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Thesis Summary  

Current methods of optimal power flow were not designed to handle the increasing level of 

volatility in the electricity networks, this thesis suggests that a message passing-based approach 

could be useful for managing power distribution in electricity networks. This thesis shows the 

adaptability of message passing algorithms and demonstrates and validates its capabilities in 

addressing scenarios with inherent fluctuations, in minimising load shedding and generation 

costs, and in limiting voltages. Results are promising but more work is needed for this to be 

practical to real networks. 
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Abstract 

 

To reduce their environmental impact and make the most of freely available resource, future 

electricity grids will include a more significant penetration of renewable generators, such as 

wind and solar. This will introduce challenges to the grid’s method of economic dispatch due 

to the uncertain and intermittent nature of such renewable generators. The traditional method 

of power distribution was not originally designed to consider such generation volatility and 

with the additional pressure of fluctuations in demand, alternative techniques may be necessary. 

Based on principled statistical physics methodologies, message passing is able to efficiently 

and inherently consider fluctuations and volatility within electricity grids. Message passing 

iteratively sends local conditional probabilities as messages and provides a good global 

approximate solution for a given objective function while maintaining a modest computational 

complexity which increases approximately linearly with the system size. This distributed 

optimisation method complements current techniques and can solve large-scale non-convex 

resource allocation problems. This thesis suggests and analyses message passing as an 

algorithm for power distribution and considers uncertainties drawn from Gaussian probability 

distributions. We see the effect of increasing uncertainty on the power grid and examine our 

results using a program designed for an academic-level understanding of current power grid 

distribution methods on synthetic benchmark IEEE networks. In addition to this we demonstrate 

how message passing can accommodate different objective functions such as distribution, 

generation and environmental costs, as well as load shedding in the case of insufficient resource. 

The method is adapted to adjust voltages and introduce resistance for DC Optimal Power Flow 

(DCOPF) and constraints that limit the voltage between fixed values are considered. We discuss 

our findings on the location and connectivity of volatile nodes, and examine the effects of 

weighting nodes according to importance or production costs. The quality of the obtained 

solutions and computational cost of message passing is compared to a leading optimisation 

technique. Results highlight the importance of correct weighting of objective functions; we see 

that when this is done correctly, priority consumers can be protected and generators can be 

turned on according to their cost and capacity. Reliability of a network with uncertainty can be 

managed through increasing reserve at volatile nodes and our method of quenched averaging 

with predetermined confidence levels ensures a higher reliability in the form of higher reserves 

at uncertain nodes as a form of protection. The algorithm can effectively consider weighing 

variables on nodes as well as on edges and can thus accommodate voltage variables and 

resistance, allowing for a closer imitation of DCOPF characteristics. The thesis shows how 

effective the message passing algorithm can be and demonstrates a fraction of its capabilities. 

However, the approach needs more work before it can be fully comparable with existing 

approaches. 
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1 Introduction  

1.1 Background  

 

The UK uses 311 TWh of electricity a year which is approximately 4,813 kWh per person [1]. 

This electricity is generated in a variety of power stations and sent to houses, businesses and 

industries via a network of power lines. The power generated throughout the UK in 2015 came 

from three main sources; approximately 52% from fossil fuels, 21% from nuclear power and 

25% from renewable sources [2] (Figure 1.1).  

 

 

Figure 1.1 Composition of fuels used for electricity in the UK in 2015 [2, 3]. 

 

Fossil fuels dominate the electrical grid supply with a composition of coal (22%), oil (<1%) 

and gas (30%), these fuels are the fossilised remains of prehistoric plants and animals which 

have taken millions of years to form [4]. As they take so long to produce, the rate at which they 

are being harvested is unsustainable and they are expected to become depleted beyond an 

economic level of usage within a couple of hundred years. Estimates vary, however recent 

calculations suggest that this may happen as soon as 2040, 2042 and 21121, for oil, gas and 

coal, respectively, if usage continues at its current rate [5]. As well as their unsustainability, 

non-renewable fossil fuels produce undesirable by-products such as CO2, nitrogen oxides, 

sulphur oxides, mercury and solid ash, generated by being burnt in a furnace for heat energy. 

CO2 enters the Earth's atmosphere and disturbs the chemical balance which is essential for 

                                                 

1
 Estimates may be revised for gas as a relatively new method of retrieving gas from air pockets within the Earth, 

called fracking, makes estimating stores difficult. Gas is nonetheless still considered unsustainable. 
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reflecting most of the Sun's heat; this increases the Earth's temperature, leading to agricultural 

changes and rising sea levels and is just one of many concerns related to the by-products of 

burning fossil fuels. 

One alternative to fossil fuels currently being utilised is nuclear power. Large amounts of 

energy are produced during nuclear fission through the process of splitting uranium atoms. 

Uranium supplies are expected to last for around 230 years with current technology and 

identified uranium sources [6]. The process produces unwanted by-products such as uranium, 

plutonium and barium which are highly radioactive, making them dangerous and expensive to 

dispose of. The expensive disposal process consists of being sealed and buried for thousands of 

years, in a place with minimal disruption to life, protected from natural disasters and human 

disruption. The past 40 years have seen several high-profile cases including Chernobyl 

(Ukraine) in 1986 [7] and Fukushima (Japan) in 2011 [8] which highlight the risks and lower 

public confidence (only 6% of Japan’s population in 2011 thought that nuclear power was safe 

and new plants should be built, down from 21% in 2005 [9]). 

Figure 1.2 shows some drawbacks of various sources of electricity generation, highlighting how 

costs, issues and dangers appear to be more prominent within non-renewable sources. Despite 

the high associated costs and risks, fossil fuels and nuclear sources have the advantage that the 

rate at which they produce energy is controllable. With good demand forecasts, generation of 

energy can be accurately forecasted and controlled to meet expected demand. This is beneficial 

to economies like the UK where there are changes in demand, dependent upon conditions such 

as time of day, season and cultural events.  

 

 

Figure 1.2 The associated costs of various power sources: Years of life lost per TWh in blue [10]. 

Total cost; production, construction and decommissioning in orange [11] (where wind represents 

onshore wind only and [12] suggests that solar costs more than halved within two years since these 

figures were taken), amount of CO2 emissions per kWh in yellow [13] and water usage in green [11].  
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As an alternative to non-renewable energy sources, there have been recent ventures into the use 

of renewable energy sources. The UK government plan to invest £40 billion into renewable 

electricity generation by 2020 [14]. Increased investment is due to the perception that renewable 

energies are better for the environment, the technologies for harnessing them reaching a level 

where they can be used in power grids and the unsustainable nature of fossil fuels. Such sources 

produce significantly smaller amounts of harmful waste and as the name implies, are self-

sustainable and temporally unlimited. Some sources of renewable energy are: 

 Biofuel is from the anaerobic digestion of matter [15] which is mostly used as fuel for 

transportation. Studies have shown that burning certain crops for biofuel as an 

alternative to fossil fuels within electricity generation can actually contribute more to 

greenhouse emissions than standard fossil fuels due to high levels of N20 emissions [16]. 

Rapeseed and maize are among these high N20 emission fuels, but other fuels such as 

sugar cane, palm oil, poplar and willow trees produce lower levels and so remain a better 

alternative. 

 Geothermal power is effective, reliable and sustainable, only emitting a small fraction 

of harmful emissions compared to fossil fuels. It works by heating water using the high 

temperatures inside the earth; the UK is not ideal for this as it does not lie on any actively 

volcanic land, but there are potential sites for geothermal technology to be harnessed. 

Discussions throughout the last 5 years with Iceland highlight the possibility of Iceland's 

volcanoes supplying geothermal electricity to the UK which could meet up to a third of 

the UK's demand [17, 18], however this could cost over £500 million and no decisions 

have been made [19]. 

 Hydroelectric power in the UK can currently generate around 5,885 GWh a year [20], 

almost 2% of the UK's consumer consumption. Power is generated from the 

gravitational force of running water, it is reliable and can store energy in a clean, 

environmentally friendly way2, however estimates suggest its maximum potential could 

only meet up to 5% of the UK's consumption     . 

 Solar PV power converts sunlight into electricity using photovoltaics. Although the 

weather in the UK is not ideal for this due to regular, high levels of cloud coverage, 

                                                 

2 Pumped storage uses low cost off-peak power to pump water to a higher elevation and stores it as gravitational 

potential energy. At peak times the water can be released through turbines. 
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solar power had a capacity of producing 1.4 TWh (0.4%) in 2013, and a technical 

maximum potential of 18 TWh (5.8%) by 2020 [12]3.  

 Wind turbines have the highest renewable potential in the UK, they convert kinetic wind 

energy to electrical energy. The UK currently has 5,809 onshore turbines and 1,465 

offshore, totalling an annual energy produced in 2015 of 39 TWh (12.5% of total UK 

consumption) [21]. Plans for more wind farms are ongoing throughout the country with 

a huge potential. 

 Wave, tidal and ocean technologies are also being developed. They harness the 

movement, pressure and power of the sea using technologies such as pistons and 

turbines. Considering additional issues such as the hostility of salt water, marine life, 

additional forces from the waves and costs these technologies have until now had a 

much smaller audience and impact. However, with such huge potential in the ocean, 

many believe these sources will be one of our biggest electricity contributors in future 

years with [22] suggesting it could be used to supply up to 75% of the UK’s electricity 

demand. 

 

A major drawback of renewable energies with significant potentials like wind and solar4 is that 

power sources cannot be controlled or accounted for at any one time (for example the wind 

cannot be turned on or up to a higher level to suit customer demand at any given time) and the 

predictions are not always completely accurate. Therefore, even with demand and renewable 

source forecasts, control of energy production is limited in comparison to those of a non-

renewable nature5. Coupled with limited technology for storing large amounts of produced 

energy this means that renewable energy's capacity for supplying a large economy is currently 

restricted. 

Despite this, the benefits of having clean power sources as a replacement for ageing non-

renewable sources and technologies have been recognised by many organisations and 

governments, and corresponding legislations have been set. According to the Department of 

Energy and Climate Change the UK has a target of 15% of power in the electrical grid being 

                                                 

3 Future technology could see a 24-hour solar panel available [188] which would reduce volatility and temporal 

fluctuations. But as these technologies are currently unavailable, for the purpose of this thesis, they will be ignored. 

4 Throughout this thesis “renewable energies” will imply only the fluctuating wind and solar sources only, 

according to their readily available technologies (not controllable hydro, geothermal, nor 24 hour solar panels). 

5 It is expected that tidal and wave sources will not be fully controllable, but may be more predictable and therefore 

more reliable. 
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renewable by 2020 and is already reaching 8.3% (using the methodology of the directive, 

provisional calculations) of energy coming from renewable sources in 2015 (Figure 1.3) [3].      

Targets also hope to reduce greenhouse emissions by 80% by 2050 [23].   

 

 

Figure 1.3 The UK's progress towards its European Directive target of 15% of power in the electrical 

grid being renewable by 2020 [24]. © Copyright under the Open Government Licence. 

 

The growing reliance on renewable sources is aided by the increased use of microgenerators, 

which provide small scale generation of electricity to individuals, small businesses and 

communities; for example, a wind turbine on the top of a block of flats or a solar panel on the 

roof of a house. The UK government supports microgeneration for instance through an £86 

million grant for microgeneration technologies [25], and although the intention that all homes 

built from 2016 would be zero carbon [26] was since scrapped, regulations and incentives 

ensure that homes will continue to meet high standards and will be “nearly zero energy 

buildings” by 2021 [27]. One example of this is the “Low Carbon Buildings Programme” which 

allows the public sector and non-for-profit organisations to request 50% of their 

microgeneration installation costs and offers grants to householders for domestic 

microgenerators [28]. Microgenerators at consumer nodes may increase the correlation between 

connecting nodes and this needs considering when power distribution is being calculated. For 

simplicity within this research, it is assumed that volatility from microgeneration is already 

absorbed within the expected capacity, production or surplus, of consumers (consumer average 

capacities and variance will include both their expected consumption and microgeneration) and 

correlations are ignored.  
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For consumers to receive the power generated from power sources, current must flow from 

generation plants through a network of power lines, substations and transmission stations; this 

is the electricity grid. Within an electricity grid there are two main types of networks; 

transmission and distribution. Transmission networks are more complex structures with loops, 

but are mostly sparsely connected (𝑁 ≫ 𝑐, where 𝑁 is the number of vertices in a network and 

𝑐 is the connectivity of each vertex in the network); they generally run between substations to 

generation stations and to landing stations (a substation which leads to areas of consumption), 

and are characterised by high voltage lines to reduce power loss during transmission. 

Distribution networks are the sections of the network between the landing stations and the 

consumers; at this point the networks are typically tree-like structures and are characterised by 

lower-voltage lines (Figure 1.4). This thesis will focus on the transmission stage and any talk 

of consumer nodes will imply the landing station leading to the distribution stage. This research 

has the capability to work successfully within the distribution stage, but it is not the focus of 

this study. One should point out that due to the complexity of the electricity grid, the distinction 

between the different stages and their characteristics is not clear-cut. 

 

 

Figure 1.4 Sketch of the structural difference between transmission and distribution stages in the 

electricity grid. 
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1.2 DC and AC Circuit Theory 

 

To understand complex AC power flow used within an electrical power grid, we must first 

understand the fundamentals of electrical circuits. Starting with atoms, which are made up of 

protons which have a positive electrical charge, electrons which have a negative electrical 

charge, and neurons which have no electrical charge. An atom is arranged with the neurons and 

protons at the centre and the electrons in an outer shell, attracted to the positive electrical charge 

of the protons in the nucleus. 

 

1.2.1 DC Power Flow 

When the electrons are separated from the nucleus, there is a pull for them to be reunited and 

this is called the potential difference. Within a circuit, loose electrons are attracted towards the 

protons and this flow is the electrical current. 

Electric current (𝐼) is the flow of electrical charge. The continuous flow of electrons, being 

pushed by a voltage source. Voltage (𝑉) is the potential energy of an electrical supply. The 

difference between two voltages is the potential difference. Potential difference, essentially, 

represents the work required to move electrons away from the attractive force of the nucleus. 

Voltage can exist without current, but current cannot exist without voltage. The material that 

the electrical current moves through can be highly conductive (such as copper) or highly 

insulated (such as plastic), each has some level of resistance which restricts the current passing 

through it, this is Resistance (𝑅). Any power lost through resistance appears as heat or light. 

Alternately, the resistance can be expressed as conductance 𝐺 =
1

𝑅
, which is the ability of the 

material to conduct electricity. Voltage, resistance and current are closely related through 

Ohm’s Law: 

 

 𝑉 = 𝐼𝑅. (1) 

 

In DC circuits, the voltage source is constant and the voltage source (e.g. battery) has a positive 

and negative side, which indicates the singular direction of current flow. 

There are additional laws within electrical power flow that restrict a network. Two of which are 

Kirchhoff Laws; the first required the sum of all currents entering and leaving a node must be 

equal to zero: 
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 ∑𝐼𝑖 = 0

𝑐

𝑖=1

, (2) 

 

where 𝑐 is the number of currents flowing through a node, and is commonly known as the 

Conservation of Charge, and the second is that the total voltage around a circuit is equal to the 

sum of all potential differences (or voltage drops) in the circuit, this is called the Conservation 

of Energy: 

 

 ∑𝑉𝑖

𝑁

𝑖=1

= 0, (3) 

 

where 𝑁 is the number of nodes in the circuit.  

Electric power (P) is the rate that energy is consumed or generated within a circuit. An energy 

source produces power, and a load absorbs it. It can be expressed through the electrical power 

formula: 

 

 𝑃 = 𝑉𝐼. (4) 

 

Power over time gives electrical energy (𝔼), which is the capacity to do work and is measured 

in watts per hour, or in terms of power grids kWh (kilowatts per hour), MWh (megawatts per 

hour) and TWh (terawatts per hour). Turning on a 100-watt lightbulb for 1 hour will cost 

0.1kWh total consumption: 

 

 𝔼 = 𝑡𝑃. (5) 

 

 

1.2.2 AC Power Flow 

In AC power flow, voltage is generated by a coil rotating around a magnetic field, this results 

in the voltage source varying periodically with time and as they are proportional, current also 

varies periodically with time.  

The AC voltage, 𝑣, over time can be expressed as a sine wave, as seen in Figure 1.5, or any 

periodic function; for derivation purposes, we will mention the combination of sin and cos 

(rewritten as an exponential) expressed as:  

 

 𝑣𝑖 = |𝑉𝑖| sin(𝜔𝑡 + 𝜃𝑖),        𝑜𝑟        𝑣𝑖 = |𝑉𝑖|𝑒
𝒊(𝜔𝑡+𝜃i), (6) 
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where 𝑣𝑖 is the AC voltage, |𝑉𝑖| is the voltage magnitude, 𝜔 is the angular frequency (𝜔 = 2𝜋𝑓, 

where 𝑓 is the frequency, in a power grid this is around 50Hz), 𝑡 is time, 𝜃𝑖 is the phase 

difference (or phase angle) between the voltage and the AC current, and bold 𝒊 is the imaginary 

number √−1. In Figure 1.5 the phase difference (or phase angle) is 0, and the only element 

preventing current flow is resistance, therefore AC current follows a similar waveform 𝑖𝑖 =

|𝐼𝑖|sin (𝜔𝑡 + 𝜃𝑖), or 𝑖𝑖 =
𝑣𝑖

𝑍𝑖𝑗
=

|𝑉𝑖|

𝑍𝑖𝑗
sin(𝜔𝑡 + 𝜃𝑖), where the ratio of voltage to current is called 

the impedance (a complex version of resistance), 𝑍𝑖𝑗 = 𝑅𝑖𝑗 + 𝒊𝑋𝑖𝑗. In AC circuits, complex or 

apparent power is 𝑆𝑗 = 𝑃𝑗 + 𝑖𝑄𝑗 = 𝑣𝑗𝑖𝑗
∗, where 𝑖∗ is the complex conjugate of the AC current 𝑖, 

so the two sin curves are multiplied as shown in Figure 1.6, and all power is real.  

 

 

Figure 1.5 The waveforms of AC voltage and current with a potential difference of 𝜃 = 0 [29]. 

 

 

Figure 1.6 The apparent power consumed according to the in-phase AC voltage and current [29], 𝑥-

axis shows voltage, current or power (according to each curve). 

 

In other cases, the current may be lagging or ahead of voltage as shown in Figure 1.7 and Figure 

1.8. In this case, there is a phase difference, 𝜃, which can be found by plotting the path of 𝑣 and 

𝑖 as a phasor diagram (shown at the left of Figure 1.7), and finding the angle between values. 

The apparent power can be calculated as shown in Figure 1.9. Resistance is not affected by 
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frequency and so AC impedance is equal to DC resistance and the average power loss from AC 

is equivalent to that of DC.  

 

 

Figure 1.7 The AC voltage with AC current lagging behind by phase angle 𝜃 [29]. 

 

 

Figure 1.8 The AC voltage with AC current ahead by phase angle 𝜃 [29]. 

 

 

Figure 1.9 The apparent power calculated for a voltage and current at phase angle 90° [29], 𝑥-axis 

shows voltage, current or power (according to each curve). 

 

Some of the reasons why the UK uses AC power flow instead of DC are; the cheaper 

manufacturing cost of AC generators, and the ability step up or down voltages using 

transformers (two or more coils of wire where an electromagnetic field through one induces a 

higher/lower voltage in the other) to reduce power loss when electrical power is transmitted 

over long distances (because voltages are oppositely proportional to resistance). 
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1.3 Control of Electrical Power Flow  

 

Electrical power flow is the distribution of electricity, within an electrical power grid, from 

generators to consumers. The electricity industry in the UK works by a combination of four 

main elements; Generators, Suppliers, the National Transmission Network and 

Distributors (These are the industries involved, and will be denoted in bold, not to be confused 

with either generators or distribution mentioned throughout the thesis). The generators, such 

as Alstom Grid, are the industries which own and operate the coal, oil, gas, nuclear, hydro and 

wind power stations. The suppliers, such as British Gas, are those who supply and sell 

electricity to consumers. The distributors, such as Northern Power grid and Western Power 

Distribution are those which own and operate the distribution network towers and power lines. 

And the Transmission Network, such as National Grid, is the industry which maintains the 

flow of generated electricity on a minute to minute basis (National Grid controls the 

transmission network for England and Wales, it also has interconnects with France, Northern 

Ireland and the Netherlands so that spare power can be traded between them). Each of the other 

industries pays for the right to connect to the transmission network [30].  

 

The work in this thesis focuses mostly on issues relevant to the Transmission Network stage 

and how companies such as National Grid can maintain the correct flow of electricity “as safely, 

efficiently and smoothly as possible at all times”, with 99.99999% reliability [31].  

 

At the transmission stage of distribution, the power needs to be transferred through a network 

of power lines to the landing stations (and ultimately to the consumers). This is done by the 

continuous use of four methods of control: 

 Primary (Frequency Response) - This is the automatic millisecond to millisecond 

balance between system demand and generation, controlled by change in frequency 

[32]. If generation is greater than demand the frequency rises, or if demand exceeds 

generation, the frequency falls (Figure 1.10). The change in frequency prompts an 

automated secondary response. 
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Figure 1.10 Real frequency response data at 15-second intervals over one hour [32]. 

 Secondary (Automatic Generation Control) - Restores frequency to its scheduled value 

of 50Hz by providing additional active power or reducing it to ensure the frequency 

stays within ±1% of nominal 50 Hz system frequency limits. This is done by adjusting 

voltages and happens within 30 seconds of the frequency change. Sufficient power or 

demand needs to be readily available for all credible adjustments. 

 Tertiary (Economic Dispatch) - This is the manual stage of optimally distributing power 

in order to satisfy the demand and it uses predictions of the consumers expected demand 

and producers expected generation. This happens every 15-60 minutes and involves the 

turning up and down of electricity to be produced by the power stations to maintain 

appropriate voltage and frequency levels over the following time-period [33].  

 Tertiary (Unit Commitment)- The decision of turning on and off power stations 

according to expected power consumption, with a time-period between one hour and a 

number of days.  

 Tertiary (Planning)- Major decisions of construction and decommissioning of power 

stations according to demand forecasts for the upcoming years and decades.  

 

This research will consider the economic dispatch stage. Computers are used for the non-trivial 

task of calculating the most efficient distribution route through the electrical network which 

minimises given objective functions according to the limits of the grid and considering changes 

over the given time-period. The terms ‘economic dispatch’, ‘power flow’ and ‘optimal power 

flow’ all slightly vary in meaning throughout literature. In this thesis, ‘economic dispatch’ will 

refer to the distribution stage where decisions are made about how much power each generator 

should be producing to satisfy the primary and secondary control stages for the following time-

period. ‘Optimal power flow’ will describe the current method of power distribution at the 

economic dispatch stage and ‘power flow’ will mean the flow of power within a network.  
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1.4 Optimal Power Flow 

 

The current method of optimal power flow (OPF) was first suggested in 1962 by Carpentier 

[34] and the method has changed little since then [35]. OPF includes the process of power flow 

to satisfy Kirchhoff’s law and it also optimises the objective functions to find a more optimal 

solution while considering the constraints. The method suggested by Carpentier works by 

alternately repeating two steps until the overall optimum is found (Figure 1.11). The first step 

uses the Newton Raphson method (a root-finding algorithm which uses the first few terms of a 

functions Taylor series to find an accurate solution for the root) or an iterative method like the 

fast-decoupled technique to estimate initial values for electricity distribution to achieve zero 

excess, enforcing Kirchhoff's law, according to fixed power inputs. The second finds a better 

solution of power inputs to optimise the objective function while ensuring that all the constraints 

are met, using techniques such as gradient-descent or the interior point method.  For the last 55 

years, this has been the basis on which economic dispatch of electricity has been calculated. 

The advantages are that an optimal solution can be found quickly, but as it is a deterministic 

method that does not inherently consider probabilities, although it can consider small scale 

fluctuations from consumers, it was not designed to handle more substantial fluctuations such 

as those from renewable sources. 

 

 

Figure 1.11 The stages of an OPF algorithm. 
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The objective functions are to minimise: 

 Power loss – When current flows through a power line, energy is lost through heat. This 

follows the equation, 𝑃loss = 𝐼
2𝑅, where 𝑃loss is active power loss, 𝐼 is current and 𝑅 is 

resistance.  

 Load shedding – In the event where demand is higher than generation, the electricity 

provided to some consumers must be dropped or cut to balance demand against 

generation. Load shedding aims to minimise the number of consumers effected in this 

situation.  

 Generation costs – The cost of power generation for different power plants varies largely 

for many reasons; cost of fuel, process of conversion to electricity, transportation of 

fuel, maintenance, efficiency etc. In addition to this the life cycle costs of the plant must 

be considered; building costs and expected decommissioning costs. This results in each 

power station having a different levelized cost of energy; one of the main objectives is 

to minimise these generation costs while meeting consumer demand.  

 Bus voltage deviation – It is desirable to keep all voltages as close to 1 per unit as 

possible while distributing load; this can be added as an objective or soft constraint.  

 Emissions of generation un its – Each power station emits different levels of a variety 

of pollutants and OPF aims to minimise the most harmful ones, such as CO2, NO2 and 

toxic waste. 

 Number of control actions – reducing the number of manual controls will reduce the 

need for human intervention and consequently the risk of human error. It also may 

increase computational convergence speed of the control process. 

 

The constraints include: 

 Conservation of charge (Kirchhoff's law) – This states that the sum of all currents 

entering and leaving each node must be equal to zero. 

 Bandwidth – A power line can only withstand a certain amount of current along it; if 

exceeded the line can overheat and warp, which could result in the line tripping. 

 Minimum and maximum active and reactive power generation – Power generators 

cannot generate infinite amounts of power; each is limited to its own maximum. 

Similarly, when a power station is on, there is a minimum amount of power it can 

economically produce. 
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 Voltage, frequency and phase constraints – Electricity networks operate within strict 

voltage, frequency and phase angle constraints that cannot be violated due to their 

impact on the remainder of the network and its stability. 

 

And the control variables are: 

 Reactor status (discrete) 

 Switch capacitors (discrete) 

 Phase shifters 

 Transformer tap settings  

 Real power outputs 

 Voltage magnitudes and phase angles 

 Frequencies 

 

There are also parameters to consider, such as resistance, reactance and impedance values, and 

the topology of the network. 

 

The goal is to find the optimal setting to optimise the objective functions, satisfy the power 

flow equations, maintain a secure system, adhere to system operating limits, be self-healing and 

to use ACOPF (optimal power flow for an AC network) for unit commitments within a short 

period. A method which can consider all these objectives and constraints for such a complex 

problem, within the time constraints, is yet to be found because the problem is nonconvex, 

nonlinear, has discrete and continuous variable and may have multiple optimal solutions, and 

so compromises are made. The mentioned existing methods are used in combination to 

minimise all of the given objective functions under constraints.  Usually the set of equations 

will be decoupled into the active power and phase angle, 𝑃𝜃, and the reactive power and voltage 

magnitude, 𝑄𝑉, due to tight coupling between the two pairs of variables. Generally, ACOPF is 

calculated by first minimising costs by varying real power using DCOPF (optimal power flow 

for a simplified AC network, with similar properties to DC power flow equations), the generator 

outputs are then fixed and an ACOPF is done to minimise losses by varying reactive power, 

capacitors, etc. These are done at 15-60 minute time intervals and are measuring and predicting 

the next time-window, time is not considered at this stage but conducted during the primary and 

secondary stages. 
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The method can be written mathematically as minimising the operating costs, 𝑓, according to 

the control variables, 𝑢:  

 

 
min
𝑢
𝑓(𝑢), 

 

(7) 

where the operation cost is a weighted combination of minimising the cost of generation, 

∑ 𝑔𝑖(𝑃𝑖)
𝑮
𝑖 , the cost of changing controls, ∑ ℎ𝑖(𝑢𝑖 − 𝑢𝑖

0)𝑁
𝑖 , and minimising system losses, 𝜙(𝑢) , 

where 𝑔𝑖 is the specific generation cost function of generator 𝑖 according to the active power it 

produces, 𝑃𝑖, for all generators, 𝑮. ℎ𝑖 is the cost function of changing any control variable, 𝑢𝑖, 

from its previous state, 𝑢𝑖
0, for all nodes in the network, 𝑁, and 𝜙 is the cost of transmission in 

terms of power lost through heat over power lines (other objective functions can also be 

included here). The objective function is subject to some equality and inequality equations: 

 

 
𝑅(𝑢) = 0, 
𝐾(𝑢) ≥ 0, 

(8) 

 

where 𝑅(𝑢) is the equality constraints from the standard polar representation of the power flow 

equations, derived from previous definitions of AC power and current: 

 

 𝑆𝑗 = 𝑃𝑗 + 𝒊𝑄𝑗 = 𝑣𝑗𝑖𝑗
∗ = 𝑣𝑗∑

𝑣𝑗

𝑍𝑖𝑗

𝑐

𝑖=1

, (9) 

 

impedance can be expressed as the complex function of resistance and reactance, and the AC 

voltages are expressed in terms of their voltage magnitude and phase angles: 

 

 𝑃𝑗 + 𝒊𝑄𝑗 =∑
|𝑉𝑖||𝑉𝑗|𝑒

𝒊(𝜔𝑡−𝜃𝑖)𝑒𝒊(𝜔𝑡+𝜃𝑗)

𝑅𝑖𝑗 + 𝒊𝑋𝑖𝑗

𝑐

𝑖=1

, (10) 

 

The time can be ignored as we are concentrating on one instance and the exponential functions 

can be rewritten using trigonometric identities, 𝑒𝒊𝑎 = cos(𝑎) + 𝑖 sin(𝑎): 

 

 𝑃𝑗 + 𝒊𝑄𝑗 =∑
(|𝑉𝑖||𝑉𝑗|(cos(𝜃𝑗 − 𝜃𝑖) + 𝑖 sin(𝜃𝑗 − 𝜃𝑖))) (𝑅𝑖𝑗 − 𝒊𝑋𝑖𝑗)

𝑅𝑖𝑗
2 +𝑋𝑖𝑗

2

𝑐

𝑖=1

. (11) 

 

Finally, the real and imaginary parts can be split into the active and reactive equations: 
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 𝑃𝑗
𝑮 − 𝑃𝑗

𝑫 =∑𝑉𝑗𝑉𝑖[𝐺𝑖𝑗 cos(𝜃𝑗 − 𝜃𝑖) + 𝐵𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖)],

𝑐𝑗

𝑖=1

 (12) 

 

 𝑄𝑗
𝑮 − 𝑄𝑗

𝑫 =∑𝑉𝑗𝑉𝑖[𝐺𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖) − 𝐵𝑖𝑗 cos(𝜃𝑗 − 𝜃𝑖)],

𝑐𝑗

𝑖=1

 (13) 

 

where 𝑃𝑗
𝑮 and 𝑄𝑗

𝑮 are the active and reactive power generated at node 𝑗, and 𝑃𝑗
𝑫 and 𝑄𝑗

𝑫 are the 

active and reactive power consumed at node 𝑗. 𝑉𝑗 and 𝜃𝑗  are the voltage magnitude and phase 

angle of node 𝑗 and the sum function is over all nodes that node 𝑗 is connected to, 𝑐𝑗, via a 

power line. 𝐺𝑖𝑗 and 𝐵𝑖𝑗 are the conductance and susceptance of the power line between nodes 𝑗 

and 𝑖, they represent the real and imaginary parts of the admittance, 𝑌𝑖𝑗 =
1

𝑍𝑖𝑗
=

𝑅𝑖𝑗−𝒊𝑋𝑖𝑗 

𝑅𝑖𝑗
2+𝑋𝑖𝑗

2 , where 

𝐺𝑖𝑗 =
𝑅𝑖𝑗

𝑅𝑖𝑗
2+𝑋𝑖𝑗

2  and 𝐵𝑖𝑗 =
−𝑋𝑖𝑗

𝑅𝑖𝑗
2+𝑋𝑖𝑗

2 , where 𝑅𝑖𝑗 is the resistance, and 𝑋𝑖𝑗 is the reactance. These power 

equations are true for each node 𝑗 [36] and represent that the overall power demanded or 

available from a node needs to be equivalent to the incoming or outgoing power from all 

connected edges. 

𝐾(𝑢) represents the inequality constraints such as the upper and lower limits of the control 

variables, 𝑢𝑙𝑜𝑤𝑒𝑟 ≤ 𝑢 ≤ 𝑢𝑢𝑝𝑝𝑒𝑟, and the limits of the flow over edges, |𝑦𝑖𝑗| ≤ 𝑦𝑖𝑗
𝑢𝑝𝑝𝑒𝑟

, where 

𝑦𝑖𝑗 is the directional flow over the power line from node 𝑗 to 𝑖. 

 

This is a very complicated resource allocation optimisation problem because ACOPF is 

nonlinear due to the objective functions and constraints, and non-convex due to the non-linear 

AC voltage terms; to simplify this a set of approximations are made:  

 

 Start by neglecting Equation (13), the reactive power. 

 Then the conductance can be neglected because the resistance within the transmission 

stage is significantly less than reactance; so 𝐺𝑖𝑗 ← 0 and 𝐵𝑖𝑗 ← −
1

𝑋𝑖𝑗
. 

 𝑃𝑗
𝑮 − 𝑃𝑗

𝑫 =∑𝑉𝑗𝑉𝑖[𝐵𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖)]

𝑐𝑗

𝑖=1

. (14) 

 Assume voltage magnitudes are 1 per unit.  

 𝑃𝑗
𝑮 − 𝑃𝑗

𝑫 =∑𝐵𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖)

𝑐𝑗

𝑖=1

. (15) 
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Also, if voltage magnitudes are approximately equal to 1, then power 𝑃 can be 

approximated to equal 𝐼. 

 Also assume that the phase angles are small, allowing us to write (𝜃𝑗 − 𝜃𝑖) instead of 

sin(𝜃𝑗 − 𝜃𝑖).  

 Also, remembering that 𝐵𝑖𝑗 =
−1

𝑋𝑖𝑗
, we get: 

 𝑃𝑗
𝑮 − 𝑃𝑗

𝑫 =∑
(𝜃𝑖 − 𝜃𝑗)

𝑋𝑖𝑗

𝑐𝑗

𝑖=1

. (16) 

 

Also, it can be written that the overall power at node 𝑗 (𝑃𝑗 = 𝑃𝑗
𝑮 − 𝑃𝑗

𝑫) minus any power leaving 

the node 𝑗 through power lines to neighbouring nodes 𝑖, 𝑃𝑖𝑗, must be equal to zero (using 

Kirchhoff’s Current Law where 𝑃 ≈ 𝐼). 

 

 

 𝑃𝑗 −∑𝑃𝑖𝑗

𝑐𝑗

𝑖=1

= 0. (17) 

  

Leading to the conclusion that: 

 

 𝑃𝑖𝑗 =
(𝜃𝑗 − 𝜃𝑖)

𝑋𝑖𝑗
, (18) 

 

which can be compared with the DC equation for flow of current: 

 

 𝐼𝑖𝑗 =
𝑉𝑗 − 𝑉𝑖

𝑅𝑖𝑗
, (19) 

 

where 𝐼𝑖𝑗 is the current over the edge connecting nodes 𝑗 and 𝑖. Therefore, DCOPF does not 

actually consider a DC network flow, it merely considers AC under strict assumptions, resulting 

in equations similar to those of a DC flow. 

Some software available to simulate AC and DC power flow and OPF includes Powerop [37], 

or Matpower [38].  
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1.5 Problems Associated with OPF  

 

Renewable energies such as wind and solar are uncontrollable, which means they cannot be 

turned up on demand, they produce electricity independently of consumption (Figure 1.12 and 

Figure 1.13), and ultimately do not remain constant over the 15-60 minute intervals of economic 

dispatch. Predictions are available but are not entirely accurate because of the complicated and 

stochastic nature of the weather [39] and of the generators themselves. For these reasons, they 

are labelled as volatile. The increase in volatility in electrical grids puts extra pressure on the 

existing distribution methods because they were not designed to operate under these conditions, 

but are still required to run smoothly and reliably, providing correct amounts of power to each 

consumer while balancing generation and demand. If more power is produced than consumed, 

the power is lost and wasted through heat with clear costs implications; for example, [40] 

suggests (assuming that wind probability density function is a Beta distribution and using 1 

hour-ahead predictions) that costs due to intermittency could be around 12,875 €/MW annually 

for Spanish wind production, which is approximately 9.7% of its annual gross income. Study 

[35] suggests that current solvers are around 10% off optimal solutions on average even before 

considering volatility of renewable generators. Alternatively, if insufficient power is generated, 

consumers are left without power which, depending on the scale and time-periods, can be 

harmful to homes, businesses and even lives [41, 42]. Table 1 shows that all over the world the 

number and scale of blackouts have increased steadily and significantly. This is not entirely due 

to the introduction of renewables, but it is related to the increased correlations between 

probabilistic elements in the system; these are present in renewable energies as most are linked 

to the weather. Blackouts are usually mitigated by using reserve; spare power produced to 

prevent insufficiencies during lower than expected power generation, but this is costly to 

produce. The current system is becoming outdated and a new method of distributing power may 

be necessary, one which is robust to accidental damage or deliberate attack and can effectively 

consider system limits, all within a volatile network and within a short time-period. A recent 

report [43] shows that the UK is not expected to meet its renewable energy target of 15% by 

2020, whereas other European countries are expected to surpass theirs. However, a power grid 

with a large proportion of intermittent renewable energy penetration requires an algorithm that 

can consider fluctuations and correlations, is probabilistic and works well on a large scale; this 

requires finding a new method of distribution.  
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Figure 1.12 Solar PV output and consumer load over 24 hours [44]. 

 

 

Figure 1.13 Wind turbine output and consumer load over 24 hours [44]. 

 

Table 1. The number of major blackouts that effected over 30 million people over six decades  [45, 

46, 47, 48, 49, 50] and the global cumulative wind capacity (in MW by the end of each decade)  [51]. 

Years # Major Blackouts # People Affected Wind Capacity 

1960-1969 1 30m - 

1970-1979 1 40m - 

1980-1989 0 0m - 

1990-1999 1 97m 13,600 

2000-2009 5 527m 159,089 

2010-2015 4 980m 369,553 
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1.6 Existing Methods  

 

There are a number of methods used, and suggested for the economic dispatch of power in an 

electrical grid. Methods 1-5 are known as conventional methods, and 6-7 are intelligent 

methods: 

A1. Newton Raphson is a commonly used method for power flow, it works well in 

transmission systems and has a fast, quadratic exact convergence to the overall 

minimum. The method uses sequential linearisation and depends on an initial guess to 

find a power flow solution.  

The algorithm is adapted to power flow by writing the power flow equations from 

Equations (12) and (13) as 𝑃∗(𝒙) and 𝑄∗(𝒙):  

 𝒙 =

[
 
 
 
 
 
𝜃2
⋮
𝜃𝑛
𝑉2
⋮
𝑉𝑛 ]
 
 
 
 
 

,       𝑓(𝒙) =

[
 
 
 
 
 
𝑃2(𝒙) − 𝑃2

𝐺 + 𝑃2
𝐷

⋮
𝑃𝑛(𝒙) − 𝑃𝑛

𝐺 + 𝑃𝑛
𝐷

𝑄2(𝒙) − 𝑄2
𝐺 + 𝑄2

𝐷

⋮
𝑄𝑛(𝒙) − 𝑄𝑛

𝐺 + 𝑄𝑛
𝐷]
 
 
 
 
 

,       𝒙𝑎+1 = 𝒙𝑎 − 𝐽(𝒙𝑎)−1𝑓(𝒙𝑎). (20) 

Here 𝜃1, 𝑉1, 𝑃1, and 𝑄1  refer to the variables of the slack bus (node), this is the node that 

is used to absorb any excess power in the network to maintain Kirchhoff’s Law. 𝐽 is the 

Jacobian matrix. The equation shown uses an initial guess, 𝒙0, to calculate the 

subsequent iterations; 𝒙1 is the first iteration and this is continued until convergence, 

|𝑓(𝒙𝑎)| < 𝜖, where 𝜖 is a small predetermined accuracy level [52]. 

