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Abstract. This paper describes a structured approach to encoding mon-
itors in an actor language. Within a configuration of actors, each of which
publishes a history, a monitor is an independent actor that triggers an
action based on patterns occurring in the histories. We define a mon-
itor language based on linear temporal logic and show how it can be
homogeneously embedded within an actor language. The approach is
demonstrated through a number of examples and evaluated in terms of
a real-world actor-based simulation.
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1 Introduction

1.1 Background

Software system monitors are instruments that are added to applications in
order to collect data, diagnose problems and influence behaviour, for example to
collect training data [21], recognise health issues [19], control of energy networks
[7], dynamically verify system requirements [14] and to adapt to environmental
changes [12]. Monitors are typically orthogonal to the system that is monitored
and, as such, manage their own thread of control. Our particular interest in
monitors arises within the field of simulation to support decision-making [20,4]
where levers that control a simulation need to be adapted by monitoring the
behaviour of system components as shown in figure 1.

The actor model of computation [2] would seem to be a good candidate
for representing both systems to be monitored and their associated monitors
because an actor has autonomous behaviour and new actors can be added or
deleted without significant architectural disruption. Figure 2a shows a simple
model of a monitor actor that is attached to a monitored actor. Adaptation
occurs by regularly checking the history exported by the monitored actor and
taking action when monitor conditions are satisfied by the data in the history.

Several patterns emerge from the actor arrangement shown in figure 2a. An
individual monitored actor that publishes events on its history can be monitored



Fig. 1: System Adaptation

(a) Basic Actor Monitor (b) Event Based Monitoring

(c) Temporal Relationship (d) Multi-Actor Monitoring

Fig. 2: Actor Monitors

so that when the the monitoring actor detects the event-data it can take action
as shown in figure 2b. If the monitoring actor also takes into account the timing
of events, it may compare the relative times of two or more events as shown in
figure 2c. A single monitor may be attached to two or more actors as shown in
figure 2d in which case we can define intra- and inter-actor relationships between
events that occur over multiple actors.



1.2 Requirements and Contribution

The patterns described in figure 2 lead to technical requirements for actor-based
monitors: (1) It must be possible to define an actor interface so that monitored
actors provide a history in the correct format for monitor actors and are oth-
erwise unaware of monitoring behaviour. (2) Events that are published via his-
tories should have temporal information that monitor actors can use for intra-
and inter-actor reasoning. (3) Monitors should be actors to allow them to be
added and removed dynamically during system execution (and to support meta-
monitoring where that is appropriate). (4) There should be a monitor language,
whose denotation is defined in terms of actors, that is open to static analysis.

Our contribution is to show how monitors can be encoded within an actor
language in a way that achieves the requirements listed above. In particular, we
achieve a homogeneous representation by defining a sub-language of a broader
actor language that supports monitors and define a general purpose interface for
monitored actors. We perform static analysis, in terms of actor interfaces, and
outline in the conclusion how we intend to check that monitors are consistent
with the histories published by monitored actors. As described in [9], monitors
can themselves be actors and we demonstrate this by defining the semantics of
monitors as an homogeneous language embedding [23].

Section 2 describes existing work on actors, agent languages and software
monitoring in general. Languages employing temporal operators are often used
to specify the behaviour of actor systems, but we employ such operators to define
a language of dynamic monitors in section 3. Our work on simulation has led
to the implementation of a new actor-based language called ESL that is used
to present our contribution; section 4 introduces that part of ESL necessary
to understand how monitors are encoded. Section 5 describes how monitors are
defined in ESL and section 6 shows how ESL and monitors are used to implement
a simulation for a real-world case study.

2 Related Work

The concept of a monitor that observes the behaviour of a system and detects
the violations of safety properties is well studied area [16]. The early work on
monitors focused on off-line monitoring where the historical data or program
trace is statically analysed post-execution [13] to detect anomalies. In contrast,
the recent research trend primarily addresses on online monitoring that dynam-
ically validates the observed system execution against a specification to achieve
preventive and corrective measures.

Monitoring-related research challenges include: (1) the use of an appropriate
foundational model for system specification (this can be mapped to Monitoring-
Oriented Programming4); (2) an efficient implementation of monitors; (3) moni-
tor control patterns. Existing monitor technologies are largely based on temporal
logic which has led us to use the same underlying formalism. For example, the

4 http://fsl.cs.illinois.edu/index.php/MonitoringOriented Programming



past-time linear temporal logic (PTLTL) is recommended as specification lan-
guage [18,22] where monitor properties are expressed using the notion of time,
as introduced by LTL, with both past and future modalities including next, pre-
vious, eventually in the future or past, always in the future or past, etc. The
PTLTL is further extended with call and returns in [24], the Eagle Logic (where
the temporal logic is extended with chop operator) is proposed in [5], and the
Meta Event Definition Language (a propositional temporal logic of events and
conditions) is used in the Monitoring and Checking (MaC) toolset [26]. In con-
trast, an extended regular expression and context free grammar based language
is proposed and implemented in [9].

From an implementation dimension, online monitoring technologies are im-
plemented either by adopting an inline approach [25] or a centralised approach
[15]. A centralised approach is applied to the system under observation using
either a synchronous [10] mode or an asynchronous mode [11]. In general, the
inline monitors are computationally efficient as they have access to all system
variables, whereas the centralised monitors are better in other dimensions as
they enable clear separation of concerns (and thus less error-prone), facilitate
distributed computation, and exhibit compositional characteristics.

As part of our work on system simulation, we propose a variant of moni-
tor technology that can be used to evaluate agent goals (similar to monitoring
safety properties) and make decisions about appropriate system adaptation. A
restricted form of centralised asynchronous monitor is implemented in Akka [3]
to realise the monitoring behaviour of supervisor actors of a hierarchical actor
system. Recently, a prototype of asynchronous centralised monitor implementa-
tion is presented in [9]. In the context of multi-agent systems, the concept of
monitor is used for one of the two purposes - a) to support heterogeneous agent
implementations, and b) to introduce a clear separation of concerns between core
agent behaviour and other aspects such as adaptation. With respect to b) the
core agent behaviour (or behavioural specification) is considered to be a black-
box, and adaptation is defined as monitor that observes the execution of core
behaviour and reacts to specific observations [9].

