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Abstract
During social interactions, decision-making involves mutual reciprocity—each individual's

choices are simultaneously a consequence of, and antecedent to those of their interaction part-

ner. Neuroeconomic research has begun to unveil the brain networks underpinning social

decision-making, but we know little about the patterns of neural connectivity within them that

give rise to reciprocal choices. To investigate this, the present study measured the behaviour

and brain function of pairs of individuals (N = 66) whilst they played multiple rounds of eco-

nomic exchange comprising an iterated ultimatum game. During these exchanges, both players

could attempt to maximise their overall monetary gain by reciprocating their opponent's prior

behaviour—they could promote generosity by rewarding it, and/or discourage unfair play

through retaliation. By adapting a model of reciprocity from experimental economics, we show

that players' choices on each exchange are captured accurately by estimating their expected

utility (EU) as a reciprocal reaction to their opponent's prior behaviour. We then demonstrate

neural responses that map onto these reciprocal choices in two brain regions implicated in social

decision-making: right anterior insula (AI) and anterior/anterior-mid cingulate cortex (aMCC).

Finally, with behavioural Dynamic Causal Modelling, we identified player-specific patterns of

effective connectivity between these brain regions with which we estimated each player's

choices with over 70% accuracy; namely, bidirectional connections between AI and aMCC

that are modulated differentially by estimates of EU from our reciprocity model. This input-

state-output modelling procedure therefore reveals systematic brain–behaviour relationships

associated with the reciprocal choices characterising interactive social decision-making.
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1 | INTRODUCTION

Decision-making during repeated social interactions involves a dynamic

process of mutual reciprocity, whereby the choices we make are simul-

taneously a cause and an effect of our interaction partners' behaviour.

Over the course of a repeated dyadic exchange, for example, each inter-

actant will reward or punish their partner's prior behaviour in an attempt

to promote or discourage certain future behaviours. Neuroeconomic

research has begun to elucidate the brain networks underpinning social

decision-making during interactive contexts (Rilling & Sanfey, 2011), yet

it remains unknown how patterns of neural connectivity within these

networks give rise to reciprocal choices (e.g., Cáceda et al., 2017).

The ultimatum game (UG; Güth, Schmittberger, & Schwarze,

1982) presents an experimental paradigm with which to investigate
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reciprocity during social interaction (see Krueger, Grafman, & McCabe,

2008). In this game, a Proposer is asked to divide a sum of money (the

‘pie’) between themselves and a Responder, who then chooses

whether to accept or reject the proposed division. If the Responder

accepts then the pie is divided accordingly, but if they reject, neither

player receives any payoff. When played in a typical one-shot format,

whereby the game ends after the Responder accepts or rejects a sin-

gle proposal, modal offers are around 40% of the pie. This is believed

to reflect strategic behaviour; to maximise their own payoff, Pro-

posers refrain from offers that are likely to be rejected, such as those

with which they earn disproportionately more (advantageous ineq-

uity). Indeed, Responders reject one-off proposals of 20% about half

the time, suggesting they consider it unfair to be offered dispropor-

tionately less (disadvantageous inequity; Henrich et al., 2005). This

standard format fails to capture the bidirectional property of repeated

exchanges, however, in which reciprocal tendencies are likely to sway

choices over multiple exchanges; Responders can retaliate against

prior selfishness by temporarily lowering their tolerance for disadvan-

tageous inequity, for instance, and Proposers can reciprocate with

more equitable proposals. Alternatively, either player can adopt an

unwavering strategy by offering or accepting only divisions that bene-

fit themselves maximally. An iterated UG (iUG), then, allows for vary-

ing expressions of reciprocity to unfold during a simulated real-world

dyadic interaction (Avrahami, Güth, Hertwig, Kareev, & Otsubo, 2013;

van Damme et al., 2014).

A number of neuroimaging investigations have examined brain

responses during the one-shot UG, and meta-analytic reviews reveal

that Responders' rejections are associated reliably with neural

responses in anterior insula (AI) and the dorsal anterior/anterior-mid

cingulate cortices (aMCC; Feng, Luo, & Krueger, 2015; Gabay, Radua,

Kempton, & Mehta, 2014). The aMCC is also implicated in Proposer

behaviour, with strategic proposals eliciting electrocortical responses

in frontal midline brain regions (Billeke et al., 2014; Billeke, Zamorano,

Cosmelli, & Aboitiz, 2013; Wang, Li, Li, Wei, & Li, 2016). Given its dif-

fuse connectivity profile, the AI is believed to integrate sensory, inter-

oceptive and affective processes that together comprise emotional

feeling states (Craig, 2009)—the same states likely to drive reciprocal

choices. The aMCC appears to process and integrate social informa-

tion necessary for predicting and monitoring the outcomes of deci-

sions made during interactions, particularly those influencing the

motivational state of our interaction partner(s) (Apps, Lockwood, &

Balsters, 2013; Apps, Rushworth, & Chang, 2016). In this light, brain

function within these two regions, and the degree of their functional

connectedness, is likely to drive reciprocal behaviour.

Consistent with this notion, the strength of functional connectiv-

ity among a brain network comprising the AI and ACC has been

shown to predict the tendency to reciprocate trust (Cáceda, James,

Gutman, & Kilts, 2015). Furthermore, Feng et al. (2018) report that

functional connectivity among a brain network encompassing the AI

and ACC modulate egocentric biases expressed during fairness-

related decisions, implicating this network in normative decision-

making processes that might motivate the decision to reciprocate.

Importantly, however, these studies did not investigate reciprocal

behaviour, nor the underlying patterns of effective connectivity, dur-

ing repeated exchanges between the same interactants. Bidirectional

connectivity between these brain regions is proposed to permit the

inference of others' feeling states that allow predictions of their future

behaviour (Bernhardt & Singer, 2012; Medford & Critchley, 2010),

and these inferences will develop over successive interactions with

the same individual. As such, coordinated interactions between the AI

and aMCC might guide reciprocal choices during an iUG between the

same players.

