan bank is initially empty, an action will be selected from the available

set in Table 5.3: let us assume that is a2 (increase font and maintain brightness). Let us also assume

that executing action a2 will successfully increase audince focus. Hence, the values of the input signals

detected by the monitor are 10 am for time, 30% for battery level and, say, 70% for exposed eye surface,

corresponding to concepts EarlyMorning, HighFocus, MediumBattery. The associated system state

determined by the analyser is State29 with utility 8 and no policy heuristics referring to it.

Iteration 2. Since State29 does not coincide with the goal one, the algorithm continues by

selecting another action from Table 5.3, for instance a4. Assuming that maintaining the font size and

increasing the display brightness has no impact on audience focus but lowers the battery charge level to

20%, the concepts asserted during monitoring will be subsumed under EarlyMorning, HighFocus and

LowBattery, respectively. During analysis, the system state is found to be State25, with utility 7 and

referred to by the second heuristic (Table 5.4). Consequently, the set of candidate plan actions is reduced

to {a2, a3, a5, a6}.

Iteration 3. The goal state utility has still not been reached, therefore another action (for example,

a6) is selected from the set of candidates produced during analysis. The font size is maintained whereas

the appropriate effector will decrease screen brightness, leading to no change (relative to the previous

iteration) in the three monitored inputs. The analyse stage will preserve State25 with utility 7 as the

current system state, apply the second policy heuristic and return the same set of candidate plan actions

as before. However, the fourth iteration will not take place since the maximum allowed number of plan

actions (L = 3) has been reached.

5.3.4 Maintaining the plan bank

The final utility achieved by executing the previously constructed plan is 7, a higher value than the utility

of the initial State17, namely 5. This validates the condition on line 18 in the general KAS methodlogy

(Table 4.5) and leads to plan {a2, a4, a6} being included in the plan bank.

5.3.5 Self-management support

The KAS implementation in the SAR domain supports the realisation of the four self-management

properties [101].

• Self-optimisation. The autonomic system’s behaviour is optimised with regards to the managed

resource (the document rendering media, namely, the computer monitor and the software document
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manager, for example Adobe Acrobat Pro) and the autonomic control element alike. The former

optimisation aspect entails adjusting document font sizes and screen brightness to account for the

time of day, battery level and audience focus. The latter type of optimisation stems from the

inner logic of the planning algorithm (4.3.5), where sequences of actions that have previously

been successful at increasing the utility of the system state are stored in a bank and re-utilised as

necessary. In other words, the MAPE-K loop exploits its own past experience, thus this facet of

optimisation may also be labelled self-learning.

• Self-protection. In its current implementation, the KAS instance deployed in the SAR context

is exposed to sensor malfunction. Should there be any data corruption with monitored input, for

instance, a reported time of the day outside of the 0 – 24 range, a battery level grater than 100 or

an average exposed eye area in the negative domain, the reasoner would reject the corresponding

ontology entries as shown in section 5.2.2. The autonomic element protects against its own

algorithmic pitfalls: if the random action selection process used to dynamically build a candidate

plan fails to reach the goal state in a reasonable number of iterations, the perceivable lag in the

system’s response would be unacceptable. To prevent that, there is a programmable limit in place

(Table 4.5, line 11) to restrict the maximum plan length to a sensible value.

• Self-healing. The system is not currently equipped to handle environmental hardware issues.

The future development agenda includes support for healing strategies such as switching to an

alternate display when the lead monitor is malfunctioning and adjusting the other light sources in

the room (close/open the blinds, dim the ceiling lights, etc.) when the main monitor’s brightness

controls are not responsive. This would require a more integrated control set-up (an actual “smart

environment”) than the one simulated here.

• Self-configuration. This property is relevant when the managed resource is a network (comprises

several, linked components). In the SAR domain, the KAS compliant autonomic manager could

be used to control several monitors in the presentation room and configure those independently. In

one of the possible scenarios, where the room’s energy consumption needs to be reduced while the

detected level of audience focus is low, the autonomic manager would configure the array of room

monitors by dimming/switching off the side ones, while increasing the brightness of the frontal

display only.

5.4 Evaluation

The applicable quantitative and qualitative evaluation criteria presented in 2.1.3 and 2.2.5 are used to

assess the performance of both the autonomic and semantic components of the KAS instance deployed

in the SAR application domain. Some of the experiments will inherently expose information about

the performance of the KAS instance for SAR, as a whole, whilst others will highlight the interaction

between the two components. These aspects will be interpreted in the reflection section.
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5.4.1 Autonomic Manager Evaluation

The instance of the KAS architecture deployed in the SAR application domain achieves the qualitative
indicators (refer to 2.1.3 for detailed definitions) below.

• Autonomicity: level 4 (adaptive). The KAS for SAR instance pursues the high level goal of

driving the managed resource to the state of maximum utility (high audience focus and full

battery). It proactively compiles plans and executes them in response to changes in the monitored

environment. The operational requirements preventing the KAS for SAR instance from being fully

autonomic (level 5) are:

– the domain expert has to define candidate plan actions in the policy document (heuristics and

utilities would be necessary for fully autonomic systems as well),

– the application developer needs to programme the discretisation thresholds, the final input

parameter of the KT algorithm - Table 4.1 (a truly autonomic system would learn these

parameters in an unsupervised way),

– the application developer must configure the sensor and effector APIs (a level 5 autonomic

system would be capable of identifying and employing the appropriate web services to

perform API configuration without human involvement).

• Architecture: flat. There is only one autonomic manager controlling two programmable

parameters (brightness and font size) of the legacy resource (the electronic document rendering

software and the host computer).

• Adaptation approach: mixed (policy6 and utility based). The policy document contains both

utilities for each of the system states as well as heuristics (experience derived rules) to guide plan

formulation and expectedly expedite the system’s evolution towards the goal state.

• Learning: supported. The KAS architecture, as implemented in the SAR domain, provides for

a plan bank, storing previously used, good quality (in the sense that their execution lead to an

increase in utility) plans. They will be reconsidered during future MAPE iterations for either

direct deployment or possible improvement, a mechanism that embodies the system’s capacity of

learning from previous experience.

• Open: freely available. All third party software (Java APIs for PDF management7, battery level

consultation and brightness control as well as the Protege editor8 for OWL ontologies) used to

build the KAS instance for the SAR problem domain are available under a public licence. The

other KAS tools and architecture components relevant to the SAR scenario are fully disclosed

(5.2).

6Movahedi et al. use term “policy” to refer to high level rules, extracted from the expertise of human specialists, meant to
guide system behaviour [131]. Here, these rules are called “heuristics”, whereas “policy” is endowed with a broader meaning,
namely all forms of experiential knowledge (actions, state utilities as well as heuristics) that the domain expert can provide
about the managed resource in addition to its structural description.

7http://pdfbox.apache.org/
8http://protege.stanford.edu/
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• Evolvable. The proposed autonomic system is extensible and maintainable. Regardless of

the number and nature of the monitored inputs, the KT algorithm will automatically create

the ontological state representation accordingly9 (provided that the appropriate thresholds are

set for each monitored input and the necessary APIs are made available by the application

developer). Also, the suggested MAPE infrastructure is modular, with highly cohesive algorithms

implementing each phase. Thus, for example, the current version of the planner (Table 4.4) can

be swapped with a new one (implementing a different action selection mechanism), given that the

interface (input and output parameters configuration) stays the same.

• Robustness. The ontology cannot be accessed from outside the autonomic manager, therefore the

State hierarchy is guaranteed to be complete and logically correct (given that it is automatically

generated by the KT algorithm in a specific format). However, the ontology is not completely

protected against sensor malfunction (the reasoner can detect sensor values that are out of range,

such as hour 26 - see 5.2.2 - but cannot diagnose a system clock malfunction that tells the system

it is 9 am, when, in fact, it is noon).

• Validation. A combination of qualitative and quantitative analysis methods are used in this chapter

to evaluate the proposed KAS instance at both the architectural as well as the runtime performance

levels. A mixture of simulated (camera output) and real (battery level and system time) data is

considered in the next section.

Qualitative evaluation summary. Most of the qualitative indicators are positive: KAS for SAR is

capable of learning from experience, has a open architecture, can be extended and maintained and is

thoroughly evaluated via a mix of methods. There are two criteria where KAS for SAR can be found

lacking: autonomicity (level 4 instead of 5) and robustness (medium instead of high). To address the

first shortcoming, an extra component is needed to interface the monitor module with the KT algorithm.

This component should be able to read online descriptions of semantic web services [184], select the

ones capable of configuring the APIs for the employed sensors and execute them, thus allowing KT to

receive monitored data without the application developer’s help. The execute module would also use this

component to automatically configure APIs for effectors. The added benefit of applying a semantic web

service approach is platform independence (currently, the Java APIs that read the system time and display

brightness are specific to the Windows operation system only). The second issue may be addressed by

comparing the input of several sensors (similar to the way events are managed in [56]). Specifically, if

the reported system time is 9 am for several consecutive iterations of the MAPE cycle, yet the battery

charge level varies significantly, then it can be concluded that one of the sensors is malfunctioning. Both

of these represent directions for future research (7.4).

