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SUMMARY

Synchronization of circadian clocks to the day-night
cycle ensures the correct timing of biological events.
This entrainment process is essential to ensure that
the phase of the circadian oscillator is synchronized
with daily events within the environment [1], to permit
accurate anticipation of environmental changes
[2, 3]. Entrainment in plants requires phase changes
in the circadian oscillator, through unidentified path-
ways, which alter circadian oscillator gene expres-
sion in response to light, temperature, and sugars
[4–6]. To determine how circadian clocks respond
to metabolic rhythms, we investigated the mecha-
nisms by which sugars adjust the circadian phase
in Arabidopsis [5]. We focused upon metabolic regu-
lation because interactions occur between circadian
oscillators and metabolism in several experimental
systems [5, 7–9], but the molecular mechanisms are
unidentified. Here, we demonstrate that the tran-
scription factor BASIC LEUCINE ZIPPER63 (bZIP63)
regulates the circadian oscillator gene PSEUDO
RESPONSE REGULATOR7 (PRR7) to change the
circadian phase in response to sugars. We find
that SnRK1, a sugar-sensing kinase that regulates
bZIP63 activity and circadian period [10–14] is
required for sucrose-induced changes in circadian
phase. Furthermore, TREHALOSE-6-PHOSPHATE
SYNTHASE1 (TPS1), which synthesizes the signaling
sugar trehalose-6-phosphate, is required for circa-
dian phase adjustment in response to sucrose. We
demonstrate that daily rhythms of energy availability
Current Biology 28, 1–10,
This is an open access article und
can entrain the circadian oscillator through the func-
tion of bZIP63, TPS1, and the KIN10 subunit of the
SnRK1 energy sensor. This identifies a molecular
mechanism that adjusts the circadian phase in
response to sugars.

RESULTS

bZIP63 Regulates a Response of the Circadian
Oscillator to Sugars
Circadian entrainment to sugars involves the regulation of PRR7

transcription [5]. In response to sugars, the wild-type circadian

period shortens, whereas that of prr7-11 does not [5]. Previous

investigation of candidate regulators of PRR7 failed to identify

candidates affecting the response of the circadian oscillator to

sugars [5, 15]. We hypothesized that the transcription factor

(TF) bZIP63 might regulate PRR7 because bZIP63 is regulated

by the SnRK1 energy sensor and bZIP63 transcripts peak before

PRR7 in constant light (Figure S1A). bZIP63 is a strong candidate

for sugar-mediated regulation of the circadian oscillator because

it binds ACGT core element motifs [16], and the PRR7 promoter

contains five ACGT-core bZIP TF-binding motifs within 300 bp

of its transcription start site, including a canonical G-box at

�254 bp [11, 17–19] (Figure 1A). bZIP63 binds a PRR7 promoter

region spanning�276 to�182 (Figures 1A and 1B; primer pair 1).

PRR7 transcripts were downregulated in T-DNA insertion mu-

tants and RNAi lines of bZIP63 (Figures 1C, S1B, and S1C) and

upregulated in bZIP63 overexpressors (Figures 1C and S1B).

We measured PRR7 transcript abundance under normal and

low light, which mimics starvation, demonstrated by accumula-

tion of the marker transcript DARK INDUCIBLE6 (DIN6) [5, 17]

(Figure S1D). Under low-light conditions that deplete endoge-

nous sugars, PRR7 transcripts accumulated in the wild-type

before dawn (Figure 1D [5]), whereas this was attenuated in
August 20, 2018 ª 2018 The Authors. Published by Elsevier Ltd. 1
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bzip63 mutants (Figure 1D). Under high light, which elevates

endogenous sugars (Figure S1D [5]), bzip63 mutations had little

effect on PRR7 transcript abundance; bzip63-1 was without ef-

fect and bzip63-2 reduced PRR7 transcript abundance slightly

(Figure 1D). Sucrose supplementation and high light both sup-

press PRR7 transcript accumulation (Figure 1D) [5], and bzip63

mutants prevent PRR7 upregulation under low light (Figures 1D

and 1E). These data suggest that bZIP63 upregulates PRR7 in

low-energy conditions and that bzip63-2 is a stronger allele (Fig-

ure 1D). At the end of the photoperiod, the bzip63 mutations did

not affect PRR7 transcript abundance, consistent with the ef-

fects of sugar on PRR7 being restricted to the early photoperiod

(Figure 1E) [5]. PRR7 transcripts decreased in bzip63-2 only at

the night end, whereas CIRCADIAN CLOCK ASSOCIATED1

(CCA1) and its target GBS1 were upregulated at ZT20-24 (Fig-

ure S1E). Upregulation of CCA1 in bzip63-2 might be due to

downregulation of PRR7. Therefore, bZIP63 upregulates PRR7

in response to low energy. This is suppressed by sugars because

both sucrose supplementation and bzip63mutants inhibit PRR7

transcript accumulation.

Because we found a PRR7-mediated circadian system-wide

effect of bZIP63, we investigated whether bZIP63 underlies a

response of the circadian oscillator to sugars. Unlike the wild-

type, bzip63-1 circadian period was unaffected by sucrose un-

der low light (Figure 1F), indicating that the circadian oscillator

in bzip63-1 is sugar unresponsive. This suggests the circadian

oscillator did not respond to sugars in bzip63-1 because PRR7

was not upregulated by low-energy conditions.

Sugar-Induced Changes in Circadian Period Involve
KIN10 and Trehalose-6-Phosphate Biosynthesis
We investigated how regulators of bZIP63 influence the

response of the circadian oscillator to sugars. KIN10 (AKIN10/

SnRK1.1), an a subunit of the sugar sensor SnRK1 [17], regulates

bZIP63 activity in response to starvation [11]. KIN10 overexpres-

sion (KIN10-ox; Figure S1F) [17] further increased the long circa-

dian period of the wild-type occurring under low-energy condi-

tions (Figures 2A and 2C). The circadian system in KIN10-ox

remained sugar sensitive because sucrose supplementation

shortened its period (Figure 2C) [5]. This could be because over-

expressed KIN10 is inhibited post-translationally by sugars.

