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Abstract

We study foreign direct investment agreements that entitle firms to a lower tax

rate during a tax holiday period. Our model considers both finite and uncertain

tax holiday period settings. We show that the tax holiday duration may have,

for small tax rate reductions, a non-monotonic effect on the investment timing. For

sufficiently high tax reductions, a longer tax holiday speeds up investment. A higher

tax reduction during the tax holiday and a lower uncertainty are shown to have a

monotonic effect on the threshold, hastening investment. However, in case of a finite

tax holiday, for exceptional high salvage values, a higher uncertainty can speed up

investment. We show the usefulness of our model to design an optimal incentives

package that prompts investment.
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Foreign Direct Investment with Tax Holidays and

Policy Uncertainty

1 Introduction

Governments use corporate tax incentives to enhance foreign direct investment (FDI).

The offer to a foreign firm of a more attractive tax rate is often enough to make an

investment profitable, or the relocation of a business to another country optimal. For

instance, amongst the EU countries, Ireland is well known for its aggressive corporate tax

policy, which attracts FDI.

A FDI agreement can be seen as a contract between a country and a foreign firm

through which, over a given time period, the two parties are entitled to a set of financial

benefits and obligations. The benefits for the firm are usually given through subsidies,

guarantees or lower tax rates, whereas the obligations are normally required through the

promotion of new jobs, investment in human capital, establishment of business partner-

ships with local firms, or, as we will consider, the commitment to remain in the country,

not divesting during a given time period.

We develop a real options model which determines the optimal time to undertake a

FDI when there is a tax holiday period over which the firm agrees not to divest. This

means that, after investing, instead of the (usual) divestment option, the firm holds a

forward start option to abandon the investment, which can only be exercised after the

expiration date of the FDI agreement. By considering this constrain on the divestment

option, we depart from the previous literature. We believe that this is a realistic setting,

since it is not plausible that a country offers a tax holiday to a foreign firm without any

constrain.

Our model considers two different settings: a finite and a random duration of the tax

holiday period. In the former case the firm is offered a tax reduction lasting for a certain
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period of time, whereas in the latter the tax reduction is offered as permanent, but is

perceived as reversible by the firm, as a result of a tax policy change.

Typically, FDI agreements hold during relatively long time periods, over which in-

vestments can face very adverse economic conditions, where a change in the tax rate, a

size contraction, or an early abandonment may have to be considered.1 Although the

abandonment of FDI projects before the agreed termination date is not very frequent, it

often happens, due to political disputes between countries, or the bankruptcy or financial

distress of the parent firm.

The main results of this paper can be summarized as follows. For both the finite and

random cases, the tax holiday duration may have, for small tax rate reductions, a non-

monotonic effect on the investment timing. This is because of the trade-off between the

gains from the tax reduction and the loss in divesting flexibility during the tax holiday

period. For a sufficiently high tax reduction, a longer tax holiday hastens investment.

However, despite of this trade-off, we show that a higher tax reduction has a monotonic

effect on the threshold, speeding up investment. We also show that for most cases, the

effect of uncertainty is to deter investment. However, in case of a finite tax holiday, a

higher uncertainty can speed up investment for exceptional high salvage values.

The effect of taxation policy on investment decisions under uncertainty has been a

relevant research topic in accounting and finance. Most of the available theoretical re-

sults are based on model settings where market uncertainty is taken into account, the

investment cost is irreversible and fixed, the tax and the fiscal depreciation rates are both

known (e.g. MacKie-Mason, 1990; Pennings, 2000; Agliardi, 2001; Sureth, 2002; Niemann

and Sureth, 2004; Yu et al., 2007; Wong, 2009; Gries et al., 2012; Niemann and Sureth,

2013; Barbosa et al., 2016; Tian, 2018). Nevertheless, these models make the assumption

that there is not taxation policy uncertainty.

1For instance, the EU countries that were bailed out after the 2008-09 financial crisis were advised to
renegotiate some FDI agreements. Specifically, Ireland was pressed by France and Germany, during the
negotiations of the 2010 bailout, to rise its very competitive corporate tax rate in return for an aid bailout
package, and Portugal renegotiated some Public-Private Partnerships (PPP) after the 2011 bailout, in
order to balance its public budget deficit (Burger et al., 2009; Sarmento and Renneboog, 2017).
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The theoretical literature which considers both market and taxation policy uncertainty

is still very limited. The works of Hassett and Metcalf (1999) and Niemann (2004) are

amongst the few exceptions. Specifically, Hassett and Metcalf (1999) study the effect of

taxation policy uncertainty (i.e., changes in the investment tax credits can occur in the

near future due to a random discrete jump) and show that the gains from delaying the

investment is negatively affected by the likelihood of an unfavorable tax switch. Niemann

(2004) investigates the effect of the tax rate uncertainty on the timing of the investment

and conclude that a rise of the tax rate uncertainty has an inconclusive effect on the

timing of the investment.

Alvarez et al. (1998) consider taxation policy uncertainty, but neglects market uncer-

tainty. He examines the effect of the timing and the nature of a corporate tax reform

uncertainty on investment decisions, and show that the expectation of a reduction in the

corporate tax rate enhances investment, whereas the expectation of a contraction in the

tax base (i.e., the fiscal depreciation rate) deters investment.