The loosely termed definitions of the quantitative measurements for autonomic behaviour

evaluation provided in section 2.1.3 have been adapted to fit the SAR problem domain as follows:

• the quality of the autonomic response (u ↑) is measured by counting (over a number of MAPE

cycles) the number of executed plans that have driven the SAR system to a state with a higher

9If monitoring room temperature becomes a requirement, KT will automatically include temperature information in the
State hierarchy, by reading the values provided by the temperature sensor’s API and assigning them to a discrete category,
given the provided thersholds.
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utility than the initial one10;

• the cost of autonomy (u ↓) is given by the number of discarded plans, over a number of MAPE

cycles, that have driven the SAR system to a state with a lower utility than the initial one11;

• the speed of the autonomic response (δ t) is defined as the average execution time of the MAPE

cycle, over a number of iterations;

• the degree of proactivity (p) is the number of decisions the autonomic manager has made without

being prompted by a human operator - here, this is evaluated by counting the number of actions

considered for inclusion in a plan and averaging the values over a number of MAPE cycles;

• the learning index (Il) will be calculated according to the original definition (equations 2.1, 2.2

and 2.3) with the following interpretation of the symbols:

– E(D) and E(PD) are equal to each other (all correct learning based decisions are target

achievers) and to the number of successfully reused plans (executing a plan from the bank,

either directly or after improvement, lead to an increase in utility);

– E(D′) and E(ND′) are equal to each other (all incorrect learning based decisions are target

damagers) and to the number of unsuccessfully reused plans (executing a plan from the bank,

either directly or after improvement, lead to a decrease in utility);

– K(PD) and K(ND′) represent the number of successfully (p+) and, respectively,

unsuccessfully (p−) reused plans from the plan bank;

– L and M are both 2, as both controlled parameters, brightness and font size, can be learned.

Hence, the learning index of KAS for SAR is computed as follows:

Il =
1
2
· p+

sum(p+, p−)
(5.1)

The data corresponding to the evaluation criteria above is collected under the following conditions:

• A variable number of triggered MAPE cycles12 is considered for every experiment (that is, every

row in Tables 5.5 and 5.6). The event that is used to trigger a new MAPE cycle is a simulated

change in the audience focus.

• The experiments are run over two hours, from 10 am to 12 noon, to include 11 am, which is

considered late morning from March until October and early morning in the rest of the year.

• The thresholds input of the KT algorithm is the one presented in Table 5.1, leading to a

separation of the day in four sections: early morning, late morning, early afternoon and late

afternoon.
10This is not the number of plans in the plan bank. Some of the successful plans counting towards u ↑ may have been

obtained by improving existing good plans, ultimately replacing them in the bank.
11A plan is discarded if the maximum length has been reached and no utility gain was achieved. Apart from this situation,

the planning algorithm will continue selecting actions until utility increases.
12This is not the total number of MAPE cycles. During planning, a MAPE cycle is started after each newly selected action,

therefore the total number of MAPE cycles is the number of triggered MAPE cycles times the number of actions that were
considered (including the ones that were eventually discarded).
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• The actions (Table 5.3), utilities (Table 5.2) and heuristics (Table 5.4) in the policy document are

kept constant throughout the analysis.

• All experiments were run on a Lenovo ThinkPad with an Intel Core i5 CPU @ 2.3 GHz with

8GB of RAM. The KAS for SAR MAPE-K loop is implemented in Java, using the OWL

API for interacting with the ontology and Oracle’s ojdbc7.jar13 for interfacing with the

Oracle Database 12 manager.

Besides the KAS instance for the SAR problem domain, two control versions of the autonomic

system are used for comparison:

• Trivial. This is an autonomic system where the manager has exactly the same structure as KAS

(Fig. 5.1) apart from the ontology (implying that the reasoner and KT are missing as well).

The only knowledge that the manager has access to are the three monitored inputs (since there

is no state information stored anywhere, the utilities, candidate plan actions and heuristics are

meaningless). The trivial system operates according to two rules, namely “increase the font size

and brightness if the focus is less than high” and “decrease brightness if battery charge level is

low”. The second rule has priority over the first to avoid a conflict when, at the same time, focus

is either medium or low and the battery is low. From an intelligent agents point of view [109],

the trivial autonomic manager is a reactive agent (it merely responds to environmental stimuli),

whereas KAS for SAR is a proactive agent (it plans a response strategy based on analysis as well

as experience and executes it).

• RDB (relational database). This is an autonomic system where the manager has exactly the same

structure as KAS (Fig. 5.1) with the difference that the ontology is replaced with a relational

database storing state information. The normalised database schema is presented in Fig. 5.11.

KAS for SAR compared against the trivial autonomic manager

Experimental setup. The analysis relevant to this scenario is presented in Table 5.5, where each row

represents a separate experiment. An experiment consists in running the trivial autonomic manager as

well as the KAS instance in the SAR problem domain, over a number of explicitly triggered MAPE

cycles within the considered two hour time range. The MAPE cycle triggers are simulated changes

in the audience focus (for instance, the T value on the first row of the table means that the level of

audience focus was changed 4 times between 10 am and 12 noon, with pseudorandom periodicity and to

pseudorandomly selected levels). The battery started at full charge and did not drop under 75% in the two

hours, hence the only other MAPE loop trigger, besides the focus variations, is at 11 am, when the time

of day changes from early to late morning (experiments were run in March). The experiments are meant

to compare the reactive (trivial system) and proactive (KAS instance) approaches to change, in terms

of the number of successful (u ↑) and unsuccessful (u ↓) plans executed and, respectively, discarded.

The average duration of a MAPE cycle over the length of each experiment (δ t) is provided just for the

KAS instance, as the trivial version entails a minimum computation load (the analysis process consists,

exclusively, in deciding which of the two rules to apply), therefore terminates very fast.

13http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
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HourInterval
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Id
Focus
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primary key: Id
foreign key: TimeOfDayId to TimeOfDay(Id)

Fig. 5.11: A partial Entity Relationship Diagram describing the database equivalent to the Onto++
instance for SAR

Results’ discussion. The first three experiments confirm the intuitive expectation: the trivial

autonomic manager occasionally increases utility by applying one of the two “plans” hard-coded in

the rules. This happens by chance, as there is no correlation between the reactive agent’s success rate

and the number of triggers. On the other hand, the proactive agent only generates utility increasing plans

(u ↓ is 0 for the first three experiments). This is a consequence of the logic behind the plan algorithm

that does not stop before generating a set of actions that brings the managed resource to a state with a

higher utility than the initial one (line 11 in Table 4.5). This changes with the fourth experiment, where

the KAS instance discards 12 plans out of the 2000 generated in response to the triggers. It follows

that in those 12 cases, the plans reached the imposed maximum length (L = 10 in Table 4.5) without

achieving an increase in utility. The intuition behind this result is that the frequency of focus changes

is too high (once every 3.6s), thus preventing new actions included in the plan from building up on the

effect of previous ones. This is confirmed by the final experiment, where doubling the focus change

frequency causes the proactive agent to dismiss most of its plans. Taking into account that the duration

of KAS’s MAPE loop (δ t) is around 360ms and that the maximum plan length is 10, the system has a

maximum of 3.6s to build a successful plan. In experiment four, that coincides with the duration between
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two simulated focus changes. It follows that injecting a change in the system in the final stages of plan

construction may compromise the effect of previously inserted actions, causing the entire plan to fail.

Further increasing the frequency of focus changes (experiment five) causes the proactive agent to stop

operating effectively. However, the reactive agent performs significantly better in this last scenario (twice

as many successful plans than what the KAS instance generated). This needs more experimentation, but

does bring about the posibility that a reactive approach may be more effective than a proactive one, given

a highly dynamic environment. Of course, experiments four and five are not realistic in the SAR scenario

(it is more likely to suspect a camera malfunction than accept that the audience’s focus changes every

3.6s). Regardless, these experiments were included given the intriguing insight they provide with respect

to what is effective change management in highly dynamic environments.

Table 5.5: KAS for SAR and trivial autonomic manager comparison
plan length capped at 10 actions

trivial KAS for SAR
T u ↑ u ↓ u ↑ u ↓ δ t[ms]
5 1 4 5 0 340
20 0 20 20 0 390
100 22 78 100 0 350
2000 103 1897 1988 12 355
4000 301 3969 150 3850 360

KAS for SAR compared against the database-supported autonomic manager

Experimental setup. The data relevant to this comparative study is presented in Table 5.6. The control

version that KAS for SAR is compared against is an autonomic manager employing a relational database

(Fig. 5.11) for knowledge management. The comparison between the database and the Onto++ instance,

within an autonomic context, is justified by the following reasons.

• Databases are, at present, the industry standard solution for managing knowledge and there has

been significant debate whether ontologies can match up to the status quo [126, 160].

