

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately
(openaccess@aston.ac.uk)

http://www.aston.ac.uk/library/additional-information-for/aston-authors/aston-research-explorer/takedown-policy/

HYBRID MOBILE COMPUTING FOR
CONNECTED AUTONOMOUS

VEHICLES

JIAN WEI
Doctor of Philosophy

April 2018

ASTON UNIVERSITY
©Jian Wei, April 2018

Jian Wei asserts his moral right to be identi�ed as the author of this thesis.

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from the
thesis and no information derived from it may be published without appropriate permission

or acknowledgement.

ASTON UNIVERSITY

Hybrid Mobile Computing for Connected Autonomous Vehicles
Doctor of Philosophy

Jian Wei
April 2018

Summary

With increasing urbanization and the number of cars on road, there are many global issues on
modern transport systems, Autonomous driving and connected vehicles are the most promising
technologies to tackle these issues. The so-called integrated technology connected autonomous
vehicles (CAV) can provide a wide range of safety applications for safer, greener and more e�-
cient intelligent transport systems (ITS). As computing is an extreme component for CAV sys-
tems, various mobile computing models including mobile local computing, mobile edge com-
puting and mobile cloud computing are proposed. However it is believed that none of these
models �ts all CAV applications, which have highly diverse quality of service (QoS) require-
ments such as communication delay, data rate, accuracy, reliability and/or computing latency.

In this thesis, we are motivated to propose a hybrid mobile computing model with objective
of overcoming limitations of individual models and maximizing the performances for CAV ap-
plications. In proposed hybrid mobile computing model three basic computing models and/or
their combinations are chosen and applied to di�erent CAV applications, which include mobile
local computing, mobile edge computing and mobile cloud computing. Di�erent computing
models and their combinations are selected according to the QoS requirements of the CAV ap-
plications. Following the idea, we �rst investigate the job o�oading and allocation of comput-
ing and communication resources at the local hosts and external computing centers with QoS
aware and resource awareness. Distributed admission control and resource allocation algo-
rithms are proposed including two baseline non-cooperative algorithms and a matching theory
based cooperative algorithm. Experiment results demonstrate the feasibility of the hybrid mo-
bile computing model and show large improvement on the service quality and capacity over
existing individual computing models. The matching algorithm also largely outperforms the
baseline non-cooperative algorithms.

In addition, two speci�c use cases of the hybrid mobile computing for CAV applications are
investigated: object detection with mobile local computing where only local computing re-
sources are used, and movie recommendation with mobile cloud computing where remote cloud
resources are used. For object detection, we focus on the challenges of detecting vehicles, pedes-
trians and cyclists in driving environment and propose three methods to an existing CNN based
object detector. Large detection performance improvement is obtained over the KITTI bench-
mark test dataset. For movie recommendation we propose two recommendation models based
on a general framework of integrating machine learning and collaborative �ltering approach.
The experiment results on Net�ix movie dataset show that our models are very e�ective for
cold start items recommendation.

Keywords: CAV, QoS, Hybrid Mobile Computing, Object Detection, Recommendation System

2

Acknowledgements

First of all, the deepest gratitude goes to my supervisors, Dr. Jianhua He and Dr. Zuoyin Tang,
for their constant research guidance through my entire PhD journey. During the writing of
this thesis, they have carefully read the manuscript and provided professional instructions and
suggestions, without which the completion of this thesis would be impossible.

Next I would like to thank all the colleagues and teachers at Aston University and Shanghai
Jiao Tong University, who once o�ered me help in the past three years. I am greatly indebted to
Dr. Kai Chen, Dr. Yi Zhou and Dr. Qu Zhou, who have provided crucial support in my academic
studies.

I also feel grateful to my friends and classmates who have spent time listening to me and
giving me advice when I met problems. Special thanks to Xiaotian Lu, Wen Cui, Yao Deng,
Haoyuan Xin and Zhi Qiao for their e�orts on proofreading my thesis.

Finally my sincere thanks are given to my family for their patience and encouragement.

3

Contents

Summary 2

Acknowledgements 3

Acronyms 6

List of Figures 10

List of Tables 12

1 Introduction 13
1.1 Autonomous Driving and Connected Vehicles . 13
1.2 Applications and Research Challenges for CAV 16
1.3 Research Motivations and Objectives . 18
1.4 Thesis Outline and Contributions . 22

2 QoS Aware Hybrid Mobile Computing Model 27
2.1 Introduction . 27
2.2 Related Works . 28
2.3 Proposed Hybrid Mobile Computing Model . 29
2.4 Benchmarking Experiments for Analytics Applications over Fogs 36
2.5 QoS Aware Service and Resource Management 43
2.6 Evaluation of ACRA Algorithms . 52
2.7 Conclusion . 59

3 Object Detection with Mobile Local Computing 62
3.1 Introduction . 62
3.2 Related Works . 64
3.3 Network Architectures . 66
3.4 Experiments . 75
3.5 Conclusion . 84

4 Recommendation System with Mobile Cloud Computing 86
4.1 Introduction . 86
4.2 Related Works . 89
4.3 Proposed Recommendation Model . 91
4.4 Performance Evaluation . 97
4.5 Conclusion . 104

5 Conclusion and Future Work 105
5.1 Conclusion and Summary . 105
5.2 Future work . 107

4

Contents

Bibliography 109

5

Acronyms

A-Fogs Ad-hoc fogs.

AaaS Analytics as a service.

ACF Aggregated channel features.

ACRA Admission control and resource allocation.

ADAS Advanced driving assistance systems.

AI Arti�cial intelligence.

ALS Alternating least squares.

AP Average precision.

AWS Amazon web services.

BFS Breadth �rst search.

BN Batch normalization.

CAV Connected autonomous vehicles.

CB Content-based.

CCS Complete cold start.

CDL Collaborative deep learning.

CF Collaborative �ltering.

CNN Convolutional neural networks.

CPU Central processing unit.

CS Cold start.

CTR Collaborative topic regression.

CV Connected vehicles.

D-Fogs Dedicated fogs.

6

Acronyms

D2D Device to device.

DAE Denoising autoencoder.

DBB Deconvolution building blocks.

DPM Deformable parts model.

DSRC Dedicated short radio communications.

ETSI European Telecommunications Standards Institute.

FC Fully connected.

FCW Forward collision warning.

GPS Global positioning systems.

GPU Graphics processing unit.

HMCM Hybrid mobile computing model.

HOG Histogram of oriented gradients.

IaaS Infrastructure as a service.

ICF Integral channel features.

ICS Incomplete cold start.

IoU Intersection of union.

ITS Intelligent transportation systems.

LDA Latent Dirichlet allocation.

LR Logistic regression.

MANET Mobile ad-hoc networks.

MCC Mobile cloud computing.

MF Matrix factorization.

MIMO Multiple input multiple output.

MS-CNN Multi-scale CNN.

NCS Non-cold start.

7

Acronyms

NMS Non-maximal suppression.

OPBB Object proposal building blocks.

PaaS Platform as a service.

PCWS Pedestrian collision warning systems.

PMF Probabilistic matrix factorization.

QoS Quality of Service.

RDD Resilient distributed dataset.

RoI Region of interest.

RPN Region proposal network.

RRC Recurrent rolling convolution.

SA Simple average.

SaaS Software as a service.

SAE Society of Automotive Engineers.

SDAE Stacked denoising autoencoder.

SVD Singular value decomposition.

SVM support vector machine.

TC Triangle counting.

TF-IDF Term frequency-inverse document frequency.

ToA Top of All.

TOPS Trillion operations per second.

ToU Top-of-User.

V2I Vehicle to infrastructure.

V2N Vehicle to networks.

VANET Vehicle ad-hoc networks.

VCC Vehicular cloud computing.

8

Acronyms

VM Virtual machines.

WCC Weakly connected component.

WLAN Wireless local area network.

9

List of Figures

1.1 Mobile cloud computing and cloudlet architecture. 19
1.2 Fog computing and vehicular cloud computing. 21

2.1 A hybrid mobile computing model architecture. 29
2.2 Function model for fog nodes. 30
2.3 Tra�c light scheduling application with interconnected fogs. 34
2.4 Data analytics applications for smart city. 36
2.5 Overall benchmarking framework. 37
2.6 Raspberry Pi and Spark architecture. 38
2.7 Job completion time of LR and SVM algorithms versus A-Fog computer settings

over di�erent jobs . 41
2.8 Job completion time of LR and SVM algorithms versus D-Fog computer settings

over di�erent jobs. 42
2.9 Service and resource management framework. 44
2.10 Illustration of communications among Fogs and jobs. 46
2.11 Illustration of jobs to computing centers matching process. 52
2.12 Simulator �nite state machines. 53
2.13 Analytics services performance with di�erent matching methods versus job ar-

rival rate over A-Fogs only environment. a) job blocking probability; b) service
utility; c) user satisfaction . 56

2.14 Analytics services performance with di�erent matching methods versus num-
ber of A-Fogs. a) job blocking probability; b) service utility 57

2.15 Performance with di�erent matching methods versus matching period. a) job
blocking probability; b) service utility . 58

2.16 Analytics services performance over hybrid mobile computing model against
job arrival rate. a) job blocking probability; b) service utility. 60

2.17 Proportion of jobs completed in di�erent computing environments to those in
the ‘All’ computing environment. 61

3.1 Example di�cult images for object detection. 63
3.2 Overall pipeline of enhanced MS-CNN model. 67
3.3 Various feature fusion methods for deconvolution building block (DBB). 68
3.4 Object proposal building block. 70
3.5 Distribution of aspect ratios for di�erent object classes in KITTI benchmark

training set. 71
3.6 Example of overlapped proposals. 73
3.7 Object detection examples on KITTI testing set with MS-CNN and our method. 83
3.8 Example images from KITTI testing set with false object detection by our method. 85

4.1 A simpli�ed representation for movie CF recommender systems. 87
4.2 Illustration of non-CS item (a), ICS item (b) and CCS item (c), where

√
indicates

a known rating. 88

10

List of Figures

4.3 A graphic structure of SDAE. 92
4.4 The graphical modi�cation of IRCD-CCS framework. 95
4.5 The graphical modi�cation of IRCD-ICS framework. 96
4.6 Work�ow of data preprocessing on movie plots. 98
4.7 Histogram of movies on the date of their �rst ratings. 98
4.8 Training curves of timeSVD++ and IRCD-ICS model. 102
4.9 Performance comparison of IRCD-CCS and IRCD-ICS models for rating predic-

tion of ICS models, K=100. 103

11

List of Tables

2.1 Comparison between x86 server and Raspberry Pi. 38
2.2 Job types for A-Fog experiments. 39
2.3 Computer settings used in the A-Fog experiments. 39
2.4 Computer settings used in the D-Fog experiments. 43
2.5 Job types for D-Fog experiments with di�erent number of vertices (106) and

dataset size (GB). 43
2.6 System parameter settings. 54

3.1 Three object di�culty levels for KITTI dataset. 75
3.2 Con�gurations of anchor size and �lter size (width×height) with di�erent im-

age size. 77
3.3 Performance comparison of CNN variants on validation set. 79
3.4 Average inference time for various network architectures. 79
3.5 Performance comparison of recent published works and our method on the test

set. 83

4.1 Statistics of the training and test datasets for CCS movie experiment. 99
4.2 Statistics of the training and test datasets for ICS movie experiment(N=5). . . . 99
4.3 Performance comparison of prediction models for CCS movies with Net�ix dataset. 100
4.4 Performance comparison of prediction models for ICS movies with Net�ix dataset. 101

12

1 Introduction

1.1 Autonomous Driving and Connected Vehicles

A rapid growth of worldwide vehicle stock was witnessed in the last two decades. According to
[1], the total number of vehicles was reported to be 800 million in 2002, and was expected to rise
to two billion by 2030. However, the fast increasing number of vehicles also exacerbates major
global issues facing by the transport systems, such as big number of fatal road accidents, heavy
productivity losses and fuel waste due to congestion, road pollution and large contribution to
green house emissions. In 2016, more than £30 billion were wasted in tra�c jams in UK. The
annual global deaths caused by road crashes is nearly 1.3 million, and 20-50 million people were
injured or disabled.

Autonomous driving and connected vehicles are two of the most promising technologies to
tackle the above challenges faced by modern transport systems. The so-called integrated tech-
nology connected autonomous vehicles (CAV) can provide a wide range of safety applications,
transport e�ciency applications and entertainment applications. Next the technologies of au-
tonomous driving and connected vehicles are introduced respectively. The research challenges
on mobile computing for CAV are analyzed. Then the research objectives and contributions of
this thesis are presented.

1.1.1 Advanced Driving Assistance Systems

According to the study by National Highway Transportation and Safety Administration, 93% of
the road accidents are due to human error, with driver inattention being the primary cause. Thus
autonomous vehicles is an ambitious vision to address this problem by “driving” themselves
without humans control and intervention.

Autonomous driving was developed on top of the advanced driving assistance systems (ADAS).
ADAS is a type of technologies designed to support driving and reduce accidents. It is moving
forward fast globally, with an estimated worth of $70 billion by 2030. Equipped with di�erent
sensing systems and advanced data processing algorithms, ADAS can support driving and warn
drivers of impending danger so that the driver can take corrective action, or even intervene on
the driver’s behalf. It can provide many enhanced safety features such as blind spot detec-
tion and forward collision warning (FCW). While present ADAS use di�erent sensing systems
such as ultrasonic, radar, video, infrared and laser radar, the most common sensing solutions
are based on video and radar. There are many successful ADAS products and applications, in-
cluding FCW systems and pedestrian collision warning systems (PCWS) [2]. However, even

13

1 Introduction

with powerful computing and sensing devices, the current sensing systems can’t provide sat-
isfactory performance expected by road safety standards. According to the latest KITTI vision
benchmark results [98], which is the largest public dataset dedicated to ADAS and autonomous
driving benchmarking, even with graphics processing unit (GPU) computer and deep learning
neural networks, the pedestrian and cyclist detection accuracy is only 72.4% and 67.5%, respec-
tively, which is still far away from the expected level. It is noted that fully autonomous driving
has higher level of automation than ADAS, but it also shares the limitations of ADAS. The
strong limitation of autonomous driving is underlined by the Tesla fatal crashes.

1.1.2 Connected Vehicles

Connected vehicles (CV) is another accident avoidance technology, which is designed to trans-
mit basic safety information between vehicles to facilitate warning drivers of impending crashes
[4]. It mainly relies on communications and global positioning system (GPS) sensors. CV tech-
nology was extended somehow from mobile ad hoc networks (MANET) and vehicle ad hoc
networks (VANET), but with more focus on collaborative driving safety. In the early days of
CV research and development, IEEE 802.11p which was developed by IEEE was the main stan-
dard used for CV. There are two major CV systems based on IEEE 802.11p, including dedicated
short radio communications (DSRC) promoted by the United States [5] and ITS-G5 developed
by European Telecommunications Standards Institute (ETSI) [6]. Using on-board radio commu-
nication, mainly DSRC technology, messages can be exchanged with information about host
vehicle’s speed, heading, brake status and other information to other vehicles. It can achieve
nearly twice the detection range of current ADAS and overcome the non-line of sight object
detection problem in the ADAS products, which helps vehicles perceive threats sooner. US
Department of Transportation issued a proposed rule that all new cars starting in 2021 are
equipped with vehicle communication devices. Although CV holds great potential in avoiding
crashes and saving lives, there are still many challenges faced by the applications of CV after
more than a decade development. Technically, DSRC safety channel is prone to safety message
congestion. Unreliable and delayed message delivery can make the safety messages useless and
even generate adverse safety consequence. There are increasing research and standardization
e�orts on 5G cellular technologies for vehicle communications, which can o�er lower latency
and higher data rate. 4G/5G cellular technology has wide area coverage and can provide good
quality of service (QoS). Device to device (D2D) [7, 8] is widely accepted as a candidate of 5G
technology for vehicle. However, existing 5G D2D developments are focused on unicast com-
munication, which does not meet the broadcasting needs of road safety applications. Another
strong limitation of CV is that it is only e�ective when a critical mass of vehicles on the road
can send and receive safety messages.

14

1 Introduction

1.1.3 Connected Autonomous Vehicles

It is noted that the local sensors based ADAS technology and radio communication based tech-
nology have their own advantages and disadvantages. ADAS is a proactive road safety technol-
ogy, using mainly the host vehicle’s own computing and sensing resources. No collaboration is
needed to achieve ADAS functionalities. On the other hand, CV is a passive road safety tech-
nology, which is completely relying on message exchange with neighbor vehicles to achieve
driving context awareness. As both technologies are advancing with great paces and they can
work together without major technical obstacles, there are increasing research development
interests on the integration of connected vehicles and autonomous driving, leading to the term
connected autonomous vehicles (CAV).

One of the major drives for CAV is that autonomous driving and connected vehicles tech-
nologies can complement each other and are really needed to work together to achieve safer,
greener and more e�cient ITS, in order to tackle the ITS challenges mentioned beforehand.

Another major drive comes from the increasing popularity and market potentials of au-
tonomous driving. In the past several years, huge attention has been paid to autonomous driving
from both industries and research communities. Many big automakers and IT companies have
announced the plans to build fully autonomous cars in the next two or three years, including
Tesla, Volvo, Google, etc. The huge investments and the technology advances such as those on
deep learning are pushing the autonomous driving closer to reality.

There are �ve automation levels de�ned by Society of Automotive Engineers (SAE) for au-
tonomous driving:

• level 1 automation: vehicle is under human control except for some driving assist tasks
like small steering or acceleration.

• level 2 automation: vehicle can automatically perform driving actions but the driver must
stay alert and monitor the environment at all times.

• level 3 automation: driver doesn’t need to monitor the environment but must be ready to
control the vehicle at all times with notice.

• level 4 automation: vehicle can automatically drive itself almost all the time, but driver
needs to take over under certain tra�c and environment conditions such as unmapped
areas or severe weather .

• level 5 automation: vehicle is capable of performing all driving functions under all con-
ditions

According to the automation levels above, the ADAS technologies may be su�cient to achieve
level 1 and level 2 automation. But to achieve level 3 and above automation, connected vehicles
technology is a necessity.

15

1 Introduction

1.2 Applications and Research Challenges for CAV

While CAV holds great promises for future safer and greener ITS, there are also many research
challenges faced by CAV. In this section, a wide range of applications of CAV are presented.
Then the major technology challenges are discussed. More speci�cally, mobile computing chal-
lenges for CAV technology are analyzed.

1.2.1 Applications of Connected Autonomous Vehicles

CAV can support a wide range of applications, which can be separated into three categories:
driving safety applications; transport e�ciency applications; entertainment and comfort appli-
cations.

Driving safety applications are the main driving forces for CAV with main goals of reduc-
ing road accidents and improving driving safety. As introduced earlier, they can be supported
by either autonomous driving or connected vehicles separately, or by both technologies. Road
safety applications are based on environment sensing via local sensors or collaborative context
awareness messages exchange. With the development of computing engine and data analytic
algorithms, vehicles could e�ciently detect surrounding objects such as lane, other vehicles,
pedestrians and tra�c signs and make decisions accordingly. Example safety applications in-
clude forward collision detection, forward collision warning, emergency braking, rear collision
warning, lane departure warning and lane keeping.

Transport e�ciency applications are mainly used to improve mobility management and road
e�ciency, reduce transport congestion and cost. Information such current tra�c, road works
and driving environment can be exchanged among the vehicles and transport infrastructure, to
achieve transport e�ciency. Example transport e�ciency applications include emergency ve-
hicles noti�cation, coordinated tra�c lights, live tra�c conditions, high de�nition map creation
and update;

Entertainment and comfort applications involve the entertainment and comfort of the driver
and passengers. The applications are mainly supported through connected vehicles technology,
such as vehicle to infrastructure (V2I) and vehicle to networks (V2N) technologies. Example
entertainment applications include music streaming, video streaming, online gaming, virtual
reality, etc.

1.2.2 Research Challenges

While CAV technology holds great potential, there are still many technical and non-technical
challenges faced by CAV. With rapid development of autonomous driving and connected ve-
hicles technologies, various autonomous driving systems have been developed. There are two
representative technology frameworks from Mobileye and Baidu, which also partially highlight
the major technology challenges.

In the Mobileye autonomous driving technology framework, they identi�ed three technology
pillars, which include sensing, mapping and driving.

16

1 Introduction

1.2.2.1 Sensing

Sensing technical pillar is mainly responsible for developing environmental model and 360 de-
gree of driving environment awareness. It relies on local sensors and radio communications and
advanced computing algorithms (such as deep learning algorithms for object detection). while
there are increasing e�orts in improving the sensing accuracy and reducing the cost of sensors,
how to fuse the information from various type of sensors is still a big challenge. In addition,
providing expected latency, data rate and reliability by radio communication technologies such
as IEEE 802.11 are still very challenging for CAV applications.

1.2.2.2 Mapping

Mapping technical pillar is responsible for developing and maintaining high-de�nition maps for
autonomous driving. The existing GPS technology has an accuracy around 5 to 10 meters, which
is far away from the expected positioning accuracy of centimeters for autonomous driving. How
to achieve accurate, scalable, real time and low cost high de�nition map is a big challenge for
CAV. Mobileye proposed a crowd sourcing approach, called RoadBook, in which users collect
real time information and send to a server for processing. The server processes the received
road maps and send the updated high de�nition maps to the drivers.

1.2.2.3 Driving

The Driving technological pillar is responsible for assessing threats, planning maneuvers and
negotiating the multi-agent games of tra�c. The game players may be human drivers or com-
puter drivers. While reinforcement learning technologies are applied for autonomous driving
decision making and collaboration, such research is still on the early stage and there is a long
way to go before it becomes mature.

The technology framework of Baidu is presented in their open source system Apollo [3].
In addition to the three technical pillars proposed in Mobileye’s technical framework, Apollo
covers more technical general computing and operation system. In the Apollo, the whole CAV
system is divided into vehicle platform, hardware platform, software platform and cloud ser-
vice platform. The Apollo autonomous driving framework covers broad areas, but the core
technologies are similar to those discussed in the Mobileye’s technology framework.

Apart from the above major technological challenges, there are also many other technical
and non-technical challenges, such as security issue, privacy issue, reliability issue. Connected
vehicles is a necessary component of autonomous vehicles with high level driving automation.
However, a big concern with CAV is the security as hackers may get access and control the
autonomous vehicles. In addition, privacy is another big issue for CAV. For example, sense
data gathered from other cars such as location, mobility pattern could be collected by other
vehicles or hacked and be used for personal or commercial reasons. Reliability is another major
issue for CAV. From the component wise, the cars, sensors and radio communication devices
all could malfunction. From the system wise, the hardware system, the mapping system and

17

1 Introduction

computing system may also fail. Any failure of the components or sub-systems could lead to
fatal consequences, which is much more severe compared to that in human-driven vehicles.

1.3 Research Motivations and Objectives

1.3.1 Research Motivations

In the previous section, the high level technical challenges including sensing, mapping and driv-
ing are discussed for autonomous driving applications. In addition to the autonomous driving
(mainly relevant to the driving safety applications of CAV), there are other technical challenges
faced by CAV, for example, big data analytics and computing for transport e�ciency and enter-
tainment applications supported by CAV. In this thesis mobile computing, which is one of the
low level technical challenges for CAV, is investigated.

Mobile computing is the cornerstone of CAV, as all the CAV applications are heavily relying
on mobile computing. The core driving safety applications such as forward collision detec-
tion and warning systems require very high accuracy object detection, which should be ideally
achieved by deep learning techniques. But there are strong limitations on the computation ca-
pacity in the vehicles. Next we discuss the challenges on the mobile computing faced by the
CAV applications.

Firstly, as we discussed in the previous section, there are a wide range of applications sup-
ported by CAV, including driving safety, transport e�ciency and entertainment applications.
These CAV applications have highly diverse QoS requirements on computing, communications
and sensing. Driving safety applications require very high computation speed, low latency and
they generate very high volume of sensing data, which is extremely hard for the current ra-
dio technologies to support. For example, collision avoidance applications require extremely
high object detection accuracy and low computation latency, high de�nition map applications
require high speed communication and fast data analytics. On the other hand, the non-safety
CAV applications have relatively less strict requirements on computing and communication
latency, and communication data rates. For example, video streaming and virtual reality appli-
cations can accept relatively higher latency but still require high speed communication.

Secondly, although the computing power of mobile devices has increased signi�cantly in the
last decades, it is noted that the computing power of devices in vehicles is still highly limited
compared to the desktop GPU computers. Due to the mobility, computing and communication
capabilities of vehicles, it is still very challenging to support all these CAV applications, which
have diverse QoS requirements (such as communication delay, data rate, accuracy, reliability
and/or computing latency).

How to support the CAV applications with the limited computing and communication power
of the vehicles is still an open research issue, which requires signi�cant research and develop-
ment e�orts. While there have been wide research e�orts on mobile computing, it is believed
that none of mobile computing models �ts all the CAV applications.

18

1 Introduction

Next we presented a survey of relevant mobile computing models for CAV applications. Then
the research objectives are presented.

1.3.2 Existing Mobile Computing Models

1.3.2.1 Mobile Cloud Computing

Within the last several years we witnessed an explosive growth of mobile smart personal de-
vices (e.g. smart phones and tablets), which raised huge demands on mobile applications and
services. However the limitations of mobile devices on computation resources (e.g. CPU, stor-
age) and energy prevent advanced and complex mobile applications and services to be run at
these devices directly. Mobile cloud computing (MCC) is an e�cient solution, which integrates
the general cloud computing to mobile computing environment to bring the rich cloud compu-
tation resources to the mobile users [15]. It aims to overcome the computation resource problem
of mobile devices to run rich mobile applications with improved quality of experiences. Unre-
stricted mobile applications can be enabled by ubiquitous access to the computation and storage
resources at the remote clouds. Mobile cloud computing is expected to be a dominant way for
mobile application operations. Fig. 1.1(a) presents a system architecture for MCC. The main
research problems on MCC include computing task o�oading and minimizing network band-
width and energy consumption [15]. As the computing devices installed in vehicles are also
characterized by the features of limited computation and energy resources, the MCC solution
is applicable to some CAV applications and services as well.

(a) MCC. (b) Cloudlet.

Figure 1.1: Mobile cloud computing and cloudlet architecture.

19

1 Introduction

1.3.2.2 Mobile Edge Computing

Several edge computing models have been proposed in the literature, which are mainly designed
to tackle the data analytics problems in the cloud computing based solution. The principle is to
move computing resources and analytics services closer to the things where data is generated.
In this following we introduced relevant edge computing models and technologies for data
analytics services.

Cloudlet and its kind are mobility enhanced small scale clouds, which are introduced to ad-
dress the problems faced by MCC, by moving clouds to the edge of the Internet to support
real-time mobile applications. Cloudlet is an extension of and supplementary to the cloud [16].
A cloudlets based computing system architecture is presented in Fig. 1.1(b), where cloudlets
locate in the middle of the path from mobile devices to clouds. Usually cloudlets are deployed
one wireless hop away from the mobile devices, e.g. connected to the cellular base stations or
WiFi access points. In this way cloudlets can provide powerful computing resources to support
interactive mobile applications.

Apart from the technical challenges faced by MCC such as task o�oading and admission
control, user mobility poses extra challenges to cloudlets such as hando� of virtual machines.
Clearly cloudlets will bene�t large scale data analytics services. However, cloudlets are usually
deployed by third-party and deployed in a large number of locations, which may not be close
enough to the end devices where a large volume of data is generated and analytics services are
needed.

Fog computing is originally proposed by Cisco speci�cally for Internet of Things (IoT) appli-
cations [12, 17]. The idea is similar to cloudlet by moving computing closer to the places where
data is generated. However, in the fog computing model any device with computing, storage
and network connectivity (the so-called fog node) can join the data analysis tasks, such as smart
phones, laptops, video surveillance cameras, routers and WiFi access pointers. This is di�erent
from the cloudlets where dedicated small scale data centers are deployed by third-parties. A
system architecture of fog computing is presented in Fig. 1.2(a).

