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SUMMARY

The transcription-related DNA damage response was
analyzed on a genome-wide scale with great spatial
and temporal resolution. Upon UV irradiation, a slow-
down of transcript elongation and restriction of gene
activity to the promoter-proximal�25 kb is observed.
This is associated with a shift from expression of long
mRNAs to shorter isoforms, incorporating alternative
last exons (ALEs) that are more proximal to the
transcription start site. Notably, this includes a shift
from a protein-coding ASCC3 mRNA to a shorter
ALE isoform of which the RNA, rather than an
encoded protein, is critical for the eventual recovery
of transcription. The non-coding ASCC3 isoform
counteracts the function of the protein-coding iso-
form, indicating crosstalk between them. Thus, the
ASCC3 gene expresses both coding and non-coding
transcript isoformswith opposite effects on transcrip-
tion recovery after UV-induced DNA damage.

INTRODUCTION

The efficient production and correct processing of nascent RNA

polymerase II transcripts is essential for life. Factors that affect

transcription and mRNA splicing, including DNA damaging

agents, can thus have a dramatic effect on gene expression

and cell viability. Indeed, bulky DNA lesions such as those gener-

ated by UV irradiation trigger rapid shutdown of RNA synthesis

(Mayne and Lehmann, 1982; Rockx et al., 2000). They also elicit

transcription-coupled repair (Gaillard and Aguilera, 2013), and,

as a last resort, ubiquitylation and degradation of damage-

stalled RNA polymerase II (RNAPII) (Wilson et al., 2013).

Although both transcriptional initiation and elongation are

affected by UV irradiation (Rockx et al., 2000; Proietti-De-Santis

et al., 2006; Andrade-Lima et al., 2015), the extent, mechanism

and functional consequence of the changes occurring in these
Cell 168, 843–855, Feb
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processes remain poorly understood. UV irradiation induces

global changes to RNAPII phosphorylation (Rockx et al., 2000),

altered binding of TATA-binding protein to DNA (Vichi et al.,

1997), and modifications to chromatin (Adam et al., 2013; Dinant

et al., 2013), underscoring the complexity of the transcription-

related DNA damage response. Moreover, transcription-repair

coupling factor Cockayne syndrome B (CSB) is required not

only for DNA repair, but also for transcription restart after DNA

damage (Proietti-De-Santis et al., 2006).

The vast majority of RNAPII genes have the potential to be

expressed asmultiplemRNA isoforms, creating vast regulatory po-

tential (Pan et al., 2008;Wanget al., 2008). Indeed, changes in alter-

native isoform expression can regulate the physiological response

ofcells tostressorother signals. Importantly, processingofnascent

pre-mRNA occurs co-transcriptionally, so that mRNA capping,

splicing, and 30 end formation are greatly influenced by the dy-

namics of elongation (de la Mata et al., 2003; Ip et al., 2011; Pinto

et al., 2011; Fong et al., 2014). A general kinetic model has hence

emerged wherein the rate of elongation governs RNA processing

(de la Mata et al., 2003; Muñoz et al., 2009; Pinto et al., 2011).

To better understand the effect of UV irradiation on gene

expression, we examined nascent transcription and transcript

isoform expression on a genome-wide level. We hereby uncov-

ered evidence that UV-induced alternative last exon (ALE)

splicing is important for the DNA damage response, with long

and short ASCC3 ALE isoforms having opposite effects on tran-

scription recovery after DNA damage. We also show that the

short ASCC3 isoform regulates transcription recovery in a

manner that is dependent on the non-coding RNA rather than

the encoded protein.
RESULTS

Transcript Elongation Rates Are Reduced Immediately
after UV Irradiation
To investigate the effect of UV irradiation on transcription

genome-wide, we employed 5,6-dichloro-1-b-D-ribofuranosyl-

benzimidazole/global run-on sequencing (DRB/GRO-seq), which
ruary 23, 2017 ª 2017 The Authors. Published by Elsevier Inc. 843
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. UV Irradiation Triggers Transcript

Elongation Slow-Down

(A) Schematic of UV/DRB/GRO-seq.

(B) Profile of nascent PPP1R12A RNA reads after

DRB-release ± UV irradiation (15 J/m2 used

throughout this study). Arrows indicate transcription

wave-fronts.

(C) As in (B), but meta-gene profile of normalized

GRO-seq reads across 8,148 genes.

(D) Position of the GRO-seq transcription wave-

front for 333 long genes over time ± UV irradiation.

Dashed lines indicate median wave-front positions.

(E) Meta-gene profile of normalized GRO-seq reads

�2 kb to +120 kb relative to the TSS, ± UV irradia-

tion followed by 2, 8, and 24 hr recovery. Arrows

indicate the height of the promoter proximal peak.

Shaded areas indicate gene regions characterized

by increased (yellow) or decreased (gray) GRO-seq

signal 2 hr after UV exposure, normalizing over time.

(F) Gradual recovery of GRO-seq reads 90–120 kb

downstream of the TSS following UV irradiation.

See also Figure S1.
allowsmeasurement of nascent RNA synthesis at a high temporal

and spatial resolution (Saponaro et al., 2014). Cells were first

treated with the transcription elongation inhibitor DRB to restrict

RNAPII to the promoter-proximal areas (first �600 bp of genes).

Cells were then UV-irradiated, followed by inhibitor removal to

allow synchronized transcription and its genome-wide measure-

ment by GRO-seq (Figure 1A). Results from the PPP1R12A gene

are shown as an example (Figure 1B). In untreated cells, RNAPII

progressed �12 kb into the gene 10 min after DRB removal and

to �38 kb and �74 kb after 25 and 40 min, respectively. These

results mirror previously published data (Saponaro et al., 2014),

but were in striking contrast to those obtained when cells were

UV-irradiated before DRB removal. Here, the position of the

RNAPII ‘‘wave-front’’ was similar to that of untreated cells after

10 min. However, a dramatic reduction in RNAPII progress was

observed 25 and 40 min after UV exposure, with the wave-fronts

in the PPP1R12A gene moving only very slightly further forward,

reaching �15 and �20 kb at these time points (Figure 1B). We

note that little change was observed at the promoter at these

times. DRB/GRO-seq only captures the activity of RNAPII mole-

cules that incorporate 5-bromouridine-50-triphosphate (Br-UTP)

during the short run-on pulse (5 min). This suggests that initiation

and transcript elongation in the promoter-proximal areas still
844 Cell 168, 843–855, February 23, 2017
occurred, while progress further into genes

was very slow or prohibited.

Meta-gene profiles of 8,148 transcripts

revealed that UV irradiation generally

attenuated elongation markedly, with

nascent RNA wave-fronts reaching �75

kb after 40 min in untreated cells (Fig-

ure 1C, upper, black arrow), but only

�25 kb after UV irradiation (Figure 1C,

lower, orange arrow).

To calculate the UV-induced reduction

in elongation rates, the nascent RNA

wave-front was called for a subset of very
long transcripts (n = 333) (Figure 1D). In untreated conditions,

the wave-front progressed to a median distance of 12.5 kb after

10min and to 39 kb and 64.8 kb after 25min and 40min, respec-

tively (Figure 1D, upper; indicated by dashed lines). This corre-

sponds to average elongation rates of 1.77 kb/min (10–25 min)

and 1.72 kb/min (25–40min). In contrast, in UV-treated cells (Fig-

ure 1D, lower), the wave-fronts were at 10.3 kb (10 min), 17.3 kb

(25 min), and 21.0 kb (40 min), respectively (Figure 1D, lower),

giving rise to average elongation rates of only 0.47 kb/min (10–

25 min) and 0.25 kb/min (25–40 min) (see also Figures S1A

and S1B).

RNAPII Progresses Slowly during Transcription Restart
after UV Irradiation
Based on experiments that measured nascent RNA synthesis by

general radioactive labeling (Mayne and Lehmann, 1982; Rockx

et al., 2000; Proietti-De-Santis et al., 2006), transcription levels

should recover to near-normal levels over an �24-hr period. To

analyze transcription restart genome-wide, we therefore per-

formed GRO-seq experiments with cells that were again UV-irra-

diated at 15 J/m2, followed by recovery (Figures 1E and S1C).

This dose of UV did not lead to significant cell death over the

24-hr time course (data not shown). As expected, the distribution



of active RNAPII in untreated cells was characterized by a large

peak in the promoter-proximal region, followed by a marked

reduction in signal further downstream (black graph). Transcrip-

tion was not synchronized with DRB, so this density pattern

represents the distribution of RNAPII expected for actively tran-

scribed genes at steady state. In response to UV irradiation (2 hr

time point), there was a clear reduction in the promoter-proximal

peak (see arrowheads in Figure 1E), suggesting either a reduc-

tion in transcription initiation or increased promoter clearance

(Ehrensberger et al., 2013). Interestingly, the GRO-seq signal

increased in the region up to �20 kb from the transcription start

site (TSS) (Figure 1E, yellow shaded region), concomitant with

depletion further downstream (Figures 1E, gray shaded region,

and 1F). This suggests that while transcription initiation may be

inhibited, considerable elongation activity is observed in the

beginning of genes (possibly reflecting increased promoter

release), and activity is dramatically reduced in regions further

downstream.

As expected, RNA synthesis gradually normalized to that

observed in untreated cells over the 24-hr period, with eventual

restoration of activity at the 30 end of genes (Figures 1E and 1F).

Interestingly, wave-front calling of a subset of very long genes

indicated a rate of transcript elongation of only �40 bases/min

on average from 2 to 12 hr following UV irradiation, more than

40-fold slower than in untreated cells (Figures S1D and S1E).

Mathematically determined, median transcription ‘‘wave-fronts’’

independently confirmed these results (Figure S1F).

Taken together, these data suggest that UV irradiation causes

a rapid and dramatic reduction in transcript elongation, and even

upon recovery of nascent RNA synthesis several hours after UV

exposure, elongation continues to be much slower than in

untreated cells. Most importantly, transcription is spatially

restricted for long periods, with the promoter-proximal 20–

25 kb showing much more activity than the areas further

downstream.

