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Abstract 

Two anhydrosugar model compounds (cellobiose and levoglucosan), and a mixture of 

anhydrosugars from the fast-pyrolysis of birch wood were subjected to acid hydrolysis using 

sulfuric acid as catalyst. The anhydrosugars mixture or bio-oil aqueous fraction was found to 

contain mainly levoglucosan with a concentration of 30 g L-1. Hydrolysis temperature, 

reaction time, and catalyst to substrate molar ratios (c/s), were varied to identify their 

influence for glucose production. At 120 °C, 60 minutes, and 0.9 c/s ratio; glucose yields of 

98.55% and 96.56%, and substrate conversions of 100% and ~92%, were achieved when 

hydrolysing cellobiose and levoglucosan respectively. An increase in the temperature to 135 

°C, resulted in a decrease in both glucose yield and selectivity; whereas substrate 

conversions around 90% were maintained for both anhydrosugars. During the hydrolysis of 

the bio-oil fraction, a range of conditions to achieve glucose yields above 90%, was 

depicted. It was found that c/s ratios between 0.17 and 0.90, and temperatures between 118 

°C and 126 °C were suitable to achieve glucose yields around 100% (30 g L-1). Furthermore 

glucose concentrations ~117% (35 g L-1) and levoglucosan conversions above 90%, were 

attained at 135 °C, 20 minutes and 0.2 estimated c/s ratio. 

 

Keywords: hydrolysis, glucose, anhydrosugars, levoglucosan, cellobiose  
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Introduction 

Renewable liquid fuels, high-value chemicals, and derived products can be obtained from 

the thermal processing of lignocellulosic biomass, for example via fast pyrolysis. During fast-

pyrolysis, the solid lignocellulosic biomass is thermally converted in the absence of oxygen, 

into three main fractions namely char, gases, and pyrolysis oil, the latter commonly called 

bio-oil [1-5]. 

Bio-oil can contain more than 400 compounds covering a wide range of molecular weights 

and functionalities [6-8]. The overall bio-oil composition highly depends upon the type of 

lignocellulosic material used as feedstock, and the pyrolysis processing conditions e.g. 

temperature and residence time [6, 9]. The major reported components of bio-oils include 

water, carboxylic acids, ketones, phenols, furans, and anhydrosugars [10, 11]. 

During fast pyrolysis, the cellulose present in lignocellulosic biomass, degrades into diverse 

products including anhydrosugars such as 1,6-anhydro-β-D-glucopyranose, referred to as 

levoglucosan (LG). Levoglucosan is a relevant anhydrosugar, which can be hydrolysed to 

monomeric glucose, which is a valuable chemical platform that can be fermented to produce 

bio-fuels such as bio-ethanol and bio-butanol [9, 12-14]. Alternatively, levoglucosan in the 

bio-oil can be separated for crystallization which opens valorisation routes of the 

anhydrosugar itself as compared to glucose [15]. 

The bio-oil fraction normally contains an aqueous and a non-aqueous fraction that can be 

separated for example by extraction. The aqueous extract of bio-oil is composed by low 

molecular weight aldehydes such as glycoaldehyde as well as phenolic compounds [16]. 

Anhydrosugars such as levoglucosan are also normally present in the bio-oil aqueous 

fraction, and some studies have been directed in optimising levoglucosan extraction [9, 12]. 

For example Li et al. 2013 [12], used water during the extraction of levoglucosan from bio-oil 

in order to maximise the amount of levoglucosan obtained. The optimal parameters reported 

included a water-to-bio-oil ratio of 1.3:1, 25 °C, and 20 min extraction time to yield 12.7 wt.% 

of levoglucosan.  Bennet et al., 2009 [9], studied the extraction of levoglucosan from bio-oil, 

and its further hydrolysis to produce glucose. The optimal conditions reported for the 

extraction stage were 41 wt.% of water at 34 °C, which resulted in an aqueous fraction 

containing about 88 g L-1 of levoglucosan. A glucose yield as high as 216% (based on 

levoglucosan in the substrate) was reported during the hydrolysis of levoglucosan at 125 °C, 

44 minutes reaction time and using 0.5 M sulphuric acid [9]. The extraction of levoglucosan 

is seem as a necessary step when the levoglucosan is further processed via hydrolysis. 

To date, several studies have indicated that levoglucosan yields in bio-oil can be greatly 

increased if a mild or dilute acid biomass pre-treatment precedes the fast pyrolysis [12, 17-
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21]. For example Scott D. S., et al., [17], examined the production of anhydrosugars from 

cellulose-containing biomass via a series of processes. The first step was a biomass pre-

treatment with diluted acid in order to remove alkaline materials, which was followed by the 

separation of cellulose and hemicellulose fractions. Then the solid hemicellulose-free 

fraction was subjected to fast pyrolysis at temperatures between 400-650 °C and residence 

time <10 seconds, and finally the anhydrosugars produced were isolated [17]. 

Lian et al., [7], pyrolysed acid washed poplar at with an organic phase (containing phenols) 

and an aqueous phase containing anhydrosugars. The anhydrosugars were separated from 

phenols by solvent extraction and then subjected to acid hydrolysis using sulphuric acid as 

catalyst. The HPLC analysis of the phenol-rich fraction, revealed the presence of 

levoglucosan, sorbitol, cellobiosan, arabinose, galactose, glucose, mannose/xylose, 

fructose, cellobiose, and some other unknown compounds. After acid hydrolysis at 120 °C, 

42 minutes and using H2SO4 0.5 M as catalyst, a glucose yield of 220% was achieved. This 

high glucose yield was attributed to the contribution of unidentified anhydrosugars into the 

final glucose formation [7]. 

