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Formulation of Biologically-
Inspired Silk-Based Drug Carriers 
for Pulmonary Delivery Targeted 
for Lung Cancer
Sally Yunsun Kim1,2, Deboki Naskar3, Subhas C. Kundu3, David P. Bishop4, Philip A. Doble4, 
Alan V. Boddy1, Hak-Kim Chan1, Ivan B. Wall2,5 & Wojciech Chrzanowski1,5

The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical 
applications including tissue regeneration, bioactive coating and in vitro tissue models. The 
properties of silk such as biocompatibility and controlled degradation are utilized in this study to 
formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are spray 
dried or spray-freeze-dried to enable the delivery to the airways via dry powder inhalers. The addition 
of excipients such as mannitol is optimized for both the stabilization of protein during the spray-
freezing process as well as for efficient dispersion using an in vitro aerosolisation impactor. Cisplatin 
is incorporated into the silk-based formulations with or without cross-linking, which show different 
release profiles. The particles show high aerosolisation performance through the measurement of 
in vitro lung deposition, which is at the level of commercially available dry powder inhalers. The 
silk-based particles are shown to be cytocompatible with A549 human lung epithelial cell line. The 
cytotoxicity of cisplatin is demonstrated to be enhanced when delivered using the cross-linked silk-
based particles. These novel inhalable silk-based drug carriers have the potential to be used as anti-
cancer drug delivery systems targeted for the lungs.

Silk has been used for centuries as fabric as well as in cosmeceutics. It is recently attracting immense 
attention in biomedical applications1. Silk fibroin, a major protein in silk cocoon is used as surgical 
sutures since decades ago and is known for properties including controllable biodegradability, superior 
mechanical strength and stability, elasticity and biocompatibility1. Silk fibroin is widely established as a 
platform for the controlled delivery of various drugs via formulations of microparticles, spheres, films, 
coatings, and hydrogels1,2.

Silk fibroin-based formulations are valuable not only due to their non-toxic and non-antigenic nature, 
but also for their stability during storage as well as in vivo3. Silk fibroin can be processed in an aque-
ous environment and are capable of being degraded into amino acids that are well absorbed by the 
body4. Silk-based drug delivery is significant because, unlike other polymer biomaterials, they can be 
processed in aqueous systems in mild conditions of temperature, pressure and neutral pH without the 
need for harsh manufacturing conditions, which may damage the incorporated drug5–7. Further extended 
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applications of silk fibroin for drug delivery include delivery of growth factors for tissue repair, as well 
as delivery of medications for epilepsy1,2.

A few recent studies highlight the advantages of combining silk fibroin with other bioactive materials 
such as albumin, chitosan, hyaluronic acid, polyprolactone and aloe vera in drug delivery and tissue engi-
neering applications8–11. The most common reason for the incorporation of silk fibroin was to improve 
the mechanical properties upon incorporation into three-dimensional scaffolds. Other specific reasons 
included enhancement of cell attachment11, improved drug release kinetics8–10 and superior blood com-
patibility9. Importantly, the hemocompatibility observed for chitosan/silk-based scaffolds was found to 
be associated solely with the presence of silk fibroin in these scaffolds9.

Despite the broad use of silk in biomedical applications, its potential as drug carriers for targeted 
delivery to the lungs is not investigated and silk-based delivery systems are yet to be developed into an 
inhalable form. Therefore, this study aims to develop novel, biologically-inspired silk-based inhalable 
drug delivery systems that target the lungs. Targeted delivery of drugs to the lungs for the treatment of 
chronic lung infections, lung cancers, tuberculosis and other respiratory conditions is emerging as an 
innovative area of research over the last decade12,13. Potential advantages of targeted delivery include the 
reduction of dosage and side effects of the drug compared to systemic drug delivery13. The majority of 
commercially available inhalation products are for local treatment of lung diseases. A number of inhala-
tion products designed to treat systemic diseases are undergoing clinical development14. The lung is an 
attractive target for drug delivery due to the avoidance of first-pass metabolism, the large surface area 
and the rapid onset of action leading to enhanced absorption of drugs13,15,16.

Novel routes for the administration of cancer therapies are being investigated for decades17. Among 
the novel routes, pulmonary drug delivery for treatment for lung cancer is widely researched in the last 
two decades due to many obvious advantages including reduction of dosage required and subsequently 
reduced systemic side effects17. Cisplatin, a platinum-based first-line chemotherapy drug for lung can-
cer, is currently being delivered intravenously18. The conventional cisplatin formulation, when delivered 
intravenously, is widely distributed into the body fluids and tissues. This distributed drug rapidly binds 
to the tissue and plasma proteins leading to low bioavailability of the drug to the target organ19. The 
majority of the drug fails to reach the target site in the lungs. Instead, highest concentrations are found 
in the kidneys and are excreted from the body predominantly via renal excretion19. There are common 
systemic side effects such as nephrotoxicity, ototoxicity, mucositis and myelosuppression often leading 
to life-threatening septicaemia19. Furthermore, the cytotoxic effect of cisplatin in currently marketed for-
mulations is short lasting and requires frequent dosing to maintain the concentration of the drug within 
the therapeutic window19,20. This increases the costs of treatment because a health care professional is 
required for the administration of every intravenous dose19.