UV-Induced Alternative Isoform Expression
Considering the dramatic change in transcript elongation and

knowing that mRNA processing is tightly coupled to elongation,

we now investigated the effect of UV irradiation on mRNA

splicing by next generation sequencing of cDNA libraries gener-

ated from mRNA. The relative expression of transcript isoforms

was quantitatively measured using the mixture of isoform

(MISO) model (Katz et al., 2010). In total, we identified 435

splicing events in 298 genes that were affected either 8 or

24 hr after UV irradiation in both biological replicates (Figure 2A;

Table S1).

Previous reports uncovered examples of increased inclusion

of cassette exons under conditions of attenuated elongation

(de la Mata et al., 2003; Muñoz et al., 2009; Fong et al., 2014).

Our analysis of 131 UV-induced exon skipping/inclusion events

shows only a slight bias (63%of events) for increased exon inclu-

sion after UV irradiation (data not shown).

Interestingly, alternative last exon (ALE) splicing was the most

frequent UV-induced event (Figure 2A; Table S2), accounting for

more than a third of all those recorded: 156 ALE splicing events

in 105 genes. ALE transcript isoforms are characterized by

different 30 terminal exons and therefore inherently have different
poly-A sites. Importantly, a marked bias for expression of shorter

transcript isoforms (induced ALE transcript isoforms that have

terminal exons more proximal to the TSS) was observed

following UV irradiation (Figure 2B), with 78% of ALE events

(121 of 156) resulting in increased expression of such shorter iso-

forms (hereafter referred to as ‘‘ALE short’’ events). The majority

of these (71/121) involved alternative splicing of unique terminal

exons, indicating they were not solely a result of premature

termination (Figure S2A). Only 35 events were characterized by

increased expression of alternative longer isoforms, from 22

genes (Figure 2B, ‘‘ALE long’’ events).

The relative exon expression of the isoforms for two genes,

HERC4 and INTS6, is described in Figure 2C. The long HERC4

pre-mRNA isoform contains 25 exons and is 153 kb, while the

short HERC4 pre-mRNA is 6.3 kb, shares the first three exons

with the long isoform, but contains a fourth, unique terminal

exon (Figure 2C, left, lower). Eight hours after UV irradiation,

exons 1–4 (indicated by the red dashed boxes) were induced

(Figure 2C, left). In contrast, expression of exons 5–26 (specific

for the long isoform) was reduced, but recovered to near-normal

levels after 24 hr. A similar pattern of alternative exon expression

was seen at the INTS6 gene and a large number of other genes

(Figure 2C, right, and data not shown). qRT-PCR confirmed the

increased expression of the short isoforms and concomitant

lower expression of the long isoforms 8 hr after UV irradiation

(Figure 2D).

The short RNA isoforms of HERC4 and INTS6 were much

shorter than their long isoforms. More generally, the median

length of the UV-suppressed long pre-mRNA isoforms was

�109 kb, considerably longer than that of all human genes

(23 kb), whereas that of the UV-induced short isoforms was

only �32 kb. This reduction in pre-mRNA length for UV-induced

ALE short events was significantly greater than expected by

chance (Figure S2B), indicating a general trend for switching

from particularly long isoforms to much shorter isoforms upon

UV exposure. In contrast, the median length of the less common

UV-induced long ALE isoformswas�30 kb, only 9 kb longer than

the median length of their corresponding, UV-suppressed short

isoform (Figure 2E).

ALE Events Are Associated with Changes in RNAPII
Elongation and Nascent RNA Synthesis
Because transcript elongation was attenuated after UV irradia-

tion (Figure 1), we hypothesized that the UV-induced ALE short

events resulted from preferential synthesis of the pre-mRNA pro-

ducing them. Indeed, after UV-irradiation, GRO-seq read depth

at HERC4 increased over the region coding for the short isoform

(Figure 2F, inset), whereas synthesis in the rest of the gene was

markedly suppressed. Nascent RNA synthesis across the entire

gene recovered to untreated levels 24 hr after UV exposure,

correlating with the kinetics of the HERC4 ALE splicing event.

Consistent with a causative effect, the GRO-seq signal corre-

sponding to the long isoform also remained suppressed at

24 hr for a gene in which preferential expression of the short iso-

formwas detected not only at 8 but also 24 hr after UV irradiation

(Figure S2C).

By comparing GRO-seq signals across proximal and distal

terminal exons, a general, transient increase in the ratio of short
Cell 168, 843–855, February 23, 2017 845
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Figure 2. Splicing Analysis Reveals Frequent

UV-Induced Alternative Last Exon Splicing

(A) UV-induced splicing events.

(B) Relative expression of terminal exons associated with

UV-induced ALE splicing events. The ratio of proximal to

distal terminal exon was calculated for the UV-treated

sample and normalized to the control.

(C) Exon expression profiles for HERC4 and INTS6 upon

UV irradiation. Red, dashed box indicates exons asso-

ciated with expression of the short isoform. Schematic

illustrations are shown below. Red arrows indicate ter-

minal exons specific to the short isoforms.

(D) qRT-PCR validation of isoform expression. GAPDH

normalized data relative to untreated conditions.

(E) Change in pre-mRNA length of ALE short events (left)

and long events (right). Box and whisker plots with min/

max/median represent pre-mRNA lengths.

(F) GRO-seq signal across HERC4 after UV exposure

(boxed inset, area of short isoform). Arrowheads high-

light recovery of gene synthesis at the 30 end after 24 hr.

(G) Box and whisker plots (5–95 percentile with min/max/

median indicated), showing relative GRO-seq read

density of terminal exons following UV irradiation,

normalized to untreated. Data for (D) and others like it in

the following figures are mean ± SEM, t test, *p < 0.05,

**p < 0.01, ***p < 0.001 and ****p < 0.0001.

See also Figures S2 and S3 and Tables S1, S2, and S3.
to long transcript isoform expression was observed, peaking 8–

12 hr after UV (Figure 2G). This increase correlated with a greater

reduction in the synthesis of distal than of proximal exons and

was specific for UV-induced ALE events (Figures S2D–S2F).

Together, the results presented so far indicate that UV irradia-

tion results in a dramatic change in transcription, with elongation
846 Cell 168, 843–855, February 23, 2017
slowing down and RNAPII-mediated RNA syn-

thesis being ‘‘restricted’’ to the 50 end of genes.

This gene-spatial restriction of transcription is

associated with, or indeed causes, the prefer-

ential expression of short transcript isoforms

incorporating alternative last exons.

ASCC3 Short Isoform Is Preferentially
Synthesized in Response to UV
We now investigated whether the preferential

expression of short ALE isoforms in response

to UV irradiation is physiologically important.

Gene ontology analysis of the 84 genes that

undergo UV-induced ALE short isoform

switching revealed that many of them are

involved in transcription (Figure S3). We also

cross-referenced the genes with a recently

compiled database of factors that function

in the transcription-related DNA damage

response (Boeing et al., 2016). Interestingly,

genes with short ALE events were enriched

among the highest scoring genes in this data-

base (p = 0.0077; Kolmogorov-Smirnoff test),

with 28 of the 84 genes being among the

15% highest scorers (Table S3). Among these
factors, ASCC3 stood out: it had the highest score in the multi-

omic screening approach (Boeing et al., 2016).

The pre-mRNA giving rise to the long ASCC3 isoform is

373.5 kb and composed of 42 exons (Figure 3A). The short

ASCC3 isoform is 25 kb in length and shares the first three exons

with the long isoform, followed by a unique terminal exon
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Figure 3. Bulky DNA Lesions Induce ASCC3

Alternative Last Exon Switching

(A) ASCC3 exon expression profiles, as in

Figure 2C.

(B) qRT-PCR validation of the isoform switch 24 hr

after UV irradiation. GAPDH normalized data rela-

tive to untreated conditions are averaged, ±SEM.

(C) Expression, determined by qRT-PCR, of the

different isoforms of ASCC3 upon exposure to

100 nM camptothecin (CPT), 20 mM cisplatin

(CisPt), 0.001%MMS, or 5 Gy ionizing radiation (IR).

Untreated conditions (Un) set to 1. GAPDH

normalized as in (B).

(D) GRO-seq signal across ASCC3, as in Figure 2F.

(E) qRT-PCR of nascent pre-mRNA across ASCC3

after UV irradiation, using intron-exon junction

primers (averaged, 18S normalized data, shown

relative to untreated).
(Figure 3A, last exon indicated by the red arrows). Exon expres-

sion for both isoformswas reduced 8 hr after UV treatment. How-

ever, 24 hr after UV treatment, expression of the exons of the

short isoform increased while those specific for the long isoform

remained repressed (Figure 3A). This result was confirmed by

qRT-PCR (Figure 3B). Expression of the long isoform recovered

by 48 hr after UV treatment. Exposure of cells to cisplatin and

camptothecin, but not MMS or ionizing radiation, also resulted

in preferential expression of the short ASCC3 isoform, indicating

that this is a general response to agents inducing bulky DNA le-

sions (Figure 3C).

Similar to what was observed for HERC4, INTS6, and other

genes, the increase in the short ASCC3 isoform was likely

caused by the restriction of nascent RNA synthesis to the begin-

ning of genes after UV irradiation (Figure 3D). Indeed, recovery of

nascent RNA synthesis was only observed over the first half of

ASCC3 24 hr after UV treatment. More importantly, however,
RNA synthesis across the relevant first

25 kb of the ASCC3 gene was induced

at 24 hr (Figure 3D, inset; see also

3E). The transcription characteristics at

ASCC3 thus again correlated with ALE

switching and preferential production

of the short ASCC3 isoform after UV

irradiation.

ASCC3 Protein Affects
Transcription after UV Irradiation
As expected from the results above,

nascent RNA synthesis rapidly decreased

after UV exposure as indicated by signifi-

cantly reduced incorporation of ethynylur-

idine (EU) into nascent RNA, followed by a

slow recovery (Figure S4A). In the multi-

omic screening approach, we screened

for nascent transcription using the EU

incorporation assay to identify genes

whose small interfering RNA (siRNA)

knockdown affect transcription 20 hr after
UV irradiation (Boeing et al., 2016). Intriguingly, two distinct

siRNA pools targeting ASCC3 scored in this screen; one resulted

in high transcription while the other resulted in low transcription

levels after UV irradiation. Gratifyingly, the distinct siRNA pools

targeted different ASCC3 ALE isoforms (Figures 4A and 4B).

