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Abstract

Quality by Design (QbD), a current trend employed to develop and optimise various critical

pharmaceutical processes, is a systematic approach based on the ethos that quality should

be designed into the product itself, not just end tested after manufacture. The present work

details a step-wise application of QbD principles to optimise process parameters for produc-

tion of particles with modified functionalities, using dry particle coating technology. Initial risk

assessment identified speed, air pressure, processing time and batch size (independent

factors) as having high-to-medium impact on the dry coating process. A design of experi-

ments (DOE) using MODDE software employed a D-optimal design to determine the effect

of variations in these factors on identified responses (content uniformity, dissolution rate,

particle size and intensity of Fourier transform infrared (FTIR) C = O spectrum). Results

showed that batch size had the most significant effect on dissolution rate, particle size and

FTIR; with an increase in batch size enhancing dissolution rate, decreasing particle size

(depicting absence of coated particles) and increasing the FTIR intensity. While content uni-

formity was affected by various interaction terms, with speed and batch size having the high-

est negative effect. Optimal design space for producing functionalised particles with optimal

properties required maximum air pressure (40psi), low batch size (6g), speed between 850

to 1500 rpm and processing times between 15 to 60 minutes. The validity and predictive

ability of the revised model demonstrated reliability for all experiments. Overall, QbD was

demonstrated to provide an expedient and cost effective tool for developing and optimising

processes in the pharmaceutical industry.

Introduction

Quality in the pharmaceutical industry has traditionally been assured via quality by testing

(QbT), where failure results in whole batches being discarded at significant cost. In this

approach, a lack of understanding of the critical process parameters (CPPs) renders

manufacturing issues difficult to diagnose and can lead to substantial losses [1,2]. Alterna-

tively, quality by design (QbD) provides a unique opportunity for the pharmaceutical industry
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to dramatically enhance product quality via utilising a systematic risk based approach [3]. This

can offer significant advantages over QbT via allowing control of the manufacturing process to

ensure consistent production of a quality product, without the need of extensive quality testing

[4]. The use of QbD is becoming an integral part of the development and optimisation of

novel manufacturing processes as the industry and regulatory authorities move together

towards an agile system for pharmaceutical product development.

QbD provides a step-wise approach for process optimisation with elements that once estab-

lished, will help product features to be recognized and origins of inconsistency identified [5].

An outline of this approach is depicted in Fig 1. Briefly, the quality target product profile

(QTPP) must first be defined and inclusive of requirements for quality, safety and efficacy.

These form the basis for product design and should be reproduced constantly to deliver the

intended benefits [3,6,7]. Subsequently, risk management, as detailed in ICH Q9, is applied to

identify CPPs in a product’s manufacturing process that directly impact the product’s critical

quality attributes (CQAs). The latter could comprise the physical, chemical, biological or

microbiological features/specifications that are required in a suitable limit to achieve desired

product quality [7,8]. Using risk-assessment tools, CPPs and CQAs are determined for inclu-

sion and investigation via design of experiment (DOE) studies. DOE is a tool by which systems

and processes can be investigated to give an understanding of the main and interaction effects

of various CPPs and provide flexibility by predicting the extent of these interactions [9,10].

A process that benefits from optimisation via a QbD approach is dry particle coating. This

novel process enables the production of functionalised modified release particles (FP). It

involves fine particles (guest, e.g. drug that requires modification of release kinetics) adherence

on to the surface of coarse particles (carrier) through the application of high mechanical and

impaction forces without the use of heat or solvents (Fig 2) [11–16]. In the process, the attrac-

tion of guest to carrier particles is based on van der Waals forces, electrostatic forces and

hydrogen bonding [17,18]. Dry coating requires initial de-agglomeration of the cohesive guest

particles into primary particles prior to coating the carrier. The equipment was designed to

supply sufficient G-force (force of acceleration of an object) from a rotating drum coupled

with high nitrogen gas flow essential to break agglomerates and promote proximity between

the guest and the carrier particles. However, the cohesive nature of fine guest particles results

in difficulty to disperse them and therefore, obtaining a uniform mix is challenging [19]. A

plethora of factors in the dry coating process may contribute to the optimum product perfor-

mance including blending speed, time, air flow rate and batch size. Elucidating the effect of the

individual process variables as well as their interactions, therefore, is crucial to facilitate the

development of future products using this technique.

This paper aims to optimise the process parameters of a dry particle coating technology via

applying a step-wise QbD approach. Specifically, the work is comprised of screening studies to

generate initial understanding of the process variables that influence the operation of the tech-

nique and development of functionalised particles with modified release properties. These

studies were focused mainly on assessing powder homogeneity/content uniformity, release

profile using dissolution studies and the extent of interaction between the guest and carrier

particles via particle size analysis and FTIR techniques. Risk assessment was then performed

following both compendial and initial screening studies to identify CPPs that have the highest

impact on CQAs. Those were subsequently incorporated into an optimisation DOE study

based on a four-factor, multi-level quantitative D-optimal design plan. Response surface

model (RSM) was applied in this study to evaluate the effect of varying interactive terms

among CPPs (processing speed, time, airflow and batch size) on four CQAs (drug release,

blend homogeneity and degree of attraction of guest to carrier particles). Finally the model

was utilised to establish the design space of the process.
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Materials and methods

Materials

Ibuprofen was purchased from Discovery Fine Chemicals (Dorset, UK), whereas microcrystalline

cellulose (MCC) Avicel PH-200 was donated by FMC BioPolymer Europe (Brussels, Belgium).