A phenomenon has been found that in the distribution stage of power flow, due to the 

high Resistance:Reactance ratio, initial conditions outside the convergence area (basin 

of attraction) will result either in a local optimum or in non-convergence. Research has 

been done to overcome these problems, such as; using Newton Raphson based on 

current injection [53] which bypasses the difficult process of computing the Jacobian at 

every iteration, and instead computes the whole Jacobian once and recalculates the 

diagonals at each iteration, the Broyden method [54] which computes the whole 

Jacobian once and uses a rank-one update for the following iterations and a forwards-

backwards sweep [55] which updates the upstream and downstream of each current 

from according to Kirchhoff’s Law. The downside of these approaches includes slower 

convergence, local convergence, inferior precision, and higher complexity when 

considering PV nodes.  

A2. Gradient descent is a commonly used dynamic method which uses the objective 

function in conjunction with Lagrange multipliers to enforce operational constraints 



48 

 

e.g.: ℒ(𝑢, 𝜇, 𝜆) = 𝑓(𝑢) + 𝜆𝑅(𝑢) + 𝜇𝑆(𝑢). The function is differentiated to indicate the 

direction of steepest ascent and an adjustment is made in the opposite direction. This is 

repeated until ∇ℒ(𝑢, 𝜇, 𝜆) ≈ 0. The method usually has a linear convergence rate, 

however when the objective function is irregular, convergence can be slow in areas 

where ∇ℒ = 0, and only local minima will typically be found. The adjustment parameter 

with respect to the computed gradient ∇ℒ directly influences convergence properties; if 

it is too small the algorithm may only converge to local minima or take too long to 

converge, however if it is too large, the iterations may result in oscillations around a 

global minimum. Another drawback is that the functions must be differentiable. The 

method has adjustments and variations which include the Differential Algorithm (DSD) 

[56] and the Least Mean Square (LMS) [57] however these do not guarantee an optimal 

solution and still have slow convergence rates, respectively. 

A3. The Interior Point method (otherwise known as the Barrier method) has been widely 

considered [58, 59], it reaches an optimal solution by following the interior of the 

feasible region, it uses linear methods to satisfy constraints and a heuristic strategy of 

predictor-corrector to minimise a cost. The method is advantageous as it can solve linear 

and non-linear convex optimisation problems, it does not appear to be largely effected 

by network size and it can handle inequality constraints well by using barrier functions. 

Reference [35] describes it as the best technique for ACOPF. These methods comprise 

of two main interior point based algorithms, Infeasible Pure Primal-Dual algorithm 

(PDIPA) and Infeasible Primal-Dual Predicator-Corrector algorithm (PCIPA). PCIPA 

is advantageous in terms of computation time if the higher-order corrector variables are 

quadratic, in simple problems PDIPA is typically faster [60]. The number of iterations 

is only slightly dependent on the system size, with an order of approximately 𝒪(𝑁). 

Drawbacks of interior point method include: 1) If the step size is not chosen properly, 

the sub-linear problem may have a solution that is inaccessible in the original nonlinear 

domain. 2) They also tend to have sensitive initial and termination criteria resulting in 

non-linear functions not being solvable for many choices.   

A4. Linear programming is a widely-used optimization technique that linearises the 

objective function and constraints and finds a solution to the linear optimum. 

Linearising the complex problem introduces inaccuracy as the linearised functions may 

not be a good representation of the original ones, although it offers a guaranteed 

solution. One solution to this is using piecewise linear approximations, the more 

segments used the more accurate the method becomes; however, the number of 

segments does affect the speed and precision of the obtained solutions [61]. Another 
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solution is to minimise the deviation of control variables and although this can be 

effective, it slows the rate of convergence. Due to its simplistic approach, linear 

programming usually only considers DCOPF. Recent literature suggests that with 

additional approximations, such as the piecewise linear representation of the cosine 

curve, the algorithm is able to include reactive power and voltage magnitudes for 

ACOPF, this is called LPAC [62], they suggest that it works well with “hot-starts” 

(where a solved AC solution is already available and only adjustments are made), but 

described it as a building block to be used in conjunction with other optimisation 

techniques for “warm” and “cold-starts”, where initial conditions and solution are 

further away. 

A5. Quadratic programming is another commonly-used optimization technique. It is based 

on using a quadratic objective function and aims to provide an exact solution; for non-

convex quadratic programming problems defined by a specific type of (Metzler) 

matrices an exact solution can be found through semi-definite programming relaxation 

[63]. A noise control is added to the Metzler matrices to maintain non-zero off-diagonal 

elements at all times. Quadratic programming also guarantees convergence, it is fast, 

reliable and efficiently-coded optimisation engines are already available for use in 

electricity-grid problems. However, constraints need to be linearised and if they are not 

fully obeyed, only suboptimal solutions are found, which can also happen if the 

approximation to a quadratic objective function is unrepresentative of the true objective 

for some parameter values. Nonlinear programming is a similar concept but without 

being constrained to quadratic objective functions it does not guarantee convergence to 

a global optimum; these methods are not robust and can be slow. 

A6. Genetic Algorithms are based on the concept of natural selection and genetics, they 

search a rugged cost landscape by evaluating many configurations in a space in parallel, 

this reduces the chances of converging to a local optimum [64]. The objective function 

is encoded to binary codes, then a fitness (cost) function is calculated; the operations: 

reproduction, mutation and crossover are applied to produce offspring and repeated until 

the best offspring is found. It does not require the objective function to be continuous 

or differentiable and does not depend on a nearby starting point to find a global solution. 

The algorithm uses probabilistic evolution rules and assesses the objective function at 

parallel points. It is heuristic and not well-understood; difficulty in specifying the 

convergence criteria due to the stochastic nature of the algorithm, makes the choice of 

termination criteria problematic and so after a certain number of iterations, the best of 
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the set of offspring is chosen [65]; early termination could result in a suboptimal solution 

and performance has been found to be deficient in [66]. 

A7. Particle Swarm Optimisation (PSO) [67] combines social behaviour and evolutionary 

computations inspired by the behaviours of schools of fish and flocks of birds. The 

notion is that each particle can move around in multi-dimensional space inside a set of 

constraints. It starts as a uniform, global search and results in a more specific, local 

search at later stages. The method uses two main criteria; social-only which considers 

the belief of other particles and cognition-only which considers the individual particle 

separately. It is a simple heuristic concept which is claimed to be computationally 

efficient, flexible to adaptation and easy to implement. It is less likely than gradient 

methods to converge to local minima, it does not require approximations, nor does it 

require the function to be differentiable or convex, or require specific initial conditions. 

The method is heuristic and performance analysis is anecdotal in nature; one criticism 

is that local optimums remain likely and convergence is slow in high dimensional 

spaces, [68] suggests a method which allows particles to jump out of local optimums 

but increases computational time and is largely unexplored.  

A8. Other heuristic methods include Ant Colony optimisation [69], Shuffling Jumping Frog 

algorithm [70], Cuckoo Search algorithm [71], Smart Evolutionary algorithm [72] and 

the Artificial Neural Networks model [73].  

Other approximation methods which could be considered are Variational methods such 

as the Expectation Maximisation algorithm but they have an inherent bias towards 

simpler models [74]. They rely on having a limited number of parameters to be 

optimised which does not necessarily suit this type of global optimisation problem and 

computational complexity increases quickly with the dimensionality.  

A9. Message passing or belief propagation (BP) is going to be discussed at length in the 

remainder of the thesis. The approach is principled which means it is based on solid 

probabilistic foundations which lead, through a simple derivation and clear 

approximations, to the algorithm. It passes conditional probability messages locally 

around the system using received conditional messages and priors; this gives a 

computational complexity of order 𝒪(𝑁 log𝑁) according to the system size, instead of 

global optimisation techniques which usually increase quadratically or cubically with 

the system size, and this quality allows the method to quickly find an optimal solution, 

even on large networks. Message passing gives good approximate solutions on sparse 

networks, which suits the topology of power grids, and its probabilistic properties will 

be shown to be an advantage when considering fluctuations and uncertainty of consumer 
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load and renewable generators. The method has been used for many optimisation 

problems as it is easily adaptable and can consider a range of objective functions, 

constraints and parameters. 

 

These are some of the methods suggested and used for deterministic optimal power flow. The 

most efficient and commonly used is the interior point method. Section 3.1.4 will expand on 

some of these methods and how they have been adapted to consider the stochastic nature of 

renewable sources.  

 

1.7 Aim  

 

Existing methods for OPF and power flow with volatility are good, but have shortcomings. The 

aim of this thesis is to suggest a more suitable method for power distribution in electricity 

networks with volatility at both supply and demand nodes. 

We suggest that the algorithm should be probabilistic to accommodate the volatility and account 

for correlations between components. It should be able to consider emergent behaviours and as 

the UK power grid is large, its computational complexity should increase approximately 

linearly with the system size; this will be vital for the program to converge quickly within the 

appropriate time-scale. 

According to these specifications, we suggest a statistical mechanics inspired algorithm called 

Message Passing (MP) [75, 76]. This approach can inherently consider the uncertainties and 

fluctuations of generators and consumers within a grid at the economic dispatch stage. As a 

probabilistic algorithm, message passing offers a principled, distributed optimisation method 

which passes messages locally to obtain a global optimum; this allows for the computational 

complexity of the method to be of 𝒪(𝑁ln𝑁) where 𝑁 is the number of vertices in the grid and 

log𝑁 is related to the length of loops in a network. A global minima can be guaranteed through 

the consideration of a general 𝑇 within the VFE calculations, a finite temperature quantifies 

increased information flow, as opposed to a steady state description often identified with a zero-

temperature description, ensuring that the entire system is considered as to guarantee a global 

minima [77].  It can optimise a large number of parameters without becoming too costly 

computationally and while remaining effective; its distributive nature is particularly suitable for 

large or evolving networks. Additionally, this fast and reliable method has huge potential for 

adaptation. This thesis highlights the capabilities of message passing as a form of power 
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distribution in electricity grids, with the hope that further work would produce appropriate 

practical algorithms. 

 

 

1.8 Statistical Mechanics for Hard Problems  

 

As this problem requires an approach which can inherently consider probabilities, be suitable 

for large systems and use a principled method to find an optimal solution for electricity 

networks, a statistical mechanics-inspired approach is suggested. Statistical mechanics is used 

to understand the global properties of a system from its microscopic properties. It proposes that 

if you minimise the free energy of system, its most probable state would be found, which is also 

the optimal one when the objective function considered is the Hamiltonian. Statistical 

mechanics has previously been used for tasks such as decoding in the area of error correcting 

codes [78] and hard computational problems [79] and has been very positively received, but 

until recently focus has mostly been on discrete variables (the advantage to an optimisation 

problem with discrete states is that the possible combinations is finite), as the free energy is a 

complicated function in many cases, and the consideration of continuous variables make it even 

more difficult to compute (with continuous variables the combinations of sets of variables are 

infinite and therefore may not be found through exhaustive methods).  

 

Resource allocation has been considered in computer science [80] and operations management 

[81] for many years. It has also been used to reduce internet traffic congestion, and streaming 

network flow [82]. Previously, a form of probabilistic modelling was suggested for OPF 

methods but dismissed as it was based on too simplistic assumptions. For instance, reference 

[83] suggested evaluating the propagation of data inaccuracies by using load flow calculations, 

the latter provides a nonlinear system which describes the energy flow through each edge. It 

was not feasible to use load flow calculations for AC power flow but it can handle a linear DC 

power flow. This thesis aims to make probabilistic modelling more relevant by finding ways to 

deal with the fluctuating properties of capacity using message passing techniques. 

 

A message passing method described by Wong and Saad [76] suggests that instead of sending 

messages for continuous variables (e.g., functions), which were difficult to handle, one can send 

the first and second derivatives of the function, allowing the function to be represented by the 

first two terms of its Taylor expansion. They found that the method was successful and effective 
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as long as the message passing function could be described sufficiently accurately by the first 

few terms in its expansion. The message passing method is designed so that messages are passed 

locally to obtain, after convergence, a global optimum; this uses the assumption that since the 

network is sparse, the network can be considered locally as a tree and ignore recurrent messages 

because the probability of loops is negligible and can be ignored. Some studies investigating 

the role of loops [76] have found that even in the presence of some loops the algorithm 

converged to near optimal solutions over a broad range of parameters. As the global 

optimisation problem is solved by looking at the network locally, the computational complexity 

of the algorithm only increases as 𝒪(𝑁 ln𝑁) with the system size 𝑁, while still finding the 

global optimum. The message passing method is very similar to the probabilistic modelling 

algorithm of BP and the two are usually used as synonyms. The advantages of using this 

message passing approach are that it is inherently probabilistic and is able to consider the 

fluctuations within the network. As the computational complexity only increases 𝒪(𝑁 ln𝑁) 

with the system size, the algorithm can cope with large networks such as the UK electrical grid. 

Finally, message passing has the capacity to include other extensions, such as identifying 

possible instabilities in the grid for design, prevention and protection; it can also be used 

together with information visualisation methods to aid electricity-grid controllers, and 

theoretically it could work successfully with ACOPF. 

 

The aim of this project is to suggest and develop a message passing approach to demonstrate 

its capabilities as a future OPF algorithm. This work was done in collaboration with ALSTOM 

UK. 
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1.9 Layout of Thesis  

 

The proposed method of optimal distribution, message passing, will be explained in more detail 

in Section 2 and its relevance to the electricity grid setup will be explained in Section 2.4.4. 

Section 3 will discuss how the message passing algorithm can accommodate fluctuations and 

volatility while Section 4 will focus on how to distribute electricity when failure is inevitable 

by minimising load shedding. Section 5 explains the use of message passing for minimising the 

cost of generation as an objective function followed by Section 6 which explains how these 

calculations can be adapted to consider adjusting voltages for current to flow instead of power 

over lines. Each of these will contain their own results generated from simplified IEEE buses 

and synthetically generated systems. Section 7 will discuss the results of this research and 

conclude the thesis and in Section 8 we will suggest related work that could be addressed in 

future work. 
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2 Message Passing  

2.1 Belief Propagation  

 

Belief propagation (BP) (or sum-product message passing) was first proposed [84] in 1982. The 

inference method could find exact solutions to hard computational problems on tree-like graphs 

(graphs without loops) and it was later extended to find the approximate solution for general 

graphs (graphs containing loops). It suggests the use of local message passing to find an optimal 

global solution, an approach that is equivalent to dynamic programming.  

Assume a set of variables (triangles) which can each take a value drawn from a set of discrete 

values, or states. Variables interact with one another and this interaction between variables can 

be described using a factor (squares) as shown in Figure 2.1. Each variable can assume a state, 

but its state is dependent on the states of other variables around it. The aim is to find the best 

solution of what state each variable should take and this is done through messages sent between 

the variables and the factors. The BP technique is usually visually described by rearranging the 

network into two columns of nodes on one side, and factors on the other, this is called a bipartite 

graph (Figure 2.2).  

 

 

Figure 2.1 Some variables 𝑤, 𝑧, 𝑦1 and 𝑦2 (blue) 

and their interactions 𝑎, 𝑏1, 𝑏2, 𝑐1 and 𝑐2 (pink). 

 

Figure 2.2 Example of the set of variables and 

interactions from Figure 2.1 rearranged, 

demonstrating a bipartite graph. 

 

BP can be used to estimate the most likely state of a network, or the probability marginals, by 

sending messages locally, through the factors, between local variables (any variables it shares 



56 

 

an interaction with, or neighbours). Messages in BP are conditional probabilities, they can be 

from a variable to a factor, or from a factor to a variable (Both variables and factors can be 

attached to multiple others). Over a number of iterations, the passed messages converge to a 

consensus and a belief of the optimal state of each node can be calculated. 

To start with we will explain the conditional probability message from a variable 𝑧 to a factor 

𝑎, about the probability of variable 𝑧 being in state 𝑠𝑧, according to all the information it has 

recieved from its other interactions, but not 𝑎.  

 

 𝑚𝑧→𝑎 = 𝑃(𝑠𝑧|{𝑡𝑏}𝑏∈𝜕𝑧𝑎), (21) 

  ∝ 𝑃({𝑡𝑏}𝑏∈𝜕𝑧𝑎|𝑠𝑧)𝑃(𝑠𝑧), (22) 

 
 ∝ 𝑃(𝑠𝑧) ∏ 𝑃(𝑡𝑏|𝑠𝑧)

𝑏∈𝜕𝑧𝑎

, (23) 

 

where 𝑚𝑧→𝑎 is the message from variable 𝑧 to factor 𝑎 about the state 𝑠𝑧, 𝑡𝑏 is the information 

at factor 𝑏, and this is for all factors connected to variable 𝑧, but not factor 𝑎 (denoted 𝑏 ∈ 𝜕𝑧𝑎). 

Equation (22) is derived from Bayes theory (without normalization). In networks where the 

interactions are sparse, an assumption can be made that conditional probabilities are 

independent of one another; allowing them to be considered separately as shown in Equation 

(23). The assumption is true for all tree-like networks and gives an exact solution, however for 

graphs with loops, the assumption of independence may not be correct, giving only and 

approximate solution. Sparse graphs have been found to have a good approximate solution due 

to the sparsity and size of any loops. 

  

The conditional probability messages from the factors to the variables can also be written as: 

 

 𝑚𝑏→𝑧 = 𝑃(𝑡𝑏|𝑠𝑧), (24) 

 
 = ∑ 𝑃(𝑡𝑏|𝑠𝑧 , {𝑠𝑦}𝑦∈𝜕𝑏𝑧

)𝑃({𝑠𝑦}|{𝑡𝑐}𝑐∈𝜕𝑦𝑏),

𝑠𝑦∈𝜕𝑏𝑧

 (25) 

 
 = ∑ 𝑃(𝑡𝑏|𝑠𝑧 , {𝑠𝑦}𝑦∈𝜕𝑏𝑧

) ∏ 𝑃(𝑠𝑦|{𝑡𝑐}𝑐∈𝜕𝑦𝑏),

𝑦∈𝜕𝑏𝑧𝑠𝑦∈𝜕𝑏𝑧

 
(26) 

 
 = ∑ 𝑃(𝑡𝑏|𝑠𝑧 , {𝑠𝑦}𝑦∈𝜕𝑏𝑧

) ∏ 𝑚𝑦→𝑏

𝑦∈𝜕𝑏𝑧𝑠𝑦∈𝜕𝑏𝑧

, (27) 

 

where 𝑚𝑏→𝑧 is the message from 𝑏 to variable 𝑧 expressing “what factor 𝑏 thinks about 𝑧 being 

in state 𝑠𝑧” and it is calculated according to all of 𝑧’s neighbours. It is calculated by the 

probability of 𝑡𝑏 given that 𝑧 is in state 𝑠𝑧 and that the neighbouring variables 𝑦, are in state 𝑠𝑦 
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multiplied by the condition probability of 𝑦 being in state 𝑠𝑦 (according to all of the other factors 

connecting to 𝑦). Equation (26) uses the assumption that the factors are independent, and the 

product of conditional probabilities can be recognised as the messages from variables 𝑦 to factor 

𝑏.  

 

This results in the two messages: 

 

 𝑚𝑧→𝑎 ∝ 𝑃(𝑠𝑧) ∏ 𝑚𝑏→𝑧 

𝑏∈𝜕𝑧𝑎

, (28) 

 

 𝑚𝑏→z = ∑ 𝑃(𝑡𝑏|𝑠𝑧 , {𝑠𝑦}𝑦∈𝜕𝑏𝑧
) ∏ 𝑚𝑦→𝑏

𝑦∈𝜕𝑏𝑧

,

𝑠𝑦∈𝜕𝑏𝑧

 (29) 

 

where each new message uses the latest information it has received from its connecting 

variables/factors. For continuous variables, the messages become functions and the sum is 

replaced by an integral. 

 

There are a few unique cases where this can be simplified; in the event of a network where 

nodes are the variables and interactions are modelled by edges (a connection between two 

nodes), then every factor is connected to only two variables (Figure 2.3 and Figure 2.4), 

resulting in a simplified message from factor 𝑏 to variable 𝑧:   

 

 𝑚𝑏→𝑧 =∑𝑃(𝑡𝑏|𝑠𝑧 , 𝑠𝑦)𝑚𝑦→𝑏

𝑠𝑦

. (30) 

 

 

Figure 2.3 Example of part of a network, where 

variables are on nodes, and interactions are only 

between nodes connected by an edge [158]. 

 

Figure 2.4 Example of the network from Figure 2.3 

as a bipartite graph [158]. 
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This allows the factor to be considered only as probability of some function of the interaction 

𝑔(𝑠𝑧, 𝑠𝑦) and resulting in a message straight from node 𝑧 to node 𝑤, essentially bypassing the 

factor. This is displayed through Figure 2.7-Figure 2.7. 

 

 𝑚𝑧→𝑤 ∝ 𝑃(𝑠𝑧) ∏ ∑𝑃(𝑠𝑤|𝑠𝑧 , 𝑠𝑦)

s𝑦𝑦∈𝜕𝑧𝑤

∏ 𝑚𝑦→𝑧

𝑦∈𝜕𝑧𝑤

. (31) 

 

 

Figure 2.5 An example of messages from child variables to factors. 

 

Figure 2.6 An example of messages from factors to parent variables. 

 

 

Figure 2.7 An example of messages from descendant nodes 𝑘 to 𝑗, and one message from node 𝑗 to 

𝑖, bypassing the factors due to the specific network with interactions only connecting two variables. 
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Similarly, as will be discussed throughout the thesis, the variables could be the values of the 

edges instead (the connections between nodes in a network). In this case, every variable is only 

connected to two factors, but factors can still be connected to multiple variables (such that the 

nodes were the factors) and an identical equation is found.  

 

The messages calculated from Equations (28) and (29) are iteratively passed on for the next 

message; either synchronously (each time step includes every connection being updated 

according to the previous time step’s set of messages) or asynchronously (each time step 

represents one message sent and uses the most recent messages from other connections). The 

recursive message is calculated for every connection in both directions until all messages have 

converged to an agreed set of conditional probabilities. Once converged, a belief (or marginal 

distribution) of each variable can be calculated by considering the message information passed 

from all connecting factors and the prior knowledge of the variable; the belief determines the 

optimal state of the variable. The probabilistic marginal for variable 𝑧 can be shown as: 

 

 𝑏(𝑠𝑧) 
∝ 𝑃(𝑠𝑧) ∏ 𝑃(𝑡𝑏|𝑠𝑧)

𝑏∈𝜕𝑧 

, (32) 

  ∝ 𝑃(𝑠𝑧) ∏ 𝑚𝑏→𝑧

𝑏∈𝜕𝑧 

, (33) 

 

where the first term signifies any priors, or evidence about the probability of the variable being 

in state 𝑠𝑧, and this is multiplied by the likelihoods of 𝑧 being in state 𝑠𝑧 as stated by all 

neighbouring factors. 

 

 

2.2 Statistical Physics  

 

The same framework of messages and marginal approximations can be found through statistical 

physics techniques similar to the probabilistic modelling approach and the links between the 

two have been clearly identified [85]. 

Statistical physics allows us to describe the typical behaviour of the macroscopic state of a 

system and to analyse the relations between variables from the microscopic properties [86] in 

some systems. Existing derivations of the following equations are explained in detail in 

Appendix A. 
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From this point and onward, I will restrict the discussion to systems that are sparsely connected, 

i.e., where each variable interacts only with a small number of other variables. The general 

energy function, 𝐸, for a system with two variable interactions can be expressed in terms of the 

nodes and edges of the network where the 𝑖 and 𝑗 indices run over all system variables: 

 

 𝐸 =∑𝜙𝑖𝑗 +∑𝜓𝑖
𝑖𝑖𝑗

. (34) 

 

This is termed in statistical physics as the Hamiltonian of a physical system, where 𝜙 and 𝜓 are 

functions containing objective functions, prior beliefs (external fields) and/or constraints on the 

edges and nodes, 𝑖𝑗 indicates interactions between nodes 𝑖 and 𝑗. 

The Boltzmann distribution tells us the probability of the system being in a certain state 𝑢:  

 

 𝑃𝑢 =
1

𝑍
𝑒−𝛽𝐸𝑢 , 

 
(35) 

 

where the normalization constant is the partition function:  

 

 
𝑍 =∑𝑒−𝛽𝐸𝑢

𝑢

, 

 

(36) 

 

𝛽 =
1

𝑇
 and 𝑇 is the temperature, a parameter that determines the level of separation between 

probabilities relating to different free energy values. 𝐸𝑢 is the energy of the system in state 𝑢.  

The free energy can be linked to the probability of a node being in a certain state.  

 

 𝐹 = −𝑇 ln 𝑍 , (37) 
 

 𝐹 = −𝑇 ln{∑exp [−𝛽(∑𝜙𝑖𝑗 +∑𝜓𝑖
𝑖𝑖𝑗

)

𝑢

]

𝑢

} . (38) 

 

Minimising the free energy of a function allows us to find the most likely (and optimal, if the 

Hamiltonian corresponds to the objective function) state. The free energy in real systems also 

includes the multiplication of the Boltzmann constant, 𝑘𝐵; however, since our systems are 
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simulated, the temperature can be rescaled using energy units so that 𝑘𝐵 = 1, as explained in 

[77]. 

 

It is argued in the physics literature that if a large network is sparse (𝑁 ≫ 𝑐) then the probability 

of small loops is negligible. Implying, that if a node 𝑗 was removed, all of its neighbours would 

be probabilistically independent of each other. Using this cavity method (hence the term), one 

assumes the network to be locally tree-like and hence allows for the probabilistic independence 

(or weak dependence) between neighbours. This theory allows us to focus on small parts of a 

network at a time, iteratively, instead of the whole network at once.  

 

The focus of each iteration is one node 𝑗 and all nodes it is connected to via an edge. Using the 

cavity method, we can assume each neighbour of 𝑗 would be independent of one another if 𝑗 

was removed. This allows us to ignore any interactions beyond the neighbouring nodes, 

consequently ignoring the rest of the network and the network is assumed to be locally tree-

like.  By separately considering one of the neighbours of 𝑗 as the ancestor 𝑖, and labelling the 

rest descendants 𝑘 (as seen in Figure 2.8), we can pass information to node 𝑖 about the 

probability of 𝑖 being in a certain state, according to current information at the node 𝑗; the 

interaction between nodes 𝑖 and 𝑗, and the information that 𝑗 has received from the descendant 

nodes about the state of 𝑗. This is where the link between BP and Statistical Physics can be 

observed. 

 

To begin with, we will demonstrate the method of obtaining an optimal solution where the 

control variables are continuous directional “currents” flowing over edges, denoted by 𝑦𝑖𝑗 (see 

Figure 2.9), where 𝑖 and 𝑗 are the nodes connected by the given edge, with constraints on edges 

and nodes, 𝜙𝑗𝑘
𝐶𝑂 and 𝜓𝑗

𝐶𝑂, and objective functions on edges and nodes, 𝜙𝑗𝑘
𝑂𝐹 and 𝜓𝑗

𝑂𝐹 . 
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The information passed to the ancestor node is the free energy according to the sub-tree 𝐓𝑗  (the 

information from node 𝑗 and its descendants as seen in Figure 2.10), it is proportional to the 

probability of the edge 𝑖𝑗 being in a certain state, and when the global free-energy is minimised 

one finds the optimal or ground state of the system.  

    

 

Figure 2.8 Considering a small 

section of the network and 

rearranging neighbours so one 

node appears as the ancestor. 

 

Figure 2.9 The current passed 

over edges from descendants to 

the parent node, 𝑗, and from 

node 𝑗 to the ancestor. 

 

Figure 2.10 The tree of node 

𝑗, 𝐓𝑗 . 

 

The free energy can be written as:  

 

 𝐹(𝑦𝑖𝑗|𝐓𝒋) = −𝑇 ln {∑(∫ 𝑑𝑦𝑗𝑘)

𝑗𝑘

exp [−
1

𝑇
∑𝐹(𝑦𝑗𝑘|𝐓𝑘) + 𝜙(𝑦𝑗𝑘) + 𝜓𝑗
𝑗𝑘

]} , (39) 

 

where 𝜙(𝑦𝑗𝑘) = 𝜙𝑗𝑘
𝐶𝑂 + 𝜙𝑗𝑘

𝑂𝐹, 𝜓𝑗 = 𝜓𝑗
𝐶𝑂 + 𝜓𝑗

𝑂𝐹  and the integral of the continuous variable 𝑦𝑗𝑘 

is equivalent to the sum of all states 𝑢. The free energy 𝐹(𝑦𝑖𝑗|𝐓𝑗) can now be expressed as the 

product of the free energies of all the descendants, 𝐹(𝑦𝑗𝑘|𝐓𝑘), in addition to constraints and 

objective functions, due to the tree-like assumption; we can assume all necessary information 

about the rest of the network is conveyed through the descendants’ free energies, 𝐹(𝑦𝑗𝑘|𝐓𝑘), 

allowing us to ignore the rest of the network. These equations can be translated directly to the 

BP formulation [76].  

 

The free energy can be split into two parts, the average free energy per variable in the network, 

𝐹𝑎𝑣, and the Vertex Free Energy (VFE), 𝐹𝑉 , which gives the individual free energy contribution 

of the variable considered: 
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 (𝑦𝑖𝑗|𝐓𝑗) = 𝑁
𝑻𝐹𝑎𝑣 + 𝐹𝑉(𝑦𝑖𝑗|𝐓𝑗), (40) 

 

where 𝑁𝑻 is the number of variables in the tree 𝐓. 

 

 𝐹𝑉(𝑦𝑖𝑗|𝐓𝑗) = −𝑇 ln{∏∫𝑑𝑦𝑗𝑘
𝑗𝑘

exp [−𝛽∑𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘) + 𝜙𝑗𝑘
𝑗𝑘

− 𝛽𝜓𝑗]} − 𝐹𝑎𝑣 , (41) 

 

where 𝐹𝑉(𝑦𝑖𝑗|𝐓𝑗) is the VFE function. The message passing algorithm is employing the VFE 

as the message passed, e.g., to node 𝑖 from 𝑗 given 𝐓𝑗 , the tree emanating from node 𝑗. The 

variable 𝑦𝑖𝑗 indicates the current (state) sent from node 𝑗 to 𝑖; it is directional and so 𝑦𝑖𝑗 = −𝑦𝑗𝑖. 

The temperature determines how strictly the low free energy states are selected, calculations of 

the VFE assume a general temperature 𝑇 in order to consider the global network and are then 

considered under strict optimisation (𝑇 = 0) to find the global optimum, giving a recursion 

relation: 

 

 

𝐹𝑉(𝑦𝑖𝑗|𝑻𝑗) = min [∑(𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘) + 𝜙𝑗𝑘
𝑂𝐹) + 𝜓𝑗

𝑂𝐹

𝑗𝑘

] − 𝐹𝑎𝑣 

such that ∑𝜙𝑗𝑘
𝐶𝑂  and   𝜓𝑗

𝐶𝑂

𝑗𝑘

 are satisfied.  

(42) 

  

This is the continuous function “message” to be iteratively sent between nodes until 

convergence. 

 

Using equation (31) we can map the belief propagation messages to the vertex free energy. If 

we first take the prior at variable 𝑧, which gives the probability of the variable being in a certain 

state 𝑠𝑧, as: 

 

 𝑃(𝑠𝑧) ∝ 𝑒
−
𝛽
2
𝜙(𝑦𝑖𝑗), (43) 

 

And the conditional probability 𝑃(𝑠𝑤|𝑠𝑧 , 𝑠𝑦) as the step function, which calculates, according 

to the descendants and information at the current variable, if the node can be satisfied for values 

of 𝑦𝑖𝑗 (𝑠𝑤): 
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 𝑃(𝑠𝑤|𝑠𝑧 , 𝑠𝑦) ∝ 𝛩(∑𝑦𝑗𝑘 − 𝑦𝑖𝑗 + 𝛬𝑗
𝑗𝑘

), (44) 

 

Then the comparison can be found that −𝑇 log𝑚𝑧→𝑤 = 𝐹𝑉(𝑦𝑖𝑗|𝑻𝑗), where the function is 

integrated over the possible instances of the variable 𝑦𝑗𝑘 instead of summed, and the messages 

from descendants give −𝑇 log𝑚𝑦→𝑧 = 𝐹𝑉(𝑦𝑗𝑘|𝑻𝑘). A zero temperature limit is equivalent to a 

belief propagation scheme without memory whereas a finite temperature will correspond to a 

“hysteresis” effect, something that is being ignored in our present analysis. 

 

 

2.3 The History of Message Passing  

 

Message Passing is a class of algorithms which aim to find the probability distribution of the 

state of variables by passing messages locally over the edges of a factor graph. By sending a 

series of messages iteratively until a consensus is achieved, the algorithms obtain the most 

likely, or optimal, global solution. These algorithms are closely related with statistical physics 

concepts and are typically used for probabilistic graphical models.   

 

BP is a type of discrete message passing which computes the probability marginals for tree-like 

graphs. The algorithm displays huge potential and can be used to draw random configurations 

from a distribution and compute the free entropy [77] but limitations include no guaranteed 

convergence, the possibility of converging to local maxima and that the algorithm only 

guarantees an exact solution if the network is tree-like (no loops). Ref. [84] suggests that in the 

presence of loops, BP could become stuck in a cycle and not converge or that an exact solution 

may not be found, but further research [87] shows how loopy graphs would still converge to 

“surprisingly good” approximate solutions even in the presence of many small loops. Loopy 

BP was able to optimise error-correcting codes such as low-density parity-check codes [88] and 

turbo decoding [89], although there remains a small risk of oscillation instead of convergence. 

Other extensions of BP include; generalised BP, which allows for larger regions to be 

considered in iterations for more accurate results and faster convergence, this is justified using 

a statistical physics concept called the “Kikuchi Approximation” which approximates the 

energy as the sum of all the energies of basic clusters, minus the energies of the over-counted 

intersections [90, 91], fractional BP which aims to acknowledge the cycles in the network, 

instead of computing as if there were none, by using a family of approximate free energies [92], 
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convex-concave procedure [93] which considers the objective function as a combination of 

convex and concave functions and plots the gradient of each one separately and calculates the 

next update accordingly, survey propagation [94, 95] which calculates approximate marginals, 

then iteratively assigns extreme probability values to variables to find satisfiable cases, affinity 

propagation [96] which establishes clusters by finding a suitable node to represent each cluster 

and has been successfully used to cluster images of faces, detect efficiently accessed airports 

and identify sentences in a manuscript. Message passing algorithms have been successful in 

finding good solutions in systems comprising of discrete variables such as; hard computational 

problems [97], error correcting codes [78, 98], probabilistic inference [99], Boltzmann tree 

structures [100] and real variable systems with a reduced number of parameters [101]. 

 

The aforementioned algorithms have typically concentrated on discrete variables. Work done 

on continuous messages includes using eigenfunction decomposition [102], expectation 

propagation which uses estimates of beliefs in terms of the mean and standard deviation until 

convergence [103] and Gaussian BP [104] which substitutes Gaussian distributions into 

continuous BP updates which has been used for machine learning [105] and connecting 

genotypes and phenotypes for greater understanding of underlying diseases [106]. Wong and 

Saad [75, 107] suggest a way of passing continuous messages which used edge variables. They 

suggest that instead of passing the full VFE function as a message, it can be accurately 

represented by its first and second derivative in the Taylor expansion if approximated by the 

Gaussian distribution. This is discussed in more detail in [76] and the results show that an exact 

solution can be found if the costs involved are of a quadratic form and the VFE assumes a 

Gaussian distribution; in other cases, where the VFE is not Gaussian, it still gives a good 

approximation. 

 

 

2.4 Message Passing with Continuous Variables  

 

2.4.1 Method  

Since the derivation of Wong and Saad [76] will feature highly in the remainder of the thesis, 

we will review it in greater detail. They assumed a network of 𝑁 nodes, each connected to 𝑐 

other nodes (though they suggested that 𝑐 does not have to be homogeneous) in a sparse 

network. The given information on the network is a capacity at each node, 𝛬𝑗, indicating the 

available resource (which can be positive or negative), the constraint is that each capacity needs 
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to be made non-negative by the directional flow of current, 𝑦𝑖𝑗, over edges to or from the nodes 

and the objective function is to minimise the cost of the flow of current, where the flow over 

the edges are the variables. It is a generic resource allocation problem. 

 

The energy function used takes the form: 

 

 𝐸 =∑𝒜𝑖𝑗𝜙(𝑦𝑖𝑗) +∑𝜓(𝛬𝑖, 𝑦𝑖𝑗|𝒜𝑖𝑗 = 1)

𝑖(𝑖𝑗)

, (45) 

 

where (𝑖𝑗) are all ordered pairs of nodes. The connectivity matrix 𝒜𝑖𝑗 = 1 if an edge exists 

between nodes (𝑖𝑗) and 𝒜𝑖𝑗 = 0 otherwise; 𝜙 is the transportation cost, which is a function of 

the current variable. In [76] they specifically looked at the case where 𝜙𝑖𝑗 =
𝑦𝑖𝑗
2

2
, but stressed 

that other objective functions could be considered; and indeed, some other types of functions 

were studied as well. The function 𝜓 represents the performance cost; and this was considered 

to be a constraint, e.g., 𝜓 = lnΘ(∑ 𝒜𝑖𝑗𝑦𝑖𝑗 + 𝛬𝑗𝑖 ) where Θ(•) is the step function that returns 

0 if • is negative, and 1 otherwise. The capacity of node 𝑗 is 𝛬𝑗, this is a quenched variable, i.e., 

a given disorder variable, which indicates the demand or generation level (positive for 

generators, negative for consumers). Giving the condition: 

 

 ∑𝒜𝑖𝑗

𝑖

𝑦𝑖𝑗 + 𝛬𝑗 ≥  0, (46) 

  

which demands that all nodes in the network will be satisfied; the constraint sums only the 

power sent along edges from neighbouring nodes to node 𝑗, and this total must be larger than 

or equal to the demand or smaller than or equal to the production at each node to satisfy the 

constraint.  

 

Using the “locally” tree-like assumption, the free energy can be calculated recursively by 

considering at each point the free energy associated with node 𝑗, depending on the outgoing 

current 𝑦𝑖𝑗 and the tree below that node. 
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𝐹(𝑦𝑖𝑗|𝐓𝑗) = −𝑇 ln {∏(∫ d 𝑦𝑗𝑘) Θ(∑𝑦𝑗𝑘 − 𝑦𝑖𝑗 + 𝛬𝑗

𝑐−1

𝑘=1

)

𝑐−1

𝑘=1

×exp [−𝛽∑[𝐹(𝑦𝑗𝑘|𝐓𝑘) + 𝜙(𝑦𝑗𝑘)]

𝑐−1

𝑘=1

]}. 

 

(47) 

 

The VFE of 𝑦𝑖𝑗 describes the contribution to the free energy at a vertex 𝑗. Analysis using the 

Bethe approximation [108] and replica symmetry [107] result in similar expressions for the 

VFE: 

 

 

𝐹𝑉(𝑦𝑖𝑗|𝐓𝑗) = −𝑇 ln {∏(∫ d 𝑦𝑗𝑘)Θ(∑𝑦𝑗𝑘 − 𝑦𝑖𝑗 + 𝛬𝑗

𝑐−1

𝑘=1

)

𝑐−1

𝑘=1

×exp [−𝛽∑[𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘) + 𝜙(𝑦𝑗𝑘)]

𝑐−1

𝑘=1

]}

+ ⟨𝑇 ln {∏(∫ d 𝑦𝑗𝑘) Θ(∑𝑦𝑗𝑘

𝑐

𝑘=1

𝑐

𝑘=1

+ 𝛬𝑗)× exp [−𝛽∑[𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘) + 𝜙(𝑦𝑗𝑘)]

𝑐

𝑘=1

]}⟩

𝛬𝑗,

 

(48) 

 

where 〈•〉𝛬𝑗 is the ensemble average of • with respect to 𝛬𝑗. At zero temperature Equation (48) 

reduces to: 

 

 

𝐹𝑉(𝑦𝑖𝑗|𝐓𝑗) = min
{𝑦𝑘| ∑ 𝑦𝑗𝑘−𝑦𝑖𝑗+𝛬𝑗

𝑐−1
𝑘=1 ≥0}

[∑[𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘) + 𝜙(𝑦𝑗𝑘)]

𝑐−1

𝑘=1

]

− ⟨ min
{𝑦𝑘| ∑ 𝑦𝑗𝑘+𝛬𝑗

𝑐
𝑘=1 ≥0}

[∑[𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘) + 𝜙(𝑦𝑗𝑘)]

𝑐

𝑘=1

]⟩

𝛬𝑗.

