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Abstract 17 

The incorporation of CaO into an inert porous solid support has been identified as an effective 18 

approach to improve the stability of adsorbents for CO2 capture. In this work, we focus on enhancing 19 

the capacity of carbon capture and cyclic stability of CaO by impregnating CaO particles into a three-20 

dimensional mesoporous silica (KIT-6) support. At a low CaO loading, the three-dimensional 21 

mesoporous support was filled with CaO nano-particles. The further increase of CaO loading resulted 22 

in the aggregation of CaO particles on the external surface of the support material, as identified by 23 

electron microscopy analysis. These CaO/KIT-6 adsorbents show excellent high-temperature CO2 24 

carbonation/calcination stability over multiple cycles of CaO carbonation and calcination. The 25 

enhancement of the performance of carbon capture is attributed to the interaction between CaO and 26 

the silica skeleton of KIT-6 through the formation of interfacial CaSiO3 and Ca2SiO4 which enhanced 27 

the resistance of CaO sintering. 28 
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1. Introduction 31 

CO2 emissions are major contributions to climate change and ocean acidification [1, 2]. Natural 32 

concentration of atmospheric CO2 ranges from 180 to 300 ppm [3]. However, the current 33 

concentration of CO2 is over 407 ppm owing to the combustion of fossil fuels [4, 5]. With global 34 

economic growth, especially for developing countries, the atmospheric CO2 concentration is likely to 35 

be further increased. Thus technologies for carbon capture are gaining worldwide interest [6-8]. At 36 

high temperature (~700 ˚C), CaO-based adsorbent can be used for carbon capture and for sorption-37 

enhanced hydrogen reaction [9]. In addition, the production of synthetic natural gas could be directly 38 

produced from the captured CO2 using multifunctional catalytic adsorbents [10].  39 

Calcium oxide is a promising high-temperature CO2 adsorbent, due to its high theoretical capacity of 40 

carbon capture (17.8 mmol CO2 g
-1 CaO), and its low cost and high abundance [11-13]. The major 41 

limitation of CaO-based adsorbents, in particular at high temperature, is their intrinsic low resistance 42 

to particle sintering during the multicycle operation [14-16]. Thus a poor carbonation/calcination 43 

reversibility is obtained due to the inhibition of CO2 diffusion through CaCO3, a product formed on 44 

the surface of CaO during carbon capture. Several methods have been reported to enhance the 45 

capacity of CO2 uptake and to reduce the sintering of CaO particles for carbon capture using CaO-46 

based adsorbents. One of these methods is called controlled precipitation which can produce small 47 

and uniform porous CaO particles [17]. Furthermore, the pre-treatment of adsorbents through steam 48 

hydration [18, 19] and acid modification [20] has been investigated to introduce cracks within the 49 

CaO particles to reduce the blockage of pores during carbon capture [19]. Manovic et al. [15] 50 

investigated steam reactivation of a spent adsorbent. It was reported that both the reversibility and the 51 

capacity of CO2 capture were enhanced for the reactivated adsorbent compared to the parent material. 52 

In addition, the pre-treatment of limestone using acetic acid, conducted by Li et al [20], significantly 53 

decreased the crystallite size of CaO, enhancing the resistance to CaO sintering.  54 

The addition of a second metal oxide represents another alternative strategy to improve the sintering 55 

resistance of CaO-based adsorbents [21, 22]. Metal oxides such as MgO [21], Y2O3 [23] and CeO2 56 
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[24] can act as a discrete second phase or react with CaO producing a mixed oxide material such as 57 

Ca12Al14O33 [22], CaTiO3 [25], CaZrO3 [26] and CaSiO3 [27]. Albrecht et al. introduced 20 wt% MgO 58 

into a CaO-based adsorbent, which enhanced the stability of the adsorbent owing to the finely 59 

dispersed MgO species [21]. Zhang et al. [23] synthesized a series of Y2O3-modified CaO adsorbents 60 

via a sol-gel method. With the introduction of Y2O3, the carbonation of CaO was significantly 61 

improved. In addition, a mixed oxide (Ca12Al14O33) was produced via the addition of Al(NO3)3·9H2O. 62 