1.3.2.3 Vehicular Cloud Computing

Vehicular cloud computing (VCC) is a computing platform proposed to harness the computing
and sensing resources of interconnected vehicles [18–20]. Its main interests focus on the con-
tents from vehicles and sensors within a local area. VCC is a variant of mobile cloud computing
within which services are produced, maintained and consumed [18]. A system architecture of
VCC is presented in Fig. 1.2(b). VCC has a deep root on VANET. M. Whaiduzzaman et al present
a survey on VCC with discussion on system operations (such as cloud resource discovery, cloud
formation and release) and design principles [19].

It is noted that although computing resources sharing is claimed as an important function of
VCC, we are not aware of reported experiments that use these resources and study the feasibility
for data analytics services. The main concerns of VCC are on the vehicle tra�c management and

20

1 Introduction

(a) Fog computing. (b) VCC.

Figure 1.2: Fog computing and vehicular cloud computing.

driving safety applications. The application and capabilities of VCC for IoT data analytics and
the impact of wireless connection bandwidth and vehicle mobility have not been investigated.

1.3.2.4 Mobile Local Computing

Apart from the above research e�orts of utilizing external computing resources (e.g., in the
clouds, network edge or neighbor vehicles), there is a trend of increasing local computing power
and using it for more advanced arti�cial intelligence (AI) computing tasks. Examples include
the AI-integrated circuit in the latest Huawei smart phones Mate 9 for applications such as
face detection, and the NVidia embedded GPUs for autonomous driving such as Jetson TX1.
Compared to central processing unit(CPU), the NVidia GPUs are very good for matrix-matrix
multiplies and also have very high bandwidth to memory, which makes them e�cient in ex-
ecuting computer vision and deep learning tasks. This technical trend may be explained by
the increasing computing power of mobile devices following Moore rule, and the necessity of
keeping some advanced AI computing tasks local due to the real time computing requirement
of autonomous driving applications.

1.3.3 Research Objectives

According to the introduction on the CAV applications and the mobile computing models, it
can be found that there is no mobile computing model which can �t all the CAV applications.
For the CAV safety applications, they have very strict computing latency requirement. For
example, for the camera vision based forward collision avoidance applications, the computing
system should be able to detect objects in the images in the speed of 15 or more frames per

21

1 Introduction

second. Such computing tasks are unlikely to be performed in the edge or remote clouds, which
has too high communication delay, not to mention the needed computation time. On the other
hand, for the collaborative safety and transport e�ciency applications, it is neither practical nor
necessary to transport the vehicle data to every other vehicles. Performing data analytics and
global network control computing tasks at the edge or remote clouds is a much better solution,
which have virtually unlimited computing and storage resource.

In order to address the mobile computing problems faced in CAV systems, in this thesis we are
motivated to propose a hybrid mobile computing model to deliver the CAV applications. In the
hybrid mobile computing model the computing resources at the local host and external entities
are e�ciently utilized according to the CAV application requirements. The main objectives of
this thesis are summarized as below:

• Develop a hybrid mobile computing model for CAV applications, which should help
achieve the expected computing performances such as low computing latency, high scal-
ability and low communication bandwidth consumption. To achieve the objectives, the
three mobile computing models (namely mobile local computing, mobile edge comput-
ing and mobile cloud computing) and/or their combinations should be chosen and applied
to di�erent CAV applications according to the computing performance requirements of
these CAV applications.

• Design e�cient algorithms to improve the performance of the hybrid mobile computing
model. In the hybrid mobile computing model, there are many vehicles running various
CAV applications and many local and external computing resources. There are strong
requirements on the algorithms to determine which computing jobs should be run locally
or externally, and if to be run externally, it is further needed to determine which external
computing center to run the job and allocate how much computing resources for this job.

• Design and evaluate computing algorithms for example CAV applications with various
mobile computing models, to demonstrate the e�ectiveness of the hybrid mobile comput-
ing model.

• Develop system level experiment and/or simulations to evaluate the e�ectiveness of the
hybrid mobile computing model and the individual mobile computing models, and facil-
itate the computing system planning and optimization.

1.4 Thesis Outline and Contributions

Following the research objectives, e�ective research works have been conducted and interesting
results were obtained. Next the thesis outline and the research contributions of this thesis are
summarized.

In Chapter 2, a hybrid mobile computing model is proposed, which is applicable to CAV
applications as well as to general data analytics. In the proposed hybrid mobile computing

22

1 Introduction

model, not only the local computing resources and external cloud computing resources, but
also opportunistic computing resources from neighbor vehicles or other mobile devices, are
considered to perform CAV computing tasks. To address the QoS requirements of the CAV
computing tasks and the related cost, innovative computing job admission control, o�oading
algorithms and resource allocation schemes are designed and evaluated. The main research
work and contributions of this chapter are summarized below.

• We proposed a hybrid mobile computing model which includes multiple interconnected
ad hoc Fogs (A-Fogs), dedicated Fogs (D-Fogs) and clouds for large scale mobile comput-
ing services. With opportunistic computing resources and distributed computing engines,
the proposed framework can help mitigate the problems faced by cloud only or local com-
puting only solutions. In addition the interconnection and cooperation among the fogs
can improve resource utilization and edge analytics capacity.

• We developed a framework for QoS aware service and resource management with op-
portunistic computing and communication resources, which is vital for comprehensive
evaluation and improvement of the hybrid mobile computing model. An optimization
problem of analytics job admission control and resource allocation (ACRA) was formu-
lated with objective of maximizing the service utility for edge analytics. The comput-
ing and communication resources were jointly considered in the optimization problem.
Workload models with distributed computing engine Spark [63] were also created for the
ACRA process from benchmark experiments over A-Fogs and D-Fogs.

• As the ACRA optimization problem is NP-complete with very high computation com-
plexity, two baseline non-cooperative ACRA algorithms were proposed, and a QoS aware
matching theory based cooperative algorithm was designed to solve the problem. A sys-
tem level simulator was developed for performance evaluation. It is observed that in
the hybrid mobile computing model A-Fogs is very e�ective in increasing service utility
and service cost reduction, while D-Fogs plays a key role in maintaining a very low job
blocking probability. The results demonstrated the feasibility and e�ciency of the frame-
work for large scale edge analytics and superior performance of matching based ACRA
algorithm.

The works in this chapter form the basis of the following publication:

• J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou and Y. Zhang, “hybrid Fog Computing with Large-
scale IoT Data Analytics for Smart Cities.” IEEE Internet of Things Journal, No. 99, July
2017.

• J. Wei, J. He, K. Chen, Y. Zhou, “Benchmarking of Distributed Computing Engines Spark
and GraphLab for Big Data Analytics.” In Proc. IEEE BigDataService, 2016.

• J. Wei, J. He, Y. Zhou, X. Fu, Y. Yuan, Y. Zhang and Z. Tang, “QoS Aware Internet of
Things Edge Analytics Services with Hybrid Fog Computing Network.” submitted to IEEE

23

1 Introduction

Transactions on Services Computing (under review), 2017.

In chapter 3, deep learning based object detection with mobile local computing was inves-
tigated. For CAV driving safety applications, accurate and real time detection of surrounding
objects such as lane, vehicles, pedestrians and tra�c signs is crucial for self driving and road
safety. This chapter is focused on the design and optimization of detecting vehicles, pedes-
trians and cyclists with mobile local computing. Despite fast growth of convolutional neural
network (CNN) in object detection over datasets with a large number of object classes, the
popular CNN detectors including Faster-RCNN [103] and SSD [104] do not perform very well
for object detection in driving environments. We proposed several following methods to an
existing multi-scale CNN (MS-CNN) model to improve object detection performance for CAV
driving safety applications. The research contributions of this research work are summarized
below:

• Deconvolution of CNN features was applied at smaller feature output scales, which was
further fused with features at larger feature output scales, to provide richer context for
object detection at individual feature output scale. Such a method can e�ectively address
the large object scale variation challenge in CAV driving safety applications.

• In most of existing CNN detectors, non-maximal suppression (NMS) method is used for
suppression of overlapping object proposals. With such process there is very little chance
to properly detect occluded objects. But in driving environments occluded objects are
normal and are potential driving hazards. To address the object occlusion challenge soft-
NMS was applied at object proposals from di�erent feature output scales to strike a bal-
ance on the number and quality of object proposals.

• In the existing CNN detectors, default anchor boxes with certain sizes are used to generate
object proposals. In the driving environment the interested objects have strong features
in shape, for example, the width of a car should not exceed lane width. We measured the
aspect ratio statistics of objects from KITTI training samples and found proper anchor
box settings by exploiting the statistics for better object localization and prediction.

The proposed CNN methods were individually and jointly evaluated with various image input
sizes by extensive experiments over KITTI benchmark dataset. Good detection performance
improvement was reported with both individual and combined CNN methods. The research
achievements in this chapter were presented in the following research paper:

• J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong, “Enhanced Object Detection with
Deep Convolutional Neural Networks for Advanced Driving Assistance.” submitted to
IEEE Transactions on Intelligent Transportation Systems (under review), 2017.

In chapter 4, a representative CAV entertainment application of movie recommendation for
video streaming with mobile cloud computing was investigated. Online recommendation is a

24

1 Introduction

typical service for mobile cloud computing. The past user ratings on items and auxiliary infor-
mation are stored in the cloud. When a user’s request is received, the recommendation system
recommends relevant items to the interested user. The recommendation process is performed
in the cloud and only �nal results are sent to the user via wireless access network.

One of the major challenges faced by online recommendation for CAV entertainment applica-
tions is the so-called cold start (CS) problem, where the recommendation system may not have
the enough users’ ratings on newly added items. To tackle the problem, two integrated rec-
ommendation models were proposed, in which item features are learned from a deep learning
architecture SDAE [89] using the descriptions of items retrieved online, and then these features
are exploited and integrated into the timeSVD++ collaborative �ltering (CF) model [75]. The
research contributions are summarized as follows.

• A general framework of integrating the CF approach and machine learning algorithms
was developed to improve recommendation performance for CS items. In the proposed
models, content features extracted from content descriptions (such as movie plots) by
deep learning neural networks were used as the key item factor vectors and approximated
by the item factor vectors in the recommendation model. The content features are not
only used loosely to determine item similarity as done in the existing hybrid approaches
for CS items, but also become key component of the recommendation models, which
a�ects both the training of the models and prediction of the unknown ratings for CS
items.

• The framework of integrating the CF approach and machine learning algorithms for CS
item recommendation is general. Various CF approaches and machine learning algo-
rithms can be used for general recommendation systems. The key integration point is on
the extraction of item features by machine learning algorithms and embedding the item
features into the CF recommendation models.

• Based on the general framework speci�c system design and models were presented, Ap-
plication of the models to Net�ix movie recommendation with nearly 100 million ratings
was investigated. The experiments results showed that tight coupling of the CF approach
and content based approach for recommendation was feasible and e�ective.

The research achievements in this chapter were presented in the following research papers:

• J. Wei, J. He, K. Chen, Y. Zhou and Z. Tang, “Collaborative �ltering and deep learning
based recommendation system for cold start items.” Expert Systems with Applications,
69, 29-39, 2017.

• J. Wei, J. He, K. Chen, Y. Zhou and Z. Tang, “ Collaborative �ltering and deep learning
based hybrid recommendation for cold start problem.” In Proc. IEEE DataCom, pp. 874-
877, 2016.

25

1 Introduction

Finally this thesis is concluded in chapter 5. The future works are also discussed, which
include the extension of the work carried out in this thesis and other new directions of CAV
area.

26

2 QoS Aware Hybrid Mobile Computing
Model

2.1 Introduction

With virtually unlimited computing and storage resource, clouds are thought to be the natural
places for big data analytics and can provide easy management of CAV applications. However
there are several problems faced by the cloud based solutions. Firstly, the clouds are usually set
up at remote areas to reduce development and operation costs. The round trip delay could be a
big issue for the CAV applications and services with fast response requirement. Secondly, with
expansion of transportation systems and emerging big data from CAV applications transmitting
all the data to clouds could cause congestion at network bottlenecks and incur huge networking
cost.

Edge computing (including Cloudlet and fog computing) and hybrid cloud computing are
proposed to mitigate the problems faced by the cloud based solution [12, 14, 16, 17]. By de-
ploying extra computing resources and intelligence to the edge, fast response can be provided
and transmission of unnecessary data to remote clouds is avoided. In the existing cloudlet and
mobile edge computing based solutions [16], computing facilities are usually deployed by third
parties at �xed locations, which may not be �exible and closer enough to the CAV applications.
And the wireless access bottleneck problem still exists for the CAV data tra�c. On the other
hand, fog computing is gaining increasing research and development momentums. But in the
original fog computing model fog nodes have very limited computing power and only perform
simple analytics such as data aggregation and computing basic statistics.

In this chapter we propose a hybrid mobile computing model (HMCM), based on which data
analytics service is developed and provisioned for CAV applications. HMCM is consisted of in-
terconnected ad-hoc fogs (A-Fogs) with consumer computing devices, dedicated fogs (D-Fogs)
with service operator devices at edge and remote clouds. Within the last several years we wit-
nessed an explosive growth of road side devices (e.g. smart phones, video surveillance cameras
and WiFi access pointers). In HMCM, the interconnected vehicles and nearby road side de-
vices can be utilized to form small A-fogs. On the other hand, the number of small cell base
stations and WiFi based home hotspots are also expected to grow fast. Dedicated computing
resources can be deployed alongside these small base stations and home hotspots in addition to
the macro cellular base stations and gateways to form dedicated fogs. With the potential coop-
eration among these fogs, more reliable and powerful data analytics services and more e�cient

27

2 QoS Aware Hybrid Mobile Computing Model

resource utilization can be achieved. And QoS aware algorithms with and without cooperation
are proposed to address the challenging service and resource management problems in HMCM.

2.2 Related Works

Fog computing was originally proposed by Cisco [11, 12, 17]. The idea is similar to cloudlet by
moving computing closer to the places where data is generated, but more speci�cally for IoT
applications. In the Cisco fog computing model any device (the so-called fog node) with com-
puting, storage and network connectivity can join the data analysis tasks for IoT devices. Fog
nodes, fog aggregation nodes and clouds undertake di�erent kinds of data analysis and storage
tasks. Fog nodes take the most time-sensitive analysis tasks with response time of milliseconds
to seconds. A revised de�nition for fog computing was proposed in [23] as a scenario where
ubiquitous and decentralised devices communicate and potentially cooperate among them and
with the network to perform storage and processing tasks without the intervention of third-
parties. The fog nodes are similar to the simple computing devices in the A-Fogs discussed in
this thesis, but they can only process very simple data analytics tasks.

In the last two years there was a sharp increase of published research papers on fog comput-
ing. The works cover the areas of fog computing model and network architecture, applications
and services, and algorithm design. The original fog computing model was extended to embrace
fogs with dedicated computing resources, which is actually very close to the edge computing
model [24, 25]. In fact the line between fog computing with dedicated computing resources and
edge computing is blurred. Apart from the general applications and services to IoT [17, 26, 27],
fog computing was applied to a wide range of more speci�c applications. As an extension of fog
computing model, concept and architecture of vehicle cloud and fog computing were studied
in [28, 29]. Fog computing was also applied to cellular radio access networks to support func-
tionalities such as access mode selection [30–33], where the fogs have dedicated computing
resources but they are used exclusively for radio access networks. Speci�c applications of fog
computing were reported for smart cities[35], tra�c light control[36] and urban surveillance
video stream processing[34]. Security of fog computing service was studied in [29, 36, 37]. It is
noted that none of the above works investigated large scale data analytics services. While [38]
studied fog computing based big data analytics service, only the concept with D-Fog computing
is discussed without real experiments.

Service and resource management is a core problem of fog computing. In the literature it has
been studied for fog computing and cloudlet systems in several papers [39–44]. An o�oading
algorithm was proposed for a mobile cloud system where a cloudlet is used to support mobile
devices [14]. Energy e�ciency is the main algorithm design objective. Deng et al proposed
a solution to allocate workload between fog and clouds to achieve a balance between delay
and power consumption [39, 40]. There is no interaction among the fogs and only centralized
solution is considered. A framework for edge node resource management was proposed in
[41] for provisioning and auto-scaling resources of one edge node. An online game use-case

28

2 QoS Aware Hybrid Mobile Computing Model

was demonstrated with improved QoS. Zhang et al proposed a hierarchical game framework
for fog computing resource management [43], where data services subscribers request general
service from and negotiate service price with service operators, and service operators purchase
computing resources from D-Fogs. Service delay is the key performance metric and the cost of
resources (such as computing and networking) are not considered.

There are a few papers studying the impact of wireless communication in fog computing
workload o�oading. Chen et al investigated mobile task o�oading to nearby mobile devices
via D2D communication[42]. A graph matching solution was proposed to jointly allocate com-
munication and computing resources, with objective of reducing the total task cost of energy
consumption and execution time. Xiao et al investigated the power e�ciency and quality of
experience tradeo� for fog computing [44]. Fog node cooperation is considered for workload
o�oading. A distributed alternating direction method based algorithm was proposed to solve
the workload allocation problem. In [44] each fog is a low cost device with highly limited
computing power. A concept of opportunistic fog computing was presented in [45], which is
consisted of virtual clusters of mobile devices. The opportunistic fog is similar to A-Fog, but the
study is focused on conceptual work without any algorithms or experiments for fog computing.

2.3 Proposed Hybrid Mobile Computing Model

2.3.1 Overall Architecture

Figure 2.1: A hybrid mobile computing model architecture.

In Fig. 2.1 we present an architecture of HMCM, which includes multiple D-Fogs, A-Fogs
and clouds. D-Fogs are similar to the concepts of cloudlet computing and mobile edge com-
puting, which include the fogs supported by the dedicated routers and cellular network base
stations. But A-Fogs are di�erent which may be formed on demand as needed with distributed
and opportunistic computing resources, such as smart phones, laptops and vehicles [20].

Sensors generate data and analytics jobs, which are managed by job owners. Job owners may
be independent users outside HMCM or the fog nodes in the A-Fogs or D-Fogs. For simplicity,

29

2 QoS Aware Hybrid Mobile Computing Model

A-Fogs, D-Fogs and clouds are all called computing center in this chapter, which o�ers data
analytics services with di�erent level of capacity. They can process the analytics jobs indepen-
dently or cooperatively. Once the analytics jobs are processed, the outcome is sent back to the
job owners or remote interested analytics service consumers.

There are several distinct features of HMCM, which include A-Fogs with opportunistic com-
puting resources, interconnection of A-Fogs and D-Fogs and large scale data analytics services.
These features jointly help achieve the objective of improving data analytics capacity.

With increasing number and power of mobile devices such as tablets, laptops and vehicles,
there is a great opportunity to exploit the computing power of these devices in A-Fogs. The
A-Fogs can be much closer to the data sources and communicate with data sources by low cost
or free wireless communications technologies. The A-Fogs are replacing D-Fogs or clouds, but
used in HMCM to complement the D-Fogs and clouds to provide better analytics services with
reduced service costs and tra�c congestion. Each A-Fog is formed by a cluster of consumer
computing devices. There are two types of fog nodes in an A-Fog, i.e., fog master and fog
worker. The functionalities of these nodes are illustrated by the functional models shown in
Fig. 2.2. Devices with available computing resources can broadcast their resources availability
to neighbors. Devices willing to act as fog master invite computing devices to form A-Fog and
take the responsibility of A-Fog management, resource and computing jobs management, which
are introduced next. Fog workers are responsible for sharing their computing resources, un-
dertaking computing jobs, monitoring and reporting available computing and communication
resources to fog masters etc. Each A-Fog has one primary fog master and optionally a number
of secondary masters for reliability concern. Physically the fog masters may be located in the
same devices where the fog workers are operated or independent devices such as D-Fog nodes.
Next we introduce the main functional modules of the fog masters and the fog workers.

Figure 2.2: Function model for fog nodes.

30

2 QoS Aware Hybrid Mobile Computing Model

2.3.1.1 Resource Module

The resource module is at the bottom of the function models for both fog master and fog work-
ers. It represents physical resources of fog nodes, which may include sensing resources, com-
puting resources and communication resources for connection to other fog nodes. It is noted
that apart from WiFi technology, other communication technologies such as cellular radio and
visible light communication technologies can also be used for fog node communication.

2.3.1.2 Networking and Virtualization Module

Networking is a critical part of fog, especially for the scenarios where fog nodes are mobile.
In the fogs resource virtualization is optional but very important for the fog nodes which may
have their own heavy computing tasks. With virtualization a part of computing resources can
be reserved for the local computing tasks. And fog computing tasks can be run only in the iso-
lated resources, by which local computing and security performance are ensured. The existing
virtualization technologies can be applied with modi�cations for both A-Fogs and D-Fogs.

2.3.1.3 Fog and Resource Management Module

Fogs can be formed on demand and managed by fog master nodes. Each fog has a life cycle of
formation, maintenance and release. Fog workers are responsible of monitoring and reporting
computing resources and communication conditions to fog masters. Fog masters maintain the
status of the available computing resources and communication conditions of the members in
the fogs. Special incentive and reward schemes can be applied by fog masters to encourage
interconnected devices to join fogs and share their unused computing resources.

2.3.1.4 Job Admission and Scheduling Module

When a computing job request is received (from CAV applications or other IoT applications),
a fog master needs to assess the computing resources required to complete the job, and admit
or reject the job request according to the available compute resources. If a job is accepted, it is
scheduled to run over one or more fog workers depending on their available compute resources
and network conditions. The fog master may communicate with other fog masters to jointly
work on analytics tasks, or make decisions on o�oading jobs to other fogs or remote clouds.

2.3.1.5 Services Module

There are three standard service models provided by traditional clouds, namely infrastructure
as a service (IaaS), platform as a service (PaaS), software as a service (SaaS). If the fog nodes
are static and have powerful computing resources, a large computation resource pool can be
created for fogs and the standard cloud service models can be o�ered by the fogs. However,
due to the limitations on the computing power, bandwidth of wireless connections and mobil-
ity of fog nodes, A-Fogs may not be ideal to provide these standard cloud computing services.

31

2 QoS Aware Hybrid Mobile Computing Model

In this chapter we propose a new service model, analytics as a service (AaaS) for fogs. With
AaaS model the users of CAV applications can request analytics services from fog masters.
The masters analyze the analytics service request, choose the required analytics algorithm and
computing engine, and assess the service requirements on computing and communication re-
sources. If the service request is admissible, fog member nodes and computing resources are
scheduled to provide the service. Multiple fog member nodes may work collectively with dis-
tributed computing engines to provide advanced analytics if needed.

Interconnection of the fogs is an important approach to improve the service reliability and the
number of analytics jobs that can be processed by fogs at the edge, A-Fogs are usually connected
by wireless communications. The emerging high speed and low cost wireless communications
pave the way for cost e�ective and fast cooperation among the A-Fogs and D-Fogs. In addition
there can be high speed wired connection among D-Fogs. The connections among the fogs are
highlighted by dashed and solid orange lines in Fig. 2.1. The communication and cooperation
among the fogs provide more options of job o�oading, e.g., horizontal o�oading among A-
Fogs, among D-Fogs, on top of the traditional vertical o�oading from fogs to clouds. It can
e�ectively improve the data analytics service quality and resource utilization.

While using a cluster of computing devices can increase the aggregate computing resources of
A-Fogs, distributed computing engines can be used to e�ciently utilize the computing resources
to process large data analytics jobs. Existing distributed computing engines such as Spark [63]
have been very successful for big data analytics. They can be used for large scale data analytics
jobs with or without critical real-time processing requirements. While a major motivation of
HMCM design is providing large scale data analytics services, simple data analytics services
such as data aggregation and �ltering can be easily supported as well.

2.3.2 Key Enabling Technologies for HMCM

While cloud technology is mature and has already been widely used in numerous businesses,
mobile edge computing and D-Fog are relatively new concepts. Nonetheless, there are strong
technologies basis for fogs and some practical applications such as mobile caching at cellular
base stations have already been implemented. Although there are many technical challenges
faced by HMCM, we believe that it is an emerging technology holding huge potentials for CAV
and general data analytics services. It is driving by many enabling technologies (especially for
A-Fogs), some of which are discussed below.

2.3.2.1 Powerful Computing Devices

According to Moore’s law the processor speed or overall computing power for computers dou-
bles every two years. Although the growth rate started to slow around 2013 to double every two
and a half years, the computing power of mobile devices will become much stronger in the near
future. In addition, the huge industry interests in autonomous driving, industry robots, drones
and smart surveillance cameras are creating intensive demands on powerful mobile computing

32

2 QoS Aware Hybrid Mobile Computing Model

devices. There are already many powerful embedded computing devices on the market. For
example the Drive PX Pegasus system announced by Nvidia in October 2017 has a total of 320
trillion operations per second (TOPS) of computational power.

2.3.2.2 Advanced Communication and Networking Technologies

In addition to the computing power, there are signi�cant advances on wireless communica-
tion technologies recently, such as WiFi, cellular networks and visible light communications.
The wireless communication data rates experienced fast growth in the past decade. For exam-
ple, the IEEE 802.11ac based wireless local area network (WLAN) can provide up to 3.5 Gbit/s
data rate with multiple user multiple input multiple output (MIMO) technologies. The IEEE
802.11ay standard which is under development and is estimated to complete in 2019 is expected
to provide 100 Gbits/s with use of 60 GHz spectrum resources. The IEEE 802.11 based WLAN
technologies can provide high speed free wireless communications among fog nodes and be-
tween A-Fogs and nearby IoT data sources. In addition, the 3GPP standard organization for
cellular network technologies has already de�ned device to device (D2D) communication mode
for direct communication between mobile devices. It is developing enhanced D2D technologies
for 5G, which can support multiple Gbits/s among the devices. Due to the localized communi-
cation and high frequency resource reuse the cost of D2D communications can be much lower
compared to infrastructure based communication via cellular base stations. Combined with the
well studied multiple hop ad-hoc wireless networking technologies, new WLAN and cellular
D2D technologies can remove the obstacles of communication cost and bandwidth for large
volume data transfer of data analytics jobs.

2.3.2.3 Resource Virtualization and Security

Virtualization is a process of creating virtual environment on a computer to run desired pro-
grams, without interfering with the other services provided by the computer to other users. It
has the bene�ts of e�cient utilization of resources, better accessibility and minimization of risk
among others. A-Fogs can be viewed as a light weight clouds. Virtualization is the �rst and
essential step for the deployment of fog nodes, as each A-Fog node may have its own primary
computing tasks, which should not be a�ected by the A-Fog analytics jobs from outside, and
the security of the fog nodes has to be protected.

With the advent of cloud computing many virtualization tools and platforms such as KVM
and Xen have been developed. There are also many virtualization platforms such as VMware
and VirtualBox for general computers. Some virtualization tools like Xen and VirtualBox pro-
vide the support for virtual machine migration between computers without loss of availability.
That support is particularly important for A-Fogs as some fog nodes are mobile.

33

2 QoS Aware Hybrid Mobile Computing Model

2.3.2.4 Distributed Data Analytics

Compared to the cloud and D-Fogs, the computing power of the individual A-Fog nodes are still
very low, which limits the scale of data analytics jobs that an A-Fog node can process. The large
scale data processing engines developed for big data analysis could be an important enabling
technology for large scale data analytics, which include Hadoop MapReduce, Spark, GraphLab
and GraphChi [21][63]. Among these data processing engines, Spark is of particular interest
as it is an open source, fast and general distributed computing engine. Spark can be executed
locally or over a computer cluster. A collection of toolkits are provided to support a wide range
of data analytics applications related to SQL, streaming, machine learning and analytics.

It is noted that fog computing is still a new computing model with research focusing on con-
cepts and architectures. There is very little research reported on the design and evaluation of
practical fog computing protocols and algorithms, and data analytics services over fog comput-
ing. There are still many research challenges to be tackled for HMCM, e.g. how to integrate
these key technologies together to make the framework work e�ciently and reliably, and how
to control the analytics service quality and utilize the resources e�ciently. QoS aware algo-
rithm design is one of the research challenges addressed in this chapter, which is presented in
the next two sections.

2.3.3 Example Use Cases

DDDD----Fog NetworkFog NetworkFog NetworkFog Network

Figure 2.3: Tra�c light scheduling application with interconnected fogs.

HMCM can be used for a wide range of data analytics services besides CAV applications.
Next we discuss two example use cases.