Constitutive KIN10 overexpression under high light, when sugars

are high, did not lengthen the period (Figure S2A).

Under low-energy conditions, such as low light, KIN10-ox

caused a longer period relative to the wild-type (Figure 2C). Un-

der high-energy conditions (either low light plus sucrose or high

light), KIN10-ox had less effect (Figures 2C and S2A). Therefore,
Figure 1. bZIP63 Binds the PRR7 Promoter to Regulate the Circadian

(A) PRR7 structure indicating promoter motifs, transcription start site (TSS), and

exons.

(B) bZIP63 binds the PRR7 promoter (n = 3 (HA-bZIP63-ox1) and n = 6 (HA-bZIP6

ChIP used material harvested at end of dark period.

(C) PRR7 transcripts at ZT0 under high light in bzip63 mutant and RNAi lines, an

(D and E) bZIP63 regulates PRR7 transcript abundance in low, but not high, fluen

and (E) dusk in mature plants exposed to low light 1 day before sampling (n = 5

(C–E) Significance is indicated for comparisons against wild-type at 100 mmol m

(F) Sucrose shortened the circadian period of CCA1:luc in Col-0 (t test), but no

subjective darkness, respectively.

See also Figure S1.
sugar levels affect the circadian phenotype in KIN10-ox. This is

consistent with KIN10 regulating the circadian clock in response

to energy status because low-energy conditions cause a longer

period [5], KIN10 is activated by low energy [14, 17], and sucrose

rescues light-intensity-dependent effects of KIN10 upon the

circadian oscillator [14].

TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) synthe-

sizes the signaling sugar trehalose-6-phosphate (Tre6P). Tre6P

concentration tracks sucrose and negatively regulates SnRK1

activity, bZIP63, and other sugar-sensing targets [11, 20, 21].

We investigated the circadian phenotype of three hypomorphic

tps1 TILLING mutants [22]. Sucrose had no effect on period in

tps1-11 and tps1-13 (Figures 2B and 2D). Sucrose shortened

the period of tps1-12, the weakest allele for metabolite alter-

ations [22], but less than the wild-type (Figure 2D). In the pres-

ence of sucrose, all three tps1 alleles had longer periods than

the wild-type (Figure 2D), presumably because low Tre6P

mimics starvation. In the absence of sucrose under low-light

conditions, tps1 mutants did not have a longer period than the

wild-type (Figure 2D). This might be because these seedlings

were already in a low-sugar state [5], so disrupting this pathway

caused no further change.

Diel and Circadian Rhythms of Sugar Signaling Revealed
by DIN6 Promoter Dynamics
Energy changes might arise from fluctuations in sucrose avail-

ability [23]. We investigated this using DARK INDUCIBLE6

(DIN6/ASN1), which is upregulated by starvation, downregulated

by sugars, and downstream of the regulation of bZIP63 by KIN10

[11, 17]. DIN6:luc had a diel rhythm, with promoter activity (2.4-

fold; Figure 3A) and transcript abundance (2.7-fold; Figure S2B)

increasing after dusk. DIN6 promoter activity reduced through

the night, presumably as sugars became available from starch

breakdown [28]. After dawn,DIN6:luc activity decreased rapidly,

suggesting the accumulation of photosynthetic sugars (Fig-

ure 3A). DIN6 promoter dynamics in light/dark cycles arose

from sugar status alterations, because sucrose supplementation

attenuated DIN6:luc rhythms (Figure 3A). This is also supported

by increased DIN6 transcript abundance under low-light/dark

cycles at pre-dawn and dusk compared with high-light controls

(Figure S1D).DIN6 promoter activity and transcript accumulation

are also circadian regulated, peaking in the middle of the subjec-

tive day in constant high light (LL) (Figures 3A and S2C). As with

CCA1:luc [5], DIN6:luc was phase-advanced by sucrose under

constant low light but not higher light intensity. Therefore, under

light/dark cycles there are sugar-dependent cycles in a readout

of KIN10- and bZIP63-mediated sugar signaling [11, 17]. This
Oscillator

chromatin immunoprecipitation (ChIP)-PCR primers. Black rectangles indicate

3-ox2); ±SD); � indicates mock and + indicates immunoprecipitated samples.

d bZIP63 overexpressors (n = 3 ± SD; t test).

ce light/dark cycles. PRR7 transcript abundance immediately before (D) dawn

± SD; t test).
–2 s–1.

t bzip63-1 (n = 32; ± SEM). Dark and light gray shading indicates actual and
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Figure 2. KIN10 and TPS1 Regulate the

Response of the Arabidopsis Circadian

Clock to Sugar

(A and B) CCA1:luc bioluminescence in low

light, with/without exogenous sucrose in (A) two

KIN10-ox lines (n = 37–58; three experiments

combined) and (B) three tps1 mutants (n = 36–64;

six experiments combined). Dark and light gray

panels indicate actual and subjective darkness,

respectively.

(C and D) Circadian period of CCA1:luc biolumi-

nescence in KIN10-ox (C) and tps1 mutants (D),

relative to wild-types, with or without exogenous

sucrose under low light (t test; ±SEM).

Please cite this article in press as: Frank et al., Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63, Current
Biology (2018), https://doi.org/10.1016/j.cub.2018.05.092
indicates that starvation pathways are upregulated during each

night of light-dark cycles (Figures 3A and S2B). Extensive inte-

gration of circadian regulation with energy signaling is corrobo-

rated by statistically significant overlaps between KIN10- and

[Tre6P]-regulated transcripts and five sets of circadian- and

diel-regulated transcripts (Figures 3B and S2D–S2F) [17, 23–27].

Diel cycles of DIN6:luc activity are likely mediated by Tre6P.

