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Abstract

A competitive scheme for economic storage of the informational content of an X-Ray image,

as it can be used for further processing, is presented. It is demonstrated that sparse repre-

sentation of that type of data can be encapsulated in a small file without affecting the quality

of the recovered image. The proposed representation, which is inscribed within the context

of data reduction, provides a format for saving the image information in a way that could

assist methodologies for analysis and classification. The competitiveness of the resulting

file is compared against the compression standards JPEG and JPEG2000.

1 Introduction

Sparse image representation refers to particular techniques for data reduction. Rather than

representing the image informational content by the intensity of the pixels, the image is trans-

formed with the aim of reducing the number of data points for reproducing the equivalent

information. Lessening the cardinality of medical data is crucial for remote diagnosis and

treatments [1–4]. The interest for this matter in the area of medical technology has recently

been invigorated by the prospect of earlier disease detection, using neural networks and deep

learning methodologies for automatic analysis of X-Ray plates [5–7].

In recent work [8] we have demonstrated that sparse representation, obtained by a large

dictionary and greedy algorithms, renders high quality approximation of X-Ray images. The

framework was proven to produce approximations which are far more sparser than those aris-

ing from traditional transformations such as the Cosine and Wavelet Transforms. Neverthe-

less, for the approximation to be useful within the context of automatic health care systems

and remote reporting, it is necessary to ensure that the high levels of the achieved sparsity are

not affected by saving the reduced data in a small file. This paper follows on the study in [8] by

presenting a simple scheme to store the sparse approximation of an X-Ray medical image in a

file of competitive size with respect to the most commonly used formats, namely JPEG and

JPEG2000 (JPEG2).

Although in general X-Ray images are sparser if the approximation is performed in the

wavelet domain, for analysis purposes the approximation in the pixel intensity domain may be

needed. Hence, we consider here approximations in both domains. It is pertinent to stress that

the aim of this work is not to propose yet one more method for image compression, but a
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method for economic storage of the informational content of an X-Ray image as it can be used

for further processing [7, 9–15]. The comparison of the resulting file size, against those pro-

duced by JPEG and JPEG2, is carried out with the purpose of illustrating the effectiveness of

the proposed scheme.

2 Sparse image representation

Throughout the paper R stands for the set of real numbers. Lower boldface letters are used to

represent vectors and upper boldface letters to represent matrices. Standard mathematical

fonts indicate their corresponding components, e.g., d 2 RN is a vector of components d(i),
i = 1, . . ., N and I 2 RNx�Ny a matrix of elements I(i, j), i = 1, . . ., Nx, j = 1, . . ., Ny.

Suppose that an image, given as a 2D array I 2 RNx�Ny of intensity values, is to be approxi-

mated by the linear decomposition

Ik ¼
Xk

n¼1

cðnÞD‘n
; ð1Þ

where each c(n) is a scalar and each D‘n
is an element of RNx�Ny normalized to unity, called an

‘atom’, to be selected from a redundant set, D ¼ fDng
M
n¼1

, called a ‘dictionary’. The selection of

the atoms D‘n
in (1) is carried out according to an optimality criterion.

The goal of a sparse representation is to produce an approximation Ik, of an image I, using

as few atoms as possible. The mathematical methods for performing the task are either based

on the minimization of the l1-norm [16, 17] or are greedy strategies for stepwise selection of

atoms from the dictionary [18, 19]. When using large dictionaries, the latter are especially

suited for practical applications. We focus here on the greedy algorithm known as Orthogonal

Matching Pursuit (OMP), which is very effective at furnishing sparse solutions. In spite of the

fact that the method is computationally intensive, the implementation described in the next

section is very efficient in terms of processing time.

2.1 Orthogonal Matching Pursuit in 2D

The OMP method was introduced in [19] and has been implemented by a number of different

algorithms. We describe a particular implementation for 2D, henceforth referred to as

OMP2D. The dictionary is restricted to be separable, i.e. a 2D dictionary D which corresponds

to the tensor product of two 1D dictionaries D ¼ Dx 
Dy. Our implementation of OMP2D is

based on adaptive biorthogonalization and Gram-Schmidt orthogonalization procedures, as

proposed in [20] for the one dimensional case. For the convenience of the interested researcher

we include the description of its generalization to separable 2D dictionaries, as it is imple-

mented by the MATLAB and C++ MEX functions we have made available.

