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Abstract 9 

This paper aimed at assessing the structural performance and sustainability of cold recycled 10 

asphalt pavements. Four cold recycling technologies were investigated, including the cold central-11 

plant recycling with emulsified and foamed asphalt binders (i.e., CCPR-E and CCPR-F), and the 12 

cold in-place recycling with emulsified and foamed asphalt binders (i.e., CIR-E and CIR-F). 13 

Firstly, the laboratory tests were conducted to comprehensively evaluate the dynamic modulus, 14 

rutting, and cracking performance of cold recycled asphalt mixtures. Subsequently, these 15 

laboratory results were used to determine the inputs of cold recycled asphalt mixtures for the 16 

Pavement ME Design program, which was employed to predict the pavement performance. 17 

Meanwhile, the National Center for Asphalt Technology also constructed four cold recycled 18 

pavement sections in the field. The monitored and predicted pavement performance showed 19 

similar trends in the first two years, but the Pavement ME Design program over predicted the rut 20 

depth of these sections. The pavement performance results confirmed that the bottom-up fatigue 21 

cracking was a negligible distress mode for cold recycled asphalt pavements. In the following, the 22 

life cycle cost analysis and life cycle assessment were conducted to evaluate the four different cold 23 

recycling projects. The life cycle cost analysis results demonstrated that all of the four cold 24 

recycling projects yielded less net present values than the HMA project. The life cycle assessment 25 

data indicated that the cold recycling technologies reduced the energy consumption by 56-64%, 26 

and decreased the greenhouse gas emissions by 39-46%. Finally, this study found that the overlay 27 

and asphalt treated base thicknesses and climatic conditions had significant impact on the 28 

performance of cold recycled asphalt pavements. 29 

 30 
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 33 

1. Introduction 34 

Cold recycling is a rehabilitation method without the application of heat during the construction 35 

process. This is a cost-effective rehabilitation technique, which is not only effective in eliminating 36 

the rutting and fatigue cracking distresses of asphalt pavements (Alkins et al. 2008, Lane and 37 

Kazmierowski 2005, Buss et al. 2017), but also conserves non-renewable resources and energy 38 

(Thenoux et al. 2007, Tabakovic et al. 2016, Turk et al. 2016). Due to their merits in cost-39 

effectiveness and sustainability, the cold recycling is currently attracting more and more attention 40 

in the United States. Traditionally, cold recycling consists of two subcategories, i.e., cold in-place 41 

recycling (CIR) and cold central-plant recycling (CCPR). CIR occurs within the roadway to be 42 

recycled and uses 100 percent of the reclaimed asphalt pavement (RAP) generated during the 43 

recycling process. CCPR is a process in which the asphalt recycling takes place at a central 44 

location using a stationary cold mix plant. The cold recycling usually requires multiple binders, 45 

including the bituminous material (e.g., foamed or emulsified asphalt binder), the chemical 46 

additives (e.g., lime, cement or fly ash), and water (Gomez-Meijide et al. 2016, Cox and Howard 47 

2016, Ma et al. 2017, Wang et al. 2018). A job mix formula defines the RAP gradation and the 48 

composition of the multiple-binder system for cold recycled asphalt mixtures. Due to the high void 49 

content of cold recycled asphalt mixtures, a surface course is required to protect the mixture from 50 

intrusion of surface moisture. Typically, the asphalt overlays are used for pavements with high 51 

traffic volumes, while the chip seals, slurry surfacing and micro surfacing are employed for 52 

pavements with low traffic volumes. Over the decades, the cold recycling has been an economical 53 

rehabilitation technique for low volume roadways. Recently, the Virginia Department of 54 

Transportation proved that cold recycling is also cost-effective for rehabilitation of heavy traffic 55 

volume roadways. To extend the use of cold recycling technologies, there is an urgent need to 56 

develop a pavement design methodology for cold recycled asphalt pavements with heavy traffic 57 

volume.  58 

The existing studies primarily focused on the laboratory and field evaluation of cold 59 

recycled asphalt mixtures. For instance, Kim and Lee (2006) and Wirtgen (2012) developed mix 60 

design methods for cold recycled asphalt mixtures with foamed asphalt binder. These mix design 61 

methods not only define the requirements for RAP materials, foamed asphalt binder, and chemical 62 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Gu et al.  3 

additives, but also provide the procedures to design the optimum binder system. With the increase 63 

of field experience in cold recycling, Asphalt Recycling and Reclaiming Association (ARRA) 64 

(2015) developed new mix design methods for cold recycled asphalt mixtures with foamed and 65 

emulsified asphalt binders, which redefined the material requirements and the performance criteria 66 

for asphalt mixtures. Kim et al. (2009), Khosravifar et al. (2015), Diefenderfer et al. (2016), and 67 

Lin et al. (2017) conducted the dynamic modulus laboratory test for various cold recycled asphalt 68 

mixtures. They found that the cold recycled asphalt mixtures exhibited less temperature and 69 

frequency dependencies compared to hot mix asphalt (HMA), but still should be classified as 70 

thermo-viscoelastic materials. Niazi and Jalili (2009), Kim et al. (2009), and Khosravifar et al. 71 

