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ABSTRACT

We consider a model nondispersive nonlinear optical fiber channel with additive Gaussian noise at large SNR
(signal-to-noise ratio) in the intermediate power region. Using Feynman path-integral technique we find the
optimal input signal distribution maximizing the channel’s per-sample mutual information. The finding of the
optimal input signal distribution allows us to improve previously known estimates for the channel capacity. We
show that in the intermediate power regime the per-sample mutual information for the optimal input signal
distribution is greater than the per-sample mutual information for the Gaussian and half-Gaussian input signal
distributions.

Keywords: Channel capacity, path-integral

1. INTRODUCTION

The channel capacity C introduced by Shannon in Ref.1 is related to the maximum amount of information
that can be reliably transmitted over a noisy communication channel. Shannon calculated the capacity of the
linear channel with additive white Gaussian noise and found the famous logarithmic dependence of the channel’s
capacity on the signal power:

C ∝ log2 (1 + SNR) , (1)

where SNR = P/N is the signal-to-noise power ratio, P is the signal power, and N is the noise power. This
means that for fixed noise power N , it is necessary to increase the signal power P in order to increase the capacity
of the channel.

The interest in nonlinear communication channels increases because the power of the signals in the fiber
optics communication channels grows, which leads to appearence of the nonlinear effects connected with Kerr’s
nonlinearity of the fiber. Fiber optic nonlinear channels have been studied both analytically and numerically
in numerous papers, see e.g.2–14 and references therein. The calculation of the capacity of nonlinear optical
fiber channels is a difficult problem therefore new techniques and methods are highly desirable to advance these
studies.3,13–17 In present paper we consider a simple model nonlinear channel with is far from modern optical
communication channels, but it takes into account main features connected with nonlinearity. Also, methods
developed for and tested on such model channels might be useful for much more complex and challenging
nonlinear fiber communication problems.

The channel capacity C is defined as the maximum of the mutual information IPX [X] with respect to the
probability density function PX [X] of the input signal X:

C = max
PX [X]

IPX [X], (2)

Ivan S.Terekhov: E-mail: i.s.terekhov@gmail.com

Nonlinear Optics and its Applications 2018, edited by Benjamin J. Eggleton, Neil G. R. Broderick, Anna C. Peacock
Proc. of SPIE Vol. 10684, 106840W · © 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2307299

Proc. of SPIE Vol. 10684  106840W-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 8/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



where the maximum value of IPX [X] should be found subject to the condition of fixed average signal power:

P =

∫
DX|X|2PX [X]. (3)

The mutual information of a memoryless channel is defined in terms of the output signal entropy H[Y ] and
conditional entropy H[Y |X]:

IPX [X] = H[Y ]−H[Y |X], (4)

with

H[Y |X] = −
∫
DXDY PX [X]P [Y |X] logP [Y |X], (5)

H[Y ] = −
∫
DY Pout[Y ] logPout[Y ], (6)

Pout[Y ] =

∫
DXPX [X]P [Y |X], (7)

where P [Y |X] is the conditional probability density function (PDF) for an output signal Y when the input signal
is X, and Pout[Y ] is the PDF for an output signal Y . The measure DY is defined as

∫
DY P [Y |X] = 1, and DX

is defined as
∫
DXPX [X] = 1. The capacity (2), as defined by (4)-(7), is measured in units of (log 2)−1 bits per

symbol (nats per symbol). The input and output signals are functions of time with given bandwidths, but here
we consider only per-sample quantities. It means than input and output signals do not depend on time.

The channel’s mutual information (4) depends on the probability distribution PX [X] of the input signal. The
input signal PDF, that maximizes the channel’s per-sample mutual information is called optimal PDF P optX [X].
Obviously, the problem of finding the optimal PDF of the input signal for nonlinear optical channels is of great
practical importance.