Given a gray level intensity image, I 2 RNx�Ny , and two 1D dictionaries Dx ¼ fdx
n 2 R

Nxg
Mx
n¼1

and Dy ¼ fdy
m 2 R

Nyg
My
m¼1

, we approximate the array I 2 RNx�Ny by the atomic decomposition

of the form:

Ik ¼
Xk

n¼1

cnAn ¼
Xk

n¼1

cndx
‘x

n
ðdy

‘
y
n
Þ

T
; ð2Þ

where ðdy
‘

y
n
Þ

T
indicates the transpose of the column vector dy

‘
y
n
. The OMP2D approach deter-

mines the atoms An ¼ dx
‘x

n
ðdy

‘
y
n
Þ

T
in (2) as follows:
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On setting k = 0 and R0 = I at iteration k + 1 the algorithm selects the elements dx
‘x

kþ1

2 Dx

and dy
‘

y
kþ1

2 Dy corresponding to the indices obtained as

‘
x
kþ1
; ‘

y
kþ1
¼ arg max

n¼1;...;Mx
m¼1;...;My

jðdx
nÞ

TRkdy
mj;

with

Rk ¼ I �
Xk

n¼1

cðnÞdx
‘x

n
ðdy

‘
y
n
Þ

T
:

ð3Þ

The coefficients fcðnÞgk
n¼1

in (3) are such that kRkkF is minimum (k�kF being the Frobenius

norm induced by the Frobenius inner product h�, �iF). This is guaranteed by calculating the

coefficients as

cn ¼ hB
k
n; IiF; n ¼ 1; . . . ; k; ð4Þ

where the matrices fBk
ng

k
n¼1

are recursively constructed, at each iteration, to account for each

newly selected atom. Starting from B1

1
¼W1 ¼ A1 ¼ dx

‘x
1
ðdy

‘
y
1

Þ
T

the set of matrices is upgraded

and updated through the formula:

Bkþ1

n ¼ Bk
n � Bkþ1

kþ1
hAkþ1;Bk

niF; n ¼ 1; . . . ; k;

where

Bkþ1

kþ1
¼Wkþ1= kWkþ1k

2
F; with

Wkþ1 ¼ Akþ1 �
Xk

n¼1

Wn

kWnk
2
F

hWn;Akþ1iF:

ð5Þ

For numerical accuracy of the orthogonal set fWng
kþ1

n¼1
at least one re-orthogonalization step is

usually needed. It requires the recalculation of the element Wk+1 as

Wkþ1  Wkþ1 �
Xk

n¼1

Wn

kWnk
2
F

:hWn;Wkþ1iF: ð6Þ

The algorithm iterates until for a given parameter ρ the stopping criterion jjI � Ikjj
2

F < r is

met.

2.2 Approximation by partitioning

The OMP2D approach described above is to be applied on an image partition. This implies the

division of the image into small disjoint blocks Iq, q = 1, . . ., Q, which without loss of generality

we assume to be square of dimension Nb × Nb. Denoting each element of the image partition

by Iq, these are approximated, independently of each other, to produce the approximations Ikq
q ,

q = 1, . . ., Q, of the form (2). The superscript kq indicates the number of atoms intervening in

the decomposition of the block q. As already mentioned, in spite of the fact that the approxi-

mation of most X-Ray images is significantly sparser if performed in the wavelet domain,

results in the pixel intensity domain may be required for particular applications.

The approximation in the wavelet domain involves a transformation, via a Wavelet Trans-

form, which converts the image into the array to be approximated. The inverse transformation
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is taken after the approximation is concluded. Fig 1 provides graphical illustrations of image

partitions in the pixel intensity and the wavelet domain.