The present study investigated this by performing functional mag-

netic resonance imaging (fMRI) on pairs of players whilst they inter-

acted with one another on an iUG, and modelling player behaviour as

reciprocal choices. The latter was achieved by adapting a model from

experimental economics, fitting each player's round-by-round behav-

iour (the proposed division or its acceptance/rejection) to an estimate

of expected utility (EU) on each exchange (Cox, Friedman, & Gjerstad,

2007). Crucially, this estimate considered not only the distribution of

payoff between players, thereby incorporating any inequity aversion,

but also the extent to which their choices reflect reciprocal reactions

to their partner's prior behaviour; if player A considers B's past behav-

iour to have been fair then they will perceive greater utility in increas-

ing B's relative payoff, but if A believes B's past behaviour to have

been unfair they will see more utility in decreasing B's payoff (positive

and negative reciprocity, respectively). Brain responses that map onto

these round-by-round estimates of EU therefore reflect utility evalua-

tions influenced by reciprocal tendencies. Given their consistent

involvement in the UG reported by meta-analyses, their purported

roles in social decision-making and their inclusion in brain networks

implicated in reciprocity, we hypothesised that the AI and aMCC of

both players would exhibit brain responses modulated by these esti-

mates of EU. Furthermore, we predicted that patterns of AI–aMCC

connectivity underlie reciprocal choices; specifically, that signals from

AI in response to the prior behaviour of an interaction partner would

serve as inputs to the aMCC, thereby modulating the response of the

latter and, in turn, the resultant behavioural output (the choice of

offer, or decision to accept/reject). This was achieved with beha-

vioural Dynamic Causal Modelling (bDCM; Rigoux & Daunizeau,

2015), a technique capable of identifying patterns of directional

(effective) connectivity within this two-node network, how this con-

nectivity profile is influenced by EU and if it can be used to estimate

choices on the iUG.

2 | METHODS

2.1 | Participants

The initial sample comprised 70 males recruited fromMasaryk University,

Czech Republic, who were paired to form 35 Proposer–Responder dyads.

The individuals comprising each dyad had never met prior to the day of

the experiment. Male–male dyads were measured exclusively to avoid

any potentially confounding factors associated with mixed-sex interac-

tions. Poor behavioural or neuroimaging data from one Proposer and one

Responder comprising two different dyads led to the omission of two

pairs (see below). The 66 males forming the remaining 33 dyads had a

mean age of 30.6 years (SD = 11.0; range = 19–65; mean intra-dyad age

difference = 2.1 years); all reported normal or corrected-to-normal vision
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and no history of neurological diseases or psychiatric diagnosis. All partic-

ipants provided informed consent prior to the experimental procedure,

which was approved by the Research Ethics Committee of Masaryk

University.

2.2 | Procedure

On the day of the experiment, the Proposer and Responder of a given

pair met for first time and exchanged names before being sent to one

of two scanners located in adjacent rooms. Player roles were assigned

randomly at the start of scanning but remained fixed throughout the

experiment, one participant playing the role of Proposer and the other

playing Responder on all rounds. Fixing the roles in this way allowed

players to learn about and adapt to (reciprocate) their partner's behav-

iour over a relatively short period. Prior to the experiment, players

were told explicitly that throughout the scanning procedure they

would play with the same individual to whom they had just been

introduced, and that their respective roles would remain fixed. Func-

tional scanning was conducted in a single session, comprising

60 rounds (events) of the iUG and 30 rounds of a control condition

(CTRL; see below) performed in an event-related fashion. Each UG

round began with the Proposer being given 4 s to choose between

two divisions of the pie (the ‘choice set’; see below) between them-

selves and the Responder (Choice). Only after this 4 s period was the

Proposer's offer highlighted for a further 4 s (Offer), during which the

Responder chose to accept or reject the proposal. Again, only after

this period was the Responder's decision presented for a final 4 s

(Decision). The same procedure was followed on CTRL rounds, but the

choice set comprised two alternative divisions of colour. An example

UG and CTRL round is illustrated in Figure 1. Importantly, the stimuli

comprising each round were presented simultaneously to both players

who observed the exact same stimulus sequence—Responders saw

the choice set from which Proposers selected their offer, and Pro-

posers saw the Responder's decision to accept/reject the proposal.

Players gave their choices via two-button response boxes. All rounds

ended with a jittered inter-trial interval, with a fixation cross pre-

sented for 2–4 s (mean = 3). The same pseudo-randomised inter-

mixed sequence of UG and CTRL choice sets was used for all pairs,

which was defined by a genetic algorithm for design optimisation set

to maximise contrast detection between conditions (Wager & Nichols,

2003). Participants received the monetary outcome of six UG rounds

selected randomly [mean reward = 240 CZK (approx. €9)]. Players

were never informed about the choice sets they would encounter, nor

the number of remaining rounds during the experiment (see Support-

ing Information for participant instructions).

As part of a separate ongoing study, after the iUG each player

completed two self-reports instruments measuring components of

personality—the Action Control Scale (ACS-90; (Kuhl, 1994) and Inter-

personal Reactivity Index (Davis, 1983). As an exploratory analysis, we

assessed whether performance on the iUG and metrics of effective

connectivity estimated by bDCM were related to personality variables

measured by these instruments. Given the exploratory, post hoc nature

of these analyses, however, we do not present the results here. Instead,

the reader can consult them in Table S4, Supporting Information.

2.3 | UG stimuli

Each of the 60 UG rounds presented players with a choice set consist-

ing of two divisions of 100 K�c (approx. €4), from which Proposers

were required to select one as their offer to the Responder. From the

Proposers' perspective, the two divisions differed in magnitude of

advantageous inequity; on 30 rounds they had to choose between

FIGURE 1 Example UG (left) and CTRL round (right), comprising 4-s Choice, Offer and Decision periods. In these examples, the offer made by

the Proposer on the UG round is rejected by the Responder, whilst the offer made on the CTRL round is accepted [Color figure can be viewed at
wileyonlinelibrary.com]
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maximal and minimal advantageous inequity (e.g., 70:30|60:40), and

for the other 30 UG rounds, they were required to choose between

advantageous and disadvantageous inequity (e.g., 60:40|40:60). For

the sake of brevity, herein we refer to the former division of each type

of choice set as the selfish division, and the latter as the generous

division. Together, these two types of choice sets were intended to

maximise expressions of reciprocity between players: For those in

which the Proposer incurred a greater relative cost by being generous,

they were more justified in offering the selfish division and, in turn,

expressed greater co-operative intent when offering the generous

division. Conversely, when the relative cost to the Proposer was mini-

mised in offering the generous division, a selfish offer (SO) indicated

less co-operative, more egoistic motives. To optimise our modelling

procedures applied to behavioural and brain data, all UG rounds were

combined. Table S1 lists the 10 choice sets used in the experiment,

which were pseudo-randomised and intermixed among CTRL rounds

(see above). Importantly, pseudo-randomisation ensured an even dis-

tribution of each choice set throughout the procedure, such that no

choice was presented twice in succession. One Responder chose to

accept all proposals, regardless of their payout. Data from this individ-

ual and their corresponding Proposer were excluded from all analyses.