Acid hydrolysis is one of the most common processes to obtain low-cost fermentable sugars 

from anhydrosugars. However, it is a complex process as several parameters can be varied 

including temperature, residence time, acid catalyst type, acid concentration, and catalyst to 

anhydrosugars ratio. Meaning that many experiments need to be conducted to clearly 

identify clear trends for glucose yields. So far in the literature there have been a handful of 

reported studies on acid hydrolysis of anhydrosugar model compounds such as 

levoglucosan and cellobiose [22-24]. However little has been reported about the acid 

hydrolysis of bio-oil fractions at different conditions [9, 22].  

The feasibility of a bio-refinery concept in which an anhydrosugar-rich liquid from the fast 

steam pyrolysis of birch-wood is hydrolysed into glucose, with the intention for it to be 

fermented into bio-ethanol or bio-butanol as a fuel is experimentally addressed in this work. 

The acid loading and reaction time will affect the economics of the overall process 

pronouncedly, so in-depth information about this important reaction step is required. 

Ultimately this work experimentally investigated the potential of obtaining glucose from the 

acid hydrolysis of anhydrosugars. Initially levoglucosan and cellobiose were used as 

anhydrosugar model compounds. The influence of selected hydrolysis conditions over both 

the conversion of anhydrosugar model compounds and glucose yields was analysed. In a 

second stage an anhydrosugars mixture from bio-oil was hydrolysed; glucose concentrations 

and substrate conversions were studied also at different hydrolysis conditions. Overall the 
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hydrolysis parameters varied included reaction time, temperature and catalyst/substrate 

molar ratios. 

Materials and methods 

Materials 

Anhydrosugars 

For the anhydrosugar model compounds, levoglucosan (CAS 498-07-7) and D-cellobiose 

(CAS 528-50-7) were purchased from Carbosynth Limited, Berkshire, United Kingdom. 

Solutions of levoglucosan and cellobiose were prepared at concentrations of 62.3 g L-1, and 

100 g L-1 respectively. The concentration of the levoglucosan solution was adjusted to this 

value, as it was expected that the real anhydrosugars mixture from bio-oil will contain about 

60 g L-1 of levoglucosan. 

HPLC compounds 

For the HPLC calibration, solutions of levoglucosan, cellobiose, together with solutions of 

cellobiosan (CAS 35405-71-1, Carbosynth Limited UK), and glucose (CAS 50-99-7, Sigma-

Aldrich) were used. For the HPLC mobile phase, the following substances were used: water, 

acetonitrile (ACN), both HPLC grade from VWR chemicals, and a solution of 100mM 

ammonium acetate (Sigma-Aldrich). The pH of the ammonium acetate solution was adjusted 

to pH=5.4 using a concentrated hydrochloric acid (HCl, Sigma-Aldrich). The percentages to 

prepare the mobile phase were 75vol.% ACN, 15vol.% water, and 10vol.% 100 mM 

ammonium acetate solution. 

Liquid acid catalyst 

For the homogeneous catalyst, concentrated sulfuric acid (H2SO4 >95%, from Fisher 

Chemicals), it was used to prepare a 0.5 M sulfuric acid solution. This solution was used for 

all the hydrolysis tests reported in this work. The volumes of acid catalyst and substrates 

were therefore varied in order to achieve different catalyst/substrate ratios. 

Aqueous fraction of bio-oil 

The aqueous fraction was extracted from a bio-oil prepared by Nova Pangaea Technologies, 

in the United Kingdom. Birch-wood chips from UK were used as feedstock for the fast 

pyrolysis. Initially hemicelluloses and alkali materials were removed from the biomass by a 

dilute sulphuric acid based hemicellulose hydrolysis process (H2SO4: biomass ~0.02:1.0), at 

170 °C, and 15 min. The use of dilute acid (H2SO4 <2 wt.%) as pre-treatment to alter or 

break the structure of lignocellulosic biomass is a widely used technique. It is mainly used to 

remove hemicelluloses in the form of sugars and oligomers with limited effects on cellulose 
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and lignin compounds. This pre-treatment involves low acid consumption and increases the 

material’s porosity [25-29]. Commercial processes using sulfuric acid as pre-treatment for 

biomass include BlueFire Renewables (USA), and Abengoa Bioenergy (Spain) [25, 30]. 

The hydrolysed hemicellulose fraction was segregated, and the pre-treated stream was 

subjected to a fast steam pyrolysis process. A continuous pyrolysis reaction with a capacity 

of 15-25 kg/h was used to process the pre-treated biomass. For the pyrolysis about 4.5 kg of 

superheated steam were added per kg of dry biomass feed, the pyrolysis temperature was 

around 380-410 °C, the pressure ~1 atm and a short biomass residence time in the order of 

seconds were used as process conditions. Under these conditions about 75wt.% of liquid 

fraction (wet basis), 20wt.% solid fraction (char), and 5wt.% of gases (dry basis) were 

produced. The aqueous fraction from the condensed pyrolysis liquid was segregated from 

non-aqueous fraction, as it was known to contain anhydrosugars. The aqueous fraction 

containing anhydrosugars was characterised using HPLC and GC-MS, in order to identify its 

major components. The aqueous bio-oil fraction was stored at 4 °C with no light exposure 

until used for the hydrolysis tests. 

Methods 

Experimental: Acid hydrolysis 

The anhydrosugar model compounds (cellobiose and levoglucosan) and the aqueous 

fraction from the bio-oil were subjected to acid hydrolysis. A schematic of the 15 mL 

autoclave reaction system used for the hydrolysis experiments is shown in Figure 1. The 

reagents were loaded at atmospheric pressure, and due to the closed nature of the system 

the pressure slightly increased to autogenous pressure of water about 2 bar to 6 bar, when 

using temperatures of 135 °C and 150 °C respectively. The influence of an inert vs an air 

atmosphere on the glucose yield, was not studied as it was not within the scope of this 

research. During the hydrolysis tests the parameters selected to be varied included 

temperature, reaction time, and catalyst to substrate molar ratio. 