Remark 1: The OMP2D algorithm described in Sec. 2.1 is very effective up to some block

size. While the actual size depends on the sparsity of the image, previous studies indicate that

in general for block sizes greater than 24 × 24 an alternative implementation is advisable. The

alternative implementation, called Self Projected Matching Pursuit (SPMP2D) [8, 21] is not

only dedicated to tackling large dimensional problems, but also potentially suitable for imple-

mentation in Graphic Processing Unit (GPU) programming. However, because for X-Ray

medical images a partition into blocks of size 16 × 16 is a good compromise between sparsity

and processing time, we have focussed on the implementation of OMP2D as given in Sec. 2.1.

Other possibilities for approximating a partition are discussed in [8, 22].

2.3 Mixed dictionaries

The available literature in relation to the construction of dictionaries for image representa-

tion is mainly concerned with methodologies for learning atoms from training data [23–28].

Those methodologies are not designed for learning the types of dictionaries of our interest

though. We restrict the dictionary to be separable, in order to reduce the computational bur-

den and memory requirements. In previous works [8, 21, 29] we have demonstrated that very

large separable dictionaries, which are easy to construct, render high levels of sparsity. Such

dictionaries are not specific to a particular class of images. A discrimination is only made to

take into account whether the approximation is carried out in the pixel intensity or in the

wavelet domain. In each domain we use mixed dictionaries which are similar in nature, but

not equal. They have the trigonometric dictionaries Dx
C and Dx

S, defined below, as common

components.

Dx
C ¼fwcðnÞ cos

pð2i � 1Þðn � 1Þ

2M
; i ¼ 1; . . . ;NgM

n¼1

Dx
S ¼fwsðnÞ sin

pð2i � 1ÞðnÞ
2M

; i ¼ 1; . . . ;NgM
n¼1
;

where wc(n) and ws(n), n = 1, . . ., M are normalization factors, and usually M = 2N.

For approximations in the wavelet domain we add the dictionary Dx
Lw, as proposed in [8],

which is built by translation of the prototype atoms in the right graph of Fig 2. The mixed dic-

tionary Dx
wd, to be used only in the wavelet domain, is formed as Dx

wd ¼ Dx
C [Dx

S [Dx
Lw and

Dy
wd ¼ Dx

wd.

Fig 1. Portion of a chest image. Illustration of an X-Ray image partition in the pixel intensity domain (left graph) and

in the wavelet domain (right graph). The image size is 256 × 320 pixels and the partition is illustrated by blocks of

32 × 32 pixels. The colours are added for visual effect.

https://doi.org/10.1371/journal.pone.0201455.g001
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For approximations in the pixel intensity domain we add the dictionary, Dx
Lp, which is built

by translation of the prototype atoms in the left graph of Fig 2. In this case the mixed dictio-

nary Dx
pd is formed as Dx

pd ¼ Dx
C [Dx

S [Dx
Lp and Dy

pd ¼ Dx
pd.

The corresponding 2D dictionaries Dwd ¼ Dx
wd 
Dy

wd and Dpd ¼ Dx
pd 
Dy

pd are very large,

but not needed as such. All calculations are carried out using the 1D dictionaries.

3 Coding strategy

For the sparse representation of an X-Ray image to be useful within the current trend of medi-

cal technology developments it should be suitable to be encapsulated in a small file. Accord-

ingly, the coefficients of the atomic decompositions need to be converted into integer

numbers. This operation is known as quantization. We adopt a simple and commonly used

uniform quantization technique. For q = 1, . . ., Q the absolute value coefficients |cq(n)|, n = 1,

. . ., kq are converted to integers as follows:

cD
q ðnÞ ¼

d
jcqðnÞj � y

D
e; if jcqðnÞj � y

0 otherwise;

8
><

>:
ð7Þ

where dxe indicates the smallest integer number greater than or equal to x, Δ is the quantiza-

tion parameter, and θ the threshold to disregard coefficients of small magnitude. The signs of

the coefficient are encoded separately, as a vector sq, using a binary alphabet.