ESL, simulation and adaptive behaviour are active areas of our research.
Work in this area by [28] is likely to prove useful in efforts to specify the structure
of histories, perhaps using pattern based rules, and then to verify that monitors
are consistent with the monitored actors to which they are applied.

Our proposed language also provides centralised asynchronous monitors. The
Akka implementation monitors the occurrence of events within its sub-actors and
uses a fixed set of operations such as stop actor, suspend actor as an adaptation
strategy. In contrast our proposed implementation evaluates the historical data
to produce adaptation without using a restricted set of operations, effectively
achieving a combination of [9] with the adaptation strategy presented in [8]
augmented with temporal features and the extensions presented in [22] (i.e.,
past and future modalities).

.



p,q ::= monitors.
n a named monitor.

| ε holds for any history.
| 2(p) holds when p holds at all times.
| µ(λ(n)p) provides recursive definitions: [µ(λ(n)p)/n]p
| p;q holds when p and q both hold now.
| p|q holds when p or q (or both) holds now.
| p ⊕ q holds when p or q (but not both) holds now.
| p ⇒ q i f p holds then q must hold now.
| N(p) holds when p holds for time now + 1.
| P(p) holds when p holds for time now - 1.
| ?(c) holds when the condition c is true now.
| ! (a) always holds and performs action a.
| p ↑ q splits two merged histories between p and q.
| p ↓ q (re)merges two split histories.

Fig. 3: Actor Monitor Language

3 An Actor-Based Monitor Language

We have motivated a requirement for an actor-based monitor language that can
be used in a variety of applications including diagnosis and adaptive behaviour.
Since monitors need to reason about behaviour over time, it is reasonable to
follow existing approaches to both actor behavioural specification and system
monitoring that are based on linear temporal logic (LTL). We show how the
proposed LTL-based monitor language can be encoded using actors. This sec-
tion describes the monitor language and provides a simple example. The rest of
the paper provides the semantics of the language by embedding it in an actor
language called ESL, and then evaluates the language using a real-world case
study.

3.1 Language Definition

Figure 3 defines a monitor construction language. A monitor p is applied to
a monitored actor that exposes a history as a sequence of data elements. The
monitor p can hold for the supplied history at a given time, where time is an
integer that indexes the data in the history. Typically time will start with the
first element of the history and the modal operator N is used to advance time
so that p; N(q) holds for a history starting at time 0 when p holds at time 0

and q holds at time 1. The formula 2(p) is equivalent to p;N(p;N(p;. . .)).
The language allows arbitrary conditions ?(c) to be applied to data in a

history at a given time. In order to support actions and system instrumentation,
a monitor may be an action !(a) where a is a function of 0-arguments. The
intention is that we use guard monitors of the form: p ⇒ !(a).

In order to support multi-actor monitoring as shown in figure 2d we allow
monitored actors to be aggregated using a binary operator. Monitors can manip-
ulate such actors using the disaggregation operator _ ↑ _ (split) and its inverse
_ ↓ _ (join). For example two monitored actors a and b can be aggregated to
create Fork(Leaf(a),Leaf(b)). When such an actor is monitored by (p ↑ q);r,



p monitors a, q monitors b and r monitors both a and b. Note that the _ ↓ _

operator is implicitly inserted between (p ↑ q) and r thereby ensuring that the
monitor types are consistent.

3.2 A Simple Application of Monitors

The monitor language is influenced by LTL since it uses modal operators to
range over time within histories. LTL is used by Bulling et al. to specify agent
behaviour [6] with respect to an example involving traffic queues. We will use
this example to show that an LTL-based monitor language can be used to help
adapt traffic-light behaviour.

Traffic flow at an east-west bottle-neck along a single-carriage road is con-
trolled by traffic lights. The bottle-neck can only accommodate one car and
therefore the job of the traffic-lights is to ensure that the queues on either side
do not become too large. Furthermore, traffic approaches from the east more
frequently than that from the west.

Fig. 4: Traffic Flow at a Bottle-Neck

Figure 4 shows the situation. The approaches from east and west are repre-
sented as actors whose autonomous behaviour supplies cars to their respective
queues. The traffic lights are assumed to be in-sync and are passive actors. A
single monitor combines data from the cameras that detect the current queue
levels at the two approaches.

We will consider the simulation under three levels of monitor control: (1) To
test the simulation we leave one of the traffic lights stuck on red and the other
on green; (2) The monitor is even-handed and allows traffic to pass where there
is a queue; (3) The monitor gives preference to the traffic from the east unless a
queue has formed on the western approach and has not moved for a given time
period.

The simulation has been encoded in ESL which includes a facility to produce
a filmstrip consisting of a sequence of diagrams generated from simulation data.



(a) Stuck (b) Even

(c) Priority

Fig. 5: Actor Monitors

Figure 5 shows filmstrips generated using the three different monitor strategies.
Figure 5a shows three snapshots at times 0, 6 and 40: the lights are stuck on green
for east-west and red for west-east and therefore a queue soon builds up on the
western approach. Figure 5b shows the situation with an even-handed monitor
where, since the east-west traffic is more frequent, a queue quickly builds up.
Figure 5c shows the situation at four different times where the monitor prefers
east-west traffic, but attempts to prevent queues lingering for too long at the
west-east approach. At time 17 a queue has developed and the monitor adapts
the traffic light behaviour to clear it by time 25. At time 96 queues have built
up on both approaches, but the strategy has cleared them by time 148. Based