A549 human lung epithelial cells are responsible for the diffusion of substances across the alveoli of 
the lungs. In this study, the cytocompatibility of silk and cytotoxicity of silk particles loaded with cispla-
tin are assessed. A previous study demonstrates the cytotoxic responses of A549 cells to cisplatin alone 
and compares with the combination with another anticancer drug imatinib using the MTT assay21. Kim 
et al. (2006) and Zhang et al. (2014) show the enhancement of chemosensitivity of A549 cells toward 
the cisplatin22,23. When micro-carriers are used to deliver cisplatin via inhalation, cisplatin is delivered 
preferentially to the lungs, and therefore leads to enhanced therapeutic efficacy and reduced side effects24.

In this study, we investigated whether the novel and biologically-inspired silk-based drug delivery 
systems are suitable for inhalation to achieve deposition in the lower airways. The in vitro experiments 
are designed to assess the compatibility of silk-based drug carriers with human lung epithelial cells. It is 
also interesting to know how the formulations of carriers can be engineered to enhance the cytotoxicity 
of cisplatin by increasing the extent of release from the carrier particles. The results indicate that this 
silk-based drug delivery system has the potential to be used in the targeted treatment of lung cancer.

Materials and Methods
Silk fibroin isolation and purification. Silk fibroin was extracted from mulberry silk cocoons of 
Bombyx mori (Bm) obtained from West Midnapore district of West Bengal, India as described previously 
with slight modifications3. Briefly the cocoons were cut into fine pieces and boiled with 0.02 M aqueous 
Na2CO3 solution for 30 min at 100 °C to remove the silk protein sericin. The degummed fibers were 
dissolved in 9.3 M aqueous LiBr solution and the resulting solution was dialyzed using 12 kDa molecular 
weight cut off dialysis membrane against deionized water for 2 days with frequent water change. The 
resulting silk fibroin solution was used to determine its concentration using the Bradford method. 2% 
protein solution was freeze dried to get the pure protein in dry form.

Formulation of silk-based particles. Two methods were used to formulate silk-based particles: 
spray drying and spray-freeze-drying. Spray drying is one of the most common methods used to pro-
duce inhalable powders. Spray-freeze-drying is a method that produces higher yields of particles with 
high porosity, favorable for inhalation25. For both methods, the freeze dried silk fibroin was weighed and 
simply dissolved in deionized water to achieve Bm fibroin 2% (w/v) solution. The dissolution was carried 
out at 45 °C with stirring and sonication for 15 min. Any undissolved parts were removed by filtering 
through 0.22 μ m syringe filters (Millipore, Millex® GP Filter Unit, Millipore Express PES Membrane, 
Darmstadt, Germany).
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Incorporation of cisplatin and cross-linking of silk fibroin. Cisplatin was incorporated at concentrations 
of 0.05% (w/v) into the silk formulations. In order to produce cross-linked silk formulations, genipin was 
added to the silk solutions at 0.05% (w/v) prior to the incorporation of cisplatin. For cross-linking, the 
silk aqueous solution was mixed using a magnetic stirrer for 15 hours at room temperature.

Fabrication of particles from spray-drying. Silk formulations were spray-dried using a lab scale 
spray-dryer (Büchi Mini Spray-Dryer B-290, BüchiLabortechnik, Flawil, Switzerland). An open loop 
was used with Büchi Dehumidifier B-296 in blowing mode. The operation conditions were liquid feed 
rate at 4.2 ml/min, aspiration at 100%, airflow with gas supply pressure 55 mbar, and inlet and outlet 
temperatures at 120 °C and 66–80 °C, respectively.

Fabrication of particles from spray-freeze-drying. For spray-freeze-drying silk solutions, trehalose or 
mannitol was incorporated at concentrations of 0.5% or 1% (w/v) as a lyoprotectant, to protect the 
structure of silk fibroin at the low temperatures during the drying process. The solutions were sprayed 
using an ultrasonic nozzle (Sonozap 130K50ST) powered by an ultrasonic generator (SonaerInc, New 
York, USA) with a constant flow rate of 0.5 ml/min controlled using a PHD 2000 syringe pump (Harvard 
Apparatus, Holliston, MA, USA). Particles were collected in liquid nitrogen and were dried in a freeze 
dryer (Christ Alpha 1–4, B. Braun Biotech International, Melsungen, Germany) under vacuum ranging 
from 0.07 to 0.12 mbar, at − 20 °C for 24 hours of primary drying. This was followed by secondary drying 
at increasing temperatures of 10 °C per hour until the final temperature of 20 °C was reached.

Characterization of silk-based particles for pulmonary delivery. Particle size distribution by 
dynamic light scattering. Geometric particle size and the size distribution of the particles were measured by 
laser diffraction using Mastersizer (Malvern Instruments, Worcestershire, UK). Dry dispersion with refractive 
index of 1.0 was used. Mass median diameter (D(0.5)), representing the diameter at which 50% of the particles 
by mass are larger and 50% are smaller, was considered as the average particle diameter by mass.

Particle size and morphology. Scanning electron microscopy (SEM) was used to observe the changes in 
morphology and size of the particles. Samples were sputter coated with approximately 20 nm thick gold 
using a K550X sputter coater (Quorum Emitech, Kent, UK). Images were obtained using Hitachi S-4500 
field emission scanning electron microscope (Hitachinaka-shi, Ibaragi, Japan).