In order to store the information about the particular atoms present in the approximation

of each block, we proceed as follows: Firstly each pair of indices ð‘
x;q
n ; ‘

y;q
n Þ corresponding to the

atoms in the decompositions of the block Iq is mapped into a single index oq(n). Then the set

oq(1), . . ., oq(kq) is sorted in ascending order oqðnÞ ! ~oqðnÞ; n ¼ 1; . . . ; kq. This guarantees

that, for each q-value, ~oqðiÞ < ~oqðiþ 1Þ; i ¼ 1; . . . ; kq � 1. The order of the indices induces an

order in the unsigned coefficients, cD
q ! ~cD

q and in the corresponding signs sq ! ~sq. The

advantage introduced by the ascending order of the indices is that they can be stored as smaller

positive numbers, by taking differences between two consecutive values. Certainly by defining

dqðnÞ ¼ ~oqðnÞ � ~oqðn � 1Þ; n ¼ 2; . . . ; kq the string ~oqð1Þ; dqð2Þ; . . . ; dqðkqÞ stores the indices

for the block q with unique recovery. The number 0 is then used to separate the strings corre-

sponding to different blocks.

stind¼½~o1ð1Þ; d1ð2Þ; . . . ; d1ðk1Þ; 0; ~o2ð1Þ; d2ð2Þ; . . . ; d2ðk2Þ; 0; � � � ; ~okQ
ð1Þ; dkQ

ð2Þ . . . ; dkQ
ðkQÞ�: ð8Þ

Fig 2. Prototype atoms, which generate by translation the dictionaries Dx
Lp (left) and Dx

Lw (right).

https://doi.org/10.1371/journal.pone.0201455.g002
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The quantized magnitude of the re-ordered coefficients are concatenated in the strings stcf as

follows:

stcf ¼ ½~cD
1
ð1Þ; . . . ;~cD

1
ðk1Þ;~cD

2
ð1Þ; . . . ;~cD

2
ðk2Þ; � � � ;~cD

kQ
ð1Þ; . . . ;~cD

kQ
ðkQÞ�: ð9Þ

Using 0 if the sign is positive and 1 if it is negative, the signs of the coefficients are placed in

the string, stsg as

stsg ¼ ½~s1ð1Þ; . . . ;~s1ðk1Þ;~s2ð1Þ; . . . ;~s2ðk2Þ; � � � ;~skQ
ð1Þ; . . . ;~skQ

ðkQÞ�: ð10Þ

The next encoding/decoding scheme summarizes the above described procedure.

Encoding

• Given an image partition Iq 2 R
Nb�Nb ; q ¼ 1; . . . ;Q use OMP2D (or other method) to

approximate each element of the partition by the atomic decomposition:

Ikq
q ¼

Xkq

n¼1

cqðnÞd
x
‘

x;q
n
ðdy

‘
y;q
n
Þ

T
: ð11Þ

• The approximation is carried out on each block, independently of the others, until the stop-

ping criterion is reached.

• For each q, quantize as in (7) the magnitude of the coefficients in the decomposition (11) to

obtain cD
q ðnÞ; n ¼ 1; . . . ; kq. Store the signs of the non-zero coefficient as components of a

vector sq.

• For each q, map the pair of indices ð‘
x;q
n ; ‘

y;q
n Þ; n ¼ 1; . . . ; kq in (11) into a single index oq(n),

n = 1, . . ., kq and sort these numbers in ascending order to have the re-ordered sets:

~oqð1Þ . . . ; ~oqðkqÞ; ~cD
q ð1Þ; . . . ;~cD

q ðkqÞ and ~sqð1Þ; . . . ;~sqðkqÞ to create the strings: stind, as in (8),

and stcf, and stsg as in (9) and (10) respectively.

Let’s recall the content of the file encoded by the above steps:

stind contains the difference of indices corresponding to the atoms in the approximation of

each of the blocks in the image partition.

stcf contains the magnitude of the corresponding coefficients (quantized to integer numbers).

stsg contains the signs of the coefficients in binary format. The quantization parameter Δ also

needs to be stored in the file. We fix θ = 1.3Δ for all the images.

Decoding

• Recover the indices from their difference. This operation also gives the information about

the number of coefficients in each block.