A typical hydrolysis experiment was carried out as a batch experiment (Figure 1); certain 

volume of substrate solution with a fixed concentration (cellobiose, levoglucosan, or 

pyrolysis-oil), was loaded in a glass liner together with a magnetic stirrer and the calculated 

volume of catalyst (0.5 M H2SO4). The total volume for all the hydrolysis experiments was 

kept constant at 10 mL and only the volumes of both substrate solution and sulphuric acid 

were varied in order to achieve different catalyst/substrate molar ratios. For all the 

experiments stirring was set at 600 RPM and a heating rate of about 2.5 °C min-1 was used 

until reaching the set temperature (±3 °C). The reaction time began to be measured once the 

temperature reached the set value. 
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The independent variables for acid hydrolysis were X1, X2, and X3, representing the 

temperature in °C, reaction time in minutes, and catalyst/substrate molar ratio respectively. 

Each variable was coded at three levels (-1, 0, 1); these coded values were obtained 

according to Eq. (1): 

�� = (�� −�)	
  (1) 

where CV is the coded value, AV is the actual value, M is the mean and HR is the half of 

range. Values were considered for each test, and a matrix of coded factor levels was 

obtained as shown in Table 1. The initial fixed conditions were temperatures of 80 °C, 100 

°C, and 120 °C, reaction times of 20, 40, and 60 minutes, and catalyst to substrate molar 

ratios of 0.2, 0.6, and 0.9. All these values were selected based on hydrolysis conditions 

reported in the literature. Additional experiments were carried out at 135 °C and 150 °C, in 

order to study the decomposition routes of the anhydrosugars at higher temperatures. 

After each hydrolysis test, the resulting samples were analysed using HPLC and the 

concentrations of the different compounds were calculated using their corresponding 

calibration curves. The conversion of substrate (cellobiose or levoglucosan), represented 

how much out of the initial 100% of substrate was converted during the reaction, and it can 

be expressed by Eq. (2): 

�� = 100 − �(��� − ���)�� × 100� (2) 

where �� is the conversion of substrate in percent (%); ��� are the initial moles of the 

substrate at t=0, and ��� are the final moles of substrate after acid hydrolysis. 

The glucose yields were calculated considering the actual and theoretical glucose amounts. 

The actual glucose was calculated by Eq. (3): 

�� = ��� ×�� (3) 

where �� indicates the actual amount of glucose in grams (g), ��� represent the final moles 

of glucose after hydrolysis, and �� is the molecular weight of glucose (180.16 g/mol). 

The theoretical amount of glucose was then calculated using Eq. (4): 

�� = ��� ×�� (4) 

where �� is the theoretical maximum amount of glucose in grams (g), and ��� are the initial 

moles of substrate. The 1:1 and 1:2 stoichiometry (moles) were used to calculate the 

theoretical amount of glucose from the hydrolysis of levoglucosan and cellobiose 

respectively. 
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The overall glucose yield was therefore obtained combining the theoretical and actual 

glucose amounts, and using the following expression (Eq. (5)): 

�� = ����� � × 100 (5) 

where	��, is the glucose yield in percent (%); �� is the actual glucose (g), and �� is the 

theoretical amount of glucose in grams (g). 

Finally, the selectivity was calculated considering the conversion of the substrate to glucose, 

using the following Eq. (6), and reported by Deng et al [31]: 

� = � ������ − ���� × 100 (6) 

where ��� are the moles of glucose in the final product, ��� and ��� are the initial and final 

moles of substrate. When calculating the selectivity of glucose from the substrate cellobiose, 

the denominator was multiplied by 2, considering the reaction stoichiometry. 

Characterisation of bio-oil aqueous fraction 

In the present research the bio-oil from fast pyrolysis was extracted or separated into water 

soluble and water-insoluble fractions. Similar procedures have been reported in the literature 

by Yu et al, 2016 [32]; Lian et al, 2010 [7], and Bennett et al, 2009 [9]. 

The water soluble or aqueous fraction of bio-oil, was characterised using diverse techniques 

in order to identify its major compounds. 

Moisture content 

Initially the water content of the bio-oil was quantified using a Mettler Toledo V20 Volumetric 

Karl-Fisher Titrator as per American Society for Testing and Materials (ASTM) E203-96. It 

was determined that the pyrolysis oil had a water content higher than 90.0%. This water 

content, together with the water contained in the liquid acid catalyst (0.5 M H2SO4), 

contributed to the hydrolysis process. 

GC-MS 

A Varian 450-GC gas chromatograph, coupled to a Varian 220-MS, IT mass spectrometer 

(GC-MS), was used for the analysis of the chemical compounds contained in the aqueous 

fraction of the pyrolysis oil and in some hydrolysates. The system was equipped with a 

capillary column Elite-1701, L 30 m x I. D. 0.25 mm, df 0.25 µm. The identification of the 

compounds was based on the existing library for different types of bio-oil. 
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HPLC 

All the samples from acid hydrolysis tests were analysed by high-performance liquid 

chromatography (HPLC), using a 1200 Infinity Series from Agilent Technologies equipped 

with an auto sampler, gradient pump, and UV/ RI detection systems. The separation of 

sugars was performed using a 2.6 µm 150 Amide-HILIC HPLC column (250 x 2.1 mm with 

guard 10 x 3.0 mm). The column was set at 30 °C with a flowrate 0.1 mL min-1, and an 

injection volume of 5 µL. The mobile phase used was 75/10/15 (ACN/100 mM ammonium 

acetate pH 5.4/H2O); 1 L of the solution was premixed in order to avoid variations in the RI 

signal when using the mixing pump. 

The HPLC column was calibrated using prepared stock solutions of levoglucosan, 

cellobiose, cellobiosan, and glucose at 5 different concentrations. Linear calibration curves 

(average R2=0.997) were obtained for each compound and the elution times for the different 

compounds were identified. Each sample was analysed in duplicate and the average was 

used to report the concentration of each compound. During HPLC analysis, the typical 

relative standard error was ±0.00026 for multiple injections from the same sample. 