• Databases operate under the closed world assumption (CWA), namely every fact that is not

explicitly stated in the database tables is false. Ontologies employ an open world assumption

(OWA), where the truth value of a fact that is not explicitly stated as a semantic property is

unknown. This allows the reasoner to infer implicit knowledge and proactively insert it in the

ontology, thus facilitating the learning process.

• A change in the requirements (for instance, adding two times of day, midmorning and

midafternoon, to the existing four) would require coordinated updates to several database tables

(to satisfy foreign key constraints). The ontology would only require the addition of two concepts,

that the reasoner would automatically connect to the existing classes via semantic subsumption

(specific examples are provided in the summary section).

Besides u ↑, u ↓ and δ t, also considered in the previous comparison, Table 5.6 provides experimentally

collected values for p, the average number of actions considered during planning (both the ones included
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in plans and the ones discarded), p+ and p−, the number of successfully reused and, respectively,

discarded plans and Il , the learning index interpreted for SAR in equation 5.1. As far as the number of

triggers is concerned, this reflects focus changes (simulated via the pseudorandom generator in java, as

in the previous comparison), one change from early morning to late morning and two battery changes

(started at 80%, dropped to 70% at some point and then got charged back up to 100%).

Results’ discussion. The first three experiments where no upper limit was imposed to plan length

(Table 5.6a) reveal that both autonomic systems build successful plans in response to all changes in the

managed resource. The fourth experiment shows no discarded plans (u ↓= 0), however, the number of

successful plans (u ↑) does not match up to the number of triggers. Indeed, 9 and 11 triggers did not

receive any response from KAS for SAR and the database supported system, respectively. It is known,

from the previous comparison, that 2000 triggers over two hours give the MAPE loop enough time to

find good plans with a maximum length of 10 actions. Since there is no upper limit to the plan length, the

planner will continue adding actions to the current plan in an attempt to increase utility (p is 157 and 180,

respectively, very large values compared to previous experiments), an effort continually “sabotaged” by

the intense dynamics of the managed resource. This shows the importance of setting an upper plan size

limit in order to improve the planner’s capacity to adapt to frequent change. To confirm, the second and

third rounds of experiments (with the maximum plan length set to 5 and 10, respectively) show that all

triggers are accounted for, with u ↑ and u ↓ adding up to the expected amount. Note that the optimal

value for the maximum plan length (L in Table 4.5) can be configured by running experiments in the

“threshold” trigger zone (namely, 2000). Nonetheless, this is a limitation of the KAS architecture, as the

plan size limit parameter, although experimentally configurable, is problem dependent.

As shown by the average duration of the MAPE cycle (δ t), the database supported system takes

longer than KAS for SAR. This is due to the fact that retrieving the current state (an analysis step) requires

a complicated SQL query with joins over all database tables (see summary section). This turns out to be

more computationally costly (although not by a significant amount) than the reasoner performed tasks of

creating the CurrentTime (Fig. 5.7), CurrentBattery and CurrentFocus (Fig. 5.8) concepts from

sensor data, subsuming them under the correct TimeOfDay (Fig. 5.4), Battery and Focus subclasses

and matching them against State fillers (Fig. 5.3) to determine the current utility.

The number of successfully reused plans (p+) from the plan bank increases, alongside the number

of discarded plans (p−), with the frequency of triggers. This strong correlation shows that the learning

capability exhibited by the autonomic manager, irrespective of the underlying knowledge platform, is

consistent. Plan reuse factors into the learning index as defined in the SAR context (equation 5.1). This

formulation implies that the maximum value for Il is 0.5, which is achieved in all realistic scenarios

(apart from experiments involving a poorly calibrated upper limit for plan length).

Quantitative evaluation summary.
The comparison of KAS for SAR against the trivial autonomic manager (a reactive agent with no

knowledge of its own state) reveals the existence of a “threshold” with respect to the system’s tolerance

to the level of variation in the monitored inputs. If the number of MAPE loop triggers exceeds this

threshold (given by the average duration of the autonomic control cycle times the maximum plan length),

the manager can no longer respond to change effectively. In addition, as the second series of experiments

shows, the plan length limit can be experimentally calibrated by testing the autonomic system in the

“threshold” range.
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Table 5.6: KAS for SAR and database-supported autonomic manager comparison

(a) no maximum plan length

KAS for SAR RDB
T u ↑ u ↓ δ t p p+ p− Il u ↑ u ↓ δ t p p+ p− Il

5 5 0 375 7.3 2 0 0.5 5 0 350 8 1 0 0.5
20 20 0 350 15.3 5 0 0.5 20 0 400 16.1 3 0 0.5
100 100 0 365 12.1 11 0 0.5 100 0 410 11.9 9 0 0.5
2000 1991 0 355 157 75 0 0.46 1989 0 405 180 77 0 0.34

(b) maximum plan length is 5

KAS for SAR RDB
T u ↑ u ↓ δ t p p+ p− Il u ↑ u ↓ δ t p p+ p− Il

5 5 0 352 6.8 3 0 0.5 5 0 376 9.2 0 0 0
20 18 2 360 17.2 3 2 0.3 17 3 432 18.3 0 2 0

100 90 10 355 15.2 9 3 0.37 88 12 402 10.3 8 5 0.31
2000 1507 493 323 12.3 9 25 0.13 1486 514 399 12.7 2 12 0.07

(c) maximum plan length is 10

KAS for SAR RDB
T u ↑ u ↓ δ t p p+ p− Il u ↑ u ↓ δ t p p+ p− Il

5 5 0 331 7.1 2 0 0.5 5 0 392 11.1 2 0 0.5
20 20 0 343 12.3 3 0 0.5 20 0 390 15.3 1 0 0.5
100 100 0 390 13.2 8 1 0.44 100 0 435 12.1 5 2 0.35
2000 1991 9 315 13 13 7 0.32 1992 8 411 13.2 14 8 0.32

The comparison of KAS for SAR against the database-supported autonomic manager yields several

conclusions with respect to the superiority of ontologies over relational databases.

• Databases do not support unsupervised learning. During knowledge extraction, facts that the

reasoner can automatically infer, such as “a battery charge level of 73% is medium”, have to

be explicitly asserted by adding the appropriate entries to three database tables (BatteryLevel,

Battery and BatteryLink), while making sure that the foreign key restrictions (Fig. 5.11) are

complied with.

• A minor change in the state model, e.g., the addition of midmorning and midafternoon, would not

only imply adding records to three separate tables (HourInterval, TimeOfDay and State) but

also updating TimeOfDayLink to ensure compliance with Codd’s three normal forms [51]. This

rigidity of the relational database format is contrasted by the flexibility of the ontology, where the

rightful place (under ontology class TimeOfDay) of the two new concepts in the Entity hierarchy

will be inferred by the reasoner.

• Another consequence of the inflexible structure of relational databases is the syntactic complexity

of the SQL query required to retrieve the current system state at the start of every MAPE loop.

Besides the type of learning enabled by the reasoner (namely, unsupervised inference of implicit

facts), the autonomic control loop superimposes another layer: learning from planning experience.
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The autonomic manager’s effectiveness at recycling plans is illustrated by the fact that the number of

target achievers (p+) is consistently greater than that of target damagers (p−) (except for “threshold”

experiments), leading to the maximum achievable (in the SAR application domain) learning index value

(Il = 0.5). The fact that the theoretical upper limit of the learning index (Il = 1) is not reached can be

traced back to the structural simplicity of KAS for SAR rather than a limitation in its learning capacity.

Indeed, in order for a system to have the potential of achieving a learning index of 1, the number

of successful learning decisions should exceed that of target achievers, whereas unsuccessful learning

decisions should only count towards a fraction of the target damagers (see equation 2.1).

5.4.2 Semantic Components Evaluation

The chief benefits that autonomic managers, especially the analysis module, draw from the use of

semantic tools for knowledge management have been presented in section 5.4.1. The flexibility of

ontologies over the rigidity of relational databases as well as the way unsupervised reasoning (inference

of implicit facts) supports learning within the MAPE loop have been discussed and evaluated in the

broader context of testing KAS’s autonomic components. However, some qualitative and quantitative

metrics available in the ontology related literature (and covered in 2.2.5) may reveal other facets of the

semantic-autonomic interaction.

Qualitative Evaluation

ONTOMETRIC. This platform measures ontology flexibility and expressivity by evaluating structural

elements such as the number of concept instances and the presence of n-ary relationships. At first sight,

the ontology supporting KAS for SAR would not fare well with respect to ONTOMETRIC criteria,

however, not without reason.

