
SoSyM manuscript No.
(will be inserted by the editor)

Models@run.time: a Guided Tour of the State-of-the-Art and
Research Challenges

Nelly Bencomo · Sebastian Götz · Hui Song

Received: Tuesday 17th July, 2018/ Accepted: n/a

Abstract More than a decade ago, the research topic

models@run.time was coined. Since then, the research

area has received increasing attention. Given the prolific

results during these years, the current outcomes need

to be sorted and classified. Furthermore, many gaps

need to be categorised in order to further develop the

research topic by experts of the research area but also

newcomers. Accordingly, the paper discusses the prin-

ciples and requirements of models@run.time and the

state-of-the-art of the research line. To make the dis-

cussion more concrete, a taxonomy is defined and used

to compare the main approaches and research outcomes

in the area during the last decade and including ances-

tor research initiatives. We identified and classified 271

papers on models@run.time, which allowed us to iden-

tify the underlying research gaps and to elaborate on
the corresponding research challenges.

Keywords models@run.time, self-reflection, system-

atic literature review, causal connection

1 Introduction

Model-Driven Engineering (MDE) highlights the im-

portance of models to engineer systems. Models are

artefacts with key roles during the software develop-

ment process and have successfully been used for long

Nelly Bencomo
Aston University, UK
E-mail: nelly@acm.org

Sebastian Götz
Technische Universität Dresden, Germany
E-mail: sebastian.goetz@acm.org

Hui Song
Stiftelsen SINTEF, Norway
E-mail: hui.song@sintef.no

time for communication between stakeholders, docu-

mentation, code generation, deployment, and traceabil-

ity between development stages, among other uses [40,

88]. In contrast to those traditional uses of models dur-

ing development time, more recent research initiatives

have shown the utility of models during runtime [32,

44]. Runtime models are envisioned to provide intelli-

gent support to software during execution [22] as the

distinction between software development and execu-

tion blurs. Runtime models can be used by the sys-

tem itself, other systems or humans to help coping with

the challenges posed by eternal systems [146] and self-

adaptive systems [132]. Runtime models can support

reasoning and decision making based on knowledge that

may emerge at runtime but was not foreseen before ex-

ecution [34].

A key principle underlying models@run.time is com-

putational reflection as described by Pattie Maes, who

defines “computational reflection to be the behaviour

exhibited by a reflective system, where a reflective sys-

tem is a computational system which is about itself

in a causally connected way” [134]. In other words,

runtime models represent a reflection layer, which is

causally connected with the underlying system so that

every change in the runtime model leads to a change in

the reflected system and vice versa. Or, in Pattie Maes

words: “A system is said to be causally connected to its

domain if the internal structures and the domain they

represent are linked in such a way that if one of them

changes, this leads to a corresponding effect upon the

other.” [134]. Models@run.time combines the principles

of computational reflection with model-driven engineer-

ing. Based on the above, a runtime model is defined as

a causally connected self-representation of the associ-

ated system that emphasizes the structure, behaviour,

or goals of the system and which can be manipulated

2 Nelly Bencomo et al.

at runtime for specific purposes [40]. Models@run.time

can be used as a catalyst for the creation of future soft-

ware that inevitably needs to be long-lived while coping

with ever-changing environmental conditions, which are

only partially known at development time [14].

Since the term was introduced, a plethora of ap-

proaches applying or supporting models@run.time have

been developed [32,40,44,98]. The need to sort out

and classify the prolific results is natural and urgent.

Researchers have so far focused on applications and

fundamentals of runtime models according to different

specific research interests and goals. As a consequence,

the research results are scattered across several different

research communities and domains (such as robotics,

embedded systems and MDE itself). On the one hand,

different approaches in several domains show similar-

ities, and approaches from different research commu-

nities could be rather complementary. The key point

is that some of those approaches have been proposed

without being aware of each other. This hinders the

development of models@run.time towards a mature re-

search field. On the other hand, the gaps between the

core models@run.time technology and the diverse do-

mains certainly need to be identified and categorised

in order to further develop the research topic by re-

searchers of the area.

Based on a systematic literature review, this paper

provides a historical perspective on the development of

the research topic models@run.time. Such a study is

relevant at this point not only to appreciate the sub-

stantial body of work that already exists in the area of

models@run.time, but also to step back, to understand

current trends, and to anticipate future needs to evolve

the research area in a more meaningful way. Hence, a

gateway to new models@run.time approaches can be

opened combining different experiences and new ideas

to tackle new research challenges.