Results and discussion 

Acid hydrolysis of cellobiose 

Cellobiose is not commonly identified as a component of pyrolysis oil, however it was 

selected as it can be formed as intermediate during the acid hydrolysis of cellobiosan; the 

latter is a common compound present in the bio-oil composition together with levoglucosan 

[24, 32, 33]. During the hydrolysis of cellobiosan, two molecules of glucose can be formed 

via two different routes as shown in Figure 2 [24, 34]. The upper path occurs via the 

hydrolysis of β-(1→4) glycosidic bonds to form one molecule of glucose and one molecule of 

levoglucosan, then levoglucosan might further hydrolyse into glucose [35]. The second 

glucose formation route from cellobiosan is via the hydrolysis of 1,6-anhydro bond, resulting 

in the formation of the disaccharide cellobiose. Cellobiose can further hydrolyse yielding two 

molecules of glucose via rupture of the O-glycosidic bond (Figure 2). 

For the hydrolysis of cellobiose different temperatures (80, 100, and 120 °C), reaction times 

(20, 40, and 60 min), and catalyst to substrate molar ratios (0.2, 0.6, and 0.9) were varied in 

order to identify their influence in both the glucose yield and substrate conversion (Table 1). 

The volumes of the cellobiose stock solution (100 g L-1), and catalyst (H2SO4, 0.5 M) were 

adjusted to achieve different catalyst/substrate molar ratios. 

The effects of varying the hydrolysis parameters were studied via monitoring both cellobiose 

conversion and glucose yields, as shown in Figure 3. Figure 3 a, b, and c, depicts the 
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aforementioned trends at 20, 40 and 60 min reaction times respectively. From Figure 3 it can 

be seen that at a hydrolysis temperature of 80 °C, low substrate conversions and low 

glucose yields were achieved. For example at 80 °C (Figure 3) just between 20 and 30% of 

the initial cellobiose was converted, resulting in relatively low glucose yields between 2 and 

15% at different reaction times and different catalysts to cellobiose ratios. At a hydrolysis 

temperature of 80 °C, by increasing the reaction time from 40 minutes (Figure 3b) up to 60 

minutes (Figure 3c), slightly increased the glucose yields from 7% up to 17%, for a 

catalyst/substrate ratio of 0.6 whereas the glucose yield was maintained around 14% for 0.9 

catalyst/substrate. In addition, the selectivity towards glucose increased from 0.4 up to 0.9 

when increasing the catalyst/substrate ratio from 0.6 to 0.9. Nevertheless, both the low 

conversion of cellobiose and relatively low glucose yields (~15%), were attributed to the mild 

hydrolysis temperature used. 

At 120 °C and a catalyst to substrate ratio of 0.2, the glucose yield increased from 60% to 

77% as the hydrolysis time was increased from 20 min (Figure 3a) up to 60 min (Figure 3c); 

whereas at a ratio of 0.6, the glucose yield remained somewhat constant around 87% 

regardless the reaction time. Full conversion of cellobiose at a ratio of 0.6 was seen after 

approximately 40 minutes at 120 °C. A very similar yield observed after 40 and 60 minutes 

indicates that only marginal glucose degradation occurs at this reaction condition. At 120 °C 

the further increase of the catalyst to substrate ratio from 0.6 up to 0.9, resulted in a 100% 

conversion of cellobiose after 40 min (Figure 3b) and 60 min (Figure 3c) of hydrolysis. This is 

in accordance with reported results where the increase in the H2SO4 concentration increased 

the substrate conversion and thus the glucose yields [24]. For cellobiose hydrolysis, the 

highest glucose yield of 98% was achieved after 60 min (Figure 3c), H2SO4/cellobiose ratio 

of 0.9, and a reaction temperature of 120 °C, with a 100% cellobiose conversion. 

In order to study the effect of further increasing the temperature during the hydrolysis of 

cellobiose, selected experiments were carried out at 135 °C, 40 and 60 min reaction time, 

and 0.6 and 0.9 catalyst/substrate ratio. It was observed that all the experiments carried out 

at 135 °C resulted in a 100% conversion of cellobiose, but not necessarily 100% yield of 

glucose. For example at a catalyst/substrate of 0.6 and 135 °C, the glucose yield decreased 

from 92% down to 89.5%, as the reaction time increased from 40min up to 60min; showing 

that glucose degradation starts becoming significant at this temperature. Furthermore, the 

presence of levoglucosan was observed and its concentration was noted to increase from 

2.4 g L-1 up to 3.4 g L-1 at the aforementioned hydrolysis conditions. It is postulated that the 

increase in the temperature from 120 °C up to 135 °C, promoted the dehydration of glucose 

into levoglucosan as shown in Figure 5 [36, 37]. The dehydration of glucose into 

levoglucosan can occur via two pathways. The first one is the formation of a key 
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intermediate that becomes stable due to the solvation energy due to the high temperature 

and high density of hot water. In the second route two water molecules close to glucose 

transfer hydrogen atoms into the hydroxyl groups of glucose, eliminating a water molecule 

from glucose. Then a bi-radical is formed, which can finally leads to the formation of 

levoglucosan [38]. 

The glucose selectivity after 60 minutes of reaction time is shown in Figure 4. From Figure 4 

it is observed a positive influence of the temperature on the glucose selectivity (dashed 

lines). For example, for a catalyst/substrate ratio of 0.2, the glucose selectivity gradually 

increases from 14% to 36%, and up to 87%, as the temperature increases from 80 °C to 100 

°C and up to 120 °C respectively (Figure 4). At 120 °C, the glucose selectivity increased 

from 87.6% to 98.5% when the catalyst to substrate ratio was increased from 0.6 up to 0.9 

(Figure 4). Interestingly, the selectivity was reduced down to 86% when the temperature was 

increased up to 135 °C for a catalyst/substrate of 0.9. This behaviour is therefore linked to 

the potential glucose dehydration reactions taking place at hydrolysis temperatures higher 

than 120 °C (Figure 5). 