• There are no explicitly asserted individuals in the SAR ontology, however, that does not imply

that all concepts are abstract. On the contrary, the ontology does store specific domain entities,

only they are modelled as classes rather than instances, to allow for more powerful reasoning and

added flexibility. To illustrate, let us consider the State hierarchy (Fig. 5.3). In terms of concept

granularity, all State subconcepts should be individuals as they represent specific system states

that cannot be subsumed by other classes. However, bear in mind that the ontology is dynamically

generated by the KT algoritm (Table 4.1) that is designed to cater to a wide variety of application

domains. Although the two tier state model (with one root concept and 36 leaf classes) is

sufficiently accurate for SAR, other managed resources may require a state hierarchy with several

levels (e.g., in a smart home, the OnlineState passed on to power suppliers over the internet is

different than the OfflineState accessed for controlling room brightness by closing/opening the

shutters - an intermediate State hierarchy level is needed to hold the two classes). To maintain the

cross-field applicability of KAS as well as avoid unnecessarily complicated logic in the underlying

algorithms (KT in particular), Onto++ instances do not contain individuals14.

14This is not to say that using the presence of individuals to evaluate ontology flexibility is ill-advised, just that this
criterion applies better to ontologies as stand-alone artefacts (designed to serve as thesauri of knowledge) than to ontologies as
components supporting an autonomic infrastructure.
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• The Onto++ instance for the SAR problem domain does not feature any n-ary relationships (all

properties can be modelled with standard RDF triples). However, KT is capable of reification

(4.3.2), as illustrated in the second application scenario (chapter 6). In a broader interpretation,

the lack of n-ary relationships in the SAR model (where they are not needed) is proof of KT’s

flexibility, as it is capable to generate simple or more complex ontologies, given the intricacy of

the problem domain.

OOPS! A simple yet highly informative online tool, OOPS! provides a helpful ontology diagnosis based

on several good practices distilled from known ontology design patterns. Specifically, the tool is capable

of detecting common structural “pitfalls”15 (maintained in a catalogue that users can help extend) such

as the presence of cycles, orphans (disconnected concepts or unused properties) or equivalent classes in

lieu of synonyms. Initially, OOPS! revealed three issues with the Onto++ instance modelling the SAR

domain, as can be seen in Fig. 5.12a 16.

• Missing disjointness. In OWL ontologies, it is generally good practice to declare as disjoint those

subclasses that exhaustively cover the domain modelled by their superclass without overlapping

[136, 82]. This should be the case for all leaf level State classes as well as TimeOfDay,

Battery and Focus subconcepts, respectively. Although correctly generated by KT, the final

three hierarchies were missing the appropriate disjointness axioms.

• Inverse relationships not explicitly declared. This problem was located in the State hierarchy:

every leaf level state concept is connected via the appropriate properties to four fillers (one for

each monitored input and one for the state utility). Since properties hasTimeOfDay, hasFocus

and hasBattery are not transitive, it is good practice to assert an inverse property for each. For

instance, the inverse property of hasFocus would connect lowFocus to State subconcepts 1

through 12 (see Table 5.2). This is a supplementary verification mechanism to ensure that the

fillers of the direct properties are correctly set.

• No licence declared. The Creative Commons licence declaration17 was missing from the ontology

metadata.

After making the necessary modifications to the KT algorithm in order to fix the problems above, the

Onto++ instance for SAR meets all OOPS! evaluation criteria (Fig. 5.12b).

Quantitative Evaluation

Basic metrics represent counts of ontology elements (such as the number of concepts, equivalence

axioms, inverse properties, etc.). This information is easily obtainable in editors such as Protege (the

Ontology metrics tab) and are not particulary relevant in terms of assessing the structural soundness

of the ontology (different problem domains require different numbers of concepts and prperties to model

them). What is more important than the number of ontology elements is their very existence (e.g.,

disjointness restrictions should be in place for all relevant concept hierarchies, regardless of how many

15For a full list, see http://oops.linkeddata.es/catalogue.jsp.
16Retrieved from http://oops.linkeddata.es/.
17https://creativecommons.org/licenses/by/4.0/
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(a) Initial diagnosis

(b) Final diagnosis

Fig. 5.12: OOPS! diagnoses for the SAR ontology - before and after corrections

there actually are) and that is checked by online tools such as OOPS!. Moreover, these counts become

semantically relevant [181] only when the ontology is normalised, which the Onto++ instance for SAR

is not (the one normalisation condition - see 2.1.3 for a full list - that is not met is the instantiation of

all leaf level concepts for reasons explained earlier in the qualitative evaluation section). Some structural

ontology metrics that do show promise are the ones used to predict reasoning efficiency [96]. However,

the reasoner’s impact on the autonomic loop’s execution time has already been measured (δ t) in the

quantitative analysis section of 5.4.118.

Temporal and category bias are sound indicators of an ontology’s accuracy in representing a

changing domain. Category bias, as defined in [79], does not apply to the Onto++ instance for SAR,

as there are no multiple levels of representation. Temporal bias is relevant only to a certain extent:

the state model can indeed be represented as a vector over three dimensions (one for each monitored

input). However, the continuous values of the focus, battery and time signals are discretised in the

ontology, making it mathematically impossible to calculate the cosine similarity between the model and

the modelled vectors. Since the ontology is dynamically generated by KT, a change in the modelled

domain (such as the addition of midmorning and midafternoon considered earlier) would be seamlessly

integrated in the State concept hierarchy (provided that the thresholds parameter is appropriately

ammended). This supports the claim that the Onto++ instance provides an accurate representation of the

(changing) SAR problem domain.

Evaluating the cost of the ontology engineering process requires application developers and/or

domain experts to set weights representing the importance (cost) of each OE stage with respect to the

development of the application that the ontology supports. Since Onto++ instances are automatically

generated by KT, the cost of the OE process is more relevantly evaluated by KT’s computational

18This explanation as to why basic metrics were not included in this section is given since many reasearchers [133, 135, 68]
still use them to evaluate their ontologies.
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complexity (equation 4.1).

Summary

The highlight of this discussion around ontology evaluation is the fact that the Onto++ instance for SAR

meets a wide variety of common good design criteria (Fig. 5.12b). This is an argument that supports

the efficiency of KT. The design of the Onto++ structural template (that the SAR instance is created

from) has been evaluated from a different standpoint (ATAM) in section 4.5. Another relevant aspect is

the compliance of the Onto++ instance development process with a widely accepted OE methodology,

namely NeON (this is detailed in the architecture description section 5.2.1).
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CHAPTER 6

Autonomic Systems with State-less Ontologies

The second practical implementation of KAS is deployed in the career support problem domain. The

managed resource is the online career knowledge space, scattered across various web resources (company

and education providers’ websites, centralised job openings repositories, general information about

professions published on webpages with other, non-related content, etc.) and currently processed, to

a very limited extent, by traditional job search engines. The KAS instance used in this context does not

maintain a state hierarchy, as the volume of available data would make that computationally infeasible.

Instead, the Onto++ instance initially models domain expert knowledge and is updated by system users

in subsequent iterations. The description of the KAS instance in the careers domain will follow the same

steps as in the case of the SAR problem space.

6.1 Application Domain

The Career Decision Support (CDS) problem implies providing interested users with a complete1, correct

and intuitive compilation of knowledge, relevant to their career related query.

For a better understanding, consider the following motivating scenario involving a user interested

in a software engineering career. Finding online information about this profession would imply:

• searching the web for a general definition (National Careers Service2 and Wikipedia are popular

resources)

• browsing online education resources (HESA3) to find the required academic qualifications

necessary to be eligible for a job in the field

• getting a list of the relevant job openings (for instance, from indeed.co.uk)

• manually centralising the data acquired in the previous three steps and matching it against the

user’s personal profile (academic degree and professional interests).

When using the KAS instance for the CDS problem domain, the experience is significantly

different. By simply typing “software engineering” in a search box, the same user would, at the click of

a search button, get access to:

1Within the limits of the available knowledge sources.
2https:

//nationalcareersservice.direct.gov.uk/search/pages/JobProfileResults.aspx?k=software%20engineer
3https://www.hesa.ac.uk/jacs/
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• a visual graph showing the requested career as the central node as well as related ones (e.g.,

information engineering, software development, etc.) - this provides some much needed

perspective by indicating the place that software engineering occupies in the broader field of

careers

• a pie menu (visible by right clicking any graph node) with links to relevant jobs (indeed.co.uk

and general Wikipedia information)

• additional, useful data, such as a list of web resources relevant to software engineering that other

users have visited and rated (the scores are displayed as well).

Thus, the KAS instance addresses the core requirements of the CDS problem as follows (these are

relevant to the second research question in 1.2, specifically objectives O1.3 and O2.1):

• Completeness. Information from all sources monitored by the system (job search engines, other

users’ reviews, etc.) is automatically compiled, clustered on the relevant graph node and accessible

via a pie menu.

• Correctness. The way careers nodes relate to each other is regulated by a semantic reasoner (that

detects logical inconsistencies such as software development being both the child and the parent

of software engineering).

• Intuitiveness. The relevant career information is presented in a graph where the connections

between careers can be visually explored. This manner of displaying results is more insightful and

natural to humans than the list format produced by traditional job search engines.

To sum up, the managed resource (Fig. 6.1) in the CDS scenario comprises a portion of the online space

of career resources (including the users exploring it) that is monitored through the following channels:

M1 job postings from employment search engines

M2 tags (semantic annotations) and reviews used/ written by registered users

M3 edits performed on the careers graph by registered users

M4 search keywords (queries) provided by registered users.