(2015) evaluated the rutting resistance of cold recycled asphalt mixtures using the permanent 72 

deformation tests. They pointed out that the rutting resistance of cold recycled asphalt mixtures 73 

was dependent on the type and dosage of binders, in particular on the dosage of cement. If the 74 

dosage of cement is less than 1.5%, the cold recycled asphalt mixtures generally have less rutting 75 

resistance than the HMA (Bocci et al. 2011, Grilli et al. 2012, Stimilli et al. 2013, Leandri et al. 76 

2015). Yan et al. (2010) investigated the fatigue cracking resistance of cold recycled asphalt 77 

mixtures. They concluded that the fatigue properties of foamed and emulsified asphalt treated 78 

mixtures were similar to the HMA. Diefenderfer et al. (2012, 2016) evaluated the CIR and CCPR 79 

projects in I-81 highway in Virginia and National Center for Asphalt Technology (NCAT) Test 80 

Track, respectively. They reported that all of the cold recycling sections exhibited excellent 81 

performance in terms of rutting and fatigue cracking resistance.  82 

Although a great deal of studies have comprehensively characterized the performance of 83 

cold recycled asphalt mixtures, limited research has dealt with the structural assessment of cold 84 

recycled asphalt pavements. Diefenderfer et al. (2015) and Diaz-Sanchez et al. (2017) determined 85 

the layer coefficients of cold in-place and central-plant recycled asphalt pavements for use in 86 

AASHTO 93 Design. Their methodologies relied on an empirical relationship between the layer 87 

coefficient and the back-calculated resilient moduli. This relationship was originally developed for 88 

HMA (Huang 2004), but whether it is suitable for cold recycled asphalt mixtures is still not clear. 89 

Moreover, more highway agencies are abandoning the AASHTO 93 Design method and adopting 90 

the Mechanistic-Empirical Pavement Design Guide - now available as the AASHTOWare 91 

Pavement ME Design program (Smith and Braham 2018, Shirzad et al. 2018). In the current 92 

Pavement ME Design program, the cold recycled asphalt mixture is considered as a bound base 93 

material, which means that users only need to assign a constant resilient modulus. However, this 94 
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assumption contradicts the fact that cold recycled asphalt mixture exhibits thermo-viscoelastic 95 

characteristics being functional as an asphalt layer. Therefore, there is a need to develop a 96 

mechanistic-empirical structural assessment methodology, which will take into account the 97 

mechanical characteristics (e.g., viscoelasticity) of cold recycled asphalt pavements. Furthermore, 98 

the developed methodology should discriminate the pavement performance by using different cold 99 

recycling technologies. The methodology should also be capable of evaluating the effects of 100 

structural properties and climatic conditions on the long-term performance of cold recycled asphalt 101 

pavements. These analyses will facilitate the use of cold recycling technologies for different 102 

pavement structures in different climate regions. 103 

In addition, the cold recycling is recognized as a cost-effective and sustainable 104 

rehabilitation technique. However, there is no study available to compare the different cold 105 

recycling technologies including CCPR and CIR in terms of life cycle costs and environmental 106 

benefits. These comparisons will be beneficial for pavement practitioners to select the right cold 107 

recycling technology for the given traffic volume, environment, and pavement structure. 108 

To address the aforementioned research needs, this paper aimed at developing a 109 

mechanistic-empirical pavement design methodology for cold recycled asphalt pavements, and 110 

comparing the life cycle costs and environmental benefits of pavements when using different cold 111 

recycling technologies. In particular, the Pavement ME Design program was utilized to assess the 112 

structural performance of cold recycled asphalt pavements. The laboratory tests including dynamic 113 

modulus, permanent deformation and fatigue cracking tests were conducted to determine the 114 

appropriate inputs for cold recycled asphalt mixtures into the Pavement ME Design program. In 115 

order to validate the prediction accuracy, the software predicted pavement performance was 116 

compared against field performance measurements from test sections of the same material. 117 

According to the predicted performance, a case study was conducted to investigate the 118 

sustainability of asphalt pavements using different cold recycling technologies. Finally, a 119 

sensitivity analysis was conducted to evaluate the impacts of structural design parameters and 120 

climatic condition on the performance of cold recycled asphalt pavements. 121 

 122 

2. Mix Design 123 

This study followed the ARRA mix design guidelines to design cold recycled asphalt mixtures 124 

with foamed and emulsified asphalt binders. The RAP materials were collected from a previous 125 

construction project on US Highway 280 in Opelika, Alabama. The RAP binder content ranged 126 
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from 4.9 – 5.2% and was performance graded as PG 100-10. The base asphalt binder used for 127 

foaming and the emulsion were PG 67-22 binder from Birmingham, Alabama and PG 64-22 128 

binder from Parsons Tennessee, respectively. 129 

The Wirtgen laboratory foaming plant was used to produce the foamed asphalt. The asphalt 130 

foaming process was produced at 170°C and 1.3% water to obtain a foamed asphalt with 8.5 131 

expansion ratio and 6-second half-life. A twin-shaft pug mill was used to mix RAP with foamed 132 

binder at room temperature 25 ± 2°C. The mixing time should not exceed 60 seconds. Immediately 133 

after mixing, the specimens were compacted in a 100-mm diameter mold using a Superpave 134 

gyratory compactor. The design number of gyrations was 35, and the desired height of the 135 

specimens was 63.5±2.5 mm. The specimens were extruded from the molds after compaction, and 136 

then cured in a forced draft oven at 40 ± 1°C for 72 hours and cooled at 25 ± 2°C for 24 hours. 137 