 

(49) 

 

The VFE is a continuous function and message passing is typically employed for systems with 

discrete variables. It was suggested [76] that if the VFE is Gaussian, then the first and second 

derivatives of the function would be sufficient to pass as messages instead of the full function, 

effectively expressing the first two terms of the Taylor expansion. If the VFE is not Gaussian, 

an approximate solution can be found. Therefore, to optimise the VFE we can utilise the Taylor 

expansion of the VFE, around a small adjustment, 𝜀𝑗𝑘, about 𝑦𝑗𝑘: 
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 𝑉 =∑𝒜𝑗𝑘

𝜕𝐹𝑉
𝜕𝑦𝑗𝑘

𝜀𝑗𝑘 +
1

2
∑𝒜𝑗𝑘𝒜𝑗𝑙

𝜕2𝐹𝑉
𝜕𝑦𝑗𝑘𝜕𝑦𝑗𝑙𝑘≠𝑖

𝑙≠𝑖 

𝜀𝑗𝑘𝜀𝑗𝑙 +⋯

𝑘≠𝑖

, (50) 

 

with a quadratic objective function, 𝜙 = ∑ (
𝑦𝑗𝑘
2

2
)𝑗𝑘 , any derivative of 𝜙 with respect to a 

variable  𝑦𝑗𝑎, gives 
𝜕𝜙

𝜕𝑦𝑗𝑎
= 𝑦𝑗𝑎; which is variable specific to the derivative. A second derivative 

will give: 
𝜕2𝜙

𝜕𝑦𝑗𝑎
2 = 1, or 

𝜕2𝜙

𝜕𝑦𝑗𝑎𝜕𝑦𝑗𝑏
= 0 if 𝑎 ≠ 𝑏. Therefore, any summation where 𝑘 ≠ 𝑙 returns 

zero. The authors demonstrate that a quadratic function results in an exact solution as the VFE 

can be written precisely in terms of its first and second derivative, but that other objective 

functions can be optimised and give an approximate solution [76]. 

 

The component of the VFE that corresponds to the conditional probability message from 𝑗 to 𝑖: 

 

 𝐹𝑖𝑗 =∑𝒜𝑗𝑘 [(𝐴𝑗𝑘 + 𝜙𝑗𝑘
′ )𝜀𝑗𝑘 +

1

2
(𝐵𝑗𝑘 + 𝜙𝑗𝑘

′′ )𝜀𝑗𝑘
2 ]

𝑘≠𝑖

, (51) 

 

where 𝐴𝑗𝑘 =
𝜕𝐹𝑗𝑘

𝜕𝑦𝑗𝑘
, 𝐵𝑗𝑘 =

𝜕2𝐹𝑗𝑘

𝜕𝑦𝑗𝑘
2 , 𝜙𝑗𝑘

′ =
𝜕𝜙

𝜕𝑦𝑗𝑘
 and 𝜙𝑗𝑘

′′ =
𝜕2𝜙

𝜕𝑦𝑗𝑘
2 . Under the constraint that all nodes 

need to be satisfied (non-negative) according to all the resource coming in, any going out and 

any resource that the node starts with:  

 

 ∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + 𝛬𝑗
𝑘≠𝑖

≥ 0,  (52) 

 

which will be considered using the Lagrange multiplier 𝜇𝑖𝑗. This function can be optimised to 

find 𝐴𝑖𝑗, 𝐵𝑖𝑗 which are the messages passed to the ancestor node, 𝑖. Additional messages for the 

adjustments  𝑦𝑗𝑘 ⟵ 𝑦𝑗𝑘 + 𝜀𝑗𝑘 are passed to the descendants. 

 

Differentiating the localised component of the VFE, and a Lagrange multiplier 𝜇𝑖𝑗 which 

incorporates the constraint, by 𝜀𝑗𝑘 and making this equal to zero gives: 

 

 𝜀𝑗𝑘 = −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ . (53) 

 

Introducing the constraint as a Lagrange multiplier 𝜇𝑖𝑗 the optimal solution is given by:  
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 𝐹𝑖𝑗
∗ =

1

2
∑𝒜𝑗𝑘

𝑘≠𝑖

𝜇𝑖𝑗
2 − (𝐴𝑗𝑘 +𝜙𝑗𝑘

′ )
2

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ , (54) 

 

where,  

 

 𝜇𝑖𝑗 = min

[
 
 
 
 

 

∑ 𝒜𝑗𝑘𝑘≠𝑖 (𝑦𝑗𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ ) − 𝑦𝑖𝑗 + 𝛬𝑗

∑ 𝒜𝑗𝑘𝑘≠𝑖
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′

, 0

]
 
 
 
 

. (55) 

 

The derivatives of 𝐹𝑖𝑗
∗  with respect to 𝑦𝑖𝑗 lead to the forward messages 𝐴𝑖𝑗  and 𝐵𝑖𝑗 from node 𝑗 

to 𝑖: 

 

 𝐴𝑖𝑗 ← −𝜇𝑖𝑗, (56) 

   

 
𝐵𝑖𝑗 ←

Θ(−𝜇𝑖𝑗 − 𝜖)

∑ 𝒜𝑗𝑘𝑘≠𝑖
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′

, 
(57) 

 

where 𝜖 is a small positive number. Note that in passing these when the descendant currents 

change continuously, both (54) and (55) also change as functions of 𝜙(𝑦𝑖𝑗) and its first and 

second derivatives.  

 

As the messages are simplified to 𝐴 and 𝐵, each node estimates the optimal current by 

approximating the VFE as a quadratic function. The remaining step is the determination of the 

drawn current 𝑦𝑖𝑗 at which the derivatives should be computed. Determining this working point 

is achieved by passing additional information-provision messages among the nodes, a step not 

present in conventional message passing algorithms.  

 

One method proposed is, that when the messages are sent from 𝑗 to 𝑖, backward messages 𝑦𝑗𝑘 

computed from the same optimisation steps are sent from 𝑗 to the descendants, informing them 

of the particular arguments to be used for calculating subsequent messages. The backward 

messages are given by 𝑦𝑗𝑘 ← 𝑦𝑗𝑘 + 𝜀𝑗𝑘, or: 

 

 𝑦𝑗𝑘 ← 𝑦𝑗𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ . (58) 
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Alternatively, a forwards message could be sent to the ancestor and this is calculated by the 

energy difference from changing the edge 𝑦𝑖𝑗: 

 

 
𝐸𝑖𝑗 = 𝐴𝑖𝑗𝜀𝑖𝑗 +

1

2
𝐵𝑖𝑗𝜀𝑖𝑗

2 + 𝐴𝑗𝑖(−𝑦𝑖𝑗 − 𝜀𝑖𝑗 − 𝑦𝑗𝑖)

+
1

2
𝐵𝑗𝑖(−𝑦𝑖𝑗 − 𝜀𝑖𝑗 − 𝑦𝑗𝑖)

2
+ 𝜙𝑖𝑗

′ 𝜀𝑖𝑗 +
1

2
𝜙𝑖𝑗
′′𝜀𝑖𝑗

2 , 
(59) 

 

which, when optimised with respect to 𝜀𝑖𝑗 gives: 

 

 𝜀𝑖𝑗 =
−𝐴𝑖𝑗 + 𝐴𝑗𝑖 − 𝐵𝑗𝑖𝑦𝑖𝑗 − 𝐵𝑗𝑖𝑦𝑗𝑖 −𝜙𝑖𝑗

′

𝐵𝑖𝑗 + 𝐵𝑗𝑖 + 𝜙𝑖𝑗
′′ , (60) 

 

resulting in a forward current of 𝑦𝑖𝑗 ← 𝑦𝑖𝑗 + 𝜀𝑖𝑗, or: 

 

 𝑦𝑖𝑗 ←
𝑦𝑖𝑗𝐵𝑖𝑗 + 𝑦𝑖𝑗𝜙𝑖𝑗

′′ − 𝐴𝑖𝑗 + 𝐴𝑗𝑖 − 𝐵𝑗𝑖𝑦𝑗𝑖 − 𝜙𝑖𝑗
′

𝐵𝑖𝑗 + 𝐵𝑗𝑖 + 𝜙𝑖𝑗
′′ . (61) 

 

Both work well for the quadratic cost function. 

 

The updates of currents 𝑦𝑖𝑗 and 𝑦𝑗𝑖 in opposite directions of the same link allows one to use the 

criteria 𝑦𝑖𝑗 = −𝑦𝑗𝑖 to check for convergence. To test for the algorithms convergence, one 

requires 𝑦𝑖𝑗 + 𝑦𝑗𝑖 to be less than a given threshold. The information-provision messages are 

also useful for monitoring the optimal cost function during simulations. 

 

Using this message passing framework as a distributed optimisation algorithm was effective 

even on loopy networks. It has been found that the computational complexity increases with 

order 𝒪(𝑁 ln𝑁) in relation to the system size 𝑁, allowing the technique to find a global 

approximate solution within a reasonable time-scale, even for large networks. It has also been 

established that at the zero-temperature limit and with a quadratic objective function, the 

general VFE would be a piecewise quadratic with continuous slopes which allows for precise 

approximations and that the distribution in a network depends largely on the availability within 

the network and only loosely on the connectivity. In addition to message passing algorithm, 

Wong and Saad also considered the Kuhn-Tucker optimisation method which resulted in a 

similar algorithm to the message passing approach when considering a quadratic objective 
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function. The method gives solutions identical to the price iteration algorithm, based on 

recurrent corrections with respect to the objective function, which typically converges to a 

minimum, as long as the network is sparse. We can verify that at the steady state, 𝜇𝑖𝑗 = −𝜙𝑗𝑘
′ −

𝐴𝑗𝑘 for all 𝑘 ≠ 𝑖, using Equation (58).  

The second order does not play a part in the final solution but does help for a faster convergence. 

Wong and Saad find that the algorithm works well even on small networks and large well 

connected graphs. 

 

Note: The method used throughout the thesis will aim to satisfy consumer requirements of 

sufficient resource in and electrical grid. From Section 2.4.4 flow over edges and resource at 

capacities will be considered in terms of power. In real electricity networks, Kirchhoff’s Law 

states that the sum of all power must be equal to zero; in the analysis outlined below we will 

assume that any excess power either identifies power that the generator does not need to 

produce, or that can be lost through affine control (the primary and secondary control steps). 
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2.4.2 Flowchart of message passing process  
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2.4.3 Further Work on Continuous Message Passing  

Other practical components of resource allocation include limiting flow over edges, considering 

resistance, softening constraints and being comparable to existing leading techniques. [109] and 

[110] show how this continuous message passing framework can accommodate such 

components.  

 

Bandwidth 

Bandwidth on an edge is the upper bound of current allowed to flow over the edge at any given 

time, in either direction. It can be applied to many real-life network problems, including; liquid 

through a pipe, vehicles on a road and power through a power line. Considering bandwidth in 

a network optimisation problem introduces discontinuous curves and this impacts on the 

differentiability of terms like  
𝜕𝐹𝑖𝑗

𝜕𝜇𝑖𝑗
 at the cusp points. We will now describe the method 

suggested for considering bandwidth within a message passing algorithm [109]. 

 

Expanding upon the algorithm explained in Section 2.4, an explicit bandwidth constraint must 

be added: 

 

 −𝑊 ≤ 𝑦𝑗𝑘 + 𝜀𝑗𝑘 ≤ 𝑊, (62) 
  

where 𝑊 represents the maximum amount of current allowed to pass over any edge at any given 

time. The left-hand side of the inequality is due to the directional nature of 𝑦𝑗𝑘, and the 

bandwidth is required to limit the adjusted current, 𝑦𝑗𝑘 + 𝜀𝑗𝑘; not just 𝑦𝑗𝑘. 

 

Given the previous derivation (35) this can be rearranged as: 

 

 𝑦𝑖𝑗 − 𝛬𝑗 =∑𝒜𝑗𝑘

𝑘≠𝑖 

max [−𝑊,min [𝑊, (𝑦𝑗𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ )]]. (63) 

 

Using this, we can calculate the value of 𝜇𝑖𝑗 by the intersection of the left-hand side with the 

piecewise linear graph representing the right-hand side of (63), as seen in Figure 2.11.  
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Figure 2.11 The piecewise linear representation of Equation (63). 

 

Where the downward kinks happen when: 

 

 𝑊 = 𝑦𝑗𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ , (64) 

  

and the 𝑥-coordinates at the point of downward kinks are: 

 

 (𝑦𝑗𝑘 −𝑊)(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ ) − 𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ , (65) 
 

and for similar reasons the upwards kink 𝑥-coordinates are at: 

 

 (𝑦𝑗𝑘 +𝑊)(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ ) − 𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ . (66) 
 

These are then rearranged into ascending order, and the 𝑦-coordinates can be calculated by: 

 

 𝑦1 = ∑𝒜𝑗𝑘

𝑊

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′

𝑘≠𝑖 

, (67) 

 

 𝑦2 = 𝑦1 + 𝜂1(𝑥2 − 𝑥1), (68) 
 



75 

 

 𝑛 = 𝑦1 − (∑𝜂𝑟𝑥𝑟

𝑛−1

𝑟=1

) + 𝑥𝑛 (∑𝜂𝑟

𝑛−1

𝑟=1

), (69) 

 

 𝑦2𝑁 = −∑𝒜𝑗𝑘

𝑊

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′

𝑘≠𝑖 

, (70) 

 

where 𝜂𝑛 = −
1

𝐵𝑗𝑘+𝜙𝑗𝑘
′′  for downward kinks, or 𝜂𝑛 = +

1

𝐵𝑗𝑘+𝜙𝑗𝑘
′′  for upward kinks.  

 

Once a value for 𝜇𝑖𝑗 is found, the algorithm follows the same steps as Section 2.4, but with the 

adjustments of: 

 

 
𝐵𝑖𝑗 ←

Θ(−𝜇𝑖𝑗 − 𝜖)

∑ 𝒜𝑗𝑘𝑘≠𝑖
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ Θ(𝑊 − |𝑦𝑗𝑘 + 𝜀𝑗𝑘|)

, 
(71) 

 

and, 

 

 𝑦𝑗𝑘 ← max [−𝑊,min [𝑊, (𝑦𝑗𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ )]]. (72) 

 

The algorithm can now limit any |𝑦𝑗𝑘| value so that it does not exceed 𝑊. 

 

Soft Constraints 

An increase in hard constraints within a network may result in the optimisation problem being 

unsatisfiable. For example, [109] found that in certain networks, the introduction of bandwidth 

resulted in bottleneck scenarios; this is where all possible routes to a section of the network are 

limited as all connected edges have maximised their bandwidth limits, but some nodes remain 

unsatisfied because the two hard constraints are conflicting. This can be mitigated by softening 

constraints so that the network can still reach a minimum. To accommodate unsatisfied 

demands, an additional variable 𝜁𝑗  was introduced, making the inequality (23), in the presence 

of a correction 𝜀𝑗𝑘, an equality. The variable 𝜁𝑗  represents any deficit at node 𝑗 and is determined 

at each iteration by the state of each node once adjusted current values are injected and sent 

from the node. 
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 ∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) + 𝛬𝑗 − 𝑦𝑖𝑗 + 𝜁𝑗 = 0

≠𝑖 

. (73) 

 

The algorithm then aims to minimise the overall deficit in the network by an additional 

objective function ∑ 𝜁𝑗
2

𝑗 .  

 

Resistance 

The work also included adding a homogeneous resistance value 𝑅 to the distribution cost 𝜙, 

which remains as a constant on the function throughout the algorithm. 

 

Comparing message passing with quadratic programming 

Work done in [110] compares this message passing method with a quadratic programming 

algorithm for a quadratic cost function; results show that they are both able to minimise the 

objective function efficiently, and that although quadratic programming requires less iterations 

for an optimised system for a selection of network sizes, connectivity’s, network wealth (the 

networks average capacity) and converges to a steady state faster, the difference is minimal and 

one can highlight that message passing is more adaptable and relies less on assumptions, while 

finding solutions equivalent to leading optimization techniques.  

 

2.4.4 Adapting Continuous Message Passing to the Electrical Grid  

The reasons message passing is well suited as a distribution method for power flow are its 

distributive nature, its probabilistic framework that can accommodate volatile production and 

demand and its modest increase in computational complexity with the system size; this enables 

one to find global optimal solutions within a reasonable amount of time, even on large-scale 

non-convex networks. The method is adaptable and allows for different objectives to be 

minimised, such as generation costs and power loss. It can consider constraints such as the 

power flow equations and bandwidths on power lines, and message passing is suited well to 

sparse networks such as those of power networks. With the increase in renewable generators 

adding uncertainty into the network, this probabilistic method may be able to inherently 

consider these uncertainties to provide a more robust, reliable network. However, this message 

passing method was developed as a generic resource allocation technique and in order to use it 

within power networks, it is necessary to discover and understand its capabilities in terms of 

power flow, e.g. power flow equations, adjusting voltages, considering the costs of generation 

and adding generation limits, as well as making the program appropriate for power grid 

topologies and considering failures.  
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A power grid is a combination of power stations, substations and consumers. In our model these 

can be considered as network nodes and the power lines linking them are considered to be 

edges. We are assuming the power grid to be sparsely connected, and that each node, 𝑗, has its 

own capacity, taking either positive (generators) or negative (consumers) values of 𝛬𝑗. The aim 

of the optimisation is to make all the capacities positive or zero by passing power through edges 

to each node (this provides each consumer with sufficient power and prevents generators 

providing more power than they are able to generate), as well as minimising the quadratic cost 

of distribution along each edge. We will consider a simple network with 𝑁 nodes, each 

connected to 𝑐 others via edges, and power passed over an edge is our directional variable, 𝑦. 

A general formulation can accommodate heterogeneous connectivity. Appendix B gives a 

review on which synthetic network model best suits the topology of an electrical grid. 

 

My goal in this thesis is to demonstrate some of the capabilities of message passing for use 

within electricity grids. The optimisation problem is considered to be static, where each 

optimisation problem is solved and then applied; it is not a dynamic approach that adjusts power 

flow in real-time, and therefore the time delay of passing messages is not problematic, nor is 

the time-delay of turning up generators.  

 

2.4.5 Continuous Message Passing and the Interior Point Method  

We will discuss the ability of message passing in comparison to other existing optimisation 

techniques. As mentioned in Section 0 work has been done on comparing a simple message 

passing algorithm with quadratic programming [110] on a simple network, which found that 

message passing was able to converge to equivalent optimal solutions, and the number of 

necessary iterations for convergence according to system size, connectivity and wealth of 

network were found to be higher than quadratic programming, but scaled similarly.  

 

We compare the proposed continuous message passing with the interior point method via a 

professionally coded program called Matpower [38] to find if it can optimise the network to a 

similar standard, and at what computational cost. For these comparisons, each method considers 

only transportation costs and aims to satisfy each nodes power demand. Figure 2.12 shows the 

change in transportation cost as 𝑁 increases, calculated using message passing (MP - black) 

and the interior point method (IPM - red) for 𝑐 = 5, 7 and 10 (for 𝑐 = 10 we only tested larger 

networks with 𝑁 ≥ 40 to reduce the likelihood of small loops) on a simple network with no 

fluctuations or leaf nodes. Comparing the performance of continuous message passing against 
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the interior point method under simple conditions, we find that both methods return exactly the 

same costs. Figure 2.13 indicates the average time taken (in seconds) to optimise the networks 

from Figure 2.12 as 𝑁 increases. The figure shows that message passing takes longer and 

increases linearly with the system size, while the computing time interior point method remains 

small. The approximate linear increase in computational cost with the system size is consistent 

with the analysis and since we advocate message passing as a method for economic dispatch at 

the 15-60 minute time-scale it remains a competitive method that converges in seconds. We 

also expect that the message passing algorithms code could be optimised to reduce the 

associated computational time. The professionally coded Matpower program has a reduced 

computation time but is less flexible in the type of objective functions and uncertainties it can 

accommodate, computational cost is likely to grow for more complex scenarios and initial and 

termination criteria are sensitive. The main advantage of the message passing method is in its 

flexibility, its ability to accommodate different objective functions, uncertainties and 

constraints, and the potential of the method to consider the probabilistic nature of elements such 

as renewable sources. 

 

 

Figure 2.12 Line graph of the cost of distribution 

for increasing 𝑁 when using a message passing 

algorithm (black) and the interior point method 

(red) algorithm from the Matpower program [38], 

for different connectivity’s on a simple network 

without fluctuations [111]. One fifth of nodes are 

generators with 𝛬 = 10, two fifths are consumers 

of 𝛬 = −3 and the rest are substations of 𝛬 = 0. 

The two trends follow the same path and appear 

as one line. © Creative Commons Licence, DOI: 

10.1016/j.egypro.2016.12.139. 

 

Figure 2.13 The average time taken to run simple 

networks from Figure 2.12 for increasing 𝑁 

using a message passing algorithm (black) and 

the interior point method (red) algorithm, for 

different connectivity’s [111].  

© Creative Commons Licence, DOI: 

10.1016/j.egypro.2016.12.139. 
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3 Fluctuations  

3.1 Introduction  

 

3.1.1 Uncertainty  

Electricity grids have always had some element of uncertainty due to volatility in consumer 

demand but now additional uncertainties from renewable energy sources should be considered. 

This section looks to understand and accommodate these uncertainties within a power 

distribution scheme. If the generation or demand of a node is uncertain, predictions are needed 

to plan for an effective power distribution. However, predictions cannot be deterministic and 

their full distribution is required. Uncertainty in consumption and demand is a problem since 

controllable power stations are made to generate exactly the right amount of power, matching 

the predictions of consumption and power stations generation (point forecasting); if the 

renewable power stations fall short of these predictions, there may not be sufficient power to 

satisfy all consumers. Therefore, one way to avoid this is to consider how uncertain the 

renewable sources are (interval forecasting) and generate extra power at controllable power 

stations accordingly to compensate for shortcomings; this is called reserve power. Uncertainty 

about consumer consumption (load) can also be compensated by reserve power, which is able 

to provide them with extra power if needed. Although this may appear counterintuitive - to 

generate more power to compensate for uncertain generators creating power - the reserve 

required to mitigate the effects of uncertainty will be much smaller than the power generated 

by uncertain generators; any extra reserve required from controllable sources such as fossil 

fuels will be smaller than what would be required had the renewable generators not been 

available. Reserve power given at the economic dispatch stage will be lost through heat, or 

could be stored in batteries at the primary and secondary control stages. 

 

Consumers 

Of the 359,905 GW/h of electricity generated in the UK in 2014, around 28,387 GW/h was 

reused in energy production and a similar amount of 28,651 was lost [112] (Figure 3.1); the 

remaining 302,867 GW/h were consumed. Figure 3.2 shows the amount used for different 

purposes, this works out to be 108,324 GW/h domestically, and is expanded to show a pie chart 

of average usage within the home. Consumers require the ability to use electricity on demand, 

whenever they see fit and this leads to volatility in demand. There are predictions for the 
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consumer consumption of energy (load) based on many things; e.g. time of day, week or year, 

events and weather. 

The curve of power consumption over a typical day can be seen in Figure 3.3, and the brown 

line in Figure 3.4 shows the consumption pattern over a year (this is almost opposite to warmer 

countries; in winter the UK use extra electricity on heating, whereas in the summer the US use 

extra electricity on air conditioning). 

The error distribution with respect to consumption forecast can be seen in Figure 3.5; according 

to [113] plotted against a normal distribution of mean  𝜇 = −0.002, standard deviation 𝜎 =

0.026. Analysis shows that there is a skewness to the right, 𝛾 = 0.715 and the histogram is 

narrower, taller and has fatter tails, 𝜅 = −4.725, when compared to the normal distribution. In 

reference [114] it is suggested that distribution may fit with a Hyperbolic tangent.  

 

 

Figure 3.1 Pie chart of the amount of power 

retained for energy generation, lost and used in 

consumption [112]. 

 

 

Figure 3.2 Pie chart of what the UK uses in consumption [115]. 
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Figure 3.3 Average curve of power load over one 

day [116]. 

 

Figure 3.4 Power generation by wind over a year, 

per month [117]. Wind output as a percentage of 

capacity (blue bars) and total demand as a 

percentage of peak (brown line). 

 

 

Figure 3.5 Load error distribution compared to a normal distribution (black line) [113]. Reprinted 

with permission of the National Renewable Energy Laboratory, from 

http://www.nrel.gov/docs/fy12osti/54384.pdf, accessed on 5th April 2017. 

 

Renewable Energy Generators-Onshore wind turbines 

According to [21] there are 5,809 onshore turbines with an operational capacity of 9,571 MW. 

It is the most commonly used renewable generator source in the UK because of its technological 

advances and government incentives [118]. Despite the advances in technology, we still must 

rely on wind predictions to determine our expected generation. The probability distribution of 

wind is a Weibull distribution according to [119] and Figure 3.9, and Figure 3.8 shows an 

example of the distribution of wind in Birmingham, UK, which appears to match this model. 

Although wind does vary in predictive patterns over hours (Figure 3.6), and even months 

(Figure 3.7 and Figure 3.4), it cannot be predicted with 100% accuracy; for a given time, wind 

speed is predicted by calculating the raw data from NWP (numerical weather prediction) and 

considering many factors such as, the placement of the wind turbines within an area, the 
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surrounding area and its terrain, the amplitude, time of day, dispersion and shadowing effects. 

Once the wind speed is predicted, this can then be translated into a value for wind power using 

a power curve, shown in Figure 3.10.  

 

An accurate prediction of the power generated has significant economic benefits as recognised 

by Hodge and Milligan [120]: “More accurate wind power forecasts can lead to economic 

efficiency in the unit commitment and dispatch process, as fewer reserves must be kept or 

deployed to compensate for changes in the wind power output”. The problem with volatile 

energy generators is that one must rely more heavily on reserves to make up for possible lower-

than-expected contributions; this increases operational costs which leads to increased final 

energy prices and environmental impact. According to [40], 10% of annual production is lost 

by wind power prediction error costs. 

 

The wind speed error distribution according to Lange [121] is Gaussian, [122] also look at the 

error distribution with respect to forecasted wind speeds and found it to be a truncated normal 

distribution. 

 

 

Figure 3.6 Mean wind speed over a 24-hour period 

[123]. 
 

Figure 3.7 Wind speed over a 12-month 

period in Birmingham averaged from 2000 

to 2010 [124]. 

 

Figure 3.8 Histogram of wind speeds in Birmingham 

from 2000 to 2010. 𝑦-axis is percentage of time, 𝑥-axis 

is meters per second [125]. 

 

Figure 3.9 Weibull Wind Distribution [126]. 
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Any error in the estimation of the wind speed will also be transferred to power generation 

through this power curve. For example, a small mid-speed wind error when relayed through the 

power curve will amplify the deviation. Alternatively, a small high-speed wind error will 

translate to a small deviation in wind power output as can be seen in Figure 3.10 and Figure 

3.11 which show how the Gaussian error distribution of wind speed may of been skewed by the 

power curve, and therefore the wind power error distribution may not be Gaussian or Weibull. 

[127] tells us that a single wind power plant with a forecast of one hour can achieve 

approximately 15 - 20% mean absolute error relative to the capacity of the plant (load forecast 

errors are around 1-3%). 

 

 

Figure 3.10 Power curve [128]. Representing the 

power (in kilowatts) output for the wind speed 

(m/s).   

 

Figure 3.11 How a change in wind speed 

changes the shape of the power output 

distribution [121]. 

 

Many papers have assumed a Gaussian error distribution [129, 130, 131, 132]. Papers [133, 

134] talk of the error distribution with respect to forecast being Beta due to the translation of 

the wind speed error probability density function through the power curve. They also suggest 

that a limit of [0,1] is better than the infinite limit of a Gaussian because the power output of a 

wind turbine is between zero and its maximum capacity (which can be normalised to 1). 

However, [134] admits that the kurtosis is still too small with a Beta distribution and also 

highlights that for an accurate confidence interval to be found, the tails need to be the most 

precise. [120] look at the possibility of the power output distribution being Cauchy, they 

consider this over many different time intervals and show that it gets closer to the Gaussian the 

longer the time from forecasting, but for tertiary control which is between 15 minutes and an 

hour a Cauchy distribution seems to be the most accurate, as the kurtosis seems very large 

(leptokurtic) at smaller time-scales. According to [120], Cauchy is 16-36% a better fit than 

Beta, in 95% of the cases in terms of the optimised log likelihood values. Clearly, “If forecast 
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errors are in principle unavoidable it is at least good to know as precisely as possible when and 

how they occur” [121]. 

  

The scale of the number of wind turbines is also a factor. If there is a large group of wind 

turbines the error distribution of power generated appears to follow a normal distribution, 

whereas if it is just the one, this appears to best fit a Cauchy distribution [135].  

 

Renewable Energy Generators-Offshore Wind Turbines 

The UK has been the world leader in offshore wind since October 2008, with more installed 

capacity than any other country [21]. Although less than onshore, the UK has 1,465 turbines 

and a total operational capacity of 5,097 MW. Industry suggests that by 2020 it will be powering 

10% of the UK's electricity annually. The distribution of offshore windfarm production is also 

Weibull, but with a higher mean, depending on its positioning (Figure 3.12). Most papers talk 

of wind power error distribution without specifying whether it is on or off-shore, but the wind 

speed distribution is the same, and the power curve is similar; therefore, we can assume this has 

the same error distribution as onshore wind power. 

 

 

Figure 3.12 The Weibull distribution of onshore, and offshore wind power [136]. 
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Renewable Energy Generators-Solar Panels 

Solar radiation above the clouds can be confidently predicted, but the atmospheric conditions 

such as clouds and dust storms make it less predictable at ground level [137]. Average solar 

power distributed over a day, and a year can be seen in Figure 3.13 and Figure 3.14. Positioning 

can also be a large factor, for example, Figure 3.15 shows where in the UK gets the highest 

sunshine duration, and the direction the panels face can also effect the power output. Arthur 

[138] gives a probability density function of solar irradiance in Ghana, suggesting that the more 

constant year round probability density function possibilities are exponential, Weibull or 

Gamma (Figure 3.16). 

 

 

Figure 3.13 Solar Generation over a day for each 

season [139]. 

 

Figure 3.14 Solar Generation over 1 year [139]. 

 

 

Figure 3.15 Annual average sunshine duration in hours over the UK from 1971-2000 [140]. © Crown 

copyright, Met Office, [2017]. 
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As solar power generation depends on the clearness of the sky, if the skies are clear the 

probability of error is small; the error depends on the Clearness index, Figure 3.17. The error 

distribution of solar power has not been well studied, but [141] suggests it fits a Hyperbolic 

distribution well. 

 

 

Figure 3.16 Histogram of the probability density 

function of solar irradiance in Ghana in April [138]. 

 

Figure 3.17 Clearness index [137]. © 

Academic Press 2014. 

 

In the future, predictions of wind power, consumers and solar power will become more accurate 

and uncertainty will become less problematic in the electricity industry. Until then, we will be 

considering how to maximise the reliability of a power grid that contains volatile generators. 

This thesis considers uncertainties as Gaussian to best include consumers, wind turbines and 

solar power distributions, but with the expectation that the message passing method could also 

consider other distributions. 

 

3.1.2 Fluctuations  

As well as uncertainty about the amount of power generated for the next time-interval, during 

each time interval the amount of power produced will also be changing with some uncertainty. 

We call these fluctuations; the uncontrollable variations around the predicted estimates of 

generation over each time interval. This is a problem for power grids because every millisecond, 

power distribution is corrected so that consumers will receive the correct amount of electricity. 

For a moment during the 15-60 minute interval a renewable source may produce less than its 

average and a consumer may use more than the average value. Primary and secondary control 

accounts for this at second to second timescales, but it needs to be considered first within 

tertiary control so the reserve power will be available. [142] suggests that short term wind 

fluctuations follow the Weibull distribution, consistent with the long-term distribution of wind. 

Fluctuations can be dealt with in the same manner as uncertainty, by assigning a distribution of 
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the expected level of fluctuation; this will provide extra reserve to nodes according to their level 

of fluctuation to accommodate for smaller generation (or higher demand) during the time frame. 

Fluctuations in generation can be considered simultaneously with uncertainty in forecasting, 

assuming they follow the same probability density function. This chapter will assume Gaussian 

distributions for fluctuations so that they can be encompassed within the uncertainty 

distribution. An additional problem is that fluctuation within networks results in fluctuations 

over power lines. If power line limits have already been reached, excess power flowing through 

lines because of fluctuations may overheat them and could result in tripping. 

 

 

3.1.3 Problem  

An electricity grids biggest priority is the reliability of the network. With fluctuations and 

uncertainty from renewable generators and consumers increasing, this will become increasingly 

difficult to ensure. This chapter aims to suggest techniques that will increase the reliability of a 

network by providing additional reserve to volatile nodes. However, one problem with 

producing excess power to make uncontrollable sources reliable is that there cannot be excess 

power in a power grid. This is resolved by losing the power through power loss (heat) and 

reactive power. These are controlled through changes in frequency, voltage magnitudes and 

phases. Power loss is inefficient, and economically and environmentally wasteful so a good 

method of power distribution will look to minimise the amount of power lost while maintaining 

reliability.  

 

3.1.4 Other Methods  

Before introducing the message passing methods we advocate as being highly suitable for the 

task at hand, we will review existing and suggested methods to address the power distribution 

in the fluctuative grid. Section 1.6 addresses the existing optimal power flow methods without 

specifically considering fluctuations; the following methods are adapted from these, or 

alternative methods which look to include the problem of fluctuations. Efforts already being 

made to consider the increased fluctuations and volatility of power grids with renewable 

sources, and how to make this more reliable include: 

 

F1. Chance Constrained Optimal Power Flow (CCOPF) [143] - suggests that the problem 

of increased volatility in the power grid can be addressed by changing the constraints of 

the current OPF from hard to “satisfiable within a certain probability”. It requires each 

constraint to be satisfied within a certain probability according to work done by [144]. 
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Some examples of this can be seen in [145, 143] which specifically concentrate on the 

fluctuations of wind farms in an electricity grid. This method is relatively new and 

simulations are not yet entirely compatible with an AC real grid; for example, it is not 

yet able to consider active power loss. These methods only consider uncertainty 

heuristically and superficially without inherently incorporating the probabilistic nature 

within the algorithmic framework. Reference [145] assumes a Gaussian distribution for 

the fluctuations but also considers how accurate this would be in the case of other 

distributions and finds that it was least accurate if the real distributions were 

asymmetric. Reference [143] concentrates on line bandwidths and states that they 

should be satisfiable within a certain probability; allowing the power flow to exceed the 

bandwidth limits, but only as long as the breach is not for too long (otherwise 

overheating and tripping may occur). This raises concerns as to whether repeated 

overheating levels to maintain the balance in the short term may result in longer term 

issues. CCOPF uses a sequential linear cutting place algorithm. The method only makes 

minimal changes to current OPF methods; preliminary results highlight the advantages 

of real-life implementation costs and usability. Results also show CCOPF to be only 

slightly slower the standard methods of economic dispatch. And testing showed that it 

was able to provide cheaper alternatives to standard OPF in cases of high penetration of 

renewables and works better than adding buffer values to the bandwidths of the line. 

However, they suggest that power grids cannot handle a penetration of renewable 

sources higher than 30% without an adjustment to the network, and considers the 

uncertainty only in the constraints used rather than the main method. It also uses the 

assumptions that wind farms are far enough away from each other that they can be 

deemed independent and so correlations are ignored. However, the increase of 

correlations between micro-grids in networks will increase and will need to be 

addressed. It is a convex deterministic approach which requires centralised optimisation 

and cannot be done locally. A related paper [145] develops on this work by removing 

the small phase angle assumption, which had made it a DCOPF instead of ACOPF, and 

deals with minimising the probability of the grid losing synchrony. They make the 

calculations convex by using arcsin and find that additional complexities arise.  

F2. Quantum Genetic algorithm (QGA) [146] developed upon the existing OPF method 

from numbered point A6 has been proposed for dynamic economic dispatch where the 

quantum probability encoding mechanism and the genetic algorithm increases the 

chance of finding the global optimum, they also suggest this can be improved by 

including a chaotic algorithm for the initial condition (CQGA). The method initialises 
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the population, encodes the power outputs into binary ‘chromosomes’ of information, 

individually measures the fitness of each object, uses a quantum rotation game to update 

each object and finally applies adjustments to ensure the solution is not at some local 

minima. Evolving ‘chromosomes’ allow for multiple states to be passed between 

generations and this large amount of information allows each update to be well 

informed. The algorithm is fast and treats wind power generation as a stochastic 

variable; they suggest that it is able to reduce costs. However, this is a heuristic 

algorithm and may be deficient in precision, also the binary coding may be 

oversimplifying the problem. 

F3. Distributed and Parallel Optimal Power Flow (DPOPF) [147] suggests using a mixture 

of recursive quadratic programming and the Lagrange projected gradient method to 

consider renewable energy at the transmission stage in real time. It sets the output of the 

renewable sources as fixed power inputs and includes fuel cost in their objective 

function in an attempt to reduce carbon emissions. The paper pictures the network as a 

supercomputer due to the processing units and high speed communications between 

buses, and uses directed bipartite graphs to control the computational synchronization. 

The method uses a quadratic approximation of the objective function and linearises the 

constraints, it splits the question into sub-problems and solves them in parallel in two 

steps, first solving the unconstrained minimisation problem, then dealing with the 

bounds. They use Armijo’s rule [148] (which aids in finding a suitable step size with an 

inequality equation based on the convergence theorem) to determine the step size to 

ensure a convergence and they pass information on the most updated generators in order 

to reduce computational speed. The method considered is very fast, but the quadratic 

and linear approximations may result in a suboptimal solution.  

F4. Other suggestions include using the Strength Pareto Evolutionary algorithm (SPEA) 

[149], which creates a hidden structure from the inputs; power demand, wind speed and 

solar radiance, and outputs of the power generated from wind and solar, power still 

needed, emissions and costs of generators. These are then used in the economic dispatch 

calculations. Ref. [150] describes wind as a discretised beta distribution to consider 

extreme conditions and [151] uses particle swarm optimisation from the numbered OPF 

method A7 and fuzzy adaptive technique, considers wind using a probability 

distribution and creates scenarios using a roulette wheel technique. These methods are 

heuristic and unprincipled, suggesting a compromise in accuracy and completeness.  
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3.1.5 Aim  

The aim of the derivation that follows is to devise an effective, distributive and computationally 

efficient algorithm to address the power dispatch problem in the presence of fluctuations using 

a message passing approach.  The derivation follows similar steps as Wong and Saad, but now 

considering that the capacity at each node is probabilistic and drawn from a Gaussian 

distribution (with a mean, 𝛬̅, representing the average expected capacity within a certain time 

frame, and a standard deviation, 𝜎, representing the estimated variation from the mean, 

representing the corresponding fluctuations and uncertainty at that particular node over the time 

frame). The reason this may be more suitable to power grids than existing methods is because 

the distribution can be considered inherently within the derivation instead of trying to get 

around them by introducing additional constraints. 

 

The method is based on deriving and approximating the free energy in the presence of 

uncertainties. To rewrite the free energy in the presence of uncertainties, it is possible to 

calculate the average free energy. The exhaustive method for deriving the average free energy 

looks at every scenario of possible combinations of actual values of capacity according to their 

probability distribution, and then takes the average of this with respect to the probability of each 

combination, this is called quenched averaging, and gives an exact result. However, calculating 

this can be complicated and it has been found that alternatively, deriving an annealed 

approximation, where the disorder manifested by the fluctuating generation and demand is 

treated at the same level as thermal averaging instead of after, results in a good approximate 

solution without the complex derivation. 