The results from the experiments carried out at different temperatures were used to create a 

matrix and obtain a 3D surface area and contour plot for glucose yields from the hydrolysis 

of cellobiose (Figure 6). From Figure 6, it can be seen that glucose yields above 90% can be 

attained during the hydrolysis of cellobiose, at temperatures between 120-135 °C, and using 

catalyst/substrate ratios between 0.6 and 0.9. 

In order to study the influence of increasing the temperature beyond 135 °C, cellobiose 

hydrolysis tests were carried out at 150 °C, 10 min, and at catalyst/substrate ratios of 0.6 

and 0.9. Under these conditions it was observed that after 10 min, the glucose yield was 

reduced from 83% down to 79% as the H2SO4/cellobiose ratio increased from 0.6 up to 0.9. 

Contrastingly glucose yields higher than 87% were attained when hydrolysing cellobiose at 

120 °C and 135 °C, 40 minutes of reaction time, at both 0.6 and 0.9 catalyst/substrate ratios. 

For the hydrolysis experiments carried out at 150 °C, there was a visual presence of solids 

in the collected sample, which has been related with the further degradation of glucose at 

high temperatures. For example the isomerization of glucose into fructose, followed by the 

dehydration of fructose into 5-hydroxymethyl furfural (5-HMF), as shown in Figure 5 [39]. 

The resulting 5-HMF (Figure 5) is an unstable molecule which tends to condense into a 

black insoluble carbonaceous heterogeneous materials, often referred to as “humins” [40-

47]. Alternatively the subsequent addition of water (hydration reaction) to the C2-C3 bond of 

the furan ring in the 5-HMF structure, might yield to both levulinic acid and formic acid in a 

1:1 mol ratio [44]. van Zandvoort et al., 2013 [44], reported humins yields up to 36% when 
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hydrolysing glucose at 113 °C and 247 °C, and after 6h of reaction, and found a strong 

relationship between the humins yield and temperature rather than acid concentration and 

humins yield. Generally, the presence of humins in hydrolysis product indicates that 150 °C 

temperature is too harsh for high yield glucose production [44, 45]. 

Acid hydrolysis of levoglucosan 

As shown in Table 1 the conditions for acid hydrolysis of levoglucosan were the same as 

those described for the hydrolysis of cellobiose. However as demonstrated by Figure 2, the 

theoretical quantity of glucose was calculated using a 1:1 molar stoichiometry (levoglucosan 

into glucose). 

The conversion of levoglucosan and glucose yields at 80 °C, 100 °C, 120 °C; 

H2SO4/levoglucosan molar ratios of 0.2, 0.6, 0.9; and reaction times of 20 min, 40 min and 

60 min, are shown in Figure 7. Similar to the trends observed for cellobiose hydrolysis 

(Figure 3), at 80 °C both levoglucosan conversions and glucose yields <11% were obtained 

at 20 min (Figure 7a) and 40 min (Figure 7b), whereas a slight increase in the glucose yield 

up to 14% is observed after 60 min (Figure 7c). At 80 °C, 0.6 ratio, and 60 minutes, 

levoglucosan conversion was just 10% (Figure 7), whereas the conversion of cellobiose 

under similar hydrolysis conditions was ~33% (Figure 3). Which shows that at this relatively 

low temperature of 80 °C, the conversion of cellobiose occurs at a faster rate when 

compared with the hydrolysis of levoglucosan. 

When the levoglucosan hydrolysis temperature was increased to 100 °C, glucose yields as 

high as 85%, and ~90% levoglucosan conversion were attained, after 60 minutes of reaction 

time and 0.6 catalyst/substrate molar ratio (Figure 7c). At 100 °C, and 20 minutes of reaction 

time (Figure 7a), an increase in the catalyst/substrate ratio from 0.2 to 0.6 increased the 

glucose yield from 21% up to 32%. Experiments at a catalyst/substrate ratio of 0.2 revealed 

that an increase in the temperature from 80 °C up to 100 °C, had a similar effect than 

increasing the catalyst/substrate ratio from 0.2 up to 0.9 (Figure 7). This means that either 

the increase in the sulfuric acid at a given temperature, or the increase in the temperature at 

a given sulfuric acid concentration, can have similar effects towards both levoglucosan 

conversion rate and glucose yield [24]. 

However it was observed that the further increase in the temperature from 100°C up to 120 

°C (Figure 7), had a major influence on both levoglucosan conversion and glucose yields. 

For example at 120 °C, levoglucosan conversions around 99% and glucose yields 90-100% 

were achieved for all the hydrolysis conditions tested. The levoglucosan conversion trends 

observed by increasing the temperature up to 120 °C, are in agreement with previous results 

reported by Bennett et al, 2009, and Helle et al, 2007 [9, 24]. 
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Levoglucosan conversions and glucose concentrations at different reaction times (20, 40, 60 

minutes) and temperatures (80 °C, 100 °C, 110 °C, and 120 °C), are shown in Figure 8. 

From Figure 8 values for levoglucosan conversion and glucose concentration at 110 °C were 

calculated using the first-order kinetic equations reported by Helle et al, 2007 [24], for the 

hydrolysis of levoglucosan. Equations (6) and (7), allowed us to estimate the concentrations 

for levoglucosan and glucose at 110 °C, respectively 

�
�� = � !"# (6) 

$
�� = %1 − � !"#& (7) 

Where A and D, are the concentrations of levoglucosan and glucose, respectively, and k1 is 

the first order rate constant for the hydrolysis of levoglucosan (0.00135 s-1); A0 is the initial 

concentration of levoglucosan. 

Figure 8 aims to show the proximity between our experimental data and that calculated 

using a kinetic expression reported somewhere else [24]. From Figure 8, a major increase in 

the glucose concentration and levoglucosan conversion was observed for temperatures 

above 100 °C, even at the low catalyst/substrate ratio of 0.2. The calculated data at 110 °C 

was obtained using a kinetic constant (k1) for H2SO4, 500 mM. For our experimental values 

at 120 °C we used the same acid concentration and a catalyst/substrate ratio of 0.2. The 

calculated kinetic values were slightly above our experimental ones, which indicated that a 

good estimation can be obtained based on the kinetics, however experimental data is also 

necessary to verify these estimated trends. 