Note that this curing protocol was used to condition specimens for both mix design and laboratory 138 

performance testing. The compacted and cured specimens were tested for indirect tensile strength 139 

in both dry and wet conditions following AASHTO T283 without freeze-thaw conditioning. The 140 

ARRA criteria requires a minimum dry strength of 310 kPa and a minimum tensile strength ratio 141 

of 0.7 for cold recycled asphalt mixtures. For central-plant recycled mixture, the foamed asphalt 142 

content was 2.2% by the weight of dry RAP, and the total water content was 7.2% by the weight of 143 

dry RAP. For in-place recycled mixture, the foamed asphalt content was 1.8% by the weight of dry 144 

RAP, and the total water content was 4.9% by the weight of dry RAP. A dosage of 1.5% Type I/II 145 

Portland cement was added for both central-plant and in-place recycled mixtures to reduce the 146 

moisture susceptibility. 147 

A cationic slow-set emulsifier INDULIN w-5 at a dosage rate of 1.0% was used to produce 148 

the emulsified asphalt mixtures. The residue binder content was 62%. The pH value at room 149 

temperature is 2.98. The penetration of recovered residue at 25°C was 56.2, and the softening 150 

point of recovered residue was 48°C. Following similar mix design procedures of foamed asphalt, 151 

for central-plant recycled mixture, the emulsified asphalt content and total water content were 152 

determined as 3.0% and 7.0% by the weight of dry RAP, respectively. While for in-place recycled 153 

mixture, the emulsified asphalt content and the total water content were determined as 3.2% and 154 

4.4% by the weight of dry RAP, respectively. A dosage of 1.5% Type I/II Portland cement was 155 

also added for both central-plant and in-place recycled mixtures. 156 

Figure 1 showed the gradations of the cold recycled asphalt mixtures before and after 157 

ignition. The figure legend used “RAP” to represent source RAP before burning, “F” to stand for 158 
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foamed mixtures, and “E” for emulsion mixtures. The RAP materials were sampled after crushing 159 

and fractionation using the CIR and CCPR processes. As presented in Figure 1, the CCPR had 160 

coarser gradations than the CIR before and after ignition. After ignition, the foamed and emulsion 161 

mixtures had similar aggregate gradations for both CIR and CCPR technologies.  162 

 163 

Figure 1. Aggregate Gradations of Cold Recycled Asphalt Mixtures 164 

 165 

3. Laboratory Characterization of Cold Recycled Asphalt Mixtures 166 

After mix design, the determined binder compositions were used in the CCPR and CIR processes. 167 

The loose mixes were sampled from the central-plant and in-place, respectively, and then 168 

compacted and cured in the laboratory. Three laboratory tests were conducted to characterize the 169 

mechanical behavior of cold recycled asphalt mixtures, which included the dynamic modulus test, 170 

permanent deformation test, and overlay test. The detailed test procedures and test results were 171 

presented as follows. 172 

3.1 Dynamic Modulus Test 173 

The dynamic modulus test was used to determine the viscoelastic inputs of cold recycled 174 

asphalt mixtures for the Pavement ME Design program. These tests were conducted in an asphalt 175 

mixture performance tester (AMPT) in accordance with AASHTO TP79 with some modifications. 176 

Three temperatures (4, 20, and 40°C) and three frequencies (0.1, 1, and 10 Hz) were selected for 177 

testing. The small-scale specimens (i.e., 50-mm diameter and 110-mm height) were fabricated 178 
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following a method proposed by Bowers et al. (2015). Two replicates were used in this test. Figure 179 

2 presented the dynamic modulus master curves for HMA and cold recycled asphalt mixtures at a 180 

reference temperature of 20°C. Herein, the HMA mixture contained 5.2% PG 64-22 asphalt binder 181 

and 94.8% virgin aggregates. The air void content was 7% and the corresponding nominal 182 

maximum aggregate size was 9.5mm. In the log-scale frequency space, the low frequency range 183 

(10-5 to 10-3 Hz) corresponds to the high temperature range, the mid-frequency range (10-3 to 103 184 

Hz) corresponds to the intermediate temperature range, and the high frequency range (103 to 105 185 