Fig 1. Flow chart outlining the elements of QbD (QTPP: Quality targeted product profile, CPPs: Critical process

parameters, CQAs: Critical quality attributes, DOE: Design of experiments).

https://doi.org/10.1371/journal.pone.0206651.g001
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Methods

Preparation of FP using dry particle coating process. FP were produced using a dry par-

ticle coating process, where a model binary mix comprising of ibuprofen fine guest particles

and MCC as coarse model insoluble carrier was chosen. The required particle size ranges were

obtained by sieving. MCC particle size was 180–250 μm and ibuprofen particle size was 38–

53 μm (collecting the fraction of powder retained above sieve with pore size 38 μm and below

sieve with pore size 53 μm). Both the carrier and the guest materials (10% w/w guest concen-

tration, 5g) were added to the dry particle coating device chamber, (prototype developed by

the research group at Aston University, UK) as shown in Fig 2. The mixing process parameters

in terms of speed, processing time and nitrogen gas pressure for the optimisation study was

carried out according the parameters set by the MODDE design worksheet. At the end of each

run, resultant powder was collected into a glass container and assayed for dissolution profile,

content uniformity, particle size distribution and Fourier Transform Infrared (FTIR). For

screening experiments, the resultant composite powders were tested against physical mixtures

(control) made of the same components that were mixed manually in a 30mL glass vial with

cap for 5 minutes (manual vigorous shaking).

Dissolution studies. Dissolution studies were carried out according to the USP apparatus

I compendia basket method [20]. Sample size was an equivalent of 100 mg of ibuprofen (1 g of

the blend). The amount of the released ibuprofen was determined by UV spectrophotometry

set at wavelength of 272 nm (Jenway 6305, Staffordshire, UK). All experiments were performed

in triplicates.

Content uniformity. Samples of the blend containing an equivalent of 50 mg of ibuprofen

were accurately weighed, added to a flask and dissolved in 100 ml of phosphate buffer (pH

7.2). Ibuprofen content was assessed using UV spectrophotometry at 272nm. The degree of

homogeneity of the mixture was measured by the relative standard deviation (RSD) using Eq 1

[21].

RSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðxi � �xÞ2

n� 1

q

�x
Eqð1Þ

Where xi is the ibuprofen content in percentage in the sample, �x is the average concentra-

tion over all samples and n is the number of samples. All samples were made in triplicates.

Particle size analysis (PSA). PSA was carried out using laser diffraction particle size ana-

lyser Sympatec HELOS (Helium–Neon Laser Optical System/ RODOS). A3 lenses were

employed with working range of 0.5–175 μm. The equipment disperses particles into their pri-

mary component using dry disperser (RODOS) with compressed air set at 3 bars. 1 g was

placed over the feeding tray of VIBRI, which in turn transferred the sample into RODOS.

Fig 2. Schematic showing dry coating process and device. Fine agglomerated guest particles and coarse carrier

particles are added to the high G-force processing vessel coupled with nitrogen gas flow to produce dry coated FP in a

one step process.

https://doi.org/10.1371/journal.pone.0206651.g002
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Parameters like volume mean diameter (VMD) (average diameter of the particles that has the

same volume), X10, X50 and X90 were obtained. The X10 X50 and X90 values represent the parti-

cle dimension corresponding to 10%, 50% and 90% of the blend in the cumulative undersize

distribution respectively. All samples were performed in triplicate.

Fourier transform infrared (FTIR). FTIR spectra were recorded on solid samples using

Thermo Scientific Nicolet iS5 FTIR spectrometer (Hertfordshire, UK), coupled with Thermo

Scientific OMNIC software (Nicolet, Madison, WI) to operate and treat FTIR spectra. Samples

of approximately 10–20 mg were loaded on the iD5 ATR Diamond sample holder and tripli-

cate scans were obtained over the range of 500–4000 cm-1 with a resolution of 2 cm-1.

Statistical analysis. Statistical comparison in screening studies for dissolution profiles for

various formulations was done using t-test (two-tails) whereas; comparisons between several

profiles were carried out using two-way analysis of variance (ANOVA). All studies were car-

ried out in triplicate and the mean with standard deviation was reported throughout screening

experiments.

Elements of QbD. CQAs were identified based on the initial screening studies and litera-

ture review. Risk assessment was then employed during development to identify possibly high

risk input and process parameters to conclude the required variables that would be investi-

gated. Risk ranking was determined based on the screening studies, current knowledge and

the ICH Q9 risk management guidelines [8]. The CPPs were assessed against CQAs using risk

assessment tool. For each input and process attribute a risk rank was made based on the impact

on the final product quality. Identification of CQAs of the final product were determined also

according to risk assessment anticipating a failure of the product if CQAs were not met. Risk

ranking was categorised as low, medium and high. Risks ranked as low were not included as

independent factor, while those with medium and high risk rank were considered as indepen-

dent factors and used in the DOE study [6,8].

Design of experiment (DOE). DOE was statistically designed using MODDE software

version 8.2 (Umetrics Inc., NJ, USA). A D-optimal design was selected to account for the

asymmetry in the settings of critical process parameters, namely process speed and airflow.

The asymmetric nature of the selected D-optimal design suggests that sometimes reproducibil-

ity (i.e. variation of response under the same conditions, pure error) could be tested at levels

other than middle values [10]. Hence reproducibility runs were set at the high level values by

the software. The chance for error during the model design was minimized through ensuring

that both G-efficiency (measure of model efficiency) and condition number (measure of

model sphericity) were at their optimal levels of 85.15% (recommended > 60–70%) and 10.55

respectively [22]. The model was quadratic polynomial fitted using partial least squares (PLS)

method. Response surface modelling (RSM) was applied to estimate the non-linear multidi-

mensional relationship between the independent factors and CQAs. To fit the quadratic model

with D-optimal design, 26 runs were generated of which four of these were replicated to esti-

mate the pure error for the study (Table 1). The randomization of the order of the experiments

was carried out. Further, Table 2 summarises the independent factors used in the design.