 

 

3.2 Annealed Approximation  

 

3.2.1 Method  

The reason for introducing the annealed approximation is the non-trivial calculations of the 

quenched average over the disorder, −𝑇〈ln 𝑍〉, are much more complex, where angled brackets 

represent averaging with respect to the fluctuating production and demand. Moreover, work 

done on some systems [152] suggests that the annealed approximation gives a good upper 

bound solution. To find the quenched average of the VFE requires the calculation; −𝑇〈ln 𝑍〉, 

but in the annealed approximation, is can be replaced by a simpler expression −𝑇 ln〈𝑍〉 at the 

cost of accuracy. 
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To implement an annealed approximation, the same zero-temperature VFE as in Equation (49) 

is used, and 𝐴𝑖𝑗 and 𝐵𝑖𝑗 still represent the first and second derivatives of 𝐹𝑖𝑗, respectively. 

Adjustments are now made to the constraint to accommodate the now fluctuating 𝛬; the new 

constraint bounds the probability of the total resource at a node being smaller than zero to less 

than a predetermined value, 𝜌𝑗. The probability of an unsatisfied node becomes: 

 

Pr (Θ [∑𝒜𝑗𝑘

𝑘≠𝑖

(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + 𝛬𝑗] = 1) > 1 − 𝜌𝑗      where     𝛬𝑗 = (𝛬�̅� , 𝜎𝑗
2), (74) 

 

with the possible outcomes of 1 and 0 if the node 𝑗 is satisfied or unsatisfied respectively. 

 

If we want a node to be satisfied 1 − 𝜌𝑗  of the time, assuming an independent distribution of 

𝑃(𝛬𝑗) for each 𝛬𝑗, this can be written as: 

 

 

⟨Θ [∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + 𝛬𝑗
𝑘≠𝑖

]⟩

𝛬𝑗

= ∫ Θ[∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + 𝛬𝑗
𝑘≠𝑖 

] 𝑃(𝛬𝑗)d𝛬𝑗

∞

−∞

> 1 − 𝜌𝑗 , 

(75) 

 

where 𝜌𝑗 is a small predetermined value to determine the case where the node may not be 

satisfiable (using an assumption that excess power is acceptable and we are only concentrating 

on meeting demand; as [129] explains there are downsides to excess production such as driving 

down energy prices, but operators’ larger concerns are about meeting consumer demands). The 

message passing algorithm needs to provide extra reserve to reduce the probability of 

unsatisfiable needs while still minimising power flow costs. 

 

Given that we are assuming 𝛬𝑗 to be sampled from a Gaussian distribution, 𝑃(𝛬𝑗) =

𝑒

−
1

2𝜎𝑗
2(𝛬𝑗−�̅�𝑗)

2

√2𝜋𝜎𝑗
2

, we can rewrite 𝑃(𝛬𝑗) in terms of 𝛬�̅� and 𝜎𝑗
2. 

 

 ∫ Θ[∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + 𝛬𝑗
𝑘≠𝑖 

]
𝑒
−
1

2𝜎𝑗
2(𝛬𝑗−�̅�𝑗)

2

√2𝜋𝜎𝑗
2

d𝛬𝑗 > 1 − 𝜌𝑗

∞

−∞

. (76) 
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This can be simplified by defining �̃�𝑗 =
𝛬𝑗−�̅�𝑗

√2𝜎𝑗
2

 and rearranging the terms, giving the integral:  

 

 ∫ Θ[∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + �̃�𝑗√2𝜎𝑗
2

𝑘≠𝑖 

+ 𝛬�̅�]
𝑒−�̃�𝑗

2

√𝜋
d�̃�𝑗

∞

−∞

> 1 − 𝜌𝑗 . (77) 

 

Using the definition of the complementary error function, 2∫ Θ(𝑡 − 𝑎)
∞

−∞

𝑒−𝑡
2

√𝜋
𝑑𝑡 = 1 −

erf(𝑎) = erfc(𝑎), and using erfc−1(1 − 𝑡) = erf−1(𝑡), the constraint can be rearranged to get:  

 

 √2𝜎𝑗
2erf

−1(2𝜌𝑗 − 1) +∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + 𝛬�̅�
𝑘≠𝑖 

> 0. (78) 

 

Now the calculations are derived as before with this new constraint. The optimal 𝜀𝑗𝑘 remains 

unchanged: 

 

 𝜀𝑗𝑘 = −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ , (79) 

 

but the Lagrange multiplier becomes: 

 

 𝜇𝑖𝑗 = min

[
 
 
 
 ∑ 𝒜𝑗𝑘 (𝑦𝑗𝑘 −

𝐴𝑗𝑘 + 𝜙𝑗𝑘
′

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ ) +√2𝜎𝑗

2erf
−1(2𝜌𝑗 − 1) − 𝑦𝑖𝑗 + �̅�𝑗𝑘≠𝑖 

∑ 𝒜𝑗𝑘(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ )

−1
𝑘≠𝑖 

, 0

]
 
 
 
 

. (80) 

 

Differentiating 𝐹𝑖𝑗
∗  once to obtain 𝐴𝑖𝑗 and a second time to obtain 𝐵𝑖𝑗 gives: 

 

 𝐴𝑖𝑗 ⟵−𝜇𝑖𝑗, (81) 
 

 𝐵𝑖𝑗 ⟵
Θ(−𝜇𝑖𝑗 − 𝜖)

∑ 𝒜𝑗𝑘(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ )

−1
𝑘≠𝑖 

, (82) 

 

and the backwards message 𝑦𝑗𝑘 ⟵ 𝑦𝑗𝑘 + 𝜀𝑗𝑘 remains unchanged. 
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This allows us to solve a scenario, where the demand and supply fluctuate and where the 

message passing method will satisfy each node with probability 1 − 𝜌𝑗 . It gives a node with 

fluctuating demand an appropriate amount of reserve power. This approximation is good 

because it allows an accuracy level to be determined, and may be good for calculating the level 

of reserve controllable power stations should provide. 

 

The annealed approximation has a disadvantage if there is not enough power in the network to 

satisfy all nodes plus the reserve need; then the program may not converge as it considers the 

situation unsatisfiable, rather than satisfiable but with a lower confidence level. The outcome 

of the derivation per node is equivalent to changing the value of 𝛬, to a new value, 𝛬 +

√2𝜎2erf−1(2𝜌 − 1). 

 

The required reserve value is explained through the Gaussian distribution plot (Figure 3.18). 

We denote: 

 

 𝑧 = 𝛬 + 𝜎√2erf
−1(2𝜌 − 1). (83) 

 

This gives the value on the 𝑥-axis that satisfies the distribution 1 − 𝜌 of the time, and 

demonstrates how the annealed inspired method does what was intended. In what follows we 

will calculate the quenched average which does not require this type of approximation and 

therefore will be more accurate. 

 

 

Figure 3.18 The 𝑧-value of a one-tailed Gaussian distribution. 
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3.2.2 Characteristics  

We studied the performance of the suggested algorithm on a benchmark network. Figure 3.19 

shows an example of a small 9 node IEEE network6 [153] with a variation of average capacities 

of  𝛬̅ = 5, −1 and −2 and standard deviations of 𝜎 = 0, 0.5 and 1. An unsatisfaction rate of 

𝜌𝑗 = 0.05 for all nodes is chosen arbitrarily, ensuring a 95% confidence level for the network. 

The middle diagram shows how the power is optimally deployed over the edges to minimise 

the distribution cost, 𝜙 =
𝑦2

2
, while providing each node with sufficient power. The figure on 

the right shows 𝑟, the remaining power, or reserve at each node, in view of each node’s level 

of uncertainty. Comparing the reserve power at each node with their respective standard 

deviation, we see that consumers with a standard deviation of 0.5 return a reserve of 0.822 

MW7, independent of  𝛬̅; this reserve power is for in the case where the consumer requires more 

power than expected. Similarly, generator 2 (numbered nodes start with node 1 at the top, and 

increase clockwise) with  𝛬̅ = 5 and 𝜎 = 0.5 retains a reserve of 0.822 MW to secure the node 

in case the generator does not produce what was expected (mean value). In the deterministic 

case the generator at node 2 would have had a reserve of less than 0.822 MW. We see that 𝜎 =

1 returns a remaining power twice that of 𝜎 = 0.5, and any consumers with 𝜎 = 0 have zero 

reserve, as would happen in an optimisation for all consumers in the deterministic case. 

 

 

Figure 3.19 Example of power distribution under the annealed approximation and 95% satisfaction 

requirement on IEEE 9-Bus network [153].  

 

Figure 3.20-Figure 3.26 are from a simple example of a 24-IEEE [154] network with 14 

generators and a total expected generation capacity of 20 MW (each with an individual average 

capacity value of 1 or 2), and 10 consumers with a total expected demand of 10 MW (each 

                                                 

6 To avoid the complication of leaf nodes (Appendix C), extra edges are added where appropriate to all networks. 

7 We will discuss capacities in terms of MW for easier reading and understanding. 
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with an average capacity of −1), where 𝜌𝑗 = 0.05 for all nodes. In black we see the level of 

reserve power given to volatile nodes as their standard deviation increases, and at the red dashed 

line is where the remaining reserve 𝑟 reaches the total available power and the program is then 

unable to converge. In each figure, there is an orange dotted line which represents the necessary 

resource, 𝑧 from Equation (83), required for a 95% confidence level with respect to 𝜎. Each 

blue line denotes the actual unsatisfaction level [155], 𝜌∗, achieved according to the plotted 

reserve power; this is calculated by finding the unsatisfaction level of each node (using the 

nodes reserve power according to its own distribution) and taking the maximum value. We will 

first consider cases where only one node, consumer or generator is volatile while the others are 

deterministic. In Figure 3.20 we see that reserve given to a consumer increases linearly as the 

uncertainty increases, exactly along the revised capacity 𝑧. The unsatisfaction level, defining 

the fraction of cases for which demand would be unsatisfied starts at zero when 𝜎 = 0 and the 

demand capacity is deterministic; once 𝜎 is bigger than 0, the unsatisfaction level is maintained 

at 0.05 throughout. The program is unable to converge once the reserve required exceeds 10 

MW, this is because there is only 10 MW of excess power in the network and higher power 

allocation would require some load shedding (see Section 4). Figure 3.21 shows a similar 

example where only one generator node’s uncertainty increases. Here we see a difference in 

that the generator retains unused power in order to minimise distribution cost at low standard 

deviation; once the power needed to maintain a 95% confidence level (seen by the 𝑧-line) 

exceeds the existing power, the reserve starts to increase linearly with 𝜎. The program stops 

converging as reserve power reaches 8.1 MW, because the generator was originally providing 

1.9 MW, and that power has already been deployed.  

 

 

Figure 3.20 The reserve power given to one 

consumer as its standard deviation is increased in a 

24-node network [154] (black). Blue represents the 

confidence level the reserve power gives. Red shows 

the standard deviation level for which the program is 

unable to converge. Subscript 𝑐 indicates the axis 

associated with the single consumer. 

 

Figure 3.21 The reserve power remaining at 

one generator as its standard deviation 

increases in a 24-node network (black). 

Dotted orange shows the “𝑧-line” from 

Equation (83). Subscript 𝑔 indicates the axis 

associated with the single generator.  
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In Figure 3.22 all consumers in the network are given an increasing volatility resulting in similar 

results where 𝑟 of each node increases at the same rate as when just one volatile node is present. 

The reason the program does not converge for higher volatility values is because there are now 

ten consumers requiring excess instead of one, this means the available excess is fully used up 

at a lower volatility level. The unsatisfaction level here is measured by the consumer with 

maximum percentile chance of being unsatisfied. Figure 3.23 shows the same behaviour in the 

case of multiple generators; when all generators have increasing uncertainty, the algorithm 

stops converging at lower volatility levels as there are 14 generators sharing the available excess 

which will run out at lower 𝜎 levels. It can be seen, that some generators start at 𝜎 = 0 with no 

available power, this means they would be fully utilised in the deterministic case and the 𝑧-line 

is followed from lower 𝜎 levels. Here we observe that the program is unable to converge once 

all generator reserves reach a focal point on the 𝑧-line, this is because there is no longer any 

spare power available in the network.  

 

 

Figure 3.22 The reserve power at multiple 

consumers as all their standard deviations 

increase. Subscript 𝐶 indicates the axis 

associated with all consumers. 

 

Figure 3.23 The reserve power at all generators as 

their standard deviations increase. Subscript 𝐺 

indicates the axis associated with all generators. 

 



97 

 

Figure 3.24 presents the case of deterministic fully utilised generators to demonstrate how 𝜌∗ 

is lower than 𝜌 for lower standard deviation until the generators start to require extra reserve. 

These figures also show how the reserve of power at a generator can go up or down; down in 

order to satisfy the generators who require extra reserve until one by one, their remaining power 

meets the 𝑧-line, where it then goes up as extra reserve is now needed. Figure 3.25 shows an 

example of the reserve of all nodes in the network as all 24 nodes standard deviations are 

increased. We see again how all excess power reaches a point, and at that point the network is 

no longer satisfiable, this happens when all nodes have a reserve of 0.417 MW, which is 

equivalent to the power available in the network divided by the number of nodes, as expected. 

The consumers were represented in pink but are only found in the increasing 𝑧-line, and may 

not be obvious.  

 

 

Figure 3.24 The reserve power at all generators 

that were not fully utilised at 𝜎 = 0, as their 

standard deviation increases. Subscript 𝐺𝑠 
indicates the axis associated with these 

generators. 

 

Figure 3.25 The reserve at all 24 nodes in a 24-

node IEEE synthetic network with an increasing 

standard deviation. Pink represents the reserve at 

consumer nodes, black represents the reserve at 

generators (all consumers and fully utilised 

generators at 𝜎 = 0 follow the 𝑧-line for all 

values of 𝜎). 
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Finally, Figure 3.26 shows an example of some nodes with fixed sigma at 0, 0.2, 0.25, 0.5 and 

1, and some nodes have an increasing sigma. It can be seen, that the reserve at nodes with fixed 

standard deviations remains constant whether consumer or generator, reserve at generators with 

no uncertainty decreases to zero (or until they reach their minimum reserve according to their 

value of sigma; like the generator assigned 𝜎 = 0.5) and nodes with increasing standard 

deviation strictly follow the 𝑧-line once it intersects the reserve power the node has. All figures 

show how every node strictly maintains a 95% confidence level by following the 𝑧-line once 

their extra reserve is depleted.  

 

 

Figure 3.26 The reserve power per node in a network where some nodes have increasing standard 

deviations, and some have fixed standard deviations of 0, 0.2, 0.25, 0.5 and 1 (labelled). Pink 

represents the reserve at consumer nodes, black represents generators. Nodes with fixed standard 

deviations maintain a corresponding reserve value and generators with no uncertainty use their power 

until they have no reserve. The network is unable to find a solution once all available reserve (reserve 

not specifically used for protecting an uncertain node) has been provided. 

 

 

3.3 Quenched Averaging  

 

3.3.1 Method  

To more accurately take the average expectation without approximations, quenched averaging 

is considered, as we want the fluctuations to be incorporated accurately into the distribution of 

the network’s properties. Quenched averaging works by assuming a general temperature, and 

averaging over all possible combinations of capacity values, per their individual probability 

distributions, and the probability of each combination; only once the average is taken, we then 

fix the temperature to zero. It is more accurate than taking the average possible combinations 

before considering the disorder, but calculations are more complicated. Quenched averaging of 

the free energy is calculated by 〈𝐹〉 = −𝑇〈ln 𝑍〉. The expected VFE becomes: 



99 

 

 

 

⟨𝐹𝑉(𝑦𝑖𝑗|𝐓𝑗)⟩𝛬𝑗
= ∫ min

{𝑦𝑗𝑘| ∑ 𝑦𝑗𝑘−𝑦𝑖𝑗+𝛬𝑗𝑘≠𝑖 }
[∑[𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘)

𝑘≠𝑖 

+ 𝜙(𝑦𝑗𝑘)]] 𝑃(𝛬𝑗)d𝛬𝑗. 

(84) 

 

The expected VFE should be optimised with respect to all variables under the constraints. These 

calculations will find the optimal 𝐹𝑖𝑗
∗  and then take the quenched average. Starting with 𝐹𝑖𝑗

∗  in 

Equation (85), notice that the non-averaged 𝐹𝑖𝑗 is expanded around the derivatives of the 

expected VFE, denoted 𝐴<> and 𝐵<>. The rationale for this is that we want to optimise the 

expected VFE given the current values, and if we calculate iteratively the expected VFE 

derivatives, these are the available messages received from the rest of the graph. 

 

 𝐹𝑖𝑗
∗ =

1

2
∑𝒜𝑗𝑘

𝑘≠𝑖

𝜇𝑖𝑗
2 − (𝐴𝑗𝑘

<> +𝜙𝑗𝑘
′ )

2

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ . (85) 

 

As with Equation (55), 𝜇𝑖𝑗 is: 

 

 𝜇𝑖𝑗 = min

[
 
 
 
 ∑ 𝒜𝑗𝑘 (𝑦𝑗𝑘 −

𝐴𝑗𝑘
<> + 𝜙𝑗𝑘

′

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ )𝑘≠𝑖 − 𝑦𝑖𝑗 + 𝛬𝑗

∑ 𝒜𝑗𝑘𝑘≠𝑖
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′

, 0

]
 
 
 
 

, (86) 

 

and for brevity we define 𝑥 ≡ 𝑦𝑖𝑗 − ∑ 𝒜𝑗𝑘 (𝑦𝑗𝑘 −
𝐴𝑗𝑘
<>+𝜙𝑗𝑘

′

𝐵𝑗𝑘
<>+𝜙𝑗𝑘

′′ )𝑘≠𝑖 . 

 

To find 𝐴𝑖𝑗
<> and 𝐵𝑖𝑗

<> the average expected VFE is needed.  

 

 〈𝐹𝑖𝑗
∗ 〉𝛬𝑗 =

1

2
∑𝒜𝑗𝑘

〈𝜇𝑖𝑗
2 〉𝛬𝑗 − (𝐴𝑗𝑘

<> +𝜙𝑗𝑘
′ )2 

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′

𝑘≠𝑖 

 .  (87) 

 

𝐴𝑗𝑘
<>, 𝐵𝑗𝑘

<>, 𝜙𝑗𝑘
′  and 𝜙𝑗𝑘

′′  are not functions of 𝛬𝑗 and so unaffected by the averaging operation. 

In order to differentiate 
𝜕〈𝐹𝑖𝑗

∗ 〉𝛬𝑗

𝜕𝑦𝑖𝑗
, 〈𝜇𝑖𝑗

2 〉𝛬𝑗  needs to be calculated, which will be different from 

〈𝜇𝑖𝑗〉𝛬𝑗
2  in general. As 𝑥 is the point of change in min [0,∗], this allows us to limit the values of 

𝛬𝑗 between [−∞, 𝑥], and for 𝛬𝑗 = [𝑥,∞], 𝜇𝑖𝑗 = 0. This can then be rewritten as: 
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〈𝜇𝑖𝑗
2 〉𝛬𝑗 =

1

∑ 𝒜𝑗𝑘 (
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ )𝑘≠𝑖 

2 [�̃�2 − 2𝑥�̃�1 + 𝑥
2�̃�0]. 

(88) 

 

Considering the integral limits, and defining: 

 

 �̃�0 = ∫ 𝑃(𝛬𝑗)d𝛬𝑗

𝑥

−∞

=
1

2
[erf (

𝑥 − 𝛬�̅�

√2𝜎𝑗
)+1 ], (89) 

 

 �̃�1 = ∫ 𝛬𝑗  𝑃(𝛬𝑗)d𝛬𝑗

𝑥

−∞

=
𝛬�̅�

2
[erf (

𝑥 − 𝛬�̅�

√2𝜎𝑗
)+1 ] −

√2𝜎𝑗

2𝜎𝑗𝜋
𝑒
−(
𝑥−�̅�𝑗

√2𝜎𝑗
)

2

, (90) 

 

 

�̃�2 = ∫ 𝛬𝑗
2 𝑃(𝛬𝑗)d𝛬𝑗

𝑥

−∞

= (
𝛬�̅�
2 + 𝜎𝑗

2

2
) [erf (

𝑥 − 𝛬�̅�

√2𝜎𝑗
)+1 ]

−
𝑒
−(
𝑥−�̅�𝑗

√2𝜎𝑗
)

2

√𝜋
(

 𝜎𝑗
2

(

 
𝑥 − 𝛬�̅�

√2𝜎𝑗
2

)

 + √2𝛬�̅�𝜎𝑗

)

 , 

(91) 

 

when 𝑃(𝛬𝑗) = 𝒩(𝛬�̅�, 𝜎𝑗). 

 

The differentiation of 𝐹𝑖𝑗
∗  with respect to  𝑦𝑖𝑗 gives: 

 

 

𝐴𝑖𝑗
<> ⟵

1

2

(

 erf

(

 
𝑥 − 𝛬�̅�

√2𝜎𝑗
2

)

 + 1

)

 (𝑥 − 𝛬�̅�) +
2𝜎𝑗

2𝑒

−

(

 
𝑥−�̅�𝑗

√2𝜎𝑗
2

)

 

2

√2𝜋𝜎𝑗
2

∑ 𝒜𝑗𝑘 (
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ )𝑘≠𝑖 

, 

(92) 

 

which in this case is equivalent to −〈𝜇𝑖𝑗〉𝛬𝑗 , and the second differentiation gives: 
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𝑖𝑗
<> ⟵

1

2

erf

(

 
𝑥 − 𝛬�̅�

√2𝜎𝑗
2

)

 + 1

∑ 𝒜𝑗𝑘 (
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ )𝑘≠𝑖 

. 
(93) 

 

A backwards message with 𝑦𝑗𝑘 + 𝜀𝑗𝑘 or a forwards’ message, where the fluctuations are 

incorporated within the 𝐴𝑖𝑗
<> and 𝐵𝑖𝑗

<> values, assume the expressions: 

 

 𝑦𝑗𝑘 ← 𝑦𝑗𝑘 −
𝐴𝑗𝑘
<> + 𝜙𝑗𝑘

′ + 〈𝜇𝑖𝑗〉

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ , (94) 

 

or, 

 

 𝑦𝑖𝑗 ⟵
𝐵𝑖𝑗
<>𝑦𝑖𝑗 − 𝐴𝑖𝑗

<> − 𝐵𝑗𝑖
<>𝑦𝑗𝑖 + 𝐴𝑗𝑖

<> − 𝜙𝑖𝑗
′ + 𝜙𝑖𝑗

′′𝑦𝑖𝑗

𝐵𝑖𝑗
<> + 𝐵𝑗𝑖

<> + 𝜙𝑖𝑗
′′ . (95) 

 

Using these derivations, we can compute a scenario where the demand and supply fluctuate and 

the algorithm provides more power to nodes with high uncertainty. 

 

3.3.2 Characteristics  

Figure 3.27 shows an identical optimisation problem as in Figure 3.19, now solved using the 

quenched equations, here it can be noticed that the reserve given to consumers with uncertainty 

is negligible, in fact only the generators maintain some reserve, and this appears to be due to 

minimising distribution costs.  

 

 

Figure 3.27 Example of power deployed to satisfy a simle 9-bus network calculated using quenched 

averaging (to the nearest 1 decimal place). 
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Figure 3.28 - Figure 3.40 show the amount of reserve power given to nodes as their uncertainty 

increases, in a 24-node synthetic IEEE network [154] (the same network and conditions as those 

used in the section on annealed averaging) calculated using quenched averaging. Figure 3.28 

shows the case when one consumer’s standard deviation is increased, we see that the reserve 

power increases very little at low volatility (Figure 3.29), reaching an almost linear increase at 

higher values. Comparing this increase with the 𝑧-line which all annealed approximations 

followed, we see that the quenched averaging reserve power rises slower, and gives a much 

higher probability of the node being unsatisfied.  

 

 

Figure 3.28 The excess given to a consumer of 

mean capacity  �̅� = −1, as the standard deviation 

of the corresponding Gaussian probability 

function increases. 

 

Figure 3.29 The initial rise as seen in Figure 3.28 

magnified. 
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Further work shows that the capacity value of the consumer determines the initial increase of 

reserve (Figure 3.30); a higher absolute capacity value results in a slower initial increase, this 

is due to proportionality between the standard deviation and the mean value. It cannot be 

proposed that this is due to the capacities proximity to becoming unsatisfied, because all 

consumers have zero reserve as sigma equals zero. Figure 3.31 gives the extended curves of 

Figure 3.30, it shows how the algorithm assigns reserve in reaction to large sigma, and shows 

a linear increase for all capacity variations, each with the same gradient, but a higher negative 

capacity results in the curve being slightly to the right, with a slightly higher unsatisfaction 

level. For an increase in sigma, 𝛬̅ = 0 has a linear reserve increase which results in a constant 

unsatisfaction level of 𝜌∗ = 0.285; still much higher than annealed. All other capacities start 

with a 𝜌∗ = 0.5 when sigma is small; because negligible values of reserve are given when sigma 

has some level of uncertainty. The unsatisfaction curves tend toward 0.285 (this is not a fixed 

value; it depends on factors such as wealth of the network, connectivity, proximity to available 

resource, etc.). We propose that the difference in initial increase is due to the proportionality 

between  𝛬̅ and 𝜎, the increase in reserve after this appears to be linear because, as observed 

within annealed approximations, the more uncertain the node the more reserve it requires and 

the value of 𝛬̅ becomes irrelevant as 𝛬̅ ≪ 𝜎. 

 

 

Figure 3.30 The excess given to one consumer 

as the standard deviation of the corresponding 

Gaussian probability function increases for �̅� =
0 (black), −1 (blue), −2 (purple), −3 (pink), 

−4 (red), −5 (orange).  Pale equivalent colours 

represent the corresponding percentile provided 

by the excess. Orange dashed line represents 

the 𝑧-line.  

 

Figure 3.31 Extended curves of Figure 3.30, 

conditions the same as, showing higher values of 

sigma. 
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Figure 3.32 shows a network with one consumer, and six generators with ample excess reserve 

that are four or more generations away from the consumer (the shortest path between the 

generators and the consumer is 4 nodes away). The black line represents the increase in reserve 

given to the consumer when there is one additional generator with sufficient power connected 

as a 1st generation neighbour to the consumer. Blue shows the same example, but the generator 

is a 2nd generation neighbour (there is one node between them), purple shows a generator which 

is a 3rd generation neighbour and pink uses the 4th generation neighbours already there. The 

graph shows how when the consumer has a generator close by, it receives an almost linear 

reserve for increasing sigma. When the consumer must rely on generators further away, it is 

given less reserve, decreasing the confidence of the network. This shows that the quenched 

averaging algorithm considers the distribution cost objective function within its decision of how 

much reserve power to provide to each uncertain node; so, when the cost of distribution is 

higher, the priority of providing reserve to uncertain nodes is slightly lowered, resulting in a 

more gradual increase. 

 

 

Figure 3.32 The excess given to one consumer as the standard deviation of the corresponding 

Gaussian probability function increases. There are six generators with large amounts of power, 

connected by a minimum of 4 neighbouring nodes away. In black, there is an additional generator 

with large amounts of power directly neighbouring the consumer, blue shows the additional generator 

connected one neighbour away from the consumer, purple shows a generator connected 2 neighbours 

from the consumer and red shows no additional generator. The lighter shade of each colour 

corresponding percentile.  

 

Figure 3.33 shows an example of a network with one consumer, there is one generator that 

directly neighbours the consumer node and six others which have large amounts of power, but 

are connected by a minimum of 4 neighbouring nodes away. The neighbouring generator has 

power 40 (black), 10 (blue), 5 (purple), 2 (pink) and 1 (red). The lighter shade of each colour 

represents the respective confidence level. To minimise distribution cost, if possible, the 
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neighbouring generator provides most of the reserve power sent to the uncertain consumer (the 

consumer has a connectivity 2, some power is passed from the further generators along the path 

not connected to directly to the closer generator). Once the reserve power required at the 

consumer reaches the available power at the neighbouring generator, if the consumer continues 

to require more power, this will be at a far higher distribution cost. From Figure 3.32 we know 

that a higher distribution cost results in a gentler gradient increase in reserve over increasing 

sigma, and this gradient decrease can be seen in the red, pink and purple curves once the 

required reserve power exceeds the available reserve at the neighbouring generator. The jump 

before this change in gradient is a result of the necessary redistribution in power flow over the 

network, the increase in distribution cost and the reweighting between distribution cost and 

unsatisfaction levels. It can be seen for each initial capacity of the neighbouring generator, the 

jump in reserve happens at each point where the generators reserve has been used up, and a 

more gradual gradient is adopted; this results in a drop in the unsatisfaction percentile at these 

points. Note: not all redistribution within the network or fully utilised generators results in these 

jumps; fully utilised close-by generators sometimes result in a more gradual increase, due to 

the increase in distribution cost when having to take power from further generators, but without 

a discontinuity, and occasionally the redistribution of power over edges does not affect the 

reserve at uncertain nodes at all. 

 

 

Figure 3.33 The excess given to one consumer as the standard deviation of the corresponding 

Gaussian probability function increases. There is one generator that is neighbouring the consumer 

node and the six other generators with large amounts of power, connected by a minimum of 4 

neighbouring nodes away. The neighbouring generator has power 40 (black), 10 (blue), 5 (purple), 

2 (pink) and 1 (red). The lighter shade of each colour is the corresponding percentile. 

 

Figure 3.34 shows the reserve given to one uncertain generator. An increase in reserve starts at 

lower volatility levels than the in the annealed approximation case, but rises much slower 

throughout. Figure 3.35 shows the reserve of each consumer in the network as all their standard 
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deviations increase together. We see that this reacts differently to the annealed approximation 

allocation because they all increase at different rates, this is due to the algorithm weighing the 

cost of distribution against the probability of the constraint being unsatisfied (unlike with 

annealed, where the constraint is strictly obeyed without being affected by the transportation 

cost). In this example the variation in increase rates between consumers is due to each nodes 

proximity to available reserve. Interestingly, a jump can be seen between 𝜎 = 1.6 and 1.7; this 

appears to be due to a redistribution in power flow over the network, similar to cases from 

Figure 3.33. Further work suggests the redistribution is triggered by one edge reversing its 

power flow, affecting most edges; 20% significantly (Figure 3.36). The redistribution causes 

minimal change in distribution cost (Figure 3.37), but allows additional reserve at the node. It 

is important to mention that this jump and redistribution of power is not in real time, and that it 

only refers to how the network would react at different levels of sigma, which would usually 

remain constant in a real-time power network; therefore, any concern about discontinuity 

problems are irrelevant. 

 

 

Figure 3.34 The excess given to a generator of 

mean 1.5, as the standard deviation of its Gaussian 

probability distribution increases. 

 

Figure 3.35 The excess given to all consumers, 

as their standard deviation increase uniformly. 

 

Figure 3.36 The edges effected by the redistribution 

at 𝜎 = 1.6. Black edges indicate those connecting to 

the jumping node, green represents other edges that 

are most effected by the redistribution. 

 

Figure 3.37 The distribution cost of the 

network as sigma increases for the case in 

Figure 3.35. 
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Figure 3.38 shows an example where all generators have increasing standard deviation; they 

initially split into two sections of increasing and decreasing reserves; this happens when the 

generators with little or no reserve power require a positive reserve as sigma increases, and the 

closest generators with available reserve provide this. This is shown in Figure 3.39, where there 

are two nodes starting with no reserve connected explicitly to another with reserve; it can be 

seen that as both generators with zero reserve at 𝜎 = 0 are increased, the reserve at the other 

decreases to accommodate this. Figure 3.40 also shows this, where the reserve of consumers 

and generators starting at low reserve increase as sigma increases, using the power of closely 

connected generators that do have available reserve. 

 

 

Figure 3.38 The excess given to all generators as 

their standard deviations are increased uniformly 

from 0 to 1. 

 

Figure 3.39 The excess at three closely connected 

generators from Figure 3.38 and their 

corresponding reserve. 

 

 

Figure 3.40 The excess given to all nodes as their standard deviations are increased uniformly from 

0 to 2. 
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Figure 3.41 - Figure 3.45 show how reserve power in the network reacts for larger values of 𝜎. 

(Note: These are for test and understanding purposes only. All capacities in these examples are 

between −1 and 2, therefore standard deviation values beyond 2 show a large amount of 

volatility, uncharacteristic of any uncertainty expected to be experienced from renewable 

energy sources.) At the point 𝜎 > 2, all nodes require extra levels of reserve; this is where the 

network reserve dynamics change, independent of original gradients and reserve. In Figure 3.41 

where all consumers have increasing sigma, an obvious change in reserve occurs around 𝜎 =

5; this is the point where all available resource from deterministic generators have been 

depleted. We see that as this point approaches there are a lot of discontinuities and unexpected 

changes in gradient; presumably because the tight margins of available resource result in regular 

redistributions of the network. Once available power is gone, the gradients become smooth. At 

this point for all three figures, we see that once reserve is depleted the nodes tend to random 

reserve values between 0 and 2; this appears to be irrespective of consumer or generator nodes, 

and reserve values at 𝜎 = 0 or 𝜎 = 1. Figure 3.44 shows that the increase in sigma continues 

to increase the distribution cost of the network, even for large sigma values. The initial steady 

distribution cost as sigma increases is due to the slow initial reaction of the reserve according 

to 𝜎 as seen in Figure 3.29. Figure 3.45, which displays when all nodes have increasing sigma, 

shows how the reserve at high sigma appears to be dependent on the connectivity of each node, 

where nodes with less connections are given higher levels of reserve. One possible reason for 

this, is that each node is iteratively asking for more and more power, and with lower 

connectivity nodes there is a smaller effect of diffusion of responsibility, and so the lower 

connected nodes receive more power.  

 

 

Figure 3.41 The excess given to all consumers as 

their standard deviations are increased uniformly 

from 0 to 20. 

 

Figure 3.42 The excess given to all generators as 

their standard deviations are increased uniformly 

from 0 to 20. 
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Figure 3.43 The excess given to all nodes as their standard deviations are increased uniformly from 

0 to 20. 

 

 

Figure 3.44 The distribution cost when all 

nodes in the network have their standard 

deviations increased uniformly from 0 to 

20, as seen in Figure 3.43. 
 

Figure 3.45 The reserve power given to all 24 nodes in 

a network as their standard deviations increase 

simultaneously (from Figure 3.43), coloured in terms 

of their individual connectivity values.  

 

The advantages of using quenched averaging is that the algorithm inherently considers the 

uncertainty within the network; however, we can see throughout these results that this type of 

averaging allows for the network to be satisfied with only a 50-72% confidence level in most 

cases; which makes it arguably a worse choice for increasing the reliability of power grids than 

the annealed approximation. We speculate that the reasoning behind such small reserve is that 

the function we minimise is the expected VFE; it includes a hard constraint which outputs 0 if 

the node is unsatisfied and 1 if it is. It therefore may be biased towards a small range of values 

that dominate the expected VFE due to the probability of occurrence coupled with a high 

probabilistic weight, possibly due to high cumulative transportation costs, at the expense of 

unsatisfied nodes with a lower probabilistic weight. 
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3.4 Quenched Averaging with Additional Resource  

 

3.4.1 Method  

Due to the small excess suggested by the quenched averaging approach for a fluctuating node, 

we have taken advantage of the benefits of combining the quenched averaging approach with 

the extra resource suggested by the annealed approximation. More specifically, we will be 

continuing to use the equations obtained from quenched averaging, but adjust the resource  𝛬𝑗 

to 𝛬𝑗 +√2𝜎𝑗
2erf −1(2𝜌𝑗 − 1). This will allow fluctuations to be inherently considered, with 

the additional ability to predetermine the level of confidence required. 

 

3.4.2 Characteristics  

Looking at similar situations as Figure 3.20 - Figure 3.25 with lines and colours denoting the 

same things, Figure 3.47 - Figure 3.52 show the equivalent conditions, using a quenched with 

additional resource (QAR) algorithm. Figure 3.46 shows an example of power grid optimisation 

using QAR on a small 9-node network. The results appear to be equivalent to those of Figure 

3.19, indicating that the same level of reliability is achieved as in annealed averaging, 

presumably because of the significant resource allocated by it. 

 

 

Figure 3.46 An example of power grid working on 9-node network for quenched averaging with soft 

constraints. 
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All nodes with increasing sigma are given a reserve at or over the 𝑧-line. In Figure 3.47 and 

Figure 3.48 we see that the reserve sits slightly above the dotted line representing the 𝑧-line that 

annealed followed, giving a stronger confidence than the predetermined 𝜌 = 0.05 required.  

 

 

Figure 3.47 The excess given to a consumer of 

mean -1, as the standard deviation of its Gaussian 

probability function increases using a combined 

quenched averaging technique and additional 

resource. 

 

Figure 3.48 The excess given to a generator of 

mean 1.5, as the standard deviation of its 

Gaussian probability distribution increases using 

a combined quenched averaging technique and 

additional resource. 

 

Figure 3.49 is almost identical to its annealed equivalent, presumable because the extra reserve 

is minimised due to the high levels of volatility throughout the network. In Figure 3.49 - Figure 

3.52 the graphs appear very similar to annealed results, but smoother in places. The smooth 

curves follow from the quenched averaging’s capability to acknowledge the presence of 

uncertainty within the network, and therefore provides further reserve where appropriate. 

Figure 3.51 also demonstrates how increasing sigma can sometimes result in discontinuous 

curves due to redistribution of flow over edges throughout the network. 

 

 

Figure 3.49 The excess given to all consumers as 

their standard deviations increase using a 

combined quenched averaging technique with 

extra resource. 

 

Figure 3.50 The excess given to all generators as 

their standard deviations increase using a 

combined quenched averaging technique with 

extra resource. 
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Figure 3.51 The excess given to generators, with 

available reserve at 𝜎 = 0, as their standard 

deviations increase using a combined quenched 

averaging technique with extra resource. 

 

Figure 3.52 The excess given to all nodes in the 

network as their standard deviations increase 

using a combined quenched averaging technique 

with extra resource. 

 

Looking in more detail at how quenched averaging with a fixed confidence level compares with 

annealed approximation and quenched averaging separately, Figure 3.53 shows in blue the 

quenched averaging result, in comparison to the yellow line which represents the annealed 

approximation result. The orange line represents the reserve given by QAR minus the annealed 

approximation result. We can see how the extra reserve power given to a volatile node using 

QAR minus the annealed approximation result and is much smaller than quenched averaging 

result with no additional resource. This verifies that the QAR technique is not merely the 

addition of the reserves given from quenched averaging and annealed averaging, but that it 

acknowledges that each distribution is asking for a specific confidence level, and aims to satisfy 

this in the presence of the uncertainty and the situation of the network (topology, distribution 

costs, available reserve, etc.).  

 

 

Figure 3.53 Reserve given to a volatile consumer when distributed using annealed averaging (dashed 

yellow), quenched averaging (blue) and the difference between the reserve given through QAR and 

annealed averaging (solid orange). 
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Using the QAR method allows us to inherently consider fluctuations with a predetermined value 

of confidence, as the figures show; the QAR method will be used for the following graphs. 

 

 

3.5 Results  

 

Figure 3.54 shows an example of the IEEE 118-Bus [156] with normally generated capacities 

(about 𝒩(1,1)) and fixed standard deviation of 0.5. Three algorithms have been applied to 

optimise the power flow: based on message passing without considering fluctuations (Section 

2.3); with soft constraints (Section 3.2) where 𝜌 = 0.3; and with soft-constraints and message 

passing that incorporates fluctuations (Section 3.4) where 𝜌 = 0.3. The size of the red dots 

signifies the overall capacity deficit for each node over a 60-minute time window when every 

second the actual capacity of each node was randomly generated from its own probability 

distribution 𝒩(𝛬�̅�, 0.25). Incorporating soft-constraints with message passing that considers 

fluctuations (QAR) gave the most reliable results. The soft-constraints were set to satisfy the 

network with 70% confidence for demonstration only; real networks would require a much 

higher confidence level. The figure highlights the advantage of incorporating fluctuations in the 

optimisation algorithm. Its related computational cost was negligible. 

 

 

Figure 3.54 The size of the red dots indicate constraint violations (the sum of the capacity deficit of 

each node when capacities were chosen from the random variable using 𝒩(�̅�𝑗, 0.25) every second 

over a 60-minute time window) when network capacities are fluctuating (mean capacities were 

chosen from a normal distribution �̅� = 𝒩(1,1) and each node had a standard deviation of 𝜎 = 0.5). 