The authors reported a high CO2 capture capacity of 10.2 mmol g-1 over 13 cycles carbonation and 63 

calcination using the Ca12Al14O33) enhanced adsorbent [22]. However, the addition of expensive 64 

oxides, e.g. Y2O3, CeO2 and TiO2, will reduce the economic viability of the carbon capture process. 65 

SiO2 represents a cost-effective and widely available sinter-resistant metalloid oxide. Zhao et al. 66 

described a sol-gel method to synthesize a porous SiO2 supported CaO, with an optimal Si:Ca ratio 67 

possessing a capture capacity of 7.5 mmol g-1 [27]. The material displayed an excellent stability over 68 

50 cycles of carbonation and calcination due to the presence of Ca-O-Si and specific porosity of the 69 

adsorbent. Mesoporous silicas, MCM-48 modified with organosilane amines [28] and CaO/SBA-15 70 

[29], have shown high capacities of CO2 capture, revealing the feasibility of using both three-71 

dimensional Ia3d and two-dimensional P6mm architectures as the support materials for CaO particles. 72 

KIT-6, a mesoporous SiO2 combining the Ia3d architecture akin to MCM-48 but with larger pore 73 

diameters, has attracted attention in recent years due to its optimal physicochemical properties that 74 

enhance metal dispersion and subsequent accessibility of reactants [30, 31].   75 

Here we applied KIT-6, a highly stable CO2 inert silica framework, as a support for CaO which was 76 

employed for high-temperature CO2 carbonation. To our knowledge, this is the first time to use the 77 

mesoporous silica KIT-6 in CaO based CO2 capture system. Its physicochemical properties could 78 

enhance the stability of CaO, potentially via the formation of interfacial Ca-rich mixed oxide phases, 79 

whilst simultaneously allowing superior carbonation/calcination reversibility due to the reduced 80 

effect of pore blockage arising from its three-dimensional pore structure. The effect of CaO doping 81 

concentration and the resulting influence on CO2 capture were studied within a fixed bed reactor, 82 



4 
 

with characterisations by in-situ X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning 83 

electron microscopy (SEM) coupled to an energy dispersive X-ray spectroscopy (EDX) and 84 

transmission electron microscopy (TEM). 85 

 86 

2. Experimental sections  87 

2.1. Materials preparation 88 

Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, 99.0% purity, Sigma-Aldrich) was used as the CaO 89 

precursor, with the KIT-6 mesoporous silica support synthesized by a non-ionic surfactant templating 90 

approach according to the procedure reported by Kleitz et al [32].  91 

The KIT-6 supported CaO-based adsorbents were synthesized using wet impregnation method. In a 92 

typical experiment, 4.217 g Ca(NO3)2·4H2O, corresponding to 1 g CaO, was dissolved in 25 ml 93 

distilled water. After the precursor was completely dissolved under continuous stirring at 80 ˚C, 0.5 94 

g KIT-6 was then added to the calcium nitrate solution. The solution was kept static for 24 h at room 95 

temperature, prior to the evaporation of water at 80 ˚C. The solid product was calcined in a muffle 96 

furnace at 500 ˚C for 6 h with a heating rate of 2 ˚C min-1. The resulting adsorbents are donated as 97 

CaK-x, where x represents the weight ratio of CaO to KIT-6, which was varied to give values of 0.5, 98 

1, 2 and 4. A commercial CaO (Sigma-Aldrich, 99.99%), dried overnight at 130˚C, was used as a 99 

reference adsorbent. 100 

2.2. Cyclic CO2 capture tests 101 

The performance of the CaK-x adsorbents for carbon capture was measured using an SDT Q600 102 

thermogravimetric analyzer (TGA). The adsorbent (~10 mg) was loaded in an alumina crucible and 103 

activated by heating to 850 ˚C at a ramp rate of 15 ˚C min−1 under pure N2 flow (1 bar, 100 mL min−1) 104 

with the sample held at temperature for  10 min. The carbonation was performed under 15% CO2 in 105 

N2 (1 bar, 100 mL min−1) at 600 ˚C for 30 min. The atmosphere was then switched to pure N2 (1 bar, 106 