DOE model analysis. After model fitting, model verification was carried out to ensure its

validity and reproducibility through sequential elimination of the insignificant runs using distance

to model plots while evaluating the effect of the elimination on the model using lack of fit plots.

Furthermore, the model terms were reviewed individually and those with no statistical signifi-

cance were eliminated because their influence on the values of CQAs was negligibly small [10].

Two eliminations were carried out; the insignificant runs and the insignificant model terms.

ANOVA analyses for total variations of the responses at two levels were carried out (vari-

ances attributed to regression model and variances obtained from residuals and replicate

errors). The p value for the significance of the regression coefficient was set at less than 0.05,

QbD process optimisation of functionalised particles
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while the model error or lack of fit was set at a value of bigger than 0.05 indicating the insignif-

icance of the model error.

A statistical model comprising both interaction and polynomial terms was used to evaluate

the responses and it was displayed according to Eq 2 for each response [10,23]:

y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β11x
2

1
þ β22x

2

2
þ β12x1x2 þ β13x1x3 þ β23x2x3 . . .þ ε Eqð2Þ

Where (y) is the modelled response, B0 is the arithmetic mean response of the runs; β1, β2, β3,
β11, β22, β12, β13, β23 are the estimated coefficients for the main effects (x1, x2, x3); the polyno-

mial terms (x1
2, x22) and the interaction terms (x1x2, x1x3 and x2x3) respectively. ε is a constant

Table 2. List of independent variables with their feasible investigational ranges that were used in optimisation

DOEs.

Independent variable Level

High level Medium level Low level

Processing vessel speed (rpm) 1500 800 300

Processing time (min) 60 30 15

Air pressure (psi) 40 20 0

Batch Size (g) 20 10 6

https://doi.org/10.1371/journal.pone.0206651.t002

Table 1. The D-optimal design worksheet with CPPs and the total number of runs.

Exp. No Speed Time Air Flow Batch Size

(rpm) (min) (psi) (g)

1 300 15 0 6

2 300 60 0 6

3 1500 60 0 6

4 1500 15 20 6

5 300 30 20 6

6 800 15 40 6

7 300 60 40 6

8 1500 60 40 6

9 300 15 0 10

10 1500 30 0 10

11 800 60 20 10

12 1500 15 40 10

13 300 15 0 20

14 1500 15 0 20

15 800 30 0 20

16 300 60 0 20

17 1500 60 0 20

18 800 15 20 20

19 1500 30 20 20

20 300 15 40 20

21 1500 15 40 20

22 300 60 40 20

23 1500 60 40 20

24 1500 60 40 20

25 1500 60 40 20

26 1500 60 40 20

https://doi.org/10.1371/journal.pone.0206651.t001
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[24,25]. The final regression model equations were determined upon the evaluation of individ-

ual terms and elimination of all insignificant terms. Once the model was significant, evaluation

and prediction tools were used to identify the effect of individual or interaction CPPs on

CQAs and the results used to predict design space.

Results and discussion

Initial screening studies targeted the identification of CPPs and CQAs that will be further opti-

mised using QbD. Therefore, following the initial screening experiments, the tree diagram (Fig

1) served as a template for the development of an optimisation model for the dry particle coat-

ing process. The study discusses the risk assessment (criticality) carried out for CPPs and

CQAs followed by DOE model verification, ANOVA and main/interaction effects on CQAs.

Finally, the prediction part where the design space meets the requirements of CQAs was set.

Screening studies

Ibuprofen was selected as a model active pharmaceutical ingredient (API) owing to its low sol-

ubility (21 mg/L) and availability as a cohesive powder with small mean particle size [26].

MCC was chosen as model carrier particle as it is a widely-used excipient and is available in a

range of particle sizes. Dry particle coating process requires an initial de-agglomeration of the

cohesive powder’s guest particles into their primary particles via the application of external

forces (convection, diffusion and shear forces), producing a homogenous blend. To obtain FP

where the fine guest particles were attracted to the surface of the carrier, additional shear forces

need to be introduced into the blending system using the dry coating device. MCC particles

were dry coated with 10%w/w ibuprofen, followed by assessment of the blend for dissolution.

Fig 3 shows the dissolution profile of the dry coated powder, physical mixture and ibuprofen

powder. The results revealed a significant difference in the release profile (one way ANOVA,

p<0.0001) between the dry coated powder and the physical mixture particularly after 15 min-

utes. The physical mixture showed dissolution rate that was slower than that of the powder

alone (more than 90% within 30 minutes), whereas the dry coated blend took 2 hours to reach

85% release. The initial fast dissolution of particles from the dry coated blend was possibly due

to the existence of dispersed ibuprofen particles within the system that were not attached to

Fig 3. Comparison of dissolution profile of 10% w/w (▲) ibuprofen (IBU) with MCC physical mixture (PHY), dry

coated particles (DC) with different carrier particle size (PS) (□) 180–250 μm and (●) 250–355 μm, and (■)

ibuprofen (IBU) powder determined using USP Basket Method at 50 rpm measured in phosphate buffer pH 7.2 at

37˚C, (mean ±SD, n = 3).

https://doi.org/10.1371/journal.pone.0206651.g003
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the carrier surface (i.e., non-adsorbed particles) which result in immediate dissolution due to

the large surface area whereas the dry coated particles account for the sustained release pattern.