DIN6:luc activity was increased in two tps1 alleles (tps1-11 and

tps1-12), particularly at night when low sugar availability com-

bines with the low TPS1 activity in these mutants to activate

KIN10 and the DIN6 promoter [11, 17, 20] (Figure 3C). DIN6:luc

was unaltered in tps1-13, which is a weaker allele for some phys-

iological traits [22]. This demonstrates that Tre6P transmits diel

changes in sugar status to the bZIP63-responsive promoter

DIN6 (Figure 3C) [17, 18].

Circadian Oscillator Protein CHE Interacts with bZIP63
and Regulates a Response of the Circadian Oscillator to
Sugar
bZIP TFs undergo regulatory interactions with many other pro-

teins [29]. We investigated whether these might contribute to

circadian entrainment by sugars. Using a yeast two-hybrid

(Y2H) screen, we identified interaction between bZIP63 and the

circadian oscillator component CCA1 HIKING EXPEDITION

(CHE/TCP21) (Figure S3A). Like PRR7, CHE is a transcriptional

repressor of CCA1 [30, 31]. No other known regulators of the

circadian system interacted with bZIP63. We confirmed that
4 Current Biology 28, 1–10, August 20, 2018
bZIP63 interacts with CHE in planta using

bimolecular fluorescence complementa-

tion (Figure S3B). We hypothesized that

CHE might contribute to a response of

the circadian oscillator to sugars. We

found that sucrose induces CHE tran-

scripts in the wild-type, but this was

attenuated in KIN10-ox and somewhat

in tps1-12 (Figure S3C). In light/dark

cycles without sucrose supplementa-

tion, CHE overexpression and che loss-

of-function mutants suppressed and

increased the amplitude of daily CCA1:

luc fluctuations, respectively (Figures

S3D and S3E) [30]. When diel changes

in sugar status were eliminated by culti-

vation on 90 mM sucrose (Figure 3A),
the amplitude difference between che mutants and the wild-

type was abolished (Figures S3D and S3E). This suggests that

CHE might not suppress CCA1 under sugar-replete conditions,

and that CHE regulates a response of CCA1 to sugars. This

occurred independently from CHE binding to the TCP-binding

site (TBS) within the CCA1 promoter [30], because mutation of

the TBS did not alter the response of CCA1 to a morning sugar

pulse (Figure S3F).

bZIP63, KIN10, and TPS1 Regulate the Response of
Circadian Phase to Sugars
To test the potential involvement of bZIP63, KIN10, Tre6P, and

CHE in circadian entrainment, wemeasured the time-dependent

adjustment of circadian phase in response to a sucrose pulse.

This tests the response of the circadian oscillator to a transient

stimulus, as opposed to prolonged sucrose treatments (Figures

1F and 2). A morning sugar pulse (ZT0–ZT6) advanced the wild-

type circadian phase (Figures 4A and 4B) [5]. In contrast, morn-

ing sugar pulses did not advance the circadian phase in bzip63-1

mutants (Figures 4A and 4C). This demonstrates that sucrose

acts as a type 1 (weak) zeitgeber in the wild-type, resulting in

a circadian phase advance. This phase advance was absent

in bzip63-1. There was also no phase advance in tps1-11,

tps1-13, and KIN10-ox in response to morning sucrose pulses

(ZT3–ZT7.5, Figures 4D–4G). tps1-12 had a phase advance in

response to sucrose pulses at this time (Figure 4E), which is

consistent with its weaker metabolic phenotypes [22]. These
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Figure 3. Diel Cellular Energy Signaling

Dynamics

(A) Normalized DIN6:luc bioluminescence dy-

namics (n = 6; ±SEM).

(B) A significant proportion of circadian [24–26]

and diel-regulated [23, 27] transcripts are regu-

lated by KIN10 signaling [17, 20]. This analysis

combines individual datasets from Figures S2E

and S2F. Transcripts binned by phase (upregu-

lated, black; downregulated, white). * and # indi-

cate overlaps with more or fewer transcripts than

expected from a chance association between

gene sets, respectively.

(C) Under light/dark, DIN6:luc is upregulated in

tps1-11 and tps1-12 (n = 6; ±SEM). Dark and

light gray shading indicates actual and subjective

darkness, respectively.

See also Figures S2 and S3.
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Figure 4. TPS1, KIN10, and bZIP63 Entrain the Circadian Oscillator

(A–J) Phase response curves (A and D–J) and phase transition curves (B and C) of CCA1:luc for sucrose treatment of bzip63-1 (A), tps1-11 (D), tps1-12 (E),

tps1-13 (F), KIN10-ox (G), che-1 (H), che-2 (I), and CHE-ox (J). x axes indicate zeitgeber time (ZT) of sugar pulse. Blue dotted line indicates phase of a control

grown without sucrose.

(legend continued on next page)
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data suggest that TPS1, KIN10, and bZIP63 might be positioned

within a pathway by which sugars entrain the circadian oscillator

(Figures 4A–4G).

Two chemutations had little effect upon the morning sucrose-

induced phase advance (ZT0–ZT7.5; Figures 4H and 4I), and a

sucrose-induced phase delay occurred in che during the subjec-

tive night (ZT15–ZT19.5; Figures 4H and 4I). CHE-ox increased

the magnitude of the sucrose-induced phase advance of

CCA1 at most times of day (Figure 4J). Therefore, CHE is not

required for the sugar-induced circadian phase advance in the

morning but might be associated with other sugar responses.

This is consistent with our hypothesis that circadian entrainment

to sugars depends upon PRR7, with the alteration of CCA1 tran-

scription occurring in response PRR7 expression dynamics [5].

Lastly, we examined whether PRR7 and bZIP63 are required

for correct circadian function under day/night cycles. prr7-11

and bzip63-1 have a late phase of CCA1 expression (Figures

4K and 4L) demonstrating that bZIP63 and PRR7 are required

for correct oscillator phase under light/dark cycles (Figures 4K

and 4L). These late-phase phenotypes (Figures 4K and 4L) sug-

gest defective entrainment. Considering that bZIP63 partici-

pates in the regulation of the circadian oscillator in response to

sugars (Figure 1F), this sugar-responsive entrainment pathway

is required to ensure correct circadian phase under light/dark

cycles.