In the previous studies of nondispersive nonlinear optical channels, see, e.g.,11,13,14 the Gaussian and half-
Gaussian input signal PDF’s were used as trial functions in order to put low bound constraint on the channel
capacity, or to provide asymptotic estimate of the capacity in the regime of large SNR. The authors of14 argued,

that the half-Gaussian PDF which we denote as P
(1)
X [X],

P
(1)
X [X] =

exp
{
−|X|2/(2P )

}
π|X|(2πP )1/2

, (8)

provides the best approximation for the capacity-approaching or optimal input signal distribution at large SNR.
In the present paper we show that it is not the case. We find a optimal distribution P optX [X] in the regime
of large SNR for intermediate power range. We show, that in this regime the mutual information (4) for our
optimal input signal PDF is larger than the mutual information for the Gaussian and half-Gaussian input signal
distributions.

The estimates for the capacity of nonlinear fiber channels with zero dispersion and additive Gaussian noise
in the regime of large SNR were obtained in Refs.13,14 The lower bound for capacity of the channel, based on
trial Gaussian input signal PDF, reads:13

C ≥ 1

2
log (SNR) + o (1) . (9)

In14 capacity estimates were also given in the intermediate power range N � P � 6π2
(
Nγ2L2

)−1
. Where γ

is the Kerr nonlinearity coefficient and L is the fiber link length, see below. For such a power P the following
estimate of the lower bound for the capacity, based on the half-Gaussian input signal PDF, was derived:14

C ≥ − log(γNL) +
γE − 1 + log(3π)

2
+O

(
1√

SNR

)
, (10)
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where γE ≈ 0.577 is the Euler-gamma constant, and instead of O
(

1√
SNR

)
the authors presented the explicit

function of the parameter SNR which decreases at large SNR, see (40) in.14 However, the authors of14 did not
take into account the 1/

√
SNR corrections in the output signal entropy H[Y ], therefore, using these explicit

functions in the capacity inequality is beyond the calculation accuracy.

The analytical expression for the conditional probability density function of the channel was obtained in the
complex form of an infinite series10,13,14 within the Martin-Siggia-Rose formalism based on quantum field theory
methods.18 In the present paper we adopt the Martin-Siggia-Rose formalism and develop a new method for the
approximate computation of the conditional probability density function P [Y |X]. Using this method we obtain
the simple analytical expression for the function P [Y |X] in the leading order in the parameter 1/SNR for the
intermediate power regime

N � P �
(
Nγ2L2

)−1
. (11)

Our method allows us first to derive the analytical expression for the mutual information and then the optimal
input signal distribution P optX [X] which is different from the half-Gaussian.

In17 a method to calculate the conditional PDF for a nonlinear optical fiber channel with nonzero dispersion
in the large SNR limit was introduced. Here we illustrate this general approach in application to a simpler
nondispersive nonlinear optical fiber channel as considered in.10,13,14 Since the channel is dispersionless, the
temporal signal waveform does not change during propagation (note, though, that the signal bandwidth will
grow due to the fiber nonlinearity and signal modulation). Therefore, instead of considering the evolution of
ψ(z, t) we can consider a set of independent scalar channels10,14 (per-sample channels) governed by the following
model:

∂zψ(z)− iγ|ψ(z)|2ψ(z) = η(z), (12)

where ψ(z) is the signal function that is assumed to obey the boundary conditions ψ(0) = X, ψ(L) = Y . The noise
η(z) has zero mean 〈η(z)〉η = 0 and a correlation function 〈η(z)η̄(z′)〉η = Qδ(z − z′) , so that the SNR = P/QL,
where P and N = QL are the per-sample signal power and the per-sample noise power, respectively. The
connection between the differential model (12) and the conventional information-theoretic presentation in the
form of an explicit input-output probabilistic model and appropriate sampling has been discussed in detail
in.10,13,14

The paper is organized as follows. In Section 2 we develop the quasi-classical method for the calculation
of the conditional PDF P [Y |X] for arbitrary nonlinearity in the intermediate power regime (11) in the leading
order in 1/SNR. Using this method we find a simple representation for P [Y |X]. This allows us to calculate the
output signal distribution Pout[Y ]. The optimal signal distribution P optX [X] is found in Section 3. Section 4 is
focused on the calculation and the comparison of the mutual information for various input signal distributions.
We discuss our results in Section 5.