34

2 QoS Aware Hybrid Mobile Computing Model

2.3.3.1 Tra�ic Light Scheduling

Intelligent transportation systems (ITS) schedule tra�c lights to keep vehicles moving and pro-
vide drivers with information to help them make smarter decisions on the road. For such ap-
plications with relatively fast response requirement, dedicated computing and communication
resources are critical and should be used. One typical use case of HMCM for tra�c light schedul-
ing is shown as Fig. 2.3. There are monitoring and control systems for tra�c detectors, tra�c
signal controllers and tra�c management located in the data center, at the Backend level as
shown in Fig. 2.3. The tra�c detectors at the Field level shown in Fig. 2.3, such as the cam-
eras and tra�c sensing coils buried in the ground, monitor the tra�c status of the roads, such
as the queuing length of the vehicles on the road. The data collected from di�erent detectors
is sent to the tra�c signal controller. In the existing practices, the data is sent to the tra�c
management systems in the data center, which runs advanced analytics algorithm to schedule
tra�c lights. For such an application, it is bene�cial to put more intelligence at the �eld side.
For example, the tra�c signal controllers can be deployed with more computing resources and
cooperate with close neighbors to carry out the data analytics tasks, such as data feature ex-
traction before sending data to the data center. The purpose is to improve the data transmission
reliability and reduce communication cost by reducing the amount of data transmitted from the
tra�c controllers to the data center, which often relies on the 3G/4G wireless links. The tra�c
controllers with dedicated computing and communication resources at the edge level can be
viewed as D-Fogs in the HMCM. The tra�c controllers with dedicated computing resources
can also work with autonomous vehicles with opportunistic computing resources to support
autonomous driving, e.g., on the tasks of hazard detection, accident avoidance, high de�nition
maps, real time tra�c reports and route planning.

2.3.3.2 Data Analytics for Multiple Smart Cities Applications

Besides the CAV applications, there are many general data analytics applications for smart cities.
For such applications, historical and current data from di�erent sources in the city are integrated
and analyzed to provide trend analysis and predictions. It often needs to integrate multimodal
data from diverse sources and jointly analyze the data based on some analytics algorithms for
di�erent analytics tasks to provide advanced services. A typical example is shown in Fig. 2.4. In
the traditional approach, data from tra�c sensors, car sharing data, bike sharing data and trip
requests data from other IT systems are collected and sent to the cloud platforms. The clouds run
advanced analytics algorithms to predict passenger movement pattern, which can be used by
city planner to plan the city infrastructure. The response time is often not a key parameter here.
However, the data volume can be so high that it is cost prohibitive to send and store all raw data
in the cloud for analytics processing. In addition, it is hard to design centralized methods and
infrastructure to acquire data from diverse sources using di�erent communication protocols
and data format. A more e�cient approach is to add intelligence to the edge and perform
data analytics as close as possible to the data sources, and send only the key features to the

35

2 QoS Aware Hybrid Mobile Computing Model

Traffic detectors Traffic controllers

Trip requests
Passenger information
Movement pattern
Bike sharing data
Car sharing data
…

D-Fog

A-Fog

Traffic pattern
Traffic light scheduling
…

Route planning App
Bike sharing App
Car sharing App
…

For city planner

City infrastructure planning

Big data analytics apps

Urban flow management

For traffic operator

Data sources Fog computing Cloud computing

Figure 2.4: Data analytics applications for smart city.

clouds for more advanced analysis. For such applications, the Fog computing layer has both D-
Fogs with dedicated computation and communication resources (such as the tra�c controllers)
and A-Fogs, e.g., formed by vehicles, mobile phones and tablets running di�erent smart cities
applications. The connection and cooperation among the fogs can help run multiple analytics
tasks and achieve better service quality and resource utilization.

2.4 Benchmarking Experiments for Analytics Applications over
Fogs

As the HMCM will undertake various analytics services from CAV applications with diverse
QoS requirements, it is important to design and implement QoS aware service and resource
management schemes for the analytics services. However, in order to do so, a key is to measure
and model the workloads of di�erent analytics services over the fogs with various computing
and communication resources. In this section we present benchmarking experiments over A-
Fogs and D-Fogs for such a purpose, to provide a basis for the QoS scheme design which is
introduced in the next section.

2.4.1 Overall Experiment Methodology

For the benchmarking of analytics systems there could be three major dimensions of diversities
that need to consider [21]: analytics computing platform, analytics algorithm and analytics job
dataset. Analytics computing platform diversity refers to the wide availability of computing

36

2 QoS Aware Hybrid Mobile Computing Model

processing platforms that can be used to support large scale analytics tasks, including generic
data processing platforms and graph-speci�c platforms. Algorithm diversity refers to the wide
availability of analytics algorithms that can be used for various analytics tasks, including ma-
chine Learning and graph based analytic algorithms. Dataset diversity refers to the varieties of
data from applications that advanced analytics need to support.

In [21] authors have performed an intensive benchmarking of analytics systems over both
private and public clouds, with various computing platforms and analytics algorithms:

• computing platforms: Spark [53], GraphLab [55], XStream [47] and GraphChi [57].

• analytics algorithms: logistic regression (LR), SVM for classi�cation; K-means++ for clus-
tering; alternating least squares (ALS) for collaborative �ltering; and PageRank, weakly
connected component (WCC), triangle counting (TC), breadth �rst search (BFS) for graph
applications.

It was found from [21] that Spark and GraphLab perform the best over the compared comput-
ing platforms. As GraphLab has not been updated for a long time, we decide to use Spark as the
only computing platform for benchmarking. The overall benchmarking experiment framework
is shown in Fig. 2.5. In this thesis we present only experiments with LR and SVM algorithms
for demonstration purpose. It is trivial to include more analytics algorithms and computing
platforms to the benchmarking experiments.

Figure 2.5: Overall benchmarking framework.

2.4.2 Computing System Setup for A-Fog Benchmarking

In the benchmarking with A-Fogs, we consider a pool of computing resources with one desktop
PC and 8 Raspberry Pi 3 credit card sized micro computers, which is believed to form a rea-
sonable ad-hoc fog environment. The Raspberry Pis are connected to a WiFi ad-hoc network

37

2 QoS Aware Hybrid Mobile Computing Model

through their built-in wireless 802.11 module. One of the computers acting as fog master, while
the rest act as fog workers. Virtual machines are installed on the computers, each allocated 700
MB RAM. Spark with the latest version 2.0 is installed in the virtual machines. Analytics job
requests are sent from one of the fog nodes to the master node, which dispatches the jobs to the
fog member nodes. Job completion time and resource consumption of the analytics jobs over
Spark are recorded and used in the QoS aware resource management.

(a) Raspberry Pi. (b) Spark architecture.

Figure 2.6: Raspberry Pi and Spark architecture.

Raspberry Pi (shown in Fig. 2.6(a)) is a single-board computer with a 1.2 GHz 64-bit quad-
core ARMv8 CPU and 1 GB RAM [58]. A 32 GB micro SD card with operating system Raspbian
installed is slotted on each machine. They are connected to a WiFi ad-hoc network through
the built-in wireless 802.11 module. Raspberry Pi has the features of low cost, low power con-
sumption, small size but still good computing power. It has been used for many cost-e�ective
entertainment, surveillance, mobile and IoT applications. The price and power consumption
comparison between Raspberry Pi and general x86 server is presented in Table 2.1. In addition
computing power and storage of Raspberry Pi have the similar features of A-Fog nodes such as
smart phones, tablets, but has a better user-friendly programming environment.

Table 2.1: Comparison between x86 server and Raspberry Pi.
Unit price Power consumption

x86 server $2000 180W/h
Raspberry Pi $35 3.5W/h

Spark is an open source fast and general distributed computing engine for large scale data an-
alytics. It is very popular for big data analytics with signi�cant performance enhancement over
Hadoop [53]. Spark has been evaluated and mainly used in large centrally controlled computer
clusters. To the best of our knowledge, it has not been tested and evaluated in highly resource
(computing and communications) constrained distributed computing environments. Fig. 2.6(b)
shows the computing framework of Spark. The bottom layer is the data storage systems. Spark
can access distributed datasets from di�erent storage systems like HDFS [59], Cassandra [60],

38

2 QoS Aware Hybrid Mobile Computing Model

Hbase [61] and Amazon S3 [62]. Above the storage system is the cluster management and ex-
ecution layer. Spark can be executed locally or using several existing cluster managers over
a computer cluster. The execution modes for Spark include standalone mode, Amazon EC2,
Apache Mesos and Hadoop YARN [63]. Above the cluster management layer is the Spark com-
pute engine. Spark adopts the resilient distributed dataset (RDD) as its architectural foundation,
which has high fault tolerance. The fault resilient distributed computing engine is particularly
needed for A-Fogs considering the mobility of A-Fog nodes, dynamic network topology and re-
source availability in A-Fogs. Datasets and DataFrames are extended object abstractions added
in the latest version of Spark, which provide additional optimization for SQL operations. The
top layer is a collection of toolkits including Spark SQL, Spark Streaming, MLlib and GraphX,
which provide libraries and programming support to a wide range of analytics applications
related to SQL, streaming, machine learning and graph processing.

Synthetic jobs are created with analytics algorithms SVM and LR over di�erent dataset sizes.
The con�gurations for the jobs are presented in Table 2.2 for A-Fogs. Experiment datasets for
analytics jobs are generated by the Spark datasets generator. The synthetic datasets are used for
performance evaluation in our study mainly for easy control of the dataset size, which can be
adjusted by changing the number of vertices. Datasets generated from real CAV applications
can be used as well. In this set of jobs the largest data size is 1770 MB, which is believed to
be large enough for A-Fogs mainly consisted of devices with limited computing resource and
energy. Jobs with larger datasets should be o�oaded to and processed by dedicated fogs or
remote clouds.

Table 2.2: Job types for A-Fog experiments.
A-Fog job J1 J2 J3 J4 J5
of Vertices (106) 1 2.5 5 10 30
LR size (MB) 58 145.8 291.6 583.3 1770
SVM size (MB) 61.3 153.3 306.6 590 1770

2.4.3 Benchmark Results over A-Fogs

Table 2.3: Computer settings used in the A-Fog experiments.
Label A-1 A-2 A-3 A-4 A-5 A-6 A-7
Desktop 0 0 0 0 0 0 0
Raspberry 1 2 3 4 5 6 7

Label A-8 A-9 A-10 A-11 A-12 A-13 A-14
Desktop 1 1 1 1 1 1 1
Raspberry 1 2 3 4 5 6 7

In this subsection we present benchmarking results with Spark over 14 A-Fog computer set-
tings as shown in Table. 2.3. It is noted that the letter ‘A’ in the computer setting labels desig-
nates to A-Fogs.

39

2 QoS Aware Hybrid Mobile Computing Model

As each A-Fog node may have only very limited computing resources, they should work to-
gether cooperatively and e�ciently to process large datasets. It is unclear if Spark can run over
distributed compute environment with small size and resource constrained micro computers,
and how scalable it is to support large scale data analytics services over A-Fogs. Here scalability
is referred to the ability of a computing platform or fogs to improve its computing performance
with increasing computing resources [64].

Ideally a scalable platform is supposed to improve its performance linearly with additional
computing resources. As single fog node with computers like Raspberry Pi has limited comput-
ing power, a scalable computing platform is important to extend the AaaS capabilities over fogs.
We can study the AaaS feasibility and system scalability from two di�erent aspects: the size of
datasets that can be processed and the service completion (or running) time with increasing
number of fog nodes.

Fig. 2.7 presents the job completion time for LR and SVM jobs with di�erent datasets over
the 14 A-Fog computer settings. It can be observed that the job completion time of both LR and
SVM applications reduces quickly with increasing computing resources. Without surprise the
large datasets requires much more service time, and the computer setting A-1 fails to complete
the jobs J4. The results show clearly the feasibility of running AaaS service over A-Fogs but also
the necessity of distributed computing to process large analytics jobs. In addition the desktop
computer shows a large impact on the analytics service capacity, which substantially reduces
job completion time and extends the size of datasets that can be processed.

2.4.4 Benchmark Performance over Dedicated Fogs

For the benchmarking experiments over dedicated fogs, it is assumed that more powerful com-
puting resources (including higher standard processor, memory and storage) are available. DELL
R620 servers are used to set up computer clusters to represent dedicated fogs. Each server con-
sists of an Intel Xeon E5-2680v2 2.8GHz CPU (dual core), a total memory of 256 GB and a
standard 240G SSD drive. An extra server with 16 TB to store and access the input and output
�les consistently for all con�gurations.

In order to test the computing performance of the D-Fog, we create a pool of 16 virtual
machines (VM). The operation system installed on each VM is CentOS release 6.5 with the
kernel version 2.6.32. To evaluate and compare the analytics computing performance under
di�erent experiment con�gurations, 12 computer settings in terms of number of CPU cores
and memory size are used, which are shown in Table. 2.4. It is noted that the letter ‘D’ in the
computer setting labels designates to D-Fogs.

Similar to the experiments over A-Fogs, the con�gurations for the jobs are presented in Ta-
ble 2.5 for D-Fogs. In total 8 types of jobs with di�erent data sizes ranging from 1.1 GB to 35.4
GB are used for the experiments with D-Fogs.

Benchmarking results for LR and SVM algorithms are presented in Fig. 2.8. Similar perfor-
mance trends with D-Fogs benchmarking results are obtained as these for A-Fogs. Firstly the

40

2 QoS Aware Hybrid Mobile Computing Model

ID of computer setting.

0 5 10 15

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

0

1

2

3

4

5

6

7

8
LR

SVM

(a) A-Fog job J2.

ID of computer setting.

0 5 10 15

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

m
in

u
te

s
)

0

2

4

6

8

10

12

14

16
LR

SVM

(b) A-Fog job J3.

ID of computer setting.

0 5 10 15

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

m
in

u
te

s
)

0

5

10

15

20
LR

SVM

(c) A-Fog job J4.

Figure 2.7: Job completion time of LR and SVM algorithms versus A-Fog computer settings over di�erent
jobs

41

2 QoS Aware Hybrid Mobile Computing Model

ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

m
in

u
te

s
)

0

0.5

1

1.5

2
LR

SVM

(a) D-Fog job J1.
ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

m
in

u
te

s
)

0

0.5

1

1.5

2

2.5

3

3.5
LR

SVM

(b) D-Fog job J2.

ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

m
in

u
te

s
)

0

5

10

15

20

25

30

35

40
LR

SVM

(c) D-Fog job J3.
ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

-10

0

10

20

30

40

50

60
LR

SVM

(d) D-Fog job J4.

ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

-20

0

20

40

60

80

100
LR

SVM

(e) D-Fog job J5.
ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

-20

0

20

40

60

80
LR

SVM

(f) D-Fog job J6.

ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

-50

0

50

100

150

200

250
LR

SVM

(g) D-Fog job J7.
ID of settings on CPU cores and memory size.

0 2 4 6 8 10 12 14

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

-20

0

20

40

60

80

100

120
LR

SVM

(h) D-Fog job J8.

Figure 2.8: Job completion time of LR and SVM algorithms versus D-Fog computer settings over di�er-
ent jobs.

42

2 QoS Aware Hybrid Mobile Computing Model

Table 2.4: Computer settings used in the D-Fog experiments.
Label D-1 D-2 D-3 D-4 D-5 D-6
CPU cores 4 4 4 8 8 8
Memoery (GB) 4 8 16 4 8 16

Label D-7 D-8 D-9 D-10 D-11 D-12
CPU cores 12 12 12 16 16 16
Memoery (GB) 4 8 16 4 8 16

Table 2.5: Job types for D-Fog experiments with di�erent number of vertices (106) and dataset size (GB).
D-Fog job J1 J2 J3 J4 J5 J6 J7 J8
Vertices 20 50 100 175 250 350 450 600
LR size 1.1 2.8 5.7 10 14.2 19.9 25.6 34.2
SVM size 1.1 3 5.9 10.3 14.7 20.6 26.5 35.4

job completion time decreases with computing resources (CPU and memory) scaling up. The
size of dataset that can be processed by the D-Fogs also increases largely due to more comput-
ing power and memory. However for the J7 and J8 with the largest datasets, only the highest
computer settings can complete the analytics jobs successfully. The completion time for those
settings failing to complete the jobs is set to -1 in the �gures.

2.5 QoS Aware Service and Resource Management

2.5.1 Overall Design

In this section we are focused on the core problem of analytics service quality and resource
management for HMCM. Design of QoS aware data analytics service and resource management
is presented. It is noted there are still many other challenges faced by the proposed framework
based data analytics, such as fog formation, pricing and security for resource sharing, service
discovery and mobility management, which are left as our future works.

In HMCM we assume there are a set A of Na A-fogs and a set D of Nd D-fogs located in an
investigated area. For simplicity we let S denote the set of all computing centers, including the
Na A-fogs, Nd D-Fogs and a cloud. The size of the set S is Na +Nd + 1. The CAV sensors may
have connection to multiple fogs and cloud. Data analytics jobs can be executed in any of these
computing centers with su�cient computing resources and communication bandwidth.

The overall functionalities of service and resource management module is shown in Fig. 2.9.
The CAV sensors generate data and analytics jobs with associated QoS targets (e.g., target job
completion time). Job owners send requests to the computing centers, which may be accepted
or rejected. Admission control and o�oading scheme is applied to decide if a job request can
be accepted or rejected, and which computing center the job should be executed if it is ac-
cepted. The decisions are made based on many factors, including cost models for computing
and communication resources, workload models, available computing resources and network
bandwidth. If a job request is accepted, computing resources at the A-Fogs, D-Fogs or cloud are

43

2 QoS Aware Hybrid Mobile Computing Model

Figure 2.9: Service and resource management framework.

allocated. The computing and QoS performance is then recorded. Mobility of the job owners
and fog workers is monitored, and necessary actions such as renewed o�oading and resource
allocation are taken due to loss of fog workers.

Next we present the assumptions and/or models for the main components of HMCM in the
remaining of this subsection, including computing resources, analytics jobs, workload model,
communications and power consumption. These models form a general framework which is
vital for a practical and comprehensive evaluation. Then centralized and distributed algorithms
for admission control and resource allocation (ACRA) are presented in Section 2.5.2 and 2.5.3,
respectively.

2.5.1.1 Computing Resource Assumption

For simplicity, we assume that each A-Fog has a fog master and a cluster of computers as work-
ers, which form a computing resource pool with computers and other smart personal devices
like Raspberry Pi. The fogs are uniformly distributed in the studied area. The computers have
identical computing speci�cations in terms of CPU and memory size. We let N a,c

i and N a,m
i de-

note the number of computers and mobile devices in the A-Fog i. The D-Fog i has a fog master
and a computing resource pool of Nd,c

i CPU cores and Nd,m
i GB memory. The remote cloud is

assumed to have unlimited computing resources. Let P a,c
i and P a,m

i denote the computing price
per seconds for using a computer and a mobile device in the A-Fog i, respectively. Let P d,c and
P d,m denote the computing price per seconds for using a CPU core and 1 GB memory at D-Fogs
or clouds, respectively.

44

2 QoS Aware Hybrid Mobile Computing Model

2.5.1.2 Analytics Service Model

Analytics jobs are generated by groups of city sensors and mobile devices. An analytics job is
jointly characterized by the analytics algorithms (such as SVM and LR) to be applied to the job
and its dataset size. Let (g, s) denote a job type with g representing the analytics algorithm,
g ∈ [1, NG], and s representing the ID of dataset interval, s ∈ [1, NS]. NG represents the total
number of investigated analytics algorithms, and NS denotes the number of discrete dataset
sizes. Let Jg,s,j denote the jth job of type (g, s). Each analytics job belongs to a job owner. Job
owners make requests of analytics services to fogs or cloud, set service payment and monitor
the received QoS for their analytics jobs.

Without loss of generality, we assume that jobs are generated following Poisson distributions.
The job generation rate per second for job type (g, s) is denoted by λg,s. The actual dataset size
for a job Jg,s,j is assumed to be uniformly distributed in the considered range of dataset size.
The geographic positions of the mobile devices that generate jobs are assumed to be uniformly
distributed in the considered network area.

Target job completion time is the main QoS metric of interest for analytics jobs. Each job is
associated with a target job completion time and a service completion charge. Job completion
time is measured from the time a job request is accepted to the completion of the job, including
the network latency, data communication time, queue delay and job computation time. Data
communication time is determined by network bandwidth and dataset size, while job com-
putation time is determined by the analytics algorithm, dataset size and allocated computing
resource for the job.

Let T e
g,s,j denote target completion time in seconds, andRg,s,j denote the service completion

charge in dollars, for job Jg,s,j , respectively. The service completion charge of a job is set
proportional to the dataset size of the job. And a simple business model is considered here: if a
job request is accepted and completed within the target completion time, the job owner pay to
the fog operator running the job; otherwise no payment is made.

2.5.1.3 Workload model

Workload model is an important component for HMCM. which maps a given analytics job and
a computing resource allocation to a job completion time. With the expected job completion
time, the computing centers and the job owners can have a rough estimation of the required
computing resource, the best resource allocation and the cost for completing the job. Therefore
ACRA decisions can be made for job requests.

Obviously workload model is highly dependent on the job type and computing resource spec-
i�cation. To create the workload model, extensive benchmarking experiments over A-Fogs, D-
Fogs and cloud computing environments have been designed and run, which provide the basis
for the design and evaluation of the QoS aware algorithms. Detailed experiment design and
results are presented in Section 2.4. By running the sample analytics jobs over the di�erent
computing options available at the fogs and cloud, we can obtain job completion time with

45

2 QoS Aware Hybrid Mobile Computing Model

given computing options. A workload model is then created for computing centers as a table
mapping jobs and computing resources to job completion time. In the table each entry stores a
job completion time for one dataset size and one computing resource setting.

It is noted that the real analytics jobs may have di�erent dataset sizes from those evaluated
in the benchmarking experiments. However it is impossible and not necessary to run bench-
marking experiments with every possible dataset size. Through the sample jobs with properly
con�gured dataset sizes we can estimate the completion time of real jobs. Estimation accuracy
can be improved with more sample jobs and additional real job computing results.

2.5.1.4 Communication and Networking Assumption

Figure 2.10: Illustration of communications among Fogs and jobs.

Heterogeneous communication and networking technologies are assumed in HMCM. For
the communications among computing centers, we have the following assumptions: clouds are
connected to the Internet via high speed optical links; D-Fogs are connected to the Internet via
wired links; A-Fogs are connected to the Internet via cellular networks.

For the communications between the analytics jobs and the computing centers, we assume
that the mobile devices are always within service coverage of cellular networks and connected
to the Internet. They are connected to the D-Fogs and clouds via only cellular base stations. In
addition, some of the devices may have alternative connections to the A-Fogs via cheap wireless
communication technologies WiFi or cellular D2D. Fig. 2.10 shows an example of HMCM with 6
A-Fogs, 1 D-Fog and 17 jobs. All the jobs are connected to the Internet via cellular base stations,
which are not shown in the �gure. Some jobs are close to the A-Fogs, therefore it is possible to
transfer data to the A-Fogs using WiFi or D2D technologies.

46

2 QoS Aware Hybrid Mobile Computing Model

We let β denote the probability of job Jg,s,j connected to an A-Fog via WiFi or D2D tech-
nologies. For simplicity we assume the value of β is dependent on the Euclidean distance of the
job source Jg,s,j to the A-Fog i, which is denoted by dg,s,j,i (meters), for i ∈ A. As WiFi and
D2D have around 300 meters communication range we use a heuristic method to compute β:

β = exp

(
− dg,s,j,i

300

)
. (2.1)

The main consideration with the method is that a decrease in the distance between a job and
an A-Fog will increase the availability of WiFi or D2D wireless connection.

LetPwi� andPcell denote the communication service prices ($/GB), for using WiFi and cellular
base stations, respectively. Let P n

g,s,j,i denote communication price for job Jg,s,j to be processed
at the computer center i, which is computed according to the used connection mode and the
price of communications with the chosen connection mode. Let Cn

g,s,j,i denote the communica-
tion cost from job Jg,s,j to the computer center i. The cost is a linear function of the job dataset
size and the communication price.

Let Bd and Bc denote the aggregate bandwidth of the bottleneck link on the path from job
sensors to the D-Fogs and clouds, respectively. Let Ba,c

i and Ba,w
i denote the aggregate band-

width of the bottleneck link for A-Fog i (i ∈ A) via cellular base stations and via WiFi, respec-
tively. If a job is assigned to a computing center, for example an A-Fog, we assume the job will
share the bottleneck link bandwidth equally with other jobs assigned to this A-Fog. Let Bg,s,j,i
denote the data rate requirement for a job Jg,s,j when it is assigned to computing center i. For
a real-time streaming analytics job, the data rate Bg,s,j,i equals to the source data rate of the
streaming job. Otherwise the data rate Bg,s,j,i is computed as an equal share of the bottleneck
bandwidth of computer center i with other jobs.

2.5.1.5 Power Consumption Model

For the power consumption, the same model is adopted for the mobile devices and computers
used in A-Fogs, and servers used in D-Fogs and clouds. Let fu denote machine CPU frequency.
The power of a mobile device or computer, denoted by Pw is approximated by the following
formula [40]:

Pw = p1f
pe
u + p2, (2.2)

where p1 and p2 are con�gurable positive constants, set to 3.206 and 68, respectively; and pe is
set to 2 for A-Fogs, and 3 for D-Fogs and clouds [40]. The electricity price pe is set to 0.15 $/KWh.
LetCp

g,s,j,i(k) denote the energy cost for a job Jg,s,j completed at the i computing environment,
i ∈ S with computing resource speci�cation option k. According to the computing time of a
job at a speci�c computing center, the power consumption can be computed and the energy
cost for a job can be computed accordingly.

47

2 QoS Aware Hybrid Mobile Computing Model

2.5.2 Centralized Admission Control and Resource Allocation

For any new analytics job request, the HMCM needs to make decisions on job admission con-
trol and resource allocation (ACRA), including acceptance of a job, deciding which computing
center (A-Fog, D-Fog or cloud) to run the job, and the computing resource con�guration from
selected computing center. With the above system assumptions, a straight forward solution is
a centralized ACRA algorithm, with objectives of maximizing computing system revenue while
ensuring service quality of the analytics jobs, under given price and constraints of computing
and communication resources and target job completion time. With the centralized algorithm,
the above three decisions can be jointly made with globally system state and resource informa-
tion.

Let Cc
g,s,j,i(k) denote the computing resource cost for the job Jg,s,j under the kth comput-

ing resource con�guration in computing center i. The computing cost depends on computing
resource price and the time used by the analytics job. Let Tg,s,j,i(k) denote the computation
time (in seconds) under the case that the job Jg,s,j is processed with computing option k in the
computer center i. Then the computing cost for a given job can be computed according to the
computing resource allocated for this job, the computation time with the allocated resources,
and the computing resource price.