DISCUSSION

Our finding that bZIP63 regulates the circadian oscillator al-

lowed us to investigate entrainment of the Arabidopsis circa-

dian oscillator by sugars. We propose that daily fluctuations

in sugar availability might be signaled by Tre6P to effect

entrainment. Mutants impaired in Tre6P production had a

reduced response of circadian period to sucrose (Figures 2B

and 2D), and the circadian oscillator of tps1 mutants was not

entrained by sucrose (Figures 4D–4F). bZIP63 homo- and het-

erodimerization is regulated by KIN10-mediated phosphoryla-

tion [11], so transcriptional regulation of PRR7 by bZIP63 might

arise from bZIP63 phosphorylation dynamics. Mutants of both

bzip63 and its negative regulator TPS1 have similar effects on

the circadian oscillator because PRR7 cannot respond to sugar

dynamics in both sets of mutants. KIN10-ox was insensitive to

entraining sugar pulses, suggesting that SnRK1 participates in

entrainment to transient sugar fluctuations (Figure 4G). Morning

sucrose pulses delayed the phase in bzip63-1 (Figure 4A),

whereas the phase in tps1-11 and tps1-13 was sucrose insen-

sitive (Figures 4D and 4F). This difference might reflect addi-

tional effects of the tps1 TILLING alleles, which influence a

range of phenotypes [22]. Other kinases and pathways might

be involved because KIN10-ox seedlings retained a shorter

period, like the wild-type, during long-term sucrose supple-

mentation (Figure 2C) [14]. bzip63-1 was unresponsive to pro-

longed sucrose stimulation (Figure 1F), whereas it retained
(K and L) Phase of rhythms of CCA1:luc in Col-0, prr7-11 and bzip63-1 in light/d

plotted as CCA1:luc bioluminescence (K) and time of peak bioluminescence (L).

In (B) and (C), phase transition curves are double-plotted using data from (A) and

type and (C) bzip63-1. Dashed line indicates no phase shift. Data from two indep
some sucrose-induced phase changes within the phase

response curve (Figure 4A). This is similar to the lip1-1 mutant,

which has a very small period response to varying intensity of

continuous light, but retains a phase delay response to pulsed

light in phase response curves [32]. In continuous darkness,

the period of an evening reporter of the circadian oscillator

(GIGANTEA) is unaltered in KIN10-ox [14]. This might be

because, in continuous darkness, evening components of the

circadian oscillator appear to uncouple from morning compo-

nents such as CCA1 and PRR7 investigated here [5, 15, 33].

We found that bZIP63 binds the PRR7 promoter in a region

containing a canonical G-box motif. While bZIP63 might bind

to other cis elements within this region, for two reasons it is

possible that bZIP63 binds to this �254 bp G-box. First,

mutating the G-box within the promoter of another bZIP63-

and KIN10-regulated gene, DIN6, abolishes the regulation of

DIN6 by KIN10 [17]. Second, bZIP1 binding to G-box motifs is

enhanced by heterodimerization with bZIP63 [34, 35].

Our data suggest that the response of bZIP63 and PRR7 to

sugar entrains the Arabidopsis circadian clock to dynamic en-

ergy signals during light/dark cycles. This will allow identification

of other network components, since bZIP63 and other bZIPs are

phosphorylated by protein kinases other than KIN10, potentially

including KIN11 and casein kinase II [11, 29]. It will be informative

to determine whether other bZIP TFs dimerize with bZIP63 to

regulate PRR7 transcription and whether binding and/or activity

of bZIP63 is regulated by energy status.

bZIP63 works through protein-protein interactions in addition

to protein-DNA interactions. We identified potential interactions

with CHE, a regulator ofCCA1 [30]. This suggests several modes

of regulation of bZIP63 activity and that CHE might affect the

circadian oscillator through multiple mechanisms. bZIP63 inter-

acts with a further TCP TF, TCP2 [36], suggesting an interacting

network of bZIP and TCP TFs. This bZIP63-CHE interaction pro-

vides further evidence that TCP TFs are important regulators

within the plant circadian system [30, 37–39]. The bZIP63-CHE

interaction might have mechanistic similarities with the coinci-

dent binding of interacting TOC1 and PIF3 to promoters of

growth-regulating genes [40]. PIF4 is proposed as an additional

regulator of circadian entrainment to sugars [41], although PIF4

does not bind the PRR7 promoter [42, 43] and roles for PIF4

within metabolic entrainment remain untested.

Conclusions
Our identification of key molecular components that permit the

circadian oscillator to respond to sugars brings a new dimension

to the study of plant circadian systems, by identifying a TF that

adjusts circadian phase to entrain the oscillator. Our finding

that bZIP63 upregulates PRR7 promoter activity in response to

low energy suggests that sugars regulate circadian period and

phase through a signaling pathway rather than indirect metabolic

changes [44]. This underlies the plasticity of the circadian period

to sugars, with this plasticity absent from prr7-11 and bzip63
ark cycles of 70 mmol m–2 s–1 in the absence of sucrose (n = 12 ± SEM; t test),

Shaded areas indicate subjective dark period.