The view (screen or results display window, also part of the managed resource) containing the collection

of knowledge relevant to a user query is modified in terms of the

E1 displayed content: a correct, complete and intuitive graph that replaces the list of available jobs

returned by traditional search engines and the other heterogeneous information that the user would

have to retrieve and analyse manually.

Another important advantage of exploring career graphs rather than job lists is that subtle

connections become significantly easier to observe. For instance, starting from the graph produced in

the motivating scenario , the user can quickly discover that digital arts is the twice removed “cousin” of

software engineering (via software development and software systems for the arts). Consider the amount

of time and effort it would have taken to discover this connection via traditional career research.
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6.2 Architecture Description
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Fig. 6.1: KAS with state-less ontology - component view

6.2.1 CDS Ontology and KT

As in the case of SAR, the CDS ontology learning process is best mapped against the NeOn methodology

[168], namely scenarios 2 (OL via reusing and re-engineering non-ontological resources) and 8 (OL by

means of restructuring/ extending ontological resources).

Non-ontological resource selection

Various career related knowledge sources were considered, assessed (in terms of coverage, precision and

consensus) and selected4 to provide input for the CDS ontology. Those were:

• the domain expert’s knowledge about relationships (inheritance, equivalence and synonymy)

between careers

• data from education providers and statistics agencies (JACS and SOC codes5)

• online job listing repositories (indeed.co.uk).
4These tasks were performed by the careers expert, Lord Ralph Lucas, Lucas Publishing, Good Careers Guide.
5http://www.neighbourhood.statistics.gov.uk/HTMLDocs/dev3/ONS_SOC_hierarchy_view.html
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Non-ontological resource reverse engineering and transformation

Knowledge from all previously selected sources was compiled in a spreadsheet6 and reverse engineered

to detect patterns in the data. Each spreadsheet row was found to contain the name of one career concept

along with all related career concepts, the relationship type (parent, child, sibling or synonym) and the

relationship strength (a number between 0 and 100). The example at the top of Fig. 6.2 illustrates this

pattern: it states that biomolecular sciences is the child of sciences with a strength of 100, the sibling of

biology with a strength of 50 and the synonym of bio-molecular sciences (an alternative spelling used

for disambiguation). This analysis of the data in the input document revealed two aspects: the available

knowledge is discrete (there are no continuous signals in the managed resource as in the case of SAR) and

properties are three-faceted (every sibling and inheritance relationship between two careers is weighted

by a numerical value called strength).

hasSibling

hasSynonym

LINK1

LINK2

hasArgTwo
SCIENCES

hasSibling

hasArgTwo

hasWeight

hasWeight

BIOLOGY

100

50

BIOMOLECULAR
SCIENCES

hasArgOne

hasParent

“BIO-
MOLECULAR
SCIENCES”

ENTITY LINK ENTITY values
hasArgOne

Fig. 6.2: Reification in the CDS ontology

The transformation of the spreadsheet knowledge into a format that could be represented in an

ontology yielded a new conceptual model (the Onto++ structure in Fig. 6.1). The State hierarchy was

excluded since it is not applicable to the CDS domain and the hasProperty relationship (that used to

connect Entity subconcepts to each other in the SAR domain) has been reified with the help of the

Link hierarchy (Fig. 6.2). A full description of the conceptual model supporting the CDS ontology is

provided below.

• The Entity hierachy stores concepts describing careers (such as BIOMOLECULAR SCIENCES in

Fig. 6.2). The definition (in Machester OWL syntax) of the entity hierarchy root is presented in

Fig. 6.3.

• The hasValue property connects an Entity concept to a constant value (a number or a

string). It has three subproperties, hasSynonym, hasJACS and hasSOC. The first two have

a filler of type string, namely the domain entity’s synonym (an alernate spelling, such as

"BIO-MOLECULAR SCIENCES" in the lower right hand side corner of Fig. 6.2) and, respectively,

6Autored by Lord Ralph Lucas, Lucas Publishing, Good Careers Guide.
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Class: <CDSonto#Entity> EquivalentTo:
<CDSonto#hasParent> some <CDSonto#Link>
and (<CDSonto#hasSibling> some <CDSonto#Link>)
and (<CDSonto#hasSynonym> some xsd:string)
and (<CDSonto#hasJACS> some xsd:string)
and (<CDSonto#hasSOC> some xsd:integer)

Fig. 6.3: Entity concept definition

the associated JACS value (an alphanumeric identifier that is C7607 for biomolecular science).

Property hasSOC has a filler of type integer, repesenting the numeric SOC code.

• The Link hierarchy contains abstract concepts (in the sense that they do not directly model entities

from the problem domain) used to reify properties with strengths (Fig. 6.2). The definition of the

link hierarchy root is presented in Fig. 6.4.

Class: <CDSonto#Link> EquivalentTo:
<CDSonto#hasArgOne> some <CDSonto#Entity>
and (<CDSonto#hasArgTwo> some <CDSonto#Entity>)
and (<CDSonto#hasWeight> some xsd:integer)

Fig. 6.4: Link concept definition

• The hasLink property connects Entity hierarchy concepts to Link classes. There are two

subproperties, hasParent and hasSibling, both multifaceted (with strengths) and in need of

reification (illustrated in Fig. 6.2 on the BIOMOLECULAR SCIENCES example).

• The hasArgOne and hasArgTwo properties connect link concepts to fillers from the Entity

hierarchy. hasArgOne and hasArgTwo are the inverse properties of hasLink.

• The hasWeight property connects link concepts to numerical fillers, namely the strengths

associated to reified properties. All constants (numbers and strings) are represented by block

values in Fig. 6.1.

A note about the downside of reification: the hasParent property is unavoidably duplicated - implied

in the OWL inheritance hierarchy and explicitly asserted as a reified property. Moreover, the additional

Link hierarchy and its associated properties significantly inflate the ontology. Consequently, there is a

compromise to be made between ontology size (will most likely impact reasoning, therefore learning,

speed) and domain representation accuracy.

Ontology forward engineering

The previously formulated conceptual model is automatically generated by KT (Knowledge Translator),

the ontology learning algorithm described in 4.3.2. The algorithm’s inputs and outputs are configured as

follows.
7Source: https://hesa.ac.uk/component/content/article?id=102&ItemId=136&limit=1&start=6
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Input inputFile. This represents the spreadsheet containing the initial knowledge compiled from

various sources by the domain expert. The Entity and Link hierarchies will be created according to the

logic on lines 14-22 in Table 4.1.

Input isDiscrete. The KAS instance for CDS monitors discrete events (M1, M2, M3 and M4
introduced in 6.1). The inputFile that the initial version of the Onto++ instance is created from also

contains discrete concepts and properties. Thus, the value of this input is true.

Input thresholds. Since no discretisation is performed, this parameter is null.

Output o. KT will return an ontology, modelling the CDS problem space, in full compliance with

the Onto++ template (that is, comprising the Entity and Link concept hierarchies, along with their

associated properties, as shown in Fig. 6.1).

Ontology restructuring and extension

This is performed by registered system users, several times throughout the ontology life cycle. Once

generated (by KT) the careers’ ontology is exposed to the public and can be edited through a graphical

interface (a feature that is not available, nor necessary, in SAR). This allows the autonomic manager’s

knowledge to reflect the community consensus with respect to the careers’ domain and not just the

domain expert’s view. However, to comply with the correctness component of the system goal (6.1), user

edits are only considered pending reasoner verification.

6.2.2 Reasoner

The reasoning functions performed on the Onto++ instance for CDS are explained in the following.

Subsumption. During the ontology life cycle, specifically the forward engineering (KT) and

extension (editing) stages, the reasoner infers the correct hierarchy (Entity or Link) that new concepts

should be included in. For instance, concept BIOMOLECULAR SCIENCE (Fig. 6.5) matches the definition

of Entity (Fig. 6.38), therefore will be subsumed as one of its subconcepts.

Class: <CDSonto#BIOMOLECULAR SCIENCE> EquivalentTo:
<CDSonto#SCIENCE>
and (<CDSonto#hasParent> some <CDSonto#Link1>)
and (<CDSonto#hasSibling> some <CDSonto#Link2>)
and (<CDSonto#hasSynonym>

some xsd:string[>= "BIO-MOLECULAR SCIENCES", <= "BIO-MOLECULAR SCIENCES"])
and (<CDSonto#hasJACS> some xsd:string[>= "C760", <= "C760"])
and (<CDSonto#hasSOC> some xsd:integer[>= 2112, <= 2112])

Fig. 6.5: BIOMOLECULAR SCIENCE concept definition

Apart from the immediate benefit of maintaining a well structured ontology, subsumption also

supports learning, albeit in a different way than in the case of SAR (see 6.2.4 for details).