Similar to the cellobiose hydrolysis analysis, the influence of further increasing the 

levoglucosan hydrolysis temperature was studied. Hydrolysis experiments were carried out 

at 135 °C, reaction times of 10 min, 40 min and 60 min, at catalyst/substrate molar ratios of 

0.6 and 0.9. The results were integrated with the previous ones in order to create a matrix 

and to obtain a 3D surface area and a contour plot as shown in Figure 9. 

In general, glucose yields following cellobiose hydrolysis (Figure 3) were lower than those 

obtained from the levoglucosan hydrolysis (Figure 7). For example, at a hydrolysis 

temperature of 120 °C, average glucose yields of 83% and 93% were obtained for the 

hydrolysis of cellobiose and levoglucosan respectively. Furthermore, at 120 °C values for 

glucose selectivity of 91% and 98% were calculated for the hydrolysis of cellobiose and 

levoglucosan respectively. This means that glucose selectivity is favoured for hydrolysing 

levoglucosan rather than cellobiose under similar conditions. This variation can be related to 

the slower rate of reaction during the hydrolysis of cellobiose, associated to the kinetics of 
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this particular reaction [24]. This can also explain the different patterns showed in the 

contour plots for the hydrolysis of cellobiosan (Figure 6b) and levoglucosan (Figure 9b). 

Whereas for hydrolysis of cellobiosan, glucose yields higher than 80% are concentrated at 

temperatures around 120 °C and 135 °C and catalyst/substrate ratios of 0.45 and 0.9 (Figure 

6); for levoglucosan this area is greater from temperatures between 110 °C up to 135 °C, 

and catalyst/substrate ratios of 0.2 up to 0.9 (Figure 9). 

For the hydrolysis levoglucosan at 150 °C, 10 minutes at catalyst/substrate molar ratios of 

0.6 and 0.9, glucose yields around 67% were obtained, with conversions of substrate around 

80%. It is worth to mention that 5-HMF was also identified in the hydrolysates (GC-MS), 

which might indicate the further degradation of this particular compound into humins. This 

was observed physically as also solids were observed in the collected hydrolysate samples. 

During the hydrolysis tests at 135 °C and 150 °C, the pressure in the autoclave system went 

up to 2 bar and 6 bar respectively, which was due to the nature of the closed system and 

higher reaction temperatures, but it might have implications when thinking about scaling up 

the process at these conditions as the reaction system should be capable to cope with these 

conditions. 

Acid hydrolysis of aqueous bio-oil fraction 

The extracted aqueous fraction from the bio-oil was analysed by GC-MS and HPLC. The 

GC-MS chromatogram of this fraction is shown in Figure 10. From Figure 10, it is observed 

that the major compound identified by GC-MS it was levoglucosan, as the area of this 

compound represented about 75% among all the peaks identified. Other major compounds 

identified by GC-MS included furfural, guaiacol, 2-methoxy-4-methylphenol, 5-hydroxymethyl 

furfural (5-HMF), syringol, 1,2,4-trimethoxy benzene, syringaldehyde, and possibly the last 

peak corresponds to 1,6-anhydro-β-D-glucofuranose. This last compound is a furanose 

isomer of levoglucosan and it has been has been proven to be present in similar pyrolysis 

products [48, 49]. The presence of this particular compound can also be attributed to the 

dehydration of glucose as shown in Figure 5. However, a conclusive assignment could not 

be achieved due to the unavailability of the pure 1,6-anhydro-β-D-glucofuranose. 

From HPLC analysis of the aqueous fraction, it was determined that the initial concentrations 

of levoglucosan and cellobiosan were 31 g L-1 (3.1 w/v.%) and 2.1 g L-1 (0.021 w/v.%), 

respectively. Also other unknown compounds, possibly anhydrosugars and acids, might be 

present in the aqueous fraction as several unidentified peaks were observed by both GC-MS 

and HPLC analysis (Figure 10). Previous studies [12, 18, 50, 51], have identified monomeric 

and oligomeric (anhydro)-sugars such as cellobiosan and levoglucosan as bio-oil component 

in pyrolysis oil from the fast pyrolysis of different biomass, being levoglucosan the most 
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abundant anhydrosugar. For example Dobele et al., 2003 [18], reported about 15 wt.% from 

the analytical pyrolysis of birch wood sawdust; Li et al., 2013 [50], reported about 16 wt.% of 

levoglucosan in the organic fraction of pyrolysis liquids from red oak; and Oudenhoven and 

collaborators, 2015 [51], reported ~35 wt.% of levoglucosan in pyrolysis liquids condensed at 

80 °C from acid leached biomasses. Also Lian et al., 2010 [7] reported that the aqueous 

phase of bio-oil from the pyrolysis of acid washed poplar contained 19 g L-1 of levoglucosan 

and 15 g L-1 of cellobiosan. Overall, the variability in the bio-oil composition and therefore the 

composition of the aqueous fraction, depends upon the reactor’s configuration, feedstock, 

and pyrolysis process conditions. 

During the hydrolysis of the bio-oil aqueous fraction, the catalyst to substrate ratios were 

estimated considering the initial concentration of levoglucosan of 31 g L-1 obtained by HPLC. 

Levoglucosan was used as reference compound to estimate the catalyst to substrate molar 

ratios, as it was the anhydrosugar present in the bio-oil in a higher concentration (Figure 10). 

When calculating glucose yields (%) it is necessary to estimate the theoretical glucose 

based on the initial moles of substrate (Section 0), however the aqueous fraction of bio-oil is 

a mixture of diverse compounds some of which may contribute to glucose formation, thus is 

not possible to report an accurate glucose yield value. Therefore unlike the hydrolysis of 

cellobiose and levoglucosan, in this section the glucose produced was reported as 

concentration (g L-1) instead of a percentage. 