ASCC3 siRNA pool-1 specifically targets the long mRNA iso-

form, which encodes the full-length ASCC3 protein. Knockdown

with this pool resulted in high transcription levels after UV irradi-

ation, as indicated by a reduced percentage of lowly transcribing

cells and an overall increase in EU incorporation signified by a

shift of the histogram to the right (Figures 4C and 4D, left histo-

gram). ASCC3 is a component of the poorly studied activating

signal co-integrator 1 complex (Jung et al., 2002). ASCC3 was

also identified in a screen for genes affecting infection of West

Nile virus in interferon (IFN)-b-treated human cells, with silencing

of ASCC3 resulting in upregulation of certain interferon-stimu-

lated genes (Li et al., 2013). However, a role for ASCC3 as a
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global suppressor of transcription is both unexpected and

exciting. Tellingly, siRNAs targeting two other members of the

ASCC complex, ASCC1 and ASCC2, also resulted in increased

nascent transcription after UV irradiation (Figures 4B and 4D,

center and right histogram), suggesting that the ASCC complex

functions as an entity to keep transcription repressed after DNA

damage. Moreover, two individual ASCC3 siRNAs, as well as

stable shRNA expression targeting the long isoform increased

transcription 20 hr after DNA damage, but did not affect tran-

scription in untreated cells, or the immediate transcription shut-

down observed 2 hr after UV irradiation (Figures 4E, S4B, top

panel, and S4C). The differential effect at 2 and 20 hr is impor-

tant, as it shows that transcription is suppressed in two distinct

ways during UV-induced DNA damage, namely rapid ASCC3-in-

dependent transcriptional repression, followed by continued

ASCC3-dependent suppression in the later stages of the DNA

damage response. To measure the effect of ASCC3 knockdown
848 Cell 168, 843–855, February 23, 2017
at 20 hr quantitatively, we calculated the proportion of cells that

fail to recover transcription relative to the proportion of cells that

have high levels of transcription after UV irradiation (Figure 4E,

lower panel, populations to the left of the stippled black line

and right of the gray line, respectively). In response to UV expo-

sure, knockdown of the long isoform of ASCC3 significantly

reduced this low/high transcription ratio (Figure 4F). We

conclude that the ASCC3 protein, in the context of the ASCC

complex, suppresses transcription specifically in the late stages

of the cellular response to UV irradiation.

The Short ASCC3 RNA Isoform Is Required to Recover
Transcription after UV Irradiation
In marked contrast to siRNA pool-1, ASCC3 siRNA pool-2

dramatically reduced transcription after UV irradiation (Fig-

ure 4B). Two of the four siRNAs in pool-2 specifically target se-

quences unique to the terminal exon of the short alternative
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transcript isoform (Figure 4A, dark blue box), reducing short iso-

form transcript levels 79% and 82%, respectively (Figure S4B,

lower panel). Knockdown with these siRNAs neither affected

transcription in untreated cells, nor did it affect global transcrip-

tion shutdown immediately after UV irradiation (Figure 5A, top

and middle panels). However, in a manner similar to knockdown

of Cockayne syndrome B (Figures S4D and S4E), knockdown of

ASCC3 short isoform inhibited transcription recovery, as indi-

cated by a marked general change in the characteristics of

nascent transcription across the cell population (Figure 5A,

20 hr panel), and consequently an increase in the ratio of lowly

to highly transcribing cells after UV irradiation (Figure 5B).

Furthermore, knockdown of ASCC3 resulted in increased sensi-

tivity to UV-irradiation (Figure 5C). This indicates that UV-

induced expression of the short ASCC3 ALE isoform is indeed

physiologically important, in all likelihood because this isoform

is required for transcription to recover after UV irradiation.

To confirm the role for the short ASCC3 isoform in transcrip-

tion recovery, we also used CRISPR-Cas9-mediated gene

editing to specifically remove the ALE that is specific to the short

isoform, thereby abolishing short isoform expression but leaving

the long isoform intact (Figures 5D, 5E, S5A, and S5C). As ex-

pected, these knockout cells, hereafter abbreviated ‘‘short

knockout cells,’’ also showed a defect in transcription recovery

in response to UV (Figures 5F and 5G).

Antagonistic Regulation by the Short and Long ASCC3

Isoforms
In the analysis above, we focused entirely on nascent RNAPII

transcription. To further characterize the role of the ASCC3 iso-

forms in transcription after UV irradiation, we now used Illumina

BeadArrays to compare their effect on stable mRNA expression
20 hr after UV irradiation. Compared to UV-treated control cells,

108 genes were differentially expressed in short knockout cells

at this time-point, the majority of which (73%, 79/108) were

downregulated (Figure 6A; Table S4). In contrast, 170 genes

were differentially regulated in cells deficient for ASCC3 long

isoform (long knockdown cell), of which 64% (107 genes) were

upregulated. Interestingly, many of the genes that were downre-

gulated in short knockout cells were upregulated in long knock-

down cells (Figure 6A; p value < 10�5, hypergeometric test on

differentially regulated probes). qRT-PCR analysis of two such

genes, IL7R and VEGFC, is shown in Figure 6B.

We also noticed that a subset of the genes that were most

markedly affected by ASCC3 were in fact greatly induced 20 hr

after UV irradiation in control cells. Indeed, the increased expres-

sion of five such genes was largely eliminated in short knockout

cells (Figure 6C, upper panels). Strikingly, all of these genes were

‘‘over-induced’’ in long knockdown cells (Figure 6C lower

panels), again pointing to opposite regulatory effects of the

long and short ASCC3 RNA isoforms.

The results presented so far suggest that the long and short

ASCC3 isoform are functionally antagonistic: the ASCC complex

(of which ASCC3 is a component) maintains transcriptional

repression after DNA damage, while the short ASCC3 isoform

seems to de-repress it. This raised the intriguing possibility

that transcription defect observed in ASCC3 short knockout

cells might be rescued by depleting the long isoform. Strikingly,

knockdown of the long ASCC3 isoform (Figure 6D), or ASCC2

(Figure S6), did indeed rescue the expression of several genes

in short knockout cells following UV irradiation. Moreover, it

also rescued the defect in global, nascent transcription recovery

after UV irradiation, with the high proportion of lowly transcribing

cells observed upon short ASCC3 knockdown (KD) or knockout
Cell 168, 843–855, February 23, 2017 849
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See also Figure S6 and Table S4.
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(KO) returning to more normal levels when the long isoform was

also depleted (Figure 6E). Importantly, knockdown of the long

isoform did not affect expression of the short RNA isoform and

vice versa (Figures S5A and S5B), showing that simple regulation

of each other’s expression cannot underlie the antagonistic ef-

fects observed.

Together, these results support the idea that the long and

short ASCC3 isoforms have opposing regulatory roles in tran-

scription, affecting both global nascent transcription and stable

mRNA expression of several individual genes in opposite

directions.

ASCC3 Short Isoform Functions as a Non-coding RNA
The UV-induced short mRNA isoform contains a 333 nt coding

sequence (CDS), the protein product of which is only 13 kDa

and lacks known functional domains (see Figure 4A). Frustrat-

ingly, ectopic expression of this CDS failed to suppress the low

transcription phenotype of short knockdown cells (Figures S7A

and S7B). Repeated, unsuccessful attempts prompted us to

consider the possibility that it might not be the protein-coding

function of the short isoform that is important. Interestingly, in

addition to the 333 nt CDS, the endogenous ASCC3 short iso-

form transcript also contains a 2.8 kb 30 untranslated region

(30-UTR), which is unique to this isoform (Figure 4A). To test the

hypothesis that the function of the ASCC3 short mRNA isoform

required the non-coding 30 RNA sequence, we again expressed

ASCC3 short isoform, this time including the 30 sequence, which

does not itself contain open reading frames (ORFs) of significant

length. Importantly, the 13 kDa encoded protein was expressed

to similar levels irrespective of inclusion of the 30-UTR in the tran-

script (Figure S7B). Remarkably, however, in contrast to the CDS

alone, the transcript containing the 30-UTR suppressed the low

transcription phenotype (Figures 7A and 7B).

These results suggest that the short ASCC3 isoform promotes

transcription restart via a mechanism that is mediated by RNA,

not protein. To further investigate this possibility, we assessed

cells for expression of the protein encoded by the short

ASCC3 isoform. Although the 13 kDa protein product of this iso-

form could be detected following ectopic expression using an

antibody targeted toward its unique C terminus (Figure S7B),

the protein could not be detected in untransfected cells. We

therefore generated an antibody against an N-terminal epitope

of ASCC3, which is shared between the long and short protein

isoforms. Immunoprecipitation using this antibody pulled down

the large (251 kDa) ASCC3 protein as well as the ectopically

expressed 13 kDa isoform, but the endogenous short pro-

tein isoform could not be detected, neither by immunoblot-

ting nor targeted mass spectroscopy (Figure S7C, and data

not shown).

To more conclusively test whether ASCC3 short isoform was

indeed functioning as a non-coding RNA, we now used the

construct expressing the CDS with its 30UTR, but this time

inserting a premature stop mutation at the beginning of the

CDS. As expected, this construct failed to produce protein

(Figure S7B). Nevertheless, it rescued the low transcription

phenotype in cells deficient for the short isoform (Figures 7A–

7D), showing that the short ASCC3 isoform must function as a

non-coding RNA.
RNA in situ hybridization experiments revealed that the short

ASCC3 isoform transcript is overwhelmingly nuclear with some

enrichment in discrete spots within the nucleus (Figure 7E).

Localization was not significantly affected by UV irradiation,

and the knockout cells lost the signal, confirming that the probes

for in situ hybridization were specific (Figures S7D and S7E). In

contrast, probes targeting the protein-coding long ASCC3 iso-

form produced a signal in both the nucleus and cytoplasm (Fig-

ure 7E). Biochemical cell fractionation producing cytoplasmic

(S1), nucleoplasmic (S2), and chromatin-enriched (P2) fractions

(Figure 7F) further revealed that the short ASCC3 isoform is pri-

marily chromatin-associated (Figure 7G), similar to other long

non-coding RNAs (lncRNAs), including MALAT-1 (Figure S7F).

Together, these data show that the short ASCC3 isoform func-

tions as a non-coding RNA in the nucleus of human cells.