Very few works study the effect on investment decisions of both market uncertainty

and taxation policy together with the divestment option. The few exceptions are Agliardi

(2001); Wong (2009); Niemann and Sureth (2013). Agliardi (2001) studies the effect on

the timing of the investment of the taxation policy and the uncertainty about both the

operating income and the replacement value of the firm’s capital, and concludes that fiscal

policies can have an ambiguous effect on investment timing. Wong (2009) considers pro-

gressive taxation, and concludes that the threshold to abandon the investment decreases

with the tax exemption threshold and increases with the tax rate. Niemann and Sureth

(2013) investigate the effect of the capital gains tax rate on the entry and exit timing

of depreciable investment projects. Their results show that a higher tax rate does not

necessarily delay investment if salvage values are relatively high.

Our model departs from these models by considering the divestment flexibility under a

tax policy which includes tax holidays incentives. Jou (2000) model has some similarities

with ours in the sense that both study the optimal investment timing considering market
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uncertainty and tax holidays. However, instead of the divestment option constrained

by the FDI the agreement, he only considers a temporary unconstrained suspension. In

addition, he considers a full tax exemption and neglects tax policy uncertainty, whereas

our model accounts for different levels of tax reductions as well as policy uncertainty.

The rest of the paper is organized as follows. Section 2 presents the base model for the

finite tax holiday incentive which constrains the divestment flexibility. Section 3 extends

the model to the case where there is taxation policy uncertainty. Section 4 concludes.

2 The model

Let us suppose that a country and a foreign firm make an agreement regarding a FDI

project, according to which if the firm undertakes the project it will be entitled to a more

favorable tax rate over a given time period (T ), during which it cannot divest. Before

investing, the firm holds the option to invest, whose value can be determined following

standard real option backward induction procedures. Thus, we start by the derivation of

the value function for the period when the firm is active, and proceed then backwards in

order to derive the value function for the period when the firm is inactive.

2.1 The active firm

Let us assume that an all-equity firm is active with a FDI project that generates a pre-tax

profit flow x(t) which fluctuates over time according to the following geometric Brownian

motion (gBm) process:2

dx(t) = αx(t)dt+ σx(t)dw(t), x(0) = x (1)

where α < r, σ, and dw are, respectively, the drift under the risk-neutral measure, the

volatility, and the increment of a Wiener process, and r is the constant risk-free interest

2In FDI the currency exchange rate is a factor to be considered. However, for the sake of simplicity,
we assume that x(t) is the profit flow in the currency of the investor and it incorporates both the profit
flow in the foreign currency and the currency exchange rate.
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rate.

In addition, assume that τh and τc are the profit tax rates which hold, respectively,

over and after a tax holiday period (T ), with 0 ≤ τh < τc. Therefore, the after-tax profit

flow over the tax holiday period is x(1 − τh), whereas the after-tax profit flow for after

the tax holiday period is x(1− τc).

Thus, the firm’s value is given by:

V (x, τh, τc, T ) = E0

[∫ T

0

x(t)(1− τh)e
−rtdt+

∫ ∞

T

x(t)(1− τc)e
−rtdt

]
(2)

whose solution is:

V (x, τh, τc, T ) =
x

r − α
(1− τ(τh, τc, T )) (3)

with

τ (τh, τc, T ) = τh + (τc − τh)e
−(r−α)T (4)

where T is the tax holiday period, and τ (τh, τc, T ) is a time-weighted average tax rate.3

Notice that the FDI contract entitles the firm to a tax holiday benefit (τc − τh), over

a given time (tax holiday) period T . In exchange the firm contractually accepts not to

abandon the investment during that period. The abandonment option has value for the

firm because it provides management flexibility if in the future market conditions dete-

riorate significantly. Following standard procedures, the value of the option to abandon

(A(x, τc)) solves the following ordinary differential equation (ODE):

1

2
σ2x2∂

2A(x, τc)

∂x2
+ αx

∂A(x, τc)

∂x
− rA(x, τc) = 0 (5)

3Note that for τ (τh, τc, 0) = τc, the firm does not benefit from a more favourable tax rate, whereas
for τ (τh, τc,∞) = τh the firm benefits from a more favourable tax rate perpetually. If during a given
finite time period (T ) the firm benefits from a full tax exemption, the average tax rate over a perpetual
time period is τ (0, τc, T ) = τce

−(r−α)T .
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and it is given by (McDonald and Siegel, 1985; Dixit and Pindyck, 1994):

A(x, τc) =


S − x(1− τc)

r − α
for x < xA

(
S − xA(1− τc)

r − α

)(
x

xA

)β2

for x ⩾ xA

(6)

where S is the project’s salvage value, and xA is the optimal abandonment threshold

value, given by:

xA =
β2

β2 − 1

S(r − α)

1− τc
(7)

with β2 expressed by:

β2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2r

σ2
< 0 (8)

Notice that the firm cannot abandon the investment while the FDI agreement prevails

(i.e. during the tax holiday period, T ), but it can do so as soon as it ends. This means

that the FDI agreement comprises a forward abandonment option with a starting date

on T . Thus, the value of the active firm is given by the sum of the present value of the

project’s future cash flows plus both the present value of the tax holiday benefits and the

value of the forward start abandonment option.