Power flow was calculated without considering fluctuations (left); when fluctuations are considered 

using the annealed approximation with 𝜌 = 0.3 (centre); when we consider fluctuations within 

derivations using QAR with 𝜌 = 0.3 (right) [157]. 
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Figure 3.55 shows the level of extra resource given to each node according to its own sampled 

variance from the Gaussian distribution 𝜎~𝒩(𝜎𝑚, 0.25), where the mean standard deviation 

value is 𝜎𝑚 = 0 (blue), 1.5 (orange), 3 (yellow). The black dashed line represents the extra 

resource a node should receive according to the confidence level, 𝜌. Blue ‘×’ symbols show 

network solution values when abundance of resource is available and overall volatility is low. 

We see that excess at some nodes is high, and all nodes are above or on the line. Orange ‘•’ 

symbols show that as the overall volatility increases the generators’ excess decreases since more 

resource is required to satisfy a given threshold. Yellow ‘○’ symbols represent a case where the 

network is unable to satisfy the soft constraints of each node due to insufficient power, the 

algorithm nevertheless aims to satisfy each node appropriately per its volatility. The QAR 

algorithm addresses fluctuations in generation/demand and even when soft constraints are 

unsatisfiable it appears to provide an appropriate optimal solution, where nodes with higher 

volatility receive more power reserve. When power is available we see that all volatile nodes 

are given reserve equal to or higher than the calculated 𝑧-line, and any extra reserve above this 

is distributed with some correlation to volatility, increasing the reliability of the system. The 

inset shows the excess given to each node per its standard deviation, considering networks with 

different average capacity values, showing that the overall excess in the network increases with 

the average capacity. Note: All networks are synthetic randomly generated random regular 

graphs of size 𝑁 = 100, 𝑐 = 6, and averaged from 10 reiterations, unless stated otherwise. 

 

 

Figure 3.55 Excess given to each node against its standard deviation 𝜎, drawn from a truncated (the 

positive part of a) Gaussian of standard deviation 0.5 and means 0 (blue ×), 1.5 (orange •), 3 (yellow 

○); for ten randomly generated 100-node networks of connectivity 5, randomly connected, with 

Gaussian average capacities (𝒩(1,1)). Inset shows the case where average capacities are randomly 

generated from a Gaussian of mean 0 (blue ×), 2 (orange •), 4 (yellow ○), and variance 1 [157]. 
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Figure 3.56 shows a scatter diagram of the reserve power left at each node according to their 

individual 𝜌 values which are randomly sampled from a uniform distribution between 0.05 and 

0.2, denoted; 𝒰(0.05,0.2). Each network consists of 50% consumers with 𝛬̅ = −1 and 50% 

generators with 𝛬̅ = 1.2 (This will be denoted8 as ℱ(−1,1.2)) and sigma is fixed at the values 

𝜎~ℱ(𝜎𝑚) where 𝜎𝑚 = 0.025 (blue), 0.05 (orange) and 0.075 (yellow). We see that the 

minimum reserve power decreases as 𝜌 increases; decreasing the level of reliability of the 

network. This graph demonstrates how the network can assign individual values of 𝜌 to 

different nodes; essentially assigning the level of importance of individual nodes being 

satisfied. We see how individual nodes that require less reliability receive less reserve (this 

could be an alternate method to our suggested load shedding approach in Section 4). It can also 

be seen that for larger individual 𝜎𝑗 values, the minimum reserve power increases; providing 

extra security for more volatile nodes. The extra reserve given to nodes with higher values of 𝜎 

can be seen in Figure 3.57, and to satisfy this constraint we see an overall decrease in generators’ 

available reserve. 

 

 

Figure 3.56 The reserve power at all nodes from 

ten 100-node networks of random regular 

topology of 𝑐 = 6 and �̅� = ℱ(−1,1.2) as 𝜌 

increases where 𝜎 = 0.025 (blue), 0.05 (orange) 

and 0.075 (yellow). 

 

Figure 3.57 The reserve power at all nodes 

according to each nodes sigma value, from ten 

100-node networks with a random regular 

topology of 𝑐 = 6 and capacity, �̅� = ℱ(−1,1.2), 
where 𝜎 is randomly chosen from the distribution 

𝒰(0, 𝜎+) and 𝜎+ = 0.025 (blue), 0.05 (orange), 

0.075 (yellow) and 0.1 (purple). 

 

Figure 3.58 shows a Weibull best fit distribution of power sent, 𝑃(𝑆), from generators in a 100-

node network with random regular connectivity 6 and capacities sampled from ℱ(−1, 1.2) in 

a network that considers fluctuations. We see how the increased value of the fluctuations 𝜎 

results in a higher average amount of power sent and a higher majority of maximised capacity 

                                                 

8 ℱ(•) denotes a dirac delta distribution, equally partitioned for any values inside the function.   
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generators. This is because as the volatility of the network increases, more reserve power is 

required to increase security and so the maximum level of more generators is reached. Figure 

3.59 shows the same distribution network but demonstrates the reserve power given to each 

consumer as a best fit beta distribution, it shows how for low levels of uncertainty the reserve 

at all consumer nodes is low, but for higher volatility among consumers, reserve is increasing.  

 

 

Figure 3.58 The best fit of power distribution 

sent, 𝑆, from generators, where 𝜎 = 𝒰(0, 𝜎+), 
and 𝜎+ = 0.025 (blue), 0.05 (orange), 0.075 

(yellow) and 0.1 (purple).  

 

Figure 3.59 The best fit of reserve power 

distribution at consumers, where 𝜎 = 𝒰(0, 𝜎+), 
and 𝜎+=0.025 (blue), 0.05 (orange), 0.075 

(yellow) and 0.1 (purple). 

 

We tested ten networks of 𝑁 = 100 and plotted histograms of the distribution of power flow 

along edges, 𝑦, for an increasing value of degree connectivity 𝑐, as shown in Figure 3.60. A 

half normal distribution curve was drawn from these values in Figure 3.61 which clearly shows 

how the distribution of power along edges becomes sharper as 𝑐 increases. This is because 

although the network aims to minimise distribution costs, the chance of consumers being 

connected to sufficient reserve power is smaller and the characteristic path length will be longer, 

so requested power must travel further distances to satisfy consumers. 

 

 

Figure 3.60 Histogram of power distribution over 

edges for different connectivity values 𝑐 and 

system size 𝑁 = 100. The higher the 

connectivity, the smaller current values are [158]. 

 

Figure 3.61 Half-normal distribution best fit 

curve of histogram in Figure 3.60; 𝑁 = 100 

[158]. 
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Figure 3.62 also shows that when volatile nodes have a high connectivity, the electrical grid 

has an overall reduced distribution cost. This is because a volatile node is more likely to be 

closer to a node with the power it requires, reducing the expected flow over edges. This could 

be useful to understand at the design stage of power grids, as it suggests the advantages of 

introducing renewable sources in highly connected areas. Figure 3.63 shows that the reserve 

given to a volatile node decreases as the shortest path between the volatile node and available 

generators increases. This demonstrates that the excess given to a volatile node is largely 

effected by the distribution cost to reduce the costs incurred by moving resource from far off 

locations at the expense of providing less additional reserve. It may suggest the necessity of 

weighting the distribution cost so that it has a smaller impact on adjusting the reliability of the 

network. 

 

 

Figure 3.62 The distribution cost when 

uncertainties are put on 4 nodes each with a 

degree 2, 3, 4, 5, 6 and 7, in an 80-node network 

[159]. © Copyright Clearance Centre [2016] 

IEEE. 

 

Figure 3.63 Excess provided to a volatile 

consumer node as the generators move on average 

further from the node, increasing the 

transportation length and therefore the 

distribution cost [159]. © Copyright Clearance 

Centre [2016] IEEE. 
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Using the QAR algorithm, we calculate the effect of uncertainties on the quadratic distribution 

cost. Figure 3.64 considers five cases of different fractions of volatile nodes in the grid the 

overall 𝜎 value is distributed between. It shows that the distribution of volatility makes a huge 

difference to the distribution cost and the importance of having smaller and more spread out 

renewable sources throughout the grid instead of having one large farm concentrated in one 

place. This could be beneficial for the design and structure decisions for future grids. It is known 

that a decentralised grid also increases its robustness against structural perturbations [160]. The 

graph does show however, that if all nodes share the overall volatility, this does not give the 

lowest costs, of the cases available; numerically, 75% shows the lowest cost. 

 

 

Figure 3.64 Distribution cost as the standard deviation 𝜎 increases using QAR averaging, when the 

overall standard deviation 𝜎 is distributed between 100%, 75%, 50%, 25% or 2.5% of the nodes (in 

a 40-node network) [159]. © Copyright Clearance Centre [2016] IEEE. 
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Figure 3.65 indicates that as the average capacity of a network increases, the number of edges 

used decreases until all edges are unused (as there are no more consumers). We can also see 

that for higher volatility, edges become fully utilised for lower mean values due to the need for 

additional resource across the network. The fraction of unused edges appears to follow a 

cumulative Gaussian distribution and the average capacity increases. The inset demonstrates 

the effect of the overall standard deviation on the number of edges used, showing that the more 

volatile a network (higher standard deviation), the more edges are used. 

 

 

Figure 3.65 How increasing average capacity, 𝛬𝑚, in a randomly generated 100-node network effects 

the fraction of unused edges; when standard deviation at every node is 0 (blue, left), 0.25 (orange, 

centre) and 0.5 (yellow, right), with average capacities randomly drawn from 𝒩(Λ𝑚, 1). Inset shows 

how increasing standard deviation (with average capacities 1) effects the fraction of unused edges. 

Error bars indicate the deviation from the mean fraction of unused edges when ran ten times for 

randomly generated networks of given size, connectivity and capacity distribution [157]. 
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It can be seen in Figure 3.66 and Figure 3.67 how the increase in the networks random regular 

connectivity results in a large decrease in power distribution cost (loss). From Figure 3.66 we 

see how increasing 𝜎 marginally increases the distribution cost, and Figure 3.67 shows how 

smaller values of 𝜌 give a higher distribution cost. Both graphs demonstrate that at higher 

connectivities, the values of 𝜎 and 𝜌 have less effect on the distribution cost; we assume that 

this is because the effects of high connectivity negate those of 𝜎 and 𝜌.  

 

 

Figure 3.66 The distribution cost as the random 

regular connectivity (degree) increases, where 

𝜎 = 𝒰(0, 𝜎+), and 𝜎+ = 0.025 (blue), 0.05 

(orange), 0.075 (yellow) and 0.1 (purple) and 

average capacities are fixed at ℱ(−1,1.2).   

 

Figure 3.67 The distribution cost as the random 

regular connectivity (degree) increases, 

where 𝜌 = 0.05 (blue), 0.1 (orange), 0.15 

(yellow) and 0.2 (purple), fixed. And average 

capacities are fixed at ℱ(−1,1.2). 

 

Figure 3.68 shows how increasing the value of 𝜌 results in a lower excess of power given to 

consumers and that a low 𝜎 value also decreases the reserve given to nodes. The line graph in 

Figure 3.69 shows how this affects the distribution cost and that because less reserve at 

uncertain nodes is required as 𝜌 increases, there is less need for high power flow and therefore 

a decrease in distribution cost, it is also obvious that a lower 𝜎 decreases the distribution cost 

further due to a smaller requirement of reserve at volatile nodes. The non-monotonic decrease 

in the curves is because transportation cost depends on the individual topology of each network 

and so has a high variation in values. 
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Figure 3.68 The average reserve power given to 

nodes as the percentile 𝜌 increases and 𝜎 =
ℱ(0.025 (blue), 0.05 (orange), 0.075 (yellow), 

0.1 (purple)). 

 

Figure 3.69 The distribution cost as the percentile 

𝜌 increases and 𝜎 = ℱ(0.025 (blue), 0.05 

(orange), 0.075 (yellow), 0.1 (purple)). 

 

Both Figure 3.70 and Figure 3.71 have been plotted using a bounded line, indicating the 

minimum to the maximum values in shaded colour, and the average as a solid line. We see in 

Figure 3.70 where 𝜎 is increasing equally for all nodes, how the reserve power given to 

consumers increases due to higher uncertainty. The graph also shows high reserve for lower 

values of 𝜌 to increase the confidence of the network. When the 𝜎 values are uniformly chosen 

between 𝒰(0, 𝜎) in Figure 3.71 we see that the reserve is also uniformly distributed between 

the mean from Figure 3.70 and 0. This is more representative of a real network as the 

uncertainties may be varied. Where the lines in Figure 3.70 end is when the network is unable 

to satisfy all nodes due to insufficient levels of reserve, whereas for distributed levels of 

uncertainty allow the network to continue satisfying nodes due to lower levels of reserve.  

 

 

Figure 3.70 The reserve power given to 

consumers as fixed 𝜎 increases for 𝜌 = 0.05 

(blue), 0.1 (orange), 0.15 (yellow) and 0.2 

(purple). Average capacities are chosen from 

ℱ(−1,1.2). 

 

Figure 3.71 The reserve power given to 

consumers as 𝜎 increases uniformly 𝒰(0, 𝜎+) for 

𝜌 = 0.05 (blue), 0.1 (orange), 0.15 (yellow) and 

0.2 (purple). Average capacities are chosen from 

ℱ(−1,1.2). 
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3.6 Discussion  

 

From the results we have found that the quenched averaging method does not provide enough 

power to increase the reliability of the network as it stands, the setup based on annealed 

averaging works well and the quenched averaging method with added resource (QAR) works 

better than both methods. A higher uncertainty results in higher reserve being given to nodes as 

does reducing the percentile value and the shortest paths. The excess power given to volatile 

nodes does however result in higher power flow over edges, resulting in more power being lost 

through power loss on edges and the necessity for loss in real time through the primary and 

secondary stages of distribution control (Section 1.3) for unused power reserves. 

The distribution of fluctuating nodes may be different to the Gaussian distribution considered 

in the thesis; the main concern is what difference this makes. Most important for power grids 

is the confidence level being over 90% (literature suggests that a 90-99% confidence interval is 

necessary [161, 162]). The power given to a Gaussian wind generator in order to maintain a 𝜌 

confidence would be: 

 

 𝑧𝐺𝑎𝑢𝑠𝑠 = 𝜇 + 𝜎√2erf−1(2𝜌 − 1), (96) 
 

and if the node had a Cauchy distribution this would be: 

 

 𝑧𝐶𝑎𝑢𝑐ℎ𝑦 = 𝑧0 + 𝑏 tan[𝜋(𝜌 − 0.5)],  (97) 
 

where 0 ≤ 𝜌 ≤  1. 

 

Between 𝜌 = 0.9 and 𝜌 = 1 the Gaussian has a much smaller 𝑧 value where two types of 

Gaussian have been matched with the Cauchy distribution as shown in Table 2  (Previously in 

[120] Cauchy distribution was suggested because of the leptokurtic nature of the distribution). 

Table 2 shows a Gaussian distribution 1 where 𝜇 = 𝑧0 and 𝜎 = 𝑏, and Gaussian distribution 2 

where 𝜇 = 𝑧0 and the heights of both distributions are equal. We see from both Gaussian 

distributions that if a Cauchy distribution is a more appropriate fit of the error forecast at the 

tails, the 𝑧-value of Gaussian distributions would not be enough. This shows that we may be 

severely overestimating the amount of power the uncertain wind-farm type node can 

confidently share with the grid, this should be a consideration for any future work. However, 
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the estimations mentioned earlier have been focussing on closely matching the whole 

distribution of the wind-farm rather than the tails, and more research on which distribution best 

fits the tails of a wind-farm error forecast would be necessary. One additional flaw of both 

distributions is their infinite tails, which is unrepresentative of fluctuating sources which have 

a minimum and a maximum a production value. 

 

Table 2. Cauchy distribution with 𝑧0 = 0.5 anb 𝑏 = 0.05 against Gaussian distribution 1 which has 

𝜇 = 0.5 and 𝜎 = 0.05 and Gaussian distribution 2 with 𝜇 = 0.5 and 𝜎 = 0.0625. 

 

  
  
  
 

 Confidence Interval 

𝑧-
v
al

u
e 

 90% 95% 97.5% 99% 

Cauchy 0.653 0.815 1.135 2.091 

Gaussian 1 0.564 0.582 0.597 0.616 

Gaussian 2 0.5801 0.602 0.622 0.645 

 

 

Exploring this point further, as seen in Figure 3.10, there is also the possibility that when winds 

get too high the wind turbines are turned off to prevent them from breaking (this maximum 

capacity value is different depending on the capacity of the turbine). If the 𝑧-value was higher 

than the cut-out speed then the turbine generation capacity could be considered as zero but this 

does not discount the event of fluctuations exceeding capacity and the generator cutting out 

during the time-interval. This factor should also be considered in future work. 

 

To solve the problem of power distribution in the presence of edge-bandwidth and fluctuations, 

an extra constraint would need to be added to the VFE calculation similar to that of Equation 

(62). To include strict bandwidth limits within a volatile grid using message passing algorithms 

would require bounding the modified power flow, 𝑦 + 𝜀 according to any expected fluctuations, 

as this cannot exceed bandwidth in either direction over 15-60 minute the time frame. 

 

We have suggested increasing the reliability of networks with uncertain generators by 

increasing reserve power at the volatile nodes. Another approach to reducing the impact of 

renewable generators in a power network could be to consider a heterogeneous set of 

controllable demand, which is usually uncontrolled but could be designed to be more 

controllable. The ability to control demand would reduce the strain at peak times, and could be 

used to mitigate the fluctuations of renewable sources. For example, in the residential scenario, 
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around half of a household’s power goes on heating and refrigeration. These processes are not 

specifically time dependant and often only work in stages9; they could be turned off or down 

for short periods of time to make demand more controllable according to uncontrolled 

generation. If for example each household’s refrigeration and space heating was controllable 

and set to be off when demands are high or fluctuations are high, for a maximum of 12 minutes 

an hour. That means a group of 5 houses with a rolling power pause could reduce the groups 

residential load at peak flow by 10%. This could be implemented in some industries and 

residential areas; it requires housing cooperation and intelligent systems within smart grids to 

implement this. 

 

Other considerations are that an increase in the number of microgenerators in the network will 

result in correlated fluctuations, and the ongoing developments in smart grids may see a point 

where consumers also have the capability to become generators when they produce more power 

than used. Electric vehicle charges could be controlled or turned off according to fluctuations 

or advanced battery storage may be the solution to mitigating fluctuating renewable generation 

altogether. 

 

                                                 

9 Turning the heating on does not mean the heating is on 100% of the time, the water in a radiator is heated to a 

temperature, the heating systems are turned off while hot water remains in the radiator, and once the radiator 

temperature drops past a certain level, the heaters are turned back on again. This concept is similar in fridge 

freezers. 
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4 Minimising Load Shedding  

4.1 Introduction  

 

4.1.1 Background  

At all times in a power grid, demand and consumption must balance; if there are large 

imbalances, this can lead to instability in the grid, large fluctuations in voltages and grid failure. 

Using operating systems close to their maximum capacity does increase the risk of failure, as 

the difference between generation and consumption becomes small, this is referred to as “tight” 

and action must be taken to avoid instability. Typically, electricity grids work close to capacity 

in order to minimise losses. Load shedding is the situation where power demand exceeds 

generation and it is impossible to satisfy all consumers. It is very rare for highly developed 

countries to experience this as demand is continuously monitored and generators are more 

reliable and have surplus capacity; they are much more common in developing countries. 

Eskom, the main supplier of South Africa electricity [163] explains how to prevent widespread 

blackouts or damage to equipment when generated power is unable to provide the power 

demanded. They list four main stages:  

 Stage 1 – Power utilities can make agreements with industrial consumers to turn down 

their equipment at the times when demand is high. Sometimes these are mandatory but 

usually they are agreed through reduced energy prices. This can only be done when 

demand exceeding generation has been predicted or scheduled as it takes a minimum of 

2 hours to implement. 

 Stage 2 – The available generation is shared amongst consumers; this is called scheduled 

load shedding. It can result in low voltages and brownouts (where lights dim or flicker). 

 Stage 3 – Rolling load shedding is where electricity is sequentially cut in different 

regions, in order to reduce the impact on consumers. This is usually a predetermined 

plan that is implemented when necessary.  

 Stage 4 – In the rare case when load shedding is needed outside of the published 

schedules, emergency switching is used to protect the network. Blackouts can occur 

from power stations tripping, and can last from seconds to weeks, as rebooting the 

stations usually requires tapping into power sources from other countries. 

If there is a blackout, some institutions have backup generators, such as hospitals, sewage 

treatment, telecommunication and mines but it is still preferable to protect critical needs through 

judicious distribution. 
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A study on load shedding for distributed stream processing looks at a distributed approach based 

on metadata aggregation and propagation [164]. Stream processing and power flow have many 

similar properties and considerations, including large flow (power flow and input streaming 

rates), bandwidths and the possibility of bottlenecks10. It aims to maintain a quality of service 

while managing large scale input rates which may drive the system into overload. They aim to 

combat this by dropping tuples (a data structure consisting of multiple parts) to reduce load. 

The stream processing system, uses an offline system to predetermine the best plan of load 

shedding in advance so that it can be quickly invoked if necessary; similar to how power grids 

plan stage 3 of load shedding. It suggests “Advanced Planning with FIT” (Feasible input table), 

where one generates a table of feasible combinations for a specific node, and propagates it to 

its parent node. The parent considers all the tables from its descendants it maps them from its 

outputs to its own inputs, merges the tables into one, removes the infeasible combinations and 

sends this new table to its parents. This continues until convergence, enabling it to shed load 

according to itself and its descendants, and the results are promising. This method closely 

follows that of discrete message passing; however, their work only currently considers tree-like 

structures. The algorithms’ computational complexity appears to increase approximately 

linearly with the system size, and this demonstrates how other probabilistic propagation 

methods have already been suggested as promising methods for load shedding on large scale 

networks.   

 

4.1.2 Problem  

Although it is rare to experience blackouts in well-established electricity grids, the increased 

contribution of power from fluctuating renewable generation is likely to “tighten” the distance-

to-failure gap, making power outages more likely. This chapter considers stage 2 – where 

consumers share the available generation – in an efficient way using message passing.  

 

 

                                                 

10 A bottleneck is when the bandwidth of an edge is too small to fit enough resource through, potentially leaving 

some nodes unsatisfied. 
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4.2 Load Shedding  

 

4.2.1 Method  

Due to the fluctuating nature of renewable sources and their increasing contribution to the 

power grid the networks reliability is expected to decrease. Therefore, we need to consider the 

scenario of demand exceeding generation; this occurs when the sum of all node capacities in 

the network is negative, ∑ 𝛬𝑎 < 0𝑎∈𝑁 . In this event, the hard constraint (5) is unsatisfiable and 

so we add a variable 𝜁𝑗  to each node 𝑗 to represent each nodes deficit, which is minimised 

through the additional objective function, - 
𝜁𝑗
2

2
 (This work has developed upon work done in 

[109] and [165]). The constraint can be rewritten as: 

 

 ∑𝒜𝑗𝑘𝑦𝑗𝑘 − 𝑦𝑖𝑗 + 𝛬𝑗
𝑘≠𝑖

+ Θ(−𝛬𝑗)Θ(−∑𝛬𝑎
𝑎∈𝑁

) 𝜁𝑗 ≥ 0, (98) 

 

where the first step function allows for only consumers to lose power (generators should not 

lose power in the event of load-shedding) and the second step function sums all the capacities 

in the network ensuring that the constraint is only softened by 𝜁𝑗  if and only if overall demand 

exceeds overall generation. The new objective function is specific to node 𝑗 and the related tree 

but not directly related to 𝑦𝑗𝑘 or messages from descendants, allowing it to be considered only 

once, outside of the sum over all descendants.  

 

 𝐹𝑖𝑗 =∑𝒜𝑗𝑘

𝑘≠𝑖 

[(𝐴𝑗𝑘 + 𝜙𝑗𝑘
′ )𝜀𝑗𝑘 +

1

2
(𝐵𝑗𝑘 + 𝜙𝑗𝑘

′′ )𝜀𝑗𝑘
2  ] + 𝛼𝑗

𝜁𝑗
2

2
, (99) 

  

Where 𝐹𝑖𝑗 is the expanded VFE message to be passed to node 𝑖, similar to Equation (4), where 

𝛼𝑗 is a predetermined weighting variable which allows one to incorporate the importance of 

maintaining high levels of power at each consumer node into the calculations, the importance 

value. The first step function in Equation (98) can be replaced by giving generator nodes very 

large importance values to prevent generator-load-shedding; we will use this for simplicity in 

the results section. 
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Minimising with respect to deficit variable, 𝜁𝑗 , gives: 

 

 𝜁𝑗 = −
Θ(−𝛬𝑗)Θ(−∑ 𝛬𝑎𝑎∈𝑁 )𝜇𝑖𝑗

𝛼𝑗
. (100) 

 

Plugging this into Equation (99) and minimising with respect to the Lagrange multiplier gives: 

 

 𝜇𝑖𝑗 = min

[
 
 
 
 ∑ 𝒜𝑗𝑘 (𝑦𝑗𝑘 −

𝐴𝑗𝑘 + 𝜙𝑗𝑘
′

𝐵𝑗𝑘 +𝜙𝑗𝑘
′′ ) − 𝑦𝑖𝑗 + 𝛬𝑗𝑘≠𝑖 

∑ 𝒜𝑗𝑘(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ )

−1
𝑘≠𝑖 +

Θ(−𝛬𝑗)Θ(−∑  𝛬𝑎𝑎∈𝑁 )
𝛼𝑗

, 0

]
 
 
 
 

, (101) 

  

leading to the messages to the ancestor: 

 

 𝐴𝑖𝑗 ⟵−𝜇𝑖𝑗, (102) 
 

 
𝐵𝑖𝑗 ⟵=

Θ(−𝜇𝑖𝑗 − 𝜖)

∑ 𝒜𝑗𝑘(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ )

−1
𝑘≠𝑖 +

Θ(−𝛬𝑗)Θ(−∑ 𝛬𝑎𝑎∈𝑁 )

𝛼𝑗

, 
(103) 

  

where step functions are dealt with using if loops within codes, and the unchanged backwards 

message to the descendants: 

 

 𝑦𝑗𝑘 ← 𝑦𝑗𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ . (104) 

 

With these equations, our corresponding programs will remain unchanged for all networks, 

unless the overall consumption is more than the overall production; the algorithm will then 

minimise the deficit according to each nodes importance level, alongside the cost of power loss. 

 



129 

 

It may be possible to modify these equations to say that if load shedding is necessary, the cost 

of power loss can be ignored. These would look like: 

 

 

𝐹𝑖𝑗 =∑𝒜𝑗𝑘

𝑘≠𝑖 

[(𝐴𝑗𝑘 + Θ(∑  𝛬𝑎
𝑎∈𝑁

)𝜙𝑗𝑘
′ ) 𝜀𝑗𝑘

+
1

2
(𝐵𝑗𝑘 + Θ(∑  𝛬𝑎

𝑎∈𝑁

)𝜙𝑗𝑘
′′ ) 𝜀𝑗𝑘

2  ] + 𝛼𝑗
𝜁𝑗
2

2

+ 𝜇𝑖𝑗 (∑𝒜𝑗𝑘(𝑦𝑗𝑘 + 𝜀𝑗𝑘) − 𝑦𝑖𝑗 + 𝛬𝑗
𝑘≠𝑖 

+ Θ(−𝛬𝑗)Θ(−∑𝛬𝑎
𝑎∈𝑁

)𝜁𝑗  ). 

(105) 

 

However, with a high importance factor 𝛼 in comparison to the distribution costs, these 

additions may be unnecessary. The difficulty in introducing these hard constraints is that if a 

descendant node passes the message 𝐵𝑗𝑘 = 0 (indicating it has spare resource) and if the 

recipient is a generator or a node not experiencing deficit, the denominators of the next 

messages to ancestors will be zero, resulting in unnecessary infinite messages. 

 

4.2.2 Characteristics  

 

To demonstrate the effects of the algorithm we first tested it on a simple synthetic 14-bus IEEE 

benchmark network [154] with two generator nodes of fixed capacities 𝛬 = 4, with the 

remaining nodes defined as consumers of fixed capacities 𝛬 = −2, resulting in an overall power 

deficit of -16 MW. Figure 4.1 shows pie charts where the colour of each slice represents the 

different nodes and their importance weights I (also denoted as 𝛼) are given on the 

circumference which are varied to show the effects of importance values. The pie chart 

represents the total amount of deficit within the network and how it is divided among the nodes. 

The algorithm does not include the step function which disallows generators from being 

negative, this is to better demonstrate the effects of the importance factor 𝛼. Any slices detached 

indicate a node which still has positive power (surplus at a generator). We see that when 

importance weights for all nodes are small (top left) the distribution cost part of the objective 

function becomes relatively more important and some power remains at the generators at the 

expense of extra deficit at consumers. The top right figure shows how when the importance of 

all nodes is large and equal the power deficit is equally divided and effects of minimising power 

loss are negligible. Bottom left is an example of a case where one node is less important than 
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others and the algorithm assigns the majority of the power deficit to it. Bottom right shows that 

alternatively, if one node is much more important that others the power deficit assigned to it is 

negligible. These graphs show the algorithms capability to prioritise nodes in a load shedding 

situation and to minimise the overall effects of load shedding, it highlights that all deficit needs 

to go somewhere, and how it can be distributed among nodes.  

 

 

Figure 4.1 Pie charts with colours representing different nodes; 𝐼 values represent the importance 

value 𝛼 for each node. Examples are taken from a 14-Bus synthetic IEEE benchmark network. There 

are two generator nodes with a capacity 𝛬 = 4, and the remaining consumer nodes have 𝛬 = −2. 

Slices detached from the chart indicated power surplus at the node. (In this case generators were 

allowed to be negative, load shedding was not exclusive to consumers) [111]. © Creative Commons 

Licence, DOI: 10.1016/j.egypro.2016.12.139. 
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4.3 Load Shedding with Fluctuations  

 

4.3.1 Method  

Load shedding can also incorporate the quenched averaging with soft constraints (QAR) 

calculations, to consider both load shedding and fluctuations. This gives a VFE of: 

 

 

⟨𝐹𝑉(𝑦𝑖𝑗|𝐓𝑗)⟩𝛬𝑗
= ∫ 𝑃(𝛬𝑗)d𝛬𝑗min [∑𝒜𝑗𝑘[𝐹𝑉(𝑦𝑗𝑘|𝐓𝑘) + 𝜙(𝑦𝑗𝑘)]

𝑘≠𝑖 

+ 𝜇𝑖𝑗 [∑𝒜𝑗𝑘𝑦𝑗𝑘 − 𝑦𝑖𝑗 + 𝛬𝑗 +√2𝜎𝑗
2erf

−1(2𝜌𝑗 − 1)

𝑘≠𝑖

+ Θ(−∑𝛬𝑎
𝑎∈𝑁

)𝜁𝑗] + 𝛼𝑗
𝜁𝑗
2

2
 ] . 

(106) 

 

Minimising with respect with 𝜁𝑗  allows us to find:    

 

 𝜁𝑗 = −
Θ(−∑ 𝛬𝑎𝑎∈𝑁 )𝜇𝑖𝑗

𝛼𝑗
, (107) 

 

and take the average of the VFE: 

 

 〈𝐹𝑖𝑗
∗ 〉𝛬𝑗 =

1

2
∑𝒜𝑗𝑘

𝑘≠𝑖 

 
〈𝜇𝑖𝑗
2 〉𝛬𝑗 − (𝐴𝑗𝑘

<> + 𝜙𝑗𝑘
′ )

2

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ +
1

2
⟨
Θ(−∑ 𝛬𝑎𝑎∈𝑁 )𝜇𝑖𝑗

2

𝛼𝑗
2 ⟩

𝛬𝑗.

  (108) 

 

Calculations remain similar to those previously; 𝜇𝑖𝑗
2 , before finding the average, gives: 

 

 
𝜇𝑖𝑗
2 = 0 or 

𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2

(∑
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ +
Θ(−∑ 𝛬𝑎𝑎∈𝑁 )

𝛼𝑗𝑘≠𝑖 )

2

  

, 
(109) 

 

where 𝑥 ≡ 𝑦𝑖𝑗 −√2𝜎𝑗
2erf

−1(2𝜌𝑗 − 1) − ∑ 𝒜𝑗𝑘 (𝑦𝑗𝑘 −
𝐴𝑗𝑘
<>+𝜙𝑗𝑘

′

𝐵𝑗𝑘
<>+𝜙𝑗𝑘

′′ )𝑘≠𝑖 . If we rewrite 

Θ(−∑ 𝛬𝑎𝑎∈𝑁 ) as Θ(−∑ 𝛬𝑏 − 𝛬𝑗𝑏≠𝑗
𝑏∈𝑁

), where 𝑏 indicates all nodes in the network apart from 

𝑗, we can assume all other node capacities to be deterministic at that point, but still considering 
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the Gaussian probability distribution 𝛬𝑗 at node 𝑗. We now require the average of the square 

of 𝜇𝑖𝑗: 

 

 〈𝜇𝑖𝑗
2 〉𝛬𝑗 =

{
 
 
 
 

 
 
 
 

0, if 𝛬𝑗 − 𝑥 ≤ 0,
 

1

(∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′𝑘≠𝑖 )

2∫[𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2] d𝛬𝑗 , if  −∑𝛬𝑏 − 𝛬𝑗
𝑏≠𝑗
𝑏∈𝑁

< 0,

1

(∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′𝑘≠𝑖 )

2

+
1
𝛼𝑗

∫[𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2] d𝛬𝑗 , if  −∑𝛬𝑏 − 𝛬𝑗
𝑏≠𝑗
𝑏∈𝑁

≥ 0.

 (110) 

 

As 𝛬𝑗 is a probability distribution, we can write this as an integral, Appendix D shows how 〈𝜇𝑖𝑗
2 〉 

varies, depending on whether 𝑥 or −∑ 𝛬𝑏𝑏≠𝑗
𝑏∈𝑁

 is larger. The derivatives then become: 

 
𝐴𝑖𝑗
<> ⟵−〈𝜇𝑖𝑗〉𝛬𝑗 = 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

1

2

(erf (
𝑥 − 𝛬�̅�

√2𝜎𝑗
) + 1) (𝑥 − 𝛬�̅�) +

2𝜎𝑗
2

√2𝜋𝜎𝑗
2
𝑒
−(
𝑥−�̅�𝑗

√2𝜎𝑗
2)

2

∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ +

Θ(−∑ 𝛬̅𝑏 − 𝛬�̅�𝑏≠𝑗
𝑏∈𝑁

)

𝛼𝑗
𝑘≠𝑖

, if 𝑥 ≤ −∑ 𝛬̅𝑏,
𝑏≠𝑗
𝑏∈𝑁

1

2

(erf (

−∑ 𝛬̅𝑏 − 𝛬�̅�𝑏≠𝑗
𝑏∈𝑁

√2𝜎𝑗
) + 1)(𝑥 − 𝛬�̅�) +

2𝜎𝑗
2

√2𝜋𝜎𝑗
2
𝑒

−(

−∑ �̅�𝑏−�̅�𝑗𝑏≠𝑗
𝑏∈𝑁

√2𝜎𝑗
2 )

2

∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′𝑘≠𝑖 +

Θ(−∑ 𝛬̅𝑏𝑏≠𝑗
𝑏∈𝑁

− 𝛬�̅�)

𝛼𝑗

+

1

2

(erf (
𝑥 − 𝛬�̅�

√2𝜎𝑗
) − erf (

−∑ 𝛬̅𝑏𝑏≠𝑗
𝑏∈𝑁

− 𝛬�̅�

√2𝜎𝑗
)) (𝑥 − 𝛬�̅�) +

2𝜎𝑗
2

√2𝜋𝜎𝑗
2

(

 
 
𝑒
−(
𝑥−�̅�𝑗

√2𝜎𝑗
2)

2

− 𝑒

−(

−∑ �̅�𝑏−�̅�𝑗𝑏≠𝑗
𝑏∈𝑁

√2𝜎𝑗
2 )

2

)

 
 

∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′𝑘≠𝑖

, if 𝑥 > −∑ 𝛬̅𝑏,
𝑏≠𝑗
𝑏∈𝑁

 

 

(111) 
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 𝐵𝑖𝑗
<> ⟵

{
 
 
 
 
 

 
 
 
 
 
1

2

erfc (
𝑥 − 𝛬�̅�

√2𝜎𝑗
) + 1

∑ 𝒜𝑗𝑘  
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ +

Θ(−∑ 𝛬̅𝑏 − 𝛬�̅�𝑏≠𝑗
𝑏∈𝑁

)

𝛼𝑗𝑘≠𝑖

, if 𝑥 ≤ −∑𝛬̅𝑏,
𝑏≠𝑗
𝑏∈𝑁

1

2

erf (
𝑥 − 𝛬�̅�

√2𝜎𝑗
) − erf (

−∑ 𝛬̅𝑏 − 𝛬�̅�𝑏≠𝑗
𝑏∈𝑁

√2𝜎𝑗
)

∑ 𝒜𝑗𝑘  
1

𝐵𝑗𝑘
<> + 𝜙𝑗𝑘

′′ +

Θ(−∑ 𝛬̅𝑏 − 𝛬�̅�𝑏≠𝑗
𝑏∈𝑁

)

𝛼𝑗𝑘≠𝑖

, if 𝑥 > −∑𝛬̅𝑏,
𝑏≠𝑗
𝑏∈𝑁

  (112) 

 

and, 

 

 𝑦𝑗𝑘 ← 𝑦𝑗𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 〈𝜇𝑖𝑗〉𝛬𝑗
𝐵𝑗𝑘 + 𝜙𝑗𝑘

′′ . (113) 
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4.4 Results  

 

As the average importance value increases, we can see from the histograms in Figure 4.2 how 

the mean proportion of power sent from each generator increases around some normal 

distribution. This can be seen clearly when each histogram is fitted with a normal distribution 

(Figure 4.3) and the distributions are compared. The mean and standard deviation increases for 

higher importance costs, and this increase in sent power is due to the importance cost 

superseding the distribution cost, as more power is rearranged within the network to achieve a 

low load shedding cost.  

 

 

Figure 4.2 The histograms and 

their best fit normal distribution 

for the probability distribution of 

the power sent, 𝑆, from all 

generators. As explained in 

Figure 4.3. 

 

Figure 4.3 The normal distributions of power sent, 𝑆, from 

generators as the fixed importance value increases from 0.25 

(blue), 0.5 (orange), 0.75 (yellow) to 1 (purple), tested on 

multiple 100-node networks which have a random regular 

connectivity of 6 and with randomly chosen capacities from the 

distribution 𝛬 = 𝒰(−1,0.5) where half of nodes are consumers, 

and half generators. 

 

Next we evaluate how the importance value and the distribution of importance values affect the 

nodes. It can be seen from Figure 4.4 how increasing the fixed importance value results in nodes 

having a smaller, less negative, distribution of deficit with smaller variance. This is clear in 

Figure 4.5 when the importance values are chosen randomly from the distribution 𝒰(0, 𝛼+), 

where 𝛼+ is increasing from 1 to 4, that the deficit of the nodes appears to stay to the left of a 

negative hyperbolic function highlighting how higher importance nodes are prioritised. The 

values in Figure 4.6 are randomly chosen from the distribution 𝒰(𝛼−, 𝛼+) where 𝛼+ is the same 

as in Figure 4.5, but where the difference between 𝛼+ and 𝛼− is always 1, the results show how 
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the function always maintains a positive correlation between 𝛼𝑗 and 𝑟𝑗, but when the average 

importance is smaller the distribution of deficit is much larger and has a more obvious 

curvature. The much larger distribution in deficit for small importance values is due to the 

distribution cost contribution to the objective function; with the smaller values of 𝛼, the 

distribution cost is more heavily weighted and so less power is sent to minimise deficit. Also 

for all networks, the nodes with higher importance are prioritised and are provided with more 

power to reduce their deficit to minimise the objective function.  

 

 

Figure 4.4 Scatter diagram plotting each individual node’s importance value and deficit where the 

importance values were chosen from the distribution ℱ(𝛼𝐹), where 𝛼𝐹 = 0.25 (blue ○), 0.5 (orange 

×), 0.75 (yellow +) and 1 (purple •). 