2.4 | Imaging protocol

As part of a dual-fMRI protocol, functional and structural MR data

were acquired from each player comprising a dyad simultaneously

with one of two identical 3T Siemens Prisma scanners equipped with

a 64-channel bird-cage head coil. Players were allocated to one of the

two scanners in a counterbalanced fashion, ensuring an even number

of Proposers and Responders were scanned in each. Blood-oxygen-

level-dependent (BOLD) images were acquired with a T2*-weighted

echo-planar imaging (EPI) sequence with parallel acquisition (i-PAT;

GRAPPA acceleration factor = 2; 34 axial slices; TR/TE = 2000/35

ms; flip angle = 60�; matrix = 68 × 68 × 34, 3 × 3 × 4 mm3 voxels).

Axial slices were acquired in interleaved order, each oriented parallel

to a line connecting the base of the cerebellum to the base of orbito-

frontal cortex; this permitted whole-brain coverage. Functional imag-

ing was performed in a single run comprising 690 volumes (23 min),

with four dummy volumes acquired at the beginning to allow the gra-

dients to reach steady state. A high-resolution T1-weighted structural

MR image was acquired prior to the functional run for localisation and

co-registration of the functional time series (MPRAGE, TR/TE =

2,300/2.34 md; flip angle = 8�; matrix = 240 × 224 × 224, 1 mm3

voxels).

2.5 | Preprocessing

Neuroimaging data were preprocessed with SPM12 (http://www.fil.

ion.ucl.ac.uk/spm), which involved spatial realignment and unwarping,

slice-time correction, normalisation and spatial smoothing. Motion

correction was performed using a six-parameter rigid-body transfor-

mation, with the first functional scan as a reference. Six motion

parameters estimated from this realignment processed were used sub-

sequently as nuisance covariates to account for motion-related vari-

ance. One Proposer exceeded our exclusion criterion of 2 mm of

movement in any direction between successive volumes; data from

this participant and their opponent were omitted from all subsequent

analyses. Initial attempts to normalise the functional time series to the

Montreal Neurologic Institute (MNI) T1 template failed for several

subjects, so we used non-linear transformations (trilinear interpola-

tion; 16 warping iterations) to co-register the mean of the motion-

corrected fMRI volumes to the EPI template in MNI space. To maxi-

mise the quality of this normalisation process, we used the mask_ex-

plorer tool (Gajdoš, Mikl, & Mare�cek, 2016). Images were then

smoothed with a 5-mm isotropic Gaussian kernel, and a high-pass fil-

ter with 128 s cut-off removed low-frequency drifts.

2.6 | Reciprocity model

Cox et al.'s (2007) model of reciprocity extends other distributional

preference models that consider only the final relative payoff between

players (Bolton & Ockenfels, 2000; Fehr & Schmidt, 1999); specifi-

cally, it attempts to fit the behavioural observation that choices

depend not only on the final distribution of payoff, but also on any

available alternatives. More importantly, it also considers players'

choices to be influenced by reciprocal tendencies. Unlike higher belief

equilibrium models (Charness & Rabin, 2002; Falk & Fischbacher,

2006), the reciprocity model is tractable and enables the estimation of

behavioural parameters; it provides an estimate of the degree to

which a player's proposals, or their decisions to accept/reject an offer

reflects reciprocal reactions to their opponent's prior behaviour.

In our adaptation, for each player, the EU of a division of the pie

was specified as:

U x,100−xð Þ¼ x+ θ+ ϵð Þ 100−xð Þ ð1Þ

In Equation (1), x is the player's portion of a division, θ is a scalar

that represents their emotional state and ϵ is a random variable with

standard logistic distribution representing an unobserved component

of the utility function—an error term that adds stochasticity to the

player's choice behaviour (e.g., unintended responses). The emotional

state was formulated as:

θ¼ αi x−x0ð Þ ð2Þ

Equation (2) incorporates a player-specific reciprocity parameter,

α, which weighs a comparison of the player's share, x, against a fair-

ness reference point, x0, by the extent to which the player's choices

are influenced by their opponent's prior behaviour. Whilst αi is the

time invariant, the reference point, x0, is different for each choice set

and therefore changes on each round. In other words, θ > 0 on a given

round represents a player's affective response to their opponent's

prior behaviour, driven by their evaluation of fairness at that point in

the game and their overall tendency to reciprocate across the iUG.

We modelled round-by-round EU for both players based upon

this utility function; the Responder accepts a proposal if:

x+ θ+ ϵð Þ 100−xð Þ>0 ð3Þ

The Proposer offers the generous division if:

P1 x1 + θ+ ϵð Þ 100−x1ð Þð Þ>P2 x2 + θ+ ϵð Þ 100−x2ð Þð Þ ð4Þ

From the Proposer's perspective, x1 and x2 in Equation (4) repre-

sent the generous and selfish division, respectively and Pi represents
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the probability that the Responder will accept a division given their

prior behaviour. In other words, the Proposer makes a SO that bene-

fits themselves maximally only if they believe the offer is likely to be

accepted. To capture the expectation of acceptance on a given round,

our model estimated the range of preceding rounds that maximised

the log-likelihood of the Proposer model (predicted Proposers' offers

with highest accuracy). This is referred to as the memory [M] parame-

ter, which was estimated at the group level from the decisions of all

Responders. Importantly, M was estimated only for Proposers because

their payoff on a given round depends upon the expected (unknown)

decision of the Responder; conversely, the round-by-round payoff for

the Responder depends upon the Proposer's offer, which is known.

The Supporting Information details the procedures through which the

various parameters were estimated.

2.6.1 | General linear modelling

General linear modelling (GLM) was performed on the preprocessed

time series in a two-step process using SPM12 (http://www.fil.ion.ucl.

ac.uk). First, within-subject fixed-effect analyses were used for param-

eter estimation at the individual level. Event-related responses were

modelled as the period of rounds in which a player made their choices,

with durations determined by their response time: To capture brain

responses that reflected each player's reciprocal reactions to their

partner's prior behaviour, for Proposers, we modelled the Choice

period of each round until an offer was selected, whilst for

Responders it covered the Offer period until a decision had been made

to accept or reject the proposed division (see Behaviour). Using

response times in this way served to introduce further jitter, optimis-

ing the estimation of brain responses underlying choices. The remain-

ing parts of the rounds were modelled as regressors of no interest.