The slow release from the dry coated blend compared to physical mixture, could be attributed

to the strong adhesion of the ibuprofen particles to the insoluble carrier, whereas the release of

ibuprofen from the physical mixture was similar to those of interactive mixture which showed

higher dissolution rate than that of dry coated mixture [27–30].

Increasing the carrier particle size (250–355 μm) resulted in further reduction in the release

rate of ibuprofen. The efficiency of powder coating increased with the increase in the ratio

between the carrier and guest particle size [17]. The dissolution data showed a statistically sig-

nificant reduction in dissolution rate over the period of 2 hours compared to that of smaller car-

rier particle size (180–250 μm) (one-way ANOVA, p<0.0001). These results were consistent

with previously reported results that the particle size of the guest and carrier plays a vital role in

dry coating process. According to those studies, the attraction force between guest and carrier

increases with the increase in the ratio between the size of guest to carrier particles [30–32].

PSA results. The results of PSA as depicted in Table 3 showed that the VMD for ibupro-

fen was 25.4 ± 1.24 μm and median (X50) was 22.88 ± 1.07 μm. 90% of the ibuprofen particles

were below 47.78 ± 1.89 μm and hence the largest proportion of the powder mix was made of

fine powder.

As for MCC with particle size ranging between 180–250 μm obtained from sieving, laser

diffraction particle size analyser results produced an incomplete distribution curve as the pow-

der contained particles with size exceeding the 200 μm limit (limitations of the equipment).

However, this process was used to assess the fines within the powder and for MCC (180–

250 μm) less than 10% of the powder had particle size smaller than 41.75 ± 3.88 μm. The laser

diffraction method produces high air jet aided by compressed air that results in dispersion of

the sample and therefore, it is expected that the agglomerates originating from fine powder

were dispersed into primary particles and the percentage of fine is a true representation of

non-dry coated drug particles. Similar results were reported [33].

On further characterisation of the powder mixtures for both dry coated and physical mix,

the results of analyses demonstrated that dry coated mixtures with 5% w/w and 10% w/w ibu-

profen load had less fines compared to physical mix indicating the adherence of ibuprofen fine

powder onto the surface of MCC. The use of this test as a quick qualitative indication of the

formation of coated particles was further investigated in the optimisation study.

FTIR results. FTIR of ibuprofen powder showed absorption peaks that tally with the fre-

quencies of vibrations between the bonds within the molecule. The peak size in each spectrum

is a direct indication of the amount of the material available within the sample. Further, hydro-

gen bonding can be identified by studying the differences in the extent of absorbance [21]. The

FTIR spectra of ibuprofen (Fig 4) shows band at 2954.24 cm−1 which can be assigned to CH3

asymmetric stretching. Similarly, peaks with very high intensities were recorded at 1708.27

Table 3. Particle size distribution parameters for ibuprofen (IBU), MCC and the various mixtures (Dry coated (DC) and Physical (PHY)) using laser diffraction

technique, (mean ±SD, n = 3).

Ingredient / or % w/w IBU in MCC X10 (μm) X50 (μm) X90 (μm) VMD (μm)

MCC (180–250 μm) 41.75 ± 3.88 119.69 ± 4.52 160.28 ± 1.76 112.1 ± 4.38

IBU (38–53 μm) 6.54 ± 0.66 22.88 ± 1.07 47.78 ± 1.89 25.4 ± 1.24

5% IBU (DC) 68.53 ± 33.40 130.14 ± 1.03 164.38 ± 0.32 122.11 ± 2.98

5% IBU (PHY) 51.39 ± 32.05 130.05 ± 1.28 164.41 ± 0.39 120.97 ± 3.26

10% IBU (DC) 46.79 ± 5.68 130.97 ± 3.1 164.72 ± 2.12 122.71 ± 3.29

10% IBU (PHY) 29.38 ± 10.11 126.32 ± 1.29 163.09 ± 1.29 115.11 ± 4.47

https://doi.org/10.1371/journal.pone.0206651.t003
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cm−1 and 1230 cm−1 owing to C = O stretching and C-C stretching respectively. Another band

was observed at 779 cm−1 which was attributed to CH2 vibration. The above bands represent

the main bands providing the finger print for ibuprofen [34,35]. The FTIR spectra for MCC

(Fig 4) showed two strong bands at 3301 cm-1 and at 1644 cm-1 corresponding to stretching

and bending of the surface hydroxyl groups. An additional strong peak was shown at 2895 cm-

1 due to the asymmetric stretching vibration of C-H of the pyranoid ring [36,37].

The FTIR spectra of the dry coated particles and physical mixtures at various concentra-

tions of ibuprofen ranging from 2%w/w to 20%w/w are depicted in Fig 4. From the spectra, it

can be noted that there was no change to the main peaks associated with ibuprofen or MCC

with both dry coated and physical mixtures at all concentrations. The trough at wave number

1708 cm-1 of ibuprofen that is attributed to C = O stretching was present in all mixtures and

did not change its position. On the other hand, a reduction in the intensity in carbonyl band of

ibuprofen dry coated mixtures compared to physical mixtures was observed. It is possible that

the change in intensity was due to the formation of hydrogen bonding between the carbonyl

group of ibuprofen and the hydroxyl group of MCC (see Fig 4). Similar findings were reported

by [34] who investigated the use of FTIR to study the formation of hydrogen bonding between

carbonyl group of acrylic esters and OH groups of hexanols and cresols, where the intensity of

spectra representing carbonyl group (C = O) was reduced due to the formation of hydrogen

bonding between the hydroxyl (OH) and (C = O) groups.