exp ::= name variable

| num | bool | str constant

| self receiver

| null undefined

| new name[type*] (exp*) creation

| become name[type*] (exp*) change

| exp op exp binexp

| not exp negation

| λ(dec*)::type exp operation

| let bind* in exp locals

| letrec bind* in exp recursion

| case exp* arm* matching

| for pat in exp { exp } looping

| { exp* } block

| i f exp then exp else exp tests

| [ exp* ] list

| [] empty

| exp(exp*) apply

| Name(exp*) term

| exp ← exp message

| name := exp update

| exp . name reference

| probably(exp)::type exp exp uncertain

| exp[type*] app type

pat ::= dec variable

| dec = pattern naming

| num | bool | str const

| pat : pat cons pair

| [ pat* ] list

| [][ type] empty

| Name[type *](pat*) term

type ::= Name type var

| Act { export dec* Mes* } behaviour

| (type*) → type λ-type
| Term term type

| Int | Bool | Str constant

| Void undefined

| [ type ] lists

| Fun(Name*) type type op

| ∀(Name*) type poly

| rec Name . type recursion

bind ::= dec = exp bind

| name(pat*)::type=exp when exp λ-bind
| type Name[Name*] = type type dec

| data Name[Name*] = Term* algebraic

| act name(dec*)::type { behaviour

export name* interface

bind* locals

→ exp initial

arm* behaviour

}

Term ::= Name(type*) term type

dec ::= name[Name*] :: type declare

arm ::= pat* → exp when exp guarded

Fig. 6: ESL Syntax

on the assumptions made by the simulation, the third monitor strategy would
seem to be a good one and can be encoded in the monitor language as follows:

1P0(p) = p
2Pn(p) = p;P(Pn-1(p))
32(PmaxQueueDuration(?(gre(maxQueueSize))) ↑ ε ⇒ ! (westEast) ⊕
4ε ↑ ?(gre(0)) ⇒ ! (westEast) ⊕
5?(gre(0)) ↑ ε ⇒ ! (eastWest) ⊕
6ε)

The definition Pn is used to define a monitor that must hold over n previous time
units. The monitor consists of three rules that hold at all times and is applied
to a pair of monitored actors (the west and east traffic cameras) whose histories
can be indexed using the split operator _ ↑ _. The first rule on line 3, states that
if the west approach has a queue length maxQueueSize that has been waiting for
maxQueueDuration time units then the lights should be changed westEast. The
rule on line 4 gives queuing traffic on the eastern approach precedence over that
queuing on the western approach. A monitor must be satisfied, so ε on line 6
ensures that we can move on to the next time unit.



4 ESL

The previous section has introduced a language for actor based monitors. The
language has been implemented as a library using ESL5 which is an actor lan-
guage designed to support simulations. ESL combines functional and actor-based
programming and provides a number of novel features that we believe are impor-
tant when representing systems with emergent behaviour. The rest of this paper
introduces ESL and uses it to define the monitor library. We will conclude with
a real-world simulation written in ESL that uses monitors. Section 4.1 provides
a brief overview of ESL syntax, section 4.2 describes the operational semantics
of ESL in terms of a system executive, and section 4.3 implements a standard
actor-based example and shows how it executes concurrently in ESL.

4.1 Syntax

The syntax of ESL is shown in figure 6. It is statically typed and includes para-
metric polymorphism, algebraic types and recursive types. Types start with an
upper-case letter. An ESL program is a collection of mutually recursive bindings.
Behaviour types Act { . . . } are the equivalent of component interfaces and be-
haviours act { . . . } are equivalent to component definitions. A behaviour b is
instantiated to produce an actor using new b in the same way that class defi-
nitions are instantiated in Java. Once created, an actor starts executing a new
thread of control that handles messages that are sent asynchronously between
actors. Pattern matching is used in arms that occur in case-expressions and mes-
sage handling rules. Uncertainty is supported by probably(p) x y that evaluates
x in p% of cases, otherwise it evaluates q. Functions differ from actors because
they are invoked synchronously.

A minimal ESL application defines a single behaviour called main, for exam-
ple:

1 type Main = Act{ Time(Int) };
2 act main ::Main {
3 Time (100) → stopAll ();
4 Time(n ::Int) → {}
5 }

An ESL application is driven by time messages. The listing defines a behaviour
type (line 1) for any actor that can process a message of the form Time(n) where
n is an integer. In this case, the main behaviour defines two message handling
rules. When an actor processes a message it tries each of the rules in turn and
fires the first rule that matches. The rule on line 3 matches at time 100 and
calls the system function stopAll() which will halt the application. Otherwise,
nothing happens (line 4).

4.2 Operational Semantics

ESL compiles to a virtual machine code that runs in Java. Each actor is its
own machine and thereby runs its own thread of control. Figure 7 shows the

5 http://tonyclark.github.io/ESL/



1 stop := false;
2 exec() {
3 time := 0;
4 instrs := 0;
5 while(!stop) {
6 actors := copy(ACTORS);
7 clear(ACTORS);
8 for actor ∈ actors do {
9 i f terminated(actor) then schedule(actor);

10 run(actor ,MAX_INSTRS);
11 }
12 instrs := instrs + MAX_INSTRS;
13 ACTORS := ACTORS + actors;
14 i f instrs > INSTRS_PER_TIME_UNIT
15 then {
16 time := time + 1;
17 instrs := 0;
18 for actor ∈ ACTORS do sendTime(actor ,time)
19 }
20 }
21 }

Fig. 7: The ESL Executive

ESL executive that controls the pool of actors. When the executive is called,
the global pool ACTORS contains at least one actor that starts the simulation.
Global time and the current instruction count are initialised (lines 3 and 4)
before entering the main loop at line 4; the loop continues until one of the actors
executes a system call to change the variable stop.

Lines 6 – 7 copy the global pool ACTORS so that freshly created actors do
not start until the next iteration. If an actor’s thread of control has terminated
(line 9) then a new thread is created on the actor’s VM by scheduling the next
message if it is available. The operation run continues with the actor’s thread of
control on a machine that runs a call-by-value functional language [1] extended
with actor-based features such as asynchronous message passing.

The executive schedules each actor for MAX_INSTRS VM instructions. This
ensures that all actors are treated fairly. Once each actor has been scheduled,
the existing actors are merged with any freshly created actors (line 13).