Proposition 1. The value of an active firm (F (x, .)) that is under a FDI agreement is

given by:

F (x, τh, τc, T ) = V (x, τh, τc, T ) + FA(x, τc, T ) (9)

where V (x, .) and FA(x, .) represent, respectively, the firm’s value, given by Equation (3),

and the value of the forward start option to abandon, which is represented by:

FA(x, τc, T ) = Se−rTN(−d2(x))−
x(1− τc)

r − α
e−(r−α)TN(−d1(x))

+

(
S − xA(1− τc)

r − α

)(
x

xA

)β2

N(d3(x)) (10)

6



where S is the project’s salvage value, xA is the optimal abandonment threshold value,

represented by Equation (7), β2 is given by Equation (8), N(.) is the cumulative normal

integral, and

d1(x) =

ln

(
x

xA

)
+

(
α +

1

2
σ2

)
T

σ
√
T

(11)

d2(x) = d1(x)− σ
√
T (12)

d3(x) = d1(x) + (β2 − 1)σ
√
T (13)

The economic interpretation for Equation (10) is as follows: on the right-hand side,

the first two terms represent the value of the abandonment option at time T , conditional

on the threshold value xA being reached; the third term represents the value of the

abandonment option after T if x(T ) > xA (i.e. if when T is reached the value of the profit

cash flows is above the abandonment threshold value). The following corollaries also hold:

Corollary 1. When T → 0, firm’s value converges to that of a firm with the abandonment

option and that pays a profit tax rate τc forever:

lim
T→0

F (x, τh, τc, T ) =
x(1− τc)

r − α
+ A(x, τc) (14)

Corollary 2. When T → ∞, the firm’s value converges to that of a firm without the

abandonment option that pays a profit tax rate τh forever:

lim
T→∞

F (x, τh, τc, T ) =
x(1− τh)

r − α
(15)

2.2 The idle firm

Let us now assume that the firm is currently inactive, waiting for the optimal time to

invest. Following a standard real options framework, the value if the idle firm (O(x, .))
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solves the following ODE:

1

2
σ2x2∂

2O(x, .)

∂x2
+ αx

∂O(x, .)

∂x
− rO(x, .) = 0 (16)

Using the appropriate boundary conditions the following proposition holds.

Proposition 2. The value of an idle firm (x < xI) with the above described FDI agree-

ment is given by:

O(x, τh, τc, T ) =

(
V (xI , τh, τc, T ) + FA(xI , τc, T )− I

)(
x

xI

)β1

(17)

where I is the investment cost, and xI is the optimal investment threshold value, which

can be determined numerically by solving the following equation:

(β1 − β2)

(
S − xA(1− τc)

r − α

)(
xI

xA

)β2

N(d3(x))

+ (β1 − 1)

[
V (xI , τh, τc, T )−

xI(1− τc)

r − α
e−(r−α)TN(−d1(x))

]
− β1

[
I − Se−rTN(−d2(x))

]
= 0 (18)

where β1 is given by:

β1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2r

σ2
> 1 (19)

For the limiting cases of the tax holiday period (T ), the following corollaries hold:

Corollary 3. When T → 0, the value of the idle firm is given by:

lim
T→0

O(x, τh, τc, T ) =

(
x∗
I(1− τc)

r − α
+

(
S − xA(1− τc)

r − α

)(
x∗
I

xA

)β2

− I

)(
x

x∗
I

)β1

(20)

where x∗
I is the optimal investment threshold value, which is a solution of the following
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equation:

(β1 − β2)

(
S − xA(1− τc)

r − α

)(
x∗
I

xA

)β2

+ (β1 − 1)
x∗
I(1− τc)

r − α
− β1I = 0 (21)

Corollary 4. When T → ∞, the value of the idle firm is given by:

lim
T→∞

O(x, τh, τc, T ) =

(
x∗∗
I (1− τh)

r − α
− I

)(
x

x∗∗
I

)β1

(22)

where x∗∗
I is the optimal investment threshold value:

x∗∗
I =

β1

β1 − 1

r − α

(1− τh)
I (23)

In addition, the following corollaries also hold:

Corollary 5. The effect on the optimal investment threshold value (xI) of the tax holiday

period (T ) is non-monotonic: ∂xI/∂T ≷ 0.

Corollary 6. The optimal investment threshold value (xI) increases with the tax holiday

rate (τh): ∂xI/∂τh > 0.

Corollary 7. The effect on the optimal investment threshold value (xI) of the market

uncertainty (σ) is non-monotonic: ∂xI/∂σ ≷ 0.

Corollary 5 is of particular importance since it asserts that there are cases where widen-

ing the tax holiday period does not decrease the investment threshold value, speeding up

the investment, as we would expect.

Figure 1 illustrates more clearly this important finding: for a relatively low tax holiday

benefit (i.e. as τh approaches τc), widening T does not necessarily accelerates investment.

On the contrary, it can delay investment if T is sufficiently high. However, this behavior

is because, if the tax holiday period rises, it reduces the tax payment, which enhances

investment, but it also constrains the firm’s abandonment option for a longer time period,

which precludes investment. These two forces have counteracting effects on the investment

9



threshold, and the effect that prevails depends on the length of the tax holiday period.

Figure 1 also shows that, when τh is relatively close to τc (i.e. there is a relatively low tax

holiday gain), increasing T from zero accelerates investment but only up until a given T

is reached, after which, if T increases, it delays investment.

τh=τc=0.25

τh=0.22

τh=0.125

0 10 20 30 40

6.6

6.8

7.0

7.2

T

x I

Figure 1: The effect of the tax holiday on the investment threshold (xI). The model
parameters are σ = 0.3, r = 0.05, α = 0.02, S = 20, I = 50, and τc = 0.25.