indicate new phase against time following a 90 mM sucrose pulse for (B) wild-

endent experiments were combined (n = 8 in each; ±SEM).
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mutants (Figure 1F) [5]. We propose that the dynamic sensitivity

of the circadian system to cellular energy, through bZIP63

regulation of PRR7 expression, permits its continuous metabolic

adjustment to contribute to energy homeostasis [45]. This is

important because circadian systems provide a selective

advantage through their phase relationship with the environment

[3, 46]. Here, we identified a mechanism that establishes that

phase relationship.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

KIN10 antibody Agrisera Cat# AS10 919; RRID: AB_10754154

RbcL antibody Agrisera Cat# AS03 037A; RRID: AB_2175408

Anti-HA antibody Santa Cruz Biotechnology Cat# sc-7392 C1313

H3-K9 antibody Epigentek Cat# P-2014-48

Normal mouse IgG antibody Epigentek Cat# P-2014-48

Bacterial and Virus Strains

Escherichia coli DH5a Thermo-Fisher Cat# 18265017

Escherichia coli DB3.1 Thermo-Fisher Cat# A10460

Agrobacterium tumefaciens C58C1 N/A N/A

Agrobacterium tumefaciens GV3101 N/A N/A

Chemicals, Peptides, and Recombinant Proteins

Bacto-agar VWR Cat# 214050

Duchefa Murashige & Skoog Medium Melford Laboratories Cat# M0221.0050

Sucrose Thermo-Fisher Cat# 10020440

Sorbitol Thermo-Fisher Cat# BP439-500

30,50-dimethoxy-4’-hydroxyacetophenone

(Acetoseringone)

Sigma-Aldrich Cat# D134406

Kanamycin GIBCO Cat# 11815-024

Ampicillin Sigma-Aldrich Cat# A0166

Rifampicin Affymetrix Cat# USB-21246

Tetracycline Affymetrix Cat# USB-22105

Phosphinothricin Melford Laboratories Cat# P0159.0250

BamHI New England Biolabs Cat# R0136S

KpnI New England Biolabs Cat# R0142S

T4 DNA ligase New England Biolabs Cat# M0202S

SD/-His/-Leu/-Trp/-Ura with Agar Clontech Cat# 630325

Drop-out Supplement -Leu/-Trp Clontech Cat# 630417

Drop-out Supplement -His/-Leu/-Trp Clontech Cat# 630419

3-amino-1,2,4-triazole (3AT) Sigma-Aldrich Cat# A8056

Sterile RNase-free water Thermo-Fisher Cat# BP561-1

RNaseZap RNase decontamination solution Thermo-Fisher Cat# AM9780

Phusion High-Fidelity DNA Polymerase New England Biolabs Cat# M0530S

D-luciferin, potassium salt Melford Laboratories Cat# L37060

Critical Commercial Assays

EpiQuik Plant ChIP kit Epigentek Cat# P-0214-048

pGEM-T easy vector systems kit Promega Cat# A1360

pENTR/D-TOPO cloning kit, with One Shot TOP10

chemically competent E. coli

Thermo-Fisher Cat# K240020

ProQuest two-hybrid system with Gateway

Technology

Thermo-Fisher Cat# PQ1000101

RNEasy Plant Mini kit QIAGEN Cat# 74104

Machery-Nagel Nucleospin II RNA kit Thermo-Fisher Cat# 12373368

Machery-Nagel Nucleospin Plasmid kit Thermo-Fisher Cat# 11932392

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

High-Capacity cDNA reverse transcription kit Life Technologies Cat# 4368814

RNAase inhibitor for reverse transcription kit Life Technologies Cat# N8080119

Brilliant III Ultra-Fast SYBR Green QPCR Master Mix Agilent Technologies Cat# 600883

Experimental Models: Cell Lines

Saccharomyces cerevisiae strain PJ694a (MATa,

trp1-901, leu2-3,122, ura3-52, his3-200 gal4D, gal80D,

LYS2::GAL1-HIS3, GAL2-ADE2::GAL7-lacZ)

[47] N/A

Experimental Models: Organisms/Strains

Arabidopsis: Col-0 Nottingham Arabidopsis Stock Centre N/A

Arabidopsis: Wassilewskija Nottingham Arabidopsis Stock Centre N/A

Arabidopsis: Landsberg erecta Nottingham Arabidopsis Stock Centre N/A

Arabidopsis: bzip63-1 [16] N/A

Arabidopsis: bzip63-2 [16] N/A

Arabidopsis: bzip63-3 Nottingham Arabidopsis Stock Centre Line FLAG_532A10

Arabidopsis: bZIP63 RNAi 1 This paper N/A

Arabidopsis: bZIP63 RNAi 2 This paper N/A

Arabidopsis: HA-bZIP63-ox 1 This paper N/A

Arabidopsis: HA-bZIP63-ox 2 This paper N/A

Arabidopsis: KIN10-ox 5.7 [15] N/A

Arabidopsis: KIN10-ox 6.5 [15] N/A

Arabidopsis: tps1-11 [22] N/A

Arabidopsis: tps1-12 [22] N/A

Arabidopsis: tps1-13 [22] N/A

Arabidopsis: prr7-11 [48] N/A

Arabidopsis: che-1 [30] N/A

Arabidopsis: che-2 [30] N/A

Arabidopsis: CHE-ox [30] N/A

Nicotiana benthemiana N/A N/A

Oligonucleotides

See Table S1 N/A N/A

Recombinant DNA

pGREENII 0229 binary vector John Innes Centre, U.K. pGREENII0229

pSOUP helper vector John Innes Centre, U.K. pSOUP

CCA1:luc binary vector [49] N/A

pPZP CCA1(TBSm):luc [30] N/A

pPZP CCA1:luc [30] N/A

pDEST22 Thermo-Fisher Cat# PQ1000101

pDEST32 Thermo-Fisher Cat# PQ1000101

pDEST32:CHE This paper N/A

pDEST32:bZIP63 This paper N/A

pDEST22:bZIP63 This paper N/A

HA-bZIP63-ox in pFP101HAVP16 [50] N/A

bZIP63 RNAi in pHANNIBAL [51] N/A

bZIP63 RNAi in pFP100-LacZ [50] N/A

pSPYNE-35S (YFPN) [52] N/A

pSPYCE-35S (YFPC) [52] N/A

pSPYNE-35S:bZIP63 (bZIP63-YFPN) This paper N/A

pSPYCE-35S:bZIP63 (bZIP63-YFPC) This paper N/A

pSPYCE-35S:CHE (CHE-YFPC) This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pCH32 [53] N/A