 

Figure 4.5 Scatter diagram plotting each 

individual node’s importance value and 

deficit where the importance values were 

chosen from the distribution 𝒰(0, 𝛼+), 
where 𝛼+ = 1 (blue ○), 2 (orange ×), 3 

(yellow +) and 4 (purple •). 

 

Figure 4.6 Scatter diagram plotting each 

individual node’s importance value and deficit 

where the importance values were chosen from 

the distribution 𝒰(𝛼−, 𝛼+), where 𝛼+ = 1 (blue 

○), 2 (orange ×), 3 (yellow +) and 4 (purple •), 

and 𝛼− = 𝛼+ − 1. 

 



136 

 

It is seen in Figure 4.7 how the deficit of the nodes changes depending on a correlation between 

the importance of a node, and the original capacity of the node. Importance values are assigned 

using a negative correlation; 𝛼 = 𝒞(−1, 𝛬)11 in blue, and a positive correlation; 𝛼 = 𝒞(+1, 𝛬) 

in orange, with respect to each consumers’ absolute capacity value. Illustrating in blue circles 

how when small absolute capacities have a large 𝛼, even before the algorithm is ran, the shape 

of the capacities will be similar, and so distribution cost will be low to achieve a minimised 

load shedding curve. However, when large 𝛼 values are on nodes with large absolute capacities, 

to reduce the deficit on the very low capacities will require a lot more power flow and so the 

distribution cost will carry a much higher weight; resulting in a more uniform final deficit 

among nodes.   These figures demonstrate how important nodes are prioritised and how 

significant the accurate allocation of importance values is. 

 

 

Figure 4.7 Scatter diagram plotting each individual node’s importance value and deficit where the 

importance values were chosen from the distribution 𝒞(−1, 𝛬) (blue ○) and  𝒞(+1, 𝛬) (orange ×) and 

the correlation is with respect to the absolute capacity of each consumer. 

 

                                                 

11 𝒞(𝑎, 𝑏) implies a negative correlation with respect to the distribution 𝑏 if 𝑎 = −1, and a positive correlation if 

𝑎 = +1. 
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Figure 4.8 shows an example with fluctuations which is similar to the deterministic case in 

Figure 4.6, where now 𝜎 = 0.5 for all nodes. In the deterministic case we see how all nodes 

result in a value of deficit (negative reserve), lower deficit for higher importance nodes, whereas 

in the volatile case some nodes with higher importance values actually receive positive reserve 

values at the cost of less important nodes becoming more negative. For higher overall 

importance weights the network appears to return to a similar pattern where all nodes have 

deficit. The figure demonstrates how the algorithm considers the importance weights together 

with volatile nodes, allowing more important volatile nodes to receive reserve, with the 

understand that they may use more or provide less than expected, but will still have a low deficit 

in comparison to less important nodes. 

 

 

Figure 4.8 Scatter graph showing examples of importance values selected randomly from a 

distribution 𝒰(𝛼−, 𝛼+) where 𝛼+ = 1 (blue ×), 1.5 (orange •), 2 (yellow ○) and 2.5 (purple +), and 

𝛼− = 𝛼+ − 1. Each symbol represents a node in a 100-node random regular connected network of 

𝑐 = 6, plotted according to its power deficit (or negative reserve) and the importance weight it was 

given. One fifth of nodes are given mean capacity  �̅� = 1 and the remaining consumers have  �̅� =
−1, all variances are fixed at 𝜎 = 0.5 [111]. © Creative Commons Licence, DOI: 

10.1016/j.egypro.2016.12.139. 
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It can be shown how load shedding affects the nodes according to their capacities. In Figure 4.9 

and Figure 4.10 we see the deficit left at the nodes according to their initial capacity. We see 

how most generators have 𝑟 = 0 as they have been depleted, and nodes starting with a lower 

capacity end with a lower deficit; the positive correlation between capacity and deficit decreases 

as the importance value increases due to the distribution cost being gradually ignored. An 

example of distribution cost being favoured and allowing some generators to maintain some of 

their reserve power, can be seen marked in blue in Figure 4.9. In Figure 4.10 examples where 

the importance values were chosen either positively (orange ×) or negatively (blue ○) correlated 

with their absolute capacities are shown. With negative correlation, we see a steeper increase 

in residual deficit for consumers with lower capacities as they have a low importance value and 

associated distribution cost required to provide power is low. For the positive correlation, the 

spread of the deficits appears almost unaffected by the value of 𝛬 since the greater the demand 

the greater the importance and so lower capacities require a high level of power flow which 

increases the distribution cost and, due to weighting, restricts power flow before a fully 

minimised load shedding can be achieved. The correlation of importance and capacities is a 

major factor to consider because in real networks it may be found that larger consumers require 

a higher importance (similar to the orange curve), in this case we see quite an even distribution 

of deficit among nodes, which may even be smaller at lower capacities for larger importance 

values.  

 

 

Figure 4.9 The deficit remaining at nodes 

according to their own capacity. From a 100-node 

network, randomly regularly connected by 6 

nodes each, and with capacities randomly chosen 

from the distribution 𝒰(0.5,−1). Importance 

values were randomly chosen from a distribution 

ℱ(𝛼𝐹), where 𝛼𝐹 = 0.25 (blue ○), 0.5 (orange 

×), 0.75 (yellow +) and 1 (purple •). 

 

Figure 4.10 The deficit remaining at nodes 

according to their own capacity. Conditions are 

the same as in Figure 4.9 but importance values 

were randomly chosen from a distribution 𝒞(−1 

(blue ○) or 1 (orange ×), 𝛬). 
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Figure 4.11 shows histograms of the power distribution supplied over the edges once a solution 

is found. It can be seen, that when importance is zero, minimising power loss is the most 

important objective and no power is distributed allowing all consumers to remain their original 

negative capacity. As the importance increases the power distribution histogram tends towards 

a bi-modal distribution with means at 0.043 and 0.33; representing the power sent to minimise 

the deficit of neighbouring nodes. The peaks presumably characterise more and less central 

edges with high and low power flow, respectively. They become less emphasised and more 

spread out as resources primarily aim to reduce load shedding irrespective of power loss, 

equalising the deficit. Each graph also includes the average power loss per solution (PL), which 

increases as importance values increase, while the corresponding network load shedding cost 

(LS) decreases. When there is inevitable failure in real power networks due to power deficit, 

reducing the deficit at the most important nodes becomes a priority over distribution costs. For 

higher values of 𝛼 the distribution remains the same because the distribution cost has already 

became negligible. 

 

  
Figure 4.11 The average, normalised distribution of the power values at each edge after convergence. 

The importance given to each node in the 100-node network, is indicated above each of the histograms 

and capacities are 𝛬 = ℱ(−1, 1) where 80% are consumers and 20% are generators [111]. © Creative 

Commons Licence, DOI: 10.1016/j.egypro.2016.12.139. 
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Adjusting the topology of the network so that the random regular fixed connectivity increases 

from 𝑐 = 4 to 11, in Figure 4.12 we can see that a high connectivity decreases the load shedding 

cost, where load shedding costs are calculated by 
𝛼𝑗𝑟𝑗

2

2
. We also observe in Figure 4.13 that the 

distribution costs are decreased for increasing connectivity too, and a smaller importance value 

decreases the distribution costs further because the distribution cost is prioritised over 

importance cost, which can be seen in  Figure 4.12 where smaller 𝛼 gives a higher importance 

cost at high connectivities. The figures show the advantages of a high connectivity and that at 

low connectivity it appears that lower importance values result in lower load shedding costs; 

this may be due to the 𝛼 value being included within the calculations. 

 

 

Figure 4.12 The importance cost of the network 

as the random regular connectivity is increased 

from 4 to 11 on ten networks with 100-nodes 

given capacities from the distribution 𝒰(−1,0.5). 
Blue indicates fixed importance value of 0.25, 

orange is 0.5, yellow 0.75 and purple 1. 

 

Figure 4.13 The distribution cost of the network 

as the random regular connectivity is increased 

from 4 to 11 on ten networks with 100-nodes 

given capacities from the distribution 𝒰(−1,0.5). 
Blue indicates fixed importance value of 0.25, 

orange is 0.5, yellow is 0.75 and purple is 1.  

 

Looking at how the scale of capacity deficit in the network effects the optimisation with respect 

to importance (Figure 4.1412), we see that both distribution and average of the deficit increase 

(less power at consumer nodes) as the network becomes poorer in resource. It can also be shown 

how at the point where overall excess is 0 (in this case where half the nodes have 𝛬− = −1 and 

the other half have 𝛬+ = 1), the deficit jumps to 0; this is where load shedding is no longer 

necessary, the function Θ(−∑ 𝛬𝑎𝑎∈𝑁 ) becomes 0 and the variable 𝜁𝑗  vanishes. Figure 4.15 

shows a bounded line graph where the mean is represented with the solid lines and the shaded 

portion is from the minimum value of power sent, to the maximum. The graph shows that the 

importance value makes a large difference to the size of the jump from load shedding to zero 

                                                 

12 Figure 4.14 to Figure 4.17 do allow generators to have deficit. 
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deficit, where smaller importance values result in a much larger jump; this is due to the 

influence of the distribution costs (which in Figure 4.16 can be seen to increase at the point 

where load shedding is no longer required). Interestingly in Figure 4.17 we see that when the 

importance values are high, the average and maximum amount of power sent is higher than for 

lower importance values, but that the minimum values of the power provided do not appear to 

be affected by either the wealth of the network or the importance of nodes. We suspect that this 

is because of generators that are far from consumers and are (distribution) costly to send high 

values of power. 

 

 

Figure 4.14 A box plot of the distribution of 

deficit, 𝑟, given to consumers as the lower value 

𝛬− increases, when capacities are chosen from the 

fixed distribution 𝛬 = ℱ(𝛬−, 1). Plotted from ten 

100-node networks with a random regular 

connectivity of 6, and each consumer node has a 

fixed importance value of 0.25. 

 

Figure 4.15 A borderline plot of the distribution 

of deficit, 𝑟, given to consumers as the lower 

value 𝛬− increases, when capacities are chosen 

from the fixed distribution 𝛬 = ℱ(𝛬−, 1). Plotted 

from ten 100-node networks with a random 

regular connectivity of 6, and each consumer 

node has a fixed importance value of 0.25 (blue), 

0.5 (orange), 0.75 (yellow) and 1 (purple). 

 

Figure 4.16 The average distribution cost, as the 

lower value 𝛬− increases, when capacities are 

chosen from the fixed distribution 𝛬 = ℱ(𝛬−, 1). 
Plotted from experiments on ten 100-node 

networks with a random regular connectivity of 6, 

and each consumer node has a fixed importance 

value of 0.25 (blue), 0.5 (orange), 0.75 (yellow) 

and 1 (purple). 

 

Figure 4.17 A borderline plot of the distribution 

of power provided by generators, as the lower 

value 𝛬− increases, when capacities are chosen 

from the fixed distribution 𝛬 = ℱ(𝛬−, 1). Plotted 

from experiments on ten 100-node networks with 

a random regular connectivity of 6, and each 

consumer node has a fixed importance value of 

0.25 (blue), 0.5 (orange), 0.75 (yellow) and 1 

(purple). 
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Increasing the system size 𝑁 does not appear to change the distribution of deficit at the nodes 

(Figure 4.18), although importance values still make a difference on its variance. From Figure 

4.19 we can see how the power provided from all nodes does not appear to change much as 𝑁 

increases. But the maximum power increases, and this can be seen more clearly in Figure 4.20, 

where the variance of the power provided from just generators does increase with the system 

size. This may be due to the graph becoming sparser (because connectivity is fixed and not 

increasing proportionally with 𝑁) this decrease in the proportion of connectivity in terms of 𝑁, 

increases the distribution cost and requires closer generators to give more, and further away 

generators to give less, increasing the variance. This load shedding algorithm allows consumers 

to become more negative if necessary to reduce the deficit at other nodes. Further work could 

look to avoid power flow from customer nodes; as in real-life (excluding micro-grids) a 

consumer cannot give away power and increase its deficit. 

 

 

Figure 4.18 The distribution of deficit given to each node as 𝑁 increases, where importance values 

are fixed at 0.25 (blue), 0.5 (orange), 0.75 (yellow) and 1 (purple). 

 

Figure 4.19 The distribution of power sent, 𝑆, 

from all nodes as 𝑁 increases, where importance 

values are fixed at 0.25 (blue), 0.5 (orange), 0.75 

(yellow) and 1 (purple). (Consumers receiving 

power is demonstrated with a negative 𝑆 value. 

 

Figure 4.20 The distribution of power provided 

from just generators as 𝑁 increases, where 

importance values are fixed at 0.25 (blue), 0.5 

(orange), 0.75 (yellow) and 1 (purple). 
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When increasing the importance values given to nodes, the distribution of the values may make 

a difference. To start with we look at fixed importance values and see in Figure 4.21 a 

hyperbolic-like increase of the deficit given to nodes as the importance value increases. In 

Figure 4.22 where generators are included it can also be seen that positive power is also present 

for smaller importance values due to the minimisation of distribution cost, demonstrating the 

importance of properly chosen importance values. We can see from Figure 4.23 and Figure 4.24 

how increasing the importance values results in an increase in distribution costs and a decrease 

in load shedding costs, and that a lower connectivity gives higher costs for both. We assume a 

higher load shedding cost at low connectivity because the distribution cost is larger and so 

restricts the power flow from adjusting deficit. 

 

 

Figure 4.21 The distribution of consumer deficits 

on multiple 100-node network when the 

capacities are randomly chosen from the 

distribution ℱ(−1.2,1) on a random regular 

network with connectivity 6 and increasing fixed 

importance values from 0 to 10.  

 

Figure 4.22 The distribution of deficits on all 

nodes, including generators, as importance values 

increase. Conditions as in Figure 4.21. 

 

 

Figure 4.23 The increase in distribution costs as 

importance increases, with coloured lines 

indicating a random regular connectivity of 6 

(blue), 7 (orange), 8 (yellow) and 9 (purple). 

 

Figure 4.24 The decrease in importance costs 

with the increase in the importance value, with 

coloured lines indicating a random regular 

connectivity of 6 (blue), 7 (orange), 8 (yellow) 

and 9 (purple). 
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A similar figure demonstrates a box plot of the currents, 𝑦, increasing logarithmically as the 

average 𝛼 values are increased (Figure 4.25), these results demonstrate the values of 𝛼 at which 

load shedding becomes a higher priority than distribution cost; in this case we could suggest 

that by 𝛼 = 1 load shedding has a higher priority objective function, however this would vary 

for different sizes, topologies, connectivities, wealth and demand of a network. On a network 

with 40-nodes, Figure 4.26 shows the change in distribution of power along edges, 𝑦, as the 

standard deviation of the importance value is increased, where the importance value given to 

each node is drawn from the normalised Gaussian distribution: 𝒩(𝛼𝑚, 𝛼𝑠). We see that as the 

importance values become more distributed among nodes the higher the average value of 𝑦 is; 

the variance of the power over edges is also increased. The high 𝛼𝑚 values do not vary much 

from each other, but small 𝛼𝑚 (blue) does have a smaller average 𝑦, as expected. 

 

 

Figure 4.25 The distribution of power flow over 

edges 𝑦 as the uniform importance value increases 

for 𝑁 = 40 networks [158]. 

  

 

Figure 4.26 The distribution of power flow over 

edges 𝑦 for the increase in the standard deviation 

of importance for mean importance of 𝛼𝑚 = 0.5,
1, 1.5 and 2. The horizontal line describes the 

mean of the of 𝑦, and the vertical lines describe 

the standard deviation [158]. 
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Figure 4.27 gives the average power through edges for networks with different average 

capacities. The capacities were drawn from a normal distribution of unit variance 𝒩(𝛬𝑚, 1). 

Stars show results from 40-node networks and circles indicate 100-node networks (colour is 

meaningless). The average power over an edge appears to decrease rapidly as 𝛬 increases past 

0, this is due to a reduced demand at nodes. Below 0, but higher than −1 the average 𝑦 appears 

to remain high, this is to provide power where possible from producers. But when 𝛬 < −1, the 

majority of nodes will be consumers and so any passed power will be purely to rearrange deficit, 

this is where changes in 𝛬𝑚 appear to have no correlation with the average power flow, this is 

an unrealistic situation however as it illustrates a network with no generators.  

 

 

Figure 4.27 The effect of the average capacity 𝛬𝑚 on the average 

value of 𝑦 (capacity was drawn randomly from a Gaussian 

distribution with mean 𝛬𝑚 and standard deviation of 1). Stars ∗ 
represent results from 40-node networks, ○’s represent results 

from 100-node networks [158]. 

 

 

4.5 Discussion  

 

We presented a power flow optimisation method based on message passing, focussing on how 

to effectively manage an event of inevitable failure due to excess demand.  

The formulation addresses the minimisation of load shedding for reducing the impact on 

consumers; specifically, only in the case when demand exceeds generation.  

We have shown how the weighting of the nodes has a large impact on the remaining deficit at 

each node; a higher importance value reduces the deficit at the corresponding node and a very 

high importance value will reduce the deficit further to negligible levels. However, increasing 

the importance value of all nodes is not advantageous because the deficit must be spread evenly 
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somehow so it is distributed between them; although high overall importance values does allow 

the network to ignore distribution cost due to the need to satisfy their demands at all 

(distribution) costs. If the importance values are distributed among the nodes, the respective 

distribution of deficit at those nodes appears to follow a rectangular hyperbolic-like function, 

always favouring the more important nodes. We saw that correlation between importance 

values and starting capacities resulted in very different curves of power deficit, and this should 

be considered when thinking of the security of the network. 

A discontinuous point was seen when the network changes from being satisfiable to 

unsatisfiable, needing to shed load, this jump reduces the power sent and therefore the pressure 

on the edges in the network and should be seriously considered for real networks as the change 

may either result in a relieved, safer network due to reduced pressure, or the sudden change 

over edges and at consumers and generators may be problematic (softer constraints or load 

shedding with fluctuations may mitigate this problem).   

A problem observed was that although power was being provided to minimise load shedding 

costs, sometimes the power was sent from consumers. In a real network without micro-grids, 

this would not be possible and should be considered in future research. Additionally, we see 

that when importance values are low, that some generators may retain power; this is due to the 

balancing between minimising load shedding and distribution costs. This should not happen 

unless a fixed minimum value (𝑃𝑚𝑖𝑛, which is explained in Section 5) has been placed on the 

generators and so further work should introduce a change of constraint that requires generators 

to have zero excess power (or 𝑃𝑚𝑖𝑛) during load shedding scenarios, and limit consumers to 

ensure they cannot provide power to other consumers through an additional constraint. Without 

a constraint on generators requiring them to send all their power, and as the scenario where load 

shedding is necessary is much more serious than the need to minimise distribution costs, we 

suggest that importance values should always have a large value (unless agreements with a 

consumer have been made, and cost is predominant) as very small importance values result in 

a network where necessary power does not flow through edges. 

Results show that an overall increase in importance weight increases the average power flow 

along edges and the distribution cost, but minimised the load shedding costs and the distribution 

of the deficit over nodes. We also see how importance weighting on volatile networks can 

results in positive reserve at high importance nodes to minimise possible deficit during 

fluctuations, resulting in less important nodes with more negative reserves to compensate for 

this. 
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To develop this algorithm further, one could set minimum reserve values at the generators to 

protect them from shutdown in case of excessive demand; as shut down increases the time for 

the network to be up and running again. This could be done using the 𝑃𝑚𝑖𝑛 value as mentioned 

in the next chapter. Additionally, preventing the consumer nodes from having a lower capacity 

than their used power would increase the practicality of the algorithm. 

 

Future work on minimising load shedding costs could include turning the access of consumers 

off one at a time to accurately represent real/rolling blackouts as described in stages 3 and 4 at 

the beginning of the chapter. Also, an existing method to reduce the risk of load shedding 

necessity is the 𝑁 − 1 contingency. This is where a power grid always produces an extra amount 

of power that could be used if any generator or power line was disconnected from the system, 

this means that the excess contingency reserve would be equivalent of the largest generator 

capacity. We could adapt our approach to consider a contingency practise such as this, but it 

may be advantageous to also include the probability of each failure. Further work could also 

prepare for 𝑁 − 2 contingencies, which are also suggested within OPF; these could utilise joint 

probabilities to include the probability of a pair of generators or lines tripping at the same time 

(the probability of targeted attacks taking two of the largest generators, or the probability of a 

local disaster where two generators within close proximity are affected). 
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5 Minimising Generation Costs  

5.1 Introduction  

 

Although minimising the cost of power losses is one of the main objective functions of a power 

flow program, a more important cost to be minimised is the generation cost. This chapter will 

focus on ways of minimising the economic cost of power production at different power 

generating units. Each power station has a different cost of production as described in Table 3: 

 

Table 3. Report for congress on power plants, their characteristics and costs [166]. 

 

 

The age and position of each generator also affects the production cost due to maintenance and 

transportation of fuel. This variation in cost is a large factor in deciding which power sources 

to turn on, up, down and off at unit commitment and the economic dispatch stages of power 

distribution. Although some of these costs are not specific to the cost of immediate power, they 

need to be negated somewhere. Some of these costs are fixed and some are variational. The cost 

curve, which is the cost at the generator as a function of the power produced, is shown in Figure 

6.1 [167]: 

 

 

Figure 5.1 Power output cost curve [167]. 
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In the interval between 0 and MWmin it is uneconomical or impractical to produce power, and 

MWmax is the maximum the generator can produce (MWmin, 𝑃𝑚𝑖𝑛 and 𝑃𝑗 will be used 

interchangeably, denoting the lowest power the generator can output. MWmax and 𝛬 are also 

interchangeable, as are 𝐺𝑚𝑎𝑥  and 𝐺𝑗). It has been suggested [167] that the curve is quadratic but 

could be modelled using a linear approximation; some also use piecewise linear models [168]. 

 

This chapter will consider and compare three different ways of considering the generation cost: 

 Linear – much research has employed this simplified objective function as it results in 

a faster convergence and since some of the optimisation methods may be unable to 

consider non-linear functions. 

 Negative Quadratic – the reason for trialling this model is to consider the jump between 

0 and MWmin. This model allows for power to be produced within this gap, but the 

generator sends no power at no cost in this range (a way of simplifying unit commitment 

decisions). The negative quadratic outputs a steep cost between 0 and MWmin to 

encourage power stations to generate higher powers and to simulate start-up costs. 

However, between MWmin and MWmax the shape of the cost curve is unrepresentative. 

 Positive Quadratic – this is a more representative model of the shape of the cost curve, 

but does not consider the jump from the generator being off to being on with a minimum 

MW. It therefore only considers economic dispatch, and not unit commitment; allowing 

us to assume that the generator is on and producing a minimum of MWmin. 
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5.2 Linear Cost Curve  

 

5.2.1 Method  

This simple method of describing the cost curve has been used by many, it can consider the 

MWmin and MWmax values and the associated costs but is unable to capture the shape of the cost 

curve. 

 

Figure 5.2 shows the linear approximation of the cost curve, where the 𝑥-axis indicates the 

power entering the node, ∑ 𝑦𝑗𝑘 − 𝑦𝑖𝑗𝑘≠𝑖  (or negative sent power).  

 

 

Figure 5.2 An experimental linear cost curve model. 

 

To model this within the suggested message passing equations, one variable must be forfeit. As 

the message passing method relies on differentiating the VFE to find the optimal solutions, any 

constants within the equation will be lost. Therefore, the cost line will be considered as passing 

through the 𝑦-axis at 𝑥 = 0. Because of this, only three points on the line can be predetermined; 

for example, if we are to assign the maximum point to be at (−𝛬𝑗, 𝐺𝑚𝑎𝑥) this gives us the line 

𝑦 = −
𝐺𝑚𝑎𝑥

𝛬𝑗
𝑥, although we can still set at (−𝑃𝑚𝑖𝑛, 𝑔𝑚𝑖𝑛) the MWmin value, the cost at this point 

will automatically be 𝑦 =
𝐺𝑚𝑎𝑥

𝛬𝑗
𝑃𝑚𝑖𝑛. Alternatively, the minimum point can be set and the 

maximum cost will automatically be 𝑦 =
𝑔𝑚𝑖𝑛

𝑃𝑚𝑖𝑛
𝛬𝑗, we will use the first.  

For later derivations of the other models we are required to change to vector notation, and for 

consistency we will start this here. In this notation 𝒚 is a vector of all 𝑦𝑗𝑘 values for descendants 

and 𝟏 signifies the one vector of length 𝑐 − 1. In addition to the original constraint that all 

consumers should be satisfied, there are now three more conditions which need considering: 
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 The generation cost objective function is to be only applied to generators. Therefore, 

we require all nodes with a non-positive capacity to have a generation cost, 𝐺𝑗 = 0, 

where 𝐺𝑗 reflects the 𝐺𝑚𝑎𝑥 cost when the generator has been fully utilised. 

 We do not want any generators to give more power than they can produce. This can be 

seen with the original constraint (in matrix form): 

 (𝒚 + 𝜺)𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗 ≥ 0, (114) 
where 𝜺 is the vector of 𝜀𝑗𝑘 variables (vector summations are only with respect to 

descendants). 

 Finally, we do not want generator nodes to receive power (the new cost functions 

could encourage power to flow towards generators for a profit), so we introduce: 

 (𝒚 + 𝜺)𝑇𝟏 − 𝑦𝑖𝑗 ≤ 0.  (115) 
 This constraint can also be adjusted to consider 𝑃𝑚𝑖𝑛 (which is negative for generators). 

 (𝒚 + 𝜺)𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑚𝑖𝑛 ≤ 0.  (116) 
 

We can now consider the linearised VFE about the current values: 

 

 

𝐹𝑖𝑗 = 𝜺
𝑇𝑨 +

1

2
𝜺𝑇𝑩𝜺 −

𝐺𝑗

𝛬𝑗
((𝒚 + 𝜺)𝑇𝟏 − 𝑦𝑖𝑗)

+ 𝜇𝑖𝑗[(𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗]

+ 𝐺𝑗𝛾𝑖𝑗[(𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗], 

(117) 

 

where 𝐺𝑗 is zero for all consumers, and a predetermined, individual generation cost value for 

each generator. There is also a second Lagrange multiplier, 𝛾𝑖𝑗, which indicates that generators 

must provide power values higher than the 𝑃𝑚𝑖𝑛 (or 𝑃𝑗); by setting all consumers to 𝐺𝑗 = 0 cost, 

the constraint is only enforced on generators. 

The vector 𝑨 represents the first derivative with respect to each descendant’s power flow: 

 

 𝑨 = [
𝜕(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗1

𝜕(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗2
⋯    

𝜕(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗𝐾
],  (118) 

 

where 𝐾 = 𝑐 − 1, the distribution cost 𝜙, remains an objective function and the matrix 𝑩 gives 

the second derivative with respect to descendant’s power flows: 
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 𝐵 =

[
 
 
 
 
 
 
 
 
𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗1
2

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗1𝜕𝑦𝑗2

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗2𝜕𝑦𝑗1

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗2
2

⋯

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗1𝜕𝑦𝑗𝐾

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗2𝜕𝑦𝑗𝐾
⋮ ⋱ ⋮

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗𝐾𝜕𝑦𝑗1

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗𝐾𝜕𝑦𝑗2
⋯

𝜕2(𝐹𝑉 + 𝜙)

𝜕𝑦𝑗𝐾
2

]
 
 
 
 
 
 
 
 

. (119) 

 

Minimising the VFE with respect to the Lagrange multipliers gives: 

 

 𝜇𝑖𝑗 = min

[
 
 
 
 𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗 + (−𝑨 +

𝐺𝑗
𝛬𝑗
𝟏)

𝑇

𝑩−1𝟏

𝟏𝑇𝑩−1𝟏
, 0

]
 
 
 
 

, (120) 

 

 𝛾𝑖𝑗 = max

[
 
 
 
 𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗 + (−𝑨 +

𝐺𝑗
𝛬𝑗
𝟏)

𝑇

𝑩−1𝟏

𝐺𝑗𝟏𝑇𝑩−1𝟏
, 0

]
 
 
 
 

, (121) 

 

which when calculated gives 𝜇𝑖𝑗 = 𝑓(𝛾𝑖𝑗), and 𝛾𝑖𝑗 = 𝑔(𝜇𝑖𝑗); both functions are zero only if 

they are obeyed, and as they are non-overlapping constraints, we can assume that if either 

function is non-zero the other must be zero, allowing us to nullify each one in the other’s 

equation. However, this is not the case for the derivatives of both functions. 

Minimising the VFE again to find the optimal messages to the ancestor node gives the 

messages: 

 

 𝐴𝑖𝑗 =

{
  
 

  
 
𝐺𝑗

𝛬𝑗
− (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗), in case 1,

𝐺𝑗

𝛬𝑗
− 2(𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗), in case 2,

𝐺𝑗

𝛬𝑗
, in case 3,

 (122) 

 

and: 
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 𝐵𝑖𝑗 =

{
 
 

 
 

1

𝟏𝑇𝑩−1𝟏
, in case 1,

4

𝟏𝑇𝑩−1𝟏
, in case 2,
 

0, in case 3,

 (123) 

 

where the cases are defined in Table 4. Although we can assume each Lagrange multiplier to 

be zero if the other is non-zero, the same cannot be assumed about its derivative. In blue are the 

cases of inconsistent values, and in orange is the case that only happens if MWmin = MWmax. 

These cases can be better understood with Figure 5.3. 

 

Table 4. The possible cases of 𝐴𝑖𝑗 and 𝐵𝑖𝑗. 

 
𝜇𝑖𝑗 < 0,

𝜕𝜇𝑖𝑗

𝜕𝑦𝑖𝑗
≠ 0 𝜇𝑖𝑗 = 0,

𝜕𝜇𝑖𝑗

𝜕𝑦𝑖𝑗
≠ 0 𝜇𝑖𝑗 > 0,

𝜕𝜇𝑖𝑗

𝜕𝑦𝑖𝑗
= 0 

𝛾𝑖𝑗 < 0,
𝜕𝛾𝑖𝑗

𝜕𝑦𝑖𝑗
= 0 

Case 1 Case 1 Case 3 

𝛾𝑖𝑗 = 0,
𝜕𝛾𝑖𝑗

𝜕𝑦𝑖𝑗
≠ 0 

Case 2 Case 2 Case 1 

𝛾𝑖𝑗 > 0,
𝜕𝛾𝑖𝑗

𝜕𝑦𝑖𝑗
≠ 0 

Case 2 Case 2 Case 1 

  

 

Figure 5.3 Possible combinations of 𝜇𝑖𝑗 and 𝛾𝑖𝑗 values. 

 

A backwards message is given as: 

 

 𝒚 = 𝒚 + 𝑩−1 (−𝑨 +
𝐺𝑗

𝛬𝑗
𝟏 − (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏). (124) 
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5.3 Negative Quadratic Cost Curve  

 

5.3.1 Method  

In order to consider generation costs by a simple approximation of one of the unit commitment 

processes, we assume a negative cost curve objective function, which can be displayed in Figure 

5.4. 

 

 

Figure 5.4 Experimental negative quadratic cost curve. 

 

The curve considers that starting a generator incurs extra costs and therefore the difference 

between generating high to higher levels of power is much lower than the difference between 

generating none and a small amount, theoretically persuading the algorithm to choose higher 

power values at generators that are already producing instead of turning on other generators. 

The curve will be modelled by a negative quadratic function to maintain simplicity in the 

calculations. As the first and second derivatives of the VFE are required, functions such as the 

logarithm, the error function and the square root function become complicated quickly. The 

maximum cost is at the point where power flow is −𝛬𝑗, and we mark this cost by the 

predetermined variable 𝐺𝑗. This gives us an objective function of: 

 

 −
𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗)
2
−
2𝐺𝑗

𝛬𝑗
(𝒚𝑇𝟏 − 𝑦𝑖𝑗). (125) 
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The derivations are different in this case as the nonlinearity of the second derivative of function 

(125) is not zero when differentiated by a different power flow 𝑦𝑗𝑙 (this had been zero in earlier 

Equation (50)), and so we must now rewrite the derivation in matrix form: 

 

 −
𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗)
𝑇
(𝒚𝑇𝟏 − 𝑦𝑖𝑗) −

2𝐺𝑗

𝛬𝑗
(𝒚𝑇𝟏 − 𝑦𝑖𝑗). (126) 

 

As with the linear cost curve, it is possible to add the MWmin value, which automatically fixes 

the 𝑔𝑚𝑖𝑛 value. Although this directly invalidates the main reason for trying negative quadratic 

curve costs, it still provides a non-linear model for the cost curve. We will consider this model 

primarily for comparison. 

Calculating the optimal first and second derivative messages sent to node 𝑖 using the Taylor 

expansion of the VFE with its new constraints: 

 

 

𝐹𝑖𝑗 = 𝜺𝑇𝑨+
1

2
𝜺𝑇𝑩𝜺 −

𝐺𝑗

𝛬𝑗
2 ((𝒚 + 𝜺)

𝑇𝟏 − 𝑦𝑖𝑗)((𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗)

−
2𝐺𝑗

𝛬𝑗
((𝒚 + 𝜺)𝑇𝟏 − 𝑦𝑖𝑗) + 𝜇𝑖𝑗[(𝒚 + 𝜺)

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗]

+ 𝐺𝑗𝛾𝑖𝑗[(𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗]. 

(127) 

 

The reason the generation cost is not considered within the Taylor expansion is that we only 

consider the cost of generation at node 𝑗 for each VFE. Minimising with respect to 𝜺 gives: 

 

 𝜺 = (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

(−𝑨 +
2𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)
𝑇
𝟏 − (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏), (128) 

 

where 𝑱 is the Jacobian matrix of size 𝑐 − 1. Putting the minimised 𝜺 back into 𝐹𝑖𝑗 gives the 

optimal VFE expression: 

 

 

𝐹𝑖𝑗
∗ = −

1

2
𝑨𝑇 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝑨 −
𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗)
2
−
2𝐺𝑗

𝛬𝑗
(𝒚𝑇𝟏 − 𝑦𝑖𝑗)

+
1

2
(𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)

2
𝟏𝑇 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏

−
2𝐺𝑗

2

𝛬𝑗
4 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)
2
𝟏𝑻 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏

+
2𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)𝑨
𝑇 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏. 

(129) 
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Minimising the two Lagrange multipliers and recognising that both constraints cannot be 

unsatisfied at the same time, therefore one will always be zero, gives: 

 

𝜇𝑖𝑗 = min

[
 
 
 
 

0,

𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗 + (−𝑨+
2𝐺𝑗
𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)
𝑇
𝟏)

𝑇

(𝑩 −
2𝐺𝑗
𝛬𝑗
2 𝑱)

−1

𝟏

𝟏𝑇 (𝑩 −
2𝐺𝑗
𝛬𝑗
2 𝑱)

−1

𝟏
]
 
 
 
 

, (130) 

 

𝛾𝑖𝑗 = max

[
 
 
 
 

0,

𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗 + (−𝑨+
2𝐺𝑗
𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)
𝑇
𝟏)

𝑇

(𝑩 −
2𝐺𝑗
𝛬𝑗
2 𝑱)

−1

𝟏

𝐺𝑗𝟏
𝑇 (𝑩 −

2𝐺𝑗
𝛬𝑗
2 𝑱)

−1

𝟏
]
 
 
 
 

, (131) 

 

allowing us to obtain the messages: 

 

𝐴𝑖𝑗

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 2𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗) +
4𝐺𝑗

2

𝛬𝑗
4 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)𝟏
𝑇 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏

−
2𝐺𝑗

𝛬𝑗
2 𝟏

𝑇 (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝑨 − (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗) −
2𝐺𝑗

𝛬𝑗
2 (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏

𝑇 (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏, in case 1,

2𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗) +
4𝐺𝑗

2

𝛬𝑗
4 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)𝟏
𝑇 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏

−
2𝐺𝑗

𝛬𝑗
2 𝟏

𝑇 (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝑨 − 2(𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗) −
4𝐺𝑗

𝛬𝑗
2 (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏

𝑇 (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏, in case 2,

2𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗) +
4𝐺𝑗

2

𝛬𝑗
4 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)𝟏
𝑇 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏

−
2𝐺𝑗

𝛬𝑗
2 𝟏

𝑇 (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝑨, in case 3,

 

(132) 
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where the cases are explained in Table 4, and: 

 

 

𝐵𝑖𝑗

=

{
 
 
 
 
 

 
 
 
 
 

1

𝟏𝑇 (𝑩 −
2𝐺𝑗
𝛬𝑗
2 𝑱)

−1

𝟏

+
2𝐺𝑗

𝛬𝑗
2 , in case 1,

14𝐺𝑗

𝛬𝑗
2 +

4

𝟏𝑇 (𝑩 −
2𝐺𝑗
𝛬𝑗
2 𝑱)

−1

𝟏

+
12𝐺𝑗

2

𝛬𝑗
4 𝟏𝑇 (𝑩 −

2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏, in case 2,

−
2𝐺𝑗

𝛬𝑗
2 −

4𝐺𝑗
2

𝛬𝑗
4 𝟏

𝑇 (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

𝟏, in case 3,

 
(133) 

 

giving a backwards message of: 

 

 

𝒚 = 𝒚 + (𝑩 −
2𝐺𝑗

𝛬𝑗
2 𝑱)

−1

(−𝑨 +
2𝐺𝑗

𝛬𝑗
2 (𝒚

𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗)𝟏

− (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏). 

(134) 

 

 

5.4 Positive Quadratic Cost Curve  

 

5.4.1 Method  

This curve will allow us to model more accurately the shape of the cost curve, but does not 

consider the case of the generator being off. The curve can be shown as: 

 

 

 

Figure 5.5 Experimental positive quadratic cost curve. 
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Here we can see that the power provided by the generator is required to be between the point 

MWmax and MWmin. As we are sending the first and second derivatives, any constant of the 

quadratic function would be lost. Therefore, we can only consider a function of the form 𝑦 =

𝐴𝑥2 + 𝐵𝑥 where other constants cannot be considered. If we chose the point -MWmin to be the 

minimum of the quadratic, at this point 0 = 2𝐴𝑥 + 𝐵, and 𝑥 = −
𝐵

2𝐴
. If we require at this point 

for the cost to be 𝑔𝑚𝑖𝑛, this gives us the function 𝑦 =
𝑔𝑚𝑖𝑛

3𝑃𝑗
2 𝑥

2 +
2𝑔𝑚𝑖𝑛

3𝑃𝑗
𝑥.  In this case, as we 

cannot determine the 𝐺𝑚𝑎𝑥 value separately as its value is defined directly according to the 

function. Alternatively, 𝐺𝑚𝑎𝑥 the cost required at MWmax, can be the coefficient we choose to 

fix, which gives 𝑦 =
𝐺𝑗

𝛬𝑗
2−2𝑃𝑗𝛬𝑗

𝑥2 +
2𝑃𝑗𝐺𝑗

𝛬𝑗
2−2𝑃𝑗𝛬𝑗

𝑥, and 𝑔𝑚𝑖𝑛 is automatically determined. To best 

compare the three methods, we will use the latter.  