Hz) corresponds to the low temperature range (Gu et al. 2018). As shown in Figure 2, the cold 186 

recycled asphalt mixtures generally had lower dynamic moduli than the HMA in the entire 187 

frequency range. In the high frequency (or low temperature) range, the cold recycled asphalt 188 

mixtures showed comparable dynamic moduli. While in the low frequency (or high temperature) 189 

range, the CCPR foamed asphalt mixture showed a much higher dynamic modulus than the other 190 

cold recycled materials. In the Pavement ME Design program, the dynamic moduli of HMA and 191 

cold recycled asphalt mixtures were tabulated according to the specified temperatures and 192 

frequencies in the test. The software was able to automatically predict the dynamic moduli of 193 

asphalt mixtures at any given temperature and load frequency. 194 

 195 

Figure 2. Dynamic Modulus Master Curves for Cold Recycled Asphalt Mixtures 196 
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3.2 Permanent Deformation Test 198 
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The permanent deformation tests were performed on small-scale specimens to evaluate the 199 

rutting resistance of cold recycled asphalt mixtures. The test procedures followed the AASHTO 200 

Standard TP79. The tests were conducted at 54.5°C with a 483 kPa deviator stress and a 69 kPa 201 

confining stress. Each specimen was subjected to the repeated compressive loading until the 202 

accumulated plastic strain reached 100,000 microstrains or the number of loading cycles reached 203 

20,000 cycles, whichever came first. The accumulated plastic strain curves were used to evaluate 204 

the rutting susceptibility of asphalt mixtures. Three replicates were used in this test. Figure 3 205 

showed the permanent deformation test results for HMA and cold recycled asphalt mixtures. As 206 

presented, the CCPR foamed asphalt mixture exhibited the greatest rutting resistance, while the 207 

CCPR emulsified, CIR foamed, and CIR emulsified asphalt mixtures had less rutting resistance 208 

than the HMA. Compared to the CIR asphalt mixtures, the CCPR asphalt mixtures had much less 209 

susceptibility to rutting. This might be because the CCPR asphalt mixtures had coarse gradations 210 

than the CIR asphalt mixtures. The rutting curves were fitted by a power function, as shown in 211 

Equation 1. 212 

p b

r

aN
ε
ε

=          (1) 213 

where pε  is the accumulated plastic strain, rε is the resilient strain, N  is the number of load 214 

repetitions, and a and b are the model coefficients. Table 1 showed the determined rutting model 215 

coefficients for these asphalt mixtures. In the Pavement ME Design program, the rutting potential 216 

of asphalt mixture was calculated by Equation 2. 217 

3 31 2 2
110 rrp kk k

r
r

T N ββε
β

ε
=        (2) 218 

where T  is the layer temperature, 1k , 2k  and 3k  are the rutting coefficients, and 
1r

β , 
2r

β  and 
3r

β  219 

are the calibration factors, which are usually assumed as 1.0. For HMA, the default values of 220 

rutting coefficients are: 1k = -3.35412,  2k  = 1.5606, and 3k  = 0.4791. In this study, both HMA 221 

and cold recycled asphalt mixtures were assumed to possess comparable thermal characteristics, 222 

which meant that the k2 value for cold recycled asphalt was also set as 1.5606. Accordingly, the k1 223 

and k3 values for cold recycled asphalt were calculated by Equations 3 and 4, respectively. 224 

1 1 10log CR

HMA

HMA r
CR HMA

CR r

a
k k

a

ε
ε− −

 
= −   

 
     (3) 225 
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( )3 3CR HMA HMA CRk k b b− −= − −        (4) 226 

where the subscript CR denotes the cold recycled asphalt, and the subscript HMA stands for the 227 

HMA. The calculated k-values of cold recycled asphalt were also shown in Table 1. 228 

 229 

Figure 3. Accumulated Plastic Strain Curves for Cold Recycled Asphalt Mixtures 230 

 231 

Table 1. Rutting Model Coefficients of Cold Recycled Asphalt Mixtures 232 

Asphalt Mixture 
Rutting Model Coefficients 

Power Model Pavement ME Design Model 
a b k1 k2 k3 

HMA 2037 0.2813 -3.354 1.5606 0.4791 
CCPR-F 1287 0.2718 -3.585 1.5606 0.4696 
CCPR-E 3604 0.2753 -3.377 1.5606 0.4730 
CIR-F 3018 0.3400 -3.569 1.5606 0.5378 
CIR-E 2870 0.3358 -3.499 1.5606 0.5335 

 233 

3.3 Overlay Test 234 

To evaluate the fatigue cracking resistance of cold recycled asphalt mixtures, the overlay 235 

tests were conducted in accordance with the Texas Department of Transportation Standard Tex-236 

248-F with some modifications. The field sampled and laboratory compacted specimens were 237 

tested at a frequency of 0.1 Hz with a maximum opening displacement of 0.381 mm. The load 238 

force and the plate opening displacement were recorded during the test. The number of failure 239 

cycles corresponds to 93% reduction of initial load. A higher number of failure cycles indicates a 240 
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better resistance to fatigue cracking. More details of overlay test can be found at Gu et al. (2015a 241 

and 2015b). Four replicates were used in this test. Figure 4 showed the overlay test results for the 242 

cold recycled asphalt mixtures. As illustrated, the CCPR foamed mixture had a better fatigue 243 

cracking resistance than the CCPR emulsion mixture and the CIR foamed mixture had a lower 244 

fatigue cracking resistance than the CIR emulsion mixture. The statistical analysis was conducted 245 

to determine the significance of difference between these mixtures. Tukey’s pairwise comparison 246 

showed the differences of fatigue cracking resistance was insignificant at a significance level of 247 