Ibuprofen is available as a cohesive powder where every crystal unit is made of four ibupro-

fen molecules that are attached with hydrogen bonding (two) leaving two remaining carbox-

ylic–groups ready for further hydrogen bonding with adjacent neighbouring units [38]. As

MCC has multiple OH groups, it is possible that hydrogen bonding has formed between the H

of the OH group of MCC and the carbonyl O of ibuprofen (see diagram in Fig 4). FTIR spectra

revealed no shift in any of the peaks that correspond to ibuprofen or MCC. There was merging

Fig 4. FTIR spectra from top to bottom of ibuprofen (IBU) powder, MCC powder, (i) 2%w/w IBU in MCC coated

mixture, (ii) 2%w/w IBU in MCC before coating, (iii) 5%w/w IBU in MCC coated mixture, (iv) 5%w/w IBU in

MCC before coating, (v)10%w/w IBU in MCC coated mixture, (vi) 10%w/w IBU in MCC before coating and (vii)

20%w/w IBU in MCC coated mixture, (viii) 20%w/w IBU in MCC before coating highlighting the reduction in the

intensity of the peak at wave number 1708 cm-1 (labelled with red rectangle) of ibuprofen that is attributed to

C = O due to the formation of hydrogen bonding between the hydroxyl (OH) and (C = O) groups. Lower diagram

highlighting the hydrogen bonding formation between ibuprofen and MCC.

https://doi.org/10.1371/journal.pone.0206651.g004
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of the troughs related to IBU (2954- CH3 group) and the MCC (3301- OH group) as they

appear at almost the same wave number range. However, since the intensity of the peak is

related to quantity of the material, additional reference peak was considered (the trough at

1230 cm−1 owing to C-C stretching). The intensity of this trough (at 1230 cm-1) was divided by

the intensity of the trough at 1708.27 cm−1 and the ratio was obtained. Results showed that

there was a reduction in the ratio when dry coated particles were compared to the physical

mixture, thus confirming that the change was not related to the quantity of ibuprofen.

Pfeffer and colleagues presented changes in FTIR spectra as a mean to identify mechano-

chemical surface reaction between cellulose or corn starch and silica (used as guest). The

absorbance in the -OH region was reduced due to the interaction of cellulose with the OH

group in silica with loss of a water molecule [31].

Process optimisation

Based on the screening results, the main process variables to be optimised were processing

speed, gas pressure, processing time and batch size. The CQAs obtained from the screening

experiments were content uniformity, API release at 60 minutes, X10 following PSA and the

intensity of the FTIR spectrum at 1708 cm-1 of ibuprofen. Process optimisation included mul-

tiple steps namely; setting the specifications of the CQAs, followed by risk assessment and

DOE study.

CQAs. CQAs of dry coated particles were identified based on literature, compendia

requirements and initial screening experiments [6,8]. Table 4 lists the CQAs were identified

from the QTPP based on the impact of each parameter on the production of modified release

FP.

Risk assessment for CQAs and process variables. Risk assessment looked at the effect of

every input and process parameter on individual CQA which would enable the determination

of independent factors (process variables)) that were used in the DOE experimental design

(Table 5). Risk ranking was based on either compendia requirement, initial screening results

or literature. Process parameters with risk ranking ranging between medium and high were

taken as the factors in the DOE.

Design model creation. Once the process variables and responses (CQAs) were estab-

lished, the software developed the candidate model as the D-optimal with 26 experiments that

Table 4. CQAs of the final powder dry coated blend.

CQA Targeted outcome Comments

Content Uniformity Conforms with the BP and USP

<905> specification (95–105%),

RSD�5% [20,39].

Compendia requirement and deviations

from the targeted content is a direct

indication of product failure [20,39].

Dissolution Percentage release of API is < %

85 after 60 minutes.

Failure to reduce the dissolution rate of

API is a failure to produce modified

release FP and therefore an indication of

process failure (physical mixture is

obtained rather than dry coated FP).

Particle size Increase in the size of particles in

the X10 region of the cumulative

particle size analysis.

The reduction in particle size in X10 region

indicates the presence of fines and that the

anticipated FPs were not formed.

Intensity of FTIR spectrum at

1708 cm-1 of ibuprofen that

correspond to C = O stretching.

Reduction in the spectrum

intensity.

An indirect indication of the formation of

hydrogen bonding between ibuprofen fine

guest particles and coarse MCC carrier

particles between C = O group in

ibuprofen and OH groups in MCC [34].

https://doi.org/10.1371/journal.pone.0206651.t004
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were carried out according to the randomisation order set by the software, of which 4 experi-

ments represented replicates necessary to ensure model reproducibility. The compiled work-

sheet was then fitted into the D-optimal model. Once the model was fitted, model verification

and regressions equations to enable understanding of the effect of process variables on CQAs

were conducted. All insignificant model terms were removed from the model equation.

Model verification. Model verification was carried out using distance to model plot (Fig

5I–5III). A total of 22 included and 4 excluded runs: initially, run 4 (Fig 5I) was the farthest

from the model followed by run 11 (Fig 5II) then finally the last two run 5 and run 15 (Fig

5III) were removed.

Once the insignificant runs were excluded, the model fitness was investigated using the lack

of fit plot (Fig 5IV) that is denoted by three bars for each CQA. The first bar (A) represents the

standard deviation of the lack of fit that is related to the model error. The second bar (B) repre-

sents the pure error. The third bar (C) is the standard deviation of the pure error multiplied by

the critical F-value at the 95% confidence interval. To assess lack of fit, the standard deviation

Table 5. Risk assessment of the input and process parameters against the CQAs with relevant justification to produce FP with extended release profile.