 

This allows us to write a new Taylor expansion of the VFE: 

 

 

𝐹𝑖𝑗 = 𝜺𝑇𝑨 +
1

2
𝜺𝑇𝑩𝜺 +

𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

((𝒚 + 𝜺)𝑇𝟏 − 𝑦𝑖𝑗)((𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗)

+
2𝑃𝑗𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

((𝒚 + 𝜺)𝑇𝟏 − 𝑦𝑖𝑗)

+ 𝜇𝑖𝑗[(𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗]

+ 𝐺𝑗𝛾𝑖𝑗[(𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗], 

(135) 

 

giving the optimal Lagrange multipliers: 

 

 

𝜇𝑖𝑗

= min

[
 
 
 
 

0,

𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗 + (−𝑨 −
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗)
𝑇
𝟏)

𝑇

(𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏

𝟏𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏
]
 
 
 
 

, 
(136) 

 

 

𝛾𝑖𝑗

= max

[
 
 
 
 

0,

𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗 + (−𝑨 −
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗)
𝑇
𝟏)

𝑇

(𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏

𝐺𝑗𝟏
𝑇 (𝑩 +

2𝐺𝑗
𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏
]
 
 
 
 

, 
(137) 
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allowing us to obtain the messages to ancestor 𝑖: 

 

𝐴𝑖𝑗

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝟏𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝑨 +
4𝐺𝑗

2

(𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗)

2 (𝒚
𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗)𝟏

𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏

−
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗) − (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗) +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏
𝑇 (𝑩 +

2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏, in case 1,

2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝟏𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝑨 +
4𝐺𝑗

2

(𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗)

2 (𝒚
𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗)𝟏

𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏

−
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗) − 2(𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗) +
4𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏
𝑇 (𝑩 +

2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏, in case 2,

2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝟏𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝑨 +
4𝐺𝑗

2

(𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗)

2 (𝒚
𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗)𝟏

𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏

−
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗), in case 3,

 (138) 

 

and, 

 

𝐵𝑖𝑗

=

{
 
 
 
 
 

 
 
 
 
 

1

𝟏𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏

−
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

, in case 1,

−
14𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

+
4

𝟏𝑇 (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏

+
12𝐺𝑗

2

(𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗)

2 𝟏
𝑇 (𝑩 +

2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏, in case 2,

2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

−
4𝐺𝑗

2

(𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗)

2 𝟏
𝑇 (𝑩 +

2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

𝟏, in case 3.

 (139) 

 

Using the same cases as in Table 4. Backwards messages are given by: 

 

 

𝒚 = 𝒚 + (𝑩 +
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

𝑱)

−1

(−𝑨 −
2𝐺𝑗

𝛬𝑗
2 − 2𝑃𝑗𝛬𝑗

(𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝑃𝑗)𝟏

− (𝜇𝑖𝑗 + 𝐺𝑗𝛾𝑖𝑗)𝟏). 

(140) 

 

 

5.5 Results  

 

We will now show some properties of the minimising generation cost algorithms. Figure 5.6 to 

Figure 5.9 show pie charts of how different generation cost values change the proportion of 

power provided from each generator using a positive quadratic cost curve with 𝑃𝑚𝑖𝑛  equals 

zero. When all generators have a low generation cost, the distribution cost is minimised with a 

higher priority allowing a variation of power sent per generator in Figure 5.6 due to topological 
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considerations. When all the generation costs are high, this leads to an even distribution of 

power provided among the generators as the cost of distribution is less important in comparison, 

as shown in Figure 5.7. If one node has a much higher generation cost than the others, we can 

see how this generator provides a negligible amount of power to the network in Figure 5.8 (this 

is because there is enough power in the network to satisfy the consumers, with one generator 

off; on a poorer network, the generator would still be required to provide some power). And 

finally, if one generator is much cheaper than the rest it provides more power than the other 

generators (but not exceeding its available capacity), Figure 5.9. It is to be recognized here that 

the power supplied is the maximum the station can provide, and assigning the node an even 

lower generation cost would not change the results. 

 

 

Figure 5.6 All generators have a generation cost 

value of 1, from an optimised synthetic network 

with generation larger than overall demand (20-

nodes, 8 consumers with 𝛬𝑗 = ℱ(−2) And 8 

generators with 𝛬𝑗 = ℱ(4)). Pie chart represents 

the proportion of power provided to consumers 

from each generator, where 𝐺 represents the 

generation cost of each generator. 

 

Figure 5.7 All generators have a generation cost 

value of 100. All other properties correspond with 

those of Figure 5.6. 

 

Figure 5.8 All generators have a generation cost 

value of 1, apart from one node with a generation 

cost of 100. All other properties correspond with 

those of Figure 5.6. 

 

Figure 5.9 All generators have a generation cost 

value of 100, apart from one node with a 

generation cost of 1. All other properties 

correspond with those of Figure 5.6. 
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The following graphs indicate the power sent from each generator when one generators cost is 

increasing. Figure 5.7 and Figure 5.9 are demonstrated through Figure 5.10 where we see how 

when all generators costs are large, the demand is divided equally between nodes; but as one 

generators’ cost decreases, making it cheaper to provide power, it sends more than the other 

nodes to reduce the amount the other generators must provide. The generator continues to send 

more power until it is fully utilised. Figure 5.6 and Figure 5.8 can be seen in Figure 5.11, where 

the generators all have low generation costs so distribution cost is considered more prominently, 

this results in each generator providing unequal amounts of power to reduce the distribution 

cost. As generator 1’s generation cost increases, we see how the program aims to minimise the 

power this node must provide, as it is now more expensive, by sending the power from cheaper 

generators.  

 

 

Figure 5.10 The power sent from all 8 generators 

from Figure 5.6, where generators 2 to 8 have 

generation cost 𝐺2:8 = 100 and 𝐺1 is increasing. 

Capacities are fixed at ℱ(3,−2). 

 

Figure 5.11 The power sent from all 8 generators 

from Figure 5.6, where generators 2 to 8 have 

generation cost 𝐺2:8 = 1 and 𝐺1 is increasing. 

Capacities are fixed at ℱ(3,−2). 

 



162 

 

Figure 5.12 represents the distribution of the power sent, 𝑆, from generator nodes to consumers. 

The graph shows how the connectivity of the network does not appear to largely affect the 

proportion of power provided by each of the nodes, however, this may be because the average 

generation cost is high; with a lower generation cost this may result in different effects because 

the distribution cost would have a higher priority, so the cost of each generator would be 

weighted more equally with the distance from consumer, in this case the curve would be 

expected to be less distinct especially for lower connectivities when distribution costs would be 

higher. Figure 5.13 shows how for any spread of the generation cost values, the nodes with 

lower costs send their maximum capacity first. For lower generation costs (𝒰(0,1)  and 

𝒰(0,0.5)) this correlation becomes slightly less pronounced as distribution cost has a higher 

priority than it does with larger average generator cost values. The graphs demonstrate how the 

approach works very well at prioritising cheaper generators to be used. 

 

 

Figure 5.12 Proportion of power provided by 

each of the generators with respect to its own 

capacity. The degree connectivity of the different 

cases is 𝑐 = 5 (blue), 7 (orange). The generation 

costs are marked on the 𝑥-axis and are randomly 

drawn 𝐺𝑗 = 𝒰(0,5). 

 

Figure 5.13 Proportion of power provided by 

each of the generators with respect to its own 

capacity. The generation cost is randomly chosen 

from a uniform distribution between 𝒰(0, 𝐺+) 
where 𝐺+ = 0.5 (blue) 1 (orange), 1.5 (yellow) 

and 2 (purple).  
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Figure 5.14 shows the very consistent and convex nature of the power supplied by each 

generator, as fraction of capacity, according to each nodes generation cost (𝑥-axis values). One 

can see how as the network has less overall available power, the generators with the highest 

costs are prioritised as the cheaper generators provide more power. Figure 5.15 shows the 

difference in correlation between power sent and generation cost as the average capacity is now 

chosen from a normal distribution. We can see how the poorer networks (such as blue) result 

in most generators providing power, irrespective of generation cost, whereas more wealthy 

networks (such as purple) have less overall power sent (due to less demand), and the negative 

correlation between power sent and generation cost is very apparent. In blue it can still be seen 

that lower generation cost nodes have been fully utilised, but this graph demonstrates how these 

poorer networks are less affected by generation cost values, we assume this is because power 

flow is increased, and therefore distribution cost is higher and carries a higher weight against 

generation cost. A large difference can be seen between the Figure 5.14 and Figure 5.15, this is 

due to the distribution of the capacities; even if the mean is the same there will be a higher 

proportion of generators and a lower proportion of consumers with the normal distribution thus 

less need for sent power, in addition to less power being sent, the producers capacities are 

entirely independent of generation cost, meaning some low generation costs could have high 

capacity and satisfy consumers without sending all of their power and some high generator 

costs with low capacity, even when they send a small amount of power this will appear to be a 

bigger proportion, making the graph appear in general more random. This suggests that 

minimising generation costs may be aided by a more consistent set of capacities, although this 

may not be practical to implement. 

 

  

Figure 5.14 Proportion of power dispatched by 

each generator with respect to its own capacity 

and as a function of generation cost (𝑥-axis). 

Where the capacities are given fixed values 

ℱ(𝛬𝑚, −1) where 𝛬𝑚 = 1.2 (orange ×), 1.4 

(yellow +) and 1.6 (purple •). 

 

Figure 5.15 Proportion of power dispatched by 

each generator with respect to its own capacity 

and as a function of generation cost (𝑥-axis). 

Where the capacities are chosen randomly from 

a Gaussian distribution 𝒩(𝛬𝑚, 1) where 𝛬𝑚 =
0.2 (blue ○), 0.4 (orange ×), 0.6 (yellow +) and 

0.8 (purple •). 
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Figure 5.16 and Figure 5.17 show two different cost curve algorithms tested on the same 

network, and it is obvious that the cost curve used has a high impact on the spread of power 

dispatched from the various generators. In Figure 5.16 we see a linear cost curve used within 

ten 100-node networks, there is a high proportion sending no power at all, a high proportion 

sending everything, and a low proportion sending some; with a very obvious transition for 

generators around some threshold cost value. This threshold values depends on the mean of the 

distribution of generation values. Figure 5.17 demonstrates the power dispatched from 

generators as a fraction of their capacities under the same conditions as in Figure 5.16 for a 

positive quadratic cost curve. We see a much higher proportion of nodes providing some power, 

a lower fraction sending everything and no generators sending no power at all. The curvature 

of each graph appears to reflect the shape of its cost curve. These diagrams show the importance 

of an accurate modelling of the cost curve; The efficacy of the cost model used in real scenarios 

depends on the preferred properties in the various cases. These results may vary with parameter 

changes of the cost curve, or different 𝑃𝑚𝑖𝑛 values. Figure 5.16 and Figure 5.17 also shows how 

a higher average generation cost values results in approximately the same sent curves but at 

higher 𝐺 values; as the generators with the highest costs are still prioritised in minimising the 

dispatch power. 

 

 

Figure 5.16 Proportion of available power 

supplied from generator nodes with respect to 

their individual capacities as a function of their 

specific cost values when the generation cost 

curve is linear. Plotted using ten 100-node 

networks with random regular connectivity 6 and 

𝛬 = ℱ(−1,1.2). Colours represent the 

distribution of the generation cost values drawn 

from 𝒩(𝐺𝑚, 1), where 𝐺𝑚 = 0.5 (blue), 1 

(orange), 1.5 (yellow), 2 (purple). 

 

Figure 5.17 Proportion of available power 

supplied from generator nodes with respect to 

their individual capacities as a function of their 

specific cost values when the generation cost 

curve is positive quadratic. Plotted using ten 100-

node networks with random regular connectivity 

6 and 𝛬 = ℱ(−1,1.2). Colours represent the 

distribution of the generation cost values being 

𝒩(𝐺𝑚, 1), where 𝐺𝑚 = 0.5 (blue), 1 (orange), 

1.5 (yellow), 2 (purple). 
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A large difference in the proportion of power dispatched per generator can be seen in Figure 

5.18, where the generation costs were assigned in correlation with the maximum capacity values 

of each generator. We can see that when there is a negative correlation between the two 

parameters, a very smooth negative cumulative type curve is formed, this is because generators 

of low capacity and a low cost will quickly be fully utilised and capacities will be gradually 

exhausted according to the increase in generation costs. A very different straight line between 

0.2 and 0.4 can be seen when the parameters are positively correlated, since generators with 

higher capacities are used due to their low generation cost but the proportion of power 

dispatched with respect to their capacities remains fairly low, it is also more expensive to use 

the lower capacity generators and hence only a small proportion of these are used. This is a very 

useful graph when considering real networks, coal power stations usually have a smaller 

capacity than nuclear power stations, but higher generation cost; this coincides with a negative 

correlation (the blue curve). From Figure 5.19 we see how increasing the fixed value generation 

costs of all generators results in a decrease in the distribution of the power provided, converging 

towards the fixed power required by consumers. This demonstrates the importance of 

appropriate weighting between the generation cost and the distribution cost objective functions, 

we suggest a high average generation cost weight would be most appropriate to real objectives, 

to prioritise it over distribution costs. It can also be seen that the number of nodes in the network 

𝑁 does not appear to largely affect the power provided per generator. 

 

 

Figure 5.18 Proportion of available power 

supplied from generator nodes with respect to 

their individual capacities as a function of their 

specific cost values when the generation cost 

curve is positive quadratic. Plotted using ten 100-

node networks with random regular connectivity 

6 and 𝛬 = ℱ(−1,1.2). Colours represent the 

distribution of the generation cost values being 

𝒞(−1 (blue ○),+1 (orange ×), 𝛬). 

 

Figure 5.19 The power sent from each generator 

node as the fixed generation cost value increases 

when the generation cost curve is positive 

quadratic. Plotted using ten 100-node networks 

with random regular connectivity 6 and 𝛬 =
ℱ(−1,1.2). Colours represent the size of the 

network 𝑁 = 40 (blue), 80 (orange), 120 

(yellow) and 160 (purple). 
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Figure 5.20 demonstrates the effect of increasing the fixed 𝑃𝑚𝑖𝑛  value on each generator. We 

see how this decreases the distribution of the dispatched power. This is because as the minimum 

power sent from each generator increases, this additional power sent to consumers allows for 

the maximum power supplied from other generators to decrease. We see from Figure 5.21 how 

this increase in 𝑃𝑚𝑖𝑛  value results in a quadratic increase in the overall networks generation cost 

because extra power is being sent from generators, that in the minimised generation cost 

algorithm were not optimal, to satisfy the constraint (the generation cost is calculated from the 

given cost function). We can also see how a larger fixed generation cost value increases the 

generation cost of the network, this is solely because of the fixed constant 𝐺𝑗 value in the 

generation cost value 𝐺+ = ∑
𝐺𝑗

𝛬𝑗
2−2𝑃𝑗𝛬𝑗

𝑆𝑗
2 +

2𝑃𝑗𝐺𝑗

𝛬𝑗
2−2𝑃𝑗𝛬𝑗

𝑆𝑗𝑗 ; otherwise all curves follow the purple 

curve.  

 

 

Figure 5.20 The power supplied from each 

generator node as the 𝑃𝑚𝑖𝑛 value increases when 

the generation cost curve is positive quadratic. 

Plotted using 100-node networks with random 

regular connectivity 6 and 𝛬 = ℱ(−1,1.2). 
Colours represent the distribution of the 

generation cost values being ℱ(0.25) (blue), 0.5 

(orange), 0.75 (yellow) and 1 (purple). 

 

Figure 5.21 The generation cost value of the network 

as the 𝑃𝑚𝑖𝑛 value increases when the generation cost 

curve is positive quadratic. Plotted using 100-node 

networks with random regular connectivity 6 and 

𝛬 = ℱ(−1,1.2). Colours represent the distribution 

of the generation cost values being ℱ(0.25) (blue), 

0.5 (orange), 0.75 (yellow) and 1 (purple). 
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Figure 5.22 shows an example of a network where the 𝑃𝑚𝑖𝑛 values are fixed at a proportion of 

the nodes capacity. It can be seen how due to the generators having to dispatch a minimum 

amount according to their 𝑃𝑚𝑖𝑛 value, excess power is given to consumers. Assuming no excess 

is necessary (ignoring fluctuations and 𝑁 − 1 contingencies) this scenario results in an 

unnecessary generation cost and distribution cost and a good power grid management would 

look to turn off some generators to avoid it. 

 

 

 

Figure 5.22 The remaining power at each node according to its original capacity from multiple 100-

node networks with random regular connectivity 6 and 𝛬 = ℱ(−1,1.2). The 𝑃𝑚𝑖𝑛 values on each 

generator are fixed at a percentage of the nodes capacity; 𝑃𝑚𝑖𝑛 = 0.2𝛬𝑗 (orange), 0.3𝛬𝑗 (yellow) and 

0.4𝛬𝑗 (purple). 
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The main difference between the linear, the positive and the negative quadratic cost curve can 

be seen from Figure 5.23 - Figure 5.25. We see how for a positive quadratic, the higher capacity 

generators end up with higher reserves, this is because the cost curve looks to minimise the 

power supplied from each generator and favours a smaller value from each generator, whereas 

with a negative quadratic curve, the larger capacity generators appear to result in smaller 

remaining power as the cost curve favours generators maximising their capacities. The reserve 

given using the linear curve is entirely from larger capacities, and the curve appears to work 

similarly to the negative curve; utilising the higher capacities fully first before turning other 

generators on. The difference in the three graphs highlights the importance of the accurate 

modelling of the cost curve. 

 

 

Figure 5.23 The reserve power remaining at each 

node as a function of its own 𝛬𝑗 value when the 

generation cost curve is positive quadratic. Plotted 

using multiple 100-node networks with random 

regular connectivity 6 and 𝛬 = 𝒰(−0.5,1). 
Colours represent the distribution of the generation 

cost values being ℱ(0.25) (blue), 0.5 (orange), 

0.75 (yellow) and 1 (purple). 

 

Figure 5.24 The reserve power remaining at each 

node as a function of its own 𝛬𝑗 value when the 

generation cost curve is negative quadratic. Plotted 

using multiple 100-node networks with random 

regular connectivity 6 and 𝛬 = 𝒰(−0.5,1). 
Colours represent the distribution of the generation 

cost values being ℱ(0.5) (orange), 0.75 (yellow) 

and 1 (purple). 

 

Figure 5.25 The reserve power remaining at each node as a function of its own 𝛬𝑗 value when the 

generation cost curve is linear. Plotted using multiple 100-node networks with random regular 

connectivity 6 and 𝛬 = 𝒰(−0.5,1). Colours represent the distribution of the generation cost values being 

ℱ(0.5) (orange), 0.75 (yellow) and 1 (purple). 
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5.6 Discussion  

 

All three models, linear, positive and negative quadratic, work well, but arguably the most 

representative model is the positive quadratic cost, which we have focused on. The results show 

that the model and the resulting message passing method can successfully redistribute the power 

flow to minimise the production cost. We see how increasing the cost of one generator effects 

the others in the network and how the value of the generation cost with respect to the distribution 

cost effects the power flow over lines. Results show that increasing generation costs decreases 

the distribution of power provided from generators, as does increasing the 𝑃𝑚𝑖𝑛 values, but 

increases distribution cost. We see how 𝑃𝑚𝑖𝑛 values are successful even when they result in 

power sent exceeding power demand, which results in reserve power at consumers. It is also 

shown how positive quadratic cost curves favour more generators being on and producing 

smaller amounts of power, whereas negative quadratic and linear cost curves prefer to maximise 

the generators capacities before turning on new ones. In addition, we see that a positive 

correlation of generation cost and capacity results in most generators sending equal proportions 

of their power, whereas a negative correlation favours maximising the utilisation of generators 

with low production costs. 

 

Although considering the generation cost in this manner works relatively well, the objective 

function could be made more effective. For example, if the objective function was to allow a 

generator to produce nothing at zero cost this could represent the cost of turning off a generator 

at the unit commitment stage, this is possible by introducing more constraints with the help of 

more Lagrange multipliers.  
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The calculations also do not consider prohibited zones which are values of MW between MWmin 

and MWmax that are not accessible as explained in [169] and with the corresponding Figure 

5.26. These zones may be due to turning on second and third reactors within the same power 

generation station for higher outputs. Time delays for the turning up or down of generators are 

not considered within these calculations as economic dispatch considers only instances at a 

time, not the dynamic state of the system. It is assumed that these can be taken care of before 

the start of the next time-frame or at the unit-commitment stage; further work suggested on 

minimising the deviation of variables in Section 8.2 may be able to consider this. 

 

 

Figure 5.26 The cost curve considering prohibited zones [169]. 
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6 Voltages  

 

Work done so far has been quite abstract, because although we assume power is required by 

consumers and supplied by generators, we have talked until now about power being supplied 

over edges while ignoring the physical variables to be determined such as voltages, frequencies, 

currents and phases. We should therefore adapt the suggested framework to the physical 

variables used, for instance according to the simplified ACOPF (or DCOPF) in Equation (18); 

power is the difference between phase angles divided by reactance. In accordance with DCOPF, 

in this chapter we will use the variables, 𝑣𝑗  for the phase angles at node 𝑗 and 𝑅𝑖𝑗 as the reactance 

over the line (𝑖𝑗) (we will describe them as current, voltage and resistance for simplicity and in 

accordance with the comparison to DCOPF): 

 

 𝑦𝑖𝑗 =
𝑣𝑗 − 𝑣𝑖

𝑅𝑖𝑗
. (141) 

 

 

6.1 Current Potential  

 

6.1.1 Method  

Adjusting voltages instead of assigning currents is more practical for power grids and as 

mentioned in the work done by Wong and Saad [76], the current 𝑦𝑖𝑗 can be expressed as current 

potential (𝑣𝑗 − 𝑣𝑖), also mentioning that in the specific case where the objective function is 

quadratic, the chemical potential used in their framework and current potentials are 

interchangeable.  

 

There are two obvious ways of considering the difference in voltages instead of the power flow 

(ignoring resistance for the moment). The model could either consider voltages as the control 

variables instead of the current, 𝑦𝑖𝑗, or we could calculate the distribution of currents, and then 

take the difference to calculate the voltages; we will focus on the first model. The current 

message passing equations allows voltages to be at any value, as long as the difference between 

them is correct. Rewriting the equations in terms of voltages does have its complications; this 

is because adjusting one voltage affects all currents it is connected to. Therefore, if we were to 

adjust the voltage at a parent node 𝑗 according to the information sent to the ancestor node (𝑦𝑖𝑗), 
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the current sent to the ancestor 𝑦𝑖𝑗, would be changed by the adjustment, resulting in the 

backwards messages to nodes 𝑘, being unrepresentative of the present situation. In addition, the 

messages sent from node 𝑗 to an ancestor, 𝑖, would be the derivatives of the VFE with respect 

to a single node 𝑣𝑖, these messages (𝐴𝑖 and 𝐵𝑖) would contain the information necessary for 

node 𝑖 from node 𝑗, but the information would only depend on node 𝑖, disregarding the 

information sent from any of node 𝑖’s other neighbours, which may result in inaccurate 

messages. One way to avoid these problems is to look at the situation of double bipartite factor 

graph.  

 

 

Figure 6.1 Example of a double variable bipartite factor graph. 

 

For power distribution, we assign each double node (𝑣𝑗 , 𝑣𝑖) resulting in the equations of the 

power distribution, being almost exactly the same as before. The only real difference is that the 

adjustment, is formally made to 𝑣𝑘 − 𝑣𝑗. However, we set the adjustment variables 𝜀𝑗 = 0 in 

order to avoid the extra degree of freedom and reduce the complexity of the expressions 

obtained; so, all adjustments are around 𝑣𝑘 only. One variable adjustments may result in the 

equations not converging in cases where small loops are present.  

 

The VFE Taylor Expansion now can be shown as: 

 

 

𝐹𝑖𝑗 =∑[(𝐴𝑗𝑘 + 𝜙𝑗𝑘
′ )𝜀𝑘 +

1

2
(𝐵𝑗𝑘 + 𝜙𝑗𝑘

′′ )𝜀𝑘
2]

𝑘≠𝑖 

+ 𝜇𝑖𝑗 [∑(𝑣𝑘 + 𝜀𝑘 − 𝑣𝑗) − (𝑣𝑗 − 𝑣𝑖) + 𝛬𝑗
𝑘≠𝑖 

], 

(142) 
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where 𝐴𝑗𝑘 =
𝜕𝐹𝑗𝑘

𝜕(𝑣𝑘−𝑣𝑗)
, 𝐵𝑗𝑘 =

𝜕2𝐹𝑗𝑘

𝜕(𝑣𝑘−𝑣𝑗)
2, 𝜙𝑗𝑘

′ =
𝜕𝜙

𝜕(𝑣𝑘−𝑣𝑗)
 and 𝜙𝑗𝑘

′′ =
𝜕2𝜙

𝜕(𝑣𝑘−𝑣𝑗)
2.  

 

This process is very similar to previous calculations in Section 2.4 and minimising the 

expression with respect to 𝜀𝑘 gives: 

 

 𝜀𝑘 = −
𝐴j𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ )

, (143) 

 

resulting in the optimal solution of 𝐹𝑖𝑗 given by: 

 

 𝐹𝑖𝑗
∗ =

1

2
∑𝒜𝑗𝑘

𝑘≠𝑖

𝜇𝑖𝑗
2 − (𝐴𝑗𝑘 +𝜙𝑗𝑘

′ )
2

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ , (144) 

 

where: 

 𝜇𝑖𝑗 = min

[
 
 
 
 

0,

∑ 𝒜𝑗𝑘𝑘≠𝑖 (𝑣𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ − 𝑣𝑗) − 𝑣𝑗 − 𝑣𝑖 + 𝛬𝑗

∑ 𝒜𝑗𝑘𝑘≠𝑖
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′

]
 
 
 
 

. (145) 

 

The derivatives of 𝐹𝑖𝑗
∗  with respect to 𝑣𝑗 − 𝑣𝑖 lead to the forward message 𝐴𝑖𝑗 , 𝐵𝑖𝑗 from node 𝑗 

to 𝑖: 

 

 𝐴𝑖𝑗 ← −𝜇i𝑗, (146) 

   

 
𝐵𝑖𝑗 ←

Θ(−𝜇𝑖𝑗 − 𝜖)

∑ 𝒜𝑗𝑘𝑘≠𝑖
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′

. 
(147) 

 

The backwards message is given by: 

 

 𝑣𝑘 ← 𝑣𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′ + 𝜇𝑖𝑗

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ ; (148) 

 

this works well for the quadratic cost function. 
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6.2 Limiting Voltages  

 

6.2.1 Method  

One advantage of writing the equations in the form of voltages, is that it can allow us to limit 

the values of the voltages. In real-life the voltages need to be between 1.05 and 0.95 per unit of 

the prescribed values; these are our 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥. Previous work done on bandwidths [109] 

can be used to limit voltages. 

 

A piecewise linear representation of the limits on the voltages can be described using Figure 

6.2. 

 

 

Figure 6.2 Piecewise linear function of 𝜇𝑖𝑗 when voltages are limited by 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥. 

 

This gives the equation: 

 

 min [𝑣𝑚𝑎𝑥 , max [𝑣𝑚𝑖𝑛, 𝑣𝑘 −
𝐴𝑗𝑘 + 𝜙𝑗𝑘

′

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′  
]] = 𝑐𝑣𝑗 − 𝑣𝑖 − 𝛬𝑗 , (149) 

 

where the values on the 𝑥-axis at each downward kink in Figure 7.2 are given by: 

 

 (𝑣𝑘 − 𝑣𝑚𝑖𝑛)(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ ) − 𝐴𝑗𝑘 − 𝜙𝑗𝑘

′ , (150) 

 

and at the upwards kinks are: 

 

 (𝑣𝑘 − 𝑣𝑚𝑎𝑥)(𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ ) − 𝐴𝑗𝑘 − 𝜙𝑗𝑘

′ . (151) 
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The corresponding 𝑦 values are calculated as in Equations (68) and (69), with the first and last 

𝑦-values at: 

 

 𝑦1 =∑
𝑣𝑚𝑎𝑥

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′

𝑘≠𝑖 

, (152) 

 

 𝑦2𝑁 = −∑
𝑣𝑚𝑖𝑛

𝐵𝑗𝑘 +𝜙𝑗𝑘
′′

𝑘≠𝑖 

. (153) 

 

 

6.3 Resistance and Reactance  

 

6.3.1 Method  

Every power line has some level of resistance and reactance; whether we are discussing ACOPF 

with assumptions or DC power flow. Reactance determines the amount of current passed 

according to phase angle differences in DCOPF and resistance influences the power lost from 

each edge as current passes through it, 𝑃 = 𝐼2𝑅 in DC equations. This section will discuss both 

ways in which our message passing equations can incorporate resistance and reactance, starting 

with the latter. 

 

Resistance 

In DC power flow, to minimise power loss, similar to [109], we can use the power loss equation 

within the objective function on the edges: 

 

 𝜙𝑖𝑗 = 𝑅𝑖𝑗(𝑣𝑗 − 𝑣𝑖)
2
. (154) 

 

When this is implemented into the message passing equations the algorithm can reduce the 

amount of current that passes through higher resistance edges. 

 



176 

 

Reactance 

To bring the message passing derivations closer to that of a real AC network (with assumptions 

- DCOPF), we consider that the power at a node 𝑃𝑗 = ∑ 𝑃𝑖𝑗𝑗  where 𝑃𝑖𝑗 is the power going into 

node 𝑗 from all neighbours 𝑖 and using the equation made from assumptions in Section 1.3: 

 

 𝑃𝑖𝑗 =
𝜃𝑗 − 𝜃𝑖

𝑥𝑖𝑗
. (155) 

 

We can rewrite our 𝐹𝑖𝑗 as: 

 

 

𝐹𝑖𝑗 =∑𝒜𝑗𝑘 [(𝐴𝑗𝑘 + 𝜙𝑗𝑘
′ )𝜀𝑘 +

1

2
(𝐵𝑗𝑘 +𝜙𝑗𝑘

′′ )𝜀𝑘
2]

𝑘≠𝑖

+ 𝜇𝑖𝑗 [∑(
𝜃𝑘 + 𝜀𝑘 − 𝜃𝑗

𝑥𝑗𝑘
)

𝑘≠𝑖

− (
𝜃𝑗 − 𝜃𝑖

𝑥𝑖𝑗
) + 𝛬𝑗], 

(156) 

 

where 𝜀𝑘 is now a small adjustment about the variable 𝜃𝑘, 𝐴𝑗𝑘 and 𝐵𝑗𝑘 are the derivatives of the 

VFE with respect to the double node (𝜃𝑘 , 𝜃𝑗) and 𝛬𝑗 is the required power.  

 

This should more closely follow the equations of DCOPF and demonstrate some of the capacity 

of the message passing algorithms to be adapted to optimising an OPF problem. 
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6.4 Results  

 

To test the efficacy of the new framework and the resulting algorithms, we have tested the 

message passing approach with control variables on the nodes against the same approach on 

edge variables from Section 2.4.  

Figure 6.3 shows that the distribution cost is minimised to the same level when voltages or 

currents are used as the control variables, suggesting there is no compromise in using one or 

the other. 

  

 

Figure 6.3 The distribution cost as the system size 𝑁 increases when the topology is plotted using a 

Minimum Distance model (as described in Appendix B), in order to more accurately represent a 

power grid topology, with ℳ(𝑁, 𝑎𝑁), where 𝑎 = 6 (blue), 7 (orange), 8 (yellow) and 9 (purple) and 

where dashed lines indicate using an algorithm where control variables are on nodes (𝑣𝑗) and full 

lines indicate control variables on edges (𝑦𝑖𝑗). 

 

Although minimising voltage variables does appear to find a solution just as good as minimising 

current variables, the voltage algorithms do take longer to converge on MD simulated graphs, 

and are less likely to converge on RRGs. The reason for this is that although the calculations 

are very similar, the effect of adjusting the descendant voltage values, 𝑣𝑘, has a much bigger 

impact than adjusting the 𝑦𝑗𝑘 values; adjusting 𝑣𝑘 changes (𝑐 − 1) + (𝑐 − 1)2 currents, 𝑦𝑗𝑘 and 

𝑦𝑘𝑙 for all neighbours of 𝑘, and for all descendant nodes, whereas adjusting 𝑦𝑗𝑘 changes          

(𝑐 − 1) current values. This results in a slow convergence as any small adjustment changes 

large sections of the network. We suggest that the algorithm works better on a MD topology 

due to its degree distribution. 
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Figure 6.5 gives a very simple example of a small network with loops. Although the algorithm 

is able to optimise the graph in this case, in a network this small where loops are obvious 

between all nodes, no assumption of independence between neighbours can be claimed. 

Therefore, the small graph is for demonstration purposes only. The example has been included 

to demonstrate how the difference in voltage magnitudes can result in the flow of current over 

an edge. The flow shown in the centre, is exactly the same as power flow calculated using the 

message passing algorithm with variables on 𝑦. 

 

 

Figure 6.4 A very simple example of how current flows through a network according to the difference 

in voltages. Where capacities are given for each node on the left (generators are purple, consumer is 

blue), optimised voltages are shown (and their corresponding flow of current in pink) in the centre, 

and final reserve values according to optimised flow on the right. 

 

One interesting behaviour is how adjusting the limits of 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 can result in 

unnecessary flow of current. The example here has limits of 𝑣𝑚𝑖𝑛 = 50 for all nodes, 𝑣𝑚𝑎𝑥 =

75 for node 6, and 𝑣𝑚𝑎𝑥 = 100 for all other nodes. From Figure 6.4 we can see a network 

optimised without being restricted by voltage limits (in the case of no voltage limits, the current 

is identical but 𝑣 values differ; here we limit voltages but this does not restrict the flow of 

current). The two neighbouring generators equally provide necessary current to node 5 and no 

extra current is sent. However, Figure 6.5 with a lower limit on node 6, results in its neighbours 

lowering their voltage to avoid having to send current they do not possess, but the generators 

who require their voltages at 100 to satisfy the consumer, cannot lower their voltages, and 

consequently send current to their already satisfied neighbours. This small example highlights 

the issue of having tight limits on variables and how this may increase distribution cost 

(assuming voltage is fixed per node and cannot be directional). 
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Figure 6.5 A very simple example of how a 𝑣𝑚𝑎𝑥 limit can affect the power flow throughout a 

network. Where capacities are given for each node on the left (generators are purple, consumer is 

blue), optimised voltages are shown (and their corresponding flow of current in pink) in the centre 

when 𝑣6𝑚𝑎𝑥 = 75, and the remaining 𝑣𝑚𝑎𝑥 values are 100, all 𝑣𝑚𝑖𝑛 values are 50, and final reserve 

values according to optimised flow on the right.  

 

The effects of using the framework with voltages as control variables, when they are bounded 

between given limits can be seen in Figure 6.6; where the distribution of values 𝑣 are plotted 

and it can be seen clearly how they are contained between the values 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 as the 

limits are increased. The distribution cost remains constant because the 𝑣 values remain 

constant relative to each other. 

 

 

Figure 6.6 The distributed values of 𝑣 over a network with limits of increasing 𝑣𝑚𝑖𝑛 (blue dashed) 

and 𝑣𝑚𝑎𝑥 = 𝑣𝑚𝑖𝑛 + 0.5 (orange dashed).  

 

Figure 6.7 gives a similar example to Figure 6.6, but where 𝑣𝑚𝑎𝑥 is fixed. The graph shows 

how although the limits are large, the distribution of 𝑣 remains small; this is because of the 

objective function which requires the difference between voltage values to be minimised. For 

every converged network, if the voltage is within the bounds, the 𝑣 values can be anything, as 

long as they are correct relative to each other, this is why the mean value is very irregular for 



180 

 

increasing 𝑣𝑚𝑖𝑛; Figure 6.8 shows how for each convergence up to 𝑣𝑚𝑖𝑛 = 1.1, even though 

the mean 𝑣 values are varied, the distribution cost remains constant and minimised. At 𝑣𝑚𝑖𝑛 =

1.15 the network is satisfied, but due to the limitations on 𝑣 the distribution cost is increased. 

For any values higher than this, the network is unable to satisfy all consumers due to the tight 

constraints, until no power can be sent at 𝑣𝑚𝑖𝑛 = 𝑣𝑚𝑎𝑥 = 1.5 because there can be no difference 

in voltage. 

 

 

Figure 6.7 The distributed values of 𝑣 over a network with 

limits of increasing 𝑣𝑚𝑖𝑛 (blue dashed) and 𝑣𝑚𝑎𝑥 = 1.5 

(orange dashed). The red dotted line indicates when the 

algorithm was unable to satisfy all consumer nodes. 

 

Figure 6.8 The distribution cost of the 

network as the limit of 𝑣𝑚𝑖𝑛 increases 

and 𝑣𝑚𝑎𝑥 = 1.5  as with Figure 6.7. The 

red dotted line indicates when the 

algorithm was unable to satisfy all 

consumer nodes (anything to the right 

has unsatisfied consumers). 

 

 

6.5 Discussion  

 

The ability for the message passing framework to consider voltages as control variables 

demonstrates the adaptability of the method and brings the algorithm closer to the criteria 

needed for an effective power distribution method. The work presented in this chapter is 

preliminary and serves as a proof of concept, to demonstrate the ability of the method to use 

different parameter sets. 

  

We see from our results that the change in variables does not affect the minimisation of the 

objective function and we also see how the voltages can be limited between fixed values within 

this framework, but tight limitations result in the network being unable to find an optimal 

solution. The algorithm can minimise power loss when resistance is inhomogeneous, and we 
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include reactance within the constraints to highlight how the algorithm can be adapted to real-

life electrical grids. Another point of interest is how strict limitations on voltages can in some 

cases result in unnecessary power sent to nodes with no demand. 

 

Clearly, to make the algorithms more applicable one should add the many constraints and 

restrictions that exist in real systems. However, this is beyond the scope of this chapter which 

is aimed at demonstrating the potential of the approach to address more general settings.
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7 Conclusion  

 

The search for an effective ACOPF method is ongoing as no proposed method has been able to 

encompass the global optimisation of a non-convex, non-continuous, large network with 

multiple control variables and set parameters while adhering to the laws of physics, increasing 

reliability and considering robustness. The increasing penetration of fluctuating renewable 

sources such as wind and solar power have introduced a new component to the optimisation 

problem and although there have been a series of attempts to consider these uncertainties, they 

usually increase computational time, get stuck in local minima’s, do not guarantee convergence 

or only deterministically consider the uncertainties through constraints. We therefore suggest a 

new distributed, computationally efficient and adaptive method which we believe will increase 

the reliability of the network. 

 

The proposed method of message passing uses principled techniques to send conditional 

probabilities as messages locally in order to find the global optimal solution of the network. We 

recollect that the message passing method is able to pass continuous messages by sending the 

first and second derivatives of the VFE, and the VFE messages allow us to find the most 

probable, and optimal state for each node according to constraints and objective functions, 

within given approximations. Previous work has considered a distribution cost of 𝜙 =
𝑦2

2
 for 

the objective function and bandwidths over edges. Comparing the message passing methods 

with the existing interior point method, we saw that message passing performed equally well in 

minimising the distribution cost, but found that the time taken was slightly more as the system 

size, and connectivity size increased. We suggest that with professional programming the 

message passing algorithm may be faster. 

 

We have considered uncertainties and fluctuations at nodes by assuming capacities to be drawn 

from Gaussian distributions (any probability distribution can be used) and taking the average 

of the VFE. We find that the annealed approximation may only superficially consider the 

fluctuations, and that quenched averaging did not take into consideration a predetermined 

confidence level, so we suggested a quenched averaging method where the constraints included 

the predetermined confidence level (QAR). This method worked well and we found that by 

giving volatile nodes a higher reserve power the networks reliability in fluctuating time 

increased. We found that QAR gave a smoother change in power supplied as the uncertainties 
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increased but that the additional power increased the distribution cost and the number of active 

power lines. More work on incorporating volatility into message passing could include using a 

different probability distribution function from which capacities are drawn, and introducing 

bandwidths to the fluctuation calculations could be useful in preventing tripped power lines. 

 

The thesis develops upon the message passing done by [76] by introducing the objective 

function of load shedding in the case where supply cannot meet demand; we focus on the 

brownout scenario, where any available power is shared amongst consumers and note that 

weighting of the the distribution cost should be negligible in this case, which can be achieved 

by introducing higher importance weights for consumers. Load shedding was done by 

minimising a variable, 𝜁𝑗 , which denoted the amount of deficit at each node, according to its 

predetermined importance weight. We can limit the load shedding to consumers only by adding 

very large weights to generators, and suggest that weighting each consumer differently 

according to its importance allows us to prioritise load shedding. We point to the discontinuous 

jump in the deficit remaining at nodes between unsatisfiable and satisfiable networks, in terms 

of resources. We suggest that the advantage in this jump is an immediate reduction in the power 

supplied, which trades distribution costs with load shedding. Further work on this could include 

blackouts where some consumers are turned off altogether, keeping others fully satisfied, or 

incorporating rolling blackouts, which may require a step towards dynamic message passing.  