0.05 (p-value from analysis of variance). Moreover, Schwartz et al. (2017) stated that the bottom-248 

up fatigue cracking was not an important distress mode for cold recycled asphalt pavements. Thus, 249 

this study did not consider the difference of fatigue properties among cold recycled asphalt 250 

mixtures. In the Pavement ME program, the fatigue life of asphalt pavement was calculated by, 251 

2 32 3

1 1
1 1

1 1
0.00432

f fk k

f fN C k
E

β β

β
ε

∗ ∗
   

= ∗ ∗ ∗    
   

    (5) 252 

where fN  is the fatigue life of asphalt pavement, C  is the laboratory to field adjustment factor, 253 

1ε  is the tensile strain at the critical location, 1E  is the stiffness of material, 1k , 2k  and 3k  are the 254 

fatigue properties, 
1f

β , 
2f

β  and 
3f

β  are calibration factors. The default values of fatigue 255 

properties are: 1k = 0.007566,  2k  = 3.9492, and 3k  = 1.281. In this study, these default fatigue 256 

properties were used to represent the fatigue cracking resistance of cold recycled asphalt mixtures. 257 

 258 

Figure 4. Overlay Test Results of Cold Recycled Asphalt Mixtures 259 
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4. Field Performance Prediction of Cold Recycled Asphalt Pavements 260 

In 2015, the NCAT constructed four test sections on US280 in Lee County, Alabama, to evaluate 261 

the field performance of cold recycled asphalt pavements. These sections included the CCPR with 262 

emulsified binder (CCPR-E) and with foamed binder (CCPR-F), and the CIR with emulsified 263 

binder (CIR-E) and with foamed binder (CIR-F). Figure 5 showed the location and structures of 264 

these test sections. To compare with these cold recycled asphalt pavements, one HMA pavement 265 

structure was assumed as the control section (Control) in this study. As illustrated in Figure 5, the 266 

thickness of the cold recycled asphalt layer was 90 mm. The cold recycled asphalt layer was 267 

surfaced with a 25-mm HMA overlay. The underlying layers included 254-mm asphalt treated 268 

base (ATB), 203-mm unbound granular subbase, and subgrade soil. The annual average daily 269 

traffic was 18,300 and 16% of the daily traffic was estimated to be heavy truck traffic. The traffic 270 

speed limit was 105 km/h. 271 

 272 

Figure 5. Cold Recycled Asphalt Pavement Sections on US280 in Alabama 273 

In this study, the level 1 inputs were used for characterizing the HMA overlay, the cold 274 

recycled asphalt layer, and the asphalt treated base in the Pavement ME Design program. These 275 

inputs were determined from the dynamic modulus and permanent deformation test results 276 

Test Sections 
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presented in the previous section. The level 2 inputs were used for unbound aggregates subbase 277 

and subgrade soil. The resilient moduli of unbound aggregates and subgrade soil were 206 MPa 278 

and 103 MPa, respectively. The analysis period was assigned as 15 years.  279 

Figure 6 showed the predicted and measured rut depths using the Pavement ME Design 280 

program. In the legend, “P” stands for the predicted values, and “M” represents the measured 281 

results. As illustrated in Figure 6, the predicted rut depth of CCPR-F section showed comparable 282 

rut depth to the control section, which was around 10 mm after 15-year service life. Compared to 283 

the control section, the CCPR-E section had a higher predicted rut depth, but still satisfied the rut 284 

depth criterion, which allowed the rut depth less than 19 mm. While according to this rut depth 285 

criterion, both CIR sections required rehabilitation activities before the end of the analysis period. 286 

Specifically, the CIR-E section required the rehabilitation at the 10th year of service, and the CIR-F 287 

section needed the rehabilitation at the 11th year of service. Figure 6 also showed that the model 288 

predicted rut depths almost doubled those measured from the field thus far. This demonstrated that 289 

the Pavement ME Design program over predicted the rutting depth for asphalt pavements. The 290 

discrepancies between ME predictions and field measurements might be attributed to the lack of 291 

local calibration of ME coefficients. Another reason for the discrepancies is that the current 292 

laboratory curing protocol might not simulate the long-term physical and chemical changes of cold 293 

recycled asphalt mixtures in the field. In this study, the predicted performance did not consider the 294 

increase of material properties due to the long-term curing. However, both the model predictions 295 

and field measurements revealed the same sequence of rutting susceptibility for these cold 296 

recycled pavements, i.e., CCPR-F < CCPR-E < CIR-E < CIR-F. This finding was consistent with 297 

the permanent deformation test results in the laboratory. 298 
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 299 