Glucose concentrations therefore will give a better idea about the amount of glucose 

produced, as well as the potential contribution from other components in the aqueous 

fraction towards glucose. Figure 11 depicts glucose and levoglucosan concentrations from 

the acid hydrolysis of the bio-oil aqueous fraction at different reaction times of 20 minutes 

(Figure 11a), 40 minutes (Figure 11b), and 60 minutes (Figure 11c). 

From Figure 11 it is observed that 80 °C was not high enough to allow the conversion of 

potential substrates present in the aqueous fraction, even at a high catalyst to substrate ratio 

of 0.9 and reaction time of 60 minutes (Figure 11c). As the temperature was increased up to 

100 °C, slightly improvement towards substrate conversion and glucose concentration were 

observed. For example, at 60 minutes (Figure 11c) the concentration of glucose was 

positively influenced as it increased from 9 g L-1 up to 17 g L-1 as the catalyst/substrate ratio 

increased from 0.2 up to 0.9. 

From Figure 11, the positive effect of further increasing the hydrolysis temperature from 100 

°C up to 120 °C and 135 °C, is clearly observed in both glucose concentrations and 

substrate conversion. Average glucose concentrations around 35.5 g L-1 were attained at a 

catalyst/substrate ratio of 0.2 and hydrolysis temperature of 135 °C. At catalyst/substrate 
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ratios of 0.6 and 0.9, glucose concentrations of about 32 g L-1 were attained for different 

reaction times at both 120 °C and 135 °C, whereas levoglucosan was nearly depleted after 

just 20 minutes of reaction time. Yu and Zhang, 2003 [14], hydrolysed a pyrolysate from dry 

waste cotton. They found that after 20 minutes at 120 °C, and using 0.3 M H2SO4 per litre of 

pyrolysate, over 100% of the levoglucosan in the pyrolysate was converted into glucose. The 

excess of glucose produced was therefore attributed to the contribution of other compounds 

such as cellobiosan in the pyrolysate. For our pyrolysate we observed that at 20 minutes 

(Figure 11a), the glucose concentrations and substrate conversions could be further 

improved by increasing the hydrolysis temperature from 120 °C up to 135 °C, particularly at 

a low catalyst/substrate ratio of 0.2. 

When increasing the catalyst/substrate ratio from 0.6 up to 0.9 and at 135 °C, resulted in 

glucose concentration reductions at reaction times longer than 20 minutes. For example at 

40 minutes (Figure 11b), glucose concentration was reduced from 32.5 g L-1 down to 28.56 g 

L-1; similarly at 60 minutes (Figure 11c), the concentration of glucose was reduced from 30 g 

L-1 down to 27.58 g L-1. This might indicate that at this particular temperature of 135 °C and 

catalyst/substrate ratio of 0.9, glucose might not be stable and dehydrate into levoglucosan 

or 5- HMF, as depicted in Figure 5. 

Additional hydrolysis experiments were carried out at 135 °C, at a shorter reaction time of 10 

minutes, and catalyst/substrate ratios of 0.2, 0.6, and 0.9. These results were compared with 

those obtained at 20 minutes and at 135 °C, in order to study the conversion of levoglucosan 

and glucose concentrations (Figure 12). It was found that after 10 minutes and a catalyst to 

substrate ratio of 0.2, a glucose concentration of about 33.0 g L-1 could be attained, whereas 

the levoglucosan concentration was reduced from 31.0 g L-1 down to 3.0 g L-1. When the 

reaction time was increased to 20 minutes, the final glucose concentration reached 35 g L-1, 

whereas levoglucosan concentration was about 2.5 g L-1. This might be due to more 

compounds contained in the bio-oil aqueous phase continue converting after 10 minutes into 

glucose as the hydrolysis progresses, thus contributing to this slight increase. From Figure 

12, at 10 minutes of reaction time the increase in the catalyst/substrate from 0.6 to 0.9, 

reduced the glucose concentration from 32 g L-1 down to 26 g L-1; whereas at 20 minutes the 

concentration of glucose was maintained around 31 g L-1 as the catalyst to substrate ratio 

increased from 0.6 to 0.9. 

Figure 13 shows a 3D surface map and contour plot created using the experimental data 

obtained from the hydrolysis of the aqueous fraction of bio-oil. In Figure 13 glucose 

concentration is shown as function of both temperature and catalyst/substrate ratios for the 

hydrolysis conditions studied. At catalyst/substrate ratios between 0.2-0.6, and temperatures 
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between 120-135 °C, resulted in glucose concentrations higher than 30.0 g L-1. Choi et al., 

[28], reported that during the hydrolysis of starch higher glucose yields were achieved at low 

acid concentrations around 2% and 132 °C; at this temperature the acid concentration is 

critical as the decomposition rate of glucose is increased. A similar trend is observed in 

Figure 13b, as it seems the red area representing glucose concentrations > 35 g L-1, 

becomes more reduced as the temperature increases beyond 125 °C, but also it 

concentrates in lower catalyst/substrate ratios between 0.24 and 0.43. Glucose 

concentrations were reduced at catalyst/substrate ratios higher than 0.43 and at 

temperatures beyond 125 °C. This might be due to some of the glucose product is further 

dehydrating into other products, when hydrolysing this particular bio-oil aqueous fraction. 