These responses were then convolved with a canonical hemodynamic

response function. For UG rounds, we added parametric modulators

that expressed the round-by-round EU estimated with the reciprocity

model (UGMOD). Statistical evaluations of the first-level parameter

estimates were performed with group-level whole-brain random-

effects contrasts, with cluster-level family wise error (FWE) correction

for multiple comparisons across space. Given the wide age range of

our sample, and the observation that participant age contributes to

the degree of variability in expressions of reciprocity (Cáceda et al.,

2015), we compared these group-level estimates of EU-modulated

brain responses to the same model with age entered as an additional

group-level covariate.

2.6.2 | Behavioural DCM

DCM is a mathematical technique that models how information

enters, propagates and reverberates throughout a brain network

(Friston, Harrison, & Penny, 2003). In an extension of this, bDCM

attempts to fit such stimulus-induced changes in effective connectiv-

ity to behavioural outcomes—it performs a neurocognitive decomposi-

tion of the input-state-output transfer function. A detailed description

of the estimation process behind bDCM is provided in Rigoux and

Daunizeau (2015), and a description of this process as applied to our

data is given in the Supporting Information. Below, we summarise the

primary components.

In our implementation, bDCM estimated three sets of parameters:

(A) A pattern of task-independent endogenous connectivity between

the AI and aMCC, representing the directional influence(s) between

these two nodes at rest (see below); (B) task-dependent modulation of

these endogenous connections, representing their round-by-round

perturbation by estimates of EU from our reciprocity model and (C)

the direct influence of an experimental stimulus (presentation of the

choice set for Proposers, and the offer for Responders) on a network

node, modelled as an unconvolved regressor representing the Choice

(Proposer) or Offer (Responder) period before the player made their

choice. Through a combined influence of these three parameters,

bDCM then estimated a player's choices (hA). It is important to note

that, in order to optimise the modelling procedure, the behaviour of

each player was expressed as a binary function—that is, whether a

generous (1) or selfish division (0) was offered by the Proposer, and if

the offer was accepted (1) or rejected (0) by the Responder.

Parameter estimation was performed with the Variational Bayes-

ian Analysis toolbox of MATLAB (Daunizeau, Adam, & Rigoux, 2014).

In a hypothesis-driven approach, the A parameter was set according

to the meta-analytic results of Feng et al. (2015); namely, volumes of

interest (VOIs; spheres of 10 mm radius) were centred on co-

ordinates within the right AI (x = 38, y = 20, z = 0) and aMCC (x = 8,

y = 22, z = 40) that expressed the contrast fair > unfair offers maxi-

mally across 11 neuroimaging studies employing the UG. From these

VOIs, we extracted the first eigenvariate of all time series from voxels

expressing the UG > CTRL contrast in the GLM analysis (pFWE <

.001). Structural (endogenous) models of causal connectivity between

the VOIs modelled the hypothesised brain state. All neurophysiologi-

cally feasible models were evaluated with Variational Bayes

(VB) inversion, which rated the likelihood of each with log model evi-

dences. Fourteen models were evaluated, defined by logical combina-

tions of the A, B, C and hA parameters. As shown in Figure 2, the

model space comprised those with both uni- and bi-directional intrin-

sic connections between the two regions (A parameter), the modula-

tory influence of EU on either the nodes themselves or their

interconnections (B parameter), and direct stimulus input to either

node (C parameter). Logical combinations of intrinsic nodal connectiv-

ity and direct nodal input restricted the number of model compari-

sons; for example, a model with direct input to AI and a unidirectional

endogenous connection from aMCC to AI would not permit input–

output information flow through the circuit, and was therefore not

considered. Furthermore, given its purported role in translating cogni-

tive processes into action, only models where the behavioural

response is driven by aMCC were considered. After VB inversion, we

assessed the log model evidences for all models and subjects using a

random-effect Bayesian model selection (RFX BMS) procedure.

This produced approximated exceedance probabilities (AEPs) and

estimated model frequencies (EMFs), goodness-of-fit indices based

upon the free energy of all compared models that reflect how well a

given model fits both the BOLD and behavioural time series (the latter

representing the binarised choices of each player in each round). The

AEP identifies the relative superiority of one model compared to all

others comprising the model space (Penny, Stephan, Mechelli, & Fris-

ton, 2004; Stephan et al., 2007), and the model earning the highest

exceedance probability is defined as the optimal model; a value of 0.8
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indicates that the model is 80% more likely to be better than other

model given the data. The EMF provides an estimate of the preva-

lence of each tested model in the population (Rigoux, Stephan, Fris-

ton, & Daunizeau, 2014; Stephan et al., 2009). Importantly, it is not

possible to infer whether the neuroimaging or behavioural data drives

the fit indicated by the AEP or EMF. For this reason, we also com-

puted a behavioural fit precision (BFP) index, which is computed

directly from a comparison of the measured and modelled behavioural

responses—for each subject, it represents the amount of matches

between their real/observed and estimated time series divided by the

total number of responses.

3 | RESULTS

3.1 | Behaviour

To assess whether player choices were driven solely by monetary pay-

off, we first examined performance across the 10 different choice sets

used on UG rounds (see Figure 3a). As shown in Table 1, Spearman

correlations revealed that neither players' RTs were related signifi-

cantly to their payoff in the selfish division. To assess whether RTs

were influenced more by the degree of inequity presented by the

choice set, we calculated the difference between the log ratios of the

two divisions comprising each choice set; higher values of this

FIGURE 2 Models evaluated with Bayesian model selection. Models

comprise either a single unidirectional or bidirectional intrinsic
connections from right anterior insula (AI) to right anterior/anterior-
mid cingulate cortex (aMCC), but vary in the target of EU modulation