Analysis of surface topography and roughness. Atomic force microscopy (AFM) was used for observing 
particle size and imaging 3D surface topography. The particles were dispersed onto Tempfix® (Plano 
GMBH, Wetzlar, Germany) prepared on a glass slide. MFP-3D-BIOTM AFM (Asylum Research, Santa 
Barbara, USA) was used in AC mode using a silicon tip AC-160 (Olympus, Japan) with scan rate of 
0.30–0.40 Hz. Surface roughness was measured and the average roughness (Ra, or average deviation) was 
compared between samples.

Determination of amorphous or crystalline structures. X-ray diffraction was used to determine whether 
the particles are amorphous or crystalline. An x-ray diffractometer (XRD-6000, Shimadzu Scientific 
Instruments, Tokyo, Japan) was used to measure diffraction pattern for each sample under ambient 
conditions with angular increments of 0.02° covering a 2θ  range of 2 to 70°.

In vitro aerosolisation performance and lung deposition. In order to assess the in vitro aerosolisation per-
formance, the aerodynamic diameters of the particles were calculated after dispersion of particles using 
a next generation impactor (NGI) (Copley Scientific Limited, Nottingham, United Kingdom). A 5 mg 
of sample inside a gelatin capsule (size 3) was dispersed using an Aeroliser® (Pharmaxis Ltd, Frenchs 
Forest, Australia), at 60 L/min for 4 seconds. The particles were collected at 7 stages, each with aerody-
namic diameter cut-off points 8.06, 4.46, 2.82, 1.66, 0.94, 0.55 and 0.34 μ m when dispersed at 60 L/min26. 
The particles collected at each stage were dissolved using 5 ml of calcium chloride (CaCl2) 60% solution, 
selected as base medium due to its ability to solubilise silk fibroin. Then silk fibroin was quantified using 
a UV-Vis spectrophotometer with λ max at 274 nm (UV-1800, Shimadzu Corporation, Tokyo, Japan). The 
proportion of particles with suitable aerodynamic diameters for inhalation (less than 5 μ m) was deter-
mined using the standard curve generated.

In vitro release of cisplatin. In vitro drug release studies were performed with a multi-station Franz 
cell station (VB6; PermeGear Inc, Hellertown, PA, USA). Franz cell method allows the mimicking of 
the air-liquid interface present in the lungs, and it is a widely accepted in vitro approach in comparing 
the drug release profiles of inhalation dry powder formulations27,28. The diffusion cells were stirred at 
a constant rate and thermoregulated with a water jacket maintained at 37 °C ±  0.5 °C via a circulating 
water bath. Phosphate-buffered saline (PBS) at pH 7.4 was used as the receptor fluid. 2 mg samples of 
cross-linked and non-cross-linked silk-cisplatin particles were evenly spread on top of 0.25 μ m filter 
paper (Whatman®). At each pre-determined time point (20 min, 40 min, 1 h, 2 h, 4 h and 5 h), 2 ml sample 
was taken out for detection of cisplatin and 2 ml fresh PBS was added to maintain constant sink volume.
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For the detection of cisplatin in each sample, inductively coupled plasma mass spectrometry (ICP-MS, 
Agilent Technologies 7500cx) was used with sample introduction via a micromist concentric nebuliser 
(Glass expansion) and a Scott type double pass spray chamber cooled to 2 °C. The ICP operating param-
eters and the lens conditions were selected to maximise the sensitivity of a 1% HNO3:HCl solution con-
taining 1 ng/ml of Li, Co, Y, Ce and Tl. Calibration curves were constructed and the results were analysed 
using Agilent Technologies Masshunter software.

Reagents and samples. A Pt stock solution was obtained from Choice Analytical (Thornleigh, Australia). 
Baseline nitric acid (HNO3) and hydrochloric acid (HCl) was purchased from Seastar chemicals (Sidney, 
Canada). The samples were diluted 1:3 in a 1% HNO3:HCl solution before analysis. The calibration stand-
ards were matrix matched to the samples.

In vitro cytocompatibility of silk proteins and cytotoxicity of silk-cisplatin particles. Cell cul-
ture and maintenance. Human lung carcinoma epithelial cell line A549 was used to investigate the 
cytocompatibility of silk fibroin and to examine the cytotoxicity of cisplatin released from silk-based 
particles. Cells were maintained using “normal media” consisting of Dulbecco’s Modified Eagle’s Medium 
(DMEM) with 4500 mg/L D-glucose, L-glutamine, containing 10% fetal bovine serum (FBS), with 1% 
penicillin-streptomycin (Penstrep®) (All purchased from Gibco, Life Technologies, USA, except FBS 
from Sera Laboratories, UK) at 37 °C in 95% air and 5% CO2 atmosphere. Medium was renewed every 
2 to 3 days and cells were passaged using Trypsin/EDTA (Sigma-Aldrich Ltd, Dorset, UK) when mon-
olayer was 80–85% confluent. All polystyrene plastic flasks and plates used were of tissue culture grade.