Software and Algorithms

Excel Microsoft N/A

Sigmaplot 13.0 Systat Software, USA N/A

Inkscape 0.91 https://inkscape.org/en/ N/A

Biological Rhythms Analysis Software System (BRASS) University of Edinburgh;

http://millar.bio.ed.ac.uk/

N/A

Image32 Photek, U.K. N/A

Other

MLR350/352 growth chamber Sanyo or Panasonic, Japan N/A

Photek HRPCS intensified CCD camera system Photek, U.K. N/A

LB982 Nightshade Berthold Technologies, Germany N/A

GFP2 filter equipped SMZ1000 stereomicroscope Nikon N/A

LSM 510 Confocal Microscope Zeiss N/A

Zen software Zeiss N/A

Mx3005P real-time PCR machine Agilent Technologies N/A
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Antony Dodd (antony.

dodd@bristol.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Arabidopsis thaliana (L.) Heynh. background lines Columbia-0 (Col-0), Landsberg erecta (L. er.) and Wassilewskija (Ws) were used

for experimentation, with mutants and transgenic lines in these backgrounds as detailed in the Key Resources Table. Arabidopsis

seedlings were cultivated at 19�C, under light conditions required by each experiment and described in the Results. Nicotiana

benthemiana was cultivated at 25�C (both for growth and bimolecular fluorescence complementation analysis). Saccharomyces

cerevisiae was cultured at 30�C for all assays.

METHOD DETAILS

Plant material and growth conditions
Seeds were surface-sterilized with 10% v/v sodium hypochlorite (Fisher Scientific, Loughborough, UK) and 0.02% (v/v) Triton X-100

(Fisher Scientific, Loughborough, UK) for 5 min, washed three times with sterile deionised water and sown on half-strength

Murashige & Skoog media (Duchefa, Netherlands), pH = 5.7 with 0.8% w/v agar (Bactoagar, BD). Where specified, media was sup-

plemented with 90 mM sucrose or 90 mM sorbitol as an osmotic control. This concentration of sucrose is appropriate for our

experiments because it saturates the sugar response of the circadian oscillator, is the standard concentration of sucrose used

for experimentation with Arabidopsis, and there is no dose-dependent effect of sucrose upon circadian entrainment [5, 14, 15,

25, 33]. Seeds were stratified at 4�C for 2 or 3 days in darkness, then transferred into 50 mmol m-2 s-1 (before starting low light ex-

periments) or 80 – 100 mmol m-2 s-1 (for standard light experiments) photon flux of cool white fluorescent light, at 19�C, with cycles of

12 hr light and darkness (MLR-350/352 growth chamber, Sanyo/Panasonic, Japan). Background lines for the tps mutants were

derived originally from mutagenesis of Col-0 and backcrossed three times with Landsberg erecta (L. er.) [22]. We have, therefore,

used L. er. as a control for experiments with tps lines. KIN10-ox was as described elsewhere [17]. T-DNA insertion mutants bzip63-1

(SALK_006531, Col-0 background [18]), bzip63-2 (FLAG_610A08, Ws-2 background [18]) and bzip63-3 (FLAG_532A10, Ws-2 back-

ground) were obtained from the Arabidopsis Biological Resource Center (ABRC). Homozygous bzip63-3 was isolated using kana-

mycin-resistance segregation analysis, and sequencing of the flanking regions revealed that the T-DNA is inserted in the sixth exon

of the bZIP63 gene. For experiments using mature plants, Arabidopsis was grown under 12 hr photoperiods of 100 mmol m-2 s-1 for

30 days before experimentation.
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Generation of transgenic lines
TomakeHA-bZIP63-ox and bZIP63RNAi lines, both the bZIP63 coding sequence (CDS) and a 350 bp fragment for RNAi were ampli-

fied using PCR primers that incorporated restriction sites (indicated in lower case); overexpressor: tctaga ATGGAAAAAGTTTTCTCC

(FP); ggatccCTACTGATCCCCAACGCT (RP); RNAi: aagcttggtaccTCACTGGTCGGTTAATGG (FP); tctagactcgagCACTTGTTATAG

CACTGC (RP). The bZIP63 CDS was cloned into the pFP101 vector, fused to 3xHA tag and the VP16 activation domain for overex-

pression by the CaMV 35S promoter. The 350 bp bZIP63 fragment was cloned antisense and sense into pHANNIBAL, then trans-

ferred to pFP100-Lacz with the CaMV 35S promoter driving antisense-sense hairpin expression.

To produce the DIN6:luciferase construct, 2659 bp of genomic DNA upstream of the DIN6 start codon was isolated by PCR, using

primers that introduced the KpnI (50) and HindIII (30) restriction sites (FP: CGTGGTACCTGGACATGAGTGCATGAC; RP: GCG

AAGCTTGAAGAAAGTGAAAAAGATCACG). The fragment was ligated into a modified pGreenII0179 binary vector containing the

LUCIFERASE+ coding sequence [54]. The CCA1:luciferase construct used is described elsewhere [55]. Reporter lines with

CCA1(TBSm):luc and control CCA1:luc used constructs in the pPZP binary vector described elsewhere [30]. All constructs were

transformed into Arabidopsis by the floral dip method, using Agrobacterium tumefaciens strain GV3101. Transformants were iden-

tified with hygromycin (pGreenII0179) or gentamycin (pPZP) selection, or from GFP fluorescence in the seed coat (pFP101 and

pFP100-LacZ), using a GFP2-equipped SMZ1000 stereomicroscope. Lines were validated by PCR and RT-PCR, and selected for

similar levels of luciferase activity. Homozygous third or fourth generation seed lines were used for experiments.