FIGURE 3 Player behaviour. (a) Mean frequency of selfish offers (SO)

and their acceptance (SA) for each of the 10 choice sets. Error bars
present SE. (b) Probabilities of SO and SA plotted as a logistic function
of expected utility (EU), as estimated with the reciprocity model.
(c) The proportion of SO plotted as a function of Proposers'
reciprocity (α), as estimated by the reciprocity model. This reveals that
with increasing reciprocity, Proposers were less likely to offer the
division that benefited themselves maximally. (d) Cumulative
frequencies of SOs and SAs over all 60 UG rounds, for three example
dyads. For the leftmost dyad, estimates of reciprocity were low for
both the Proposer (αP) and Responder (αR). This is reflected in high

number of SOs and SAs; the Proposer was free to offer selfish
divisions because the Responder did not challenge such proposals
with rejections (negative reciprocity). In the middle dyad, the
Responder did challenge SOs and this is reflected in a higher
reciprocity estimate. These rejections did not alter the Proposer's
behaviour, however; they continued to propose SOs, reflected in a
low reciprocity estimate. In the rightmost dyad, estimates of
reciprocity were high for both the Proposer and Responder, and this
is reflected in a low number of SOs and SAs; the Responder was
unwilling to accept selfish divisions, and the Proposer responded with
fewer selfish proposals [Color figure can be viewed at
wileyonlinelibrary.com]
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inequity coefficient represented a greater difference in inequity

between the constituent divisions (e.g., 70:30|30:70 vs. 55:45|45:55;

see Table S1, Supporting Information). Neither Proposers' nor

Responders' RTs were correlated significantly with this coefficient. It

is important to acknowledge that the lack of relationship between

Responder RTs in the Offer period and other measures of UG perfor-

mance might reflect the simultaneous presentation of stimuli to both

players; Responders may have begun to evaluate the constituent divi-

sions during the Choice period, making their RTs in the Offer period

less representative of their decision-making process. Indeed,

Responders' RTs were significantly shorter than those of Proposers

[1,268.10 (SD � 491.34) vs. 2,165.64 (�409.95) m; t[64] = 8.06,

p < .001, d = 1.98].

We then examined patterns of choices over the different choice

sets and proposed divisions; namely, the number of rounds on which

the selfish of the two divisions was offered (SO), and the number of

these offers that were accepted [selfish-offer acceptance (SA)]. In Pro-

posers, the number of SOs for given choice set was not correlated with

their relative payoff for the selfish division, but the number of SAs by

Responders was correlated positively with their own payoff. The num-

ber of SOs and SAs was unrelated to the inequity coefficient. Together,

these results indicate that Proposers' choices were influenced by fac-

tors other than their own monetary payoff (or cost) or the distribution

of payoff between players. Responders showed some influence of pay-

off, but the strength of this association would be stronger should their

choices be driven purely by monetary gain. This might explain why nei-

ther players' RTs tracked with the absolute or relative payoff.

Next, we applied our adapted reciprocity model to the beha-

vioural data of each player measured throughout the iUG to estimate

the degree to which each individual's choices reflected reactions to

their interaction partner's prior behaviour. For Proposers, greater

values of EU represent higher utility for the more generous division

within a choice set; whilst for Responders, it represented greater

utility in accepting a proposed division. As shown in Figure 3b, the

probability of SOs and SAs varied according to the estimates of EU

from our reciprocity model; the model correctly estimated the choices

of Proposers and Responders on 70.05 [�0.01 (Log-likelihood =

−1,070.6; Akaike Information Criterion (AIC) = 2,207.2)] and 81.81

(�0.01) % of UG rounds (Log-likelihood = −677.8; AIC = 1,421.6),

respectively. The model produced a reciprocity parameter, α, for each

Proposer and Responder, which were lower for the former (.06 [.01])

compared with the latter (.12 [�.02]) than; t[38.3] = 9.61, p < .001);

Proposers' decisions reflected stronger reactions to their partner's

decisions. Interestingly, however, α estimates for Proposers were cor-

related negatively with the number of SOs they proposed (r[32] = −.84

[.73, .90] p < .001); the more reciprocity they exhibited, the less likely

they were to propose divisions that benefited themselves maximally

(see Figure 3c). No such relationship was observed between

Responders' α and SAs (ρ[17] = −.01 [−.32, .37], p = .942). Across all

Proposers, the optimal M parameter was 56. Whilst this identified the

range of preceding rounds that maximised the accuracy of estimates

for Proposers' offers, accuracy increased only subtly beyond a range

of 20 (see Table S3).

To evaluate our reciprocity model more formally, we compared it

against a variety of alternative models (see Supporting Information for

details on model specifications). First, we tested a nested model by

fixing the reciprocity parameter to α = 0 for both players—a self-

regarding model that evaluated the reciprocity parameter by testing

the assumption that both players care only about their own monetary

payoff. A likelihood ratio test (L) and AIC comparison demonstrated

that our reciprocity model outperformed this simple monetary model

for both Proposers (AIC = 2,925.1; L[33] = 811.00, p < .001) and

Responders (AIC = 1900.5; L[33] = 544.90, p < .001). We then

assessed whether player choices reflect learning processes over multi-

ple rounds rather than reciprocal reactions by modelling each player's

behavioural data with a three-parameter reinforcement learning

TABLE 1 Correlations among indices of performance over the iUG and the 10 different choice sets, for Proposers (top) and Responders (bottom)

Payoff SO Inequity SO/SA RT

Proposer Payoff SO 1

–

Inequity .46 1

[−.20,.85] –

SO −.62 .32 1

[−.97,.01] [−.39,.79] – 1

RT −.33 .47 .82** –

[−.88,.46] [−.29,.89] [.37,.97]

Responders Payoff SO 1

–

Inequity −.46 1

[−.87,.22] –

SA .66* .29 1

[−.02,.99] [−.38,.77] –

RT .40 .44 .71* 1

[−.34,.87] [−.32,.77] [.01,.99] –

RT = response time; SA = selfish offer acceptance; SO = selfish offer/division. Note. Values in square brackets present the confidence intervals computed
from 1,000 bootstraped samples. *p < .05. **p < .01 (two-tailed).
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model (Erev & Roth, 1998). This model contains a forgetting parame-

ter φ, an experimentation parameter ε, and a strength parameter

s (an extension of the simple one-parameter reinforcement learning

model, in which φ = 1 and ε = 0). Each parameter was fitted to maxi-

mise the log-likelihood function, separately for Proposers (φ = 0.91,

ε = 0.15, s = 5.6) and Responders (φ = 0.84, ε = 0.15, s = 6.00). Again,

an AIC comparison revealed that the fit of our reciprocity model sig-

nificantly outperformed this reinforcement learning model for both

Proposers (AIC = 2,492) and Responders (AIC = 1,794).