The executive measures time in terms of VM instructions. Each clock-time
in the simulation consists of INSTRS_PER_ TIME_UNIT instructions performed on
each actor. When actors need to be informed of a clock-tick (line 14), global
time is incremented (line 16), the instruction counter is reset (line 17) and all
actors are sent a clock-tick message.

4.3 Factorial

ESL Messages are sent asynchronously between actors. An actor that is at rest
selects a new message and processes it in a thread that is independent of other
actor threads. When the thread terminates, the actor is ready to process the
next message. Consider the concurrent processing of factorials:

type Customer = Act { Value(Int) };



Fig. 8: Concurrent Factorial

type Fact = Act{ Get(Int ,Customer) };

act fact ::Fact {
Get(0,c ::Customer) → c ← Value (1);
Get(n ::Int ,c ::Customer) →

let cc ::Customer = new cust(n,c)
in se l f ← Get(n-1,cc)

}

act cust(n ::Int ,c ::Customer) ::Customer {
Value(m ::Int) c ← Value(n*m)

}

act main ::Customer {
f ::Fact = new fact;
computeFact(n ::Int) ::Void = f ← Get(n, s e l f );
→ { computeFact (6); computeFact (6); computeFact (6) }
Value(n ::Int) → print[Int](n)

}

An actor of type Customer receives an integer value Value(n). An actor of
type Fact receives a request Get(n,c) for the value !n to be sent to the customer
c. The behaviour main implements Customer and is the end-point for factorial-
calculations: when it receives Value(n) it prints out the result.



The behaviour fact implements Fact using two message-handling rules. The
first handles 0 and just passes the value 1 to the supplied customer. The sec-
ond rule receives a request for a factorial of a non-0 number n. An actor with
behaviour fact is able to handle multiple factorial requests at the same time.
To do this it creates an auxiliary customer cc that is used to handle the return
value from !(n-1): this is equivalent to distributing the linked stack-frames of
conventional singly-threaded computation to an equivalent number of concurrent
customer actors. The behaviour cust implements Customer and forwards n*m to
the pending customer c.

An actor with behaviour main calls computeFact(6) three times. Figure 8
shows the resulting message traces as a sequence diagram. Each of the actors
is shown as a box with a life-line. Messages sent between actors are shown as
arrows between life-lines and are labelled using the following convention TIME:[

THREAD]MESSAGE where TIME is the time at which the message is sent and THREAD

is a label used to identify each separate calculation of computeFact(6). Messages
are encoded to show the different steps: Start is the initial message, Get(n,c,cc)
is a message to calculate !n with cc as the intermediate customer and c as the
requesting customer, One is the recursion termination step, and Return(n) shows
the return values between customers.

The sequence diagram shows that the three factorial calculations occur con-
currently. The customer actors correspond to conventional stack frames in a
singly-threaded language where the calls to factorials occur in sequence and
are appropriately nested. Mapping actors to conventional languages has been
the subject of several research projects [27,17] where monitors such as those
described in this article may be an interesting implementation consideration.

5 Monitor Implementation in ESL

Section 3 introduced an actor-based monitor language and section 4 describes
the actor language ESL. This section shows how monitors can be implemented
as actors by defining a pair of actor types: Mtd[T] for a class of behaviours that
export histories over type T, and Mtr[T] for a class of behaviours that monitor
histories of type T.

Given that actors are autonomous, we require a mechanism to synchronise
monitors and actor histories. The basic mechanism is described in section 5.1
and then encoded in ESL as described in section 5.2.

5.1 Processing Histories

A history is a list of public state information and as such each monitor processes
a list of data. For example, suppose that we want to express a monitor fff that
causes action a to be performed every time a sequence of 3 fails, 000, is detected:

1anF (0) ::Bool = true
2anF (1) ::Bool = false
3aT(n ::Int) ::Bool = not(anF(n))
4any(n ::Int) ::Bool = anF(n) or aT(n)
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Fig. 9: A Monitor State Machine

5

6pxn[T](n ::Int ,p ::(T) → Bool) ::Mtr[T] =
7case n {
80 → idle
9else ?(p) ; N(pxn(n-1,p)))
10}
11

12fff ::Mtr[Int] = 2((pxn(3,anF) ⇒ ! (a)) ⊕ ?(any))

The predicates anF and any are defined to detect the appropriate state elements.
The history formula fff uses the operator _;_ to compose three F detectors one
after another in the history. The operator N is used to advance through the
history. Finally, the history predicate fff combines the three F detector with an
alternative detector ?(any) that skips a state value. The monitor p ⇒ q checks
p first, if p fails then q is checked, so line 12 will use three F’s as a guard on the
action a, if the guard fails then the head of the history is skipped.

The history of an actor is produced incrementally over time. Therefore an
expression written in the language defined in figure 3 must continually monitor
the actor’s history. The expression can be thought of as a state machine whose
nodes correspond to monitor states and whose transitions consume parts of actor
histories. Each transition is triggered by a clock-tick and can proceed when there
is some history to consume, otherwise the machine must stay in its current state
and try again when the next tick occurs.

Figure 9 shows the machine corresponding to fff. Each transition is triggered
by a clock-tick, the labels on the transitions are: ε when no history is available;
F occurs when the next state element in the history is an F; # occurs when there
is at least one element at the head of the history and causes the element to be
consumed; * denotes the situation when the next state element in the history is
anything but F.



5.2 Monitor Implementation

The implementation of monitors in ESL has four parts: (1) An actor type for a
class of monitored behaviours, (2) A compositional data type that allows moni-
tored actors to be combined, (3) An actor type for a class of monitors, (4) The
definition of the operators in figure 3. This section addresses each of these parts
in turn.
Monitored Behaviours: An actor that can be monitored must export a list of
data values called history. The order of the values in the history is important
since it corresponds to the temporal operators in the monitor language. The
actual type of the data elements in the list is not important so the definition of
the type Mtd is parametric with respect to the type T:

type Mtd[T] = Act {
export history ::[T];
Time(Int)

}

Composition: As shown in figure 2, monitors may be attached to single or mul-
tiple actors. Therefore, we require a mechanism that will combine the histories
of two actors into a single history. Such a binary operator, can then be used
successively to compose an arbitrarily large history that can be processed by a
single monitor.