Figure 2 shows the effect of uncertainty on the investment threshold value, for different

salvage values. As expected, a higher salvage value reduces the threshold, hastening

the investment. For salvage values below the investment cost (partial reversibility), the

investment threshold increases with uncertainty (σ). Nevertheless, for the exceptional case

where the salvage value is higher than the investment cost, increasing σ from zero, delays

investment but only up until a given σ is reached, after which, if σ increases, it accelerates

investment, illustrating the non-monotonic effect shown in Corollary 7. Thus, the relative

value of the salvage value can determine to some extent the effect of the uncertainty on

the timing of the investment, in particular if the uncertainty is relatively high. Notice

that, although it is not very common to find projects with salvage values higher that the

investment costs, there are investments where this can happen, for instance in real estate

investments, or other investments which comprise assets which are prone to appreciate

significantly. We note that divestment is only possible after the tax holiday period, which

makes this situation more plausible.
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This result is of some relevance, in particular to those firms operating in industries

with both high future fixed assets value and high market uncertainty. For instance, a

FDI project which involves the construction of a manufacturing plant that is outsourced

by the IT industry inherits both the high uncertainty of the IT sector and the high fixed

assets of the manufacturing industry.

S=20

S=50

S=65

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

σ

x I

Figure 2: The effect of uncertainty (σ) on the optimal investment threshold (xI) for
different values of S. The model parameters are: r = 0.05, α = 0.02, I = 50, τh = 0.125,
and τc = 0.25.

Figure 3 shows iso-treshold curves for three levels of uncertainty, that represent differ-

ent (T ,τh) agreements which trigger investment. A point above the iso-threshold curves

represent scenarios where the country offers the firm an unnecessary generous tax holiday

incentive, whereas a point below the iso-threshold curves represent scenarios where tax

holiday incentive that is offered to the firm is not sufficient to trigger investment.

3 Taxation policy uncertainty

In the previous section, we assume that a firm and a country make a FDI agreement

according to which, if the investment is undertaken, the firm will pay a more favorable a

tax rate (τh) over a given time period (T ), during which it cannot abandon investment.

Additionally, we assume that τh does not change over time. In this section, we consider

taxation policy uncertainty. Specifically we consider the case where the Government offers
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σ=0.29

σ=0.3

σ=0.31

2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

T

τ h

Figure 3: Iso-threshold curves which represent scenarios where investing is optimal. In
this simulation we set x(0) = 7, with the following model parameters: σ = 0.3, r = 0.05,
α = 0.02, S = 20, I = 50, τc = 0.25.

to a firm a permanent tax rate reduction incentive. Nevertheless, it makes sense from

the firm’s perspective to assume that this tax reduction may not be permanent, as it can

be reversed as a result an unexpected policy change. This tax policy uncertainty can be

modeled as a random event whose arrival date follows a Poisson jump process with a rate

λ. As before, in exchange for the tax holiday, the firm accepts not to divest.

The case of Ireland is perhaps a good illustrative example of the application of this

model setting. Currently, Ireland offers a much more attractive corporate tax rate to

some firms (for instance Apple). But, as the recent 2008-09 financial crisis has shown,

from the firm’s perspective, when evaluating a FDI project that requires a long-term non-

abandonment commitment, it may make sense to assume that the taxation policy that is

offered today may not hold all over the life-time of the investment.

We start by the derivation of the value function for when the firm is active, and proceed

then backwards in order to derive the value function for when the firm is inactive.

3.1 The active firm

Under this setting the active firm benefiting from a reduce tax rate τh faces the risk of a

sudden tax policy change, where the tax is reversed to the normal tax rate τc. This event

is modeled to arrive according to a Poisson jump with intensity λ. The value of an active
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firm (VR(x, .)) must satisfy the following ODE:

1

2
σ2x2∂

2VR(x, .)

∂x2
+ αx

∂VR(x, .)

∂x
− rVR(x, .) + x(1− τh) + λ [G(x, τc)− VR(x, .)] = 0 (24)

where G(x, τc) is the firm’s value after a rise of the tax rate from τh to τc.

G(x, τc) =
x(1− τc)

r − α
+ A(x, τc) (25)

The last term of the left-hand side of the equation represents the expected value loss

due to the possibility of a rise of the tax rate in the next instant.

Proposition 3. The value of an active firm paying currently a tax rate τh which can

increase to τc at a random future date is given by:

VR(x, τh, τc, λ) =
x(1− τh)

r − α+ λ
+



b1x
η1 +

λ

r + λ
S for x < xA

b4x
η2 +

λ

r − α + λ

x(1− τc)

r − α

+

(
S − xA(1− τc)

r − α

)(
x

xA

)β2

for x ⩾ xA

(26)

where xA is the optimal abandonment threshold value, provided by Equation (7), with:

b1 =
S

η1 − η2

(
r − α

r − α + λ

β2

β2 − 1
(η2 − 1)− r

r + λ
η2

)(
1

xA

)η1

(27)

b4 =
S

η1 − η2

(
r − α

r − α + λ

β2

β2 − 1
(η1 − 1)− r

r + λ
η1

)(
1

xA

)η2

(28)

η1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2(r + λ)

σ2
> 1 (29)

η2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2(r + λ)

σ2
< 0 (30)

For the limiting cases of λ, the following corollaries hold:

Corollary 8. When λ → ∞ (i.e. a change in the tax rate is certain) the firm’s value

converges to that of a firm which holds an abandonment option and profits are taxed at
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τc:

lim
λ→∞

VR(x, τh, τc, λ) =
x(1− τc)

r − α
+ A(x, τc) (31)

Corollary 9. When λ → 0 (i.e. a change in the tax rate will not happen) the firm’s value

converges to that of a firm which does not hold an abandonment option and profits are

taxed at τh:

lim
λ→0

VR(x, τh, τc, λ) =
x(1− τh)

r − α
(32)

3.2 The idle firm

While waiting to invest, the firm holds an option to undertake the project by paying an

investment cost K. The value of this option (OR(x, .)) must satisfy the following ODE:

1

2
σ2x2∂

2OR(x, .)