Querying. In the CDS context, the reasoner performs a query in the following situations:

8The fact that exact fillers have to be sprcified as ranges is a downside of using classes for what should, intuitively, be
modelled as individuals. This is a necessary compromise to allow subsumption.
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• when the user initiates a new search (M4): the search keyword will be used to formulate a SPARQL

query (Fig. 6.6 shows the one for BIOMOLECULAR SCIENCE) and run it to find all Link concepts

the targeted entity is related to (be it via hasParent or hasSibling). More Java code is in place to

unpack the retrieved Link objects and extract the actual parents and siblings. The ones connected

to the targeted entity via no more than two sibling or parent links are displayed in the visualiser

(E1) (see 6.3 for a screen shot of the result).

PREFIX cds: <http://xmlns.com/CDS>
SELECT ?link1 ?link2
WHERE {

cds:BIOMOLECULAR SCIENCE cds:hasParent ?link1 .
cds:BIOMOLECULAR SCIENCE cds:hasSibling ?link2 .

}

Fig. 6.6: A SPARQL query to support searching the CDS ontology

• when the user tags online resources (M2) with concepts from the ontology (using a browser add-on

described in 6.3): the full set of tags used by a registered explorer are fed into a set of SPARQL

queries (similar to the one in Fig. 6.6). The graphs produced by running the batch query (and

performing the previously mentioned Java post-processing) are displayed in the visualiser (E1) to

form the user’s personal ontology (a visual expression of the CDS ontology segment the user has

shown an interst in while browsing).

Consistency verification. When users edit the CDS ontology (by adding, deleting or modifying

the definitions of concepts and properties), their changes are stored in a temporary copy of the ontology

and published only if the reasoner’s consistency check is successful.

6.2.3 Policy

The CDS problem domain does not have a state model, therefore utilities are not necessary. In its

current implementation, the CDS autonomic manager is not guided by heuristics. Hence, the only policy

document section that applied to the careers’ space is the one storing plan actions (Table 6.1). They are:

• segment: run the SPARQL query modelling the search initiated by the user and retrieve the relevant

ontology segment

• edit: process the deletion/ addition/ other modification that the user has operated through the

interface and store it in a temporary copy of the ontology

• tailor: run the set of SPARQL queries built around the tags used as annotations by the current

explorer and retrieve the relevant ontology segments

• display: populate the visualiser with the result of the most recent action (either a simple query or

a batch one)

• classify: check the logical validity of the ontology and, if confirmed, publish it (commit all pending

changes).
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Table 6.1: CDS policy document - plan actions

a1 segment
a2 edit
a3 tailor
a4 display
a5 classify

Note that all actions apart from a4 involve the reasoner, which is proof the the strong impact this

semantic tool has on the planning stage of the MAPE loop.

6.2.4 Monitor, Execute and the Managed Resource

The system’s monitor component comprises several APIs that pass sensor data to the analysis module.

There is a software sensor for each of the monitored spaces where career relevant information is posted or

used: a web service detects job postings from indeed.co.uk relevant to a given ontology concept (M1),

a browser add-on collects tags from user career webpage annotations (M2), a web interface records user

edits (M3) and search keywords (M4). The execute module is a JavaScript API that communicates the

ontology segment(s) to be displayed to the effector, a Cytoscape [163] plugin (E1)9.

Learning in the CDS context is done explicitly, via M2 (without the user being aware) and M3
(directly by the user through the web interface). The process is similar to Amazon’s mechanical turk

principle10, only the participating humans’ reward is not money but the career expertise they gain by

exploring and tagging web resources and inherently feeding that knowledge into the CDS ontology. The

learning process is completed when the reasoner verifies and subsumes user provided knowledge in the

Entity hierarchy (as explained in 6.2.2). It is intersting to observe that this is different from the implicit

way learning is performed in SAR (5.2.2). It can thus be concluded that the KAS architecture is capable

of supporting different learning styles.

6.2.5 Analyse

The analyse algorithm is presented in Table 4.3. The inputs and outputs that apply to the CDS context,

as well as the way they are processed throughout analysis, are explained in the following.

Input o. This parameter is null, as no changes are made to the ontology during monitoring. In

the CDS context, method findCrtState (line 1 in Table 4.3) does not refer to the state of the managed

resource in the SAR sense, but to the active changes (detected and still unanswered) in the careers’ space.

There is no utility to return, so getFiller (line 2) is not executed.

Input policy. The complete list of legal actions is extracted from the policy document.

Output u. This is null.

Output actions. The actions that apply to the active changes are selected from the policy

document and returned. For instance, if a set of tags is available, the relevant actions are tailor (a3)

and display (a4). This mapping between changes and actions is a heuristic that is programmed in the

analysis module rather than read from the policy document as in the case of SAR.

9All software sensors and the accompanying APIs are implemented by David Bennett, Codevate
10https://www.mturk.com/mturk/welcome
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6.2.6 Plan

The logic of the plan algorithm is presented in Table 4.4. Here follow the values for the input and output

parameters in the CDS problem domain.

Inputs planBank and u. These are null.

Input actions. The actions selected during analysis are passed on to the plan module via this

input parameter. Method selectAction (line 5 in Table 4.4) is in charge of building a plan from the

available actions with respect to the reasoner output. For instance, should the candidate actions be edit

(a2), classify (a5), tailor (a3) and visualise (a4), a possible combination if, in the current CDS state, M3
and M2 are active at the same time, a3 and a4 will only be included in the plan it the outcome of a5 is

successful.

Input and output p. Plan p starts empty and is gradually built by including the actions selected

during analysis, provided that the consistency of the ontology allows it.

6.3 Implementation Scenario

One step of the KAS methodology (Table 4.5) is illustrated on the CDS scenario in the following.

Since this is a finished, web application that is freely available to use by the general public (http:

//gcg-test.codevate.com/), it is useful to understand the information flow between the back-end,

semantic-autonomic layer and the front-end, web-based one. This is reflected by the flow diagram in Fig.

6.711, where the KAS instance for CDS is depicted in the middle block titled Ontology server. The

other components (not inlcuded in the KAS arcitecture) are necessary for the system’s online operation

as described below.

• OS, OT, OE and OC. These represent, respectively, the ontology segmenter, tailor, editor and

classifier. These are the server-side tools that execute the relevant plan actions on the ontology (or

its temporary copy as in the case of the editor).

• searcher and visualiser. These are part of the user interface (fig. 6.8) and allow registered

members of the public to input search keywords and view the result (namely, the ontology segment

containing first and second order parents, children and siblings of the concept matching the search

keyword).

• tagger and the tags collection. The tagger is a browser add-on (Fig. 6.9 shows it in use - the page

being annotated is nasajobs.nasa.gov). It is freely available for installation and allows users to

tag the web resources they explore with concepts from the ontology. All the annotations used by a

given explorer are kept in the tags collection associated to the explorer’s account.

• updater. Also part of the web interface, this allows registered users to edit the ontology. Fig.

6.10 shows the updater being used to add a child-to-parent connection relationship between

BIOLOGICAL COMPUTING and APPLIED BIOLOGICAL SCIENCES.
11The search server and the web server are implemented by David Bennett, Codevate
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• DB and search algorithm. These represent a relational database that stores all ontology concept

names and a search algorithm supporting the auto-completion feature provided by the searcher.

These are necessary to allow keyword suggestions to be offered in realtime.

OC

OS

DB KT

searcher

visualiser

Ontology serverSearch server

tagger

search
algorithm

ontology

Web server

domain
knowledge

1

23

4(OS)

5 7

OE updater8reasoner

9

OT
tags6(OT)

Fig. 6.7: KAS with state-less ontology - component view

6.3.1 Policy Definition and Ontology Learning

In the preparatory stage, method createPolicy (line 1 in Table 4.5) will create the policy document

with the actions prescribed by either the domain expert or the application developer. The input file is

generated (by running createInputFile - line 2) with the data compiled by the domain expert from

the knowledge sources presented in 6.2.1. With that as input, KT will produce an Onto++ instance

without discretisation (no State hierarchy), but with reification (supported by the Link hierarchy - Fig.

6.2).

6.3.2 Monitoring, Analysis and Planning

Let us assume that M4, M2 and M3 are active at the same time. This means that the user typed a keyword

(for instance, QUANTITATIVE METHODS, as illustrated in Fig. 6.8) in the searcher, a set of tags is avilable

to create and display a personal ontology with and some temporary changes have been submitted through

the updater (Fig. 6.10). The monitor will send all this information to the analyse module.

During analysis, the following actions will be selected: in reponse to M3, edit and classify, in

response to M4, segment and display, in response to M2, tailor and display. The planner (namely lines

11 - 16 in Table 4.5) will consider each of those actions, in turn (only the third and final part of the while

condition is active as there are no utilities nor a maximum plan length in the CDS domain).
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Fig. 6.8: KAS for CDS front-end: searcher and visualiser

Fig. 6.9: KAS for CDS front-end: tagger

Iteration 1. The edit action will be included in the current plan p (line 12). Updates are executed

on a temporary copy of the ontology (line 13). There is no reasoner invocation associated to an editing

operation, therefore monitoring the reasoner output (line 14) and analysing it (line 15) are both skipped.