Finally, from a game theoretic perspective, our reciprocity model

might be considered inappropriate for the repeated nature of our iUG;

players might have planned their moves at the beginning of the game,

taking into account that at every stage (round) their action (choice) will

have an immediate payoff and also affect the continuation value in

the rest of the game (Mailath & Samuelson, 2006). To assess this, we

also evaluated our reciprocity model against one that modelled each

player's choices in terms of a fixed strategy over all rounds. Since the

set of possible strategies is infinite, some a priori restriction on the set

of strategies was needed. We evaluated 12 reasonable strategies that

players might have followed (see Table S2). For each player, we then

took the strategy that matched their actual choices on most rounds

(the strategy with the highest likelihood) and calculated the fit of the

overall model. A comparison revealed that this alternative model esti-

mated both player's decisions with less accuracy than our reciprocity

model: For Responders, the log-likelihood was −792.2 (AIC: −1,586.4)

and their choices deviated from the maximally fitting strategy on 15%

of rounds. Similarly, the log-likelihood of the Proposer model was

−1,128.17 (AIC: −2,282.3), and their choices deviated from their best-

fitting strategy on 32% of rounds.

3.2 | General linear modelling

Whole-brain GLM revealed diffuse clusters of BOLD signal expressing

the UGMOD > CTRL contrast in both Proposers and Responders; that

is, brain responses modulated parametrically by EU estimated with

our reciprocity model. No significant differences were observed

between player roles for this contrast, and Table 2 presents the peak

co-ordinates of all clusters for both players separately to illustrate

their similarity. These clusters encompassed lateral and medial pre-

frontal, posterior parietal and inferior occipital cortices, thalamic nuclei

and the ventral striatum (e.g., caudate nucleus). As shown in Figure 4a,

the GLM analysis revealed strong EU modulation in the meta-analytic-

defined co-ordinates of the right AI and aMCC from which BOLD sig-

nal was extracted for the bDCM analysis. No significant differences

were observed between these brain responses modulated by EU and

those modulated additionally by age, even a very lenient uncorrected

level (p < .05). This indicates no additional influence of age on EU-

modulated BOLD signal.

3.3 | Behavioural DCM

The optimal patterns of effective connectivity between the meta-

analytically defined AI and aMCC, as identified by RFX BMS, are pre-

sented in Figure 5a.

As shown in Table 3, for Proposers, both the AEP and EMF

parameters converged to reveal Model 9 as the optimal model, the

free energy of which exceeded that of the confidence intervals for the

null hypothesis (see Figure 5b). The BFP index revealed that, across all

Proposers, an average of 71.45 (�9.22) % of choices matched those

estimated from the bDCM procedure—namely, whether they decided

to propose the more generous of the two divisions. This model com-

prises bidirectional connections between AI to aMCC, with round-by-

round estimates of EU modulating the aMCC-to-AI feedback connec-

tion. Through this circuit, presentation of the choice set elicits

increased BOLD response within the AI (.02 Hz), which then sends

excitatory signals to aMCC (.52 Hz). The aMCC then sends inhibitory

feedback to AI (−.38 Hz), the strength of which is modulated nega-

tively by EU (−.05 Hz); as such, the inhibitory feedback becomes

weaker (less negative) with greater EU for the more generous division.

As a result of the elevated BOLD response in aMCC, generous offers

are more likely (.11 Hz)—in other words, as a result of signal conduc-

tion through this circuit, with greater EU for the generous division,

the Proposer is more likely to make a generous offer.

For Responders, both AEP and EMF parameters revealed that

Model 2 was the winning model, and the free energy of this model

exceeded the confidence intervals for the null hypothesis (see

Figure 5b). The BFP indicated that, across all Responders, through this

model the bDCM procedure correctly estimated the decision to

accept a proposal on 84.25 (�11.01) % of UG rounds. This model

again comprises bidirectional connections between AI and aMCC. Pre-

sentation of the offer elevates the BOLD response of AI (.06 Hz),

which sends excitatory signals to aMCC (.50 Hz). Then, through the

aMCC-to-AI connection, the aMCC sends inhibitory feedback signals

to AI (−.39 Hz). The elevated BOLD response in aMCC serves to

increase the likelihood of acceptance (.04 Hz), and the feedforward

AI-to-aMCC connection is modulated positively by round-by-round

estimates of EU (.01 Hz). In other words, with greater EU for the pro-

posed division, there is an increased likelihood of acceptance.

4 | DISCUSSION

This study investigated the brain processes underlying the bidirec-

tional reciprocity characterising social decision-making. To this end,

we investigated if the choices made by two interacting individuals

over recursive economic exchanges could be estimated by specific

patterns of connectivity between the right AI and aMCC. Players'

decisions on each round were modelled as EU in a way that captured

their expression of reciprocity—that is, the extent to which their

choices on each exchange reflect reactions to their opponent's prior

choices. Estimates of EU modulated the brain response of both

regions and patterns of effective connectivity between them, and this,

in turn, estimated player choices with high accuracy.

It is important to restate that, from a game theoretic perspective,

our reciprocity model might seem inappropriate for the repeated

nature of our iUG design. Since the choice set changed on each round,

however, our iUG did not involve a repetition of the same stage game.

Furthermore, the strategies employed during a repeated interaction

are likely to be highly complex, making it impossible to distinguish
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utility function parameters from them: Consider a player with a high

value for their reciprocity parameter—this player has a strong ten-

dency to punish unfair play or reward fair behaviour, but such a beha-

vioural pattern is indistinguishable from a tit-for-tat strategy. As such,

any attempt to model the behaviour as a repeated game would

require additional assumptions about possible strategies to escape the

folk theorem. By considering only players' expressions of reciprocity,

our model has reduced the complexity of strategies whilst still esti-

mating choices with high accuracy. This provides a new model for

future research.

Reciprocity emerges as an indirect chain of inter-brain processes;

through neural coupling, one individual's brain activity results in a

behavioural output, which then elicits systematic neural responses in

their interaction partner to initiate a behavioural reaction (Hasson &

Frith, 2016). We have shown that the choices of two individuals

engaged in economic exchanges fit closely with estimates of EU that

reflect their round-by-round reactions towards their interaction part-

ner. Whilst this deviates from game-theoretic assumptions that

players choose a strategy at the beginning of the game and stick with

it throughout, it fits with other observations of choice behaviour;