• Read the quantized unsigned coefficients from the string stcf and transform them into real

numbers as j~cr
qðnÞj ¼ D~cD

q ðnÞ þ ðy � D=2Þ. Read the corresponding signs from the string

stsg.
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• Recover the approximated partition, for each block, through the liner combination

Ir;kq
q ¼

Xkq

n¼1

~sqðnÞj~c
r
qðnÞjd

x
~‘

x;q
n
ðdy

~‘
y;q
n
Þ

T
:

• Assemble the recovered image as

Ir;K ¼ ĴQ
q¼1Ir;kq

q ;

where the Ĵ indicates the operation for joining the blocks to restore the image.

Note: The MATLAB scripts for implementing the scheme and reproducing the results pre-

sented in the next section have been made available on [30].

3.1 Evaluation metrics

The quality of the approximation is quantified by the Mean Structural SIMilarity (MSSIM)

index [31, 32] and the classical Peak Signal-to-Noise Ratio (PSNR), calculated as

PSNR ¼ 10 log 10

ð28 � 1Þ
2

MSE

� �

; with MSE ¼
kI � Ir;Kk2

F

NxNy
: ð12Þ

The required MSSIM is set to be MSSIM� 0.997. This limit guarantees that the approximation

is indistinguishable from the image, in the original size (it should be noticed that the MSSIM

between an image and itself is 1). For the comparison with standard formats all the PSNRs are

fixed as values for which JPEG and JPEG2 produce the required MSSIM. For producing a

requested PSNR with the sparse representation approach we proceed as follows: the approxi-

mation routine is set to yield a slightly larger value of PSNR and the required one is then

obtained by tuning the quantization parameter Δ.

As a measure of sparsity we use the Sparsity Ratio, which is defined as [33]:

SR ¼
Number of pixels in the image

Number of coefficients in the representation
: ð13Þ

Accordingly, the sparsity of a representation is manifested as a high value of SR.

In addition to the SR, which is a global measure of sparsity, a meaningful description of the

variation of the image content throughout the partition is rendered by the local sparsity ratio,

which is given as

srðqÞ ¼
N2

b

kq
; q ¼ 1; . . . ;Q; ð14Þ

where kq is the number of coefficients in the decomposition of the q-block and N2
b is the num-

ber of pixels in the block.

3.2 Data sets

We illustrate the effectiveness of the proposed encoding scheme by storing the outputs of high

quality sparse approximation of two data sets: 1) the Lukas 2D 8 bit medical image corpus,

available on [34] and 2) the sample of 25 X-ray chest images taken randomly from the National

Institute of Health (NIH) dataset available on [35].
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The Lukas corpus consists of 20 images which cover different parts of the human body, as

shown in Fig 3. The average size of the images in the set is 1943 × 1364 pixels.

The chest X-Ray images are available in the raster graphics file format portable network

graphics (png). Information related to the NIH X-Ray collection is given in [36]. The 25

images used here have been placed on [30]. The sample consists of common views of the

chest in radiology. The posteroanterior, anteroposterior, and lateral views, which are obtained

by changing the relative orientation of the body and the direction of the X-Ray beam. The

images in this set are of similar size and smaller than in the Lukas corpus. The average size is

496 × 512 pixels.

4 Results

The approximation of all the images in the Lukas corpus are performed in both the pixel inten-

sity and the wavelet domain. The size of the blocks in the image partition is fixed taking into

Fig 3. Lukas data set. The 20 images in the Lukas Corpus [34] listed in Table 1. First row: Hand1, Foot0, Head0, Knee1,

Foot1. Second row: Sinus0, Hand0, Head1, Knee0, Sinus1. Third row: Breast0, Breast1, Thorax0, Thorax1, Leg0. Fourth

row: Leg1, Pelvis1, Pelvis0, Spine1, Spine0. The average size of these images is 1943 × 1364 pixels.

https://doi.org/10.1371/journal.pone.0201455.g003
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account previously reported results [8, 21], which indicate that 16 × 16 is a good trade-off

between the resulting sparsity and the processing time. The information about the sizes of the

corresponding files is given in bits per pixel (bpp) in the third and forth columns of Table 1.

The results for JPEG and JPEG2 are placed in the fifth and sixth columns, respectively. The last

two rows of the table are the mean value of standard deviation (std) of the corresponding

columns.