Process

Variables

CQAs Justification

Content

Uniformity

Dissolution PSA

(X10)

Bond

formation

Speed High High High High High speed, air pressure and processing time have direct impact on the extent of powder

blending that would lead to an increase in force that aids mixing and formation of FP [40].

As the carrier is insoluble, dissolution rate would be hindered upon formation of FP, which

implies reduction in fines through the increase in X10 value and reduction of FTIR spectra

due to formation of hydrogen bonding [34,40].

Air Pressure Medium High High High

Processing

time

High High Medium Medium

Batch size Medium High High High The increase in batch size beyond the mixing capacity of the processing vessel might not

allow enough space for complete de-agglomeration collision and dry particle coating [40].

https://doi.org/10.1371/journal.pone.0206651.t005

Fig 5. (I,II &III) Distance to model (Y) plot of individual runs to identify insignificant runs (highlighted with

circles). Note that the distance to model changes upon removal of the furthest run. (IV) Lack of Fit plot showing

standard deviation (SD) due to lack of fit (A), SD of pure error (B) and SD of pure error� critical F-value (C) for the

four responses. If A� C, the model shows no lack of fit.

https://doi.org/10.1371/journal.pone.0206651.g005
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due to lack of fit (A) was compared with the standard deviation bar� F-value (C). As shown in

Fig 4, for all responses, the value of standard deviation due to lack of fit (A) was below the stan-

dard deviation�F-value (C) which confirms model validity.

The quadratic model was then fitted using the 12 terms for each response including; con-

stant, 4 single terms (speed, time, air pressure and batch size), one quadratic term (speed2) and

six interaction terms (speed�time, speed�air pressure, speed�batch size, time�air pressure,

time�batch size and air pressure�batch size).

The results of every response are depicted in Fig 6. R2 and Q2 values gives the best estimate

to the fitting of the model with R2 is the percentage of variation of the response and the degree

of how the data fits the model. Q2 represents the prediction ability of the model (how well the

model will predict new data). Overall the model fitted well all the four responses with high R2

value of 0.973 for dissolution, 0.944 for content uniformity, 0.851 of PSA and 0.859 for FTIR.

The predictive power varied among responses; for dissolution, almost 88.2% of the 97.3% fit-

ting, could be predicted. In an optimisation process, high Q2 of responses is expected as the

ultimate purpose is to optimise and predict the model behaviour. The model showed that the

predictive power of content uniformity was at the acceptable range (> 0.25). Out of 94.4% of

fitted results, 34.6% could be predicted while any noise responsible for reducing Q2 could be

attributed to the sampling process. As for particle size, the model fitted with 85.1% accuracy

(very good model) of which, 49.4% could be predicted. The more FP produced, the lower the

amount of fine and hence the larger the particle size at the X10 region. FTIR spectrum trans-

mittance intensity for ibuprofen at C = O link represents good fitting in the model with 47.5%

out of 85.9% of the results could be predicted. As for validity, all responses were valid as they

Fig 6. Summary plot of the four responses (CQAs) of fit showing model Fit (R2), predictability (Q2), model validity and reproducibility. Model

fitted with PLS.

https://doi.org/10.1371/journal.pone.0206651.g006
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exceeded the threshold of 0.25 (16). Validity values ranged from the lowest for 0.577 (FTIR),

0.591 (dissolution), 0.598 (PSA) to the highest value for content uniformity (0.837). Reproduc-

ibility was very high for all responses (> 0.5 threshold) indicating good control over experi-

ment and low pure error. The reproducibility ranged from 0.976 for dissolution, 0.889 for

content uniformity, 0.868 for PSD, to 0.883 for FTIR.

Analysis of variance (ANOVA) results. Table 6 summarises the results obtained from

ANOVA analysis, where in the current investigation, the p value was<0.05 for all CQAs sug-

gesting that the regression model is statistically significant for all responses. Secondly, the model

error due to lack of fit was insignificant as the p value was more than 0.05 for all the responses.

Regression model equations for CQAs. Once the significance of the CQAs within the

model was established; the regression coefficients for all the model terms were investigated to

identify the significant model terms per CQA using regression coefficients plot (Fig 7). The

size of the coefficient (the length of the bar) indicates the effect of the factor on the response

whereas direction of the coefficient represents the negative or positive impact on the response.

The coefficient will be considered significant when the confidence intervals do not cross zero.

The first four coefficients (the linear terms) disclose the main effect of the each CPPs. The ones

that follow, also called interaction terms, reveal interactions (if any) within the factors. The

size of the coefficient is the real effect while the confidence interval represents the noise [10].

For example, the most significant factors affecting dissolution were batch size followed by

Fig 7. Regression coefficient plot of dry particle coating process model terms for each CQA (response). (A) %

release in 60 minutes, (B) %RSD, (C) X10 value (μm) and (D) FTIR spectrum.

https://doi.org/10.1371/journal.pone.0206651.g007

Table 6. Summary of results obtained from ANOVA of the four responses to test model validity. P is probability

and R2 is the regression coefficient.

P R2

Dissolution

Regression <0.00001 0.97

Lack of Fit 0.195

Content Uniformity

Regression <0.00001 0.944

Lack of Fit 0.522

PSA

Regression 0.007 0.851

Lack of Fit 0.201

FTIR

Regression 0.006 0.859

Lack of Fit 0.184

https://doi.org/10.1371/journal.pone.0206651.t006
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speed then air pressure whereas speed�batch size was the most significant interaction term.