∂x2
+ αx

∂OR(x, .)

∂x
− rOR(x, .) = 0 (33)

Using the appropriate boundary conditions, the following proposition holds.

Proposition 4. The value of the option to invest in a project which benefits from a

favorable tax rate τh that can reversed to τc at a random future date is given by:

OR(x, τh, τc, λ) = (VR(xR, τh, τc, λ)− I)

(
x

xR

)β1

(34)

where xR is the investment threshold value, which is the solution of the following equation:

(β1 − η2)b4x
η2
R + (β1 − 1)

(
xR(1− τh)

r − α + λ
+

λ

r − α+ λ

xR(1− τc)

r − α

)
− β1I = 0 (35)

For the limiting cases of λ, the following corollaries hold:

Corollary 10. When λ → ∞ (i.e. a change in the tax rate is certain), the value of the

option to invest converges to:

lim
λ→∞

OR(x, τh, τc, λ) =

(
x∗
R(1− τc)

r − α
+

(
S − xA(1− τc)

r − α

)(
x∗
R

xA

)β2

− I

)(
x

x∗
R

)β1

(36)
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where x∗
R is the optimal investment threshold, which is a solution for the following equa-

tion:

(β1 − β2)

(
S − xA(1− τc)

r − α

)(
x∗
R

xA

)β2

+ (β1 − 1)
x∗
R(1− τc)

r − α
− β1I = 0 (37)

Corollary 11. When λ → 0 (i.e. a change in the tax rate will not happen), the value of

the option to invest converges to:

lim
λ→0

OR(x, τh, τc, λ) =

(
x∗∗
R (1− τh)

r − α
− I

)(
x

x∗∗
R

)β1

(38)

where x∗∗
R is the optimal investment threshold value to invest:

x∗∗
R =

β1

β1 − 1

r − α

1− τh
I (39)

Below are some corollaries that summarize our findings regarding the effect of the

market uncertainty and the taxation policy uncertainty on the timing of the investment.

Corollary 12. The effect of the taxation policy uncertainty (λ) on the optimal investment

threshold (xR) is non-monotonic: ∂xR/∂λ ≷ 0.

Corollary 13. The investment threshold (xR) increases with the tax holiday rate (τh):

∂xR/∂τh > 0.

Corollary 14. The investment threshold (xR) increases with the uncertainty (σ): ∂xR/∂σ >

0.

Corollary 12 is important, since it asserts that there are market conditions in which a

rise of the taxation policy uncertainty does not discourage investment. This is because,

for a relatively low tax holiday benefit (i.e. when τh is relatively close to τc) the losses

from a rise of the tax rate are more limited. Thus, if the likelihood of a rise of tax rate

increases, the value loss, due to the increase in the expected tax payment, can more easily

be offset by the value gain from the elimination of the non-abandonment option constrain.

These two forces have counteracting effects on the investment threshold. The force which

prevails over time depends on the terms of the FDI agreement and the market conditions.
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Figure 4 illustrates more clearly how the above described forces interact with the

investment threshold. For a relatively high tax holiday benefits (i.e. when τh is significantly

lower than τc), the investment threshold increases with λ. However, if the tax holiday

benefit is very small (i.e. τh is very close to τc), a rise of the taxation policy uncertainty

leads to a decreases of the investment threshold. For intermediate tax holiday benefits,

the relationship between λ and xR tends to be non-monotonic, being the sensitivity of

xR to changes in λ more acute when the taxation policy uncertainty is low and the tax

holiday benefit is small.

τh=τc=0.25

τh=0.22

τh=0.125

0.0 0.1 0.2 0.3 0.4
6.8

6.9

7.0

7.1

7.2

7.3

7.4

λ

x R

Figure 4: The effect of the taxation policy uncertainty (λ) on the optimal investment
threshold (xR), for different tax holiday rates (τh). The model parameters are: σ = 0.3,
r = 0.05, α = 0.02, S = 20, I = 50, τc = 0.25.

Figure 5 shows iso-treshold curves that represent pairs of λ and τh, which trigger

investment, for different levels of σ. Points above or below these curves represent, respec-

tively, scenarios where the investment incentive is unnecessary generous or not sufficient

to trigger investment. For relatively low value of λ and relatively high values σ a rise of

λ does not necessarily delays investment.

4 Conclusion

This paper studies optimal FDI tax holiday incentive packages considering market and

taxation policy uncertainty. In exchange for the tax benefit, the firm agrees not to divest
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0.00
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0.20
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λ

τ h

Figure 5: Iso-threshold curves, for different values of uncertainty (σ): (λ, τh) pair values
that trigger immediate investment. We use x(0) = 7 and the following model parameters:
r = 0.05, α = 0.02, S = 20, I = 50, τc = 0.25.

during the tax holiday period. We derive a real options investment model considering

two different settings. One where the tax holiday period is finite and certain, and another

where a firm is offered a permanent tax reduction, which is perceived as reversible, due

to a tax policy change, resulting in a random tax holiday duration.

We show that, for both the finite and random cases, the tax holiday duration may have,

for small tax rate reductions, a non-monotonic effect on the investment timing. In fact,

the benefit of a longer tax holiday period may not compensate to forgo the flexibility of

divesting when market conditions deteriorate. For sufficient tax reductions the expected

effect holds, i.e., a longer tax holiday speeds up investment.