Iteration 2. The classify action is added to the plan and executed on the temporary copy of the

ontology. This does entail running the reasoner, therefore the answer it provides (whether the edited
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Fig. 6.10: KAS for CDS front-end: updater

Fig. 6.11: KAS for CDS front-end: personal ontology

ontology is consistent or not) will be monitored (line 14) and analysed (line 15) to determine whether to

commit the changes to the public ontology.

Iteration 3. After the inclusion of the segment action, that too is executed on the ontology. This is

a reasoning-free action, therefore no additional monitoring/ analysis is necessary.

Iteration 4. Display is the next action to include in the plan. This will be executed on the managed

resource by populating the display (visualiser in Fig. 6.8) with the graph produced in iteration 3. The

displayed graph will either reflect the edits submitted at iteration 1 or not, depending on the outcome

of the classification performed in iteration 2. Again, display actions do not require reasoning, so the

monitor and analysis steps on lines 14 and 15 are skipped.

Iterations 5 and 6. The final two actions, tailor and display, will be included in plan p and

executed without running the reasoner. The outcome of the latter action, namely the personal ontology,

is displayed in the visualiser. Fig. 6.11 shows the personal ontology generated for a user (represented

by node Me) who annotated webpages with ontology nodes COMPUTING, ENGINEERING, LOGISTICS,

SPACE TECHNOLOGY and PROJECT MANAGEMENT. The first order neighbours of those nodes are also
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displayed and can be interpreted as suggestions for further exploration.

Afterthoughts about the personal ontology. This personalised graph contains all nodes a given

member has used in her online career exploration history, since creating her account. Thus, it can be

seen as a “mile marker” representing the user’s professional interests at the current moment in time.

Companies may also register on the system and create personal ontologies for the candidate they envisage

would be ideal to fill a certain role. Interested applicants can evaluate their eligibility by comparing

their personal ontology against that of the ideal candidate, noticing the overlaps and discrepancies and

ultimately getting an idea of the areas they need to work on in order to become stronger contestants.

6.3.3 Self-management support

The KAS implementation in the CDS domain supports the realisation of the four self-management

properties [101].

• Self-optimisation. The goal of this KAS instance is to provide its users with complete, correct

and intuitive knowledge about the career domain. The system continually optimises its service

by improving the “completeness” of the available information, that is, expanding the ontology

with new concepts and properties, either explicitly suggested by the users or extracted from their

relevant website browsing activity. By allowing/rejecting ontology updates based on their author’s

credibility (consolidated as the level of interaction with the system increases), the existing model

evolves towards accurately representing the community’s view of the professional world, rather

than the potentially biased understanding of a small group of domain experts. This way, a job

seeker will receive better, more complete and more reliable guidance with respect to available

roles and the qualifications they require.

• Self-protection. User edits causing the ontology to become unsatisfiable, for instance, adding

two properties stating that COMPUTING both is and is not a sibling of INFORMATICS, will be

flagged by the reasoner during ontology classification and ultimately rejected. Also, the system

protects against errors in the input file: if a cycle is detected, the concepts involved will be inferred

to be equivalent prompting the ontologist to revisit the source repository.

• Self-healing. Semantically incorrect user errors, for instance, asserting that MATHEMATICS and

MUSIC are synonyms, cannot be detected by the reasoner, as they are formally valid. However, the

KAS instance for the CDS problem domain is capable of healing by delegating the responsibility

of evaluating such edits to the community. If the author of the flawed edit is discredited several

times by the wider group of curators, the associated reputation score will be affected and future

updates will require further verification before being accepted in the live ontology.

• Self-configuration. Currently, hardware resources are statically allocated to the search server

and the ontology one. A future development may consist in configuring a dynamic algorithm to

perform this task.
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6.4 Evaluation

6.4.1 Autonomic Manager Evaluation

The instance of the KAS architecture deployed in the CDS application domain achieves the qualitative
indicators (refer to 2.1.3 for detailed definitions) below.

• Autonomicity: level 4 (adaptive). The KAS for CDS instance attains its goal of delivering

complete (within the scope of the available knowledge sources), correct and intuitive knowledge

that is relevant to the user’s career-related interests. Plans are dynamically elaborated using

candidate actions selected during analysis. However, level 5 on the autonomicity scale is not

achieved, given that sensor and effector APIs still have to be configured by the application

developer and are not commissioned proactively on the web services market.

• Architecture: flat. There is only one autonomic manager controlling the careers space and the

visualiser. As opposed to the SAR problem domain, the manager is deployed from a web server

and benefits from a user interface.

• Adaptation approach: utility based. Although not explicitly stated, as in the SAR context, the

goal state is seen as having the maximum utility in the CDS problem domain. The system will not

allow the display of a result that does not integrate data from all available sources, is not verified

by the reasoner or is not a graph.

• Learning: supported. The KAS instance for CDS expands its knowledge base by accepting user

edits as well as relevant information (e.g., job adverts) from third party providers, as explained in

6.2.4. All new data is subsumed by the reasoner in the correct hierarchy and automatically reified.

• Open: freely available. All web (e.g., Cytoscape) and console (OWL API) based tools used to

build the KAS instance for the CDS problem domain are available under a public licence. The

logic behind all components comprised by the KAS instance for CDS is described in full detail

(6.2).

• Evolvable. The proposed autonomic system is extensible and maintainable. The knowledge base

is seamlessly extended by every user exploring new resources, tagging them and performing edits

on the existing ontology. At an architectural level, the modular KAS structure, where each MAPE

component is underpinned by its own algorithm, is easily maintained, should an upgraded version

of a specific tool become available.

• Robustness. The ontology is exposed to the public, yet protected against logical inconsistencies

by the reasoner. Of course, some errors will escape the reasoner’s filter. For instance, an edit

asserting GOOSE as the child of concept MATHEMATICS will initially be accepted but ultimately

eliminated by the other members of the community. The goal of the ontology is to capture the

consensus of the intersted public - this may entail tolerating flawed knowledge in the early stages,

however, it is also the driving force that will eliminate inconsistencies in the long term. Given this

mecanism, ommunity curated ontologies are implicitly robust.
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• Validation: mixed. A combination of qualitative and quantitative analysis methods are used to

evaluate the proposed KAS instance.

Qualitative evaluation summary. As in the case of SAR, most qualitative indicators are positive. The

main difference is observed with respect to openness and scope, as KAS for CDS is intended to cater

to a much larger audience and, partly due to the increased computational capabilities of server specific

hardware, is capable of managing a significantly larger volume of knowledge. Yet, as will become more

evident in the quantitative analysis chapter, some of the subtle mechanics of the KAS architecture that

were easy to observe in the SAR context (such as the interplay between environmental change frequency

and the runtime duration of the MAPE cycle) will become obscured in the much more complex CDS

domain.

The quantitative measurements for autonomic behaviour evaluation (2.1.3) that apply to the CDS

problem domain are given below.

• The cost of autonomy is defined as the runtime duration of the most computationally expensive

operations in the MAPE loop: ontology learning and classification. On a Digital Ocean web

architecture operating on 4 CPUs @ 8GB RAM for the ontology server and 2 CPUs @ 4GB

RAM for the web server, KT takes 7s, whereas classification performed by the FaCT++ reasoner

terminates in 140s. The experiments were performed on a spreadsheet (with knowledge collected

by the domain expert) of 10000 rows.

• The speed of the autonomic response is defined as the average execution time of a query.

Semantic querying is the most computationally expensive operation within the autonomic loop,

therefore it provides a good approximation for the MAPE cycle duration. The query durations

(averaged over a series of 10 experiments) for a target ontology node with less than 50 neighbours,

between 50 and 100 neighbours, and over 100 neighbours are presented in Table 6.2. The same

web server configuration was used as for the cost of autonomy. The target ontology node refers

to the concept that matches the user’s search keyword. The number of neighbours includes first

and second order relations of the target ontology node (namely concepts separated from the target

node by at most two sibling, parent or child links).

• The learning index - the proposed way to calculate this is by using the same formula as the one

suggested for SAR (equation 5.1). In the CDS domain, p+ would represent the number of initially

tolerated bad edits (such as the previous GOOSE example) and p− would stands for the number of

ultimately rejected bad entries. Unfortunately, in the short time since the system prototype has been

released online (summer 2015), not enough data has been collected to allow such a calculation,

therefore system robustness analysis by means of li calculations is planned for future work.

Table 6.2: KAS for CDS - speed of autonomic response evaluation

connectivity δ t[ms]
<50 354

50 - 100 486
>100 2869
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Quantitative evaluation summary. The experimental measurements taken in the online operating

environment of KAS for CDS reveal that the system meets the computationally efficiency standards of a

live deployment. The data in Table 6.2 shows that the support provided by the semantic level (especially

the reasoner) to the autonomic components (analysis and planning, in particular) does not impair realtime

operation. In perspective, the proposed learning index analysis has the potential of providing more insight

into the system’s capacity of self-managing the ontology.