As shown in Table 1, all the files corresponding to approximations in the wavelet domain

(Swd) are smaller than those corresponding to approximations in the pixel intensity domain

(Spd), and also smaller than the JPEG ones. On average the files with the sparse representation

in the wavelet domain are 22% smaller than those with the representation in the pixel domain,

and 27% smaller than the JPEG files. In the present form JPEG2 produces the smallest files (on

average 9% smaller than the files with the representation in the wavelet domain). However,

both JPEG and JPEG2 formats involve an entropy coding step, which is not included in our

scheme. Instead, the outputs of our algorithm are stored in HDF5 format [37, 38]. In the pro-

vided software [30] this is implemented in a straightforward manner using the MATLAB func-

tion save. On the contrary, adding an entropy coding step to the software would increase the

processing time.

A very interesting feature of the numerical results is that the quantization process, intrinsic

to the economic store of the coefficients in the image approximation does not reduce the

sparsity. For the sake of comparison in addition to calculating the SRs obtained with the dictio-

nary approach in both domains, before and after quantization, we have also calculated the

Table 1. Comparison of size rate (in bpp) for the Lukas corpus, listed in the first column. The third column shows

the bpp values corresponding to the sparse representation in the pixel domain (Spd). The forth column shows the corre-

sponding results in the wavelet domain (Swd). The fifth and sixth columns are the bpp values for the formats JPEG and

JPEG2, respectively. All the approaches render a MSSIM� 0.997 and the values of PSNR listed in the second column.

Image dB Spd Swd JPEG JPEG2

1 Hand1 48.1 0.443 0.286 0.436 0.234

2 Foot0 48.6 0.462 0.306 0.449 0.247

3 Head0 47.4 0.441 0.320 0.419 0.244

4 Knee1 48.0 0.488 0.316 0.485 0.286

5 Foot1 48.1 0.624 0.391 0.566 0.335

6 Sinus0 47.1 0.676 0.416 0.575 0.334

7 Hand0 48.8 0.612 0.424 0.586 0.371

8 Head1 46.4 0.599 0.452 0.546 0.346

9 Knee0 49.1 0.612 0.419 0.573 0.364

10 Sinus1 45.8 0.697 0.453 0.594 0.358

11 Breast0 44.3 0.519 0.465 0.605 0.393

12 Breast1 44.3 0.691 0.629 0.832 0.521

13 Thorax0 44.1 0.827 0.686 0.874 0.629

14 Thorax1 43.4 0.816 0.693 0.924 0.619

15 Leg0 48.9 1.000 0.867 1.152 0.759

16 Leg1 49.2 1.384 1.240 1.584 1.056

17 Pelvis1 44.3 1.596 1.418 1.828 1.248

18 Pelvis0 44.4 1.606 1.435 1.827 1.310

19 Spine1 47.0 2.131 1.922 2.463 1.630

20 Spine0 47.4 2.395 2.298 2.764 1.902

Mean Value 46.7 0.938 0.727 1.004 0.659

Std 1.9 0.573 0.521 0.707 0.500

https://doi.org/10.1371/journal.pone.0201455.t001
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corresponding SRs produced by nonlinear thresholding of the wavelet coefficients. The results

are shown in Fig 4.

As already discussed, since the quantization of coefficients degrades quality, to achieve the

required PSNR the approximation of the image has to be carry out up to a higher PSNR value.

Nevertheless, because the quantization process maps some coefficients to zero, for the corpus

of 20 images in this study, quantization does not affect sparsity. On the contrary, as can be

observed in Fig 4, for the sparsest images (first 5 images in Table 1) sparsity actually benefits

from quantization. It is also clear that for the images in the upper part of the table the SR in the

wavelet domain is significantly larger than in the pixel intensity domain. However, the level of

sparsity achieved by the dictionary approach is, in both domains, significantly higher than that

achieved by nonlinear thresholding of the wavelet coefficients. If the dictionary approach oper-

ates in the wavelet domain, then after quantization the mean value gain in SR with respect to

thresholding of the wavelet coefficients is 163%, with standard deviation of 17%. In the pixel

intensity domain the corresponding gain is 113%, with standard deviation of 30%.