However, despite of this trade-off between the lost flexibility and the tax benefit, a

higher tax reduction during the tax holiday is shown to have a monotonic effect on the

threshold, hastening investment.

Finally, for the common reversibility situations, the effect of uncertainty on the invest-

ment threshold is in line with the previous literature, where a higher uncertainty deters

investment. However, in case of a finite tax holiday, we show that for exceptional high

salvage values a higher uncertainty can speed up investment.

Our model can be extended in several ways, for instance by considering competition

amongst firms and/or amongst FDI host countries, possibly, relying on Smets (1993)
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framework. The incorporation in our model of assets depreciation and/or a more diverse

set of taxation policies which could include tax exemptions, tax credits, or progressive

taxation, would also be a interesting research. Our model can also be easily adapted to

determine a fair reimbursement amount that is due to the foreign firm, or the FDI host

country, when there is a breach of the FDI agreement. Finally, the innovative features of

our model lead to interesting results which can be empirical tested in future research.
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Proof of Proposition 1. The value of the forward start option to abandon (FA(.)) is rep-

resented by:

FA(x, τc, T ) = e−rTE [A(x(T ), τc)] (40)

where A(x, τc) is the value of the abandonment option at time T , given by equation (6).

In addition, A(x, τc) has two regions, thus:

FA(x, τc, T ) =e−rTE

[(
S − x(T )(1− τc)

r − α

)
1x(T )<xA

]
(41)

+ e−rTE

[(
S − xA(1− τc)

r − α

)(
x(T )

xA

)β2

1x(T )⩾xA

]
(42)

where 1condition is equal to 1 if the condition is met, and is equal to 0 otherwise.

From Shackleton andWojakowski (2007) we acknowledge that the first term of FA(x, τc, T )

represents the difference between a cash-or-nothing put option on S, and an asset-or-

nothing put option on x(T )(1 − τc)/(r − α), both with a maturity T and exercise price

xA:

e−rTE [A(x(T ), τc)]1x(T )<xA
= Se−rTN (−d2(x, T ))−

x(1− τc)

r − α
e−(r−α)TN (−d1(x, T ))

(43)

where:

d1(x, T ) =

ln

(
x

xA

)
+

(
α +

1

2
σ2

)
T

σ
√
T

(44)

d2(x, T ) = d1(x, T )− σ
√
T (45)

The second term of FA(x, τc, T ) is:

e−rTE [A(x(T ), τc)]1x(T )⩾xA
=

(
S − xA(1− τc)

r − α

)(
x

xA

)β2

N (d3(x, T )) (46)
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where:

d3(x, T ) =

ln

(
x

xA

)
+

(
α+

(
β1 −

1

2

)
σ2

)
T

σ
√
T

= d1(x, T ) + (β1 − 1)σ
√
T (47)

Proof of Proposition 2. The value function for an idle firm (O(x, .)) must satisfy the fol-

lowing ordinary differential equation (ODE):

1

2
σ2x2∂

2O(x, .)

∂x2
+ αx

∂O(x, .)

∂x
− rO(x, .) = 0 (48)

whose general solution is given by O(x, .) = c1x
β1 + c2x

β2 . In addition, limx→0O(x, .) = 0,

thus c2 must be set equal to 0. Using the following value-matching and smooth-pasting

boundary conditions we determine obtain c1 and xI :

c1x
β1

I = F (xI , .)− I (49)

β1c1x
β1−1
I =

∂F (x, .)

∂x
|x=xI

(50)

Substituting in the equation system above F (xI , .) by Equation (9) we obtain:

β1c1x
β1

I =
x

r − α
(1− τ(τh, τc, T )) + x

∂

∂x

[
Se−rTN(−d2(x))

]
− x

∂

∂x

[
x(1− τc)

r − α
e−(r−α)TN(−d1(x))

]
+ x

∂

∂x

[(
S − xA(1− τc)

r − α

)(
x

xA

)β2

N(d3(x))

]
(51)

The solutions for the above derivatives are provided by Shackleton and Wojakowski
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(2007, section 4). Substituting c1x
β1

CA by Equation (51) we obtain:

(β1 − β2)

(
S − xA(1− τc)

r − α

)(
x∗
I

xA

)β2

+ (β1 − 1)
x∗
I(1− τc)

r − α
− β1I = 0 (52)

where xI is the numerical solution of this equation. The constant c1 is determined through

Equation (51) and is given by c1 = (F (xI , .)− I)x−β1

I .

Proof of Proposition 3. The value function of an active firm (VR(x, .)) must satisfy the

following non-homogeneous ODE:

1

2
σ2x2∂

2VR(x, .)

∂x2
+ αx

∂VR(x, .)

∂x
− rVR(x, .) + x(1− τh) + λ [G(x, τc)− VR(x, .)] = 0 (53)

where G(x, τc) is the firm’s value after a rise of the tax rate from τh to τc.