Overall it was observed that during the hydrolysis of the aqueous fraction at 120 °C, lower 

catalyst/substrate ratios required longer reactions times in order to achieve glucose 

concentrations similar to those attained at higher ratios and shorter reaction times. For 

example to attain 32.5 g L-1 of glucose at 120 °C, catalyst/substrate ratios of 0.2 and 0.6 can 

be used, but the reaction times required are 60 min and 20 min respectively. At 120 °C, 

catalyst/substrate ratio of 0.9, and different reaction times (20, 40, 60min), the glucose 

concentration in the hydrolysate was maintained constant ~31 g L-1. However the 

levoglucosan concentration increased in the product from 2 g L-1 up to 5.8 g L-1 as the 

reaction time was increased from 20 min up to 40 min, which might indicate that the potential 

glucose produced at longer reaction times, dehydrated into levoglucosan due to the higher 

amount of acid. A similar undesirable effect was observed at higher temperature of 135 °C 

and when using a catalyst/substrate ratio of 0.9. For instance 33.4 g L-1 of glucose was 

attained in the hydrolysate at 10 min, 135 °C and with a catalyst/substrate of 0.2; whereas 

the increase in the catalyst/substrate ratio to 0.6 and up to 0.9 under the same conditions, 

resulted in reductions in the glucose concentration down to 32 g L-1 and 26 g L-1 

respectively. 

Finally from Figure 13, the optimum range to attain glucose yields above 30 g L-1 were at 

catalyst/substrate ratios between 0.16-0.90, and temperatures between 118-135 °C. 

Ultimately, we report that following the acid hydrolysis of an aqueous fraction from bio-oil, 

the glucose produced comes not only from levoglucosan but also from other potential 

substrates present in this particular fraction [14, 24]. It will be therefore interesting to create a 

similar mixture using other glucose contributors and undertake hydrolysis experiments in 

order to identify and verify this particular trend. 
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Conclusions 

This research demonstrates the feasibility of producing glucose from the acid hydrolysis 

of anhydrosugar model compounds as well as anhydrosugars contained in the aqueous 

fraction of bio-oil from the fast pyrolysis of birch-wood. 

Acid hydrolysis of cellobiose and levoglucosan can achieve substrate conversions close 

to 100% and glucose yields as high as 96% within various ranges of hydrolysis 

conditions including temperature, reaction time and catalyst to substrate ratio. 

The aqueous fraction from bio-oil, containing mainly levoglucosan can be hydrolysed at 

135 °C, 20 mins reaction time and with a levoglucosan to H2SO4 molar ratio of 0.2, for 

the production of 35.3 g L-1 of glucose (117% yield). At these conditions a conversion of 

levoglucosan was 92%. 

Hydrolysing the bio-oil aqueous fraction at 135 °C, with a reaction time as short as 10 

min, and catalyst/substrate ratios of 0.2, can result in conversions of levoglucosan of 

90% and a glucose concentrations of 32.4 g L-1. This short residence time can promote a 

more continuous operation when scaling up acid hydrolysis. 

For the hydrolysis of the aqueous fraction at 120 °C, the highest glucose concentration of 

32.5 g L-1 can be achieved at 20min, and a catalyst/substrate of 0.6, or at 60 minutes 

and a catalyst/substrate of 0.2. 

The results reported for the hydrolysis of this particular bio-oil fraction, can serve as a 

basis for selecting acid hydrolysis conditions for a larger scale operation. With that being 

said, further work is required on the effect and presence of inhibitors in the bio-oil, 

particularly when fermentation is considered as a next process stage. 
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Table 1. Coded factors matrix for the required experiments 

 

  

Experiment 
Temperature 

(°C) 
Reaction time 

(min) 
Catalyst/substrate 

molar ratio 

X1 X2 X3 

1 -1 -1 -1 

2 -1 -1 0 

3 -1 -1 1 

4 0 -1 -1 

5 0 -1 0 

6 0 -1 1 

7 1 -1 -1 

8 1 -1 0 

9 1 -1 1 

10 -1 0 -1 

11 -1 0 0 

12 -1 0 1 

13 0 0 -1 

14 0 0 0 

15 0 0 1 

16 1 0 -1 

17 1 0 0 

18 1 0 1 

19 -1 1 -1 

20 -1 1 0 

21 -1 1 1 

22 0 1 -1 

23 0 1 0 

24 0 1 1 

25 1 1 -1 

26 1 1 0 

27 1 1 1 
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Figure 1. Schematic diagram of the autoclave reaction system used for acid hydrolysis 

 

 

 

Figure 2. Hydrolysis of cellobiosan into glucose (adapted from Helle et al, 2007 [24]) 
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Figure 3. Cellobiose conversion (%) and glucose yields (%) at different reaction times: (a) 20 
min; (b) 40 min; and (c) 60 min 
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Figure 4. Cellobiose conversion (%) and Glucose selectivity (%) at 60 minutes reaction time, 
different temperatures and catalyst/cellobiose ratios 
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Figure 5. Dehydration reactions of glucose 
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Figure 6. Glucose yields (%) from the hydrolysis of cellobiose at different temperatures and 
catalyst to substrate ratios: (a) 3D surface area; (b) contour plot 

 

 

 

Figure 7. Levoglucosan conversion (%) and glucose yields (%) at different reaction times: (a) 
20 min; (b) 40 min; and (c) 60 min 
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Figure 8. Levoglucosan conversions (%) and glucose yields (%) at catalyst/substrate molar 

ratio 0.2, and temperatures of ■80°C; ●100°C; ▲110°C (calculated); ♦♦♦♦120°C. 

 

 

  

Figure 9. Glucose yields (%) from the acid hydrolysis of levoglucosan at different temperatures 
and catalyst to substrate ratios: (a) 3D surface area; (b) contour plot 
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Figure 10. GC-MS chromatogram of the aqueous fraction of bio-oil 

 

 

 

Figure 11. Concentrations of Glucose and levoglucosan (g L
-1

) at different temperatures, molar 
ratios and reaction times of (a) 20 min; (b) 40 min; (c) 60 min 
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Figure 12. Concentrations of levoglucosan and glucose from the hydrolysis of pyrolysis oil at 

135 °C, 10 and 20 minutes reaction time and 0.2, 0.6, and 0.9 catalyst/substrate ratios. 

 

 

 
 

Figure 13. Glucose concentration from the acid hydrolysis of pyrolysis oil: (a) 3D surface area; 
(b) contour plot  
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Synopsis 

This paper envisages a conversion pathway from a biomass renewable feedstock into 

glucose which is a high-value sugar platform. 
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