DISCUSSION

In this report, we provide evidence for a dramatic and global ef-

fect of UV irradiation on transcript elongation, which impacts

RNA processing and provides significant potential for cellular

regulation. UV exposure results in spatial restriction of transcrip-

tion and slower elongation, with the result that only the promoter-

proximal 20–25 kb are efficiently transcribed. Together, these

events underlie a switch to expression of short mRNA isoforms

and preferential use of alternative last exons in a number

of genes, including ASCC3. Intriguingly, the switch between

ASCC3 isoforms occurs on more than one level, in that the

longmRNA isoform encodes a protein, functioning in the context

of the ASCC complex and required for maintaining transcrip-

tional suppression in the late stages of the DNA damage

response, whereas the short isoform functions as a nuclear

non-coding RNA that is required for transcription to recover.

Intriguingly, the short and long isoforms constitute an autono-

mous regulatory module and functionally interrelate, so that the

effect of deleting one can be at least partially compensated for

by deleting the other (Figure 7H).

Preferential Short ALE Isoform Expression in Response
to Elongation Shutdown
The spatial restriction of transcription is surprising, but might

allow some short genes to remain expressed after UV irradiation.

Indeed, this phenomenon may finally explain the puzzling obser-

vation that human genes that remain expressed or are induced

upon UV irradiation are invariably very short (McKay et al., 2004).

The significant spatial restriction of transcription activity and

attenuation of elongation also explains the reduction in expres-

sion of long transcript isoforms, while the relative persistence

of promoter-proximal RNA synthesis allows expression of short

mRNA isoforms. Indeed, it seems obvious that region-restricted

transcription, combined with slow transcript elongation, must

underlie the increased expression of ALEs associated with these

short RNA isoforms. Interestingly, data from others support the

idea that recognition and inclusion of an ALE might slow tran-

scription down even further (Kwak et al., 2013; Nojima et al.,

2015) and thus promote the usage of otherwise dormant poly-A

sites (Pinto et al., 2011). In this sense, ALE isoform expression

might arguably also be classified as alternative termination/
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Figure 7. The Short ASCC3 Isoform Is a Chromatin-Associated lncRNA

(A and B) Histogram (A) and low/high transcription ratio plot (B), showing the effect on transcription of expressing different siRNA-resistant RNAs in ASCC3 short

isoform knockdown cells. (A) Blue arrows indicate the reduction in lowly transcribing cells and concomitant increase in highly transcribing cells following rescue

with ASCC3 short isoform constructs containing the 30UTR. Data in (B) are relative to UV-treated control cells, mean ± SEM. n.s., not significant; CDS, coding

sequence; Mut. CDS, stop-containing CDS mutant.

(C and D) As in (A) and (B) but for short isoform knockout cells.

(E) RNA scope In situ hybridization signals for endogenous ASCC3 long and short isoforms. RNA scope signal (red) was overlaid with DAPI to highlight nuclear

localization.

(F) Immunoblot showing localization of RNAPII (RPB1 subunit), hnRNPA1, tubulin, and histone H3 following sub-cellular fractionation. S1, cytoplasmic; S2,

soluble nuclear material; P2, chromatin pellet.

(G) Enrichment of the short ASCC3 isoform in the S2 and P2 fractions as determined by qRT-PCR. As control, P2 was analyzed without reverse transcriptase

(�RT). Data are relative to untreated S1 fraction, mean ± SEM.

(H) Model showing RNAPII (gray sphere) producing nascent ASCC3 transcript (red), including the alternative last exon (thick blue line). Splicing determines

exclusion/inclusion of the ALE and 30-UTR (boxes on right). The protein-encoding long isoformmRNA and the non-coding short isoform have opposite effects on

the DNA damage response and affect each other’s function (indicated by double arrow on right).

See also Figure S7.
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poly-adenylation (poly-A) events, due to the inherently different

poly-A sites associated with these transcript isoforms.

The Transcriptional Response to UV Irradiation Is Multi-
layered and Complex
The analysis presented here uncovers an unexpectedly complex

transcriptional response to UV exposure, as well as novel

proteins and a non-coding RNA involved in regulating it. The

transcription response can be sub-divided into several distinct

phases. First, the immediate response to UV irradiation is a rapid

and dramatic decrease in transcript elongation rates, within

minutes of exposure. Second, this is followed by a decrease in

transcriptional initiation within 2 hr of exposure. Together, these

events constitute the molecular manifestation of the long estab-

lished ‘‘global transcription shutdown’’ first observed decades

ago (Mayne and Lehmann, 1982).

Third, a state of slow elongation is sustained for at least 12 hr

following UV irradiation, despite the fact that lesion density is

greatest immediately after UV irradiation and lesion removal in

genes occurs at an exponential rate with a half-life of 8 hr after

15 J/m2 irradiation (Venema et al., 1990). This strongly suggests

that the transcriptional response to UV irradiation is not caused

solely by RNAPII stalling at DNA damage, but that UV irradiation

also results in the activation of protein factors and pathways in

trans. In support of this idea, our ongoing experiments with

mutants from the screen for genes affecting transcription after

DNA damage that also uncovered ASCC3 (Boeing et al., 2016),

as well as recent data on PRC1 and UBR5 (Sanchez et al.,

2016), strongly indicate that certain protein factors are indeed

required for UV-induced transcription shutdown to take place.

Without these factors, transcription continues even in the pres-

ence of DNA damage.

Fourth, as outlined in detail here, the widespread repression of

transcription is maintained in the late phases of the UV-induced

DNA damage response by a novel, separatemechanism, namely

via ASCC complex-mediated transcriptional suppression. Inter-

estingly, ASCC3 is not required for the establishment of tran-

scriptional repression, only for maintaining it. Remarkably, this

intriguing suppression mechanism is negated by the action of

the short ASCC3 RNA isoform, which ultimately allows transcrip-

tion to recover.

ALE Isoform Expression of ASCC3 Regulates the
Transcription Response to UV Irradiation
Our data onASCC3 comprise evidence that the UV-induced shift

to expression of short ALE transcript isoforms represents phys-

iologically important regulation. Intriguingly, knockdown of the

long ASCC3 isoform rescues the transcription defect in cells

lacking the short isoform, highlighting that the long and short

isoforms regulate one another to control transcription after UV

irradiation. This indicates that the balance between long and

short isoform expression, which is temporarily altered as a

consequence of UV irradiation, is critical for regulating transcrip-

tion shutdown and recovery.

Despite being annotated as protein-coding, the short ASCC3

transcript isoform is nuclear andmay in fact not be translated to

a significant extent. Indeed, its function in transcriptional

restart after UV irradiation is dependent on the non-coding 30
UTR and is retained after its coding ability is disrupted. The

short ASCC3 RNA isoform likely functions as a non-coding

RNA. Long non-coding RNAs (lncRNAs) are generally

bioinformatically characterized by being relatively stable,

RNAPII-generated RNAs lacking ORFs of 300 nts or more (Der-

rien et al., 2012). However, the distinction between mRNAs and

lncRNAs is often somewhat blurred (Sampath and Ephrussi,

2016), and our data show that even though the short ASCC3

isoform does contain an ORF of 333 nts, it is functionally a

lncRNA (of �3,500 bases). This points to a previously

uninvestigated source of lncRNAs, namely alternative last

exon (ALE)-derived, non-coding transcript isoforms produced

from well-known protein-coding genes. To our knowledge,

the only other example of a gene with alternative protein coding

and functional lncRNA transcript isoforms is steroid receptor

RNA activator 1 (SRA). Ironically, in contrast to ASCC3, SRA

was long thought to encode a lncRNA, which regulates steroid

hormone receptor driven transcription, but it may also produce

ORF-containing alternative transcript variants that can be

translated into protein. Unlike ASCC3, however, SRA produces

alternative protein-coding splicing isoforms through mecha-

nisms that introduce AUG codons not present in the lncRNA

isoform (reviewed by Leygue, 2007).

The short ASCC3 RNA isoform appears to function, at least in

part, by repressing the function of the ASCC complex, of which

ASCC3 protein is a DEAD/DEAH box DNA helicase component

(Jung et al., 2002; Dango et al., 2011). ASCC3/ASCC complex

was identified through its role in transcriptional regulation (Jung

et al., 2002; Li et al., 2013), but its biochemical mechanism of

action remains unknown. We found that ASCC3 interacts with

both RNAPII and CSB and it becomes highly ubiquitylated

and phosphorylated upon UV irradiation (Boeing et al., 2016),

suggesting a direct effect on transcription and regulation via

post-translational modification. Understanding the biochem-

ical function of ASCC complex is an important future goal,

not least because it is a prerequisite for understanding the

function of the ASCC3 lncRNA. Although we have so far failed

to uncover convincing evidence for it, one possibility is that the

chromatin-associated ASCC3 lncRNA regulates transcription

through binding and regulating the ASCC complex. However,

it might also function through recruitment of other factors.

For example, lncRNAs such as HOTAIR and XIST both regulate

transcription through recruitment of histone modification com-

plexes and in the case of HOTAIR, even ubiquitin ligases (Bhan

and Mandal, 2015; Rutenberg-Schoenberg et al., 2016). Two

DNA damage-induced lncRNAs, lincRNA-p21 and PANDA,

regulate p53-mediated gene expression by interacting with

DNA/RNA binding proteins, resulting in gene-specific repres-

sion (Huarte et al., 2010; Hung et al., 2011). Post-transcriptional

mechanisms for lncRNA function have also been described,

including miRNA sequestering and regulating mRNA decay

and translation (Abdelmohsen et al., 2013).

Other UV-Induced ALE Genes
Intriguingly, our analysis uncovered a number of other geneswith

characteristics similar to those of ASCC3. For example, INTS6

encodes an 887 amino acid (aa) protein, which is a subunit of

the Integrator complex (Baillat et al., 2005). Upon UV irradiation,
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however, a much shorter RNA isoform is expressed, with the

capacity to encode a 115 aa protein, which lacks the C-terminal

region required for association with INTS3 and presumably the

rest of the Integrator complex (Zhang et al., 2013). Likewise,

HERC4 encodes a putative ubiquitin ligase (1,057 aa), but also

a short UV-induced isoform potentially encoding a 110 aa

protein, which lacks the catalytic domain. Other interesting ex-

amples, such asSUPT16H (encoding the large subunit of the his-

tone chaperone FACT) and RAD51C (involved in homologous

DNA recombination) were also detected. Again, both encode

very short, UV-induced isoforms, which might not result in func-

tional proteins. Some of these short protein isoforms have been

detected in a deep proteome sequencing project (Kim et al.,

2014), but it is unclear whether they are functionally relevant,

or whether, like for ASCC3, the short, stable, poly-adenylated

transcript isoforms encoding them act in the form of lncRNAs.