100 mL min−1) and the sample was heated to 800 ˚C at 15 ˚C min−1 and held for 10 min. The cycles 107 

of CaO carbonation/calcination were repeated 10 times. 108 



5 
 

In order to compare the performance of CO2 capture using the CaK-x adsorbents, the capacity of CO2 109 

capture and the carbonation conversion are used. 110 

The capacity of CO2 capture was calculated according to the following formula: 111 

        Uptake capacity (mmol g-1) = mmol of CO2 / g of CaO                                      (1) 112 

The carbonation conversion of the sample was calculated using Equation (2). 113 

                      𝑋𝑁(%) =
m𝑁−m1

m0·b
·
MCaO

MCO2

· 100%                                                            (2) 114 

where XN is carbonation conversion of sample, N is the number of cycles, m0 is the initial mass of 115 

sample, b is the content of CaO in the synthesized sample, mN is mass of the carbonated sample after 116 

N cycles, m1 is mass of sample after calcination (mass of sample after each calcination is the same), 117 

and MCaO and MCO2are mole mass of CaO and CO2, respectively. 118 

 119 

2.3. Fixed bed CO2 capture performance 120 

A fixed-bed reactor coupled to a gas analyser (as shown in Fig. 1) was used to determine CO2 capture 121 

performance of the CaK-x adsorbents in a temperature swing process. 200 mg of powdered CaO-122 

based adsorbent was loaded into a tube reactor. The sample was retained in place with quartz wool 123 

plugs, and activated by calcination at 800 ˚C in 100% N2 (1 bar, 100 mL min−1) for 30 min prior to 124 

the temperature swing process evaluation. When the temperature was decreased to 350 ˚C, the 125 

carbonation of CaO was carried out in a 15% CO2/N2 mixture (1 bar, 100 mL min−1) with a heating 126 

rate of 10 ˚C min−1. It was followed by a calcination of CO2 in 100% N2 (1 bar, 100 mL min−1) when 127 

the temperature was increased to 900 ˚C. The temperature swing process was repeated a minimum of 128 

3 times to evaluate and ensure the reproducibility of experimental results. 129 

2.4. Characterization of adsorbent 130 

In-situ XRD was conducted to elucidate the crystalline phase composition of the CaK-x adsorbents 131 

after thermal activation. XRD patterns were collected using an Anton-Paar XRK-900 high-pressure 132 

XRD cell fitted to a Bruker d8 advance XRD, which was equipped with a Cu ka X-ray source (1.54 133 

Angstroms) and a 192-channel Lynxeye high-speed strip detector. Sample activation was carried out 134 
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at 850 ˚C under flowing nitrogen (1 bar, 50 ml/min) for 1 hour, using a heating rate of 10 ˚C min-1 135 

before cooling to 50 ˚C for data collection. Scans were collected from 10˚ to 80˚ 2θ with a step size 136 

of 0.1˚ and dwell time of 1 second. Rietveld refinement for phase quantification was performed using 137 

DIFFRAC.EVA software and crystallite size were determined through application of the Scherrer 138 

equation to the peaks at 37.45˚ (CaO), 26.85˚ (CaSiO3) and 34.32˚ (Ca2SiO4).  139 

Nitrogen adsorption-desorption isotherms were measured using ASAP 2000 analyzer at 77 K. Barrett-140 

Emmett-Teller (BET) surface area was measured using the adsorption branch data in the relative 141 

pressure (P/P0) range from 0.06 to 0.2 [33]. Scanning electron microscopy (SEM) and transmission 142 

electron microscopy (TEM) were conducted on a Stereoscan 360 SEM coupled to an energy 143 

dispersive X-ray spectrometer (EDX) and a JEOL 2010 TEM, respectively. For SEM imaging, 144 

samples were gold splutter coated to reduce charging whilst for TEM analysis samples were ground, 145 

dispersed in acetone, and drop-cast on carbon coated Cu grids.  146 

 147 

3. Results and discussion  148 

3.1. Adsorbent characterization  149 

The nature of the Ca phases present in the adsorbents, after high-temperature activation, was 150 

evaluated by in-situ XRD, with the corresponding patterns of CaK-x reported in Fig. 2. A broad peak 151 

centred around 23˚ is observed in KIT-6, corresponding to the amorphous silica of the support 152 

framework. At the lower CaO loadings, the CaK-0.5 and the CaK-1 exhibit weak features at 23.15˚, 153 