Preparation of particle-conditioned media using formulated particles. For the purpose of testing the cyto-
compatibility and cytotoxicity of the particles, particle-conditioned media was prepared by dissolving the 
particles in normal media at 1 mg/ml concentrations for 24 hours at 37 °C in the water bath. The for-
mulations used were silk alone, silk-cisp (containing silk +  mannitol +  cisplatin at the ratio of 10:20:1), 
or silk-cisp (cross-linked; containing silk +  mannitol +  cisplatin +  genipin at the ratio of 10:20:1:1) for-
mulations. The solutions were filter-sterilised through a 0.22 μ m syringe filter (Millex® GP Filter Unit, 
Millipore Express PES Membrane, Millipore, MA, USA).

Cell viability and proliferation assay. Cells were seeded at 2000 cells/well on 96-well plates and were allowed 
to attach to the bottom of the wells. Then normal media was replaced with particle-conditioned media 
prepared as described above. At each predetermined time point (days 1, 3 and 7), particle-conditioned 
media was replaced by 100 μ l of fresh normal media. After one hour incubation, 10 μ l of CCK-8 reagent 
(Dojindo Molecular Technologies Inc, Tokyo, Japan) was added to each well. After two hours, the optical 
density (OD) of each well was measured using a microplate reader at 450 nm (Tecan Safire2, Tecan Group 
Ltd, Seestrasse, Switzerland).

Picogreen® DNA quantification assay. Cells were seeded at 2000 cells/well on 96-well plates and were 
treated with particle-conditioned media as described above. At 24 and 72 hours, cells were washed with 
PBS, detached and re-suspended in sterile water for cell lysis and release of DNA through the freeze-thaw 
cycles, repeated three times. The double stranded DNA (dsDNA) content in cells was measured using a 
Picogreen® dsDNA Quantitation Kit (Invitrogen Molecular Probes, NY, USA), according to the manu-
facturer’s protocol. Tris-ethylenediamine-tetraacetic acid (TE) buffer was used to dilute the cell suspen-
sion to a total volume of 500 μ l, then Quant-iTTMPicogreen® reagent (Invitrogen Molecular Probes, NY, 
USA) 0.5% in TE buffer was added to each sample. After incubation at room temperature in the dark 
for 5 min, the fluorescence was measured using Fluostar Optima plate reader (BMG Labtech, Ortenberg, 
Germany) at excitation 450 nm / emission 544 nm.

Assessment of cell morphology. To assess changes of the cell morphology in response to the silk-based 
particles, cells were seeded at 2.5 ×  105 cells/well on 24-well plates. After 24 hours, normal media was 
replaced with particle-conditioned media as prepared above. The changes in cell morphology in each 
treatment group were observed and the phase images were taken using a transmitted light microscope 
(EVOS xl, Advanced Microscopy Group, Life Technologies, NY, USA) with 10×  and 20×  magnifications 
at 24 and 48 hours.

Immunocytochemistry. The presence of tight junction proteins were of importance to be observed as they 
are functional proteins that act as a barrier in the role of protecting the epithelium29. Immunocytochemistry 
protocol from Abcam® was used with some modifications30. Briefly, cells were fixed in paraformaldehyde 
4% with 10 min incubation at room temperature, followed by washing twice with cold PBS. Cells were 
permeabilized in 0.1% Triton X-100 (BDH Laboratory Supplies, England) for 20 min, washed three times 
with PBS (5 min per wash) followed by blocking using bovine serum albumin (BSA) 1% for 30 min.

Incubation in primary antibody anti-beta catenin, clone 7F7.2; IgG (Millipore, MA, USA) (1:250) 
was overnight at 4 °C in the dark. After washing with PBS, cells were incubated with secondary anti-
body Alexa Fluor® 555 (Life Technologies, NY, USA) (1:200) in PBS for one hour at room temperature 
in the dark. Counterstaining with conjugated F-actin (ActinGreenTM 488, Life Technologies, NY, USA) 
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and DAPI (4′ ,6-Diamidino-2-Phenylindole, Dilactate) nucleus staining followed for 30 min and 5 min, 
respectively. Cells were imaged using a fluorescent microscope at 20×  magnification (Nikon Eclipse 
TE2000-U inverted microscope, Nikon Instruments Inc., NY, USA).

Cell metabolism. Cell metabolism was evaluated by measuring glucose and lactate levels in the media, 
representing energy consumption and by-product using the YSI 2700 Select Biochemistry Analyzer (YSI 
Incorporated, Yellow Springs, USA). Samples of media were collected after 1, 3 and 7 days of incuba-
tion with media containing silk alone, silk-cisp, or silk-cisp (cross-linked) formulations. L-lactate and 
D-glucose levels in media were measured in g/L and were expressed in a single graph.

Cell wound repopulation assay. This assay was conducted in order to measure the extent of migration 
or repopulation in a two-dimensional wound created on a monolayer in the presence of the sample for-
mulations. Cells were seeded at 2.5 ×  105 cells/well on 24-well plates and were cultured in normal media 
until 90% confluent. Then cells were incubated in low serum media (containing 1% FBS) for 24 hours 
prior to scratching a wound on the midline of the culture well using a pipette tip (200 μ l). Then the media 
was replaced by particle-conditioned media. Wound images were taken using a transmitted light micro-
scope (EVOS xl, Advanced Microscopy Group, Life Technologies, NY, USA) with 10×  magnification at 
0, 24, and 48 hours. ImageJ software program was used for quantitative analysis, to measure and compare 
the area of wound at each time point.