The type MTree[T] is the type of potentially aggregated monitored actors.
Given a single monitored actor m::Mtd[T], we create an aggregate singleton Leaf

(m). Given two aggregate monitored actors: m1::MTree[T] and m2::MTree[T] the
composition Fork(m1,m2)::MTree[T] is also an aggregate monitored actor. The
data type is defined below:

data MTree[T] = Leaf(Mtd[T]) | Fork(MTree[T],MTree[T])

Monitor Behaviours: A monitor m::Mtr[T] can be sent a message Check(a,c

,s,f) that causes it to check whether it holds for the monitored actor a. The
integer c is an index into the history that is exported by a and represents the
current time. Checking whether the monitor is satisfied or not by a at time c

may be delayed while m waits for a to produce the required amount of history.
Therefore, m must keep polling a for its history until it can determine whether
it is satisfied. At this point m is either satisfied with the history or not. These
two outcomes are handled by the arguments s and f in terms of success and fail
continuations. The argument s is a monitor to which m will send a when it is
satisfied. The argument f is an operation that is invoked in the case that m is
not satisfied with a at time c. The data type is as follows:

type Fail = () → Void
type Mtr[T] = rec M. Act {

Check(Mtd[T],Int ,M,Fail);
Time(Int)

}

Operator Definition: The monitor behaviours are defined in figure 10, note
that where the clock-tick handler is Time(n::Int) → {} it is omitted. A monitor
of type T is created by instantiating a behaviour with type Mtr[T]; for example,
new ε[T](). A monitor is activated by sending it a Check(a,c,s,f) message



act ε[T]::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
s ← Check(a,c,self ,f)

}

idle[T]::Mtr[T] = new ε[T]()

act ! [T]( command::() →Void)::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) → {

command ();

s ← Check(a,c,idle[T],f)

}

}

act (_;_)[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
p ← Check(a,c,new (q;s)[T],f)

}

act (_|_)[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
p ← Check(a,c,s,λ()::Void q ← Check(a,c,s,

f))

}

act (_⊕_)[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) → {

p ← Check(a,c,s,f);

q ← Check(a,c,s,f)

}

}

2[T](p::Mtr[T])::Mtr[T] =

new µ[T](λ(q::Mtr[T])::Mtr[T]
new seq[T](p,new next[T](q)))

act N[T](p::Mtr[T])::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
p ← Check(a,c+1,s,f)

}

act (_ ⇒ _)[T](p::Mtr[T],q::Mtr[T])::Mtr[T] =

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
p ← Check(a,c,new (q;s),λ()::Void s ←
Check(a,c,idle[T],f)

}

act P[T](p::Mtr[T])::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
p ← Check(a,c-1,s,f)

}

act ?[T](pred::(T) → Bool)::Mtr[T] {

Check(t::MTree[T],c::Int,s::Mtr[T],f::Fail) →
case t {

Leaf(a::Mtd[T]) →
i f length[T](a.history) > c

then {

i f pred(nth[T](a.history ,c))

then s ← Check(t,c,idle[T],f)

else f()

} else self ← Check(t,c,s,f)

}

}

act µ[T](g::(Mtr[T]) → Mtr[T])::Mtr[T] {

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
g(new rec[T](g)) ← Check(a,c,s,f)

}

act (_↑_)[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {

Check(t::MTree[T],c::Int,s::Mtr[T],f::Fail) →
case t {

Fork[T](t1::MTree[T],t2::MTree[T]) →
let j::Mtr[T] = new (t1 ↓ t2)

in {

p ← Check(t1,c,j,f);

q ← Check(t2,c,j,f)

}

}

}

act (_↓_)[T](t1::MTree[T],t2::MTree[T])::Mtr[T]{
done::Bool = false

Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →
i f not(done)
then done := true

else s ← Check(Fork(t1,t2),c,s,f)

}

Fig. 10: ESL Monitor Behaviours

where a is a tree of monitored actors, c is the current history-index (initially 0),
s is a success-monitor, and f is a failure-monitor. The behaviour of each type of
monitor, as defined in figure 10, is outlined below:

– ε() immediately activates the success-monitor by sending it a message. The
global actor idle can be used as the identity monitor.

– !(c) receives a Check message, performs the command c, and then activates
the success-monitor.

– p;q forwards the Check message to p and creates a new success-monitor q;s.
– p|q forwards the Check message to p using q as the fail-monitor. Therefore,

q will be tried in the case that p fails. Both p and q will use f as their
fail-monitor.

– p ⊕ q tries both p and q in parallel and assumes that only one will succeed.
– 2(p) checks the monitored actor using p with respect to history-indices c,

c+1, c+2 etc. Note that checking occurs in parallel with all other monitors



type TrafficLight = Act { export colour::Str; change::() →Void }

type Approach = Act < Mtd[Int] { export history::[Int]; Time(Int) }

act light(colour::Str)::TrafficLight {

export colour , change;

change ()::Void =

case colour {

’RED ’ → colour := ’GREEN ’;

’GREEN ’ → colour := ’RED ’

}

}

act approach(id::Str,light::TrafficLight ,probOfNewCar::Int)::Approach {

export history;

history::[Int] = [0];

Move → i f light.colour = ’GREEN ’ and head[Int]( history) > 0 then self ← DeQueue;

DeQueue → queue := (head[Int]( history) - 1) : history;

Queue → queue := (head[Int]( history) + 1) : history

Time(n::Int) → probably(probOfNewCar) self ← Queue else self ← Move

};

l1::TrafficLight = new light(’RED ’);

l2::TrafficLight = new light(’GREEN ’);

left::Approach = new approach(’left ’,l1 ,10);

right::Approach = new approach(’right ’,l2 ,20);

westEast ()::Void = i f l2.colour = ’RED ’ then { l2.change (); l1.change () }

eastWest ()::Void = i f l1.colour = ’RED ’ then { l1.change (); l2.change () }

Fig. 11: The Traffic Simulation

and any check with respect to a particular history-index will wait, due to
the definition of ?(_), until the indexed history element has been generated
by the monitored actor.