Let us de�ne the total cost for job Jg,s,j being processed with computing option k in the
computer center i, which is denoted byC t

g,s,j,i(k), as the sum of the communication, computing
and power costs for the job. C t

g,s,j,i(k) can be computed by:

C t
g,s,j,i(k) = Cn

g,s,j,i + Cc
g,s,j,i(k) + C

p
g,s,j,i(k). (2.3)

Let K denote the total number of computing options. The kth computing option at A-Fog
i is con�gured with N a,c

i,k computers and N a,p
i,k portable devices; and the kth computing option

at D-Fog i is con�gured with Nd,c
i,k CPU cores and Nd,m

i,k GB memory; The computing resources
con�gurations used for A-Fogs and D-Fogs are shown in Table 2.3 and Table 2.4, respectively.
LetUg,s,j,i(k) denote the service utility of completing a job Jg,s,j with the kth computing option
in the computer center i, for k ∈ [1,K], and i ∈ S . Ug,s,j,i(k) is computed by:

Ug,s,j,i(k) =

 Rg,s,j − C t
g,s,j,i(k), Tg,s,j,i(k) ≤ T e

g,s,j

−C t
g,s,j,i(k), Tg,s,j,i(k) > T e

g,s,j

, (2.4)

Let σg,s,j,i,k be a binary variable with value 1 indicating a job Jg,s,j is assigned to the comput-
ing center iwith computing option k and with value 0 otherwise. Letχg,s,j,i be a binary variable
with value 1 indicating a job Jg,s,j,i has WiFi connection to computing center i and with value
0 otherwise. With the above de�nitions, the optimization problem for the Centralized ACRA

48

2 QoS Aware Hybrid Mobile Computing Model

algorithm can be formulated below:

max
σg,s,j,i,k

∑
g,s,j

∑
i,k

σg,s,j,i,kUg,s,j,i(k)

s.t. σg,s,j,i,k ∈ {0, 1}∑
g,s,j

∑
i,k

σg,s,j,i,k ≤ 1

σg,s,j,i,kUg,s,j,i(k) > 0∑
g,s,j

∑
k

σg,s,j,i,kN
a,c
i,k ≤ N

a,c
i , for i ∈ A∑

g,s,j

∑
k

σg,s,j,i,kN
a,c
i,k ≤ N

a,m
i , for i ∈ A

∑
g,s,j

∑
k

σg,s,j,i,kN
d,c
i,k ≤ N

d,c
i , for i ∈ D

∑
g,s,j

∑
k

σg,s,j,i,kN
d,m
i,k ≤ N

d,m
i , for i ∈ D

∑
g,s,j

∑
k

σg,s,j,i,kBg,s,j,i,k(1− χg,s,j,i) ≤ Ba,c
i , for i ∈ A∑

g,s,j

∑
k

σg,s,j,i,kBg,s,j,i,kχg,s,j,i ≤ Ba,w
i , for i ∈ A

∑
g,s,j

∑
k

σg,s,j,i,kBg,s,j,i,k ≤ Bd, for i ∈ D

∑
g,s,j

∑
k

σg,s,j,i,kBg,s,j,i,k ≤ Bc, for i ∈ C

(2.5)

The optimization objective is to maximize system utility by �nding the best decisions for
job admission, resource assignment and computing options for the analytics jobs. The �rst and
second constraints ensure that a job can not be assigned to more than one computing center. The
third constraint prevents jobs with negative service utility from being accepted. The forth to
seventh constraints ensure the computing resources are not overused. The eighth to eleventh
constraints control the aggregate data rate of jobs assigned to a computing center does not
exceed its bottleneck bandwidth.

As all the unknown variables in the centralized ACRA algorithm optimization problem are
binary and only restrictions must be satis�ed, the problem is clearly NP-complete, which is
well known can’t be solved in polynomial time. The computation complexity isO(2Na+Nd+NJ),
where NJ is the total number of computing jobs. Next we proposed heuristic approximate
algorithms to solve the ACRA problem.

2.5.3 Distributed ACRA algorithms

As the centralized ACRA algorithm has very high computational complexity, we propose dis-
tributed ACRA algorithms in this subsection. For the distributed ACRA algorithms, we assume
that all the job owners have the information of the remote clouds, such as the communication
and computing resources and their prices. In addition, the job owners may have the informa-
tion of close A-Fogs and D-Fogs. Two types of distributed ACRA algorithms, cooperative and

49

2 QoS Aware Hybrid Mobile Computing Model

non-cooperative algorithms, are presented as follows.

2.5.3.1 Non-cooperative Distributed ACRA Algorithms

In the non-cooperative distributed ACRA algorithms, there is no cooperation among the com-
puting centers, which make ACRA decisions according to the local information and do not
interact with other computing centers. Two baseline non-cooperative ACRA algorithms are
considered, random ACRA algorithm and preference based ACRA algorithm.

In the random ACRA algorithm, each job owner sends a request to a randomly selected com-
puting center. The request carries the information of job size, job type, target job completion
time and job completion reward. The computing centers receiving a request make an admission
decision on the job according to the available computing and communication resources. If the
job is accepted, it is put to job queue and is completed before the target job completion time.
Analytics results are sent back to the job owner and the computer center is paid as agreed. If the
job is rejected, the job owner sends a request to another randomly selected computing center.
The process repeats until the job is accepted or rejected by all the computing centers, in which
case the job is blocked.

In the user preference based algorithm, each job owner creates a preference list for the com-
puting centers known to it, according to the cost of computing and communication resources,
and computing capacity. While there are many ways to compute a preference for a given com-
puting center, a simple approach is used here. Suppose that a job owner has the information of
a list of computing centers, which is denoted by L. For a given job, the job owner computes the
distance to each computing center in the list, and the minimal computing cost among the avail-
able computing options in each computing centers. Then the computing centers are ranked in
decreasing order of distance, computing cost, and computing resources usage, separately, which
are denoted by Od

i , Oc
i , Ou

i , respectively, for i ∈ L. Let Op
i denoted the preference value for the

computer center i in the list L, which can be computed according to the above ranks:

O
p
i = wnO

d
i + wcO

c
i + wuO

u
i , (2.6)

where wn, wc and wu are the weights for the rankings, which are set to 0.8, 0.1 and 0.1, respec-
tively. It is noted that the distance is given a dominate weight, as it directly determines the
availability of low cost wireless connection, and also introduces randomness to avoid too many
jobs are submitted to one computing center. The preference list can be created by ranking the
computing center preference values in decreasing order. The job owner sends request to the
computing centers according to the preference list. If the request is accepted by a computing
center, the ACRA process is completed. Otherwise the job owner �nds the next computing
center in the preference list. The process repeats until the request is accepted or rejected by all
computing centers.

It is noted in the non-cooperative ACRA algorithms, the decisions on job requests are made
immediately by the computing centers without waiting for other job requests or feedback from

50

2 QoS Aware Hybrid Mobile Computing Model

other computing centers.

2.5.3.2 Cooperative Matching Theory based ACRA Algorithm

While the non-cooperative ACRA algorithms are simple, the computing and communication re-
sources may not be e�ectively utilized. To improve the resource utilization and analytics service
quality, a cooperative matching theory based ACRA algorithm is proposed in this subsection.
Matching theory is a mathematical framework used to form mutually bene�cial relationships
over time, which has been widely used for lab economics and distributed wireless management.

In the matching theory based ACRA algorithm, the system is operated with matching phases.
Each matching phase lasts no more thanTm seconds. Each computing center regularly publishes
its computing resource price and available computing resources, which are available to job
owners. At any time if a computing job is generated, the job owner creates a preference list of
the computing centers known to it for this job with formula (2.6) according to the method used
in the user preference based ACRA algorithm.

In the start of each matching phase, each computing center creates an empty waiting list
of analytics jobs. And then the job owners send service request to computing centers, and
the computing centers select jobs following the matching process presented in Algorithm 1.
The matching process stops if all jobs not in any waiting list have empty preference list or the
matching phase expires. Once the matching process stops, the jobs in the waiting lists of the
computing centers are accepted and noti�cations are sent to the job owners. The accepted jobs
are then executed immediately. Then a new matching phase follows.

Algorithm 1 Matching theory based cooperative ACRA algorithm.
1: Job owners with new jobs create preference list of known computing centers.
2: for each matching period do
3: Each computing center creates an empty waiting list of jobs.
4: while (jobs not in any waiting list has non-empty preference list and matching phase

not expire) do
5: Requests for jobs not in any waiting list are sent to �rst computing center in pref-

erence list.
6: Computing centers compute the utility of the received and queued job requests with

all computing options according to (2.4) and rank the jobs in decreasing job utility.
7: The top ranked job requests with positive utilities are added to waiting lists sequen-

tially and available computing resources are updated, until no more computing resource is
available.

8: Jobs not added to waiting lists are rejected and rejection noti�cation sent to job
owners.

9: Job owners receiving job rejection noti�cation remove the corresponding comput-
ing center from their preference list, otherwise they wait for further noti�cations.

10: end
11: Computing centers accept jobs in their waiting lists and send acceptance noti�cations.
12: end

Fig. 2.11 shows an example matching process. In the example there are m jobs and n com-

51

2 QoS Aware Hybrid Mobile Computing Model

puting centers. Owners of jobs J1 and Jm send request �rst to computing centers Cn and C1,
respectively. C1 adds Jm to waiting list, while Cn rejects job J1 and sends a rejection noti�-
cation to J1 job owner. Then J1 owner proposes to C1, which in this case is added to waiting
list by C1. When there are no further jobs being rejected, all the jobs in the waiting lists are
accepted and acceptance noti�cations are sent to the job owners. Then a new matching phase
starts.

Figure 2.11: Illustration of jobs to computing centers matching process.

It is noted that the matching period time Tm is a key design parameter for the matching
theory based algorithm. A smaller Tm �nds less jobs to be matched to the computing centers
in one phase, which may not be good for computing resource utilization. If Tm is set to be too
small, the matching theory based algorithm behaves as the user preference based algorithm.
On the other hand, a too large Tm may cause unwanted delay to the job completion time. A
solution to avoid the service start delay due to matching process is to request service a certain
time earlier before the job is generated.

2.6 Evaluation of ACRA Algorithms

In this section the feasibility of HMCM based data analytics is assessed and the ACRA algo-
rithms are evaluated.

2.6.1 Simulator Design

A discrete-event driven system level simulator is developed, which can be used to perform
simulations with a large scale of computing resources in the A-Fogs and D-Fogs. Based on
the simulator extensive experiments are run to obtain simulation results, which are analyzed
and discussed to get insights into the performance of the proposed ACRA algorithms and the
feasibility of HMCM based data analytics services.

While there are several simulators available for simulations of cloud computing and cloudlet

52

2 QoS Aware Hybrid Mobile Computing Model

computing, to the best of our knowledge, no fog computing simulator with analytics services
and QoS support has been reported. The �nite state machines of our fog computing simulator is
presented in Fig. 2.12. The core of the simulator is an event scheduler, which schedules events
according to the event arrivals: new jobs to be generated or jobs being completed. If a new
job is generated, the job goes through the admission control procedure, where various ACRA
algorithms are supported. After the ACRA process, jobs are either accepted or rejected. Then
the simulator returns to the event scheduling state. If a job is completed, computing resources
allocated to that job are released.

Figure 2.12: Simulator �nite state machines.

2.6.2 Experiment Setup

While there are a vast space for system parameter setting, only typical ones are considered for
our experiments, which are summarized in Table 2.6.

Analytics job arrival rates λg,s are set to decrease with dataset type s, but remain the same
for any given algorithm type g. Each job has a con�gurable target completion time, which is
the main indicator of QoS requirement. In the simulations the target job completion time for a
job is uniformly distributed in the range of 1 to 3 times the communication time to the cloud.
The job service charge in dollars is assumed to be randomly distributed in the range of 1 to 1.5
times the communication cost to the cloud.

With the above system con�guration, the communication costs for the transfer of job data to
the computing centers, and the computing cost can be computed for the sample jobs running
with all the computing settings in advance. The total costs versus the computing resource
settings are sorted in increasing order and stored in a cost table for each job type. In simulations
the possible options are simply selected for a given job as the available computer settings from
the corresponding cost table.

For the large scale data analytics service and the QoS aware service and resource management
scheme, the major concern from the analytics service users is on the service quality such as job
blocking probability; while for the service operators of the fogs and the clouds they are more

53

2 QoS Aware Hybrid Mobile Computing Model

Table 2.6: System parameter settings.
Variable Values Meaning
L (Km) 1 Length of the side of a squared network area
Na 20 (default) Number of A-Fogs
N a,c
i [10,20] Number of computers at A-Fog i

N a,m
i [40,60] Number of Raspberry Pi at A-Fog i

Nd,c
i 500 Number of D-Fog cores

Nd,m
i (GB) 1000 Size of D-Fog memory

Tm (Sec) 60 (default) Matching phase interval
Ba,c (Mbps) 20 Job to A-Fog cellular bandwidth
Ba,w (Mbps) 50 Job to A-Fog WiFi bandwidth
Bd (Mbps) 30 Job to D-Fog bandwidth
Bc (Mbps) 20 Job to cloud bandwidth
Pwi� ($/GB) 0.01 WiFi price
Pcell ($/GB) 1 cellular price
P a,d
i ($/hour) [1.6,2.4] A-Fog i computer usage price
P

a,p
i ($/hour) [0.8,1.2] A-Fog i Raspberry Pi usage price
P d,c ($/hour) 0.1 / 0.06 D-Fog / cloud CPU usage price
P d,m ($/hour) 0.04 / 0.03 D-Fog / cloud memory usage price per GB

concerned on the utility (or revenue) generated from the analytics services. Additionally we
proposed a metric called user satisfaction to measure the level of user satisfaction with the
analytics service, on a scale of 0 to 1, with 1 being most satis�ed, which means the matched fog
object is the user’s most preferred one.

In the next two subsections, experiment results over pure A-Fogs and HMCM are presented
respectively.

2.6.3 Experiment Results with A-Fogs only Model

In this set of experiments, only jobs for A-Fogs presented in Table 2.2 are generated and pro-
cessed. Typical results of job blocking probability, user satisfaction level and service utility with
the distributed ACRA algorithms over 20 A-Fogs are measured and presented in Fig. 2.13. It is
noted that each result shown in the �gure is obtained by averaging over 50 simulations. Each
simulation stops until 20000 jobs are successfully completed.

According to the results in Fig. 2.13, it can be observed that compared to the two baseline
distributed ACRA algorithms (random and user preference based algorithms), the proposed
matching theory based algorithm has the best overall performance, including the lowest job
blocking probability, the highest service utility and high user satisfaction level. In general the
job blocking probability and service utility increase proportionally to the job arrival rate while
the service utility shows the opposite. When the job arrival rate is no more than 1 job per sec-
ond, the matching theory proposed method has a blocking probability of less than 0.05, which
is much smaller than the 0.18 and 0.25 of the user preference based and random algorithms,
respectively. In addition the service utility of matching and user preference based algorithms is
much larger than the random algorithm. The results demonstrate the e�ectiveness of the prefer-

54

2 QoS Aware Hybrid Mobile Computing Model

ence computation method and superior performance of the matching algorithm, with improved
data analytics service capacity and resource utilization.

In the above experiments the number of A-Fogs is �xed to 20. Next we run a set of exper-
iments to check the impact of the number of A-Fogs on system performance. We vary the
number of A-Fogs from 5 to 25 with a step of 5. Again the A-Fogs are uniformly distributed
in the network area. Typical results are presented in Fig. 2.14 with job arrival rate of 1 job
per second. It can be observed that with increasing number of A-Fogs, the computing system
performance is improved signi�cantly from all the three investigated aspects. For example,
the blocking probability is more than 0.68 for all algorithms with 5 A-Fogs, while the service
utility is smaller than 0.13 dollar/second. With 25 A-Fogs, the job blocking probability drops
signi�cantly to 0.01 for matching algorithm and 0.1 for random algorithm;and the service utility
for matching algorithm increases to 0.44 dollar/second. The results demonstrate the feasibil-
ity of data analytics with A-Fogs and HMCM. In addition, matching algorithm shows superior
performance over the two baseline algorithms over all the settings of the number of A-Fogs.

As mentioned previously, the matching period Tm has a large impact on service quality and
resource utilization. In order to quantify the impact, experiments are run with varying matching
period Tm = 30, 60, 90, 120 seconds. Then the performance in terms of job blocking probability
and service utility with the proposed matching theory based ACRA algorithm is compared with
di�erent Tm. Experiment results with 20 A-Fogs are presented in Fig.2.15. It can be observed
that the job blocking rates with 30 and 60 seconds matching period are very close and much
lower than the longer matching period. In addition the service utility rate with 60 seconds
matching period is higher than the 30 seconds one. Therefore 60 seconds is set as the default
value for matching period in the experiments.

2.6.4 Experiment Results with hybrid mobile Computing Model

Next the feasibility and e�ectiveness of data analytics over HMCM are assessed. The HMCM
system has 20 A-Fogs, 1 D-Fog and 1 cloud. In this case, only matching theory based ACRA
algorithm is included for investigation as it largely outperforms the two baseline algorithms.
In this set of experiments both A-Fog datasets and D-Fog datasets shown in Table 2.2 and Ta-
ble 2.5 are generated and processed. For performance comparison purpose, four di�erent hybrid
mobile computing environments are investigated: 1) with A-Fogs only (labelled ‘A-Fog’ in the
following �gures); 2) with all the three types of computing centers (A-Fogs, D-Fog and cloud,
labelled ‘All’); 3) with only D-Fog and cloud (labelled ‘D-Fog+cloud’) and 4) with only cloud
(labelled ‘cloud’).

Typical results of blocking probability and service utility with these computing environments
are presented in Fig. 2.16(a) and Fig. 2.16(b), respectively. Further details on the proportion and
distribution of the jobs completed at the di�erent computing environments under the comput-
ing environment ‘All’ are presented in Fig. 2.17.

From the results presented in Fig. 2.16 and Fig. 2.17, we have the following observations:

55

2 QoS Aware Hybrid Mobile Computing Model

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

Job arrival rate (jobs per second).

M
e

a
n

 j
o

b
 b

lo
c
k
in

g
 p

ro
b

a
b

lit
y
.

Matching

Random

UserPreference

(a) Mean job blocking probability.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Job arrival rate (jobs per second).

M
e

a
n

 s
e

rv
ic

e
 u

ti
lit

y
 r

a
te

 (
d

o
lla

r/
s
e

c
o

n
d

).

Matching

Random

UserPreference

(b) Mean analytics services utility.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.5

0.6

0.7

0.8

0.9

1

Job arrival rate (jobs per second).

U
s
e

r
s
a

ti
s
fa

c
ti
o

n
.

Matching

Random

UserPreference

(c) Mean user satisfaction.

Figure 2.13: Analytics services performance with di�erent matching methods versus job arrival rate
over A-Fogs only environment. a) job blocking probability; b) service utility; c) user satisfaction

56

2 QoS Aware Hybrid Mobile Computing Model

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of A−Fogs.

M
e

a
n

 j
o

b
 b

lo
c
k
in

g
 p

ro
b

a
b

lit
y
.

Matching

Random

UserPreference

(a) Mean job blocking probability.

5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of A−Fogs.

M
e

a
n

 s
e

rv
ic

e
 u

ti
lit

y
 r

a
te

 (
d

o
lla

r/
s
e

c
o

n
d

).

Matching

Random

UserPreference

(b) Mean analytics services utility.

Figure 2.14: Analytics services performance with di�erent matching methods versus number of A-Fogs.
a) job blocking probability; b) service utility

57

2 QoS Aware Hybrid Mobile Computing Model

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Job arrival rate (jobs per second).

M
e

a
n

 j
o

b
 b

lo
c
k
in

g
 p

ro
b

a
b

lit
y
.

MatchTime=30s

MatchTime=60s

MatchTime=90s

MatchTime=120s

(a) Mean job blocking probability.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Job arrival rate (jobs per second).

M
e

a
n

 s
e

rv
ic

e
 u

ti
lit

y
 r

a
te

 (
d

o
lla

r/
s
e

c
o

n
d

).

MatchTime=30s

MatchTime=60s

MatchTime=90s

MatchTime=120s

(b) Mean analytics services utility.

Figure 2.15: Performance with di�erent matching methods versus matching period. a) job blocking
probability; b) service utility

58

2 QoS Aware Hybrid Mobile Computing Model

• For the data analytics services, HMCM can provide good service quality. Although the
cloud has virtually unlimited computing resources, it does not provide satisfactory service
quality with the investigated system con�gurations. The job blocking probability with
the cloud only environment is around 0.2 irrespective of job arrival rates, while it is less
than 0.02 for the HMCM computing environment.

• Due to the limited computing resources at the A-Fogs, the blocking probability with only
A-Fogs increases fast with job arrival rates larger than 0.2, mainly because A-Fogs are not
powerful enough to process the larger D-Fog datasets.

• With the hybrid mobile computing environment (including A-Fogs, D-Fogs and clouds),
the overall analytics service has the lowest blocking probability and the highest service
utility for all the job arrival rates. The service utility is more than double of the cloud
only system. The A-Fogs only computing system also achieves a very high service utility,
which is much higher than the D-Fogs and clouds based computing system. The results
demonstrate that A-Fogs can play an very important role in providing fast and economical
solution for data analytics services in CAV applications.

• Compared to the A-Fogs only architecture, the ‘D-Fog+cloud’ architecture has lower util-
ity rate, which is close to that of cloud only solution. But its job blocking rate is also very
low, which is around 0.05 for most job arrival rates. Therefore we can say D-Fogs with
dedicated resource is a key and e�cient in guarantee data analytics quality with small
job blocking probability, but it may not be an economic solution compared to A-Fogs.

According to the above experiment results, it is demonstrated that data analytics for CAV
applications is feasible over HMCM. The A-Fogs with opportunistic computing and communi-
cation resources can provide economic solution to data analytics services, while D-Fogs with
dedicated computing resource can provide excellent service quality for the services. The impor-
tant roles of A-Fogs and D-Fogs can also be observed from the proportions of these fogs used
to execute the data analytics jobs from Fig. 2.17. With the proposed HMCM which integrates
A-Fogs and D-Fogs and e�cient matching based ACRA algorithm, satisfactory data analytics
services and high service utilities could be achieved. It is noted that if more powerful computing
devices are available for the A-Fogs and D-Fogs, which is highly likely to happen, even better
performances can be delivered for HMCM.

2.7 Conclusion

In this chapter we proposed a hybrid mobile computing model (HMCM) based data analytics
service for CAV applications. In the HMCM there are A-fogs with opportunistic computing
resources, D-fogs with dedicated computing resources and traditional clouds. A-Fogs and D-
Fogs can cooperate to increase improve resource utilization and data analytics capacity in terms
of the number and size of processed analytics jobs. The bene�ts, key enabling technologies

59

2 QoS Aware Hybrid Mobile Computing Model

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Job arrival rate (jobs per second).

M
e

a
n

 j
o

b
 b

lo
c
k
in

g
 p

ro
b

a
b

lit
y
.

A−Fog

All

D−Fog+cloud

cloud

(a) Mean job blocking probability.

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Job arrival rate (jobs per second).

M
e

a
n

 s
e

rv
ic

e
 u

ti
lit

y
 r

a
te

 (
d

o
lla

r/
s
e

c
o

n
d

).

A−Fog

All

D−Fog+cloud

cloud

(b) Mean analytics services utility.

Figure 2.16: Analytics services performance over hybrid mobile computing model against job arrival
rate. a) job blocking probability; b) service utility.

60

2 QoS Aware Hybrid Mobile Computing Model

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Job arrival rate (jobs per second).

P
ro

p
o
rt

io
n
 o

f
jo

b
s
 c

o
m

p
le

te
d
.

A−Fog

D−Fog

cloud

Figure 2.17: Proportion of jobs completed in di�erent computing environments to those in the ‘All’
computing environment.

and use cases with HMCM model were discussed. Then we developed a framework for data
analytics service and resource management, which is a key research challenge for HMCM. An
optimization problem for QoS aware admission control and resource allocation (ACRA) was
formulated. Distributed ACRA algorithms with and without fog cooperation were proposed to
solve the ACRA problem, including two baseline non-cooperative algorithms and a matching
theory based cooperative ACRA algorithm. In the ACRA algorithms, constraints and prices of
computing and network resources were jointly considered. Experiment results demonstrated
the feasibility of large scale data analytics services with HMCM and signi�cant improvement
on the data analytics capacity and service utility with the cooperative ACRA algorithm. We
developed a system level simulator with workload models created from benchmark experiments
over fogs and distributed compute engine Spark. It is observed from experiments that in the
HMCM system A-Fogs is very e�ective in service cost reduction, while D-Fogs plays a key role
in maintaining a very low job blocking probability. The results demonstrate the feasibility and
e�ciency of large scale data analytics over HMCM and show the superior performance of the
matching theory based ACRA algorithm. In our future works mobility management and more
design options will be investigated.

61

3 Object Detection with Mobile Local
Computing

3.1 Introduction

Generally many driving safety applications such as collision detection, lane keeping and emer-
gency braking, are all based on real time environment sensing. Two major distinct features
of these applications are that vehicle sensors are the sources of data generation and expected
response time is fast. If the processing and analytics of the data are performed in the clouds or
fogs, the raw data from vehicles needs to be transported over the Internet to the clouds or fogs
for analysis, which can incur high tra�c load, large process and response latency and costs. In
addition, it is possible that the connections of vehicles to the Internet may not exist or have
very limited network bandwidth, such as in the scenarios of remote area and severe weather.
Under theses conditions the expected data analytics services for CAV applications may not be
provided through the public clouds or fogs. On the other hand, vehicles are equipped with in-
creasing computing and storage resources to support autonomous driving and advanced driving
assistance. In order to solve the problems for these real time CAV applications, a simple and
straightforward solution is based on mobile local computing, which performs the data analytics
at vehicles directly.

Detecting surrounding objects such as lane, other vehicles, pedestrians and tra�c signs is the
basis for most driving safety applications. Because of the strict real time requirements, these
object detection tasks are better processed by vehicles themselves. In this chapter we focus on
the design and optimization of visual object detection model with mobile local computing.

Visual object detection is a long standing and important research problem for computer vi-
sion, with a wide range of real world applications, such as robotic vision, surveillance, advanced
driving assistance systems (ADAS) and autonomous driving [98]. Its main task is to predict the
position and category of interested objects from images or videos. Traditionally hand-crafted
features have been used to detect multiple classes of objects, e.g., over challenge datasets PAS-
CAL [99] and COCO [100]. Deformable parts model (DPM) is one of the most successful tradi-
tional object detection approaches [101]. However, since AlexNet achieved huge success in the
Imagenet challenge in 2012 [102], convolutional neural networks (CNN) quickly becomes the
dominant object detection approach.

Despite fast growth of CNN in object detection over datasets with a large number of object
classes, real time visual object detection in driving environment is still very challenging. It

62

3 Object Detection with Mobile Local Computing

is observed that popular CNN detectors including Faster-RCNN [103] and SSD [104] do not
perform very well over the KITTI benchmark datasets [98]. In addition to radar and Lidar
based object detection, camera based visual object detection, which is the focus of this work,
provides an economic solution and is also a critical component of hybrid solution for ADAS and
autonomous driving. There are many key challenges on visual object detection for autonomous
driving as discussed below, which may not present in the other object detection datasets.

• Most object detection applications for ADAS and autonomous driving require extremely
high detection accuracy and fast response time. While high false positive ratio (non-
targets are falsely detected as targets) or excessively delayed detections are annoying,
which may lead to close of the detection based safety applications, high false negative
ratio (targets are not detected) can have fatal consequences and should be avoided as
much as possible.

• Driving environment is very harsh for visual object detection with poor illumination and
weather conditions. Unlike that there are only a few large target objects in an image in
datasets such as PASCAL, there can be many occluded and truncated objects with large
object scale variations in ADAS images. Example images with occluded and truncated
cars are shown in Fig. 3.1.

• Apart from the accuracy performance requirement, computation speed is also a big con-
cern for ADAS object detection with mobile local computing. Vehicles are unlikely to be
equipped with GPU computers as powerful as used in research environments. Accuracy
often has to be compromised due to computation complexity of advanced CNN detectors.

(a)

(b)

Figure 3.1: Example di�cult images for object detection.

63

3 Object Detection with Mobile Local Computing

In view of the above research challenges, in this chapter we propose the following methods
to the multi-scale CNN (MS-CNN) model [105] to improve visual object detection performance
for ADAS.

• In the existing MS-CNN model, feature map from feature output scales are processed
separately to predict existence of objects at �xed scales. In this chapter deconvolution
of CNN features is applied at smaller feature output scales, which is further fused with
features at larger feature output scales, to provide richer context for object detection at
individual feature output scale. Such a method can e�ectively address the large object
scale variation challenge.

• In most of existing CNN detectors, non-maximal suppression (NMS) method is used for
suppression of overlapping object proposals. With such process there is very little chance
for proper detection of occluded objects. But in driving environment occluded objects are
normal and are potential driving hazards. To address the object occlusion challenge soft-
NMS is applied at object proposals from di�erent feature output scales to strike a balance
on the number and quality of object proposals.

• In the existing CNN detectors, default anchor boxes with certain sizes are used to generate
object proposals. In the driving environment the interested objects have strong features
in shape, for example, the width of a car should not exceed lane width. The distributions
of the object aspect ratio can be utilized for anchor box settings. We measure the aspect
ratio statistics of objects from KITTI training samples and �nd proper anchor box settings
by exploiting the statistics for better object localization and prediction.