2. THE CONDITIONAL PDF P [Y |X] AND OUTPUT SIGNAL PDF POUT [Y ] AT
LARGE SNR

2.1 ”Quasiclassical” method for the conditional PDF P [Y |X] calculation

The conditional probability density function can be written via the path-integral form13,18,19 in a retarded
discretization scheme, see e.g. Supplemental Materials of Ref.17

P [Y |X] =
ψ(L)=Y∫
ψ(0)=X

Dψ exp
{
− S[ψ]

Q

}
, (13)

and can be reduced to the quasi-classical form, see Ref.:19

P [Y |X] = e−
S[Ψcl(z)]

Q

ψ̃(L)=0∫
ψ̃(0)=0

Dψ̃ e−
S[Ψcl(z)+ψ̃(z)]−S[Ψcl(z)]

Q , (14)
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where the effective action S[ψ] =
L∫
0

dz
∣∣∣∂zψ − iγ|ψ|2ψ∣∣∣2, the function Ψcl(z) is the ”classical” solution of the

equation δS[Ψcl] = 0, where δS is the variation of our action S[ψ]. The equation δS[Ψcl] = 0 (Euler-Lagrange
equation) has the form

d2Ψcl

dz2
− 4iγ |Ψcl|2

dΨcl

dz
− 3γ2 |Ψcl|4 Ψcl = 0, (15)

with the boundary conditions Ψcl(0) = X, Ψcl(L) = Y .

In order to find P [Y |X] one should calculate the exponent e−
S[Ψcl(z)]

Q and the path-integral in (14). All details
of calculations are presented in.20 Here we present only final result for the function P [Y |X]:

P [Y |X] =
1

πQL
√

1 + µ2/3
exp

{
− (1 + 4µ2/3)x20 − 2µx0y0 + y20

QL(1 + µ2/3)

}
, (16)

where x0 and y0 are the real functions of X and Y :

x0 + iy0 =
Y e−iµX̄

|X|
− |X|, (17)

µ = γL|X|2. Since we consider here only the result (16) for the large SNR limit we imply that |X|2 � QL. Note
that the conditional PDF P [Y |X] was already derived in13 in the form of an infinite series. Our result (16) for
the function P [Y |X] is the analytic summation of this series in the limit of large SNR and intermediate power
region

QL� P �
(
QL3γ2

)−1
. (18)

One can show that the normalization condition
∫
DY P [Y |X] = 1 is fulfilled. Also one can check that the

distribution (16) obeys the following important property

lim
Q→0

P [Y |X] = δ
(
Y −Ψ0(L)

)
. (19)

The expression (19) is nothing else, but the deterministic limit of P [Y |X] in the absence of noise. Also Eq. (16)
has the correct limit for the linear channel (γ → 0):

P (0)[Y |X] =
e−|Y−X|

2/QL

πQL
, (20)

that is nothing else but the conditional PDF for the linear nondispersive channel with additive Gaussian noise.

2.2 Output signal PDF Pout[Y ]

Let us consider the integral, see Eq. (7),

Pout[Y ] =

∫
DXP [Y |X]PX [X], (21)

where the function PX [X] is a smooth function with a scale of variation P which is much greater than QL. In
that case using the Laplace’s method21 we can calculate the integral (21) up to terms of order of 1/SNR and
γ2L3QP . The result has the form:

Pout[Y ] =

∫
DXP [Y |X]PX [X] = PX

[
Y e−iγ|Y |

2L
]
. (22)

The result (22) can be easily understanding because the function P [Y |X] varies on a scale of order QL, the
function PX [X] varies on a scale of order of P which is which is much larger than QL therefore instead of
function P [Y |X] we can substitute the delta-function limit (19). Note that to obtain the result (22) we do not
require the limit Q→ 0 but only the relation between the scales P and QL to be satisfied, for details see.20
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3. OPTIMAL INPUT SIGNAL DISTRIBUTION AT LARGE SNR