– N(p) checks the monitored actor using p with respect to history-index c+1.

– p ⇒ q if p holds then q should also hold, otherwise the fail-monitor is used.

– P(p) checks the monitored actor using p with respect to history-index c-1.

– ?(g) when this monitor is activated by a Check message, the history element
at index c is checked using guard g. If the result is true then the success-
monitor is activated, otherwise the fail-monitor is activated. Note that if
an element at index c is not yet available, the monitor sends itself a Check

message that will be processed at some time in the future, thereby delaying
the guard. Note also that the monitored actor is actually a tree: it is the
responsibility of the monitor to use _↑_ and _↓_ to access a leaf of the tree
when applying a guard.

– µ(g) recursive monitors are created by supplying a function g whose argu-
ment is a cyclic monitor. For example:

µ[Int](λ(fStar ::Mtr[Int]) ::Mtr[Int] isF; N(fStar))

is a monitor that will expect a history to contain an infinite sequence of 0s.

5.3 Traffic Monitoring

Section 3.2 describes a simple use of monitors to achieve adaptive behaviour at a
traffic light. This section provides the ESL implementation of the simulation and



shows how the adaptor language works by providing a fragment of the resulting
sequence diagram.

The ESL program in figure 11 is a slightly simplified version of that which
generates the outputs shown in figure 5 where the details of generating sequence
diagram output have been omitted. The behaviour type Approach is a sub-type
of Mtd[Int] and exports a history of integers being the time-sequenced number
of cars queuing at an approach. An approach actor is created by supplying the
behaviour approach with an identifier, a traffic light and the probability of new
car arrival. Two approaches called left and right are created and the operations
westEast and eastWest are used to control the traffic lights.

Each approach is autonomous and receives a Time(n) message at regular
intervals. When this occurs, either a new car will arrive or the next available car
will move from the approach if the lights are green.

The monitor defined in section 3.2 is attached to the monitored actors left

and right by creating an aggregate Fork(Leaf(left),Leaf(right))::MTree[Int].
Figure 12 shows the initial steps performed by the simulation and its associated
monitor. The actors are labelled with their unique identifier and behaviour where
E stands for the behaviour nothing, L is the left approach and R is the right
approach. Messages of the form Check(a,c,s,f) are represented on the sequence
diagram as C(a,c,s) since the failure continuation is not particularly informative.
Message passing starts at actor 14:rec which is created by the monitor definition
for 2. The rec behaviour creates a loop that is used to increment the history
counter c that starts at 0 and is incremented twice by successive messages from
18:next to 14:rec. Notice that the left and right approach actors concurrently
queue and de-queue cars at the same time that the monitor is processing their
histories.

6 Evaluation

Our claim is that actor-based systems can benefit from monitors that meet the
requirements outlined in section 1.2 and in particular actor-based simulations
can use monitors to encode adaptive behaviour. We have proposed a monitor-
language and shown how it can be encoded in an actor language called ESL.
This section evaluates the claims by describing a real-world case study that we
have implemented in ESL and that uses monitor-based adaptation to influence
actor behaviour.

6.1 Case Study Overview

The cash in circulation in the Indian economy has steadily been increasing over
the years. In 2001, the total cash in circulation was 2.1 trillion rupees and by early
November it had reached 15.4 trillion. On November 8, 2016, the dominance of
cash-based transactions and the relentless growth of a shadow economy triggered
a sudden fiscal intervention by the Indian government with the withdrawal from
circulation of 500 Rupees and1000 Rupees notes. This action resulted in 87%



Fig. 12: Initial Messages Sent By Traffic Monitor



of the total cash in the system being pulled out. The primary objective of this
demonetisation was seen as a way of purging black money from the system
with the key assumption that such a large amount of money would not come
back to the system as holders of illicit wealth would be wary of prosecution by
tax authorities. Further, cash would be slowly replenished with newly minted
currency notes.

The initiative involved several financial restrictions. For example, a limita-
tions were imposed on the exchange of old notes wherein the citizens were allowed
to exchange up to 4000 rupees with the remaining deposited to their bank ac-
count; ATM withdrawal limits were reduced to 2000 rupees in a day for Indian
citizens, and there was a cap of 10,000 rupees on bank withdrawal in a day along
with a weekly withdrawal restriction of 20000 rupees per citizen. In addition to
these restrictions, cash-less payment modes, such as mobile wallet and card pay-
ments, were incentivised. For example, on Dec 8, e-transactions for fuel included
a 0.75% discount. Despite all preventative measures, the demonetisation initia-
tive resulted into prolonged cash shortages. Citizens were inconvenienced due to
non-availability of new currency notes in the banks and ATM machines. Even
as recently as Feb 16, estimates indicate that at least 30% of ATMs still run
dry. Overall, the initiative has faced a lot of criticism as being poorly thought
through, inadequately planned, inefficiently executed and unfair to a significant
segment of cash dependent citizen6.

6.2 Adaptation

When creating a simulation of the demonetisation case study, adaptation oc-
curs in a number of ways. The banks, commercial suppliers, and citizens were
continuously monitoring and adopting their behaviour to cope with the emerg-
ing situation. For example, banking transaction limits were changed multiple
times to control cash flow, commercial suppliers adopted alternative payment
options to stay viable, and citizens changed their behaviour to avoid undesired
consequences.

The behaviour of citizens changed along multiple dimensions: (1) individuals
started using alternate payment modes such as mobile wallet and credit/debit
cards; (2) individuals changed their needs and suppliers catering to those needs
so as to support cash-less transactions; (3) some individuals felt a greater sense
of security in having cash-in-hand in excess of their requirements, i.e. hoarding
behaviour emerged.