Cell migration and invasion. Cell migration and invasion due to the presence of silk-based 
particle-conditioned media were analyzed using Transwell® cell culture chambers (8 μ m pore size, 
BD Biosciences, Oxford, UK). Cells were kept in low serum media (containing 1% FBS) for 24 hours, 
then were trypsinized and resuspended in low serum media and placed in the upper chamber of the 
Transwell® insert (50,000 cells/well). Cells were allowed to attach for one hour then the media in the 
lower chamber was replaced with particle-conditioned media (containing 10% FBS) to observe sup-
pressed attraction. Concentration gradient was established using low serum media (1%) in the upper 
chamber and high serum media (10%) in the lower chamber. The cells were incubated for 8 hours in a 
humidified atmosphere with 95% air and 5% CO2 at 37 °C.

Then cells were fixed with 4% paraformaldehyde, and were stained for 30 min using 2% crystal violet 
in 10% ethanol. The non-invasive cells in the upper chamber were removed by wiping with a cotton swab. 
The cells in the lower surface of the transwell insert that migrated through the pores were imaged using 
a transmitted light microscope (EVOS xl, Advanced Microscopy Group, Life Technologies, NY, USA) 
at 10×  magnification and the number of migrated cells were counted using ImageJ software. Average 
number of migrated cells per image was graphed and analyzed.

Statistical analyses. All data were produced in triplicates (n =  3) for reliability. Data was analyzed 
and presented as means ±  standard deviation. The differences between the experimental and control 
groups were analyzed using one-way analysis of variance (ANOVA) test. A p-value less than 0.05 was 
reported as having a statistically significant difference.

Results and Discussion

Formulation and characterization of silk-based particles for pulmonary delivery. Assessment 
of particle size and morphology. Particle sizes varied according to different parameters used on the 
spray dryer, and the optimization of inlet temperature, aspiration, atomization flow and the feed rate of 
solution led to inhalable sizes of silk particles. The lower feed rates of silk solutions into the spray dryer 
produced smaller particle sizes and higher atomization flow. As such, the smaller droplets of silk solution 
led to smaller particles. This was explained by more energy being supplied to break up the liquid droplet 
into smaller droplets during the atomization step25. After optimization of the parameters in order to 
produce inhalable particles, the sizes of spray-dried silk particles appeared more uniform and the major-
ity of the particles were less than 5 μ m (Fig. 1(a)), which is the desired size for pulmonary delivery16,31.

Laser diffraction for geometrical size analysis for spray dried particles consisting of Bm fibroin 
showed that mass median diameter (D(0.5)) / average particle diameter by mass, was 5.20 ±  0.69 μ m. 
However, the particle size suitable for deposition in the lungs is determined by aerodynamic size instead 
of geometric diameters. The aerodynamic diameter (da) for spherical particles is related to the particle 
density as well as the geometric diameter (dg), as shown in the following equation:

d da g
0

ρ
ρ

=

where p is the mass density of the particle and p0 is the unit standard particle density (1 g/cm3)13. 
Therefore, despite the spray-freeze-dried particles have larger geometric diameters, they can also have 
suitable aerodynamic sizes for potential successful deposition in the lower airways due to their porosity 
and low density25. The particles with aerodynamic diameters between 1 and 5 μ m are capable of being 
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deposited in the small airways and alveoli, while the particles with aerodynamic diameters between 5 
and 10 μ m are mainly deposited in the large airways31.

The collapsed particles observed on the SEM micrograph in Fig. 1(a) were the result of the spherical 
and hollow particles being unable to maintain their shape in the high vacuum used during the process 
of imaging. This confirmed that most spray-dried particles were hollow. The spray-freeze-dried particles 
were overall larger and more uniform in size compared to spray-dried particles as can be seen from the 
SEM images (Fig. 1(b,c)). The cross-linked silk-based particles were porous and aggregated (Fig. 1(c)). 
From observing the AFM images, the spray-dried particles appeared to have smoother surface than the 
spray-freeze-dried particles and the roughness expressed as Ra (average deviation) values measured were 
26.52 nm and 420.81 nm respectively for spray-dried and spray-freeze-dried particles (Fig.  1(d,e)). The 
higher surface roughness on the spray-freeze-dried particles is a favourable characteristic for improved 
dispersion and enhanced aerosolisation efficiency32.

Porous polymeric, low density microparticles for inhalation are required to have geometric diam-
eters between 5 and 30 μ m in order to have suitable aerodynamic diameters33. The size analysis using 
laser diffraction confirmed that the average geometrical sizes of spray-freeze-dried silk-cisplatin and 
silk-cisplatin (cross-linked) particles were 22.75 μ m and 10.08 μ m, respectively (Fig.  2(a);  (i,ii)). The 
cross-linking process demonstrated a general reduction in the overall particles. However these particles 
remained larger than spray-dried particles. As observed in SEM images, the spray-freeze-dried particles 
for both cross-linked and normal silk-based particles had higher porosity, which confirms their suitabil-
ity for aerosolisation and lung deposition.