The proposed CNN methods are individually and jointly evaluated with various image input
sizes by extensive experiments over KITTI benchmark dataset. Good detection performance
improvement is observed with both individual and combined CNN methods. Compared to the
published works over KITTI benchmark test dataset our proposed method ranks the �rst for
pedestrian detection category “Easy” and second for categories “Moderate and “Hard”, and is
the fastest among the top ten ranked published methods. The object detection time with a
local GPU computer is 0.08 second per 384×1280 sized image, which can satisfy the real time
requirements of driving safety applications.

3.2 Related Works

Visual object detection is a long term research problem. Classic object detectors use hand-
crafted features, such as histogram of oriented gradients (HOG) [106], integral channel features
(ICF) [107] and aggregated channel features (ACF) [108]. From the aspect of feature enhance-
ment, [109] introduces spatially pooled features to improve the feature robustness. [110] pro-
poses a pedestrian detector by computing features at multiple image scales. A graph-based
algorithm in [111] generates proposals of vehicles with better quality than other traditional re-
gion proposal approaches [112, 113]. DPM is the latest successful classic object detector with

64

3 Object Detection with Mobile Local Computing

signi�cantly improved detection accuracy. However the computation complexity of DPM is still
very high and it does not perform well for driving object detection.

While classic object detection gets stuck in a bottleneck, there is a huge breakthrough on
visual object detection with deep learning models, especially CNN models. Powered by the
powerful GPU computers and huge object detection samples, CNN models can automatically
learn complex and e�cient features from sample images. Widely successful CNN models and
applications have been reported within the past several years. In general CNN based object
detectors fall into two frameworks: one-stage and two-stage.

Currently two-stage detectors produce the state-of-the-art performance in object detection
tasks like PASCAL, COCO. In the line of two-stage CNN detectors, RCNN [114] is a pioneer
CNN model, which improves object detection performance over classic detectors by a large
margin. In the �rst stage, RCNN applies selective search method [112] to generate su�cient
proposal candidates that contain all the objects. In the second stage, RCNN forwards each
proposal through convolutional networks, followed by classifying the proposals with SVMs
and predicting bounding boxes o�sets with linear regression. Fast-RCNN [115] extends RCNN
by using one single convolution network to perform shared computation in the second stage,
which increases the speed signi�cantly. Furthermore, Faster-RCNN [103] proposes region pro-
posal network (RPN) to replace selective search method in RCNN and makes the whole network
trainable in an end to end approach. In addition, many other variants of RCNN-style approaches
are proposed [116–118].

On the other hand, one-stage detectors are faster and easier to train while yielding infe-
rior performance. SSD [104] skips the region proposal stage and directly uses multiple feature
maps with di�erent resolutions to perform object localization and classi�cation. YOLO [119]
is another one-stage detector that can achieve even faster speed at the expense of accuracy.
By introducing improvements of batch normalization, high resolution classi�er, convolutional
with anchor boxes and dimension clusters to YOLO, YOLOv2 [120] achieves higher accuracy
and higher speed.

In the latest research on CNN models, there are increasing interests on exploiting multiple
scales feature maps. Based on the conventional pyramidal feature hierarchy in convolutional
networks in Faster-RCNN, [117] adds a top-down pathway and lateral connections to merge
feature maps from di�erent level. The objective is to strengthen the representational power of
low-level feature maps with the semantics conveyed from high-level ones. With this adaptation
in Faster-RCNN, [117] shows considerable improvements on the COCO detection benchmark.
Similar idea is applied to SSD in [121], where DSSD is proposed to utilize feature maps from
smaller scales with more semantics. A fully evaluation of DSSD is conducted with di�erent fea-
ture map concatenation approaches, including feature maps pooling and deconvolution [122].

The huge success of deep learning and CNN technologies signi�cantly boost research and
development of autonomous driving. The popular models are applied and enhanced for object
detection in driving environment. It is noted that the popular models including Faster-RCNN,
SSD, YOLO, YOLOv2 did not produce good results over the KITTI test dataset. But with certain

65

3 Object Detection with Mobile Local Computing

modi�cations and adaptations, the variants of Faster-RCNN and SSD models are taking the top
entries in the KITTI object detection leader board. For example, [123] improves the region
proposal quality with resource to subcategory information. As it is hard for Faster-RCNN to
handle the large object size variation, which is designed to detect all the objects on a single layer,
MS-CNN [105] extends the detection over multiple scales of feature layers, which produces
good detection performance improvement. Scale dependent pooling and cascaded rejection
classi�ers are used in [124]. In [125], authors propose a recurrent rolling convolution (RRC)
architecture on top of SSD model, which produces top detection performance for pedestrian
detection. However, it is noted that the RRC model is very complex and signi�cantly increases
computation time.

Our work presented in this chapter are di�erent from the above reported enhancements over
KITTI benchmark tests. We use MS-CNN as a baseline network model and add three enhance-
ment building blocks, which show considerable object detection performance improvement but
with negligible additional object detection time.

3.3 Network Architectures

In this section we present the overall architecture of the modi�ed CNN model and the proposed
methods.

3.3.1 Overall Architecture of the Modified CNN Model

3.3.1.1 General CNN Building Blocks

Generally speaking CNN is a class of deep feed-forward arti�cial neural networks that use
multiple layers of neurons. A CNN consists of an input layer, an output layer and multiple
hidden layers. For the considered visual object detection task, the CNN input layer is an image
with sizeH×W ×D, whereH andW denote image height and width in pixels, andD denotes
the number of color components. For a typical KITTI image, the value of H , W and D is 384,
1280 and 3, respectively. The output layer produces a number of detected objects with associated
attributes of object category and bounding boxes. Fully connected layer is usually included in
the output layer, used to implement high-level reasoning based on deep feature maps.

A CNN hidden layer typically consists of convolution layers, pooling layers, ReLU layers.
Convolution layer is the core building block of CNN. It includes a set of learnable �lters which
have a small receptive �eld but are applied with convolution to the whole input. A convolu-
tion layer can be characterized by its �lters in 3 dimensions: �lter height h and width w, and
depth (or channels) d, which denotes the number of �lters. The �lters are shared (each �lter is
conveyed across the entire visual �elds) and have local connectivity (each neuron is connected
to only a small region of the input volume). They can learn features with very little image
pre-processing which are hand-engineered in traditional algorithms. By applying a �lter to the
whole input volume a so-called feature map can be produced.

66

3 Object Detection with Mobile Local Computing

Pooling layer is used for non-linear down sampling. It usually follows convolution layer. Max
pooling is the most common pooling function, which is used in the CNN investigated in this
chapter. With max pooling the input feature map is partitioned into a set of non-overlapping
rectangles and for each rectangle outputs the maximum feature value. ReLU layer applies non-
saturating activation function f(x) = max(0, x), which is used to increase nonlinear property
for decision making and the overall network.

3.3.1.2 Key Building Blocks of the Modified CNN Model

Figure 3.2: Overall pipeline of enhanced MS-CNN model.

The main building blocks of the modi�ed CNN model is presented in Fig. 3.2. The baseline
network is MS-CNN [105], which detects candidate objects at multiple feature output layers
with di�erent scales. To di�erentiate from the MS-CNN, the proposed methods are highlighted
by red boxes in Fig. 3.2. It is noted that the proposed methods to MS-CNN are general and are
applicable to other CNN models such as Faster-RCNN and SSD as well.

The proposed network follows the popular two-stage object detection network architecture,
which consists of an object proposal network and an object detection network. The proposal
network layers are based on the popular reduced VGG-16 net [126], which has 16 weight lay-
ers in its original form. Additional convolution layers, pooling layer, proposed deconvolution
layers and object proposal layers are added on top of the reduced VGG-16 net. It is noted that
only a few convolution and pooling layers from hidden layers are presented in Fig. 3.2 for better
visualization. The feature outputs of these layers are directly used for object proposal. The lay-
ers selected as feature output layers are labeled as “conv4-3”, “conv5-3”, “conv6-1” and “Pool6”,
respectively. The �rst number in the labels such as 4 and 6 represents the associated hidden
layer in VGG-16 net, and the second number represents the ID of the convolution layer in a
hidden layer. As the feature output layers are not directly connected (with separation by other
convolution layers or pooling layers), dotted lines are used to connect them in Fig. 3.2.

The original feature outputs are further processed by the deconvolution building blocks
(DBB), shown as “DB1”, “DB2” and “DB3” in Fig. 3.2, to aggregate feature maps from adja-
cent layers, before being used in object proposal building blocks (OPBB). Each OPBB produces
a �xed-size set of proposals including coordinates with respect to the pre-de�ned anchors and
scores of objectiveness. Then a soft-NMS building block is used to remove redundant proposals
with heavy overlapping. In the original MS-CNN model, NMS is used to remove redundant pro-
posals. The new building blocks (DBB, OPBB and soft-NMS building blocks) will be introduced

67

3 Object Detection with Mobile Local Computing

in details in the following subsections.
The object detection network has a region of interest (ROI) pooling layer and a fully con-

nected (FC) layer. The outputs of upsampled feature maps from the lowest output feature layer
(i.e. “conv4-3") and object proposals from soft-NMS building block in the proposal networks are
used as input to the detection networks. The ROI pooling layer extracts the feature maps of the
object proposals using these inputs. It is noted that the feature maps from “conv4-3” are upsam-
pled twice to improve the capacity for location-aware bounding box regression. Then a fully
connected layer maps the ROI feature maps into �xed vectors for classi�cation and bounding
box regression.

3.3.2 Deconvolution Building Block (DBB)

(a) Fusion with element-wise sum. (b) Fusion with element-wise multiplication.

(c) Fusion with concatenation. (d) Additional batch normalization (BN).

(e) Additional convolution layer and BN.

Figure 3.3: Various feature fusion methods for deconvolution building block (DBB).

MS-CNN exploits multi-scale features to produce predictions of di�erent scales, which showed
improved object detection performance over Faster-RCNN and SSD for KITTI datasets. It is a
good idea to use the feature maps at larger scales (lower CNN layers) with smaller receptive

68

3 Object Detection with Mobile Local Computing

�elds to detect smaller objects and those in smaller scales (higher layers) to detect larger ob-
jects. However, it is noted that shallow feature maps from the low layers of feature pyramid
inherently lack �ne semantic information for object recognition. There is an opportunity to
augment the shallow feature maps with deeper feature maps from higher feature output layers
and improve detection performance.

We propose to add DBB to the baseline MS-CNN model, with additional deconvolution layers
and lateral connections to aggregate feature outputs from di�erent layers. Using DBBs the
semantics from higher layers can be conveyed into lower layers to increase the representation
capacity. There are three DBBs used in the proposed CNN model. Fig. 3.3(a) illustrates the
architecture of the DBB used in this chapter, which connects one feature output layer with
its adjacent higher layer counterpart. Speci�cally, we �rst connect a convolution layer (“Conv
1×1×512”) with 512 1×1 �lters to an output feature layer as shown in the Fig. 3.3(a). In addition,
in the horizontal direction, a deconvolution layer (“Deconv 4×4×512”) with 512 4×4 �lters is
applied to upsample the corresponding higher-level feature maps. Then the outputs of these two
associated feature layers, which have the same spatial size and depth, are merged by element-
wise sum and processed by a ReLU layer to produce a new output feature layer. In order to
maintain feature aggregation consistence, the number of channels is set to 512 in all DBBs.

It is noted that there are many possible architecture designs for DBBs. For example, for a
given feature output layer, the output feature maps can be merged with those from both higher
layers and lower layers. However the computation complexity and memory requirement can be
increased signi�cantly. We examined and compared four alternative DBB architectures, which
are shown in Fig. 3.3. Two alternative architectures shown in Fig. 3.3(b) and Fig. 3.3(c) are very
similar to the one adopted in this chapter as shown in Fig. 3.3(a), with the only di�erence of
using element-wise multiplication and concatenation, respectively. Two more alternative DBB
architectures are shown in Fig. 3.3(d) and Fig. 3.3(e). The implementation shown in Fig. 3.3(d)
adds a batch normalization (BN) function block after the convolution and deconvolution layers
in the DBB shown in Fig. 3.3(a), while the implementation shown in Fig. 3.3(e) adds a convo-
lution layer “Conv 3×3×512” and a BN function block. However, according to results from
extensive experiments, it is found that the implementation shown in Fig. 3.3(a) has the best
detection performance and low computation complexity. The architectures shown in Fig. 3.3(d)
and Fig. 3.3(e) even have negative impact on detection performance. The design of DBBs is not
straightforward and speci�c consideration is needed for di�erent baseline CNN models.

3.3.3 Object Proposal Building Block (OPBB)

3.3.3.1 OPBB Architecture

The functionality of OPBB is to receive feature map output from the DBBs or Pool6 layer and
produce high quality proposals to be further processed by the soft-NMS building block. In this
chapter we have 4 OPBBs which have the same architecture but di�erent parameters. These
OPBBs are labeled as “OPBB8”, “OPBB16”, “OPBB32” and “OPBB64” as shown in Fig. 3.2. The

69

3 Object Detection with Mobile Local Computing

number in the OPBB labels is the ratio of the original image size to the spatial size of the feature
map input to the OPBBs.

Inside each OPBB there are several similar process pipelines, each associated with one type
of anchors. The overall architecture of an OPBB with two types of anchors is shown in Fig. 3.4.
For the �rst anchor related pipeline, the input feature maps from DBB go through two separate
processes: one for classi�cation having a convolution layer with h1 × w1 × (C + 1) �lters
and a softmax module, and the other for bounding box regression with respect to the anchor
having a convolution layer with h1 × w1 × 4 �lters. The classi�cation process path produces
the softmax scores of C object classes and background class for each feature map location. The
regression path produces a bounding box estimation for each feature map location. Then the
anchors with estimated classi�cation scores and the bounding box for each feature map location
are processed to form good quality proposals.

At each feature map location l, there are two proposals, pnl for n ∈ {1, 2}, produced from the
two anchor pipelines. Each proposal has (4 + C + 1) dimensions, among which 4 dimensions
are for bounding box coordinates andC+1 dimensions are for classi�cation scores of each class.
The 4 coordinates represent the o�sets relative to the associated anchor coordinates. Let Bn

l

denote the coordinates vector for proposal pnl , n ∈ {1, 2}. Let L denote the class label set,
L = {0, 1, 2, ..., C}. Label 0 refers to the background class. Let Fnl = (fn,0l , fn,1l , ..., fn,Cl) be
the classi�cation score vector for pnl , where n ∈ {1, 2}, fn,cl denotes the classi�cation score for
class c. Classi�cation score measures the probability distribution over C + 1 classes. Then a
proposal pnl at location l can be denoted by pnl = (Bn

l , Fnl).

Figure 3.4: Object proposal building block.

3.3.3.2 Anchor Boxes

Anchor boxes are critical component of the regional proposal networks for Faster-RCNN model
and its variants such as MS-CNN. In the standard Faster-RCNN model there are 9 types of anchor
boxes associated to one convolutional �lter layer. In the baseline MS-CNN, in each OPBB, there
are several convolutional �lter layers and each is associated with only one type of anchor boxes.
The associated convolutional �lter layer and the type of anchor box correspond to one proposal
pipeline in an OPBB. The aspect ratio of MS-CNN anchor boxes is set to 1 for cars and around

70

3 Object Detection with Mobile Local Computing

0.7 for both pedestrians and cyclists. Although the network can re�ne the bounding box of
proposals by learning to predict the o�sets to anchor boxes, a better anchor box setting will
help object detection with improved matching to the ground truth bounding boxes, therefore
improve both training and inference performance.

0 1 2 3 4 5
aspect ratio

0

500

1000

1500
sa

m
pl

es
 n

um
be

r

(a) Cars.

0 0.2 0.4 0.6 0.8 1 1.2
aspect ratio

0

100

200

300

sa
m

pl
es

 n
um

be
r

(b) Pedestrians.

0 0.5 1 1.5 2
aspect ratio

0

50

100

sa
m

pl
es

 n
um

be
r

(c) Cyclists.

Figure 3.5: Distribution of aspect ratios for di�erent object classes in KITTI benchmark training set.

We develop a re�ned OPBB with better anchor box settings according to the object statistics
analyzed over the KITTI training set. It is noted that although the experiments of the anchor
box setting are conducted with MS-CNN as the baseline CNN model, the idea of setting anchor
boxes with sample statistics is general and can be applied to other network architectures as
well.

To get insights into better anchor box settings, we collect all the ground truth bounding boxes
in the KITTI training set and generate a histogram of object aspect ratios for each object class
(cars, pedestrians and cyclists). As shown in Fig. 3.5, the objects of di�erent classes have distinct
distributions of aspect ratios. Car samples have wider boxes with most aspect ratio values in
the range of 1 to 3. On the contrary, the other two classes have much smaller aspect ratios.
Cyclist samples show greater variation than pedestrians. Based on the observation, we resize
the square anchor boxes for cars used in MS-CNN to rectangle ones, which are closer to the
average aspect ratio of car samples. In addition, for pedestrians and cyclists objects detection

71

3 Object Detection with Mobile Local Computing

we add one more type of anchor box. So there are three types of anchor boxes in total for an
OPBB in the re�ned OPBB architecture, compared to only two types of anchor boxes used in
the baseline MS-CNN. The additional type of anchor box has an aspect ratio 0.5. The original
anchor ratio set in the baseline MS-CNN is too narrow to e�ciently cover the object variations.
More details of anchor con�gurations are given in Section 3.4. It is noted that our new anchor
settings are by no means the best �tting to the KITTI dataset. There may be optimal joint
settings on the number, scale and aspect ratio of anchor boxes.

3.3.4 So�-NMS Building Block

After the object proposal layers, soft-NMS building block is used to �lter out highly overlapped
proposals from the object proposal layers. As NMS algorithm has been applied to remove redun-
dant neighbor proposals in most state-of-the-art object CNN detection models including MS-
CNN, we have a brief introduction to NMS before the presentation of soft-NMS. For a proposal
p, any other proposal that has an overlap more than a pre-de�ned threshold T with proposal
p is called a neighbor proposal of proposal p. Mathematically, let Pin = {p1, p2, ...pn} denote
an initial proposal set output from the object proposal layers, in which the proposals are sorted
by their objectiveness scores. Here the objectiveness score Si for proposal pi is the maximum
value in the classi�cation score vector of pi. The traditional NMS method works as follows:

• Algorithm input proposal set Pin and output proposal set Pout. Pout is initialized to an
empty set.

• Step 0: Create a temporal proposal set Ptemp, which is initialized to Pin.

• Step 1: Check if any proposal remains in proposal set Ptemp.

• Step 2: If yes, go to Step 3; else, terminate the NMS process and return output Pout.

• Step 3: Move the �rst proposal (with the highest objectiveness score) in Ptemp to Pout,
which is called winning proposal, denoted by pwin.

• Step 4: Update set Ptemp by removing all the neighbor proposals of proposal pwin from set
Ptemp.

• Step 5: Go to Step 2.

In many object detection challenge datasets neighbor proposals usually correspond to the
same object. But due to heavy object occlusion in KITTI dataset, NMS may remove positive
proposals unexpectedly. For example, there are two proposals p1 and p2 with large overlap in
Fig. 3.6. The proposal p2 for the occluded back car may be removed with high probability by
the traditional NMS method. To address the NMS issue with occluded objects, we apply soft-
NMS for suppression of overlapped objects [127]. With soft-NMS the neighbor proposals of
a winning proposal are not completely suppressed. Instead they are suppressed according to
updated objectiveness scores of the neighbor proposals, which are computed according to the

72

3 Object Detection with Mobile Local Computing

Figure 3.6: Example of overlapped proposals.

overlap level of the neighbor proposals and the winning proposal. NMS can be viewed as a
speci�c case of soft-NMS, in which the updated objectiveness scores of the neighbor proposals
of a winning proposal are simply set to zero.

Let pi be a winning proposal and pj be a neighbor proposal of pi. Let Sj be the objectiveness
score of pj computed from object proposal layers. The update objectiveness score of pj (denoted
by Su

j) is computed with a linear function by the following formula (3.1) [127]:

Su
j = Sj(1−Opi,pj), (3.1)

where Opi,pj represents the intersection of union (IoU) between pi and pj . Opi,pj is computed
by the following formula:

Opi,pj =
area(pi ∩ pj)
area(pi ∪ pj)

. (3.2)

As a whole, the term 1 − Opi,pj acts as a weighting function with higher overlap leading to
larger penalty to objectiveness score for neighbor proposals.

The operation of soft-NMS method is presented below.

• Algorithm input proposal set Pin and output proposal set Pout. Pout is initialized to an
empty set.

• Step 0: Create a temporal proposal set Ptemp, which is initialized to Pin.

• Step 1: Check if any proposal remains in proposal set Ptemp.

• Step 2: If yes, go to Step 3; else, terminate the NMS process and return output Pout .

• Step 3: Move the winning proposal pwin in Ptemp in this round to Pout.

• Step 4: Compute the updated score of the neighbor proposals of proposal pwin in Ptemp

according to (3.1).

• Step 5: Update set Ptemp by removing the neighbor proposals of pwin if their updated
scores are lower than a pre-de�ned threshold Ts.

73

3 Object Detection with Mobile Local Computing

• Step 5: Go to Step 2.

In this chapter, the neighbor proposal threshold T is set to 0.4 and the score updating threshold
Ts is set to 0.001 for soft-NMS method by cross-validation.

3.3.5 Training and Inference

The whole network training includes two phases. Firstly, train the object proposal network
with object proposal training samples. Secondly, train both the object proposal network and
the object detection network. For both phases of network training, training samples with object
classes and bounding boxes are needed. Next we introduce the construction of training samples,
then present the loss function to be used for network training.

3.3.5.1 Training Samples

The class and bounding box of a proposal with regard to an anchor for a feature map location is
mainly determined by the convolution layers in the OPBB. However, their weights are learned
from training process with ground truth samples and con�gured anchors. Without loss of gen-
erality, let Al denote an anchor with a given scale and aspect ratio from one type of anchor
boxes centered at a feature map location l. The coordinates of the anchor includes its center
(xl, yl), anchor width (wl) and height (hl). To create a training sample for this anchor, we �rst
�nd the best matching ground truth box for it based on their IoU overlap. Let gtl denote the
best matching ground truth box for anchor Al, and OAl,gtl be the IoU overlap between anchor
Al and ground truth box gtl. Then class label (denoted by cl) for this anchor can be determined
according to the IoU with the matched ground truth box. IfOAl,gtl is higher than 0.5, the anchor
Al is assigned a class label cgtl , which is the class label of the matched ground truth object. If
OAl,gtl is lower than 0.2, the anchor Al is labeled as 0 (i.e., background class). Otherwise the
anchor is assigned a class value of -1. The class label determination can be expressed in the
following formula:

cl =

cgtl OAl,gtl > 0.5

0 OAl,gtl < 0.2

−1 otherwise

, (3.3)

Note that anchors that labeled -1 will be discarded and are not used as training samples. The
regression of the bounding box can be obtained from the anchor coordinates and the ground
truth bounding box in a similar way presented in [103].

3.3.5.2 Training Loss Function

After the training samples are prepared, the network can be trained with properly designed
loss function. In this chapter the objective loss function is to minimize the weighted sum of

74

3 Object Detection with Mobile Local Computing

localization loss Lloc and classi�cation loss Lcls for the proposal and detection networks [105]:

min

[∑
l,cl≥1

λLloc(locl, locgtl) +
∑
l

Lcls(Fl, cl)

]
, (3.4)

Lloc(locl, locgtl) = 0.25 ∗ smoothL1(locl − locgtl), (3.5)

Lcls(Fl, cl) = −log(f cll), (3.6)

smoothL1(x) =

 0.5x2 if |x| < 1

|x| − 0.5 otherwise
, (3.7)

where l is the index of an anchor in the set of training samples, λ denotes a weight term,
Fl = (f0l , f

1
l , ..., f

C
l) is the classi�cation score vector for proposal pl, cl is the anchor label

class, locl is the bounding box coordinates for pl, locgtl is the coordinates of matched ground
truth box. With the above objective function, the network can be trained by standard back-
propagation and stochastic gradient descent strategies.

During inference process, a feed-forward pass of the network is run on the test images. The
proposal network generates proposal candidates with bounding boxes and classi�cation con�-
dences and detection network further re�nes the location and class scores for proposals pro-
cessed by soft-NMS.

3.4 Experiments

3.4.1 Dataset

We evaluate the enhanced CNN model over the KITTI 2D object detection benchmark dataset.
The dataset contains 14999 images with 7481 for training and 7518 for testing. The image size
is 384×1280 pixels. There are over 80000 annotated objects, which are divided into three cate-
gories (car, pedestrian and cyclist). Three object detection evaluation categories (“Easy”, “Mod-
erate” and “Hard”) are set up for each object class, according to object height, occlusion and
truncation level, which are presented in Table 3.1. For evaluation, average precision (AP) with
di�erent IoU thresholds (0.7 for car, 0.5 for pedestrian and cyclist) is used as the main metric of
interest. The AP is computed as the mean precision at a set of equally spaced recall levels [99].

Table 3.1: Three object di�culty levels for KITTI dataset.

Levels Description
Min. height Max. occlusion level Max. truncation

Easy 40 pixels Fully visible 15%
Moderate 25 pixels Partly occluded 30%
Hard 25 pixels Di�cult to see 50%

75

3 Object Detection with Mobile Local Computing

3.4.2 Implementation Details

As a widely adopted practice, the proposed network is �ne-tuned on the reduced VGG-16 model,
which is pre-trained on the ILSVRC CLS-LOC dataset [128]. We split the raw training dataset
into training set and validation set for local performance evaluation.

As the number of samples for di�erent object classes are highly imbalanced, detectors are
trained separately for detection of cars and pedestrians/cyclists. The training procedure consists
of two stages. In the �rst stage, only the proposal network is trained by 10000 iterations, with
weight term λ of 0.05, initial learning rate of 0.00005, momentum of 0.9, weight decay of 0.0005.
Following the proposal network training, in the second stage the whole network (including both
proposal network and detection network) is trained for another 25000 iterations. The learning
rate for the second stage is initially set to 0.0005 and is divided by 10 every 10000 iterations.
The weight term λ is 1. The experiments are run with an Intel i7-7700k 4.20GHz server with
8 CPU cores and 32 GB memory and a Nvidia GeForce GTX 1080 GPU. Training time ranges
from 6 to 10 hours for the models used in this chapter.

In order to examine the e�ectiveness of the proposed network methods, ablation experiments
are designed and conducted. We let letters “D”, “AR” and “S” denote the proposed network
methods on deconvolution, anchor box resize and soft-NMS, respectively. The baseline MS-
CNN network is denoted by letter “M”. In the ablation experiments various methods are added
on top of the baseline MS-CNN network. The network variants with baseline network and only
one network method are denoted by “M+D”, “M+AR” and “M+S”, respectively. The network
variants with baseline network and more than one network methods are denoted by“M+D+AR”,
“M+D+S”, “M+AR+S” and “M+D+AR+S”. As there are much smaller number of cyclist samples
compared to those for car and pedestrian in the dataset, only car and pedestrian evaluation
results are presented.

In addition to the various network methods, input layer image size impact is also investigated.
We train the network with 3 input image sizes, small image 384×1280 (the original image size),
medium image 576×1920 and large image 768×2560. It is noted that the enlargement of images
does not increase image resolution. The experiments carried out with di�erent input image
size are denoted by the object class and the input image height. For example, experiments for
car detection with image size 384×1280 are denoted by “Car-384”. Anchor sizes are set di�er-
ently for di�erent types of experiments. The anchor and associated �lter size con�gurations
for di�erent image sizes and di�erent object classes are shown in Table 3.2. Note that the other
parameters are kept unchanged through all the experiments.

3.4.3 Experimental Results on Validation Set

In this subsection we examine and compare the performance of the proposed CNN methods
for object detection over KITTI benchmark dataset. As the ground truth of the KITTI test set
is not publicised and only one submission of the KITTI test results to the benchmark website
is allowed, performance comparison of the proposed methods is performed over the KITTI

76

3 Object Detection with Mobile Local Computing

Table 3.2: Con�gurations of anchor size and �lter size (width×height) with di�erent image size.

(a) car.