Figure 6. Predicted and Measured Rut Depths for Cold Recycled Asphalt Pavements 300 

Figure 7 presented the predicted bottom-up fatigue cracking in asphalt pavements. It was 301 

shown that the bottom-up fatigue cracking distress was only 1.4-1.6 % lane area in cold recycled 302 

asphalt pavements, which was much less than the threshold value for rehabilitation (i.e., 25% lane 303 

area). This confirmed with the initial assumption that the bottom-up fatigue cracking was a 304 

negligible distress mode for cold recycled asphalt pavements. Within the 2-year service, no fatigue 305 

cracking had been observed from these cold recycled pavement sections. The measured fatigue 306 

cracking performance was consistent with the prediction from the Pavement ME Design program.  307 
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 308 

Figure 7. Predicted Fatigue Cracking for Cold Recycled Asphalt Pavements 309 

Figure 8 illustrated the predicted international roughness index (IRI) for cold recycled 310 

asphalt pavements. According to the Mechanistic-Empirical Pavement Design Guide (MEPDG), 311 

the IRI reflects the ride quality of pavements, which is associated with the rutting and fatigue 312 

cracking distresses (AASHTO 2008). As shown in Figure 8, the CCPR-F section had comparable 313 

IRI values to the control section, but had lower IRI values than the CCPR-E section. Compared to 314 

the CCPR sections, the CIR sections yielded much greater IRI values. In the Pavement ME Design 315 

program, the threshold value for IRI was 2.7 m/km. Thus, all of the cold recycled asphalt 316 

pavements satisfied the IRI criterion.  317 
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 319 

Figure 8. Predicted International Roughness Index for Cold Recycled Asphalt Pavements 320 

In general, the CCPR-F section exhibited much better performance than other cold 321 

recycled pavement sections, which was even comparable to the control section. Compared to the 322 

CCPR-F section, the CCPR-E section had much more rutting and fatigue cracking distresses, but 323 

still passed the performance criteria in the analysis period. According to the Pavement ME 324 

predictions, the CIR-F and CIR-E sections had severe rutting distresses, which may require major 325 

rehabilitation at 10th and 11th year of service, respectively. Note that these conclusions are drawn 326 

from the performance prediction results by the Pavement ME Design program. The designed 327 

material properties of cold recycled asphalt mixtures are dependent on the adopted mix design 328 

procedure and the laboratory curing protocol. 329 

 330 

5. Sustainability Assessment of Cold Recycled Asphalt Pavements 331 

Based on the predicted performance results, this section compared the life cycle costs and 332 

environmental benefits of the four different cold recycling technologies including CCPR-E, 333 

CCPR-F, CIR-E, and CIR-F.  334 

5.1 Life Cycle Cost Analysis 335 

To enable a fair comparison among competing pavement alternatives, all future anticipated 336 

costs and salvage value were discounted to the present to take into account the time value. The net 337 
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present value (NPV) of initial construction and discounted future costs and salvage value was then 338 

determined for each alternative using the common economics formula shown in Equation 6. 339 

Finally, the alternative with the lowest NPV was considered to be the most economical choice.  340 

( ) ( )1

1 1
. Cos Cos

1 1k e

N

k n nk
NPV Initial Const t Future t SalvageValue

i i=

   
= + −   

+ +      
∑  (6) 341 

where i  is the discount rate; kn is the number of years from initial construction to the kth 342 

expenditure; and en is the analysis period. For the sake of simplicity, this study did not consider 343 

any user costs in the life cycle cost analysis, and assumed the analysis period is only 10 years. 344 

According to the predicted performance results, there were no rehabilitation activities required for 345 

all of the four cold recycling technologies. Herein, the discount rate was assigned as 4.0%, which 346 

was a common value used by most of the Departments of Transportation in the United States 347 

(West et al. 2013). Table 2 compared the life cycle costs of the HMA and cold recycled pavement 348 

alternatives. The details of life cycle cost analysis can be found at Tables S1-S4 of the supporting 349 

documents. As presented in Table 2, all of the cold recycled pavement sections had lower NPVs 350 

than the HMA section. This confirmed that the cold recycling technique is more economical than 351 

the replacement of HMA layer. By comparing the different cold recycling technologies, it was 352 

found that the CCPR technologies were more cost-effective than the CIR technologies. This was 353 

because the CCPR pavements had comparable initial construction cost, but much higher salvage 354 

value than the CIR pavements. Table 2 also demonstrated that the CCPR-F was the most 355 

economical choice in this case study, which reduced the NPV by 32% when compared to the 356 

HMA replacement. 357 

Table 2. Comparison of Life Cycle Costs of Pavement Alternatives 358 

Pavement 

Alternatives 

Initial Construction 

Cost ($/LKM1) 

Salvage Value 

($/LKM1) 

Net Present Value 

($/LKM1) 

HMA 34,257 15,225 23,971 

CCPR-F 23,185 10,304 16,224 

CCPR-E 23,754 7,918 18,405 

CIR-F 19,866 0 19,866 

CIR-E 22,467 2,043 21,088 

Note: 1 LKM = Lane Kilometer 359 
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5.2 Life Cycle Assessment 360 