Bioluminescence imaging
Imaging of luciferase bioluminescence was performed as described previously [5, 54]. Briefly, circular clusters of 9 day old seedlings

were supplied with 2 mM (two doses) or 5 mM (single dose) of D-luciferin potassium salt (Melford Labs, UK, or Biosynth AG,

Switzerland) between 1 hr and 24 hr prior to commencing imaging. Luciferase bioluminescence was integrated for 800 s each

hour using either a Photek HRPCS intensified CCD camera (Photek, Hastings, UK) or LB 982 NightSHADE (Berthold Technologies,

Bad Wildbad, Germany). Light was controlled automatically to provide the stated photon irradiance and LD cycles or constant (LL)

light from a red/blue LED mix (wavelengths 660 nm and 470 nm). Circadian oscillation parameters were calculated from four 24 hr

cycles, excluding the first 24 hr of data, using the Fast Fourier Transform Non-Linear Least-squares method [56] within the BRASS

software (http://millar.bio.ed.ac.uk/). Themean peak height parameter was calculated as an average of the differences between peak

(maximum value) and trough (minimal value) measured on days 2, 3, 4, 5 and 6 of LL (thus excluding first 24 hr), and for LDwas calcu-

lated by averaging the differences between peaks and troughs measured for each day under light/dark conditions. Phase response

curves were produced using the same method as described previously [5, 57].

RNA extraction and real time PCR analysis
Sampling and RNA isolation for real-time PCR was performed as described previously [5, 54]. Primers were PRR7: TTCCGAAA

GAAGGTACGATAC (FP); GCTATCCTCAATGTTTTTTATGT (RP); PP2AA3 reference transcript [18]: CATGTTCCAAACTCTTACCTG

(FP); GTTCTCCACAACCGCTTGGT (RP) (for Figure 1C); CHE: TAATGGGTGGTGGTGGTTCTG (FP); GCAAAGCTCCAGACTTGTCC

(RP); Figure S3C); DIN6: TTCACCTTTCGGCCTACGAT (FP); ATCGGCATGTTGTCAATTGC (RP); ACT2 reference (TGAGAGATTCA

GATGCCCAGAA (FP); TGGATTCCAGCAGCTTCCAT (RP) (for Figure S3C).

Chromatin immunoprecipitation
Aerial parts of 12-day old seedlings were vacuum-infiltrated with 1% v/v formaldehyde solution and incubated at room temperature

for 20 min to crosslink DNA-protein complexes. After cross-linking, tissues were ground in liquid nitrogen using mortar and pestle.

Chromatin extraction was performed as described elsewhere [58]. The isolated chromatin was re-suspended in 300 mL of nuclear

lysis buffer (50mMTris-HCL, pH 8; 10mMEDTA; 1%w/v SDS; 1X Pierce protease inhibitor cocktail #88265 (Thermo Scientific, Mas-

sachusetts, USA). Resuspended chromatin was sonicated to achieve DNA fragments ranging 0.3 - 1 Kb. Immunoprecipitation was

performed using EpiQuik Plant ChIP kit (Epigentek Group, Farmingdale, USA) following manufacturer’s instructions. DNA-protein

complexes were immuno-precipitated using a monoclonal anti-HA antibody (Santa Cruz Biotechnology, Texas, USA). Analysis

of enrichment of target genes was performed by qPCR (ABI 7500 Fast Real-time PCR System). For PRR7, primer pair 1 was

GACGTTTTCCTTACCCACCA (FP), ATTGGCGAGGATTAGTGACG (RP), and primer pair 2 TGCTTTTGTATGGTTGGATTTTT (FP),

TGAAGAACGACGAATTCTCAAA (RP) (Figures 1A and 1B). Data were normalized using cycle thresholds from immunoprecipitated

and non-immunoprecipitated samples as elsewhere.

Chromatin immunoprecipitation (ChIP)-qPCR was performed using two transgenic lines overexpressing HA-tagged bZIP63 (HA-

bZIP63-ox1 andHA-bZIP63-ox2 in Figure 1B), using an anti-HA antibody (+) and an anti-mouse IgG antibody (-) as a negative control.

ChIP using overexpressor lines is a common approach (e.g., [59, 60]), with the bZIP63 overexpressors accumulating approximately

double the transcript as thewild-type under high light at ZT0 (Figure 1C). Primer pair 1 amplifies the promoter region containingG-box

motif and primer pair 2 as a control amplifies a region without any putative bZIP binding site. Data in Figure 1B compare the cycle

threshold (Ct) of the anti-HA antibody IP samples (adjusted relative to Ct of input DNA) and Ct of mock IP (adjusted relative to Ct

of the input DNA); t tests compared control and anti-HA treated samples (HA-bZIP63-ox1 p = 0.011; HA-bZIP63-ox2 p = 0.014).
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Bimolecular fluorescence complementation
Full-length coding regions of bZIP63 (AT5G28770.2) and CHE (AT5G08330.1) were cloned using specific primers (CHE: TAAGCAG

GATCCATGGCCGACAACGACGGAGC (FP); TAAGCAGGTACCACGTGGTTCGTGGTCGTC (RP); bZIP63: TAAGCAGGATCCATG

GAAAAAGTTTTCTCCG (FP); TAAGCAGGTACCCTGATCCCCAACGCTTC (RP) into binary vectors pSPYNE-35S (YFPN terminus; aa

1-155) or pSPYCE-35S (YFPC terminus; aa 156-239) to generate the fusion proteins bZIP63-YFPN, bZIP63-YFPC and CHE-YFPC

[52]. The binary vectors containing the constructs bZIP63-YFPN, bZIP63-YFPC and CHE-YFPC were inserted into Agrobacterium

tumefaciens strain C58C1, whichwas grown in Luria-Bertani (LB) liquidmedium containing appropriate antibiotics (100 mgml-1 rifam-

picin, 50 mgml-1 kanamycin, 10 mgml-1 tetracycline) at 28�C for 16 hr and 200 RPM agitation. Bacterial cells were harvested by centri-

fugation and the pellet resuspended in 5mL of infiltration buffer (10mMMgCl2, 10mMMES-KOH pH 5.7 and 200 mMacetosyringone

(#D134406, Sigma-Aldrich). Agrobacterium strains carrying the constructs containing putative interacting proteins were mixed and

co-infiltrated in the abaxial surface of four-week-oldNicotiana benthamiana leaves at a final OD600 = 0.5 each. To enhance expression

of fusion proteins, AgrobacteriumC58C1 carrying the pCH32 helper plasmid that suppress gene silencing [53] was co-infiltrated in all

experiments. After 3-4 days, infiltrated regions of Nicotiana leaves were excised and pavement cells visualized in a confocal laser

scanning microscope (LSM 510 Meta, Carl Zeiss, Thornwood, NY, U.S.A.) with an argon laser (excitation = 488 nm, emission =

524 nm).