Addressing the precise function of these transcripts in the DNA

damage response represents an important future goal.
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Söding, J., Stewart, A., and Svejstrup, J.Q. (2014). RECQL5 controls transcript

elongation and suppresses genome instability associated with transcription

stress. Cell 157, 1037–1049.

Venema, J., Mullenders, L.H., Natarajan, A.T., van Zeeland, A.A., and Mayne,

L.V. (1990). The genetic defect in Cockayne syndrome is associated with a

defect in repair of UV-induced DNA damage in transcriptionally active DNA.

Proc. Natl. Acad. Sci. USA 87, 4707–4711.

Vichi, P., Coin, F., Renaud, J.P., Vermeulen, W., Hoeijmakers, J.H., Moras, D.,

and Egly, J.M. (1997). Cisplatin- and UV-damaged DNA lure the basal tran-

scription factor TFIID/TBP. EMBO J. 16, 7444–7456.

Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., King-

smore, S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regula-

tion in human tissue transcriptomes. Nature 456, 470–476.

Wilson, M.D., Harreman, M., and Svejstrup, J.Q. (2013). Ubiquitylation and

degradation of elongating RNA polymerase II: the last resort. Biochim. Bio-

phys. Acta 1829, 151–157.

Zhang, F., Ma, T., and Yu, X. (2013). A core hSSB1-INTS complex participates

in the DNA damage response. J. Cell Sci. 126, 4850–4855.
Cell 168, 843–855, February 23, 2017 855

http://refhub.elsevier.com/S0092-8674(17)30067-3/sref12
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref12
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref12
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref13
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref13
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref13
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref14
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref14
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref14
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref15
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref15
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref15
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref16
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref16
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref16
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref16
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref17
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref17
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref17
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref17
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref18
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref18
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref18
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref19
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref19
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref19
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref19
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref20
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref20
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref20
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref21
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref21
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref21
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref22
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref22
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref22
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref23
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref23
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref23
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref24
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref24
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref24
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref25
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref25
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref25
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref26
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref26
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref27
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref27
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref27
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref27
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref28
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref28
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref28
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref28
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref29
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref29
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref29
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref30
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref30
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref30
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref30
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref31
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref31
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref31
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref32
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref32
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref32
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref33
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref33
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref33
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref33
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref34
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref34
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref34
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref34
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref35
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref35
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref35
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref36
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref36
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref36
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref36
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref37
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref37
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref37
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref38
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref38
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref38
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref39
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref39
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref39
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref39
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref39
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref40
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref40
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref40
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref41
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref41
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref42
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref42
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref42
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref43
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref43
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref43
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref43
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref44
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref44
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref44
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref44
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref45
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref45
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref45
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref46
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref46
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref46
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref47
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref47
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref47
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref48
http://refhub.elsevier.com/S0092-8674(17)30067-3/sref48


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPB1 The Francis Crick Institute Core Facility 4H8

Tubulin The Francis Crick Institute Core Facility Tat-1

hnRNPA1 Abcam Ab5832

Histone H3 Abcam Ab1791

ASCC3 (long protein) Dango et al., 2011 N/A

ASCC3 (short protein) This Paper N/A

ASCC3 (N-terminal) This Paper N/A

Chemicals, Peptides, and Recombinant Proteins

5,6-Dichlorobenzimidazole 1-b-D-

ribofuranoside (DRB)

Sigma-Aldrich D1916

Anti-BrUTP, agarose coupled Santa Cruz Biotech. sc-32323 AC

5-Bromouridine 50-triphosphate sodium

salt (Br-UTP)

Sigma-Aldrich B7166

iQ SYBR green supermix Bio-Rad 1708880

Superase ThermoFisher Scientific AM2694

DNase, RNase Free Promega M6101

INTERFERin Polyplus 409-10

5 Ethynyl-uridine Jena Bioscience CLK-N002-10

Alexa Flour 488 Azide ThermoFisher Scientific A10266

Dynabeads Protein A ThermoFisher Scientific 10001D

ANTI-FLAG M2 Affinity Gel Sigma-Aldrich A2220

Methyl methanesulfonate (MMS) Sigma-Aldrich 129925

cis-Diammineplatinum(II) dichloride

(Cisplatin)

Sigma-Aldrich P4394

Camptothecin Sigma-Aldrich CDS008734

ASCC3 peptide 1 for N-terminal antibody:

MALPRLTGALRSFSNVTKQDNYNEC-

CONH2

This paper N/A

ASCC3 peptide 2 for N-terminal antibody:

KRSKLHEQVLDLGC- CONH2

This paper N/A

ASCC3 peptide for Short isoform antibody

CPFQKRRLDGKEEDEKMSRASDRFR

GLR-COOH

This paper N/A

Critical Commercial Assays

Nuclei Isolation Kit: Nuclei EZ Prep Sigma-Aldrich NUC101-1KT

RNeasy Mini Kit QIAGEN 74104

miRNeasy Mini Kit QIAGEN 217004

TruSeq RNA Sample Preparation kit Illumina RS-930-2001

TruSeq Stranded Total RNA LT Sample

Prep kit

Illumina RS-122-2201/2

Taqman Reverse Transcriptase Reagents Applied Biosystems N8080234

RNAscope 2.5 HD Reagent Kit-RED Advanced Cell Diagnotics 322350

RNAscope Probe- Hs-ASCC3-tv1 Advanced Cell Diagnotics 468231

RNAscope Probe- Hs-ASCC3-tv2 Advanced Cell Diagnotics 443331

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

DRB/GRO-Seq -/+ UV This study GEO: GSE91010

UV 24 hr GRO-Seq This study GEO: GSE91011

RNASeq -/+ UV 8 and 24 hr This study GEO: GSE92239

Illumina bead array -/+ UV ASCC3 short

isoform knockout cells

This study GEO: GSE92325

Illumina bead array -/+ UV ASCC3 long

isoform shRNA knockdown cells

This study GEO: GSE92327

Experimental Models: Cell Lines

Human: MRC5VA cell line The Francis Crick Institute Cell Services N/A

Experimental Models: Organisms/Strains

Human: MRC5VA shASCC3 (long) The Francis Crick Institute Cell Services N/A

Human:MRC5VA ASCC3 short KO clones 1

and 2

The Francis Crick Institute Cell Services N/A

Recombinant DNA

pSpCas9(BB)-2A-GFP (PX458) Addgene 48138

pTre3G (empty plasmid) Clontech 631173

pTre3G Flag ASCC3 short coding sequence

(CDS) cDNA

This paper N/A

pTre3G Flag ASCC3 short CDS with

30UTR cDNA

This paper N/A

pTre3G Flag ASCC3 short Mutated CDS

with 30UTR cDNA

This paper N/A

Sequence-Based Reagents

See Table S5

Software and Algorithms

BWA Li and Durbin, 2009 http://maq.sourceforge.net/

SAMtools Li et al., 2009 http://samtools.sourceforge.net/

TopHat2 Kim et al., 2013 http://ccb.jhu.edu/software/tophat/

index.shtml

MISO Katz et al., 2010 http://genes.mit.edu/burgelab/miso/

DEXSeq Anders et al., 2012 http://bioconductor.org/packages/release/

bioc/html/DEXSeq.html

GenomicRanges Lawrence et al., 2013 https://bioconductor.org/packages/

release/bioc/html/GenomicRanges.html

Limma Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

DAVID Bioinformatics resource Huang et al., 2009 https://david.ncifcrf.gov/

HCS Studio 2.0 Cell Analysis Software ThermoFisher Scientific https://www.thermofisher.com/order/

catalog/product/SX000041A
CONTACT FOR REAGENT AND RESOURCE SHARING

For reagent requests please contact Jesper Svejstrup (jesper.svejstrup@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human MRC5VA cells were grown at 37�C, 5% CO2 in DMEM supplemented with 10% fetal bovine serum and 5% penicillin/strep-

tomycin. Cell lines were routinely screened for mycoplasma contamination and human species authenticated by STR profiling and

PCR based analysis, performed by the Francis Crick Institute Cell Services.
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METHOD DETAILS

Cell line manipulation and generation
Cells were transfected with siRNAs using Interferin transfection reagent followed by a minimum of 48 hr incubation prior to UV irra-

diation. Lipofectamine 2000 was used for plasmid DNA transfection. For generation of stable ASCC3 knockdown cells, MRC5VA

cells were infected with lentiviral particles carrying ASCC3 long isoform-targeting shRNA or non-targeting shRNA followed by selec-

tion with puromycin (1 mg/mL). For generation of ASCC3 short isoform knockout cells, cells were transfected with a Cas9- and guide

RNA-containing vector (PX458) that targeted the introns up- and downstream of the terminal exon of the short isoform of ASCC3.

Individual GFP-positive cells were selected by fluorescence-assisted cell sorting and clones were screened for deletion of the

desired fragment by genomic PCR and RT-qPCR.

UVC-irradiation was performed using either a Stratalinker 2400 (Stratagene), or a purpose-built UVC box that was used to irradiate

384-well plates. Unless otherwise stated, 15 J/m2 was used.