The life cycle assessment was conducted to quantify the environmental benefits of the four 361 

different cold recycling technologies. Table 3 listed the life cycle inventory (LCI) of asphalt 362 

pavement. Note that this study only focused on the energy consumption and greenhouse gas (GHG) 363 

emissions of the five processes, including raw material production, asphalt mixture manufacture, 364 

pavement milling, material transport, and material placement. The material composition was 365 

described in the previous sections. The transport distance was 32 km for all projects.  366 

Table 3. Life Cycle Inventory of Asphalt Pavement 367 

Processes Energy Consumption 
(MJ/ton) 

GHG Emissions 
(kg/ton) LCI Source 

Raw 
Materials 

Asphalt Binder 4402 274 (EIA, 2013) 
Asphalt 

Emulsion  
(62% Residue) 

3165 195 (Yang, 2014) 

Cement 5745 921 (PCA, 2007) 
Crushed 

Aggregates 
30 2.1 (EarthShift, 2013) 

Water 10 0.3 

(Chappat and 
Bilal, 2003) 

Manufacture 
HMA1 275 22 

CCPR Mix 14 1 
CIR Mix 15 1.13 

Milling 12 0.8 
Transport (km/ton) 1.3 0.06 (EPA, 2014) 

Placement 
HMA 9 0.6 

(Chappat and 
Bilal, 2003) Cold Mix 

Asphalt 
6 0.4 

Note: 1 20% RAP was used in the HMA 368 

Figure 9 presented the energy consumption of HMA and cold recycling projects. It was 369 

shown that the cold recycling technologies reduced the energy consumption by 56-64%. 370 

Compared to the HMA project, both CCPR and CIR projects exhibited similar reduction in energy 371 

consumption. As shown in Figure 9, the cold recycling projects dramatically reduced the energy 372 

consumption in the manufacture process, and slightly saved the energy from the production of raw 373 

materials. By comparison of the cold recycling projects, the CIR projects consumed less energy 374 

than the CCPR projects, which was mainly because that the CIR projects took the material 375 

transport out of the entire process.  376 

 377 
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 378 

Figure 9. Energy Consumption of Cold Recycling Projects 379 

Figure 10 showed the GHG emissions of HMA and cold recycling projects. Compared to 380 

the HMA project, the cold recycling technologies reduced the amount of GHG emissions by 39-381 

46%. Both CCPR and CIR projects exhibited similar reduction in GHG emissions. As 382 

demonstrated in Figure 10, the cold recycling projects substantially reduced the GHG emissions in 383 

the manufacture process, which was due to the significant decrease of manufacture temperature. 384 

Although the cold recycling projects utilized less asphalt binder and crushed aggregates, they still 385 

had higher GHG emissions than the HMA project in the production of raw materials. This was 386 

because that the production of cement yielded much higher GHG emissions than other materials. 387 

Compared among the cold recycling projects, the CIR projects had marginally lower GHG 388 

emissions than the CCPR projects, which was still attributed to the remove of material transport 389 

from the entire process.  390 
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 392 

Figure 10. Greenhouse Gas Emissions of Cold Recycling Projects 393 

 394 

6. Structural Performance Assessment of Cold Recycled Asphalt Pavements 395 

The cold recycling treatment depths generally have a narrow range that is from 75 to 100 mm. For 396 

cold recycled asphalt pavement, an overlay is needed to place on top of the cold recycled layer to 397 

ensure good ride quality. To design a cost-effective cold recycled pavement structure, the 398 

thicknesses of overlay and ATB are dependent on the type of cold recycling technologies and the 399 

climate condition. This section discussed the influence of these design parameters on the 400 

performance of cold recycled asphalt pavements. 401 

 This study assumed the cold recycled pavement structure shown in Figure 5 as the base 402 

structure. The effect of overlay thickness on the performance of cold recycled asphalt pavements 403 

was shown in Figure 11. As presented in Figure 11a, the increase of overlay thickness significantly 404 

reduced the final rut depth of the CIR sections and the CCPR-E section, and slightly reduced the 405 

final rut depth of CCPR-F section. The pavements with 51 and 64 mm thick overlay could pass the 406 

design criterion for rutting regardless of which cold recycling technology is applied. Figure 11b 407 

showed that all of the pavement sections also met the requirement for IRI. It was demonstrated 408 

that the increase of overlay thickness was beneficial for the ride quality. Increasing overlay 409 

thickness from 25 to 64 mm reduced the IRI by 10.3% for the CIR-F section, 9.0% for the CIR-E 410 

section, 1.7% for the CCPR-F section, and 6.4% for the CCPR-E section. 411 
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 412 