The inclusion of sugar in the spray-freeze-dried formulations was for their lyoprotectant properties. 
However, sugar has additional benefits such as the stability improvement and the prevention of agglom-
eration upon drying, as it acts as a matrix-former34. Initially trehalose or mannitol was included as lyo-
protectants, but the formulations with trehalose were ruled out due to their inferior dispersibility in the 
in vitro aerosolisation, and therefore low lung deposition. After spray-freeze-drying the particles contain-
ing trehalose, SEM observations revealed that the particles were aggregated, the laser diffraction particle 
size distribution was wider and therefore it was inaccurate to report average particle sizes (Fig. 2(a); (iii)). 
The use of trehalose was also associated with increased hygroscopicity. Therefore, mannitol was found to 
be a superior lyoprotectant in the silk-based formulations.

Structure of particles and determination of crystallinity. The x-ray diffraction showed that the spray-dried 
Bm fibroin were amorphous as no peaks were present in the diffractogram (Fig. 2(b); (i)). When mannitol 

Figure 1. SEM (a–c) and AFM (d,e) micrographs of silk-based particles: (a) spray dried Bm fibroin; (b) 
spray-freeze-dried Bm fibroin 0.5% mannitol 1% cisplatin 0.1%; (c) spray-freeze-dried Bm fibroin 0.5% 
genipin 0.05% mannitol 1% cisplatin 0.05%, cross-linked for 15 hours; (d) spray dried Bm fibroin; (e) spray-
freeze-dried Bm fibroin 2% trehalose 1%.
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was used as the lyoprotectant, sharp peaks were present in the x-ray diffractogram of the formulations 
that represented crystalline structures (Fig.  2(b);  (ii,iii)). The intensity of diffracted x-ray was slightly 
lower at around 40 degrees (2θ ) in (iii) compared to (ii) and it can be seen that the cross-linking of 
silk fibroin with genipin led to a slightly less crystalline formulation compared to the non-cross-linked, 
spray-freeze-dried silk fibroin. However, there were minor differences overall and thus the effect of 
cross-linking with genipin was observed to have minimal impact on the level of crystallinity as well as 
the structure of the particles.

Particle dispersibility and in vitro testing for deposition in the lungs. The spray-dried particles were dis-
persed with almost no particles retained in the capsule inside an Aeroliser® inhaler device, after it was 
subject to airflow of 60 L/min for the duration of 4 seconds. The fine particle fraction (FPF), the pro-
portion of particles with aerodynamic diameter less than 5 μ m, was calculated to be 61.67% (Fig. 2(c)).

The aerodynamic diameters of the particles were used by calculating the percentage of particles in 
each of the seven stages in the NGI. The stages on the NGI were separated by the cut-off diameters as 
stated in the figure legend of Fig. 2. The majority of the particles were deposited in stages 2 to 4, repre-
senting the particles with aerodynamic diameters between 8.06 and 2.82 μ m at the airflow of 60 L/min 
(Fig. 2(d))26. A similar pattern was observed in the spray-freeze-dried Bm fibroin and FPF was calculated 
to be 62.25%, also similar to the spray-dried particles (data not presented). Although there were clear 
differences in the average geometric particle size according to the method of formulation, FPF and thus 

Figure 2. (a) Particle size distributions obtained from dynamic light scattering: (i) spray-freeze-dried 
silk +  mannitol +  cisplatin, (ii) spray-freeze-dried silk +  mannitol +  cisplatin +  genipin, (iii) spray-freeze-
dried silk +  trehalose. (b) X-ray diffractograms of: (i) spray-dried silk alone, (ii) spray-freeze-dried 
silk +  mannitol +  cisplatin, (iii) spray-freeze-dried silk +  mannitol +  cisplatin +  genipin, with angular 
increments of 0.02° covering a 2θ  range of 2 to 70° show that particles are amorphous (smooth) or 
crystalline (with peaks). (c) Cumulative mass fraction for spray-dried Bm fibroin particles showing fine 
particle fraction (FPF) of particles less than 5 μ m in diameter, obtained using in vitro lung deposition 
measurement. (d) The distribution of particles at airflow 60 L/min for 4 seconds using a next generation 
impactor; S1 to S7 represent stage numbers with aerodynamic diameter cut-off points 8.06, 4.46, 2.82, 1.66, 
0.94, 0.55 and 0.34 μ m respectively. S8 represents micro orifice collector, the last collection point on the 
impactor.
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the aerosolisation efficiency were similar due to their porosity and low density, as per equation presented 
above.

These results showed that silk-based particles had high efficiency of aerosolisation, comparable or 
higher than those of dry powder inhaler formulations currently on the market, including SeretideTM 
and SymbicortTM35,36,37. On the other hand, the FPF for spray-freeze-dried Bm fibroin with trehalose was 
unable to be determined as the majority of the particles were retained inside the capsule and could not 
be dispersed for in vitro testing.

In vitro release of cisplatin. By engineering the formulation of silk-based particles, it was possible to 
regulate the extent of the cisplatin release in an in vitro model. The silk-cisplatin (cross-linked) particles 
produced a higher percentage of cisplatin (~40%) to be released in the first hour and then maintained a 
stable concentration thereafter (Fig. 3). The cisplatin release from non-cross-linked silk-cisplatin particles 
released ~18% of cisplatin in the first hour, followed by a small increase of drug released in the next 
points (Fig. 3).