OPBB8 OPBB16

Car-384 anchor 40×24 56×36 80×48 112×72
�lter 5×5 7×7 5×5 7×7

Car-576 anchor 60×40 84×54 120×80 168×108
�lter 5×5 7×7 5×5 7×7

Car-768 anchor 60×40 84×54 120×80 168×108
�lter 5×5 7×7 5×5 7×7

OPBB32 OPBB64

Car-384 anchor 160×96 224×144 320×192
�lter 5×5 7×7 5×5

Car-576 anchor 240×160 336×216 480×320
�lter 5×5 7×7 5×5

Car-768 anchor 240×160 336×216 480×320 672×432
�lter 5×5 7×7 5×5 7×7

(b) pedestrian and cyclist.

OPBB8 OPBB16
Ped/cyc anchor 28×40 28×56 36×56 56×80 56×112 72×112

-384 �lter 3×5 3×7 5×7 3×5 3×7 5×7
Ped/cyc anchor 40×60 40×84 56×84 80×120 80×168 112×168

-576 �lter 3×5 3×7 5×7 3×5 3×7 5×7
Ped/cyc anchor 40×60 40×84 56×84 80×120 80×168 112×168

-768 �lter 3×5 3×7 5×7 3×5 3×7 5×7

OPBB32 OPBB64
Ped/cyc anchor 112×160 112×224 144×224 224×320

-384 �lter 3×5 3×7 5×7 3×5
Ped/cyc anchor 160×240 160×336 224×336 320×480

-576 �lter 3×5 3×7 5×7 3×5
Ped/cyc anchor 160×240 160×336 224×336 320×480 448×672

-768 �lter 3×5 3×7 5×7 3×5 5×7

77

3 Object Detection with Mobile Local Computing

training and validation set.
The AP results of the compared CNN models as con�gured in the previous subsection are

reported in Table 3.3 for both car and pedestrian detection. The CNN models include the original
MS-CNN with and without the proposed methods. The AP results for the detection categories
“Easy”, “Moderate” and “Hard” are presented in Table 3.3(a), 3.3(b) and 3.3(c), respectively. In the
tables the maximal AP values from the compared CNN models for each image size are displayed
in bold font. It is noted that as MS-CNN training with deconvolution building block and image
size 768×2560 was not completed due to high GPU memory requirement, the results of related
CNN models with DBB enhancement (“M+D+∗”) are not presented for large input image size.

In addition the network inference time per image is reported in Table 3.4. It is noted that
the inference speed of the original MS-CNN and the proposed CNN networks are very fast
(0.08 second per image for small image size). The introduction of anchor box resize (“AR”) and
soft-NMS (“S”) add negligible time. The deconvolution building block introduces a little extra
computation time (0.01 second per image).

3.4.3.1 The e�ectiveness of proposed methods

First we check the e�ectiveness of the individual proposed methods. Comparing the results of
CNN variants “M+D”, “M+AR” and “M+S” to the baseline MS-CNN model “M”, it can be ob-
served that there are good performance improvement for most input image sizes and object
classes. Among the individual methods, soft-NMS produces the largest and consistent perfor-
mance gain for both car and pedestrian detection in most cases. The performance improvement
with soft-NMS is more obvious for pedestrian detection with image size 384×1280. For exam-
ple, the AP with soft-NMS increases from 76.35% for “M” to 78.96% for pedestrian detection
category “Easy” with small image size. These results demonstrate the e�ectiveness of soft-NMS
on tackling the object occlusion issues in ADAS environments. Anchor resize (“AR”) method
shows consistent performance gain over the baseline network as well. But the largest perfor-
mance gain with “AR” comes mainly with the small image size, e.g., 5.1% performance gain
with “AR” for car detection category “Easy”. On the other hand, deconvolution (“D”) method
shows consistent performance gain for pedestrian detection and large performance gain for car
detection category “Easy” with medium image size, but there is a slight performance loss for
car category “Hard”.

Next combinations of the proposed methods are examined. It is noted that the best AP per-
formance is always achieved with combined network methods for all object classes, object de-
tection categories and input image sizes. For example, for medium image size, the best network
for both car and pedestrian detection is “M+D+S”, “M+D+AR+S” and “M+D+AR+S” for category
“Easy”, “Moderate” and “Hard”, respectively. These results show that the proposed methods can
work together and e�ectively boost object detection performance.

An interesting observation is on the experiment results with combination of “AR” and “S”
methods. For both car and pedestrian detection with small image size, both anchor resize and

78

3 Object Detection with Mobile Local Computing

Table 3.3: Performance comparison of CNN variants on validation set.

(a) Easy.

Car Pedestrian
Image height 384 576 768 384 576 768
M 89.34 90.62 91.12 76.25 79.72 80.02
M+D 90.96 92.39 - 77.93 80.35 -
M+AR 94.44 90.47 91.38 77.97 79.92 80.25
M+S 91.77 91.09 91.50 78.96 79.82 80.41
M+D+AR 93.57 90.80 - 78.87 79.71 -
M+D+S 94.47 94.20 - 78.49 80.37 -
M+AR+S 94.78 92.72 91.68 80.28 79.98 80.58
M+D+AR+S 93.76 93.12 - 78.50 80.28 -

(b) Moderate.

Car Pedestrian
Image height 384 576 768 384 576 768
M 88.84 89.86 90.04 70.57 74.68 76.49
M+D 89.00 89.74 - 71.39 75.92 -
M+AR 89.36 89.88 90.08 71.63 75.59 76.38
M+S 89.44 89.99 90.29 73.04 75.07 76.64
M+D+AR 88.93 89.92 - 72.66 76.26 -
M+D+S 89.43 89.81 - 71.50 75.80 -
M+AR+S 89.57 90.20 90.35 73.05 75.85 76.93
M+D+AR+S 89.37 90.23 - 72.42 76.69 -

(c) Hard.

Car Pedestrian
Image height 384 576 768 384 576 768
M 77.59 79.04 79.86 62.58 66.55 68.02
M+D 77.22 78.80 - 63.53 68.06 -
M+AR 77.86 79.50 79.83 63.41 66.85 68.02
M+S 77.16 79.50 80.31 64.70 66.74 68.03
M+D+AR 77.26 79.56 - 64.53 67.63 -
M+D+S 78.77 79.20 - 63.37 67.68 -
M+AR+S 78.40 80.04 80.39 64.88 66.92 68.41
M+D+AR+S 78.23 80.33 - 64.15 68.25 -

Table 3.4: Average inference time for various network architectures.
Car Pedestrian

Image height 384 576 768 384 576 768
M 0.08s 0.17s 0.24s 0.06s 0.14s 0.20s
M+AR+S 0.08s 0.17s 0.24s 0.06s 0.14s 0.20s
M+D+AR+S 0.09s 0.18s - 0.07s 0.15s -

79

3 Object Detection with Mobile Local Computing

soft-NMS methods bring performance gains: anchor resize has much larger gains for car detec-
tion, while soft-NMS has larger gains for pedestrian detection. The combination of “AR” and
“S” methods have consistent and larger gains than the individual method.

3.4.3.2 The impact of input image size

Apart from the proposed network methods, it is also observed that increasing image size has
a large positive impact on object detection. For any given studied MS-CNN variant, the AP
performance improves with larger image size in most studied cases. There is a substantial per-
formance gain with image size for the baseline network “M”, especially for pedestrian detection.
For example the AP increases from 70.57% with small image size to 76.49% with large image size.

However the performance gains with larger image size for some MS-CNN variants (such as
“M+AR+S” and “M+D+AR+S”) are much smaller. For the baseline MS-CNN network, the largest
AP for car detection category “Easy” is 91.12% with large image size. But the enhanced network
“M+AR+S” has 94.78% AP with small image size.

It is worth noting that the performance gains with large image size do not come without
cost. According to Table 3.4, the average inference time per image for car detection increases
from 0.08 second for small image size to 0.17 second for medium image size and 0.24 second
for large image size. Similar inference time performance for pedestrian detection is observed.
As the best detection performance with “M+D+AR+S” with medium image size is already very
close to or even better than the best available performance with large image size, “M+D+AR+S”
network model with medium image size is recommended for joint considerations on detection
precision and speed. More speci�cally, the “M+AR+S” network architecture with small image
size o�ers the highest speed and best detection AP (94.78% versus 91.68% with large image)
for car detection category “Easy” and slightly lower AP (80.28% versus 80.58% for large image)
for pedestrian. For some driving safety assistance applications with targets of detecting easy
objects, such as forward collision warning, the “M+AR+S” network architecture with small
image size can be the �rst choice.

To visually assess the e�ectiveness of the proposed method, some example KITTI images
with annotations of detected objects by the baseline MS-CNN model (shown in the top half of
each sub-picture) and our method (shown in the bottom half) are presented in Fig. 3.7. The �rst
three rows Fig. 3.7(a)-Fig. 3.7(c) are for car detection and the last row Fig. 3.7(d) is for pedestrian
detection. Compared the detection results with MS-CNN and our method, we can �nd that our
method improves the detection performance from several aspects:

• Our method can reduce false proposals as shown in Fig. 3.7(a) and in Fig. 3.7(b). In the
top half image of Fig. 3.7(a), there are two false proposals produced by MS-CNN around
the orange car in the bottom left side. In Fig. 3.7(b) the MS-CNN method produce two
false proposals, one in the right cluster of cars and one in the left cluster of cars. It can
be found that our method can detect occluded objects more e�ciently.

• Our method can detect more small objects that are missed by MS-CNN as shown in

80

3 Object Detection with Mobile Local Computing

Fig. 3.7(c). The MS-CNN method missed the remote small car on the road and a car in
right shadow area. This highlights the e�ectiveness of deconvolution method which adds
context and deeper features in the lower layers to detect small objects.

• Our method can avoid producing multiple bounding boxes for one object. For example in
Fig. 3.7(d), the MS-CNN model produces two bounding boxes for each detected pedestrian.

3.4.4 Experimental Results on KITTI Test Set

Next we present the experiment results over the KITTI test set and compare our results with
those of recently published approaches. As the KITTI leader board ranks the approaches based
on the AP for “Moderate” detection category, we select the network “M+AR+S” with large image
size (768×2560) for competition, which produced the best AP for “Moderate” category over
validation set. The results are submitted to the KITTI test set evaluation server.

The AP and inference time results of our proposed method and other nine top ranked pub-
lished approaches are presented in Table 3.5. A simple comparison of our own results on KITTI
test data set to those on validation test shows that there are considerable performance loss pos-
sibly due to harder images in the test set. However similar performance loss was observed for
the baseline MS-CNN model.

Comparing the AP and the inference time results in Table 3.5, it can be concluded that there
is no absolute winner with dominant performance over all the comparison aspects. Among
the compared approaches, our proposed method ranked the �rst in network inference speed,
the best in the pedestrian category “Easy”, second in pedestrian categories “Moderate” and
“Hard”, third in car detection category “Moderate”. D_MANTA [132] ranked the �rst in car
category “Easy”. RRC [125] has four number one positions in all detection categories. However,
it is noted that RRC has the second longest inference time (3.6 second), which is 15 times our
inference time, even it is based on the fast SSD baseline and used much higher speci�cation
GPU computer.

It is noted that the highest AP for car category “Easy” achieved by “M+AR+S” with small
image is 94.78% over the validation set, while the highest AP over the test set is only 90.49%.
One reason for the performance gap is that “M+AR+S” with large image size is selected as the
only model for competition. Therefore the good performance with “M+AR+S” model and small
image size is compromised.

According to the object detection results presented in Table 3.5 and in KITTI benchmark
website, it can be observed that the car detection performance for category “Moderate” is almost
saturated with very little performance gap over the top 20 detection methods. However, there
is still large performance improvement space for pedestrian and cyclist detection. For example
the highest AP from the published works is 85.12% and 75.33% for pedestrian category “Easy”
and “Moderate”, respectively.

The main challenges of the pedestrian and cyclist detection still come from the small size,
heavy occlusion or truncation of the objects. In addition other external factors like illumina-

81

3 Object Detection with Mobile Local Computing

(a)

(b)

(c)

82

3 Object Detection with Mobile Local Computing

(d)

Figure 3.7: Object detection examples on KITTI testing set with MS-CNN and our method.

Table 3.5: Performance comparison of recent published works and our method on the test set.

Method Pedestrian Car Time (s)Easy Mod Hard Easy Mod Hard
spLBP [109] - - - 80.16 77.39 60.59 1.5
Mono3D [129] 77.30 66.66 63.44 90.27 87.86 78.09 4.2
MS-CNN [105] 83.70 73.62 68.28 90.46 88.83 74.76 0.4
Deep3D [130] - - - 90.47 88.86 77.60 1.5
SubCNN [123] 83.17 71.34 66.36 90.75 88.86 79.24 2.0
MV3D [131] - - - 90.53 89.17 80.16 0.36
SDP+RPN [124] 79.98 70.20 64.84 89.90 89.42 78.54 0.4
D_MANTA [132] - - - 97.25 90.03 80.62 0.7
RRC [125] 84.14 75.33 70.39 90.61 90.22 87.44 3.6
Our method 85.12 74.52 69.35 90.49 89.64 77.95 0.24

83

3 Object Detection with Mobile Local Computing

tion change and cluttered background can a�ect the accuracy of our detection method. And
compared to the number of car samples in the KITTI dataset, the number of pedestrian and
cyclist samples are much smaller, which may be another cause of the relatively poor detection
performance for pedestrian detection.

We present some example images in which some samples are not correctly detected by our
method in Fig. 3.8. These detection examples may help understand the existing detection chal-
lenges. In Fig. 3.8(a) the white car in the bottom left side is not detected due to heavy truncation.
In Fig. 3.8(b) the cars are not detected due to their small sizes. In Fig. 3.8(c) one person nears
the train is not detected due to occlusion and poor illumination conditions. Fig. 3.8(d) gives a
false positive example where a motorcycle is falsely detected as a cycle.

3.5 Conclusion

Real time accurate object detection is one of the most critical problems for advanced driving
assistance systems (ADAS) and autonomous driving. Recently CNN achieved huge successes on
visual object detection over traditional object detectors, which use hand-engineered features.
However, due to the challenging driving environment (e.g., large object scale variation, object
occlusion and bad light conditions), popular CNN detectors including Faster-RCNN and SSD
do not produce good detection performance over the KITTI driving benchmark dataset. In this
chapter we proposed three methods on a multiple scale CNN network model for ADAS object
detection. Firstly, CNN feature maps deconvolution and fusion was proposed to add context
and deeper features for better object detection at lower scale of feature maps, to address the
large object scale variation challenge. Then, soft non-maximal suppression (NMS) was applied
across object proposals at di�erent image scales to address the object occlusion challenge. As
the cars, pedestrians and cyclists have distinct aspect ratio features, we measured their aspect
ratio statistics and exploited them to set anchor boxes properly for better object matching and
localization. The proposed CNN methods with various input image sizes were individually
and jointly evaluated by extensive experiments over KITTI dataset. The e�ectiveness of the
proposed methods was veri�ed by experiment results with improved or comparable detection
performance over KITTI test set. The average precision (AP) for pedestrian detection category
“Easy” and the computation speed rank the �rst among the published works, the second for
pedestrian category “Moderate” and “Hard”, the third for car category “Moderate”. And the
network inference time for cars per 384×1280 image is only 0.08 second, much faster than
the other top ranked published methods in KITTI leader board. In our future works we will
investigate more CNN models and methods to improve object detection for safe and intelligent
transport.

84

3 Object Detection with Mobile Local Computing

(a) Undetected car due to heavy truncation

(b) Undetected cars due to small size

(c) Undetected pedestrians due to occlusion and poor illumination conditions

(d) Motorcycle is falsely detected as bicycle.

Figure 3.8: Example images from KITTI testing set with false object detection by our method.

85

4 Recommendation System with Mobile
Cloud Computing

4.1 Introduction

Besides driving safety and transport e�ciency applications, CAV can support many entertain-
ment applications at the same time. In this chapter we focus on the design of recommendation
system, which plays a central role for many online entertainment applications and e-commercial
services, such as multimedia streaming, recommendation of products such as movies, musics
and articles [71, 76, 84]. Many big companies such as Amazon, eBay and Net�ix have adopted
recommendation techniques to their systems to estimate the potential preferences of customers
and recommend relevant products or items to them. Recommendation performances have huge
impact on the commercial success of these companies in terms of revenue and user satisfactory.

Online recommendation is a typical service for mobile cloud computing. The historical in-
formation of users and items are all stored in the cloud and recommendation process is also
performed in the cloud. When a user’s request is received, the user’s information can be re-
trieved from the cloud and utilized by the recommendation system to recommend relevant items
that the user may like. The large volume of raw data is not needed to be transported to the user
side and only �nal results are sent to the user via wireless access network.

According to the type of data being collected and the ways of using them in recommendation
systems, the approaches for recommendation can be classi�ed as content-based (CB), collabo-
rative �ltering (CF) and hybrid one [74].

CB �ltering is widely used for recommendation systems design, which utilizes the content
of items to create features and attributes to match user pro�les. Items are compared with items
previously liked by the users and the best matched items are then recommended. One major
issue of CB �ltering approach is that recommendation system needs to learn user preferences
for some types of items and apply these for other types of items.

CF approach is the most popular approach for recommendation systems design. It utilizes a
large amount of data collected from user behavior in the past and predicts which items users will
like. It does not need to analyze the content of the items. Instead, it relies on the relationships
between users and items, which are typically encoded in a rating feedback matrix with each
element representing a speci�c user rating on a speci�c item. An illustration of the CF based
recommendation is shown in Fig. 4.1. The left of Fig. 4.1 shows a relationship graph of 3 users
and 4 movies, which are connected by 5 edges. Each edge is associated with a rating of 1 to 5

86

4 Recommendation System with Mobile Cloud Computing

stars, representing the level of user preference of the connected movie. The matrix in the right
of Fig. 4.1 is generated according to the relationship graph. The general CF recommendation
task is to predict the missing ratings (such as those represented by the symbol “?" in the matrix)
by given users or for given items by data mining and exploring the user-item rating matrix.

Figure 4.1: A simpli�ed representation for movie CF recommender systems.

However it is widely known that CF approach su�ers from sparsity and cold start (CS) prob-
lems. In the rating matrix only a small percentage of elements get values. Even the most popular
items may have only a few ratings. For example, in a large Net�ix rating dataset provided for
Net�ix Prize competition [69], there are about 100 million ratings given by over 480,000 users
to about 18,000 movies. There is only around 1% of rating matrix elements receiving ratings.
With a sparse rating matrix it is very challenging to estimate the relationships between items
and users and make e�ective recommendation. Another well-known problem for CF approach
is the CS problem, which can happen on new users or new items. CF approach requires a large
number of ratings from a user or ratings on an item for an e�ective recommendation, which
will not work for new users, new items or both due to few ratings available in the system. In
addition, CS problem can be divided into CCS problem and ICS problem by whether number of
rating records is zero or not. Generally, the sparsity of ratings for CS items is higher than 85%
[85], and the sparsity of ratings for CCS items is 100%. Fig. 4.2 presents a simple illustration of
the classi�cation of CCS, ICS and non-CS items in recommendation systems.

The hybrid approach is one that combines CB �ltering approach and CF approach attempting
to overcome their shortcome and provide a more e�cient result [68, 70, 73]. It is noted that the
majority of the works on the CS recommendation problem are trying to provide recommenda-
tion of items that may be interesting to given users. Although a lot of works have been done
with the hybrid approach to solve the sparsity and CS problems, recommendation of CS items
is still an open research issue.

In this chapter we investigate the CS recommendation problem of providing prediction on
the popularity of given CS items to the general users, and present a solution to predict the
popularity of CCS items and ICS items. There are two main motivations for this work:

• CS items need to be recommended to get ratings for improved recommendation and they
should be accurately recommended to give users better experiences with the recommen-

87

4 Recommendation System with Mobile Cloud Computing

Figure 4.2: Illustration of non-CS item (a), ICS item (b) and CCS item (c), where
√

indicates a known
rating.

dation system. Otherwise the CS items may go to an undesirable cycle of receiving no
ratings.

• The estimated ratings for CS items or items that are still under planning can give a mea-
sure of popularity of such items even before they are put into market (such as books,
movies, etc), therefore help make right decisions on product planning and sale strategies.
The accuracy of such estimation is critically important for this type of purposes.

We design two integrated recommendation models, in which item features are learned from
a deep learning architecture SDAE [89] using the descriptions of items retrieved online, then
these features are exploited and integrated into the timeSVD++ CF model [75]. timeSVD++ is
one of the best performing CF models which tracks time changing behavior in the data and
takes the temporal dynamics into account.

Our contributions are summarized as follows.

• We proposed a general framework of integrating the CF approach and machine learning
algorithms to improve recommendation performance for CS items. In our proposed mod-
els, content features extracted from content descriptions (such as movie plots) by deep
learning neural networks are used as the key item factor vectors in the recommendation
model for CCS items and approximated by the item factor vectors in the model for ICS
items. The content features are not only used loosely to determine item similarity as done
in the existing hybrid approaches for CS items, but also become key component of the
recommendation models, which a�ects both the training of the models and prediction of
the unknown ratings for CS items.

• The framework of integrating the CF approach and machine learning algorithms for CS
item recommendation is general. Various CF approaches and machine learning algo-

88

4 Recommendation System with Mobile Cloud Computing

rithms can be used for general recommendation systems. The key integration point is on
the extraction of item features by machine learning algorithms and embedding the item
features into the CF recommendation models.

• Based on the general framework speci�c system design and models are presented, in
which the state of the art CF model, timeSVD++ and an advanced deep learning neural
network model, SADE, are used for CS items recommendation. Application of the mod-
els to Net�ix movie recommendation with nearly 100 million ratings was investigated.
The experiment results showed that tight coupling of the CF approach and content based
approach for recommendation is feasible and very e�ective. For example, the rating pre-
diction RMSE of the proposed model IRCD-CCS for CCS item recommendation is 0.045
lower than the second best performing approach, which represents a signi�cant perfor-
mance improvement in the research �eld of recommendation system design.

• In addition to the design and evaluation of recommendation models for CCS items and
ICS items separately, we also compared the performance of IRCD-CCS model and IRCD-
ICS model on rating prediction for ICS items. In practice, recommendation systems keep
introducing new items into the systems over time. If a newly introduced item is a CCS
item, the CF model can not provide rating prediction for it. If the item is an ICS item, the
CF models may not give good recommendation. It may be bene�cial to apply a CCS rec-
ommendation model for ICS item rating prediction. We proposed a scheme of switching
recommendation models for ICS items and retraining the models to deal with the practi-
cal issues of transition of item status from CS to non-CS. To the best of our knowledge,
this practical issue has not been studied before in the literature.

4.2 Related Works

Technically, matrix factorization (MF) method has been applied to CF by a variety of works.
MF focuses on factorizing the rating matrix into low-dimension user latent vectors and item
latent vectors. Training such a model can be e�ectively solved by using SGD [74] or alternat-
ing least squares (ALS) [94] to minimize the sum-squared distance. Authors [80] introduce the
probabilistic matrix factorization (PMF) that scales linearly on large data sets and outperforms
standard singular value decomposition (SVD) models. Based on PMF, several variants and gen-
eralizations are proposed like Bayesian PMF [81], generalized PMF [82].

As traditional CF algorithms only rely on the relations between users and items, which are
typically encoded in a U-I matrix, the recommendation performance on sparsity problem and CS
problem is largely limited. A large number of approaches incorporating additional information
sources beyond U-I matrix have been developed to overcome the problems. Particularly auxil-
iary information of users or items and interaction related information are exploited to improve
recommendation accuracy [84].

Auxiliary information refers to attributes about users and items. For user attributes, trust

89

4 Recommendation System with Mobile Cloud Computing

network is incorporated into the raw ratings for prediction [88]. Authors [78] propose a proba-
bilistic factor analysis framework which takes users’ social trust relations into account. Authors
[95] make use of users’ social tags and design a di�usion-based recommendation algorithm
which is only used in social tagging systems. Authors [77] adopt users’ demographic data and
apply a simple prediction rule by summing weighted ratings made by similar users to produce
ratings for new users. Authors [87] combine attribute selection and local learning into the
recommendation model for CS users. Both [77] and [87] use one of our baseline approaches
(the ToU approach) in models to recommend products to CS users. Authors [96] try to learn
user pro�les through an additional interview process. For item attributes, collaborative topic
regression (CTR) [90] applies topic model and latent Dirichlet allocation (LDA) to learn item
content feature. However, this model only works on implicit rating prediction problem, and
latent representation is not learned e�ectively with highly sparse content information.

With great successes in the �elds of image, video and arti�cial intelligence, deep learning
technology attracted large interests in the recommendation system �eld [72, 79, 83]. Collabora-
tive deep learning (CDL) [91] is a representative example that applies deep learning to recom-
mendation systems by integrating stacked denoising autoencoder (SDAE) into a simple latent
factor based CF model for movie and article recommendation. Nevertheless, CDL only focuses
on the situation of rare users and implicit interactions between users and items, and very simple
CF model is considered. The main objective of CDL is recommending top-N items, not for the
explicit ratings prediction.

On the other hand, the interaction-associated information refers to the information associ-
ated with U-I interaction behavior, like timestamps and locations of the ratings being made.
Recently there is a strong interest in the utilization of time information for CF, which demon-
strates superior recommendation performance [75, 92, 97]. TimeSVD++ [75] is a model that
simulates the temporal dynamics of user interests by changing static biases and latent factors
into time-dependent ones. Authors [92] introduce a set of additional time feature vector and
use tensor factorization to learn the features. A di�erent modeling scheme on user preferences
is presented in [97], where a latent transition matrix is used to summarize the evolving prefer-
ences for each user. Authors [93] propose a time-dependent method to compute the similarity
among di�erent users. But they are not directly applicable to CS problem.

Generally, CS problem can be classi�ed to CS user problem and CS item problem according
to the completely missing ratings for the users or the items. For CS user problem, as system
information like locations and gender does not describe user interest e�ciently, several recent
studies attempt to enrich user pro�les with information from other channels, such as social
trust network [78, 88], tagging system [95], interview process [96]. But these kinds of informa-
tion are hard to collect in normal conditions. In addition, it is more di�cult to acquire personal
information of new users because of privacy issues. By the contrast the focus of this chapter is
on the CS item problem with the motivations described previously. In order to alleviate the in-
formation scarcity of CS items, most research e�orts so far have been devoted to pro�ling new
items with additional information (e.g., collecting item attributes). However, there still exist a

90

4 Recommendation System with Mobile Cloud Computing

number of limitations in the existing research works. Firstly, it is hard to dig out the speci�c
features of new items with limited rough attributes. And gathering �ne-grained attributes like
tags, keywords and categories are always time-consuming and costly. Secondly, most studies
that combine item content information with ratings data [86, 90, 91] adopt generative proba-
bilistic models and tend to over�t easily on CS item situations. The last problem with these
works is that they do not take time information into account. In this chapter a solution in-
tegrating deep learning and CF approach is proposed to address these limitations and largely
improve recommendation performance for CS items.

4.3 Proposed Recommendation Model

In this section, we propose two integrated recommendation models with CF and deep learning ,
called IRCD-CCS and IRCD-ICS for CCS items and ICS items, respectively. A recommendation
system is assumed with U users and V non-CS items. In addition it is assumed there are J CCS
items, which receive no ratings from the users until the time of investigation, and I ICS items,
which receive only a few ratings from the users. We let rating rui(t) denote the rate by user
u on item i at time t. The recommendation task considered in this chapter is to estimate the
unknown ratings for both CCS and ICS items based on the known ones. We let r̂ui(t) denote
the predicted values of rui(t).

4.3.1 Deep Learning of Content Features

As traditional CF models are not able to estimate the ratings for CS items, additional content
descriptions for the items are obtained for the proposed model. Item features are extracted from
the content descriptions and used with a CF model for CS item rating estimation.