These adaptations to individual behaviour collectively impacted the overall
system in a non-linear manner. In particular, the frequent changes to bank-
ing transaction limits, uncertainty in availability of cash with banks and ATM
machines, circular dependencies between availability of cash and behaviour of
individuals, and non-linearity in cash-in-hand of an individual and cash hoarding
tendency led to an emergent system behaviour.

6 http://bit.ly/2mpgGRb



The use of actors and actor-monitors within a simulation can help to un-
derstand the effect of demonetisation. Actors are used to encode the individual
behaviours and monitors are used for post-demonetisation adaptations.

6.3 Case Study Model

Fig. 13: Structural Representation of Society

We formulate a society comprised of three key identities: Citizens, Banks,
Shops, and a basic element termed Item as shown using a class diagram in figure
13. The term Item represents the needs of citizens that include merchandise and
services; shops are the locations where items can be purchased and services can
be acquired. The activities that we consider: citizens consume items to cater
to daily needs; citizens purchase items from shops when the item quantity dips
below a threshold value; citizens withdraw cash when cash-in-hand dips below a
threshold value. A citizen may hold Cards, and a citizen who holds a card may
choose to pay by cash or by card for a purchase, and may withdraw cash from
ATM machine or bank counter. In contrast, a citizen without a card always pays
by cash and withdraws cash from bank counters. The purchase behaviour and
cash withdrawal behaviour are illustrated using state-machines in figure 14 (the
firm lines describe the pre-demonetisation behaviour).

We assume citizens are able to satisfy their daily needs i.e., poverty and other
societal aspects are not considered in the case study. We further consider: there
is sufficient cash with the banks to service citizens through ATMs and Bank
counters i.e., no denial of service from bank; there is sufficient stock in shops;
and citizens are able to withdraw cash when in need during pre-demonetisation
phase. We replicate demonetisation by eliminating cash abruptly from banks and
citizens, and replenishing cash at slow rate (around 0.7% of cash in circulation at
pre-demonetisation) up to a certain percentage (e.g., 70% of cash in circulation
at pre-demonetisation). The key identities of society start behaving differently
during post-demonetisation phase. They adopt different strategies which are very
specific to individuals. The adaptation strategies considered in this case study
are:



(a) Purchasing (b) Cash Withdrawal

Fig. 14: Citizen Behaviour

(1) Bank: banks impose restrictions on cash withdrawals e.g., ATM withdrawal
limit is 2000 rupees in a day for a citizen, bank withdrawal limit is 10,000 rupees
in a day for a citizen, and the weekly withdrawal limit is 20000 rupees per citizen.
These changes are deterministic and associated with the demonetisation event.
(2) Shop: shops may (a stochastic behaviour) adapt themselves to accept al-
ternate payment options such as mobile wallet and card payment whenever they
observed a drop in sales record.
(3) Citizen: a citizen, as an individual, may adopt (as a stochastic behaviour)
an appropriate strategy (with multiple options selected based on personal intu-
ition and experience) to avoid entering an undesired state. The strategies can
be visualised along two independent dimensions: Payment Pattern: Citizens
start using mobile wallet and/or card as a payment option to save cash for the
future. However, not everyone will start using alternate option, an individual’s
decision will be based on several factors such as availability and familiarity with
payment technology, and whether the citizen is an early or late adopter. Cash
Withdrawal Pattern: A group of citizens may start making attempt to with-
draw cash (from ATM machine and/or Bank counter) even when the cash is
not required (temporary hoarding behaviour) to safe guard from future conse-
quences.

6.4 Case Study Monitors and Adaptation

The case study exhibits a variety of adaptive behaviour each of which is realised
using monitors of the types shown in figure 2. For example, a shop tries to
understand the situation in terms of its sales target, and adapts if the sales
target is not met. A citizen observes the financial status (of itself and others)
and adapts depending on circumstances; for example, one citizen may choose an
alternate payment option as a mobile wallet, whereas another citizen may adapt
to cash hoarding behaviour to avoid a cash shortage.

In this case study, the shops and citizens exhibit significant individualistic
behaviours and often adapt new strategies to deal with changing situations.



Fig. 15: Case Study Adaptors

A set of shops may change their behaviour proactively immediately after the
demonetisation event, whereas another set of shops may wait until they observe
a significant decline in sales before changing their behaviour. We attach a single
event based monitor to represent the former scenario, and a simple history based
monitor to represent latter.

A citizen may adapt their behaviour a) right after the demonetisation event,
b) on demonetisation followed by several consecutive failures to authorise trans-
actions, c) when they observe low cash-in-hand for a given number of days and
are unable to withdraw cash, or d) when they observe a given number of citi-
zens with multiple authorisation failures. Thus we see the need for all types of
monitors to represent citizen adaptation. In contrast to citizen and shop actors,
the bank actor primarily follows standard regulations that are defined by a gov-
ernment actor. Hence we associate a monitor actor with the government actor
and allow government to control banks through their event interactions.

6.5 Simulation Organisation

We set up a simulation by forming a society with actors representing the gov-
ernment, citizens, shops, and banks. Monitors are attached to shop and citizen
actors for specifying the individualistic adaptation. The simulation progresses
with a time event that represents a ‘day’. Each day, citizen actors consume
items, buy items from shops if any item is below a certain threshold, pay for the
purchases, and make an attempt to withdraw cash if needed. Similarly, bank ac-
tors try to stock up cash to fulfil ATM and Bank withdrawal requests, and shop



actors stock up the items for their customers. The government actor triggers
‘demonetisation’ at specific day of a simulation run.

We divide a simulation run into three phases: setup, pre-demonetisation,
and post-demonetisation. Figure 16 shows part of the simulation: the levers are
displayed in the top left hand corner and the measures are displayed in real-
time as the simulation progresses. Pre-demonetisation is an observation phase
to validate conditions that include a) cash at banks are adequate to serve all
citizens i.e., no denial of service at ATM machines and Bank counters; b) the
stock are sufficient at each shops to serve their citizens; and c) citizens can buy
items and withdraw cash as needed. This phase also monitors the cash-flows to
the banks, and cash in circulation.