The higher percentage release of cisplatin in the cross-linked formulation may have been due to the 
faster diffusion of cisplatin from the particles, which were highly porous (Fig. 3, SEM image insert). This 
morphology results in much greater surface contact area with the fluid and thus significantly increases 
the interactions with media and disintegration/degradation of the particles. In contrast, non-cross-linked 
particles were spherical, relatively smooth and characterized with compact structure. Hence, slower drug 
release could be related to smaller contact area of these particles with media and slow degradation pro-
cess of the silk-based particles.

The potential benefits of faster diffusion and retaining the higher concentration of drug observed in 
the cross-linked formulation include the extended duration of action of drug and potentially improved 
patient compliance. Another finding was that mannitol included in the formulations as a lyoprotectant 
actually had additional benefits in enhancing drug release due to its osmotic characteristics38, assisting 
the cisplatin release from the silk fibroin which has slow degradation rate39.

In vitro assays using silk-based particles to confirm cytocompatibility and cytotoxicity. Cell 
viability assays of silk-based particles. The morphology of the cells growing in the presence of silk alone 
was similar to cells in the control group that received no treatment with a slightly lower confluence. 
Distinct differences were observed in the cells treated with cisplatin-containing formulations compared 
to the control. There were also differences between the cross-linked and the normal silk (Fig. 4(a)).

Based on the CCK-8 assay silk fibroin was found to be cytocompatible. In the cells treated with 
silk alone the cell viability was comparable to the control only until day 1. Later, the pattern of the cell 
proliferation remained similar. The rate of cell proliferation for silk alone group was slower than control 
group (Fig.  4(b)). One-way ANOVA statistical analysis showed that the cell proliferation for control 
group was significantly higher than silk alone treatment group on day 7 only (p-values for day 1, 3 and 

Figure 3. Cumulative percentage of cisplatin release in PBS (pH 7.4) from the silk-cisplatin formulations 
(with or without cross-linking) at 37 °C. The corresponding SEM images of the particles show morphological 
differences between the two formulations: Silk-Cisp (cross-linked silk; above) and Silk-Cisp (normal, non-
cross-linked silk; below).
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7 were 0.836, 0.056 and 0.017 respectively). These results correspond to the images in Fig. 4(a), as it can 
be seen that the human lung epithelial cells can proliferate normally in the presence of silk fibroin. The 
cisplatin-containing formulations with cross-linked or normal silk showed statistically significant sup-
pression of growth of the cells from day 3 compared to control (p-values 0.021 and 0.019 for cross-linked 
and normal silk, respectively) (Fig. 4(b)). This cytotoxic effect was maintained until day 7 and was con-
sidered that the cisplatin was effectively carried and delivered to the cancer cells by the silk-based par-
ticles. Since the CCK-8 assay is a measure of metabolic activity of cells, it was necessary to measure the 
dsDNA content for more accurate estimate of the number of cells.

Double stranded DNA content (Picogreen® assay). The results from the cell viability assays were con-
firmed by dsDNA content assay using the Picogreen® assay. The dsDNA content was comparable across 
all conditions on the first day after treatment. Clear differences were observed after 3 days of incubation 
(Fig. 4(c)). The number of cells in the samples treated with silk alone was less but comparable to the con-
trol group, which was in line with the results from the CCK-8 cell viability assay and the phase images. 
The cells treated with cisplatin had significant yet comparably minimal changes in dsDNA content from 
day 1 to day 3. Overall, these results were consistent with the results from the cell viability assay and 
supported that the metabolic activity of the cells correlated with the quantity of dsDNAs present. One 
important finding was that the metabolic activity measured in the cell viability assay also encompassed the 
increased metabolic activity of senescence cells. The smaller increase in the dsDNA content from day 1 to 
day 3 in the silk-cisplatin (cross-linked) formulation compared to the normal silk-cisplatin formulation 
was not apparent in the cell viability graph (Fig. 4(b,c)). These observations correspond well with our drug 
release study as discussed above. This suggests that the higher cytotoxicity of silk-cisplatin (cross-linked) 
formulation was due to higher extent of cisplatin release and the concentration of cisplatin maintained.

Cell metabolism. The glucose concentration decreased by 1.5 g/L in the culture medium for control (no 
treatment), after seven days (Fig. 5(a)). The treatment with silk alone showed similar results with glucose 
concentration changed by 1.45 g/L after seven days of experiment. There were minor changes in the glucose 
concentration for the medium with cells treated with cisplatin delivered via normal or cross-linked silk, 
decreasing only by 0.76 g/L and 0.39 g/L respectively, after seven days. This reflected that there were certainly 
less number of cells that were metabolically active. They thus had subsequently reduced glucose uptake 

Figure 4. Comparison of cell viability and vitality in response to silk alone and silk-cisplatin particles 
(where silk is cross-linked or normal, as indicated); the concentration of particles used is 1 mg/ml (w/v) 
for all samples. (a) Phase microscopy showing differences in cell morphology depending on treatment. (b) 
The cell viability using CCK-8 assay: cell proliferation measured on days 1, 3 and 7 after treatment. (c) 
Quantification of double stranded DNA obtained from cells 1 and 3 days after treatment.
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from the media, which is in agreement with the results from the CCK-8 cell viability assay. Similarly there 
was no significant lactate release over the seven days for cells treated with both normal and cross-linked 
silk-based formulations (Fig. 5(a)). This finding also supported the data from cell viability assays, as lactate 
is produced by mammalian cells as a metabolite by-product during the process while glucose is utilized for 
energy production40. The increases in lactate concentration in the media for the cells treated with silk alone 
were similar to the increase observed in the control group, which represented cell proliferation over time.