GRO-Seq
UV/DRB/GRO-Seq (Figures 1A–1D, S1A, and S1B) was done essentially as described in Saponaro et al. (2014): approximately 6 X

106 MRC5VA cells were cultured in DMEM media containing 10% FBS, 5% penicillin/streptinomycin and 100 mM 5,6-Dichloroben-

zimidazole 1-b-D-ribofuranoside (DRB) for 3.5 hr. DRB-containing media was removed and cells were either left untreated or

exposed to 15 J/m2 UVC irradiation. Cells were then washed with PBS and placed in fresh media without DRB. Cells were then incu-

bated for 10, 25 or 40 min. Transcription-competent nuclei were prepared using the Nuclei Isolation Kit by scraping cells in 10 mL of

cold lysis buffer followed by a spin at 500 x g for 5 min at 4�C then resuspended in 400 mL cold storage buffer supplemented with

protease inhibitors and Superase. Nuclear Run-On reactions were carried out by addition of 400 mL Run-On Buffer (10 mM

Tris-Cl pH 8.0, 5 mM MgCl2, 1 mM DTT, 300 mM KCL, 20 units of SUPERase, 1% Sarkosyl, 500 mM ATP, GTP, CTP and Br-UTP)

and incubation at 30�C for 5 min. Run-On reactions were stopped by addition of 10 X DNaseI buffer (93 mL) and RNase Free DNase

(40 mL) and incubation for 1.5 hr 30�C shaking. Br-UTP run-on labeled RNAwas isolated using anti-Br-UTP coupled agarose beads at

room temperature for 1 hr. Beads were washed once with low salt buffer (0.2X SSPE, 1mM EDTA, 0.05% Tween), twice with high salt

buffer (0.5X SSPE, 1 mMEDTA, 0.05% Tween, 150 mMNaCl) and twice with TE pH 8.0 + 0.05% Tween. RNAwas eluted from beads

(20 mM DTT, 300 mM NaCl, 5 mM Tris pH7.5, 1 mM EDTA, 0.1 mg/mL glycogen and 0.1% SDS) at room temperature. Eluates were

acid phenol-chloroform extracted and precipitated.

The purified RNA was used for the preparation of strand-specific RNA libraries using the TruSeq Stranded Total RNA LT Sample

Prep kit, and sequenced on an Illumina HiSeq 2000 sequence analyzer as single-ended 51 bp reads.

For the 0-24 hr GRO-Seq experiment (Figures 1E, 1F, and S1C–S1F), approximately 6 X 106 of MRC5VA cells were either left un-

treated or UVC-irradiated with 15 J/m2 and allowed to recover for 2, 5, 8, 10, 12 or 24 hr. Nuclei were isolated and run-on and RNA

isolation was performed as above.

The purified RNA was used for the preparation of strand-specific RNA libraries using the TruSeq Stranded Total RNA LT Sample

Prep kit, and sequenced on an Illumina HiSeq 2000 sequence analyzer as 101 bp reads.

RNA-Seq
MRC5VA cells were either left untreated or treated with 15J/m2 of UVC irradiation followed by recovery for 8 or 24 hr. RNA was ex-

tracted using RNeasy Kit and analyzed on a 2100 Bioanalyzer (Agilent Technologies). All samples had an RIN value of greater than 8.

The purified RNA was used for the preparation of poly A selected mRNA libraries using the TruSeq RNA sample preparation kit and

sequenced on an Illumina GA IIX sequence analyzer as paired-end 72 bp reads.

Reverse Transcriptase Quantitative PCR
RNeasy Mini Kit purified RNA was used to generate random hexamer primed cDNA libraries using Taqman Reverse Transcriptase

Reagents. Quantitative PCR were performed using iQ SYBR green Mastermix, 0.3 mM primer concentration and equal 1 mL of cDNA

library per reaction. Reference gene normalized RNA expression was compared between variable (ex. UV-treated) and control sam-

ples using the Livak equation (Livak and Schmittgen, 2001). For example, to measure the expression of the short isoform of ASCC3

under UV-treated compared to untreated conditions, the following equation was used (2^-((CTASCC3short-CTGAPDH)UV-(CTASCC3short-

CTGAPDH)UN)).

For experiments where RNA levels were compared between subcellular fractions (Figures 7G and S7F), ASCC3 short isoform and

Malat-1 CT values were not normalized to a reference gene. Here, relative RNA levels in the nucleoplasmic enriched S2 fraction

compared to cytoplasmic S1 fraction was calculated using the following Equation (2^-(CTS2fraction-CTS1fraction). RNA levels in the

chromatin fraction were similarly determined using (2^-(CTP3fraction-CTS1fraction). Column graphs represent the average relative

RNA expression across at least 3 biological replicate experiments. Primer sequences are found in Table S5.

50 Ethynyl Uridine transcription assay
SiRNA was diluted in HBSS (500 nM) and 5 mL of diluted siRNA was deposited in 384 well plates. Interferin transfection reagent

was diluted 1/100 in OPTI-MEM and 5 mL of transfection reagent was deposited on top of diluted siRNA. SiRNA/Interferin mix
e3 Cell 168, 843–855.e1–e6, February 23, 2017



was incubated at room temperature for 15 min. MRC5VA cells were diluted in DMEM containing 10% FBS and 5% penicillin/strep-

tinomycin to a density of 2.25 X 104 cells/mL and 40 mL was deposited on top of the transfection mix (900 cells/well). Cells were incu-

bated for 48 hr. Media was aspirated from the 384-well plates and cells were either exposed to 15 J/m2 using a custom built UVC box

or left untreated. Media was replaced and cells were incubated for the indicated amount of time. Media was replaced with fresh me-

dia containing 0.75 mM 5 Ethynyl uridine (EU) and cells were incubated for 2 hr. EU-containing media was removed and cells were

fixed in PBS buffered formaldehyde (3.7%) for 45 min at room temperature, washed once with PBS using a plate washer followed by

permeabilization with 0.5% TX-100 diluted in PBS for 30 min. Plates were washed once with PBS then Alexa Fluor 488 Azide fluo-

rophores were covalently attached to EU-containing RNA by click reaction (100 mM Tris pH 8.5, 4 mM Cu2SO4, 10 mM Alexa azide

488, 100mM Ascorbic Acid) for 1 hr at room temperature. Plates were washed 3 times in 100 mM Tris, pH 7.5 and stained with DAPI

(40,6-diamidino-2-phenylindole dihydrochloride) at a final concentration of 1 mg/ml. Plates were washed once with PBS. Automated

image acquisition of 6 fields per well was performed (Cellomics Array Scan VTI, ThermoFisher Scientific) using a 10 3 objective.

Clonogenic Survival Assay
1.5 X 105MRC5VA cells were cultured in 6-well dishes and incubated overnight. SiRNA targeting ASCC3 or non-targeting control was

diluted in 150 mL HBSS (500 nM) and mixed with Interferin diluted in 150 mL OPTI-MEM (5 mL interferin per well). The siRNA/Interferin

mix was incubated at room temperature for 15 min then added to wells containing 2.7 mL of fresh media (final siRNA concentration

50 nM). Plates were incubated for 30 hr then cells were treated with Trypsin/EDTA, counted and seeded in 6-cm dishes at a low den-

sity for colony formation. Cells were incubated overnight followed by UVC irradiation with 2, 5, 10 and 15 J/m2 (48 hr after siRNA

transfection). Colonies were allowed to form over a 10-14 day period and were stained with crystal violet and counted.

Gene expression array
RNA was purified using RNeasy Mini Kit from ASCC3 short isoform knockout (clone 2) cells and MRC5VA parental control cells,

ASCC3 long isoform knockdown cells and scrambled shRNA control cells either in untreated conditions or 20 hr following UV irra-

diation. Each condition was represented by 3 biological replicates. RNA samples were processed by services provided at the Oxford

Genomic Centre using the Illumina TotalPrep-96 RNA Amplification Kit followed by the Illumina Whole-Genome Gene Expression

Direct Hybridization Assay. The labeled cRNA was then hybridized to Human HT-12_V4_BeadChip for gene expression.

Subcellular fractionation
Protocol was adapted fromMayer et al. (2015). MRC5VA cells were left untreated or UV-irradiated followed by 4 hr or 20 hr recovery.

�4 x106 cells/ condition were harvested by trypsin/EDTA, washed with PBS, resuspended in Cytoplasmic lysis buffer (0.15%NP-40,

10mMTris-HCl (pH 7.0), 150mMNaCl, 50 U SUPERase, 1 X protease inhibitor mix) and incubated on ice 5min. Lysates were layered

on top of Sucrose buffer (10 mM Tris-HCl (pH 7.0), 150 mM NaCl, 25% sucrose, 50 U SUPERase, 1 X protease inhibitor mix) and

centrifuged 16000 g 10 min 4�C. The supernatent was collected for the cytoplasmic fraction and pelleted nuclei were washed in

Nuclei wash buffer (0.1% Triton X-100, 1 mM EDTA, in 1x PBS, 50 U SUPERase and 1x protease inhibitor mix) spun at 1150 g for

1 min then resuspended in Glycerol buffer (20 mM Tris-HCl (pH 8.0), 75 mM NaCl, 0.5 mM EDTA, 50% glycerol, 0.85 mM DTT,

50 U SUPERase and 1x protease inhibitor mix). Equal volume of Nuclei lysis buffer (1% NP-40, 20 mM HEPES pH 7.5, 300 mM

NaCl, 1M Urea, 0.2 mM EDTA, 1 mM DTT, 50 U SUPERase and 1x protease inhibitor mix) was added followed by vortex and

2 min incubation on ice. Chromatin was pelleted by centrifugation at 18500 g for 2 min 4�C and supernatent collected as the Nuclear

fraction. Chromatin pellets were resuspended in DNaseI buffer (40 mM Tris pH8.0, 10 mM MgSO4, 1 mM CaCl2, 50 U Superase In,

10 U RNase Free DNase) followed by 30 min incubation at 37�C. Digestions were centrifuged 18500 g 10 min and chromatin super-

natents were collected. An aliquot of Cytoplasmic, Nuclear and Chromatin fractions were reserved for immunoblot analysis and RNA

was purified from the remaining sample using miRNeasy Mini Kit. CDNA libraries generated from purified RNA were subjected to

qPCR using primers specific for the short isoform of ASCC3 and Malat-1.

Ectopic expression of ASCC3 short isoform constructs
MRC5VA cells stably expressing the CMV-Tet3G transactivator protein were transfected using lipofectamine 2000 with pTre3G vec-

tor constructs containing siRNA resistant N-terminally Flag-tagged ASCC3 short isoform coding sequence (CDS), CDSwith 30 UTRor

CDS containing an in-frame stop mutation with 30UTR. In experiments where endogenous ASCC3 short isoform was knocked down,

24-32 hr after transfection with ASCC3 transgene expression constructs, cells were subsequently transfected with ASCC3 short iso-

form targeting or NT siRNA followed by addition of doxycycline (100 ng/mL) for 24 hr to support transgene expression. For experi-

ments involving knockout cell lines, transgene transfected cells were cultured in the presence of doxycycline (100 ng/mL) for at least

24 hr. Cells were subsequently exposed to UV irradiation or left untreated and incubated for 20 hr followed by EU incorporation assay.