Firstly the raw content information of all items are processed to generate vectors based on
the bag of words approach. These item associated vectors are then learned by a SDAE to obtain
item content features, which are then used in the CF models. SDAE is a deep network that is
stacked by multiple denoising autoencoders (DAEs). Each layer of SDAE is trained as a DAE
by minimizing the error in reconstructing its input (which is the output of the previous layer).
Usually we consider the �rst half layers of the network as an encoding part and the last half
layers as a decoding part. Encoding part tries to learn the feature representations of the noise-
corrupted input, and decoding part tries to reconstruct the clean input itself in the output. An
example structure of SDAE is shown in Fig. 4.3.

Formally, given a set C of vectors as raw content information of all items, an L-layer SDAE
solves the following optimization problem:

min
Wl,bl
‖C − CL‖2 + λ

∑
l

‖Wl‖2, (4.1)

whereCL denotes the output of layer L of the network andWl and bl denote the weight matrix
and bias vector of layer l of the network. More details on the SDAE structure and training are

91

4 Recommendation System with Mobile Cloud Computing

Figure 4.3: A graphic structure of SDAE.

referred to [91]. Once the model is trained, the item content features could be obtained from
the hidden layer CL/2 of the network. For a given item i, the feature representation, denoted
by θi, is a vector with low dimensions.

It is noted that apart from the goal of learning the features from the rating records, another
goal of using SDAE is to reduce the dimensionality of the item content-based vectors to be same
with latent factor vectors, which can then be fused into the CF process.

4.3.2 timeSVD++ Model

The CF model used in the proposed IRCD is timeSVD++. There are several variants of timeSVD++
model. In this chapter the latent factor based variant is considered. For a latent factor based
model, a rating by a user u on an item i is computed by the inner product of a vector qi (the
item factor for item i) and a vector pu (the user factor for user u) using the following formula:

r̂ui(t) = qTi pu. (4.2)

In order to take the biases, additional implicit feedback and temporal e�ects into account,
timeSVD++ uses a revised prediction rule by adding some baseline predictors to (4.2) as follows:

r̂ui(t) = µ+ bi(t) + bu(t) + qi
T

[
pu(t) + |N(u)|

1
2

∑
j∈N(u)

yj

]
. (4.3)

Here, µ denotes the overall mean rating, bi(t) and bu(t) indicate the time-aware biases of item i

and user u respectively. Item factors do not change with time as they are more static in nature
than humans. The setN(u) contains the items rated by user u. The factor |N(u)|

1
2
∑

j∈N(u) yj

indicates the perspective of implicit feedback, where yj is a vector for item j related to implicit
feedback and is to be learned from training process.

The biases bi(t) and bu(t) for items and users, respectively, are computed by the following
formulae:

bi(t) = bi + bi,Bin(t), (4.4)

92

4 Recommendation System with Mobile Cloud Computing

bu(t) = bu + αu · devu(t) + bu,t. (4.5)

It is noted that the time-aware item bias bi(t) is composed of a stationary part bi and a time
changing part bi,Bin(t), where the whole timeline is split into time-based bins Bin(t). For user
bias bu(t), bu represents the stationary part, αu · devu(t) captures a possible gradual drift, in
which the time deviation devu(t) is de�ned as:

devu(t) = sign(t− tu) · |t− tu|β, (4.6)

and bu,t denotes the day-speci�c sudden drift. Similar to user biases, user factors also become
time-aware as pu(t).

pu(t) = (pu1(t), pu2(t), ..., pud(t)). (4.7)

puk(t) = puk + αuk · devu(t) + puk,t k = 1, ..., d. (4.8)

Here d is the dimensionality of user factors.
In order to learn the model parameters, the system minimizes the regularized squared error

on the training ratings:

min
q∗,p∗,b∗

∑
u,i,t

(rui − r̂ui)2 + λ

[
‖qi‖2 + ‖pu‖2 + ‖αu‖2 + ‖put‖2

+
∑

j∈N(u)
‖yj‖2 + bi

2 + bi,Bin(t)
2 + bu

2 + αu
2 + bu,t

2

]
.

(4.9)

According to the above regularized squared error function, a SGD optimization method is used
to iteratively learn the model parameters. The algorithm loops through all ratings in the training
set iteratively and updates each parameter according to the associated gradient until system
converges.

4.3.3 Rating Prediction Model for CCS Items

Next we present the the IRCD-CCS model for rating prediction of CCS items. We �rst present
the computation of content similarity. Two baseline rating prediction approaches based on
content similarity are then presented. Finally the IRCD-CCS model for CCS items is presented,
which integrates content similarities based approach and timeSVD++ model.

To predict the ratings for CCS items, we �rst use similarity measure to relate CCS items to the
non-CS items, and predict the ratings for the CCS items from their most related non-CS items.
Based on the item features obtained from the SDAE deep learning process, we use Pearson’s
correlation coe�cient formula to compute the similarity between CCS items and non-CS items.
For any two feature vectors θi and θj of items i and j, the similarity is computed as below:

sij =

∑d
k=1

(
θik − θ̄i

)
·
(
θjk − θ̄j

)√∑d
k=1

(
θik − θ̄i

)2 ·∑d
k=1 (θjk − θ̄j)

2
. (4.10)

93

4 Recommendation System with Mobile Cloud Computing

where θ̄i and θ̄j are the mean values of vectors θi and θj .
We consider two baseline approaches to predict ratings for CCS items. The �rst approach

predicts the ratings for CCS items from their M most similar non-CS items within the whole
non-CS item set after the missing ratings for the non-CS items are predicted, which is called
Top-of-All (ToA) approach. Let SM (j) denote the set of the M most similar non-CS items to a
CCS item j, j ∈ [1, J]. For the ToA approach, the following formula is used to predict rating
by user u on CCS item j:

r̂uj =

∑
i∈SM (j)

r̂uisij∑
i∈SM (j)

sij
. (4.11)

It is noted that the ratings r̂ui can be both real and predicted ones.
Alternatively, we can use the second approach to predict the ratings by a user for CCS items

from theirM most similar non-CS items within the set of non-CS items rated by the user, which
is called Top-of-User (ToU) approach. Let SM (u, j) denote the set of the M most similar non-
CS items among the non-CS items rated by u to a CCS item j, j ∈ [1, J]. For the ToU approach,
the following formula is used to predict rating by user u on CCS item j:

r̂uj =

∑
i∈SM (u,j)

ruisij∑
i∈SM (u,j)

sij
. (4.12)

Note that in this case, the ratings rui are real ratings in the training set.
The above two simple and straightforward approaches make rating prediction entirely based

on similar non-CS items and ignore the other information in the rating matrix. According to our
experiments, the ToU approach has higher accuracy than the ToA approach. Next we propose
an integrated model by combining the ToU approach and timeSVD++ together.

As conventional CF methods are not directly applicable to the CCS problems, we set the item
factor qi in timeSVD++ model to item content feature θi and replace the overall average rating
µ and item biases bi(t) with predicted ratings, which is generated by the ToU approach. We
extend the ToU approach to generate predicted ratings for all the real ratings in the training
set.

The following prediction rule is used in the proposed IRCD-CCS model:

r̂ui(t) = bu(t) + θi
T

[
pu(t) + |N(u)|

1
2

∑
j∈R(u)

yj

]
+

∑
j∈SM (u,i)

rujsij∑
j∈SM (u,i)

sij
. (4.13)

94

4 Recommendation System with Mobile Cloud Computing

and the corresponding regularized squared error function is:

min
p∗,b∗

∑
u,i,t

(rui − r̂ui)2 + λ

[
‖pu‖2 + ‖αu‖2 + ‖put‖2 +

∑
j∈N(u)

‖yj‖2 + bu
2 + αu

2 + bu,t
2

]
.

(4.14)

Because all the parameters are user-associated, it can be used to predict ratings for CCS items
after training.

It is noted that in the IRCD-CCS model for CCS items, CCS items did not receive any rat-
ing from users. Therefore the CCS items do not participate in the timeSVD++ model training.
However, to enable prediction with the rule (4.13), we train the IRCD-CCS model with the rat-
ing matrix by setting the item factors qi of non-CCS items to their content feature θi. It means
that the content features learned from the SDAE is utilized instead of the item features hidden
in the rating matrix in the IRCD-CCS model for the CCS items.

Fig. 3.4 shows a graphical framework of traditional MF model (left part) and IRCD-CCS model
(right part). For each user u and item i, traditional MF model computes the predicted rating rui
by adding the latent factors with biases predictor. Latent factor is the inner product of item
factor qi and user factor pu. Biases predictor include the overall mean rating µ, item bias bi and
user bias bu. Compared with traditional MF, the IRCD-CCS model �rst applies SDAE to learn
the item content feature θi from the raw item content information C . Then the ToU approach
is used to obtain a preliminary predicted rating r,ui based on the similarity measure of item
content feature. In the model training item factor qi is set to item content feature θi. Finally
ratings can be predicted by adding the two parts together with the rule shown in (4.13).

It is noted that the IRCD-CCS model needs pre-processing to generate the rating prediction
for every real ratings in the training set o�ine, but the online prediction can be computed
immediately with the prediction rule.

Figure 4.4: The graphical modi�cation of IRCD-CCS framework.

4.3.4 Rating Prediction Model for ICS Items

The IRCD-ICS model modi�es the timeSVD++ by applying content features learned from SDAE
into item latent factor training process. In our proposed model IRCD-ICS for ICS items, the
prediction rule (4.3) is reused, but the model parameters are learned by minimizing a di�erent

95

4 Recommendation System with Mobile Cloud Computing

regularized squared error function. The modi�ed regularized squared error function is shown
below:

min
q∗,p∗,b∗

∑
u,i,t

(rui − r̂ui)2 + λ

[
‖qi − θi‖2 + ‖pu‖2 + ‖αu‖2 + ‖put‖2

+
∑

j∈N(u)
‖yj‖2 + bi

2 + bi,Bin(t)
2 + bu

2 + αu
2 + bu,t

2

]
.

(4.15)

Note that the dimensionality of both qi and θi is d.
It is noted that the trained IRCD-ICS model is used for both ICS items and the general non-CS

(NCS) items (with relatively larger number of ratings). We do not create separate recommen-
dation models for the ICS items and the general NCS items. For the ICS items, it is desirable
to learn the item factor from the content description as much as possible, as there is very little
useful information to be learned for the ICS items from the rating matrix. Therefore the content
features play a key role in the recommendation for ICS items. For the NCS items, both rating
matrix and content description (content features) can be utilized and should be used to improve
the rating prediction performance. The introduction of factor ‖qi − θi‖2 can help achieve the
goal of learning item factors for both ICS and NCS items.

Compared with timeSVD++, the following main changes are made on the update rule of
item factor vectors. For each given rating rui(t), the prediction error is computed by eui(t) =

rui(t)− r̂ui(t). The original update equation of item factor qi used in timeSVD++ is:

qi ← qi + γ

{
eui(t)

[
pu(t) + |N(u)|−

1
2

∑
j∈N(u)

yj

]
− λ · qi

}
. (4.16)

In the proposed model the following update rule for the item factor qi is used:

qi ← qi + γ

{
eui(t)

[
pu(t) + |N(u)|−

1
2

∑
j∈N(u)

yj

]
− λ · (qi − θi)

}
, (4.17)

where γ denotes the learning rate. The interested readers are referred to [75] for more details
on the timeSVD++ model learning process. Fig. 4.5 shows a graphical framework for traditional
MF model (left part) and IRCD-ICS model (right part). For the IRCD-ICS model the item content
feature θi is utilized to learn item factor qi in the training process according to rule (4.17).

Figure 4.5: The graphical modi�cation of IRCD-ICS framework.

96

4 Recommendation System with Mobile Cloud Computing

4.4 Performance Evaluation

In this section, the recommendation performance of the proposed models IRCD-CCS for CCS
items and IRCD-ICS for ICS items is evaluated. The experiment data preparation and results
are presented and discussed.

4.4.1 Experiment Dataset and Se�ings

A large real-world dataset created by the Net�ix Prize is used to evaluate the proposed models.
The Net�ix dataset contains more than 100 million explicit ratings on a scale of 1 to 5 stars for
17770 movies de�ned by 480189 anonymous users. The corresponding timespan ranges from
Dec 12, 1999 to Dec 12, 2005.

In order to predict ratings for CS items we also collect the plots of the movies from IMDB to
extract item content information. We �rst collected the corresponding movie plots by OMDb
API1, which is a free web service to obtain movie information. A Python-based program was
written, which traverses the movies in the Net�ix dataset and automatically sends search re-
quests of plots according to the movie titles to the OMDb database. Then the collected movie
plots were �ltered by removing stop words, which refer to the most common words in a lan-
guage o�ering little useful information. In the experiments the list of stop words was obtained
with a built in Python package. Then we computed the term frequency-inverse document fre-
quency (tf-idf) of each word in the corpus. Tf-idf is the product of term frequency and inverse
document frequency. Term frequency refers to the number of occurrence of words in a docu-
ment, and inverse document frequency is calculated by dividing the total number of documents
by the number of documents containing the word. Generally tf-idf is used as a weighting factor
to re�ect how important a word is to a document. Based on tf-idf, the most important S words
with the highest tf-idf values are chosen to form a dictionary. S is set to 20000 in our experi-
ments. Each movie plot is then represented by a S-dimensional bag-of-words vector, in which
each entry of the vector indicates the count of corresponding word occurs in the plot. The last
step is the normalization for all the vectors. After the movies with missing plots were removed,
the �nal dataset has 476691 users, 14657 movies, and 95975845 ratings.

A work�ow of obtaining and processing the movie plots is presented in Fig. 4.6.
As we are interested in the performance of rating prediction for both CCS items and ICS

items, the original dataset is partitioned into one training set and one test set for CCS items
and ICS items, respectively. The movies are ordered by the timestamp of their �rst received
rating. The histogram of movies on the date of their �rst rating is shown in Fig. 4.7. We divide
the entire timespan of the dataset (2240 days) into 100 intervals, and count how many movies
fall into each interval. Generally, new movies appeared late, and thus located at far right in the
�gure. For the preparation of training and test set for CCS experiments, we choose the most
recent L movies for test set and the other movies for training set. The ratings of the L CCS
movies are used for testing and it is guaranteed that none of these CCS movies could be seen

1http://www.omdbapi.com

97

4 Recommendation System with Mobile Cloud Computing

Figure 4.6: Work�ow of data preprocessing on movie plots.

by any user in the training set. To prepare the ICS training and test sets, we choose the most
recent K movies for test set and the other movies for training set. Meanwhile the earliest N
ratings of each tested movie are added into training set and all the remaining ratings of these
K ICS movies are used for test purpose. It is noted that the ratings in the training set which
have timestamp later than the timestamp of the earliest rating in the test set are all discarded.

Figure 4.7: Histogram of movies on the date of their �rst ratings.

For the experiment setting of some parameters, we chose some typical values for performance
evaluation. The proposed recommendation models can work with general con�gurations of the
parameters. As there is a large space of values for the parameters, it is very time consuming
to test all the combinations of the settings for the parameters. After quick check on the rec-
ommendation performance with a number of parameters settings, we determined the settings
for model parameters (e.g., setting dimensionality d of feature vectors to 50) with those giving
good performance.

For the experiment datasets, the rating statistics for the training and test sets are presented
in Table 4.1 and Table 4.2 for CCS experiment and ICS experiment, respectively.

We �rst conduct experiments for CCS movies and compare our model IRCD-CCS against
three recommendation models: ToA model, ToU model, and simple average (SA) model. ToA

98

4 Recommendation System with Mobile Cloud Computing

Table 4.1: Statistics of the training and test datasets for CCS movie experiment.
L=100 L=300

Training set Test set Training set Test set
Number of users 476691 11764 476691 51171
Number of movies 14557 100 14357 300
Number of ratings 95959733 16112 95874146 101699
Mean rates 3.6042 3.4975 3.6043 3.5652

Table 4.2: Statistics of the training and test datasets for ICS movie experiment(N=5).
K=100 K=200 K=300

Training set Test set Training set Test set Training set Test set
Number of users 476691 11603 476691 31725 476691 50918
Number of movies 14657 100 14657 200 14657 300
Number of ratings 95960233 15612 95924771 51074 95875646 100199
Mean rates 3.6042 3.5135 3.6043 3.4288 3.6043 3.5718

model and ToU model are presented in Sec. 4.3.3. As the existing models for CCS item prediction
use di�erent content information and features, they are not directly comparable to the proposed
model. Therefore the simple prediction model SA for CCS items is used: every CCS item rating
by a user is set to the average of ratings of the user.

On the other hand, the baseline models for ICS movie experiment include ALS, SGD, timeSVD++
and CDL. ALS and SGD are two major algorithms for learning parameters. In our experiment,
we use them to minimize the error function of (4.2). As described in the previous section,
timeSVD++ is a time-aware CF model, taking the temporal e�ects into consideration. CDL is
a model jointly performing deep representation learning and CF, which applies an ALS-style
algorithm for learning. ALS and SGD provide recommendation based on plain ratings, while
timeSVD++ and CDL utilize additional time information and item content information respec-
tively.

The overall experiment procedure has four major steps, which are described below:

• Con�gure the system parameters: the parameters to be con�gured include learning rate,
regularization and factor dimension for each model as described in Sec.4.4.1. These set-
tings remain the same throughout the experiments.

• Prepare training and test sets: as described in Sec.4.4.1, training and test sets are gen-
erated respectively according to the con�gurations with di�erent test sizes (L for CCS
experiment and K for ICS experiment). Moreover, the number of training samples for
tested ICS items N is also con�gured to di�erent values in ICS experiments.

• Train the model by �tting the data in training set: speci�cally, ALS and CDL apply the ALS
algorithm to update model parameters, while IRCD models, SGD and timeSVD++ learn
model parameters by SGD algorithm. ToA and ToU approaches compute the prediction
result directly using Eq. (4.11),(4.12).

• Predict the ratings in the test set: this is done by using the trained models. The prediction
performance is then computed and recorded.

99

4 Recommendation System with Mobile Cloud Computing

4.4.2 Results and Analysis

In this subsection, the proposed models are evaluated in terms of RMSE and compared with
other baseline recommendation models. RMSE is an objective metric widely used for perfor-
mance evaluation of recommendation system models, which is de�ned as:

RMSE =

√
1

Np

∑
u,i

(r̂ui − rui)2, (4.18)

where Np denotes the total number of predictions.
After tuning the parameters on the validation set, we compare our proposed IRCD models

with other baseline models. Dimensionality d of the feature vectors is set to 50 for all the models.

4.4.2.1 Performance Evaluation of of IRCD-CCS Model on CCS Movies

Firstly we evaluate the prediction performance of IRCD-CCS model for CCS items. Table 4.3
presents the prediction result RMSE, against the number of most related itemsM , the size of the
test dataset for CCS movies, L for CCS new movies. The SA model, ToA model, ToU model and
IRCD-CCS model are compared. The number M of most related items is con�gured to 20 and
100, and the size Lof the test dataset for CCS movies is con�gured to 100 and 300, respectively.

It is noted that the IRCD-CCS model performs the best for all the investigated scenarios. Its
performance is signi�cantly better than the baseline models. The result shows an improvement
of about 0.05 on RMSE compared to the second best model ToU. The performance of both IRCD-
CCS model and ToU model improves largely as M increases. On the contrary, the ToA model
works well with small M (e.g., with only 20 most related ICS items for rating prediction), but
with a large M such as 100 it has a poor performance, which is even worse than the SA model.
This can be explained by that the in�uence of prediction error is accumulated as M increases.

Table 4.3: Performance comparison of prediction models for CCS movies with Net�ix dataset.

Approaches ToA ToU IRCD-CCS SA
M=20 M=100 M=20 M=100 M=20 M=100

RMSE 1.155 1.224 1.133 1.113 1.075 1.053 1.146(L=100)
RMSE 1.134 1.218 1.140 1.127 1.096 1.082 1.157(L=300)

4.4.2.2 Performance Evaluation of IRCD-ICS Model on ICS Movies

Next we compare the prediction performance RMSE of the IRCD-ICS model with the existing
models for ICS movies. Table 4.4 presents the experiment results. In the experiments the num-
ber of associated training ratings N is set to 5. The size K of the tested ICS movies is set to
100, 200 and 300. It is observed that the proposed method IRCD-ICS achieves the best accuracy
in all cases. CDL performs the worst even though it applies SDAE for the content information
learning. The main reason is that CDL is proposed on the use of implicit rating data instead

100

4 Recommendation System with Mobile Cloud Computing

of explicit data. The large gap (around 0.05) between SGD and ALS demonstrates that SGD is
e�ective on making better predictions for ICS items than ALS. By modeling the temporal dy-
namics, timeSVD++ outperforms SGD by a signi�cant margin of 0.002 to 0.017. Compared to
timeSVD++, IRCD-ICS model shows further consistent improvement of more than 0.004 with
inclusion of content information and deep learning process.

Table 4.4: Performance comparison of prediction models for ICS movies with Net�ix dataset.
Algorithms RMSE RMSE RMSE

(K=100) (K=200) (K=300)
ALS 1.124 1.112 1.097
SGD 1.070 1.076 1.058
timeSVD++ 1.053 1.074 1.053
CDL 1.179 1.151 1.148
IRCD-ICS 1.049 1.070 1.048

To have a deep comparison of timeSVD++ and the proposed model IRCD-ICS, we investigate
how the prediction performance RMSE changes with the training iterations. Representative
training curves are presented in Fig. 4.8. For both models the RMSE decreases monotonically
without over�tting problem. The IRCD-ICS model converges faster than timeSVD++ in the
training process. For the case of K being 100, the IRCD-ICS model takes only 25 iterations to
end while timeSVD++ needs more than 35 iterations, which means more computation time.

4.4.2.3 Performance Evaluation of Both Models on ICS Movies

In general if an item has a su�cient number of ratings the IRCD-ICS model for this item will
certainly outperform the IRCD-CCS model. But when the number of ratings for an ICS items
is close to zero, it is not clear whether IRCD-ICS model or IRCD-CCS model performs better.
Therefore in this subsection we compare the two models IRCD-CCS and IRCD-ICS on recom-
mending ICS items. To evaluate and compare the models under di�erent degrees of rating ma-
trix sparsity, the number of associated training ratings N is set to 1, 3, 5 and 7 for ICS movies.
Fig. 4.9 shows the RMSE results of timeSVD++ and the IRCD-ICS model with di�erent N for
the ICS movies. The red dashed line indicates the RMSE of IRCD-CCS model, which is irrel-
evant to N . As we can see from Fig. 4.9 , the RMSE value of both timeSVD++ and IRCD-ICS
decreases asN increases. However, whenN is less than 5, the ICS item based models including
timeSVD++ and IRCD-ICS even perform worse than IRCD-CCS model. It is shown that ICS
item based models do not make good prediction of ratings for items with only a small number
of ratings, in which case the CCS item based model is preferred.

4.4.3 Discussions

In the above experiments, di�erent recommendation models are used for CCS items and non-
CCS (ICS and NCS) items. However, in practical operation of recommendation systems, if rat-
ings for a CCS item are received from users, the item becomes an ICS item. In this case, for this
new ICS item rating prediction with the model trained and used for CCS items may be worse

101

4 Recommendation System with Mobile Cloud Computing

5 10 15 20 25 30 35
1.04

1.06

1.08

1.1

1.12

1.14

Iterations.

R
M

S
E

.

timeSVD++
IRCD−ICS

(a) K=100.

5 10 15 20 25 30
1.04

1.06

1.08

1.1

1.12

1.14

Iterations.

R
M

S
E

.

timeSVD++
IRCD−ICS

(b) K=200.

5 10 15 20 25
1.04

1.06

1.08

1.1

1.12

1.14

Iterations.

R
M

S
E

.

timeSVD++
IRCD−ICS

(c) K=300.

Figure 4.8: Training curves of timeSVD++ and IRCD-ICS model.

102

4 Recommendation System with Mobile Cloud Computing

1 2 3 4 5 6 7
1.02

1.04

1.06

1.08

1.1

1.12

RateNum.

R
M

S
E

.

timeSVD++
IRCD−ICS
IRCD−CCS

Figure 4.9: Performance comparison of IRCD-CCS and IRCD-ICS models for rating prediction of ICS
models, K=100.

than with a model used for ICS items. However, the existing recommendation model for non-
CCS items does not use any information (ratings and content description) related to this ICS
item, which just changed its status from CCS item. Therefore there is a need to retrain the rec-
ommendation model for non-CCS items with extra rating and content description information
from the new non-CCS items.

There are two key issues to consider with regards to the retraining of the model for non-CCS
items: 1) how frequently the model should be retrained ? 2) which part of the model should be
retrained ?

For the issue of retraining frequency, we do not need immediately retrain the ICS model
whenever some items change their status from CCS to ICS. As the recommendation of items
is not made continuously, there is no need to retrain the ICS model too frequently, which will
incur a very high computation cost. Even if the IRCD-ICS model is not retrained when a CCS
item changes to ICS item, the CCS model can be used temporally for recommendation of that
item. According to the evaluation results, there is not large performance degradation when the
CCS model is applied to ICS items. Therefore we can design a recommendation system, which
collects and stores the new ratings made by the users, and regularly retrains the ICS and CCS
recommendation models, for example, in the scale of days or weeks according to the rating
activities.

For the issues of which parts of the models to be trained, there is very little impact in the
trained model with inclusion of new ratings to the training set, as they take very small pro-
portion of the total ratings in the training set. To reduce computation loads, in the model
retraining, we can keep the values for trained model parameters (such as qi, pu and bi) which
are well trained in the previous round of training process and should be stable in short term,
and only learn the parameter values for the new items.

103

4 Recommendation System with Mobile Cloud Computing

4.5 Conclusion

Recommendation of cold start items is challenging and still an open research issue for recom-
mendation systems. Cold start items can be classi�ed to complete cold start (CCS) items which
receive no ratings and incomplete cold start (ICS) items which receive more than zero but very
few ratings. In this chapter we proposed two recommendation models to address the recom-
mendation problems for CCS and ICS items, respectively. The models combine a time-aware
collaborative �ltering (CF) model timeSVD++ with a deep learning architecture SDAE. The deep
learning neural network SDAE is responsible for the extraction of item content features, while
the timeSVD++ model is responsible for prediction of unknown ratings. It considered temporal
dynamics of user preferences and item features. A large number of experiments were run to
evaluate the proposed models in terms of recommendation prediction error RMSE on Net�ix
dataset. The results showed that our models outperformed existing baseline approaches for
cold start item recommendation. From our analysis and experiments, the impact of including
the time and item content information is very large. Especially for CCS problem, our model
can successfully takes the advantage of CF latent factor models to gain signi�cant performance
improvement. In addition, we also compared our proposed models on the ICS new items rec-
ommendation with di�erent degrees of rating matrix sparsity. It was found out that the ICS
item-based model does not make good recommendations for items that received very few rat-
ings (e.g. 3 ratings). In that case the CCS item based model should be used instead of the ICS
item based model.

In the future we plan to extend our recommendation models for cold start items and work on
the following research directions. First, we are interested in the investigation of the recommen-
dation performance for CCS and ICS items with more system con�gurations and parameters
setting, in order to reveal more insights to their impact on recommendation performance and
system optimization. Second, we create and maintain two separate recommendation models for
CCS items and ICS items, respectively. This approach requires extra storage and computation
resources. We plan to design a recommendation model, which is applicable to recommendation
of both CCS and ICS items. Third, recommendation models are evaluated by the RMSE of rating
predictions, which may not e�ectively re�ect the performance of real recommendation systems.
We are interested in the design of an additional performance evaluation approach, which can
take item recommendation decisions into account and quantify the impact of the decisions on
user acceptance of recommended items. Finally, in this chapter we run experiments of cold start
item recommendation on Net�ix movies. We are interested in the application of the models to
the recommendation of other products such as online music.

104

5 Conclusion and Future Work

Increasing urbanization and the number of vehicles on road is creating enormous pressure on
modern transport systems and exacerbating many global issues such as tra�c congestion, ac-
cidents and pollution. Connected autonomous vehicle (CAV) is an ambitious technology to
tackle the above problems. It is proposed to capitalize on the latest technology advances of
autonomous driving and vehicles networking, to provide a wide range of driving safety appli-
cations, transport e�ciency applications and entertainment applications. As computing is an
extreme component for CAV systems, various mobile computing models are proposed in the
literature. However it is noted that none of mobile computing models could �t all the CAV
applications, which have highly diverse QoS requirements such as communication delay, data
rate, accuracy, reliability and/or computing latency. In this thesis, a hybrid mobile computing
model is investigated for CAV, in which three mobile computing models (namely mobile local
computing, mobile edge computing and mobile cloud computing) and/or their combinations are
chosen and applied to di�erent CAV applications.