Johnson, Camerer, and Rymon (2002), for instance, demonstrated that

individuals engaged in a multiple-round bargaining experiment focus

on the current round when making choices rather than planning their

behaviour in advance. Brain responses that map onto these round-by-

round estimates of EU in each player therefore exhibit such neural

coupling. Given their consistent involvement in the UG (Feng et al.,

2015; Gabay et al., 2014), and in social decision-making more

generally (Rilling & Sanfey, 2011), it is perhaps unsurprising to see

such neural coupling within the AI and aMCC. What is surprising,

however, is that the reciprocal choices of both players can be esti-

mated accurately by modelling patterns of effective connectivity

between just these two brain regions. Within this simple network, the

Proposer's decision to reward themselves or their interaction partner

maximally, and the Responder's decision to accept or reject a division,

involves the propagation of excitatory neural signals from the AI to

the aMCC. The aMCC then determines the player's choice, whilst also

sending inhibitory feedback signals to the AI. In Proposers, greater

utility of the more generous division served to downregulate the feed-

back connection; with greater EU they were more likely to make a

generous offer, and this connection became less inhibitory. Since the

AI is involved in affective feeling states, an attenuation of the feed-

back connection with more generous offers (which incurs a greater

relative cost to the Proposer) might therefore reflect a greater emo-

tional reaction caused by the choice. In contrast, the positive modula-

tion of the feedforward connection from AI to aMCC in Responders

during offers with greater EU, which were more likely to be accepted,

might reflect a positive affective response that provides a motiva-

tional cause for acceptance. Future studies should utilise other corol-

lary measures of affectivity (e.g., skin conductance) to assess if and

how emotional states influence reciprocal choices on the iUG.

Tract-tracing studies in non-human primates have demonstrated

that the insula cortex is connected densely and reciprocally with not

only the anatomically defined anterior cingulate cortex (ACC), but all

association cortices, orbitofrontal and dorsolateral prefrontal cortices,

TABLE 2 Brain regions exhibiting EU-modulated responses

Proposer Responder

Label Voxels Peak x y z Voxels Peak x y z

Frontal pole R 305 9.54 33 53 25

MFG L 36 6.66 −27 32 25

R 73 7.43 33 −1 64

IFG R 30 7.15 51 5 28

Insula/IFG* R 177 10.78 54 17 −8

Insula L 424 8.47 −39 −1 4 444 9.36 −42 −4 13

R 296 10.52 42 −4 10

Pallidum R 22 6.36 15 8 −2

Thalamus L 81 7.35 −12 −28 7

R 68 7.38 12 −19 4

Precentral gyrus L 496 8.70 −3 −13 76

Postcentral gyrus L 828 10.45 −60 −25 40

R 764 10.57 42 −37 61

IPS L 892 10.06 −54 −25 49

LOC L 633 9.87 −39 −82 −11

R 1876 10.18 27 −61 37

IOG/Fusiform gyrus L 25 5.51 −27 −91 13

R 892 9.13 30 −82 −14 202 7.61 12 −103 4

Cerebellum L 1,135 11.65 −36 −55 −32

R 41 6.75 18 −70 −47 29 6.18 48 −58 −29

MFG = middle frontal gyrus; IFG = inferior frontal gyrus; IPS = intraparietal sulcus; LOC = lateral occipital cortex; IOG = inferior occipital gyrus; PCC = pos-
terior cingulate cortex. The table lists clusters of voxels expressing the UGMOD > CTRL contrast (pFEW < .001, k > 20 voxels), for both Proposers (left) and
Responders (right). Coordinates are specified in MNI space, and voxels are given at 3 mm3 resolution. *Clusters extend into VOIs used for behavioural
Dynamic Causal Modelling analyses.
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temporolimbic structures (e.g., amygdala), the thalamus, basal ganglia

and brain stem nuclei (Augustine, 1996; Mesulam & Mufson, 1982a,

1982b). Neuroimaging of the human brain demonstrates an anterior–

posterior distinction within the insula, whilst the anterior extent is

connected structurally with ACC, frontal, orbitofrontal and anterior

temporal areas, the posterior aspect possesses structural connections

with parietal and sensorimotor cortices (for a review, see Uddin,

2015). This fits with the functional anatomy of the insula cortex;

meta-analyses converge to delineate between the socio-emotional

and cognitive functions of the ventral and dorsal anterior aspect,

respectively, and the sensorimotor profile of the posterior insula

(Kelly et al., 2012; Kurth, Zilles, Fox, Laird, & Eickhoff, 2010). Such

connectivity places AI in an ideal position to integrate the sensory,

cognitive and affective signals necessary for subjective feeling states

(Craig, 2009). In this way, the AI is capable of exerting strong influ-

ences on cognition; by associating stimuli with internal feeling states

it determines their relative salience and the cognitive resources allo-

cated for their processing. By extension, the AI has the capacity to

influence motivational processes; by associating stimuli with positive

or negative feeling states it encodes their incentive value, motivating

approach or avoidance behaviour (Namkung, Kim, & Sawa, 2017). Our

observation of EU-modulated brain responses in the AI, and their

influence on behavioural outputs via the aMCC, might therefore sug-

gest that the AI provides the emotional motivation behind reciprocal

choices.

The ACC also boasts an extensive and wide-reaching connectivity

profile. In addition to its connections with the insula cortex (Mufson &

Mesulam, 1982), ACC projects to and receives input from lateral and

orbital prefrontal cortex, temporolimbic structures and sensorimotor

cortices (Vogt, Pandya, & Rosene, 1987). Given this diffuse connectiv-

ity profile, the ACC is considered a brain hub through which signals of

emotional and motivational states are combined and translated into

action (Apps et al., 2016). This converges with a wealth of research

showing the engagement of ACC during cost–benefit evaluations that

influence our motivation, and drive decisions to maintain or switch

our current behaviour (Holroyd & Yeung, 2012; Kolling et al., 2016).

For the sake of brevity, we have referred collectivity to the aMCC.

Importantly, however, subdivisions exist within this cortical midline

area, in terms of both cytoarchitecture and connectivity profiles;

whilst both the gyrus and sulcus of the ACC connect with orbitofron-

tal cortex and the nucleus accumbens, indicating a shared processing

of reward-related information to guide decision-making, the gyrus is

connected more strongly with the superior temporal sulcus (Seltzer &

Pandya, 1989) and temporal poles (Barbas, Ghashghaei, Dom-

browski, & Rempel-Clower, 1999)—brain regions engaged during the

inference of others' mental and intentional states. Furthermore, there

is accumulating evidence from animal studies that the gyral aspect of

the ACC processes the rewards for others (Chang, Gariépy, & Platt,

2013; Haroush & Williams, 2015), whereas the sulcus seems more

sensitive to first-person reward (for a review, see Apps et al., 2013,

2016). This has led to the proposal that the gyrus of the ACC

FIGURE 4 Neuroimaging results. (a) Thresholded parametric maps for the UGMOD > CTRL contrast evaluated with general linear modelling,