The quadratic term speed�speed had high significance.

The proposed regression model for every CQA was then built based on the significant cor-

relation coefficients for each independent factor (Fig 6) and the effects they had. For each

response, the quadratic model entailing 12 model terms was fitted, only those with significance

were included in the regression equations. The fitted equations for all responses are displayed

in (Eq 3–6).

Y1 ¼ 92:15 � 4:23 X1 � 1:92 X3 þ 10:83 X4 þ 6:92 X2

1
þ 7:78 X1X4 Eqð3Þ

Y2 ¼ 1:85þ 1:54 X2 � 1:08 X1X2 � 1:4 X1X3 þ 2:47 X1X4 þ 0:93 X2X3 � 1:18 X2X4

� 2:06 X3X4: Eqð4Þ

Y3 ¼ 19:86 � 2:58 X4 � 4:31 X1X4 Eqð5Þ

Y4 ¼ 13:59þ 1:81 X4 þ 1:82 X1X4 þ 2:0 X3X4 Eqð6Þ

From the equations, Y1 is the dissolution results (percentage released after 60 minutes), Y2

is the content uniformity measured as relative standard deviation (RSD), Y3 is the results from

PSA expressed as the particle size at the X10 region and Y4 is the FTIR results presented as

intensity of the spectra at 1708 cm-1. X1 is the speed (rpm), X2 is processing time (min), X3 is

air pressure (psi) and X4 is the batch size (g). The value of each coefficient indicates the impact;

the higher the value the more the effect. The sign of the coefficient provides information on

the effect being positive or negative. Positive sign with batch size for example of (10.83) has a

positive effect on dissolution rate. Whereas speed (-4.23) demonstrated the most significant

negative impact factor where increasing the speed resulted in a reduction of dissolution rate.

Effect of independent factors on CQAs. There is a close association between dissolution,

PSA and FTIR results. Theoretically successful FP should result in reduction of dissolution

rate, increase in the particle size at the X10 region of the powder mix and finally and reduction

in the intensity of FTIR spectra at 1708 cm-1 due to the formation of hydrogen bonding. As

such, the effect plots for this group will be discussed concurrently.

Effect on dissolution, PSA and FTIR. The most significant single model factor affecting

production of FP was batch size (Fig 8). The collective effect on the three responses (dissolu-

tion, PSA and FTIR) showed a negative impact on the formation of particles. The increase in

batch size resulted in an increase in dissolution, reduction of X10 fraction of particle size analy-

sis and an increase in the FTIR spectrum intensity (1708 cm-1).

The analysis (Eqs 3, 5 and 6) also showed that speed and batch size interaction term had an

antagonistic effect on dissolution (Fig 9A). When increasing the speed, the dissolution profile

was reduced. However, the influence of speed was greater when the batch size was set to its

lowest level. The increase in speed resulted in higher shear force and hence production of FP

with reduced dissolution rate. However, when the batch size exceeded 10 g, an antagonistic

effect on dissolution with a dissolution rate reaching 100% within 60 minutes resembling the

physical mix obtained at 300 rpm was noted. The interaction predictive model showed that the

effect of speed was further enhanced when the rotational speed exceeded 800 rpm.

The interaction between speed and batch size was the most significant on PSA as evident

from the regression model (Eq 5) with coefficient factor of -4.31. From Fig 9B, a small batch

size with high speed resulted in larger particles. The fine guest particles got strongly attracted

to the coarse carrier particles as evidenced by an increase in the X10 particle size. This was

attributed to the formation of not only van der Waals forces (responsible for adhesion of fine
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particles to large carrier particles) [33,40] but also hydrogen bonding between hydrogen of the

MCC and the C = O of ibuprofen which was evident from the reduction in the intensity of the

FTIR spectra at 1708 cm-1. However, with the increase in batch size, the effect of speed

declined resulting in an increase in the fines.

Likewise, speed and batch size as interaction model terms had an effect on FTIR (Fig 9C)

that even clearly demonstrated from Fig 10 showing the interaction region on the RSM plot.

At low speed, FTIR spectrum intensity was at its maximum due to absence of any hydrogen

bonding. At low speed, the batch size had no influence on FTIR and the device was possibly

working as a powder blender. However, with the increase in speed and reduction in batch size,

there was a significant reduction in the intensity of the FTIR spectrum suggesting the forma-

tion of hydrogen bonds with the resultant particles.

Interestingly, the effect of the quadratic term (speed2) on dissolution rate showed a positive

value (Eq 3). The positive sign indicates a convex curve [41]. It was therefore assumed from

the model that initially, with the increase of speed, the force produced in the system resulted in

the formation of FP which negatively impacted dissolution. However, beyond a limit, the

increase in speed may result in rapid collision of particles above the limit of attract ion which

could result in detachment of the guest particles from the surface of the host particles resulting

in attrition and could possibly enhance the dissolution rate.