The main aims of this survey are to (i) evaluate

the field by its outcomes, (ii) provide support for re-

searchers to situate themselves in the research area for

different purposes, including evaluation of their work

and, (iii) discuss how the models@run.time paradigm is

useful to build software of the future.

Research Approach. In order to pursue our aims,

we are following these specific objectives:

• Present a taxonomy to allow the classification of

existing models@run.time approaches.

• Based on the taxonomy, present an overview of the

current state-of-the-art in the research area of mod-

els@run.time.

• Elaborate on the current trends, research initia-

tives, research gaps and corresponding challenges,

and propose relevant research directions.

The survey includes 271 papers from multiple re-

search domains published in different venues. The time-

line of the papers analysed covers mainly work since

2006, but also some selected work (5 papers) before

2006, which can be seen as influential predecessor work

of models@run.time and that laid the basis for the re-

search line accordingly. First, we derived a taxonomy

that defines different dimensions identified by a first

content analysis. A dimension refers to an aspect of

the research topic models@run.time to be studied. More

concretely, based on an initial set of dimensions defined

according to our own experience in the topic and having

clarified the inclusion and exclusion criteria, we have as-

sembled a collection of papers which we have iteratively

analysed. This analysis in turn refines the dimensions

of the taxonomy. After that, the final taxonomy was

the tool to be used to classify the papers, and therefore

provided a thorough overview of the current status of

research in models@run.time. The results were used to

perform an analysis cross-cutting the different dimen-

sions of the taxonomy to derive gaps in the form of

research challenges and potential directions for future

research efforts in the area.

By now, only one other survey on models@run.time

has been published so far [190]. This survey is based on

a keyword search and, thus, in contrast to this article,

does not take into account, for example, the present

knowledge of the models@run.time research commu-

nity, e.g., by directly including papers from the work-

shop series on models@run.time or by studying semi-

nal ancestor research initiatives. Further, we explicitly

came up with a taxonomy that allows the classifica-

tion of the outcomes studied. This taxonomy includes

aspects studied in the survey by [190] such as the ob-

jectives, techniques and kind of models. However, our

survey also includes the level of abstraction, the domain

to which the work has been applied and the study of

intersecting research areas. Further, the dimension cov-

ering the level of abstraction has allowed us to focus

not only on the concept of architecture, but also on

other aspects such as the concept of the user interface

of the system under analysis, the study of the granu-

larity of the architecture, the timeline of the life cycle

(e.g., design time and runtime) and more. We studied

at which level of abstraction which types of runtime

models were used, which model-driven techniques have

been applied at runtime and the relationship to the

purpose of applying models@run.time. Different from

other studies, we also emphasize the difference of fun-

damental research, i.e., research performed to develop

approaches that follow the models@run.time paradigm

and applied research of models@run.time, i.e., research

efforts that use the runtime models paradigm.

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 3

Organization. This paper is structured as follows.

Section 2 describes the research method applied for

the systematic literature review. Next, in Section 3 we

present the first contribution of this paper, a taxonomy

for the classification of models@run.time approaches

based on several dimensions and which has been de-

rived from an iterative and detailed analysis of the ex-

isting research literature. Section 4 discusses threats to

validity of our survey. The second contribution, a clas-

sification of the surveyed models@run.time approaches

according to the taxonomy with a thorough cross-

dimension analysis between the different categories is

discussed in Section 5 using bubble-matrix charts and

Section 6 using Kiviat graphs. Section 7 identifies chal-

lenges and future research directions based on the re-

sults of the survey. In Section 8 the paper concludes.

2 Research Method Applied

The review of the state-of-the-art developed in this

paper follows the principles described by Kitchenham

in [120]. Based on those principles, a review is struc-

tured in three phases: planning, conducting and report-

ing the review. Accordingly, we explain in this section

details about the planning applied, i.e., the research

questions we posed. In particular, Section 2.1 describes

the research questions that have driven the survey, Sec-

tion 2.2 describes the procedure and the steps under-

taken, and Section 2.3 details the process of the lit-

erature search explaining the inclusion and exclusion

criteria used.