The optimal input signal distribution at large SNR can be found calculating the mutual information (4) and
then maximizing the result with respect to the input signal distribution function PX [X]. Let us start from the
calculation of the output signal entropy H[Y ], see Eq. (6), at large SNR. When the parameter SNR� 1 we can
substitute PX

[
Y exp

{
−iγ|Y |2L

}]
instead of Pout[Y ] due to the relation (22):

H[Y ] = −
∫ 2π

0

dφ

∫ ∞
0

dρ′ρ′PX
[
ρ′eiφ

]
logPX

[
ρ′eiφ

]
. (23)

In order to obtain Eq. (23) we have performed the change of the integration variable φ = φ(Y ) + γ|Y |2L. One
can check that the output signal entropy (23) coincides with the input signal entropy in the leading order in
1/SNR and γ2L3QP .

The conditional entropy H[Y |X] can be calculated by substitution of P [Y |X] in the form of (16) into (5).
After integration over x0, y0 we obtain

H[Y |X] = log(eπQL) +
1

2

∫ 2π

0

dφ(X)

∫ ∞
0

dρρPX

[
ρeiφ

(X)
]

log

(
1 +

γ2L2

3
ρ4
)
. (24)

To find the optimal distribution P optX [X] normalized to unity and having a fixed average power P one should
solve the variational problem for the functional J [PX , λ1, λ2]

J [PX , λ1, λ2] = H[Y ]−H[Y |X]− λ1

(∫
DXPX [X]− 1

)
− λ2

(∫
DXPX [X]|X|2 − P

)
, (25)

where λ1,2 are Lagrange multipliers. We substituteH[Y ] andH[Y |X] from Eqs. (23) and (24) to (25), perform the
variation of the functional J [PX , λ1, λ2] over PX [X], λ1, λ2, obtain the Euler-Lagrange equations δJ [PX , λ1, λ2] =
0, then solve it, and finally obtain P optX [X]:

P optX [X] = N0(P )
exp

{
−λ0(P )|X|2

}√
1 + γ2L2|X|4/3

, (26)

where N0(P ) and λ0(P ) are determined from the conditions
∫
DP optX [X] = 1, and

∫
D|X|2P optX [X] = P and

depend on signal power P . In a parametric form this dependence reads

λ0(P ) =
γL√

3
α, N0(P ) =

γL

π
√

3G(α)
, (27)

here G(α) = π
2

{
H0(α)− Y0(α)

}
with Y0(α) and H0(α) being the Neumann and Struve functions of zero order,

respectively. The parameter α(P ) > 0 emerges as the real solution of the nonlinear equation d
dα logG(α) =

−γLP/
√

3.

4. THE MUTUAL INFORMATION

Substituting the expression (26) for P optX [X] in equations (23)-(24) and using the definition (4) we obtain the
mutual information for the optimal distribution in the leading order in 1/SNR:

IP optX [X] = Pλ0(P )− logN0(P )− log(πeQL), (28)

which gives a capacity estimate in the region (18) of the average power P . The mutual information (28) is depicted
by the black solid line in Fig. 1 as a function of power P for the following parameters: Q = 1.5×10−7 mW km−1,
γ = 10−3 mW−1km−1, L = 1000 km. These parameters are usual for the modern optical fiber links. For these
parameters, the power range (18) is actually very wide:

1.5× 10−4mW� P � 0.66× 104mW. (29)
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Figure 1. The mutual information for various input PDFs as a function of input average power P for the parameters
Q = 1.5 × 10−7 mWkm−1, γ = 10−3 mW−1km−1, L = 1000 km. (a): The solid black line, blue dashed line, red dashed

dotted line correspond to the optimal PDF P opt
X [X], Gaussian PDF P

(2)
X [X] (see20), and half-Gaussian PDF P

(1)
X [X],

respectively. (b): The solid black line corresponds to I
P
opt
X

[X]
, see Eq. (28); the red dashed dotted line corresponds to the

mutual information for the half-Gaussian distribution I
P

(1)
X

[X]
, see Eq. (31); the red dashed horizontal line corresponds

to our limit (32) at γ̃ � 1 for the half-Gaussian distribution; the black dotted horizontal line corresponds to the result,14

see Eq. (10).