25.3˚, 26.85˚ and 30.02˚ arising from crystalline CaSiO3, which originates at the interface of CaO and 154 

KIT-6. Increasing CaO loading, from the CaK-1 to the CaK-4, results in a transition to a more 155 

calcium-rich silicate, Ca2SiO4, indexed from features at 32.57˚ and 34.32˚. The subsequent formation 156 

of CaO with diffraction peaks at 32.00˚, 37.45˚, 54.00º˚, 64.33˚, and 67.56˚ is observed. A quantitative 157 

analysis of the phase compositions and average crystallite sizes of the Ca species present in the four 158 

adsorbents, and a reference bulk CaO, are reported in Table 1. In addition to the shift to a more Ca-159 

rich silicate with increasing CaO loading, there is a concurrent decrease in the average size of the 160 
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CaSiO3 phase and an increase in the Ca2SiO4 phase, albeit with both showing a similar upper limit 161 

(~40 nm). It potentially indicates an upper limit on the degree of diffusion between these two oxides. 162 

The average crystallite size of CaO phase is increased with the increase of CaO loading, reaching a 163 

maximum of 87 nm, which is still significantly smaller than the commercial bulk CaO material. We 164 

propose an adsorbent structure of CaO nanoparticles supported on calcium silicate, either CaSiO3 and 165 

Ca2SiO4, which are interfacial species between the CaO and the SiO2 KIT-6 framework. The 166 

significant presence, in both quantity and size, of calcium silicates suggests a reasonable degree of 167 

diffusion between the two solids.   168 

N2 adsorption-desorption isotherms and pore-size distributions are utilised to investigate the porous 169 

structure of the parent KIT-6 silica and the CaO doped adsorbents, as shown in Fig. 3. Textural 170 

properties derived from different CaO-based adsorbents are summarized in Table 2. The parent KIT-171 

6 support displays the characteristic type IV isotherm of a mesoporous solid, with average mesopore 172 

diameter of 5.5 nm. The isotherms of the CaK-x samples exhibit either type II isotherms or type IV 173 

with hysteresis shift to higher relative pressure. This reflects a loss in the mesoporous of the silica 174 

framework, through the filling/capping with calcium silicate/CaO crystallites, which is reflected in 175 

the materials surface areas, pore volumes and BJH pore size distributions. As for the CaK-0.5 and 176 

CaK-1, both two adsorbents exhibit a pore size distribution ranging from 2 nm to 10 nm, which is not 177 

observed in a CaO sample derived from limestone [23, 34]. This is attributed to the three-dimensional 178 

mesoporous structure of the KIT-6 support. In addition, similar surface area (~12 m2/g) and pore 179 

volume (~0.05 cm3/g) of CaO-based sorbents are reported in literature [14, 23]. The hysteresis of the 180 

CaK-2 and CaK-4 samples is observed at higher pressure, which reflects larger dimensions caused 181 

by the interparticle voids between the Ca phases. 182 

SEM micrographs of the parent KIT-6 and the CaK-x adsorbents are presented in Fig. 4. The 183 

morphology and surface topography of the KIT-6 comprises angular flat surfaced particulates with a 184 

relatively flat surface. The incorporation of CaO in the silica KIT-6 support results in a significant 185 

surface transformation to a rougher surface which is proportional to the loading of CaO. For the CaK-186 
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0.5, this effect is minimal with only a slight degree of surface roughening, which is attributed to the 187 

formation of only the mixed oxide phase, as identified by XRD. With the increase of CaO loading, 188 

the external surface is transformed into a sponge-like coating, which agrees with the proposed model 189 

from the XRD results, i.e. the deposition of CaO upon the interfacial calcium silicate. When the CaO 190 

loading was further increased (CaK-2), the parent silica particle morphology is not visible, being 191 

completely covered with CaO particles. Elemental analysis (EDX), representative spectra shown in 192 