2.1 Research Questions

In each of the three phases (planning, conducting and

reporting), we followed the principles described in [120]

adapting them to the context given by the research

topic studied and the expertise of the authors in the

topics. The initial activity of the planning phase was to

identify and critically reflect upon the need for the sur-

vey to be conducted. The rational of this discourse is

the motivation for this work as described in Section 1.

Based on the aims and specific objectives described in

Section 1, we have formulated the following research

questions, which state the basis of the survey:

• RQ1 How can existing research on mod-

els@run.time be classified?

• RQ2 What is the state of the art of mod-

els@run.time research w.r.t. the classification?

• RQ3 What can be inferred from the results asso-

ciated with RQ2 that will lead to timely, relevant

research directions for further investigation?

2.2 General Procedure

Figure 1 depicts in detail the general procedure we have

undertaken. As a starting point, in the initialization

step, we specified the protocol used to conduct the sur-

vey. This protocol describes (i) which data sources to

use, (ii) which criteria have to be met by a paper to be

included in the survey, (iii) the exclusion criteria and

(iv) an initial taxonomy to be used for the classification

of papers, which qualified for the survey.

Based on this protocol, we defined our search strat-

egy to be twofold: (i) we use several conferences, work-

shops, journals and books as primary data sources, and

(ii) we use our knowledge about people relevantly active

in the research community to identify further venues as

primary data source, namely those where these peo-

ple have published. Based on the papers collected us-

ing these primary data sources, we brainstormed and

derived an initial set of dimensions for classification,

which we iteratively refined during the process of map-

ping the papers to classes of these dimensions. Using

the final set of dimensions, we derived the total collec-

tion of papers for closer review, where we (i) filtered

the papers based on in- and exclusion criteria (cf. Sec-

tion 2.3) and (ii) added further papers subject to review

by following citations with respect to the initial set of

papers.

The outcome of the initialization step was, hence,

a list of dimensions and a list of papers qualified for

inclusion to the survey. Using these two artefacts, in

the second step, we constructed the taxonomy. Again,

we conducted this process iteratively, starting with an

initial first draft of the taxonomy, which was refined

whilst reviewing the papers. The partial result was the

quasi final taxonomy (the second draft). Due to dis-

tributed work by the authors some identified classes in

the taxonomy received different (but similar) names,

however they meant the same concept. Therefore, such

classes were merged together to obtain more manage-

able graphs to be analysed. The current draft of the

taxonomy was cleansed accordingly to obtain the final

version of the taxonomy to answer RQ1. The final ver-

sion of the taxonomy is presented in Section 3.

In the third step, using the final taxonomy from the

previous step and the list of papers subject to closer

review, we mapped all qualified papers to the identified

classes of the taxonomy, checked the consistency of the

taxonomy and analysed the resulting mapping, as an

answer to RQ2. The focus of the analysis was on how

balanced the work across the classes of the taxonomy is.

By this, classes that have rarely or not been addressed

at all could be identified. Similarly, new trends in the

area were identified and analysed accordingly.

4 Nelly Bencomo et al.

Based on the analysis results, we finally proceeded

to realize the fourth step of collecting a set of future

research directions to give an answer to RQ3.

Throughout the whole process, we used a novel tool,

which has been developed alongside our study in stu-

dent projects at Technische Universität Dresden: the

systematic literature review toolkit publicly available

and ready-to-use for Windows, Linux and Mac-based

systems1. The EPL-1.0 licensed open-source tool is un-

der development since October 2014 and supports re-

searchers conducting literature reviews in all before

mentioned phases of a study, but, due to the lack of

free-to-use search APIs, with the exception of collecting

relevant literature from the publishers. The tool is still

under active development, currently by a team of six

students. Also, the data presented in this paper (i.e.,

bibtex entries for all included papers, the taxonomy

and the paper classification) is available as an exam-

ple project of the toolkit online2.

The procedure we followed, as described above, is

depicted in Figure 1. The following subsection provides

details about the selected literature.

2.3 Process of Collecting Relevant Papers

A very important decision for literature surveys is

which data sources shall be used to find as much ex-

isting work as possible. A typical approach is to use

scholarly search engines such as Google Scholar or Mi-

crosoft Academic Search. Another opportunity is to

collect papers directly from the websites of publishers

such as ACM, IEEE and Springer. Both approaches are

based on a good selection of keywords for the respective

search. However, the list of keywords usually leads to

a very large amount of results whilst still being incom-

plete. The reason for this is the lack of a common vocab-

ulary in different research communities, especially when

the field of research, subject to investigation, is young

and changing, as it is in our case. In consequence, many

papers, which actually belong to the corpus of literature

to be investigated are not found in those searches, be-

cause they used another terminology.