Immunoprecipitation/Immunoblotting
Expression of the corresponding short isoform protein in Figures S7B and S7C was determined by immunoprecipitation after tran-

sient transfection with the indicated constructs in the presence of doxycycline (100 ng/mL) followed by immunoblotting. Whole cell

lysates were prepared 24 hr after transfection by lysis in cell lysis buffer (50 mM HEPES pH 7.9, 150 mM NaCl, 3 mMMgCl2, 10 mM

EDTA, 10% glycerol, 1% NP-40) followed by immunoprecipitation using M2 Flag agarose or ASCC3 N-terminal-targeting antibody
Cell 168, 843–855.e1–e6, February 23, 2017 e4



for 4 hr. ASCC3 N-terminal antibody was immobilized on protein A Dynabeads. Bead bound immunoprecipitations were washed 3

times in lysis buffer and eluted by boiling in 2 X laemmli sample buffer.

For immunoblotting, protein samples were separated by SDS-PAGE on 4%–12% polyacrylamide gels and transferred onto nitro-

cellulose membrane. Membranes were probed using the indicated antibodies.

RNA in situ hybridization
RNASCOPE 2.5 HD Assay Red Kit and probes targeting the long and short isoform of ASCC3 were designed and supplied by

Advanced Cell Diagnostics. Cells were grown on slides and either left untreated or UV-irradiated with 15 J/m2 followed by 20 hr

incubation. Cells were washed in PBS, fixed in 10% Neutral Buffered Formalin for 30 min. Fixed cells were then washed with PBS

followed by dehydration in ethanol according to manufacturers protocol. Following dehydration, slides were stored in 100% ethanol

at �20 C. Probe hybridization was performed strictly according to manufacturers protocol and counterstained with DAPI. Images

were acquired using a Leica TCS SP5 confocal microscope.

QUANTIFICATION AND STATISTICAL ANALYSIS

GRO-Seq analysis
51 bp single-end reads (DRB/GRO-Seq) and 101 bp single-end reads (24 hr GRO-Seq) were aligned to the hg19 genome assembly

using BWA v0.5.9 and v0.7.10 (Li and Durbin, 2009) respectively with default settings. BAM files were sorted and indexed using

SAMtools (Li et al., 2009). Further analysis was conducted using Bioconductor and its GenomicRanges package (Lawrence et al.,

2013). Reads were extended to 250 bp and each sample was normalized to a read depth of 20 million.

A subset of the protein coding human Ensembl transcriptomewas created by filtering for transcriptsR 30 kb. The largest transcript

per gene was selected, resulting in a list of 8,148 transcribed genes. Base pair level coverage of the region 2 kb upstream, to 120 kb

downstream, of each transcript’s TSS was calculated for each sample. Average transcript profiles were generated by taking a

trimmed mean (0.05) of read depth over each base pair.

Gene specific wave-fronts and elongation rate for DRB/GRO-Seq
Islands of normalized read depth R 3 bp were identified for each gene from the TSS to 120 kb downstream. These islands were

assumed to be evidence of elongation. When read-depth first dropped below 3 for 5,000 consecutive base pairs, elongation was

assumed to have halted, and a wave front was called at the transition point. The 5 kb distance filter was necessary to filter out back-

ground noise and downstream transcripts. Short exonic regions were also excluded in the wave front calling analyses. The subse-

quent list of wave fronts was filtered to remove genes that did not have an increase in wave front progression over time and that had a

wave front called downstream of the transcription termination site. The resulting filtered list was manually curated further to remove

genes with interfering antisense and convergent transcription resulting in a list of 333 genes with wave fronts calculated for all un-

treated and UV-treated time points. These were plotted and the median wave front was determined for each sample. To calculate

elongation rates, the difference in wave front position between the 10, 25 and 40 min time points was calculated for each gene

then divided by the 15 min time interval.

Gene specific wave-fronts for GRO-Seq
Single geneGRO-Seqwave fronts were determined for UV-treated 2-24 hr GRO-Seq experiment (Figures S1D and S1E).Wave fronts

were computationally determined as above. The resulting list of wave fronts were filtered to include expressed genes (RPKM > = 0.3

0 to +250 bp relative to TSS) that displayed sustained GRO-Seq signal between +30 kb (relative to the TSS) and 1 kb downstream of

the TTS. We focused on genes that displayed a reduction in wave front position in response to UV. This resulted in a list of 141 genes

with wave fronts calculated for all samples in the UV time course. These were plotted and the median wave front was determined for

each sample. The elongation rate 2-12 hr post-UV was determined by plotting the median wave front over time and including a line of

best fit. The slope of the line indicates the elongation rate.

Mathematically determined wave-fronts for GRO-Seq
The average gene profile for each of the UV-treated samples was normalized by subtracting from the untreated average gene profile.

The resulting normalized UV-treated profile was smoothed using a loess line. The position along the x axis at which the loess line

crosses y = 0 was used as an estimate of wave-front position. This estimate was further refined by taking the first instance after

the initial wave-front estimate where the derivative of the fitted line was half that at the position of the initial estimate. The elongation

rate 2-12 hr post-UV was determined by plotting the median wave front over time and including a line of best fit (Figure S1F). The

slope of the line indicates the transcription elongation rate.

Single-gene GRO-Seq profiling
Abp resolution profile of log2 (1+ normalized read depth) was created for a single gene’s genomic range ± 2kb. The rangewas divided

into consecutive 500 bp bins and a mean coverage depth across each bin was calculated. A smoothing spline was then applied.
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Terminal exon synthesis analysis
The RPKM of GRO-Seq signal corresponding to the TSS distal and proximal terminal exons of long and short alternative transcript

isoforms was calculated respectively. The UV-treated RPKM for terminal exons corresponding to short and long transcript isoforms

was normalized to untreated conditions and log2 transformed. The ratio of normalized TSS proximal terminal exon log2(RPKM) to

TSS distal log2(RPKM) was calculated for UV regulated ALE events as well as and background events that were not regulated by

UV irradiation and plotted to determine the ratio of short to long isoform expression (Figures 2G and S2D–S2F). Statistical analysis

in S5D is Mann Whitney test, ** p < 0.01, **** p < 0.0001.

RNA-Seq alternative isoform analysis
RNASeq reads were aligned to UCSC genome hg19 using Tophat2 (Kim et al., 2013). Transcript information was obtained from the

UCSC known Gene table. Ambiguously mapped reads were removed from the alignments prior to subsequent analysis (mapped

read-pair range 17111950 - 27119645).

We identified differential spicing events usingMISO (Katz et al., 2010) alongwithMISO’s published splicing event annotation. MISO

was run against pairwise combinations of UV-treated and untreated samples for two biological replicates. We filtered results using

MISO’s post filtering script to generate final events (The number of both inclusion and exclusion reads > 10, delta-psi > 0 and bayes-

factor > 10). Statistically significant events called for the same UV time point in both biological replicates were filtered further for

splicing effect size. To determine an effect size for the different splicing events we quantified each event at the exon level (Splicing

Index (SI)). For events affecting a single exon or intron (Skipped Exon (SE), Retained Intron (RI)), we quantified the spicing event as a

ratio of exon/intron mapped reads over gene mapped reads (For example, for the skipped exon category log2((ExonUV/GeneUV)/

(ExonUN/GeneUN)). In the cases of alternative exon usage where splicing is indicated by a shift from one exon to another (Alternative

first/last exon usage (AFE, ALE)), we quantified the events as a ratio of readsmapping to one over the other (log2((Exon2UV/Exon2UN)/

(Exon1UV/Exon1UN)). For alternative splice site events (A5SS, A3SS) where a proportion of the alternative exon is shared between the

two events we used only reads unique to each event. These counts were treated as in the AFE/ALE cases above. Only splicing events

that had a log2(SI) of R 0.25 or % �0.25 in both biological replicates were included in our final list of UV-induced splicing events

(Table S1). Table S2 shows additional MISO output parameters PSI, deltaPSI and Bayes factor for UV-regulated ALE events.

Non-UV regulated ALE background events (Figure S2) are defined as all potential ALE events in the MISO database of splicing

event annotation that were not significantly affected by UV treatment (n = 7736).

DEXSeq (Anders et al., 2012) was used to produce the exon level expression plots. Plots were manually edited to restrict the anal-

ysis to exons present in the isoforms of interest.

Gene ontology analysis
Gene ontology analysis was performed by uploading gene symbols for UV-regulated ALE events to DAVID Bioinformatics Resources

6.7 (Huang et al., 2009).

Gene expression array
Background subtracted probe signals were averaged across the 3 biological replicates and processed using Limma Bioconductor

package. Genes that were downregulated with a fold change % �1.5 fold in UV-treated ASCC3 short isoform knockout cells

compared to UV-treated parental cells were subjected to hierarchical clustering and log2 fold change values for both short isoform

knockout and shASCC3 long isoform cells were displayed in a heatmap. Results for all genes are shown in Table S4.

EU Assay
Image analysis was performed using HCSStudio 2.0. Cell nuclei weremasked using the DAPI staining. The average intensity of Alexa

Fluor 488-conjugated EU-labeled RNA was measured for each nucleus in at least 3 separate wells and plotted in a histogram. The

threshold identifying low transcription was set for each experiment manually based on the histogram profiles and the percentage of

cells below the threshold was calculated. Histograms represent one biological replicate consisting of 3 technical replicates (2500 -

20000 cells per condition) and column graphs with statistics represent the average of R 3 biological replicates.