Fig. 4, confirms the successful synthesis of step-wise increase of CaO content, with loadings of 27.1, 193 

39.4, 57.1 and 64.1 wt.% for the CaK-0.5, CaK-1, CaK-2 and CaK-4, respectively.   194 

TEM was employed to observe the internal mesopore structure, as shown in Fig. 5. For the parent 195 

KIT-6, ordered mesoporosity is clear, in agreement with nitrogen porosimetry. With the increase of 196 

CaO doping, the mesostructure becomes less apparent. The CaK-2 only shows a small degree of pore 197 

periodicity. Combined with the nitrogen porosimetry data for the CaK-2, the pores of the parent KIT-198 

6 are suggested to be blocked, which can be attributed to the growth of external crystallites, as 199 

observed by SEM (Fig. 4). At the highest Ca loading, no mesopore structure is apparent indicating 200 

complete pore filing which agrees with the nitrogen porosimetry results.  201 

3.2. CO2 carbonation and calcination  202 

Fig. 6 shows the capacity of CO2 capture and the conversion of the four CaO-based adsorbents for 10 203 

cycles of carbonation and calcination. At the lowest CaO loading, the CaK-0.5 exhibits negligible 204 

capacity of carbon capture, reflecting the inability of the calcium silicate to capture CO2. The CaK-1 205 

shows a good initial CO2 capture during the first cycle of carbonation/calcination, but the capacity of 206 

carbon capture is decreased after 10 cycles. This is also apparent for the CaK-4, with an initial 207 

capacity of 4.6 mmol g-1 decreasing to 3.9 mmol g-1 after 10 cycles of carbonation/calcination, 208 

reflecting a 15% decrease in carbon capture capacity. In contrast, the CaK-2 is stable during the cycles 209 

of carbonation/calcination, and exhibits the highest capacity of CO2 capture . This is attributed to the 210 

optimum synergy between the active CaO and the interface within this material, which may inhibit 211 

further sintering of CaO-based adsorbents [35]. Compared to the theoretical maximum CO2 capacity 212 
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of CaO, this optimum material exhibits a conversion of CaO to CaCO3 of ~ 40%, indicating that full 213 

CaO utilization is not achieved even at the relatively small nanoparticle sizes of 40 nm.  214 

The temperature swing process was employed to evaluate the influence of carbonation (CO2 capture) 215 

and calcination (CO2 release) temperature on carbon capture for the two optimal materials, the CaK-216 

2 and CaK-4, with the results presented in Fig. 7. For both materials, the carbonation occurs at 400 217 

˚C and 600 ˚C, and the calcination happens at 700 ˚C and 850 ˚C, respectively. It is suggested that the 218 

carbonation activation energies of surface and bulk transformations are 88.9 ± 3.7 and 179.2 ± 7.02 219 

kJ mol-1 for temperatures below and above 515 ºC, respectively [36, 37]. The increase in activation 220 

energy, with temperature, is attributed to the inhibition of CO2 diffusion through the initially formed 221 

surface CaCO3. The capture profiles in both CaK-2 and CaK-4 are identical, indicating the formation 222 

of CaCO3 layer prior to bulk carbonation at 600 ºC for both CaK-2 and CaK-4.  In contrast, the release 223 

profiles are different because the CaK-2 releases proportionally more CO2 at the lower temperature 224 

(700 ˚C), which reflects the small CaO crystallite present in the CaK-2. This more facile regeneration 225 

may also contribute to the greater stability of the CaK-2 during the carbonation/calcination cycle 226 

testing compared to the CaK-4 in Fig. 6. 227 

Based on our findings, a simplified schematic is proposed to explain the stability during the 228 

carbonation/calcination cycles of CaO supported on KIT-6 (CaK-2), as illustrated in Fig. 8. The major 229 

limitation of the commercial CaO, in particular at high temperature, is the low resistance to particle 230 

sintering during carbon capture process. However, after the incorporation of CaO into KIT-6, the 231 

three-dimensional mesoporous structure of KIT-6 is filled/capped with Ca(NO3)2 which through 232 

thermal processing with the formation of an interfacial calcium silicate. Further increase of CaO 233 

loading results in a complete pore filling/blockage and subsequent agglomeration of CaO, which is 234 

the active sites for CO2 capture, observed by electron microscopy in Fig. 4 and 5. Whilst the formation 235 

of the mixed oxide phase results in the reduction of CO2 uptake, it is beneficial acting as a physical 236 

barrier to retard the sintering of the CaO adsorbent particles. Thus, a high stability CaO adsorbent 237 

supported by KIT-6 was obtained.  238 
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 239 