Changes in cell sizes and morphology. The surviving cells were characterised by varying sizes dependent on 
the formulation. The cells that received no treatment (control) had average perimeters of 106.68 μ m whereas 
the cisplatin-containing normal and cross-linked silk-based particles led to cells having average perimeters 
of 175.24 μ m and 205.15 μ m respectively, after 48 hours of treatment with conditioned media (Fig.  5(b)). 
One-way ANOVA statistical analysis showed that the sizes of the cells treated with cisplatin released from 
non-cross-linked silk were significantly larger compared to control at both day 1 and day 2 (p-values 0.004 
and 0.014 respectively). The cross-linked silk had significant effect on cell size only at day 2 and not day 1 
(Fig. 5(b)) (p-value for day 2 was 0.001). The enlargement of cells was indicative of senescence-like cells, where 
they were metabolically active, but failed to divide upon being treated with cisplatin41.

The effect of cisplatin released from the cross-linked silk formulation was remarkably evident in the 
reduced number of cells. The change in the shape of surviving cells and the presence of senescence-like 
cells were observed along with the enlarged actin (Fig. 5(c)). Furthermore, considerably less number of 
nuclei (shown in blue; stained with DAPI) were present after 2 days of treatment with cisplatin compared 
to the control, which represented less number of live cells.

Figure 5. Comparison of the effects of various treatments on: (a) glucose and lactate levels detected in 
media in response to cell metabolism; (b) average size of cells at 1 and 2 days after treatment (*indicates 
statistically significant difference in cell size with the control group). (c) Immunofluorescence images after 
2 days of treatment with normal media as control (above) and silk-cisplatin released from cross-linked silk 
(below), stained with F-actin (green) and DAPI (blue).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:11878 | DOi: 10.1038/srep11878

Figure 6. (a) Phase images of the cells in wound repopulation assay. The “wound” closed for the control 
group and the cells treated with silk alone within 48 hours. The “wound” gap remains unclosed for the cells 
treated with silk-cisplatin formulations regardless of the formulation type. (b) A phase image of the cells 
treated with silk-cisplatin (cross-linked) formulation for 48 hours, after washing with PBS – only small 
number of viable cells was observed; the “wound” gap did not close. (c) A schematic diagram of the cell 
migration experimental setup. (d) Comparison of the number of cells migrated in “suppressed attraction” 
assay (*indicates statistically significant difference in the number of cells migrated compared with the control 
group). Scale bars represent 400 μ m.
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Wound repopulation assay. After 2 days of treatment, the areas of the wounds were almost completely 
closed by the cells treated with normal media and media containing silk alone. In contrast, the wounds 
remained unclosed for those treated with cisplatin. The cells treated with formulations with silk alone or 
silk with sugar had repopulated and closed the wound in a similar manner to control (Fig. 6(a)). The cells 
treated with cisplatin-containing normal or cross-linked silk formulations did not repopulate. The cyto-
toxic treatment had detached and killed the cells that were attached on the tissue culture plate (Fig. 6(b)).

Cell migration. The suppressed movement of the cells in response to the particles was monitored using the 
presence of the FBS concentration gradient from 1% in the upper chamber and 10% in the lower chamber 
(Fig. 6(c)). The cells were found to move favourably from the upper chamber to the lower chamber containing 
silk alone and significantly less number of cells migrated when cisplatin-containing particles were present in 
the lower chamber (Fig. 6(d)). There were no significant differences observed in the migration of cells treated 
with cisplatin delivered via cross-linked or normal silk. The differences in cell responses between these two 
samples may be greater if the formulation is modified, possibly by using a higher concentration of genipin or 
by altering the cross-linking time to achieve a more extensively cross-linked silk fibroin.

Conclusion
Inhalable silk particles are successfully formulated to act as carriers of the drug for the targeted delivery 
to the lungs. The aerosolisation performance of the particles demonstrates the ability for adequate disper-
sion and reaching down to the lower airways. Cisplatin incorporated into silk-based carriers demonstrate 
the potential to deliver cisplatin directly to the lungs via dry powder inhalers instead of the conventional 
injection method. The optimized formulations of silk-based drug carriers are shown to be cytocompatible 
with A549 lung epithelial cell line. The cells show normal growth and proliferation in the presence of silk 
protein in the media. Silk fibroin is cross-linked with genipin for a modified release of cisplatin. Cytotoxicity 
investigation showed that the cross-linked formulation released cisplatin more effectively. Thus it had more 
potent cytotoxic effect compared to the normal silk-cisplatin formulation. Future investigation may be 
carried out with the optimisation of the formulations to achieve desired release rates, for instance by com-
bining the normal and cross-linked silk-based formulations. This also could lead to further exploration of 
the release mechanism of drug from silk-based formulations. Our fabricated silk-based delivery system may 
lead to a more effective targeted delivery of cisplatin to the lung cancer cells.
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