Yeast two-hybrid analysis
Full-length coding regions of bZIP63 (AT5G28770.2) and CHE (AT5G08330.1) were cloned using specific primers (CHE: cac

cATGGCCGACAACGACGGAGC (FP); TCAACGTGGTTCGTGGTCGTC (RP); bZIP63: caccATGGAAAAAGTTTTCTCCGAC (FP);

CTACTGATCCCCAACGCTTC (RP) into pENTR-D-TOPO (Thermo Scientific) following the manufacturer’s instructions, to generate

pENTR-D-TOPO:bZIP63 and pENTR-D-TOPO:CHE intermediary entry vectors. The sequence indicated in lowercase in the

bZIP63 and CHE forward primers (FP) were incorporated by PCR into the amplicon for directional cloning in pENTR-D-TOPO. Sub-

sequently, the intermediary entry vectors were recombined into the yeast expression vectors pDEST32 and pDEST22 of the

ProQuest Two-Hybrid System with Gateway Technology (Thermo Scientific) following manufacturer’s instructions. The resulting

yeast expression vectors pDEST32:bZIP63; pDEST32:CHE; and pDEST22:bZIP63, as well as the empty vectors pDEST32 and

pDEST22 (used here as negative controls) were transformed into Saccharomyces cerevisiae strain PJ69-4a (MATa trp1-901 leu2-

3,122 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3 GAL2-ADE2::GAL7-lacZ) [47]. Y2H assays were performed using yeast

double-transformants (pDEST32:bait + pDEST22:prey) lines. The yeast lines obtained were grown for 16 hr (overnight) at 30�C
and 200 RPM agitation in minimal SD (Synthetic Defined) liquid medium lacking leucine and tryptophan (SD/-Leu/-Trp), auxotrophic

markers for pDEST32 and pDEST22 vector selection, respectively. To verify yeast double transformation, yeast cells carrying the

vector combinations shown in the figure were grown in solid SD medium lacking both leucine and tryptophan (SD/-Leu/-Trp. Pro-

tein-protein interactions were evaluated by dropping 5 mL of overnight yeast cultures (106 CFU.mL-1) in SD/-Leu/-Trp/-His, where

histidine (His) is the auxotrophic marker for protein-protein interaction, and grown at 30�C for 3 days. To reduce background growth

due to residual activity of HIS3 gene, 3 mM of 3-Amino-1,2,4-Triazol (3AT), a competitive inhibitor of the HIS3 reporter enzyme, was

added to test plates.

Protein isolation and western blotting
Seedling cultivation and sampling occurred as for RNA sampling. Total protein was isolated in 1.1 M glycerol, 5 M Tris-MES (pH 7.6),

1mMEGTA and 2mMdithiothreitol with protease inhibitor cocktail P9599 (Sigma). Protein concentrations were quantifiedwith Brad-

ford reagent (Bio-Rad). Proteins were separated on 10%polyacrylamide gels and transferred to nitrocellulosemembranes (Bio-Rad),

which were subsequently stained with Ponceau Red to verify equal protein loading. Membranes were incubated with KIN10 anti-

serum (AKIN10/SNF1-related protein kinase catalytic subunit alpha antibody, Agrisera) at 1:1000 dilution with 1% w/v fat-free

milk powder and 0.1% v/v Tween 20, and incubated subsequently with goat anti-rabbit IgG HRP conjugate (GtxRb-003-DHRPX

from ImmunoReagents, Raleigh, NC) at 1:2000 dilution. Blots were developed using Pierce ECL-2 reagent (Thermo Scientific).

Two independent biological repeats were performed of each experiment (data from one repeat shown in Figure S1F).

Transcriptome data meta-analysis
Lists of rhythmic genes and lists of genes that are regulated by KIN10 were compared and their overlaps analyzed for significance.

Rhythmic genes were selected from two nycthemeral experiments (light/dark) and three circadian experiments (constant light)

[23–27]. Lists of genes with all the rhythmic transcripts in the nycthemeral experiments or all the circadian genes in the circadian ex-

periments were also analyzed. The KIN10-regulated genes were selected from genes having altered expression in KIN10-ox [17] or in

lines overexpressing the E. coli trehalose 6-phosphate synthase (OtsA), which elevates Tre6P in planta [20]. Statistical significance of

overlaps and the representation factor were estimated using web-based software designed by Jim Lund (University of Kentucky),

with statistical significance quantified using a hypergeometric test [61] (http://elegans.uky.edu/MA/progs/overlap_stats.html).

25% - 40% of transcripts upregulated by KIN10-ox and 19% - 34% of transcripts downregulated by otsA-ox oscillate under light/

dark cycles. 49% - 59% of transcripts upregulated by KIN10-ox and 37% - 41% of transcripts downregulated by otsA-ox oscillate

under constant conditions. Each overlap was calculated as the proportion of the total number of rhythmic transcripts in each phase

bin. Only overlaps with p < 0.01, and representation factor < 0.5 (#) or > 2 (*) and were considered significant.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Sigmaplot 13.0. Details of statistical tests used, replication levels, and nature of error bars

are provided in figure legends. Circadian rhythm parameters were determined using the Biological Rhythms Analysis Software Sys-

tem (BRASS) (University of Edinburgh; millar.bio.ed.ac.uk). Statistical significance of intersections between transcriptomes was

calculated with a hypergeometric test [61]. No data were excluded from analysis. Statistical significance is indicated by the p value,

where * = p < 0.05, ** = p < 0.01 and *** = p < 0.001.
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