There is no simple analytical form for N0(P ) and λ0(P ) therefore to plot Fig. 1 and Fig 2 we calculated λ0(P )
and N0(P ) numerically. For large and small values of the parameter γ̃ we found analytical expressions for
parameters λ0(P ) and N0(P ), see.20 At small γ̃ = γLP/

√
3 we obtain

IP optX [X] = log (SNR)− γ̃2, (30)

which is simply the Shannon capacity, log (1 + SNR), of the linear additive Gaussian noise channel (1) with the

first nonlinear correction at large SNR. In the power sub-interval (γL)−1 � P �
(
QL3γ2

)−1
, we obtain that

the mutual information increases as (loglog) with P :

IP optX [X] ≈ − log

(
QL2γe√

3

)
+ log log

(
CγLP√

3

)
.

Note that mutual information for half-Gaussian-like has constant behaviour in the sub-interval. To show this we
perform an analysis of the mutual information for the distribution P

(1)
X [X], see Eq. (8). In the leading order in

1/SNR using (23), (24) and (4) we obtain the mutual information I
P

(1)
X [X]

:

I
P

(1)
X

[X] ≈ − 1

2
√
π

∫ ∞
0

dτe−ττβ/2−1 log

(
1 +

4γ̃2

β2
τ2
)

+ log SNR + log
(

2
√
πeγE−1

)
. (31)

The mutual information is depicted in Fig. 1(a) by the red dashed dotted line. One can see that at small P
the mutual information for the Gaussian distribution, see Fig. 1(a), is greater than that of the half-Gaussian,
whereas at P > 11mW the mutual information is greater for the half-Gaussian distribution. Note that IP optX [X]

is greater than I
P

(1)
X [X]

for all values of P , as it should be. At γ̃ � 1 the mutual information I
P

(1)
X [X]

has the

form

I
P

(1)
X [X]

= − log

(
QL2γ

2

)
+

log 3π − 1 + γE
2

. (32)
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Since we have found P optX [X] in the power region (18), we can calculate an approximation for the capacity of
the considered per-sample nonlinear channel. By definition it coincides with the mutual information expression
(28):

C = IP optX [X]. (33)

Note that the result for the capacity is calculated in the leading order in the parameters 1/SNR and γ2L3QP .
The capacity (33) and the Shannon capacity of the linear channel with additive Gaussian noise is depicted in
Fig. 2. One can see that the Shannon capacity is always greater than the approximation (33) for the nondispersive
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C
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Figure 2. Shannon capacity and the capacity of the nonlinear channel I
P
opt
X

[X]
for the parameters Q = 1.5 ×

10−7 mWkm−1, γ = 10−3 mW−1km−1, L = 1000 km. The black solid line corresponds to I
P
opt
X

[X]
, see Eq. (28), the

red dashed-dotted line corresponds to the Shannon limit log[1 + SNR].

nonlinear fiber channel for the considered region of P .

5. CONCLUSION

We have developed a new method for the calculation of the conditional probability density function using the
path-integral representation. Using this method we obtain compact analytical expressions for the conditional
PDF, for the per-sample nondispersive nonlinear fiber channel. The simple analytical form of conditional PDF
allow us to calculate the conditional and the output signal entropies for different input signal PDFs PX [X]. Using
these entropies we found P optX [X] maximizing the mutual information in the leading order in the parameter 1/SNR
in the power region (18). The found optimal PDF allows us to find the channel capacity (28) up to corrections
of order of 1/SNR and γ2L3QP in the power region QL� P � (γ2QL3)−1. The found distribution P optX [X] is

different from the half-Gaussian one, and at the zero nonlinearity P optX [X] approaches the Gaussian distribution.
We demonstrated that the found capacity of the channel is always greater than the mutual information calculated
for Gaussian and half-Gaussian distributions, and lower than the Shannon capacity of the linear channel with
additive Gaussian noise.
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