 

A third objective function aimed to minimise the cost of generation. This is more important to 

power companies than reducing power losses because the monetary costs of generation are 

much higher. Three cost curves models were considered, linear for simplicity, negative 

quadratic to be inclusive of unit commitment decisions and positive quadratic to be most 

consistent with existing literature. We saw how linear and negative quadratic costs resulted in 

more generators being off or at full capacity, whereas a positive quadrative curve gave rise to 

more generators being on but not at full capacity. An additional minimal generator start-up 

value 𝑃𝑚𝑖𝑛 was introduced, which required generators to produce a minimum capacity when 

turned on. We demonstrate how this can result in surplus reserves at consumer nodes when 

generators cannot be turned off. We suggest that further work could incorporate the unit 

commitment phase which makes decisions about whether generators should be turned on or off, 

this would be very useful for minimising overall costs for the entire network.  

 

Finally, we demonstrated that message passing can optimise a voltage-based network rather 

than current/power-based flow. The algorithm is rearranged to make it more representative of 
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DCOPF by making voltage phase angles (described for simplicity in chapters as voltage) at 

each node the control variables and by showing how the algorithm can incorporate reactance 

(described as resistance). The algorithm can minimise distribution cost according to resistance 

over edges and we see how the difference in voltages returns similar results to the power flow 

used in the previous chapters, suggesting that message passing is able to accurately represent 

DCOPF in large networks. Limits on voltage values were also trialled and we saw that the 

algorithm effectively limits the voltage values. Further work on this would be to consider 

ACOPF equations without assumptions and to include a range of control variables. The 

complexity of changing from DCOPF to ACOPF may be significant as [35] suggests that “to 

switch to AC-based software would result in more precise dispatches and better marketing 

signals, but that the switch to AC-based software would increase the time to run a single 

scenario from minutes to over an hour”. In terms of message passing, AC would require the use 

of more variables and more complex interactions. 

   

In this thesis, we have found that message passing is a good method of distribution for power 

grid DCOPF as it is able to successfully consider multiple and varying objective functions, 

including constraints such as satisfaction levels, minimum and maximum dispatched power 

values and imposing variable limits over edges and nodes. The algorithm can be adapted to 

controlling variables on nodes instead of edges by using double variable bipartite factor graphs 

and resistance can be considered within the objective functions. Message passing has been 

shown to work as well as the interior point method in minimising distribution cost, the algorithm 

is able to minimise a 100-node network in an average of 35 seconds on a conventional laptop 

and the computational complexity is said to increase with 𝒪(𝑁 ln𝑁); although we do see that 

a higher connectivity increases the number of iterations needed to converge13. The method can 

inherently consider uncertainties within the calculations and we suggest that this can 

dramatically increase the reliability of networks with fluctuating variables. 

 

Results show that the message passing method does appear to increase approximately linearly 

with the system size, which could result in much faster convergence than other methods such 

as Newton Raphson for large scale networks. The probabilistic nature has allowed us to 

incorporate fluctuations inherently within the calculations to accommodate for the stochastic 

nature of renewable sources making it arguably more reliable than other methods such as the 

                                                 

13 This can be explained through the more specific order of 𝒪 (𝑁 (log (
𝑁

𝑘
)
2

) log (𝑘)) from [192]. 
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CCOPF method. The sparse topology of power grids allows us to find approximate global 

optimums, which for initial comparisons have been found to be exactly as optimal as the leading 

method of OPF, the interior point method, and the principled techniques allow us to guarantee 

a global optimal solution with few assumptions and more potential for further adaptation. 

 

Disadvantages of the work done in this thesis include: 

1. To consider volatility within the network, we model the node capacity as drawn from 

normal distributions of some mean. However, this allows to the fluctuations to flip the 

role of nodes from generator to consumer and vice versa, which in real-life may not be 

the case (unless microgenerators are considered to contribute to the network). 

Additionally, generators cannot produce infinite power, nor can consumers demand 

infinite levels of power, so the tails of a Gaussian are unrepresentative of real-life. 

2. The message passing algorithm does not guarantee convergence to an optimal solution 

when the objective function is not quadratic and the number of iterations can be quite 

large on large scale networks. 

3. The work done in this thesis does rely heavily on quadratic objective functions; this is 

because at higher orders or with exponential objective functions, the VFE would not be 

Gaussian, therefore the first and second derivatives would not be a precise 

representative of the VFE, and the solution would not be exact; although it may still 

provide a good approximate solution. Work done in [76] does consider linear and cubic 

objective functions, and other objective functions can also be used, but at the cost of 

accuracy. 

  

However, the message passing appears to be very effective and easily adaptable. Here message 

passing methods have been used for power distribution but we would like to mention that they 

could also be used in other large network problems such as internet congestion, real traffic 

situations and other logistic scenarios. 

 

 

 

 



186 

 

8 Future Work  

 

Finally, we would like to point to the potential of message passing equations by addressing 

additional challenges in the area of electricity grids. These could be future research directions 

using similar methodology to those described in this thesis. 

  

8.1  Batteries  

 

Electricity storage is becoming an important component in electricity grids that include volatile 

renewable components. Batteries and other storage devices are used to store power at times of 

plenty and release it when needed, thus mitigating the fluctuative nature of modern power 

generation. From a simple perspective, these could be described by a capacity that can be both 

negative and positive; when it is positive it acts as a generator but when the capacity is negative, 

the battery would be treated as a normal consumer that must be satisfied, contrary to the 

advantages of batteries, which allow them to be filled at off peak times or when generation 

exceeds predictions. Alternatively, the algorithm could make decisions on the state of the 

network and accordingly assign a certain amount of power to or from the battery according to 

its current reserves or demands. This could be done by the following constraint:  

 

 0 − 𝛬𝑗 ≤ ∑𝑦𝑗𝑘 − 𝑦𝑖𝑗 ≤ 𝛽𝑗 − 𝛬𝑗
𝑘≠𝑖 

, (157) 

 

where 𝛽𝑗 is the maximum capacity of the battery, 𝛬𝑗 indicates how much power the battery 

currently has stored (this should always be positive) and this constraint is only applied to the 

battery node. A corresponding production cost value can be added, similar to the generation 

cost 𝐺𝑗 variable in minimising generation costs along with an objective function which 

encourages filling batteries at off-peak times. This constraint enforces that the power going in 

or out of the node stays within the battery limits, and when rearranged we can see that the left-

hand side constraint is already enforced through the constraint in Equation (52); and the right-

hand inequality is very similar to the constraint in Equation (115). This could be easily 

incorporated into the message passing algorithm. Power storage can be used as power sources 

when renewable sources are providing lower power levels than expected; however, this type of 
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inclusion of batteries requires consideration, mostly in the primary and secondary stage, once 

economic dispatch has optimised the distribution. 

 

 

8.2  Deviation Costs  

 

The provision of electrical power is highly regulated since it effects both industries and 

individuals, specifically machinery and appliances that are sensitive to voltage and current 

variation. An objective function could be designed so that deviation from the original values 

would be costly for the producer or provider. This would require the network to have 𝑦𝑖𝑗
𝑜𝑙𝑑 

values which indicate the power levels of each edge supplied in the previous 15 minutes. The 

algorithm could then create a positive quadratic where 𝑦𝑖𝑗
𝑜𝑙𝑑 is the minima, discouraging large 

changes. To discourage small changes, a function such as |erf (𝑥)| could be used instead.  A 

combination of minimising generations costs and deviation costs with weights allows he 

network to set generators who are expensive to deviate, as base levels, and others as more 

variable generators to be changed according to load; as seen in Figure 8.1 where deviation is 

more expensive at nuclear, coal and gas generators, and hydro is cheaper. This would be a large 

step towards making an effective, reliable method of power distribution for real-life networks. 

  

 

Figure 8.1 An example of a typical days power demand in the US, and the proportion of power 

generated from different sources to satisfy the changes in demand; where natural gas has a high level 

of change, but nuclear remains smooth [170]. 
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8.3  Correlations  

 

With the increase in microgenerators and renewable sources in general, correlations are 

expected to be an important issue. For instance, wind farms, solar panels and combined heat 

and power generators are all conditioned on the weather. Although we know that wind and solar 

panels follow certain patterns according to the time of day, month or year, they all still depend 

on one joint set of variables – the weather. It is still under investigation whether there are 

correlations between forecasting errors of wind and solar generators; some work done by [171, 

172] suggests that the error forecasts are weakly negatively correlated, and the correlations 

grow stronger with shorter time forecasts, larger geographical areas and in summer. Their study 

is done on such a large area in the US however, where the distance between nodes may be a lot 

larger than in the UK and so there may be differences in correlation properties. In addition, the 

proximity of neighbouring microgenerators may affect the network, along with increasing a 

negative correlation between consumer and generator values. It is expected that correlations 

between forecasting errors may be present, and therefore when considering fluctuations and 

uncertainty, to increase the reliability of economic dispatch it is inevitable that correlations 

should be considered. At the heart of the message passing method we assume a locally tree-like 

structure and this assumption, of all descendants being independent of one another if their 

common neighbour was removed, should remain for the derivation to be valid. However, 

correlations between neighbouring nodes could be accommodated in several ways, for instance, 

through joint covariance’s when averages are carried out, or through the addition of non-power-

bearing interactions between variables to represent existing correlations.  

 

 

8.4  Preventing and Identifying Risk of Failure  

 

Demand exceeding generation is not the only reason for power outages; faults on power lines 

are a regular cause of failures. Work done by Zdeborová et al [173] produce a stochastic local 

search algorithm called WalkGrid to develop a message passing scheme for identifying the 

transition areas between the network being satisfiable and unsatisfiable (the points where load 

shedding is required), and suggest mitigating against large scale network failures by switching 

within the network to ancillary lines (lines usually used only for backup or maintenance). This 

work uses the cavity method via population dynamics to obtain the macroscopic properties of 

network models without loops. Although WalkGrid performs slightly better than a BP-based 
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algorithm at finding an optimal configuration of switches on large networks, BP is able to count 

the number of satisfiable solutions, which can be used to accurately calculate how close the 

system is to failure; the two methods can be used together to calculate energy distribution and 

distance to failure predictions. Combining message passing and WalkGrid methods could be 

advantageous for economic dispatch, by highlighting risks for the controllers to mitigate. 

Alternatively, this could be used for network design, in order to find the most likely and worst 

case weaknesses of the network and find ways of strengthening them. Although work done by 

[174] suggested that some methods of reducing the likelihood of small outages can increase the 

risk of larger ones, highlighting these risks could be beneficial.  

 

One way of minimising the risk of instability is that power flow equations are required to 

consider the 𝑁 − 1 contingency. This requires the network to continue to be satisfiable if any 

one of the nodes or edges are removed from the network, ensuring the system is able to continue 

to operate smoothly in the event of a sudden failure or attack. The 𝑁 − 1 contingency or 

“Security constrained optimal power flow” is not ideal because it assumes the probability of 

losing each node is the same, and also that the consequences of losing each node is the same. 

The method also, if continued to 𝑁 − 2 does not consider interdependencies between losses of 

nodes (e.g., deliberate attacks or local disasters). The message passing algorithm could 

incorporate this risk averse method by requiring as a condition that the network reserve must 

be equal to or higher than the highest capacity generator and that flow should be secured under 

realistic constraints. Alternatively, the network could assign risks to each node and minimise 

the satisfiability constraint according to them; the probabilistic nature of the algorithm may 

allow for correlations between risks to be considered.  

 

 

8.5 Minimising Environmental Costs  

 

One way in which linear minimisation costs (such as in Section 5.2) could be used is in 

minimising environmental costs. We have done work on a similar equation to the linear cost 

curve which suggests the introduction of a predetermined value 𝐸𝑗 which correspond to the 

environmental damage caused by producing energy by a given generator; minimising the 

environmental cost can be done in addition to minimising other costs and does not increase the 

computational complexity of the algorithms (See Appendix E). 
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Appendices  

A. Fundamental Concepts in Statistical Physics  

 

Since the message passing approach utilised in this thesis has been inspired by concepts adopted 

from statistical physics, this appendix looks to introduce some of the basic concepts and 

terminology that appears throughout the thesis. 

 

Statistical physics typically comprises of many variables that interact with one another through 

predefined or dynamically changing interactions. This set of variable configurations or states 

of the system appear with some probability. The sum of all probabilities of being in a certain 

state, 𝑠𝑖, is equal to one: 

 

 ∑𝑃𝑖
𝑖

= 1, (158) 

 

where 𝑃𝑖 is the probability of the system being in state, 𝑠𝑖, and the sum runs over all possible 

states. Each state has an energy, 𝐸𝑖, and the expected energy, 𝐸, can be written as: 

 

 

 
∑𝑃𝑖𝐸𝑖 = 𝐸

𝑖

. (159) 

 

The entropy of the system is defined as: 

 

 𝑆 = −∑𝑃𝑖 log 𝑃𝑖
𝑖

. (160) 

 

The entropy is a measure of uncertainty of the state 𝑠𝑖. The larger the entropy, the less prior 

information is known about the node being in state 𝑠𝑖. 

To maximise the entropy subject to the constraints of probability, we can write the function 

using two Lagrange multipliers 𝛼 and 𝛽: 

 

 𝑆 + 𝛼 (∑𝑃𝑖
𝑖

− 1) + 𝛽 (∑𝑃𝑖𝐸𝑖
𝑖

− 𝐸), (161) 
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and optimising this with respect to 𝑃𝑖 gives: 

 

 log 𝑃𝑖 + 1 + 𝛼 + 𝛽𝐸𝑖 = 0, (162) 
 

or: 

 

 𝑃𝑖 = 𝑒
−(1+𝛼)−𝛽𝐸𝑖 . (163) 

 

If we then rename the function 𝑒1+𝛼 = 𝑍, the partition function, which is just a normalisation 

constant, this can be rewritten as: 

 

 𝑃𝑖 =
1

𝑍
𝑒−𝛽𝐸𝑖 . (164) 

 

This is called the Boltzmann distribution, it is the equilibrium distribution, or the maximum 

entropy subject to the constraints. 

Considering that the sum of all probabilities equals one, from Equation (158), and (164) we 

find the equation for the partition function, and its derivative: 

 

 𝑍(𝛽) =∑𝑒−𝛽𝐸𝑖

𝑖

, (165) 

 

 
𝜕𝑍

𝜕𝛽
= −∑𝐸𝑖𝑒

−𝛽𝐸𝑖

𝑖

. (166) 

 

Considering the entropy in terms of probabilities, in Equations (160), and (164), one can 

rearrange the equations to get: 

 

 𝑆 = 𝛽𝐸 + log 𝑍 (𝛽) . (167) 
 

Using Equations (164) and the energy in terms of the energy of each state multiplied by the 

probability of each state, (159), we get: 

 

 𝐸 =
1

𝑍
∑𝐸𝑖𝑒

−𝐸𝑖

𝑖

, (168) 

 

 𝐸 = −
1

𝑍

𝜕𝑍

𝜕𝛽
= −

𝜕 log 𝑍

𝜕𝛽
. (169) 
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The energy is made up of two main components; the free energy, 𝐹, and the entropy multiplied 

by some temperature, 𝑇: 

 

 𝐸 = 𝐹 + 𝑇𝑆, (170) 
 

where the free energy is the freedom of the state to change; minimising this will find the most 

likely, or optimal set of states of system. Differentiating with respect to entropy gives: 

 

 
𝑑𝐸

𝑑𝑆
= 𝑇. (171) 

 

We also write the free energy as:  

 

 𝐹 = −𝑇 log 𝑍 ; (172) 
 

from which most macroscopic properties of the system at equilibrium can be derived. By fully 

differentiating Equation (167): 

 

 𝑑𝑆 = 𝛽𝑑𝐸 + 𝐸𝑑𝛽 +
𝑑 log 𝑍

𝑑𝛽
𝑑𝛽. (173) 

 

From Equation (169) and then (171) this gives: 

 

 𝑑𝑆 = 𝛽𝑑𝐸       or        𝛽 =
𝑑𝑆

𝑑𝐸
=
1

𝑇
. (174) 

 

We can now use these equations of the energy, free energy, partition function and Boltzmann 

distribution to find a recursive relation in terms of a function called the vertex free energy, 

which can then be passed iteratively as messages through a system to obtain an optimal solution 

according to some objective functions. 
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B.  Electricity Grid Topology  

 

To test and analyse message passing algorithms we need to generate multiple networks of 

different sizes which are representative of the Power Grid (PG) topology and its main 

characteristics. These are required for generating statistical properties of networks and measure 

the performance of the devised algorithms. Although there are IEEE models14 available, these 

do not give us a large enough variety for analysis, controlled evaluation and adequate statistics. 

There are many different types of graph and methods for creating them. I will be looking at the 

main and most relevant methods according to literature on modelling the PG topology [175]. 

 

Methods of Network Generation 

Some of the models suggested in literature are regular lattice, random graph [176, 177], random 

regular graph, small-world [178], Cloteaux's graph [179], Barabási-Albert's preferential 

attachment [180] and Hines' Minimum-Distance method [181] generated graphs.  

 

Regular lattices (RL) are very organised structures, each node is connected to 𝑐 other nodes 

(the neighbourhood or degree), 𝑐 is the same for every node15 and nodes are connected in a 

sequence. Some examples of a random lattice can be seen in Figure B.0.1 and Figure B.0.2. 

They are created by positioning the nodes and then linking them according to some pattern. 

These graphs are easy to produce and fast to compute, but they are unrealistic compared to the 

complex structure of a PG. 

 

 

Figure B.0.1 Example of a square lattice. 

 

Figure B.0.2 Example of a ring lattice. 

                                                 

14 IEEE provides synthetic grids which accurately represent real PG networks.  

15 In the case of looped, infinite or ring lattices 𝑐 is constant. In Figure B.0.1 we see that all the inner nodes have 

fixed connectivity but outer nodes can have a lower connectivity 
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Random Graphs (RG) are unstructured and are generated by connecting randomly selected 

nodes. One of the most celebrated graphs is the Erdös-Renyi [176] graph 𝐺(𝑁, 𝑣); this is created 

by choosing, at random, one of all the possible graphs with 𝑁 nodes and 𝑣 edges. In the 𝐺(𝑁, 𝑝) 

model suggested by Gilbert [177], a graph is generated by selecting, at random, edges between 

nodes and creating them with probability 𝑝 =
𝑣

𝑁
, independently. As described by Erdös and 

Renyi, with random graphs there is a probability of the graph not being completely connected. 

This may look similar to the topology of a PG, but lacks control and the structure that emerges 

from landscape and demand characteristics. PG networks are developed over time and placed 

according to geographical data, population density, overloaded edges, connectivity of nodes, 

etc. Although we do not need this level of accuracy, we do not want to ignore the control aspect 

completely. 

 

Random Regular Graphs (RRG) [182] are similar to random graphs, but each node has a 

fixed connectivity 𝑐, where 𝑐 ≥ 3. This is less trivial to generate. There are many ways to 

generate a random regular graph; one method is the pairing model which takes 𝑁𝑐 nodes and 

places them into 𝑁 sections. Random matching between the 𝑁𝑐 nodes is done such that each 

node is connected to a node from another section and edges are formed; then each section is 

made into a single vertex, with 𝑐 connections. If there are repeated edges present, the process 

is repeated. 

This is a very easy model to produce and quick to compute. It can be argued that the fixed 

connectivity makes it less representative of PGs than random graphs, but it can be 

systematically controlled. It is a good model for analysis due to its limiting variables. 

 

 

Figure B.0.3 Example of a Random Graph. 

 

Figure B.0.4 Example of a Regular Random 

Graph where 𝑐 = 3. 
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Figure B.0.5 Generating a RRG using the pairing method. 

 

Small-World (SW) graphs [178] can be explained as the middle ground between random 

graphs and regular lattices. For instance, they can be created by first considering a ring lattice; 

then each edge is rewired to any node with probability 𝑝. If 𝑝 = 0 then the graph is a regular 

lattice and if 𝑝 = 1 the graph is an Erdös-Renyi random graph. (𝑁 ≫ 𝑐 ≫ ln(𝑁) ≫ 1 

guarantees that the graph will be completely connected). According to [175] the transmission 

grid of a PG has been found in many studies to satisfy the SW conditions, while it is less 

representative of the distribution stage topology (this work will focus specifically on the 

transmission stage).  

Like RRGs we can have more control on the resulting topology, but with an element of 

randomness. This topology is amenable for analysis as we can plot results against the increasing 

𝑝. 

 

 

Figure B.0.6 Small-World example in relation to regular and Erdös-Renyi random graphs. 

 

Preferential Attachment is another common method of generating graphs. We consider the 

method of Barabási-Albert (BA) [180] for generating them. This is done by starting with an 
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initially connected graph16, denoted as 𝑚0. New nodes are added to the network one at a time. 

Each new node is connected to each existing node, 𝑖, with a probability, 𝑝𝑖, that is proportional 

to the number of links that the existing node already has. This can be formally written as: 

 

 𝑝𝑖 =
𝑐𝑖
∑ 𝑐𝑗𝑗

, (175) 

 

where 𝑐𝑖 is the number of links that node 𝑖 already has and the sum at the denominator is over 

all the pre-existing nodes 𝑗. This means that heavily linked nodes will accumulate even more 

links while nodes with few links are unlikely to be chosen. 

This is a good model for growth of political or social networks, for instance the more someone 

is known the more likely you are to know them. However, for PGs this may not be an optimal 

representation because network designers may be more likely to add edges to less connected 

nodes for obtaining a more stable, robust and secure network (if a network contains only a few 

nodes which are very highly connected this makes it more vulnerable to directed attack). An 

adaptation to this model to describe a PG network would be to use a minimal spanning tree17 

over a geographical area as the initially connected graph, 𝑚0.  

 

 

Figure B.0.7 Generating a Barabási-Albert graph. 

 

Cloteaux (CG) [179] suggests a model which is designed specifically to represent PGs. It is 

computed by creating a minimal spanning tree over a geographical area. Next, links are added 

                                                 

16 The starting network 𝑚0 can be any network as long as each node has at least one edge, it is usually described 

as two nodes connected by an edge. 

17 A spanning tree is a tree which connects all nodes in a network, a minimum spanning tree is the tree whose total 

edge weights are the smallest. 
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between these nodes provided that they do not cross any other links. The added edges are 

connected between nodes that are vital to the graph (if they were removed the graph would be 

unconnected), this helps to enhance robustness and the theory corresponds to the way the PG is 

actually built. This model was not extensively analysed and Cloteaux explains that PGs 

throughout the world are very different and therefore have different properties. 

It is a very well thought out model as it depends on geographical area and introduces edges to 

increase robustness. This is one of the more complicated models to produce and without further 

analysis we cannot easily understand how accurately it describes PGs. 

 

Minimum Distance (MD), a method by Hines [181], is generated by the following algorithm: 

 

Randomly generate planar coordinates (𝑥𝑎, 𝑦𝑎) from a uniform distribution within a 

fixed area; these are to represent the position on a geographical plane of node 1. 

for 𝑎 = 2: 𝑁 

1. Randomly generate planar coordinates (𝑥𝑎, 𝑦𝑎) from a uniform distribution 

within a fixed area; these are to represent the position on a geographical plane 

of node 𝑎. 

2. Generate ⌊
𝑣

𝑁
⌋ links between 𝑎 and already existing nodes, 𝑏, by iteratively 

selecting nodes 𝑏 to minimise the Euclidean distance between 𝑎 and 𝑏, where 

𝒜𝑎 is the set of neighbouring nodes of 𝑎:  

 min
𝑏
[(𝑥𝑎 − 𝑥𝑏)

2 + (𝑦𝑎 − 𝑦𝑏)
2]       𝑠. 𝑡. 𝑏 ∉ 𝒜𝑎 . (176) 

       

3. Generate one additional link between 𝑎 and another node 𝑏 with probability  

 𝑝 =
𝑣

𝑁
− ⌊

𝑣

𝑁
⌋  (177) 

(presumably to consider the decimal ignored in (176) by using the floor function). 

 

There is also a second method of "Minimum Distance with Bisection" which includes creating 

a new node which either becomes a new branch to the tree or bisects an existing edge: 

 

 

min(𝒞1, 𝒞2)  
s. t.   𝒞1 = min

𝑏∉𝒜𝑎

[(𝑥𝑎 − 𝑥𝑏)
2 + (𝑦𝑎 − 𝑦𝑏)

2] 

  𝒞2 = min
𝑖∈ {1,...,𝑣}

𝑑(𝑎 → 𝑒) + 𝑓 , 
(178) 
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where 𝑑(𝑎 → 𝑒) is the Euclidean distance between point 𝑎 and the nearest point along the line 

segment 𝑒 and 𝑓 is an externally selected bisection cost. If 𝒞1 is smaller than 𝒞2, a new link is 

created. If 𝒞2 is smaller, the new node bisects an existing link 𝑒. Although this does not consider 

geography or population density, the method does consider the positioning and the evolution of 

a PG over time. 

 

All of these methods of generating graphs create networks which all have very different 

properties. Next we will look at the different properties a network can have, and how accurately 

these models relate to PGs. 

 

Properties of a Network 

There is a range of ways that the structure of a network can be described. The reason we need 

to consider these is that flow dynamics within a network depends on its topology, therefore we 

should model it as closely as possible. 

 

Degree Distribution: 

A neighbourhood or degree, 𝑐, describes the number of nodes a given node 𝑛 is connected to. 

Average degree is the average numbers of connections per node, 〈𝑐〉. Degrees can also be drawn 

from a distribution. 

The degree distribution of a PG is widely debated. Some papers [183] say that PGs have a 

power-law distribution, 𝑃(𝑐) = 𝛼𝑐−𝛾 where typically 1.5 < 𝛾 < 3. A network whose degree 

distribution follows a power law is said to be scale-free because the distribution is independent 

of scale (constant on a logarithmic scale). Cloteaux [179] explains that this could be because 

population distributions follow a power law with 1.74 < 𝛾 < 1.91 and PGs may follow suit as 

they are built to accommodate populations. 

The opposing idea [184, 185] is that degree distributions follow an exponential distribution, 

𝑃(𝑐) = 𝛼𝑒𝛽𝑐. This may be due to the number of power lines going into a power station being 

proportional to the logarithm of the population of the surrounding areas. The survey done by 

Pagani and Aiello [175] found that most PGs follow an exponential degree distribution with 

𝛽 ≈ 0.5 and Hines [181] shows this with the IEEE 300 model [154]. It is important to consider 

that both suggestions may be correct for different PGs. 

The reason degree distribution is an important property of a network when it comes to analysis 

of a grid is, for example, that when it comes to robustness of a network, a scale-free network is 

resilient to random attack, but it is very vulnerable to direct attacks, whereas networks which 

follow an exponential degree distribution are equally vulnerable to random and direct attacks. 



216 

 

Some networks, such as regular lattice and RRG, can have fixed degrees per node and therefore 

have a uniform distribution. Preferential attachment models are scale-free, with the BA model 

at 𝑃(𝑐) ≈ 𝑐−3, whereas MD graphs follow an exponential distribution along with some types 

of random graph. Erdös-Renyi graphs follow a Poisson degree distribution. 

 

Characteristic Path Length: 

A path is a route through edges from node 𝑖 to another node 𝑗. The diameter is the minimum 

number of links to get from node 𝑖 to 𝑗, 𝑑(𝑖, 𝑗), and the characteristic path length (CPL) is the 

mean of the path lengths from a node to any other: 

 

 𝑑𝑖 =
1

𝑁 − 1
∑𝑑(𝑖, 𝑗)

𝑖≠𝑗 

. (179) 

 

A PGs average path length, ℒ, is proportional to the logarithm of the number of nodes: 

 

 ℒ ∼ log𝑁. (180) 

 

This is important because the path length can be the minimum distance between a generator 

and a consumer. A high CPL may result in a higher distribution cost and possibly computing 

time. 

Random lattices and MD networks have a CPL which increases linearly with 𝑁. BA networks 

have an interesting CPL of: 

 

 ℒ ≈
log𝑁 

log log𝑁
. (181) 

 

SW networks where 𝑝 > 0, random graphs and RRG networks are most representative with a 

CPL which, like PG, increases by ln 𝑁 [186, 187]. 

 

Clustering Coefficient: 

A clustering coefficient, 𝐶, is the measure of the degree to which nodes in the graph tend to 

cluster together, it is defined by: 

 

 𝐶𝑛(𝑘) =
〈𝑐〉

(
𝑐𝑛
2
)
. (182) 
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PGs have a high clustering coefficient, it is much higher than that of random graphs but not as 

high as that of SW networks, whose clustering coefficient is at 𝐶(𝑐) = 𝑐−1. BA's networks’ 

clustering coefficient is a power law of 𝐶 ∼  𝑁−0.75 [182]. Cloteaux’s networks also have a 

high clustering coefficient. 

Some work [188] looks at isolating clusters in the event of a cascading failure to minimise and 

contain the damage and suggest that one could rely on positioning renewable sources in these 

areas to sustain the clusters. 

High clustering coefficients could, depending on the positions of the generators and consumers 

within the clusters, be useful in justifying the use of local optimisation methods. 

[178] illustrates the change in path length and clustering coefficient in a network for a changing 

small world parameter 𝑝, shown in Figure B.0.8. 

 

 

Figure B.0.8 The approximate curves of path length and cluster coefficient for SW topologies of 

changing 𝑝. 

 

Betweenness Distribution: 

A shortest path is the shortest distance from node 𝑖 to node 𝑗. When all the shortest paths 

between node pairs in a network have been calculated, the number of shortest paths which pass 

through each node is called 'node betweenness'. The betweenness distribution is the distribution 

of the node betweenness throughout the network of the transmission stages in PGs is scale-free, 

around 𝐵(𝑐) ∼ 𝑐−1.5. 

Pagani and Aiello explain that it is not always true that the most central nodes are the most 

important, in terms of robustness, or that the nodes with the highest betweenness see the biggest 

electricity flow. This property is more important to the design and robustness of the PG. 

 



218 

 

Assortativity: 

Assortativity is the extent to which nodes connect to others with a similar degree [189]. This 

may affect the length of distribution paths, or robustness of a graph. A more positively 

correlated assortativity would lead to higher distribution costs as nodes with lower connectivity 

may require longer paths to reach necessary nodes. The case of disassortative networks may 

lead to shorter paths due to better utilisation of the topology. 

A PG it typically disassortative, whereas SW and MD networks are assortative. RG, RL and 

RRG networks are neither assortative nor disassortative. 

 

Choosing a Model 

With all these properties in mind, it is easy to forget to consider that PGs differ world-wide. It 

is not possible to find a model which will perfectly match all existing PGs because they are all 

different; depending on the landscape of the area, the reliance on electricity in the country, the 

types of power sources used, the specific design and more. 

 

Table 5 shows the properties each model has and their usefulness for modelling a PG. 

Throughout my work I will use RRG for analysis of the work done because of its simplicity 

and the ability to minimise changing variables such as 𝑐, and MD will be used for its more 

realistic application to PGs, to gather information such as computational time.  

 

Table 5. List of properties associated with different network models. 
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C.  Leaf Nodes  

 

From most previous work on message passing, the optimisation has been tested on sparse 

random regular graphs. This thesis hopes to display how these algorithms could be adapted to 

work in a real-life power optimisation problem, and so we need to consider what electrical 

power networks actually look like. Looking at a benchmark network from New England (39-

Node Grid) [190] (Figure C.0.9) we see that the network is relatively sparse, but small loops 

are present. The work of [87] shows us that in most cases small loops are not a problem in MP 

due to the law of large numbers and normalization. Although MP algorithms are strictly only 

guaranteed an exact optimal solution for tree-like networks (no loops), networks with loops 

have been found to give very good approximate optimal solutions if the algorithm converges.  

 

 

Figure C.0.9 New England 39-node network [190]. Demonstrating leaf nodes in green. 

 

Another problem encountered is that there are many leaf nodes in a power grid topology. A leaf 

node is a node that is only connected to one other node (Figure C.0.10), this is a problem as the 

message passing techniques focus on taking information from one node and passing in onto 

others, which a leaf node cannot do. One way to avoid this would be to modify the network 

topology by transferring all the capacity of the leaf node into its neighbour and delete the leaf. 
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Although this may find an optimal distribution for the edited network, due to the change in the 

topology this may not be optimal for the original topology, as the distribution costs of edges 

deleted would not be taken into consideration.  

 

 

Figure C.0.10 An example of a leaf node (green) locally. 

 

Alternatively, one can use the original calculations and rewrite them explicitly for the case of 

one neighbour. The neighbour can be considered separately in different iterations as the 

ancestor, and then as the descendant. The main problem with the existing formulation is that, if 

node 𝑗 is a leaf node and node 𝑖 is the ancestor, there is an absence of descendants; 

∑ 𝒜𝑗𝑘 (𝑦𝑗𝑘 −
𝐴𝑗𝑘+𝜙𝑗𝑘

′

𝐵𝑗𝑘+𝜙𝑗𝑘
′′ )𝑘≠𝑖 = 0. To derive messages from/to leaf nodes one can expand this 

vanishing term about zero and exploit their independencies to obtain the messages. As the 

ancestor, the following messages to be passed to node 𝑖 are: 

 

 𝐴𝑖𝑗 = {
0, 𝛬𝑗 ≥ 𝑦𝑖𝑗 ,

∞, 𝛬𝑗 < 𝑦𝑖𝑗 ,
 (183) 

 𝐵𝑖𝑗 = {
0, 𝛬𝑗 > 𝑦𝑖𝑗,

∞, 𝛬𝑗 ≤ 𝑦𝑖𝑗.
 (184) 

 

Once the neighbour 𝑖 is the parent subject and node 𝑗 is the descendant, the infinity values will 

be incorporated within the messages from descendants. The values will divide one by the other, 

cancelling out both infinity values (along with objective functions) and a function of 𝑦𝑖𝑗 − 𝛬𝑗 

emerges for the backwards current back to the leaf node.  

The neighbour is then assessed as the descendant. Now 𝜇𝑖𝑗 will be zero or negative and we send 

a back message of: 
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 𝑦𝑗𝑘 = {
𝑦𝑗𝑘 −

𝐴𝑗𝑘 + 𝜙𝑗𝑘
′

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′ , if       𝜇𝑖𝑗 = 0,

−𝛬𝑗 , if       𝜇𝑖𝑗 < 0.

 (185) 

 

This method works effectively on networks such as the 39-node example grid. The ability to 

pass messages in topologies with leaf nodes allows the algorithm to be more applicable to real-

life power networks. However, this method of considering leaf nodes may mean that the node 

becomes satisfied unconditionally, which becomes more complicated when considering 

minimising load shedding or fluctuations. Also, because of infinite values of 𝐴𝑖𝑗 and 𝐵𝑖𝑗, the 

paired objective functions will be neglected and the true minimal distribution may not be found. 

 

Other methods of considering leaf nodes would be to consider a price iteration scenario at these 

nodes, this would give: 

 

 𝜇𝑖 = min[𝜇𝑗 + 𝛬𝑗 , 0], (186) 

 

which is similar to the function that emerges from (183). 
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D.  Load Shedding Calculations 

 

From the function: 

 

 〈𝜇𝑖𝑗
2 〉𝛬𝑗 =

{
 
 
 
 

 
 
 
 

0, if 𝛬𝑗 − 𝑥 ≤ 0,
 

1

(∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′𝑘≠𝑖 )

2∫[𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2] d𝛬𝑗 , if  −∑𝛬𝑏 − 𝛬𝑗
𝑏≠𝑗
𝑏∈𝑁

< 0,

1

(∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′𝑘≠𝑖 )

2

+
1
𝛼𝑗

∫[𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2] d𝛬𝑗 , if  −∑𝛬𝑏 − 𝛬𝑗
𝑏≠𝑗
𝑏∈𝑁

≥ 0,

 (187) 

 

we can write this as an integral, however it does depend on whether 𝑥 or −∑ 𝛬𝑏𝑏≠𝑗
𝑏∈𝑁

 is larger 

because this determines the limits of each integral. 

 

If −∑ 𝛬𝑏 < 𝑥𝑏≠𝑗
𝑏∈𝑁

: 

 

 

〈𝜇𝑖𝑗
2 〉𝛬𝑗 = ∫ 0 d𝛬𝑗 + ∫

1

(∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′𝑘≠𝑖 )

2 [𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2]d𝛬𝑗

−∑ 𝛬𝑏𝑏≠𝑗
𝑏∈𝑁

−∞

∞

𝑥

+ ∫
1

(∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′𝑘≠𝑖 )

2

+
1
𝛼𝑗
2

[𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2]d𝛬𝑗 ,

𝑥

−∑ 𝛬𝑏𝑏≠𝑗
𝑏∈𝑁

   

(188) 

   

or if −∑ Λ𝑏𝑏≠𝑗
𝑏∈𝑁

> 𝑥: 

 

 
〈𝜇𝑖𝑗
2 〉𝛬𝑗 = ∫ 0 d𝛬𝑗 + ∫

1

(∑ 𝒜𝑗𝑘
1

𝐵𝑗𝑘 + 𝜙𝑗𝑘
′′𝑘≠𝑖 )

2 [𝛬𝑗
2 − 2𝑥𝛬𝑗 + 𝑥

2]d𝛬𝑗

𝑥

−∞

.  

∞

𝑥

 
(189) 
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E.  Minimising Environmental Costs  

 

The cost of environmental impact should be an increasing concern in power grid distribution. 

To consider this is as an objective function and exploiting the generation cost minimisation 

framework to reduce the environmental impact one could use a similar framework to (117):  

 

 
𝐹𝑖𝑗 = 𝜺

𝑇𝑨 +
1

2
𝜺𝑇𝑩𝜺 − 𝐸𝑗((𝒚 + 𝜺)

𝑇𝟏 − 𝑦𝑖𝑗) + 𝜇𝑖𝑗[(𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗]

+ 𝐸𝑗𝛾𝑖𝑗[(𝒚 + 𝜺)
𝑇𝟏 − 𝑦𝑖𝑗], 

(190) 

 

where 𝐸𝑗 is zero for all consumers, and a predetermined, individual environmental cost value 

for each generator. There is also a second Lagrange multiplier, 𝛾𝑖𝑗, which indicates that 

generators must not receive power; since all consumers have a 𝐸𝑗 = 0 cost, the constraint will 

only be enforced on generators. We are assuming the environmental impact to be linear to 

power provided. 

Minimising the VFE with respect to the Lagrange multipliers gives: 

 

 𝜇𝑖𝑗 = min [0,
𝒚𝑇𝟏 − 𝑦𝑖𝑗 + 𝛬𝑗 + (−𝑨 + 𝐸𝑗𝟏)

𝑇
𝑩−1𝟏

𝟏𝑇𝑩−1𝟏
], (191) 

 

 𝛾𝑖𝑗 = max [0,
𝒚𝑇𝟏 − 𝑦𝑖𝑗 + (−𝑨 + 𝐸𝑗𝟏)

𝑇
𝑩−1𝟏

𝐺𝑗𝟏𝑇𝑩−1𝟏
], (192) 

 

which gives 𝜇𝑖𝑗 = 𝑓(𝛾𝑖𝑗), and 𝛾𝑖𝑗 = 𝑔(𝜇𝑖𝑗) but as both functions are non-zero only if they are 

not obeyed, and as they are non-overlapping constraints, we can assume that if either function 

is non-zero the other must be zero, allowing us to omit each one from the others equation, but 

not their derivatives. 

Minimising the VFE again to find the optimal messages to pass to the ancestor node gives the 

first and second derivative messages: 

 

 𝐴𝑖𝑗 = {

𝐸𝑗 − (𝜇𝑖𝑗 + 𝐸𝑗𝛾𝑖𝑗), in case 1,

𝐸𝑗 − 2(𝜇𝑖𝑗 + 𝐸𝑗𝛾𝑖𝑗), in case 2,

𝐸𝑗 , in case 3,

 (193) 
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 𝐵𝑖𝑗 =

{
 
 

 
 

1

𝟏𝑇𝑩−1𝟏
, in case 1,

4

𝟏𝑇𝑩−1𝟏
, in case 2,
 

0, in case 3,

 (194) 

 

where the cases are as in Table 4, and the backwards message is: 

 

 𝒚 = 𝒚 + 𝑩−1(−𝑨 + 𝐸𝑗𝟏 − (𝜇𝑖𝑗 + 𝐸𝑗𝛾𝑖𝑗)𝟏). (195) 
 