showing brain responses modulated by expected utility (EU) in Proposers (blue) and Responders (orange). Crosshairs show the coordinates used
as the centre of gravity for the anterior-mid cingulate cortex (sagittal slice; x = 8, y = 22, z = 40) and right AI volumes of interest (coronal and
axial slices; x = 38, y = 20, z = 0) from which BOLD signal was extracted for behavioural Dynamic Causal Modelling (bDCM). These coordinates
were defined by the meta-analytic results of Feng et al. (2015). (b) Results of the bDCM analyses. Estimates of EU from the reciprocity model
modulated the inhibitory feedback connection in Proposers (yellow arrow); and the excitatory feedforward connection in Responders (green
arrow). Note: Parameters values represent the degree of influence on the brain circuit or behaviour (black arrows) or the strength of effective
connectivity (red arrows), expressed in hertz
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processes reward in an ‘other-oriented’ reference frame, which can be

used to estimate the motivation and, in turn, predict the behaviour of

others (Apps et al., 2016). Our aMCC node straddles both the right

sulcus and gyrus of the aMCC. In this light, it is unsurprising to see

brain responses within this region that are modulated by the per-

ceived value of rewards distributed between the self and other, and

the influence of the other's behaviour (motivation) on these

valuations.

Due to their functional coupling and dense interconnectivity

across a range of cognitive phenomena, the AI and ACC are believed

to form a network that serves to motivate appropriate responses dur-

ing social interactions. Both structures contain von Economo neurons

(Allman et al., 2011), the wide axons of which will facilitate the speed

of their integrative functions and the rapid transfer of information

between them (see Craig, 2009). Through these connections, the rep-

resentation of emotion states within AI can modulate the response-

selection and decision-making processes of ACC (Medford & Critch-

ley, 2010). Connectivity between the AI and ACC is also proposed to

permit the generation of forward models of others' feeling states,

allowing us to predict the behaviour of our interaction partners and

respond accordingly (Bernhardt & Singer, 2012). Proposers must

attempt such predictions of the Responder's behaviour over the multi-

ple rounds of an iUG—in order to achieve some payout, they must

propose divisions based upon the Responder's prior reactions. We

provide evidence for the role of the AI–aMCC circuit in these predic-

tions; our modelling shows that the strength of the connection from

AI to aMCC in Responders is increased by estimates of EU from our

reciprocity model. In other words, the more utility perceived in an

offer, the stronger the connectivity between AI and aMCC and the

more likely it is that the offer is accepted. It is also suggested that the

reciprocal connectivity between these two brain regions allows for

modulation in the reverse direction; ACC can project back onto AI to

modulate the feeling state elicited by an input, and the modulated

feeling state can then be sent forward to ACC for a more appropriate

response selection (Medford & Critchley, 2010). We observed this

feedback connection in both players, but in Proposers, it was modu-

lated by round-by-round estimates of EU—that is, their valuation of a

generous division in response to the Responder's prior behaviour. This

suggests that the reciprocal decision to offer a generous division

attenuates any further affective modulation.

This study presents the first application of bDCM to elucidate the

patterns of effective connectivity behind the choices made during social

interaction. Although our results demonstrate the huge potential of this

technique to offer valuable insights into the brain connectivity behind

social decision-making, they presents only a first step in understanding

brain–behaviour relationships in interactive contexts. The complex and

non-linear nature of bidirectional reciprocity likely involves much more

elaborate and diffuse brain networks than the simple two-node circuit

we have evaluated. In addition to the AI and aMCC, existing research

into the brain connectivity associated with fairness evaluations (Feng

et al., 2018; see also Feng et al., 2016) and reciprocal choices (Cáceda

et al., 2015) has demonstrated the co-ordinated involvement of dor-

somedial and ventromedial prefrontal cortex, the frontal pole and supe-

rior temporal sulcus during social decision-making.

This study has not considered player characteristics that might

contribute towards individual differences in reciprocal tendencies

and/or the underlying pattern of neural connectivity. For example,

although we found no influence of age on brain responses modulated

parametrically by our estimate of EU, a recent study reported that par-

ticipants' age contributed to the degree of variability in their expres-

sions of reciprocity beyond the strength of resting-state connectivity

(Cáceda et al., 2015). More recently, knowledge about an opponent's

socioeconomic status has been found to influence both behavioural

and brain responses to unfairness during the UG (Zheng et al., 2017).

Furthermore, although no direct associations have been found

between personality dimensions and expressions of reciprocity in

other forms of social exchange (Cáceda et al., 2017), they may influ-

ence an individual's affective response to an opponent's behaviour.

Indeed, our exploratory analyses suggest that an individual's capacity

for emotion regulation and their empathic expression might mediate

the decision to reciprocate positively or negatively, thereby altering

patterns of underlying brain connectivity. It has also been shown that

certain socio-cognitive processes (e.g., mentalising) are involved in the

FIGURE 5 Results of variational Bayesian analysis. (a) Model

attributes, expected model frequencies (EMFs) and approximated
exceedance probabilities (AEPs) all converge to reveal that Models
9 and 2 emerged as the optimal models for Proposers and
Responders, respectively. Model attributes are expressed as posterior
probabilities for each model (x axis) to best explain each subject
(y axis). For EMF, the dashed horizontal line shows the ‘null’ frequency
profile over all models. (b) Variational Bayesian algorithm
convergence. Free energy over VB iterations demonstrated that the
observed log evidences are better explained by the random effects
generative model than the fixed effects model or chance alone (black
and grey dashed lines, respectively) [Color figure can be viewed at
wileyonlinelibrary.com]
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decision to reciprocate against norm violations (see Feng et al., 2016),

and future research is needed to determine the potentially mediating

influence of these factors on behavioural and neural indices of reci-

procity. Finally, by examining reciprocity only among dyads of healthy

males, the generalisability of our results is limited. Future research

should investigate whether our findings extend to social interactions

between female and mixed-sex dyads.

5 | CONCLUSION

This study introduces bDCM for research into social decision-making.

Using this novel input-state-output modelling procedure, we have

shown for the first time that specific patterns of neural dynamics

between the right AI and aMCC drive decision-making during real-

world social interaction. Behaviour over a series of economic

exchanges was captured accurately by modelling choices in terms of

EU influenced by reciprocity—that is, the degree to which players' val-

uations of payoff were influenced by the prior behaviour of their

interaction partner. We then estimated player choices with over 70%

accuracy by modelling effective connectivity between just these two

brain regions. As such, our results provide evidence for the role of this

network in high-level social cognition; the AI and aMCC work in tan-

dem to guide social decisions on the basis of immediate and prior dis-

tributions of self-reward and other reward.
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