G(x, τc) =
x(1− τc)

r − α
+ A(x, τc) (54)

The last term of the left-hand side of the equation represents the expected value loss

due to the possibility of a rise of the tax rate in the next instant. The solution to this

ODE corresponds to the sum of the homogeneous solution for each region:4

VR(x, .) =



b1x
η1 + b2x

η2 +
x(1− τh)

r − α + λ
+

λ

r + λ
S for x < xA

b3x
η1 + b4x

η2 +
x(1− τh)

r − α + λ
+

λ

r − α + λ

x(1− τc)

r − α

+

(
S − xA(1− τc)

r − α

)(
x

xA

)β2

for x ⩾ xA

(55)

4Note that the value function G(x, τc) has two regions depending on x and xA.
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where b1, b2, b3 and b4 are arbitrary constants which remain to be determined, and

η1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2(r + λ)

σ2
> 1 (56)

η2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2(r + λ)

σ2
< 0 (57)

Given that limx→0 VR(x, .) = 0 and limx→+∞ VR(x, .) = +∞, so the constants b2 and

b3 must be set equal to zero. The first condition ensures that the active firm is worthless

if cash flows drop to zero. For the remaining arbitrary constants we need two additional

conditions. However, the two regions of the value function must met at x = xA, therefore,

VR(x, .) is continuous and differentiable along x, from which we obtain:

b1x
η1
A + b2x

η2
A +

λ

r + λ
S = b3x

η1
A + b4x

η2
A +

λ

r − α + λ

xA(1− τc)

r − α
+

(
S − xA(1− τc)

r − α

)
(58)

η1b1x
η1−1
A + η2b2x

η2−1
A = η1b3x

η1−1
A + η2b4x

η2−1
A +

λ

r − α + λ

1− τc
r − α

+ β2

(
S − xA(1− τc)

r − α

)(
1

xA

)
(59)

Solving the above equation system we obtain:

b1 =
S

η1 − η2

(
r − α

r − α + λ

β2

β2 − 1
(η2 − 1)− r

r + λ
η2

)(
1

xA

)η1

(60)

b4 =
S

η1 − η2

(
r − α

r − α + λ

β2

β2 − 1
(η1 − 1)− r

r + λ
η1

)(
1

xA

)η2

(61)

Proof of Proposition 4. The value function of the idle firm (OR(x, .)) must satisfy the

following ODE:

1

2
σ2x2∂

2OR(x, .)

∂x2
+ αx

∂OR(x, .)

∂x
− rOR(x, .) = 0 (62)

whose general solution is given by: OR(x, .) = e1x
β1+e2x

β2 . In addition, limx→0OR(x, .) =

0, therefore e2 must be set equal to 0. Using the following value matching and smooth-
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pasting boundary conditions, we determine xI and e1:

e1x
β1

R = VR(xI , .)− I (63)

β1e1x
β1−1
R =

∂VR(x, .)

∂x
|x=xR

(64)

Although VR(x, .) has two branches (see equation (26)), we can show that there is not

solution for the first branch, therefore, xR ⩾ xA. Substituting FR(xI , .) by the second

branch of Equation (26), it yields:

(β1 − η2)b4x
η2
R + (β1 − 1)

(
xR(1− τh)

r − α + λ
+

λ

r − α+ λ

xR(1− τc)

r − α

)
− β1I = 0 (65)

Proof of Corollary 1. If x < xA, limT→0N (d3(x)) = 0, limT→0N (−d1(x)) = 1, and

limT→0N (−d2(x)) = 1, therefore:

lim
T→0

FA(x, τc, T ) =

(
S − x

r − α
(1− τc)

)

where this expression corresponds to the lower branch of Equation (6).

If x ⩾ xA, limT→0 N (d3(x)) = 1, limT→0N (−d1(x)) = 0, and limT→0N (−d2(x)) = 0,

therefore:

lim
T→0

FA(x, τc, T ) =

(
S − xA

r − α
(1− τc)

)(
x

xA

)β2

(66)

where this expression corresponds to the upper branch of Equation (6).

Also, limT→0 V (x, τh, τc, T ) =
x(1− τc)

r − α
, thus: limT→0 F (x, τh, τc, T ) =

x(1− τc)

r − α
+

A(x, τc).

Proof of Corollary 2. Given that limT→∞ N (d3(x)) = 1, limT→∞ e−(r−α)T = 0, and limT→∞ e−rT =

0, thus, limT→∞ FA(x, τc, T ) = 0, limT→∞ V (x, τh, τc, T ) =
x(1− τh)

r − α
, and limT→∞ F (x, τh, τc, T ) =
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x(1− τh)

r − α
.

Proof of Corollary 3. See Proof of Corollary 1.

Proof of Corollary 4. See Proof of Corollary 2.

Proof of Corollary 5. Differentiating Equation (18) with respect to T yields:

[
β2(β1 − β2)

(
S − xA(1− τc)

r − α

)(
1

xA

)β2

xβ2−1
I N(d3(x))

+
β1 − 1

r − α

[
1− τh − (τc − τh)e

−(r−α)T − (1− τc)e
−(r−α)TN(−d1(x))

]] ∂xI

∂T

=− (β1 − β2)

(
S − xA(1− τc)

r − α

)(
1

xA

)β2

xβ2

I n(d3(x))
∂d3
∂T

− (β1 − 1)
[
xI(τc − τh)e

−(r−α)T + xI(1− τc)e
−(r−α)TN(−d1(x))

]
− (β1 − 1)

[
xI(1− τc)

r − α
e−(r−α)Tn(−d1(x))

∂d1
∂T

]
+ β1

[
Sre−rTN(−d2(x)) + Se−rTn(−d2(x))

∂d2
∂T

]

where N(.) is the normal density function.

We can show that the cross derivatives of N(.) (i.e. ∂di/∂xI × ∂xI/∂T , i ∈ 1, 2, 3)

cancel each other out. Given that N(−d1(x) ⩽ 1, 1 − τh − (τc − τh)e
−(r−α)T − (1 −

τc)e
−(r−α)TN(−d1(x)) ⩾ (1 − τh)(1 − e−(r−α)T )) ⩾ 0, therefore, the coefficient of ∂xI/∂T

is positive.