DATA AND SOFTWARE AVAILABILITY

Software
Data Resources

The accession number for the DRB/GRO-Seq, 24 hr GRO-Seq, RNA Seq and illumina Bead Array data reported in this paper is GEO:

GSE91012 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE91012.
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Figure S1. Transcription Wave-Front and Elongation Rates, Related to Figure 1

(A) Elongation rate (kb/min) calculated for 333 long genes for the indicated time intervals in untreated and UV-treated cells. Data are box and whisker (min to max)

with median indicated. Mann-Whitney test, ****p < 0.0001. (B) Comparison of the elongation rate for the 10-25 and 25-40min time intervals in UV-treated cells. (C)

Meta gene profile across the region �2 kb to 120 kb relative to the TSS of mean normalized read GRO Seq read density from untreated cells (No UV) and cells

treated with UV followed by 2, 5, 8, 10, 12 and 24 hr. (D) Computationally determined wave fronts for 141 genes during transcription recovery, 2-24 hr post-UV.

Data are box and whisker (min to max), with median indicated. The median wave front for the 24 hr time point is indicated by the red dashed line. (E). The median

wave fronts from B were plotted for samples 2-12 hr after UV treatment. A line of best fit and the corresponding equation is shown. The slope of the line indicates

the rate of transcription elongation as determined by individual gene wave front calling. (F) Mathematically determined GRO-Seq transcription wave fronts during

the transcription recovery 2-12 hr post-UV. A line of best fit and the corresponding equation is shown. The slope indicates the rate of transcription elongation as

determined by mathematical wave front calling.
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Figure S2. UV-Induced ALE Short Events Reduce Transcript Length and Correlate with Nascent RNA Synthesis Compared to Background

Events, Related to Figure 2

(A) Diagram showing UV-induced alternative last exon splicing and premature termination. Normal, fast elongation favors the skipping of the red exon along with

its associated poly-A signal, leading to preferential production of the long isoform. Slower elongation favors splicing of the red exon leading to utilization of the

associated poly-A signal and expression of the short isoform. (B) Illustration depicts the variables used for the equation for relative change in isoform length ((b-a)/

b). Plot of relative change in isoform length for ALE short events (blue line) (n = 121) compared to non-UV regulated background events (n = 7736) (red line) shows

UV-regulated events are characterized by a statistically significant greater difference in short and long isoform length compared to events that were not effected

by UV. Wilcox test, p = 7.195 X10�7. (C) Smoothed GRO-Seq signal across the CNTLN gene showing increased synthesis spanning the 50 region gene corre-

sponding to the short isoform (see boxed inset, 8 and 24 our after UV) and reduced signal across the rest of the gene corresponding to the long isoform. Arrows

highlight the sustained repression of synthesis at the 30 end of the gene 24 hr after UV correlating with preferential short isoform expression at this time point. (D

and E) GRO-Seq read density mapped to the terminal exon of UV-induced short isoforms (D) and UV-suppressed long isoforms (E) at the indicated time points

after UV-irradiation normalized to untreated samples. Data are box and whisker (min to max), with median indicated. (F) No increase of short over long isoforms

was observed for ‘background’ ALE events that were unaffected by UV treatment. The ratio of short isoform (TSS proximal) to long isoform (TSS distal) terminal

exon expression at the indicated times following UV treatment normalized to untreated is shown for background events not regulated by UV (n = 7736) (non-hits,

gray boxes) and for UV-induced ALE short events (n = 121) (hits, black boxes). Data are box and whisker (min to max) with median indicated. Mann Whitney test,

**p < 0.01, ****p < 0.0001.



Category Term Count PValue
GOTERM_BP_FAT GO:0016571~histone methylation 3 0.00508489
GOTERM_MF_FAT GO:0030528~transcription regulator activity 16 0.00674985
GOTERM_BP_FAT GO:0006350~transcription 19 0.01011093
GOTERM_BP_FAT GO:0006479~protein amino acid methylation 3 0.01546633
GOTERM_BP_FAT GO:0034329~cell junction assembly 3 0.01700883
GOTERM_BP_FAT GO:0010035~response to inorganic substance 5 0.0177756
GOTERM_BP_FAT GO:0033033~negative regulation of myeloid cell apoptosis 2 0.01937486
GOTERM_CC_FAT GO:0015630~microtubule cytoskeleton 7 0.01954188
GOTERM_BP_FAT GO:0045449~regulation of transcription 21 0.02045484

GOTERM_CC_FAT GO:0015629~actin cytoskeleton 5 0.020716

Figure S3. Gene Ontology Analysis of ALE Short Genes, Related to Figure 2

Gene ontology of ALE short genes reveals a significant enrichment in genes involved in transcription and transcription regulation.
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Figure S4. RNAi Knockdown of ASCC3 Isoforms and CSB and EU Labeling Assay, Related to Figure 4

(A) EU incorporation for untreated or UV-treated cell populations. Data are average EU intensity/nuclei displayed as histograms. There is a rapid reduction in EU

incorporation 1 hr after UV treatment as indicated by a shift of the population to the left and corresponding increase in the percentage of cells below the low

transcription threshold (indicated by the red dashed line). EU incorporation gradually recovers over the 48 hr time course. (B) RT-qPCR analysis of ASCC3 long

isoform expression in cells stably expressing non-targeting (NT) shRNA and two clones stably expressing ASCC3-targeting shRNA (shASCC3) and short isoform

expression 48 hr after transfection with NT and short isoform-targeting siRNA. (C) EU incorporation for shNT and shASCC3 cell lines in untreated (left panel) and

UV-treated (15 J/m2, 18 hr recovery) (right panel) conditions. Data are average EU intensity/nuclei displayed as a histogram. (D) EU incorporation for UV-treated

(15 J/m2, 18 hr recovery) NT and CSB-targeting siRNA transfected cells shows deficient recovery of transcription in CSB knockdown cells. Data are average EU

intensity/nuclei displayed as a histogram. (E) The ratio of the proportion of low transcribing cells over high transcribing cells in untreated conditions (white bars) or

18 hr after UV (gray bars) transfected with NT or CSB siRNA. Data are mean -/+ SEM relative to UV-treated NT siRNA. t test, ****p < 0.0001.
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Figure S5. Deficiency in ASCC3 Short Isoform Does Not Affect ASCC3 Long Isoform Expression and Vice Versa, Related to Figure 5

(A) ASCC3 short isoform knockout cells that were left untreated or UV treated (15 J/m2) followed by 20 hr recovery were analyzed for long isoform expression by

RT-qPCR. Data are normalized to GAPDH and relative to untreated parental samples, mean -/+ SEM. Knockout cells have a slight increase in long isoform

expression (�1.2 fold) in untreated conditions compared to parental controls but equally downregulate long isoform expression in response to UV. (B). Cells

stably expressing ASCC3 long isoform-targeting shRNA or NT shRNA control were left untreated or UV treated (15 J/m2) followed by 20 hr recovery and analyzed

for short isoform expression by RT-qPCR. Data are GAPDH normalized and relative to untreated shNT cells, mean -/+ SEM C. Expression of ASCC3 protein in

ASCC3 short knockout cells and parental control cells in untreated and UV-treated (15 J/m2, 24 hr) conditions. Tubulin is shown as a loading control. Expression

of ASCC3 protein is unaffected by short isoform knockout.
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Figure S6. Rescue of Transcription in UV-Treated ASCC3 Short Isoform Knockout Cells by Knockdown of ASCC2, Related to Figure 6
ASCC3 short isoform knockout cells (clone 2) and parental cells (WT) were transfected with NT or ASCC2-targeting siRNA and incubated for 48 hr prior to

exposure with UV (15 J/m2). Expression of IFIT2, IFI44 and IL7R was analyzed by RT-qPCR 20 hr after UV treatment. Data are GAPDH normalized and relative to

UV-treated NT siRNA transfected parental cells, mean -/+ SEM. Note that the NT siRNA transfected samples are the same as those shown in Figure 6E. t test, *p <

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure S7. ASCC3 Short Isoform Transgene Expression and RNA Localization in MRC5VA Cells, Related to Figure 7

(A) Cells transfected with an ASCC3 short isoform coding sequence (CDS) expressing construct or mock transfectedwere incubated for 30 hr prior to transfection

with NT or ASCC3 short isoform-targeting siRNA. Cells were UV-treated 48 hr after siRNA transfection followed by a 20 hr recovery. Data are average EU intensity/

nuclei displayed in a histogram. Expression of ASCC3 short isoform CDS did not rescue the low transcription following ASCC3 short isoform knockdown. (B)

Inputs (5%) (lanes 1-4) andM2 Flag immunoprecipitation (IP) (lanes 5-8) from untransfected cells and cells ectopically expressing Flag-tagged ASCC3 transcripts

containing the coding sequence alone (CDS), coding sequence with 30 UTR (CDS +30UTR) and coding sequence with 30UTR that contains an in-frame premature

stopmutation (Mut. CDS +30UTR). Immunoblot was probed with ASCC3 short isoform specific antibody. ASCC3 short isoform was not detected in input samples

therefore Ponceau S stain is shown as a control for equal protein loading. * indicates a non-specific band in input samples not present in IP elutions. (C) Inputs

(10%) (lanes 1-4) and IP with anti-Flag M2 (lane 5) and ASCC3 N-terminal targeting antibodies (lanes 6-8) was performed on untransfected cells and cells

transfected with constructs encoding Flag-tagged ASCC3 short isoform followed by immunoblotting using ASCC3 short and long isoform specific antibodies.

Ectopically expressed short isoform was pulled down by both Flag and ASCC3 N-terminal antibodies (lanes 5 and 6) however short isoform protein was not

detected in ASCC3 N-terminal antibody pull downs from untransfected cells under both untreated and UV-treated conditions (lanes 7 and 8). IP of ASCC3 long

isoform is shown as a positive control for efficient N-terminal antibody pull down. ASCC3 short isoform was not detected in input samples. (D) RNA scope In situ

hybridization followed by Fast Red staining using probes targeting the ASCC3 short isoform, in untreated cells and UV-treated cells after 18 hr recovery. The

nucleus was counterstained with DAPI. The primarily punctate nuclear localization of ASCC3 was not significantly affected by UV treatment over several in-

dependent experiments. (E) RNA scope In situ hybridization in short isoform knockout cells with short and long isoform-targeting probes shows specific loss of

short isoform signal but not long isoform signal confirming the short isoform probe signal was indeed specific for the short isoform of ASCC3. (F) LncRNAMalat-1

is enriched in the chromatin-associated P2 fractions as determined by RT-qPCR. The P2 fraction was also analyzed in the absence of reverse transcriptase (-RT)

as a control. Data are relative to untreated S1 fraction, mean -/+ SEM.
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