4. Conclusions   240 

In this study, CaO deposited on KIT-6 mesoporous silica has been synthesized as adsorbent for high-241 

temperature CO2 capture. An optimal mass ratio of CaO to KIT-6 was 2:1 (CaK-2) in relation to the 242 

stability of adsorbent. The CaK-2 adsorbent possesses a CO2 capacity of 7.6 mmol g-1.  In comparison 243 

with a commercial CaO derived from limestone, this new material is able to provide an excellent 244 

stability over 10 cycles of carbonation/calcination. This phenomenon is attributed to the three-245 

dimensional structure of KIT-6 and the resulting high degree of interaction between the inert support 246 

and active CaO particles, through the formation of mixed oxide interface species, which enhance the 247 

sintering-resistant ability of the CaO-based adsorbents. 248 
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 346 

 347 

Table 1 Phase composition and average crystallite size of CaO-based adsorbents 348 

Sample CaO Ave. Size CaSiO3 Ave. Size Ca2SiO4 Ave. Size 

CaK-0.5 0% n.a. 100% 45 nm 0% n.a. 

CaK-1 4% 40 nm 66% 35 nm 30% 18 nm 

CaK-2 15% 40 nm 0% n.a. 85% 30 nm 

CaK-4 54% 87 nm 0% n.a. 46% 37 nm 

CaO 100% 120 nm 0% n.a. 0% n.a. 
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 356 

 357 

Table 2 Textural properties derived from different CaO-based adsorbents. 358 

Samples 

SBET/ Smicro/ Smeso/ Vtotal/ Vmicro/ Vmeso/ 

(m2/g) (m2/g) (m2/g) (cm3/g) (cm3/g) (cm3/g) 

KIT-6 545 265 280 0.40 0.11 0.29 

CaK-0.5 16.2 8.6 7.8 0.08 0.005 0.075 

CaK-1 11.1 7.0 4.1 0.04 0.003 0.035 

CaK-2 2.9 1.0 1.9 0.007 0.003 0.004 

CaK-4 2.7 1.0 1.7 0.005 0.002 0.003 
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 366 

 367 

Fig. 1. Schematic diagram of the atmospheric carbonation/calcination reactor system. 368 
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 374 

Fig. 2. In-situ XRD analysis of CaO-based adsorbents. 375 
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 378 

 379 

     Fig. 3. N2 adsorption-desorption isotherms (a: KIT-6; c: CaO-based adsorbents) and pore size 380 

distribution calculated from the BJH adsorption branch (b: KIT-6; d: CaO-based adsorbents). 381 
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 383 

 384 

 385 

 386 

Fig. 4. SEM images of (a) parent KIT-6, (b) CaK-0.5, (c) CaK-1, (d) CaK-2 and (e) CaK-4, with (f) 387 

representative EDX spectra for CaK-2. 388 
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 396 

 397 

 398 

(a) KIT-6                              (b) CaK-2                          (c) CaK-4 399 

Fig. 5. TEM images of parent KIT-6 and CaK-x adsorbents. 400 
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Fig. 6. Cyclic capture capacity and conversion of different adsorbents per gram of CaO at 650 ˚C. 404 
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 406 

Fig. 7. Fixed bed CO2 capture performance of different adsorbents (a: carbonation of CaK-2; b: 407 

calcination of CaK-2; c: carbonation of CaK-4; d: calcination of CaK-4). 408 
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 413 
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 417 

 418 

Fig. 8. Schematic for the investigation of CO2 capture in KIT-6 supported CaO-based adsorbents. 419 
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