6.4.2 Semantic Components Evaluation

The qualitative and quantitative metrics available in the ontology related literature (covered in 2.2.5) and

applicable to the CDS domain are discussed in the following.

Qualitative Evaluation

ONTOMETRIC. As opposed to the Onto++ instance constructed for the SAR domain, the CDS

ontology does support n-ary relationships. Thus, one of the two flexibility criteria proposed by

ONTOMETRIC is met. The other, support for concept instances, is addressed in a different way, as

explained in the case of SAR: there are no individuals per se in the CDS ontology, as they are modelled

with classes, to enable more powerful reasoning.

OOPS! Given the size of the initial CDS ontology, only a segment of it (namely, the one produced

in response to a user query) was tested in OOPS!. The provided diagnosis showed no design pitfalls in

the considered ontology excerpt. It is noteworthy that this result was obtained from the first try (no KT

amendments were necessary as in the SAR case - 5.4.2). Thus, the improvements operated on KT during

SAR evaluation increased the tool’s efficiency across problem domains.

Quantitative Evaluation

Temporal bias cannot be measured by means of cosine similarity, as suggested in [79], given the

extremely high number of dimensions that the careers vector space would have. However, the CDS

ontology does remain an accurate representation of the modelled domain, given the way it supports

learning: as long as users continue to tag new relevant web resources with ontology concepts and also

edit the ontology in light of their newly acquired expertise, temporal bias will remain small.

Evaluating the cost of the ontology engineering process would be a complicated process, given

the multitude of knowledge sources and the development effort involved in each OE stage described

in 6.2.1. However, that is a one-off cost as, once the initial version of the ontology is extracted from

the domain expert’s spreadsheet, the ontology life cycle becomes partly automated - supported by the

autonomic loop - and partly delegated to explorers (Amazon’s mechanical turk scenario).

Ontology cohesion [68] is a quantitative measure that did not apply to SAR but is relevant to CDS.

In its original interpretation, this is calculated as

1− orphans
hubs

, (6.1)

where orphans refers to completely isolated ontology nodes and hubs represents the number of very

well connected concepts. In the CDS initial ontology, as extracted by KT from the input file, cohesion
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would always be 1, since isolated nodes are implicitly eliminated during the OL process. A more

relevant cohesion indicator would be to replace the number of orphans in equation 6.1 with that of poorly

connected nodes (less than 50 first and second order relations). A simple Java application was developed

to count poorly and highly connected nodes. It found that approximately 20% of the initial ontology

version had less than 50 relations, whereas 23% had more than 100. This accounts for a poor-hub ratio

of around 0.87, leading to a cohesion value of 0.13. This relatively low cohesion is to be expected in

the initial stages of the ontology life cycle, as it indicates that several areas of the careers’ space have

not yet been sufficiently explored. As more data from the online operation of the CDS system becomes

available, it would be useful to investigate how this cohesion score evolves over time.

Summary

As in the case of SAR, the CDS ontology analysis indicates a good compliance with recommended

design patterns and supports the sustainability of following an OE methodology such as NeOn. As a

special note, further analysis of ontology cohesion evolution will be performed in the future, as more

data becomes available.
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Conclusions

7.1 Contributions Overview

The presented work proposes a flexible architecture, the accompanying toolset and an implementation

methodology for an autonomic IT infrastructure employing a semantic knowledge management platform.

The ensemble of these three elements is titled KAS (Knowledge-centric Autonomic System). In this

context, the main contributions target the following areas:

• Design. The architecture underpinning KAS was developed as a blueprint, describing a flexible

configuration of autonomic elements (MAPE modules) and semantic components (ontology and

reasoner). The aim is for the architecture to be concrete enough to allow specific instances to be

built by following its design yet, at the same time, flexible and configurable, to enable usage across

multiple application domains.

• Implementation. Supporting tools for each architecture component were described both in

isolation and in interaction (by means of a generic methodology to control their execution flow).

The role of the proposed tools within the KAS architecture was illustrated and analysed on specific

implementation scenarios.

• Application. To demonstrate the adaptability of KAS to various practical scenarios, the

architecture, toolset and methodology were instantiated on two separate application domains,

namely a self-adaptive document rendering (SAR) problem and a career decision support (CDS)

platform. The instances exploit different parts of the architectural template and provide distinct

interpretations for some of the methodology, yet they both clearly implement KAS.

• Evaluation. A set of qualitative and quantitative metrics was extracted from the relevant literature

to create a common evaluation framework for the two KAS instances. The metrics were either

applied directly or adapted, in order to investigate the impact of semantic reasoning on autonomic

behaviour. This analysis provided insight into the relationship between domain representation

accuracy (state models, reified properties, etc.) and learning (as supported by the reasoner), on the

one hand, and autonomic planning and analysis, on the other hand.

• Reflection. Several design approaches and alternative tool implementations were considered

before making the final selection. This provided the context for critically analysing existing similar

solutions and distilling a set of guidelines and design principles for improving them through KAS.
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The success of that effort was assessed by interpreting the qualitative and numerical outcomes of

the proposed experimental case studies.

7.2 Lessons Learnt

The experience of framework development, implementation, evaluation and practical results analysis has

yielded the following conclusions.

• Semantic reasoning efficiency increases when the ontology it is performed on is developed in

compliance with a robust OE methodology (NeOn was chosen for both KAS instances). This

is chiefly due to the positive impact that observing good practices and design patterns while

extracting the ontology have on learning, a powerful facilitator of autonomic behaviour. This

conclusion was reached while addressing the first research question (1.2), relevant to the design of

an effective semantic-autonomic hybrid architecture.

• The modularity (low coupling, high cohesion) of the KAS architecture and methodology allows

for tools to be replaced with upgraded versions, for heuristics to be redefined, swapped, extended,

etc., without significantly impacting the implementation of the other architectural components.

This insight was gained in connection to investigating the second research question, pertaining to

the practical implementation of the proposed KAS architecture.

• The flexibility of semantic platforms is to be preferred over more traditional knowledge

management solutions in situations where the modelled concepts form a natural hierarchy (there

is no native support for inheritance in relational databases [114]). Other contextual factors in

favour of ontology use over alternative models are the need for insightful, contextual query

results, a higher emphasis on learning than on speed, continuously changing domains that feature

uncertainties, etc. This conclusion also relates to architectural design, therefore is relevant to the

first research question.

• Natural language processing is expensive and experimental. However, some form of automated

translation is necessary to convert the natural language that domain experts/ end users

communicate in into the machine readable formalism that autonomic systems employ. An intuitive,

cost efficient way of doing that is exposing the manager’s knowledge to the human users in the form

of a graph (especially since that is intrinsically compatible with the structure of ontology concept

and property models). The KAS instance for the CDS problem domain uses ontology visualisation

in the form of a graph as a means to provide perspective on a domain that is otherwise convoluted

and heterogeneous and where subtle connections are difficult to observe. Endowing the KAS

implementation in the career domain with a visualisation tool is connected to the second research

question.

7.3 Research Dissemination

The work presented in this thesis is the subject of several publications:
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• The preliminary analysis of the autonomic-semantic interaction and its relevance to other related

fields, such as semantic web services, was included in a broader scope survey paper.

Wang, H. H., Gibbins, N., Payne, T., Patelli, A., & Wang, Y. (2015). A survey of semantic web

services formalisms. Concurrency and Computation: Practice and Experience, 27(15), 4053-4072.

• The research rationale and framework in the SAR domain was discussed in:

Patelli, A., Calinescu, R., & Wang, H. (2014, June). Semantic reasoning for autonomic IT systems.

In Proceedings of the 19th international doctoral symposium on Components and architecture (pp.

13-18). ACM.

• The practical features of the KAS instance for the CDS problem domain were discussed in

Patelli, A., Lewis, P., Wang, H., Nabney I., Bennett D. & Lucas R. (2016). GCG Aviator: A

Decision Support Agent for Career Management

a demo paper accepted for publication by the Artificial Life and Intelligent Agents International

Symposium.

• The architecture and knowledge space curation application of the KAS instance for the CDS

problem domain were analysed in

Patelli, A., Lewis, P., Wang, H., Nabney I., Bennett D., Lucas R. & Cole A. (2016). Autonomic

Curation of Crowdsourced Knowledge: The Case of Career Data Management

accepted for publication by the International Conference on Cloud and Autonomic Computing.

7.4 Future Work

The main identified avenues for future research are:

• The development of an intermediate layer in the KAS architecture to allow interpreting online

descriptions of semantic web services, selecting the ones capable of configuring the APIs for the

employed sensors and executing them, thus enabling the system to receive monitored data without

the application developer’s help. This would support the increase of KAS instances’ autonomicity

level for 4 to 5.

• Investigation into the architectural variation where policies and plans are included in the system

ontology (and therefore reasoned upon).

• Automation of the mapping process between the personal ontology of KAS for CDS users and that

published by recruiting companies to describe the profile of an ideal candidate.

• Additional data collection from the online operation of the KAS for CDS instance to support

further experimental analysis based on the learning index and the ontology cohesion measures.
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