5.1 Conclusion and Summary

In this section, the research activities in this thesis are brie�y summarized. In chapter 1, we start
by discussing the technologies of autonomous driving and connected vehicles respectively. As
both technologies have their own limitations and could complement each other, the integration
of two technologies (CAV) is proposed. While CAV holds huge potential in a wide range of
applications including driving safety, transport e�ciency and user entertainment, the research
of CAV is still on an early stage and there are many technical and non-technical challenges
unsolved. Speci�cally we focus on the mobile computing challenges in this thesis, which is the
cornerstone of CAV systems. A survey of relevant mobile computing models including mobile
cloud computing, mobile edge computing and mobile local computing is presented. Accord-
ing to the survey, it can be found that there is no individual model which can support all the
CAV applications. Therefore the main objective of this thesis is determined: proposing a hybrid
mobile computing model (HMCM) to deliver the CAV applications. In the HMCM, the com-
puting and communication resources at the local host and external entities are expected to be
e�ciently utilized according to the CAV applications requirements. Finally the thesis outline
and the research contributions of this thesis are summarized.

Chapter 2 �rst presents the architecture of the HMCM, which is consisted of interconnected
ad-hoc fogs (A-Fogs) with consumer computing devices, dedicated fogs (D-Fogs) with service

105

5 Conclusion and Future Work

operator devices at edge and remote clouds. Detailed functional modules of fog nodes are de-
signed. Then a framework for QoS aware service and resource management is designed to
provide QoS support for large scale data analytics services for CAV applications. To support
the QoS aware resource management framework, extensive benchmark experiments over fogs
with distributed computing engine Spark are run to measure computing performance of various
analytics tasks and create easy to use workload models for QoS management framework. We
formulate an optimization problem for analytics job admission control and resource allocation
(ACRA). Resource heterogeneity, networking, power and computing resource cost models are
taken into account in ACRA optimization objective. Distributed ACRA algorithms are proposed
including two baseline non-cooperative algorithms and a matching theory based cooperative
ACRA algorithm. A system-level simulator is developed to evaluate the analytics services and
the proposed QoS aware resource management framework. Various computing models with
and without fogs are compared. Simulation results demonstrate the feasibility of large scale
edge analytics services with HMCM and e�ectiveness of proposed QoS aware framework. The
performance with HMCM is much better than that with existing individual models in terms
of analytics job blocking probability and service utility. The matching algorithm also largely
outperforms the baseline non-cooperative algorithms.

In Chapter 3, a case study on visual object detection with mobile local computing is con-
ducted. Compared with traditional approaches using hand-engineered features, CNN achieved
big performance improvement on object detection. However, due to the challenging driving en-
vironment (e.g., large object scale variation, object occlusion and bad light conditions), popular
CNN detectors do not perform well over the KITTI autonomous driving benchmark dataset.
We propose three methods for CNN based visual object detection for ADAS and autonomous
driving. To address the large object scale challenge, deconvolution and fusion of CNN feature
maps is proposed to add context and deeper features for better object detection at low feature
map scales. In addition, soft-NMS is applied across object proposals at di�erent feature scales to
address the object occulusion challenge. As the cars, pedestrians and cyclists have distinct as-
pect ratio features, we measure their aspect ratio statistics and exploit them to set better anchor
boxes for better object matching and localization. The proposed CNN methods are individu-
ally and jointly evaluated by extensive experiments over KITTI dataset. Experiment results
demonstrate the e�ectiveness of the proposed methods with improved or comparable detection
performance on KITTI test set.

In chapter 4, we take movie recommendation as an example for CAV entertainment applica-
tions with mobile cloud computing and focus on the design of recommendation system. Col-
laborative �ltering (CF) is the most popular approaches used for recommendation systems, but
it su�ers from complete cold start (CCS) problem where no rating record are available and in-
complete cold start (ICS) problem where only a small number of rating records are available
for some new items or users in the system. We propose two recommendation models to solve
the CCS and ICS problems for new items, which are based on a framework of tightly coupled
CF approach and deep learning neural network. A speci�c deep neural network SADE is used

106

5 Conclusion and Future Work

to extract the content features of the items. The state of the art CF model, timeSVD++, which
models and utilizes temporal dynamics of user preferences and item features, is modi�ed to take
the content features into prediction of ratings for cold start items. Extensive experiments on a
large Net�ix rating dataset of movies are performed, which show that our proposed recommen-
dation models largely outperform the baseline models for rating prediction of cold start items.
The two proposed recommendation models are also evaluated and compared on ICS items, and
a �exible scheme of model retraining and switching is proposed to deal with the transition of
items from cold start to non-cold start status. The experiment results on Net�ix movie rec-
ommendation show the tight coupling of CF approach and deep learning neural network is
feasible and very e�ective for cold start item recommendation. The design is general and can
be applied to many other recommendation systems for online shopping and social networking
applications. The solution of cold start item problem can largely improve user experience and
trust of recommendation systems, and e�ectively promote cold start items.

5.2 Future work

Based on the work in this thesis, we plan to work on the following directions in the future.

• More comprehensive evaluation of the hybrid mobile computing model and the QoS
aware job management schemes will be performed in our future research work. Specif-
ically, we are interested in more heterogeneous network and computing environments,
and develop more e�ective schemes to allocate computing resources for given analytic
tasks. In addition, vehicle mobility management and more design options will be inves-
tigated.

• We will investigate more CNN models and methods to improve object detection per-
formance. The base network we used in this thesis is memory intensive and could be
replaced with other light-weighted candidates.

• The future works could be extended to 3D object detection which utilizes data from mul-
tiple sensors such as radar, Lidar and camera. Not only RGB images, 3D voxel grids of
objects could be exploited to achieve higher performance and safety for autonomous cars.

• In this thesis, we only focus on the object detection in a local vehicle. It is believed
that connecting and exchanging the detection results between multiple nearby vehicles
through CV technology could enlarge the detection area and improve the detection accu-
racy of each single vehicle. In the future, we are interested in the collaborative detection
of multiple vehicles.

• Our recommendation models could be evaluated with more system con�gurations, pa-
rameters setting and metrics, in order to reveal more insights to their impact on rec-
ommendation performance and system optimization. The two separate recommendation
models could be combined together to deal with both CCS and ICS problems. Moreover, it

107

5 Conclusion and Future Work

will be interesting to apply our models to the recommendation of other products besides
movies.

108

Bibliography

[1] J. Dargay, D. Gately and M. Sommer. “Vehicle ownership and income growth, world-
wide: 1960-2030.” The Energy Journal, 143-170, 2007.

[2] Mobileye. https://www.mobileye.com.

[3] Apollo. http://apollo.auto.

[4] N. Lu, N. Cheng, N. Zhang., X. Shen and J. W. Mark. “Connected vehicles: Solutions
and challenges.” IEEE internet of things journal, 1(4), 289-299, 2014.

[5] J. B. Kenney. “Dedicated short-range communications (DSRC) standards in the
United States.” In IEEE, 99(7), 1162-1182, 2011.

[6] ETSI http://www.etsi.org.

[7] A. Asadi, Q. Wang and V. Mancuso. “A survey on device-to-device communication
in cellular networks.” IEEE Communications Surveys and Tutorials, 16(4), 1801-1819,
2014.

[8] Y. Zhang, E. Pan, L. Song, W. Saad, Z. Dawy and Z. Han. “Social network aware
device-to-device communication in wireless networks.” IEEE Transactions on Wire-
less Communications, 14(1), 177-190, 2015.

[9] J. Stankovi. “Research directions for the internet of things.” IEEE Internet of Things
Journal, Vol. 1, No. 1, 3-9, March 2014.

[10] A. Zanella et al. “Internet of things for smart cities.” IEEE Internet of Things Journal,
Vol. 1, No. 1, 22-32, February 2014.

[11] F. Bonomi, R. Milito, P. Natarajan and J. Zhu. “Fog Computing: A Platform for Inter-
net of Things and Analytics.” Big Data and Internet of Things: A Roadmap for Smart
Environments, 169-186, March 2014.

[12] Cisco. “Fog computing and the Internet of Things: extend the cloud to where the
things are.” White Paper, 2015.

[13] A. Fox. “A view of cloud computing.” Communications of the ACM, Vol. 53, No. 4,
50-58, April 2010.

[14] C. Magurawalage, K. Yang, , L. Hu, J. Zhang. ‘’Energy-e�cient and network-aware
o�oading algorithm for mobile cloud computing.” Computer Networks, Vol. 74, 22-
33, Dec. 2014.

[15] H. Dinh, C. Lee, D. Niyato, P. Wang. “A survey of mobile cloud computing: architec-
ture, applications, and approaches.” Wireless Communications andMobile Computing,
Vol. 13, No. 8, 1587-1611, Dec. 2013.

[16] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies. “The case for vm-based cloudlets
in mobile computing.” IEEE Pervasive Computing, Vol. 8, No. 4, Oct.-Dec. 2009.

109

Bibliography

[17] F. Bonomi, R. Milito, J. Zhu, S. Addepalli. Fog computing and its role in the internet
of things.” In ACM MCC, 13-16, 2012

[18] M. Gerla. “Vehicular cloud computing.” In IEE Med-Hoc-Net, June 2012.

[19] M. Whaiduzzaman, M. Sookhak, A. Gani, R. Buyya. “A survey on vehicular cloud
computing.” Journal of Network and Computer Applications, Vol. 40, 325-344, April
2014.

[20] E. Lee, E. Lee, M. Gerla, S. Oh. “Vehicular cloud networking: architecture and design
principles.” IEEE Communications Magzine, Vol. 52, No. 2, February 2014.

[21] J. Wei, J. He, K. Chen, Y. Zhou. “Benchmarking of Distributed Computing Engines
Spark and GraphLab for Big Data Analytics.” In IEEE BigDataService, 2016.

[22] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou and Y. Zhang. “Multi-tier Fog Computing
with Large-scale IoT Data Analytics for Smart Cities.” IEEE Internet Journal of Things
Journal, No. 99, July 2017.

[23] L. M. Vaquero, L. Rodero-Merino. “Finding your Way in the Fog: Towards a Compre-
hensive De�nition of Fog Computing.” ACM SIGCOMM Computer Communication
Review, Vol. 44, No. 5, Oct. 2014.

[24] W. Shi, S. Dustdar. “The Promise of Edge Computing.” Computer, 78-81, 2016.

[25] W. Shi, et al. “Edge Computing: Vision and Challenges.” IEEE Internet of Things Jour-
nal, Vol. 3, No. 5, 637-645, October 2016

[26] M. Chiang, T. Zhang. Fog and IoT: An Overview of Research Opportunities IEEE
Internet Journal of Things Journal, Vol. 3, No. 6, 854-864, Dec. 2016

[27] S. Sarkary, S. Chatterjee, S. Misraz. “Assessment of the Suitability of Fog Computing
in the Context of Internet of Things.” IEEE Transactions on Cloud Computing, 2015.

[28] X. Hou, et al. “Vehicular Fog Computing: A Viewpoint of Vehicles as the Infrastruc-
tures.” IEEE Transactions Vehicular Technology, Vol. 65, No. 6, 3860-3913, June 2016.

[29] J. Ni, et al. “Security, Privacy, and Fairness in Fog-Based Vehicular Crowdsensing.”
IEEE Communications Magazine, 146-152, June 2017.

[30] S. Lien, et al. “Collaborative Radio Access of Heterogeneous Cloud Radio Access
Networks and Edge Computing Networks.” In IEEE ICC 2016, 3909-3914, 2016.

[31] S. Park, O. Simeone, and S. Shamai. “Joint Optimization of Cloud and Edge Process-
ing for Fog Radio Access Networks.” IEEE Transactions on Wireless Communications,
Vol. 15, No. 11, 7621-7632, Nov. 2016.

[32] Y. Shih, it. “Enabling Low-Latency Applications in Fog-Radio Access Networks.” IEEE
Network, Jan. 2017.

[33] K. Liang, et al. “An Integrated Architecture for Software De�ned and Virtualized
Radio Access Networks with Fog Computing.” IEEE Network, 80-87, Jan. 2017.

[34] N. Chen, et al. “Dynamic Urban Surveillance Video Stream Processing Using Fog
Computing.” In IEEE Second International Conference on Multimedia Big Data, 2016.

110

Bibliography

[35] M. Yannuzzi, et al. “A New Era for Cities with Fog Computing.” IEEE Internet Com-
puting, 54-67, 2017.

[36] J. Liu, et al, “Secure intelligent tra�c light control using fog computing.” Future Gen-
eration Computer Systems, 78:817âĂŞ824, 2018.

[37] I. Stojmenovic, S. Wen, X. Huang and H. Luan, “An overview of Fog comput-
ing and its security issues.” Concurrency Computatation: Practice and Experience,
28:2991âĂŞ3005, 2016.

[38] F. Mehdipour, B. Javadi, A. Mahanti. “FOG-engine: Towards Big Data Analytics in
the Fog.” In IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing,
2016.

[39] R. Deng, et al. “Towards Power Consumption-Delay Tradeo� by Workload Alloca-
tion in Cloud-Fog Computing.” In IEEE ICC 2015 - Mobile and Wireless Networking
Symposium, 3909-3914, 2015.

[40] R. Deng, et al. “Optimal Workload Allocation in Fog-Cloud Computing Toward Bal-
anced Delay and Power Consumption.” IEEE Internet of Things Journal, Vol. 3, No. 6,
1171-1181, Dec. 2016.

[41] N. Wang, et al. “ENORM: A Framework For Edge NOde Resource Management.” IEEE
Transactions Service Computing, Jan. 2017.

[42] X. Chen and J. Zhang. “When D2D Meets Cloud: Hybrid Mobile Task O�oadings in
Fog Computing.” In IEEE ICC 2017 Ad-Hoc and Sensor Networking Symposium, 2017.

[43] H. Zhang, et al. “A Hierarchical Game Framework for Resource Management in Fog
Computing.” IEEE Communications Magazine, 52-57, August 2017.

[44] Y. Xiao and M. Krunz. “QoE and Power E�ciency Tradeo� for Fog Computing Net-
works with Fog Node Cooperation.” In IEEE INFOCOM, 2017.

[45] R. Silva, J. Silva, F. Boavida. “Opportunistic Fog Computing: Feasibility Assessment
and Architectural Proposal.” In IEEE Conference on Integrated Network and Service
Management (IM), May 2017.

[46] Spark. http://spark.apache.org.

[47] A. Roy, I. Mihailovic and W. Zwaenepoel. “X-stream: edge-centric graph process-
ing using streaming partitions.” In Proc. of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pp. 472-488, 2013.

[48] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker and I. Stoica. “Spark: cluster
computing with working sets.” In Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing., June, 2010.

[49] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, I. Stoica. “ Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.”
In NSDI, 2-2, 2012.

[50] Raspberry Pi Foundation. http://www.raspberrypi.org.

[51] Y. Guo, et al, “How well do graph-processing platforms perform? an empirical per-
formance evaluation and analysis.” In IEEE IPDPS, 395-40, 2014.

111

Bibliography

[52] T. White. “Hadoop: The de�nitive guide”. O’Reilly Media, Inc., 2012.

[53] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica. “Spark: cluster com-
puting with working sets.” In Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing., June, 2010.

[54] J. Dean, S. Ghemawat. “MapReduce: simpli�ed data processing on large clusters.”
Communications of the ACM, 51(1), 107-113, 2008.

[55] Y. Low. “GraphLab: A Distributed Abstraction for Large Scale Machine Learning.”
Doctoral dissertation, University of California, Berkeley, 2013.

[56] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, I. Stoica. “Graphx:
Graph processing in a distributed data�ow framework.” In OSDI, 599-613, 2014.

[57] A. Kyrola, G. E. Blelloch, C. Guestrin. “GraphChi: Large-Scale Graph Computation
on Just a PC.” In OSDI, 31-46, 2012.

[58] Raspberry Pi Foundation. http://www.raspberrypi.org.

[59] K. Shvachko, H. Kuang, S. Radia, R. Chansler. “The hadoop distributed �le system”.
In IEEE MSST, 1-10, 2010.

[60] Cassandra. http://cassandra.apache.org.

[61] Hbase. http://hbase.apache.org.

[62] Amazon S3. https://aws.amazon.com/cn/s3.

[63] Spark. http://spark.apache.org.

[64] Y. Guo, M. Biczak, A. L.Arbanescu, A. Iosup, C. Martella, and T. L. Willke. “How well
do graph-processing platforms perform? an empirical performance evaluation and
analysis.” In IEEE IPDPS, 395-40, 2014.

[65] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica. “ Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing.” In NSDI,
2-2, 2012.

[66] MNIST. http://yann.lecun.com/exdb/mnist/.

[67] S. Zhao, R. Xiang, Y. Shi, P. Gao, and W. J. Li. “SCOPE: Scalable Composite Optimiza-
tion for Learning on Spark.” arXiv preprint, 1602.00133, 2016.

[68] D. Agarwal, and B. C. Chen. “Regression-based latent factor models.” In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, 19-28, 2009.

[69] J. Bennett, and S. Lanning. “The net�ix prize.” In Proceedings of KDD cup and work-
shop, 2007, 35, 2007.

[70] T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu. “SVDFeature: a toolkit
for feature-based collaborative �ltering.” The Journal of Machine Learning Research,
13(1), 3619-3622, 2012.

112

Bibliography

[71] P.G. Campos, F. DÃŋez, and I. Cantador. “Time-aware recommender systems: a com-
prehensive survey and analysis of existing evaluation protocols.” User Modeling and
User-Adapted Interaction, 24(1-2), 67-119, 2014.

[72] K. Georgiev, and P. Nakov. “A non-iid framework for collaborative �ltering with
restricted boltzmann machines.” In Proceedings of the 30th International Conference
on Machine Learning, 1148-1156, 2013.

[73] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. “Personalized recommendation via
cross-domain triadic factorization.” In Proceedings of the 22nd international conference
on World Wide Web, 595-606, 2013.

[74] Y. Koren, R. Bell, and C. Volinsky. “Matrix factorization techniques for recommender
systems.” Computer, (8), 30-37, 2009.

[75] Y. Koren. “Collaborative �ltering with temporal dynamics.” Communications of the
ACM, 53(4), 89-97, 2010.

[76] G. Linden, B. Smith, and J. York. “Amazon. com recommendations: Item-to-item
collaborative �ltering.” IEEE Internet Computing, 7(1), 76-80, 2003.

[77] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades. “Facing the cold start problem in
recommender systems.” Expert Systems with Applications, 41(4), 2065-2073, 2014.

[78] H. Ma, I. King, and M. R. Lyu. “Learning to recommend with explicit and implicit
social relations.” ACM Transactions on Intelligent Systems and Technology (TIST), 2(3),
29, 2011.

[79] R. Salakhutdinov, A. Mnih, and G. Hinton. “Restricted Boltzmann machines for col-
laborative �ltering.” In Proceedings of the 24th international conference on Machine
learning, 791-798, 2007.

[80] R. Salakhutdinov, and A. Mnih. “Probabilistic matrix factorization.” In NIPS, 20, 1-8,
2007.

[81] R. Salakhutdinov, and A. Mnih. “Bayesian probabilistic matrix factorization using
Markov chain Monte Carlo.” In Proceedings of the 25th international conference on
Machine learning, 880-887, 2008.

[82] H. Shan, and A. Banerjee. “Generalized probabilistic matrix factorizations for collab-
orative �ltering.” In 2010 IEEE 10th International Conference on Data Mining (ICDM),
1025-1030, 2010.

[83] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. “Low-
rank matrix factorization for deep neural network training with high-dimensional
output targets.” In Acoustics, Speech and Signal Processing (ICASSP), 6655-6659, 2013.

[84] Y. Shi, M. Larson, and A. Hanjalic. “Collaborative �ltering beyond the user-item
matrix: A survey of the state of the art and future challenges.” ACM Computing
Surveys (CSUR), 47(1), 3, 2014.

[85] D. Zhang, C. H. Hsu, M. Chen, Q. Chen, N. Xiong, and J. Lloret. “Cold-start recom-
mendation using bi-clustering and fusion for large-scale social recommender sys-
tems.” IEEE Transactions on Emerging Topics in Computing, 2(2), 239-250, 2014.

113

Bibliography

[86] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. “Generative models for
cold-start recommendations.” In Proceedings of the 2001 SIGIR Workshop on Recom-
mender Systems, 6, 2001.

[87] U. Ocepeka, J. Rugeljb, and Z. Bosnica. “Improving matrix factorization recommen-
dations for examples in cold start.” Experts Systems with Applications, 42(19), 6784-
6794, 2015.

[88] P. Victor, C. Cornelis, A. M. Teredesai, and M. De Cock. “Whom should I trust?: the
impact of key �gures on cold start recommendations.” In Proceedings of the 2008
ACM symposium on Applied computing, 2014-2018, 2008.

[89] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol. “Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a local
denoising criterion.” The Journal of Machine Learning Research, 11, 3371-3408, 2010.

[90] C. Wang, and D. M. Blei. “Collaborative topic modeling for recommending scien-
ti�c articles.” In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge Discovery and Data Mining, 448-456, 2011.

[91] H. Wang, N. Wang, and D. Y. Yeung. “Collaborative deep learning for recommender
systems.” In Proceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 1235-1244, 2015.

[92] L. Xiong, X. Chen, T. K. Huang, J. G. Schneider, and J. G. Carbonell. “Temporal col-
laborative �ltering with Bayesian probabilistic tensor factorization.” In SDM, 10,
211-222, 2010.

[93] Y. Xiao, P. Ai, C. H. Hsu, H. Wang, and X. Jiao. “Time-ordered collaborative �ltering
for news recommendation.” China Communications, 12(12), 53-62, 2015.

[94] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. “Large-scale parallel collaborative
�ltering for the net�ix prize.” In Algorithmic Aspects in Information andManagement,
337-348, 2008.

[95] Z. K. Zhang, C. Liu, Y. C. Zhang, and T. Zhou. “ Solving the cold-start problem in
recommender systems with social tags.” EPL (Europhysics Letters), 92(2), 28002, 2010.

[96] K. Zhou, S. H. Yang, and H. Zha. “Functional matrix factorizations for cold-start
recommendation.” In Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval, 315-324, 2011.

[97] C. Zhang, K. Wang, H. Yu, J. Sun, and E. P. Lim. “Latent factor transition for dynamic
collaborative �ltering.” In SDM, 452-460, 2014.

[98] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for autonomous driving? the kitti
vision benchmark suite.” In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 3354–3361, 2012.

[99] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. “The pascal
visual object classes (voc) challenge.” International journal of computer vision, vol. 88,
no. 2, pp. 303–338, 2010.

[100] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. “Microsoft coco: Common objects in context.” In European conference on
computer vision, pp. 740–755, Springer, 2014.

114

Bibliography

[101] P. Felzenszwalb, R. B. Girshick, and D. McAllester. “Cascade object detection with
deformable part models.” In CVPR, pp. 2241-2248, 2010.

[102] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classi�cation with deep
convolutional neural networks.” In NIPS, pp. 1097-1105, 2012.

[103] S. Ren, K. He, R. Girshick, and J. Sun. “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks.” In Advances in neural information processing
systems, pp. 91–99, 2015.

[104] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. “Ssd:
Single shot multibox detector.” In European conference on computer vision, pp. 21–37,
Springer, 2016.

[105] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. “A uni�ed multi-scale deep convolu-
tional neural network for fast object detection.” In European Conference on Computer
Vision, pp. 354–370, Springer, 2016.

[106] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection.” In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[107] P. Dollár, Z. Tu, P. Perona, and S. Belongie. “Integral channel features.” 2009.

[108] P. Dollár, R. Appel, S. Belongie, and P. Perona. “Fast feature pyramids for object
detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 8, pp. 1532–1545, 2014.

[109] Q. Hu, S. Paisitkriangkrai, C. Shen, A. van den Hengel, and F. Porikli. “Fast detec-
tion of multiple objects in tra�c scenes with a common detection framework.” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1002–1014, 2016.

[110] R. N. Rajaram, E. Ohn-Bar, and M. M. Trivedi. “Looking at pedestrians at di�erent
scales: A multiresolution approach and evaluations.” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 12, pp. 3565–3576, 2016.

[111] X. Yuan, S. Su, and H. Chen. “A graph-based vehicle proposal location and detection
algorithm.” IEEE Transactions on Intelligent Transportation Systems, 2017.

[112] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. “Selective search
for object recognition.” International journal of computer vision, vol. 104, no. 2,
pp. 154–171, 2013.

[113] C. L. Zitnick and P. Dollár. “Edge boxes: Locating object proposals from edges.” In
European Conference on Computer Vision, pp. 391–405, Springer, 2014.

[114] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for accurate
object detection and semantic segmentation.” In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 580–587, 2014.

[115] R. Girshick. “Fast r-cnn.” In Proceedings of the IEEE international conference on com-
puter vision, pp. 1440–1448, 2015.

[116] J. Dai, Y. Li, K. He, and J. Sun. “R-fcn: Object detection via region-based fully con-
volutional networks.” In Advances in neural information processing systems, pp. 379–
387, 2016.

115

Bibliography

[117] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. “Feature pyra-
mid networks for object detection.” In CVPR, 2017.

[118] K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask r-cnn.” In International confer-
ence on computer vision, 2017.

[119] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You only look once: Uni�ed,
real-time object detection.” In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 779–788, 2016.

[120] J. Redmon and A. Farhadi. “Yolo9000: Better, faster, stronger.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[121] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. “Dssd: Deconvolutional single
shot detector.” arXiv preprint arXiv:1701.06659, 2017.

[122] J. Jeong, H. Park, and N. Kwak. “Enhancement of ssd by concatenating feature maps
for object detection.” arXiv preprint arXiv:1705.09587, 2017.

[123] Y. Xiang, W. Choi, Y. Lin, and S. Savarese. “Subcategory-aware convolutional neu-
ral networks for object proposals and detection.” In Applications of Computer Vision
(WACV), 2017 IEEE Winter Conference on, pp. 924–933, IEEE, 2017.

[124] F. Yang, W. Choi, and Y. Lin. “Exploit all the layers: Fast and accurate cnn object de-
tector with scale dependent pooling and cascaded rejection classi�ers.” In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–
2137, 2016.

[125] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai, and L. Xu. “Accurate single
stage detector using recurrent rolling convolution.” In CVPR, 2017.

[126] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale
image recognition.” NIPS, 2015.

[127] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. “Improving object detection with
one line of code.” arXiv preprint arXiv:1704.04503, 2017.

[128] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al.. “Imagenet large scale visual recognition challenge.”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[129] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. “Monocular 3d object
detection for autonomous driving.” In CVPR, 2016.

[130] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka. “3d bounding box estimation
using deep learning and geometry.” In CVPR, 2017.

[131] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. “Multi-view 3d object detection network
for autonomous driving.” In CVPR, 2017.

[132] F. Chabot, M. Chaouch, J. Rabarisoa, C. TeuliÃĺre, and T. Chateau. “Deep manta: A
coarse-to-�ne many-task network for joint 2d and 3d vehicle analysis from monoc-
ular image.” In CVPR, 2017.

116

	Summary
	Acknowledgements
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Autonomous Driving and Connected Vehicles
	Applications and Research Challenges for CAV
	Research Motivations and Objectives
	Thesis Outline and Contributions

	QoS Aware Hybrid Mobile Computing Model
	Introduction
	Related Works
	Proposed Hybrid Mobile Computing Model
	Benchmarking Experiments for Analytics Applications over Fogs
	QoS Aware Service and Resource Management
	Evaluation of ACRA Algorithms
	Conclusion

	Object Detection with Mobile Local Computing
	Introduction
	Related Works
	Network Architectures
	Experiments
	Conclusion

	Recommendation System with Mobile Cloud Computing
	Introduction
	Related Works
	Proposed Recommendation Model
	Performance Evaluation
	Conclusion

	Conclusion and Future Work
	Conclusion and Summary
	Future work

	Bibliography