 
(a) Rut Depth 

 
(b) International Roughness Index 

Figure 11. Effect of Overlay Thickness on Cold Recycled Asphalt Pavement Performance 413 

after 15-Year Service 414 

Figure 12 presented the effect of ATB layer thickness on the performance of cold recycled 415 

asphalt pavements. It was shown in Figure 12a that the increase of ATB layer thickness from 152 416 

to 254 mm substantially reduced the final rut depth for all the cold recycled pavements, while 417 

increasing its thickness from 254 to 305 mm had a negligible influence on rutting. In these cases, 418 

the sections passing the rut criterion included all the CCPR-F sections and CCPR-E sections with 419 

254 and 305 mm ATB. Figure 12b demonstrated that the increase of ATB thickness was effective 420 

in reducing the IRI of CCPR-E, CIR-E, and CIR-F sections, and the CCPR-F sections with thin 421 

ATB still exhibited extraordinary ride quality.   422 
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(a) Rut Depth 

 
(b) International Roughness Index 

Figure 12. Effect of ATB Thickness on Cold Recycled Asphalt Pavement Performance after 423 

15-Year Service 424 

In the Long-Term Pavement Performance (LTPP) database, the climate in the United 425 

States is divided into four zones, namely, wet-freeze, wet-no-freeze, dry-freeze and dry-no-freeze. 426 

The aforementioned cases were located in the State of Alabama (AL), which was classified in wet-427 

no-freeze zone. To evaluate the impact of climate condition on structural design, other three 428 

weather stations were also analyzed in this study, which included Los Angeles in California (CA, 429 

dry-no-freeze), Bozeman in Montana (MT, dry-freeze), and Minneapolis in Minnesota (MN, wet-430 

freeze). Figure 13 showed the impact of climate conditions on the performance of CCPR-E 431 

sections. As presented in Figure 13a, the MT section had the lowest rut depth when compared 432 

against other sections. The AL and CA sections exhibited similar resistances to rutting. Compared 433 

to the no-freeze zones (i.e., AL and CA sections), the freeze zones (i.e., MT and MN sections) 434 
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resulted in less rutting distress. This might be because the asphalt materials in freeze zones were 435 

much stiffer than those in no-freeze zones. As shown in Figure 13b, the CA section had the lowest 436 

IRI value in comparison to other sections. Compared to wet zones (i.e., AL and MN sections), the 437 

dry zones yielded lower IRI values at the end of analysis period. In this case study, the CCPR-E 438 

structures shown in Figure 5 passed both the rutting and IRI design criteria in the all four climatic 439 

zones. It is worth mentioning that the current Pavement ME Design considers the influence of 440 

climate on pavement performance by varying the mechanical properties of asphalt material and 441 

unbound material. The influence of climate on moisture damage and freeze-thaw effects are not 442 

included in the analysis.   443 

 
(a) Rut Depth 

 

 
(b) International Roughness Index 

Figure 13. Impact of Climate Conditions on the Performance of CCPR-E Sections 444 
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7. Conclusions and Future Work 448 

This study evaluated the structural characteristics of cold recycled asphalt pavements using a 449 

mechanistic-empirical approach, and assessed the sustainability of cold recycling technologies in 450 

terms of life cycle costs and environmental benefits. The major contributions of this paper were 451 

summarized as follows: 452 

• The dynamic modulus test results confirmed that the cold recycled asphalt mixtures should 453 

be considered as thermo-viscoelastic materials (Kim et al. 2009). The permanent 454 

deformation test results demonstrated that the CCPR mixtures showed less rutting 455 

susceptibility than the CIR mixtures, and the CCPR-F mixture had comparable rutting 456 

resistance to HMA. The overlay test results showed that the cold recycled asphalt mixtures 457 

had comparable resistances to fatigue cracking. 458 

• This study confirmed that the bottom-up fatigue cracking was a negligible distress mode 459 

for cold recycled asphalt pavements (Schwartz et al. 2017). Four cold recycled asphalt 460 

pavement sections (i.e., CCPR-E, CCPR-F, CIR-E, and CIR-F) were constructed in the 461 

State of Alabama, US. The monitored and predicted pavement performance showed similar 462 

trends in the first two years, but the Pavement ME Design program over predicted the 463 

rutting depth of these sections relative to the field measurements. 464 

• The results of life cycle cost analysis demonstrated that all of the four cold recycling 465 

projects yielded less NPVs than the HMA project. Compared among the cold recycling 466 

projects, the CCPR-F was the most economical choice in this case study. The life cycle 467 

assessment data indicated that the cold recycling technologies reduced the energy 468 

consumption by 56-64%, and decreased the GHG emissions by 39-46%. Compared to the 469 

CCPR projects, the CIR projects had slightly less energy consumption and GHG emissions. 470 

• The rut depth and IRI of cold recycled asphalt pavements were significantly affected by the 471 

overlay and ATB thicknesses and the climatic conditions.  472 

 473 

Cold recycled asphalt mixtures are evolutive materials whose properties change due to the 474 

physical and chemical processes, such as moisture evaporation, emulsion setting, and cement 475 

hydration. The future studies should focus on the development of laboratory curing protocol to 476 

simulate these long-term physical and chemical changes. The developed curing protocol will be 477 
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crucial to determine the material properties of cold recycled asphalt mixtures for pavement 478 

structural design.  479 
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