It is worth mentioning that the local sparsity ratio (c.f. (14)) can be used to produce a digital

summary of the images. Indeed, each of the graphs of Fig 5 depicts the inverse of the local spar-

sity ratio in the pixel domain, for nine of the images in the Lukas corpus. Each of the points in

a graph represents the number of coefficients in the atomic decomposition of each block in the

image partition. Hence, the number of points in each of the graphs of Fig 5 is equal to the

number of blocks in the corresponding image partition. Note that showing the inverse of the

local sparsity ratio implies that the brightest pixels correspond to the least sparse blocks. By

comparing the graphs in Fig 5 with the images in Fig 3 it is clear that each of the graphs in Fig

5 corresponds to one of the image in the Lukas corpus: Hand0, Foot1, Head1, Sinus1, Leg0,

Thorax0, Breast0, Pelvis1 and Spine1. This suggests that the digital summary of the images

could be of assistance to classification and feature extraction techniques. For recent publica-

tions in that area of application see [39–45].

The approximation of the 25 chest X-Ray images is carried out to achieved a PSNR of 45dB

for all the images. This guarantees a MSSIM of at least 0.99 for every image. The resulting size

Fig 4. Comparison of the SRs, before and after quantization, corresponding to the dictionary approachin both the

pixel intensity and the wavelet domain and to the wavelet approximation by nonlinear thresholding.

https://doi.org/10.1371/journal.pone.0201455.g004
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of the files lead to the same remarks as the values in the previous example displayed in Table 1.

Indeed, as shown in Fig 6, the size rate produced by the dictionary approach in the pixel inten-

sity domain (Spd) is competitive with the JPEG format for the same quality. The files produced

in the wavelet domain (Swd) are smaller than the JPEG files but larger than the JPEG2 ones.

However, let’s recall that the entropy coding step, which is part of the JPEG and JPEG2 com-

pression standards, is not included in our scheme. This results in larger files but fast process-

ing. Certainly, using MATLAB environment and a small notebook 2.9GHz dual core i7 3520M

CPU and 4GB of memory, the average time for carrying out the approximation and creating

the files of the 25 images with the dictionary approach is 1.7 s per image (with standard devia-

tion 0.5). This time is the average of five independent runs in the time domain and another

five independent runs in the wavelet domain.

In this case the sparsity of the image representation benefits from quantization even more

than in the previous case: The dictionary approach in the pixel intensity domain yields a mean

value SR (SR) equal to 25.4 before quantization and SR ¼ 36:7 and after quantization. In the

wavelet domain SR ¼ 35:4 before quantization, while SR ¼ 52:0 after quantization.

5 Conclusions

A scheme for encapsulating the sparse representation of an X-Ray image in a small file has

been proposed. The approach operates within the over-complete dictionary framework, which

achieves a notable level of sparsity in the image representation. An interesting feature, emerg-

ing from the numerical results illustrating the approach, is that the process of devising the

small file does not affect the sparsity of the representation. We consider this a very important

Fig 5. Digital summary of nine of the images in the Lukas corpus. The points in each graph are the inverse of the

local sparsity ratio for nine of the images in Fig 3. The sizes of the graphs are (from top left to bottom right) 124 × 78,

140 × 86, 97 × 104, 99 × 88, 132 × 38, 107 × 128, 1138 × 105, 100 × 118 and 131 × 53 pixels.

https://doi.org/10.1371/journal.pone.0201455.g005
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outcome, because the central aim of the approach is to reduce, as much as possible, the cardi-

nality of the data representing the informational content of the images. Additionally, the com-

petitivity of the file size was compared against the standard formats JPEG and JPEG2. The

MATLAB routines, for implementing all the steps of the process to reproduce the results in

Table 1 and Fig 6, have been made available on a dedicated website [30].

As a final remark it should be mentioned that the quality of the image representation in the

present study is very high. A lower value of MSSIM might be acceptable as diagnostically loss-

less representation of X-Ray images [32]. Within the proposed scheme the only effects of set-

ting a lower value of MSSIM are: a) the approximation routine runs faster, since less atoms are

chosen, and b) the storage file is of course smaller. The right value of MSSIM is to be set

according to how the file is to be used whilst taking into account specialized opinions.
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