Effect on content uniformity. Low RSD in content uniformity studies is an indication of

blend homogeneity once the content is within the established range of 95–105%. Based on the

regression equation (Eq 4) RSD was affected by many interaction terms however, speed and

batch size had the highest negative impact (regression coefficient +2.47) with a positive sign

Fig 8. Main effect plot of batch size on the dissolution, PSA and FTIR spectrum when other factors maintained at

their middle values. Note the D-optimal design has no centre points and hence were not displayed.

https://doi.org/10.1371/journal.pone.0206651.g008

Fig 9. Interaction effect plot of speed with increasing batch size on (A) dissolution rate (B) PSA and (C) FTIR

spectrum while the other factors were maintained at their middle values.

https://doi.org/10.1371/journal.pone.0206651.g009
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indicating an increase in RSD. At low to moderate speed the increase in batch size has limited

effect on content uniformity of the mixture. Contrary to that, at high speed the smaller the

batch size the lower the RSD and hence the better the homogeneity. This could be attributed to

the effect of shear force resulting in de-agglomeration and proper dispersion of the fine powder

within the mixture. The RSM plot (Fig 11A) shows the extent of interaction between speed and

batch size and enables the prediction of the best working space, where homogenous mixture

with RSD<2% was obtained with speeds exceeding 800 rpm while maintaining the batch size

below 10 g. As the target of this experiment was to identify the optimal process parameters to

produce FP while maintaining homogeneity, the optimal working parameters selected for FP

production will result in a homogenous mixture with RSD far below the proposed 5%. The

interaction between speed and processing time (Fig 11B) showed that the RSD was reduced

with the increase in speed and reduction in time. Zheng and colleagues [42] reported that mix-

ing for extended duration may undesirably affect the content uniformity of the mixture. How-

ever, as the effect of processing time was decreased with the increase in speed, above 500 rpm

the RSD was far below 1%. At a speed of 1500 rpm set for the maximum processing time of 60

minutes, the resultant RSD was 1.4% whereas reduction of processing time to 15 minutes pro-

duced RSD less than 0.5%.

From Eq 4, the second most significant interaction term affecting content uniformity was

batch size and air pressure. Low RSD was best obtained when working at the low limits of both

batch size and air pressure, nevertheless, increasing air flow produced a lower RSD with batch

size set at its maximum limit. In all cases the change in RSD did not exceed 2%. Since FP were

best obtained at lower batch size with moderate to high air pressure, such working conditions

could be identified through Fig 12.

Speed of mixing enhanced homogeneity when mixing occurred at lower air pressure. The

antagonistic effect of air flow was observed when the speed was at its low limit (Fig 13A). This

Fig 10. Response Surface Model (RSM) Plot of the effect of speed and batch size on the FTIR of the powder

mixture while maintaining air flow and time at their middle values (mid-region highlighted the interaction effect

of both factors).

https://doi.org/10.1371/journal.pone.0206651.g010
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could be attributed to induction of turbulence in the system by air flow that might cause fine

particles to adhere to the surface of the container particularly if the force produced (diffusion

and convection currents) was not enough to de-agglomerate the cohesive ibuprofen particles

and adhere it over the carrier particles [42].

Processing time with increasing batch size was an interaction type of relationship; at low

processing time the mixture was more homogenous with a lower RSD when the batch size was

set within the small range. Interestingly this occurred when the speed and air flow were set at

their average. This could be attributed to the formation of FP. It was expected that the blend

of FP aids homogeneity and as discussed earlier the smaller the batch size the higher the possi-

bility of producing a hybrid mixture. However, it is worth mentioning for these two factors

that the highest RSD obtained did not exceed 4% (Fig 13B).

Setting the optimal zones. Based on the results obtained from RSM plots throughout the

study, the optimal operable zones within the CPPs that reveal the space that could result in

optimal CQAs (dissolution rate of<85% and blend with RSD<5%), are illustrated in Fig 14.

From the graph, the area (A) represents the design space with CPPs (speed and processing

time) that could result in desired responses for both dissolution rate and content uniformity.

Fig 11. Response Surface Model (RSM) Plot of the (A) effect of speed and Batch size on the content uniformity of

ibuprofen in the powder mixture while maintaining processing time and air flow at their middle values, (B) the effect

of speed and processing time on the content uniformity of ibuprofen in the powder mixture while maintaining air flow

and batch size at their middle values.

https://doi.org/10.1371/journal.pone.0206651.g011

Fig 12. Interaction effect plot of batch size with increasing air flow on content uniformity while other factors were

maintained at their middles values.

https://doi.org/10.1371/journal.pone.0206651.g012
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The zones marked with (B) and (C) represent areas the CPPs (speed and processing time)

meet the criteria for content uniformity alone, whereas, the white zone represents the CPPs

when none of the criteria is met. The maximum operable space was obtained when the air

pressure was set at its maximum range of 40 psi, the batch size was set at its lowest range of 6 g

and the speed can be varied from 850 rpm to 1500 rpm with processing time ranging from 15

to 60 minutes.

Conclusion

The application of QbD principles accompanied by the multifactorial design of experimental

analysis enabled the proper understanding of process parameters, particularly those with direct

impact on targeted outcomes or CQAs. The initial screening studies identified speed, air pres-

sure, processing time and batch size as key process parameters; while content uniformity, dis-

solution rate, particle size and FTIR C = O intensity were identified as CQAs. These were

employed for the optimisation study. Based on created models design space bordered by high

pressure, low batch size, and a range of speeds and processing times was identified, and work-

ing within this space produced dry coated particles with targeted functionalities. In conclusion,

the systematic application of QbD principles served two broad aims in this work. Firstly, to

identify the influence of variations and interactions of the chosen factor on targeted quality

attributes; and secondly to optimise the system to determine the factor combinations to yield

the desired FP.

Fig 13. Interaction effect plot of (A) air flow with increasing speed (B) batch size with increasing processing time on

content uniformity while other factors were maintained at their middle values.

https://doi.org/10.1371/journal.pone.0206651.g013

Fig 14. Sweet Spot for optimal ranges of the CPPs (speed and time) for the desired profile of CQAs (dissolution

and content uniformity) while air flow and batch size were set at 40psi and 6g respectively.

https://doi.org/10.1371/journal.pone.0206651.g014
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