However the the sign of the right-hand side of the equation above is undetermined,

thus: ∂xI/∂T ≷ 0.

Proof of Corollary 6. Differentiating Equation (18) with respect to τh, it yields:

[
β2(β1 − β2)

(
S − xA(1− τc)

r − α

)(
1

xA

)β2

xβ2−1
I N(d3(x))

+
β1 − 1

r − α

[
1− τh − (τc − τh)e

−(r−α)T − (1− τc)e
−(r−α)TN(−d1(x))

]] ∂xI

∂τh

=(β1 − 1)
xI

r − α

(
1− e−(r−α)T

)
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In the previous proof we show that the right hand-side of the equation and the coeffi-

cient of ∂xI/∂τh are both positive, thus: ∂xI/∂τh > 0.

Proof of Corollary 7. Differentiating Equation (18) with respect to σ, it yields:

[
β2(β1 − β2)Ax

β2−1
I N(d3(x))

+
β1 − 1

r − α

[
1− τh − (τc − τh)e

−(r−α)T − (1− τc)e
−(r−α)TN(−d1(x))

]] ∂xI

∂σ

=− (β1 − β2)

[
Axβ2

I n(d3(x))
∂d3
∂σ

+
∂A

∂σ
xβ2

I N(d3(x))

]
−
(
∂β1

∂σ
− ∂β2

∂σ

)
Axβ2

I N(d3(x))

− (β1 − 1)

[
xI(1− τc)

r − α
e−(r−α)Tn(−d1(x))

∂d1
∂σ

]
− ∂β1

∂σ

xI

r − α

[
1− τh − (τc − τh)e

−(r−α)T − (1− τc)e
−(r−α)TN(−d1(x))

]
+ β1

[
Se−rTn(−d2(x))

∂d2
∂σ

]
+

∂β1

∂σ

[
I − Se−rTN(−d2(x))

]

with A =

(
S − xA(1− τc)

r − α

)(
1

xA

)β2

From the previous proofs we acknowledge that the coefficient of ∂xI/∂σ is positive.

In addition, we can show that ∂β1/∂σ < 0, ∂β2/∂σ > 0, ∂A/∂σ > 0, ∂d1(x)/∂σ ≷ 0,

∂d2(x)/∂σ < 0, ∂d3(x)/∂σ ≷ 0. Therefore, the sign of the right-hand side of the equation

is undeterminate.

Proof of Corollary 8. limλ→∞ b4 = 0, limλ→∞ b1 = 0, limλ→∞ λ/(r + λ) = 1, limλ→∞ λ/(r − α + λ) =

1. Thus, the two branches simplify to: x(1− τc)/(r − α) + A(x, τc).

Proof of Corollary 9. limλ→0 η1 = β1, limλ→0 η2 = β2, limλ→0 b1 = 0, limλ→0 b4 = S/(β2 − 1).

Thus, the two branches simplify to: x(1− τh)/r − α.

Proof of Corollary 10. See Proof of Corollary 8.

Proof of Corollary 11. See Proof of Corollary 9.
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Proof of Corollary 12. Differentiating Equation (35) with respect to λ, it yeilds:

[
η2(β1 − η2)b4x

η2−1
R + (β1 − 1)

(
1− τh

r − α+ λ
+

λ

r − α+ λ

λ(1− τc)

r − α

)]
∂xR

∂λ

=− (β1 − η2)

(
∂b4
∂λ

xη2
R + b4 log xR

∂η2
∂λ

)
+

∂η2
∂λ

b4x
η2
R

+ (β1 − 1)

[
xR

(r − α + λ)2
(1− τh)−

xR

(r − α + λ)2
(1− τc)

]

Given that b4 < 0, η2 < 0, and β1 > 0, so the coefficient of ∂xR/∂λ is positive.

However, as ∂b4/∂λ > 0 and ∂η2/∂λ < 0, the sign of the right-hand side of the equation

is undetermined: ∂xR/∂λ ≷ 0.

Proof of Corollary 13. Differentiating Equation (35) with respect to τh, it yields:

[
η2(β1 − η2)b4x

η2−1
R + (β1 − 1)

(
1− τh

r − α+ λ
+

λ

r − α+ λ

λ(1− τc)

r − α

)]
∂xR

∂τh

=(β1 − 1)
xR

r − α + λ

From the previous proof we acknowledge that the coefficient of ∂xR/∂τh is positive, and

the sign of the right-hand side of the above equation is negative. Thus, ∂xR/∂τh > 0.

Proof of Corollary 14. Differentiating Equation (35) with respect to σ, it yields:

[
η2(β1 − η2)b4x

η2−1
R + (β1 − 1)

(
1− τh

r − α + λ
+

λ

r − α + λ

(1− τc)

r − α

)]
∂xR

∂σ

=− (β1 − η2)

(
∂b4
∂σ

xη2
R + b4x

η2
R

∂η2
∂σ

)
+

(
∂β1

∂σ
− ∂η2

∂σ

)
b4x

η2
R

− ∂β1

∂σ

[
xR(1− τh)

r − α + λ
+

λ

r − α + λ

xR(1− τc)

r − α

]

From the previous proofs, we acknowledge that the coefficient of ∂xR/∂σ is positive.

As b4 < 0, η2 < 0 and β1 > 0, so ∂xR/∂λ is positive. We can also show that ∂β1/∂σ < 0,

∂η2/∂σ > 0, ∂b4/∂σ < 0. Therefore, the sign of the right-hand side of the equation above

is positive, and ∂xR/∂σ > 0.
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