In this simulation setting, we firstly observe the impact of demonetisation
by removing cash and reducing cash-flows. We then explore various what-if sce-
narios by changing the parameters and/or by attaching different actor monitors
to understand the impact of courses of action. For example: the impact of de-
monetisation if the government replenishes cash at a faster rate, or the impact
if the government decides to replenish 60% cash instead of 70%. Similarly, one
can explore the impact if none of the citizen exhibits cash hoarding behaviour
by detaching the monitors that are responsible for cash hoarding behaviours.
In this paper, we limit our analyses to two scenarios a) understand the effect
of demonetisation for standard setting that closely represents the real Indian
demonetisation event, and b) understand the positive/negative effect on overall
society when there is no hoarders. We have chosen these two relatively intuitive
scenarios to illustrate the efficacy of using actors and monitors.

6.6 Simulation Results

We simulated the demonetisation case study with one government, one bank, 15
shop and 1710 citizen actors for 150 days, where the first 15 days are considered
for setup phase, next 30 days are the pre-demonetisation phase, and 105 days
are the post-demonetisation phase. A snapshot of ESL simulation dashboard at
the day of 115 (i.e., after 70 days of demonetisation) is depicted in figure 16. The
dashboard shows useful states of the society and its identities: the ‘Citizen Type’
table describes the citizens and their card/wallet usage capabilities, b) the ‘Pay-
ment Distribution’ pie chart shows distribution of Card (green), Wallet (blue)
and Cash(red) payments, c) the ‘Payment Transaction Volume’ chart describes
the history of overall payment transactions where card transactions are green,
wallet transactions are blue, and cash transactions are red, d) the ‘Cash Avail-
ability in Bank and ATM’ graph shows the history of cash availability at Banks
and ATMs using red and blue respectively, e) the ‘Transaction Declined Rate’
graph describes the denial of service at Banks and ATMs using red and blue
respectively. In addition, the ‘Citizen with no Cash’ and ‘Citizen with excess
Cash’ charts describe the financial condition of the citizens: the former chart
describes the number of citizens having considerably less cash, and the latter
represents the number of cash hoarders (the red, blue, green and yellow colours
signify the cash dependent citizens, cash and wallet dependent citizens, cash and



card dependent citizens, and citizen with all facilities respectively as classified
in table). The ‘Citizens without essential commodities’ and ‘Citizen facing in-
convenience’ charts represent the number of citizens starving for essential items
and luxury items respectively.

We observe that the graphs are unstable for first 15 days of the simula-
tion runs as the simulator is trying to set the values based on actor behaviours
and their interactions. The simulation outcomes for pre-demonetisation phase is
stable: no bank withdrawal request is denied, no citizen is facing any financial
crisis, and citizens are not having any deficiency for essential or luxury items.
The demonetisation event is triggered at day 45, causing a sudden reduction
of cash from the bank and ATM machines. Subsequently, the withdrawals from
bank and ATM decline whilst wallet payment and card payment increase sig-
nificantly: the citizens have started facing a financial crisis and the citizens who
are solely dependent on cash have started starving for essential and/or luxury
items. The adverse effects continue for almost 50 days and then the situation
returns to normal.

As we can observe in graph with title ‘Citizen with excess cash’ in figure 16,
115 citizens started hoarding cash when the situation is on the verge of returning
back to normal. One may hypothesise that cash hoarding behaviour is signifi-
cantly slowing down the stabilisation process. We validate the hypothesis on
hoarding behaviour by removing the monitors that are responsible for turning a
citizen into a cash hoarder. We simulated the same society with no hoarders, and
relevant simulation results are depicted in figure 17. We observe improvements in
‘cash in bank and ATM’ and ‘transaction declination rate’ for the society with no
hoarders. The cash condition is returning back to normal in 40 days instead of 50
days. Thus the result is supporting the hypothesis regarding hoarding behaviour
and also providing an indication of possible improvement.

7 Conclusion

This paper has proposed a homogeneous actor-based language for monitors that
achieve adaptive behaviour. It is interesting because we have used the prevailing
LTL-based approach to expressing behaviours in actor and multi-agent systems
in order to define monitors that are also actors and therefore can be freely
mixed with other actors at run-time. The language has been given a semantics
by defining it using ESL which is a function-oriented actor language and we
have demonstrated the utility of the approach using a real-world case study
based on the recent demonetisation event in India. The case study demonstrates
how monitors are used in the context of a simulation that exhibits emergent
behaviour.

A number of limitations are identified in this work. The example described
in section 6 involves several thousand actors, and completes a simulation in
roughly 30 seconds. We recognise the need to scale up to more realistic actor
configurations which may then require further investigation in how to make ac-
tor behaviour, including adaptation, more efficient. A larger simulation model



of our case study would also allow us to calibrate more precisely the simulation
results with real world events as documented in the Indian national newspapers.
As with all actor based simulations, the results need to be carefully interpreted
given the underlying assumptions which we make given the complexity of the
example. Regardless, the ability of the language to define actors with their own
behaviours and adaptations and the flexibility for testing different conditions
provide a means evaluating different policies and options. The ability to visualise
and quantify the simulations results is also promising but again, we recognise
that much more work on visualisation is required. Time in this simulation re-
mains challenging however, we are similar in our approach to other efforts to
map simulation time with real world time. Our monitor language semantics is
currently defined using ESL which is currently in use in our research groups. It
may be appropriate to document other options for defining the semantics of the
monitor language to demonstrate other external validity routes.

ESL, simulation and adaptive behaviour are active areas of our research. An
interesting extension of this work would be to specify the structure of histories,
perhaps using pattern based rules, and then to verify that monitors are consis-
tent with the monitored actors to which they are applied. Other case studies
are also being explored to validate the technology and to produce a simulation
development method based on ESL.
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