To ameliorate this problem, we decided to follow an

alternative way, using conferences, workshops, books

and journals that interface with models@run.time, as

primary sources of papers for this survey, using our

own knowledge on the communities and these venues.

The premium selections were the models@run.time

workshops [98], two special issues of journals [40,44],

1 https://github.com/sebastiangoetz/slr-toolkit/releases
2 https://github.com/sebastiangoetz/slr-

toolkit/tree/master/examples/mrt

and one book on models@runtime [32]. These venues

tend to contain frontier work and ideas that connect

to other relevant research venues and therefore pa-

pers. At the same time, we looked at the top con-

ferences on generic software engineering and its ma-

jor branches, such as model-driven engineering (MOD-

ELS), requirement engineering (RE), component-based

software (CBSE), and self-adaptive systems (SEAMS),

among others. Qualified papers from these venues show

the acceptance of models@run.time by a wider soft-

ware engineering community. We also performed inter-

views with key researchers of the areas and performed

venue analysis on the development of the research topic

models@run.time. As an example of interesting results,

we found that in the area of software product lines

(SPLC), no qualified papers were found even though

it is a topic of interest. Models@run.time is cited in

SPLC keynotes [21], keynotes of related venues [34,106,

108] and also included in the call for papers of SPLC

workshops [150].

Table 1 lists all used sources and, for each source,

the total number of papers evaluated against in- and ex-

clusion criteria and the number of papers, which qual-

ified for inclusion. The table also provides the reader

with the number of papers per venue.

As a starting point, we evaluated 95 papers pub-

lished in the models@run.time workshop series, which

is running since 2006. Interestingly, only 80 papers qual-

ified for inclusion in the survey. The reason for the ex-

istence of papers published in models@run.time work-

shop proceedings, which neither contain fundamental

nor applied research on models@run.time, can be found

in the fact that the research topic has been evolving

during the last decade. Especially, in early editions of

the workshop, several papers on executable models have

been presented at the workshop, to discuss the rela-

tion between executable and runtime models. However,

eventually, the community agreed upon the need for a

causal connection between a runtime model and a sys-

tem for work to be considered as a models@run.time

approach and that is not necessarily the case for exe-

cutable model approaches.

In addition to these workshop papers, two special is-

sues on models@run.time (in Springer Computing [44]

and IEEE Computer [40], respectively) comprising nine

(9) qualifying papers in total, and a book on mod-

els@run.time [32] containing nine (9) qualifying papers

have been used as key source of information.

A further source for papers was the MODELS con-

ference, which annually hosts the models@run.time

workshop, and, for several years also had separate

tracks on models@run.time. A second close con-

ference to the research topic models@run.time is

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 5

n
ew

 d
im

en
si

o
n

s
fo

u
n

d

1
.1

 D
ef

in
it

io
n

 o
f

th
e

P
ro

to
co

l

1
. I

n
it

ia
liz

at
io

n
 S

te
p

1
.2

 D
ef

in
it

io
n

 S
e

ar
ch

 S
tr

at
eg

ie
s

1
.3

 D
ef

in
it

io
n

 o
f

D
im

en
si

o
n

s
/

Su
b

-d
im

en
si

o
n

s

1
.4

 D
im

en
si

o
n

-b
as

ed
 s

ea
rc

h
 f

o
r

p
ap

er
s

1
.5

 R
ev

ie
w

 o
f

p
ap

er
 (

ap
p

ly
in

g
in

cl
u

si
o

n
 /

 e
xc

lu
si

o
n

 c
ri

te
ri

a)

To
ta

l c
o

lle
ct

io
n

 o
f

re
vi

ew
e

d
 p

ap
er

s
cl

as
si

fi
ed

 b
y

ve
n

u
es

1
.6

 C
ro

ss
-c

it
at

io
n

 s
ea

rc
h

Se
le

ct
e

d
P

ap
er

s
to

 b
e

re
vi

ew
e

d

D
im

en
si

o
n

s

2
.1

 F
ir

st
 D

ra
ft

 T
ax

o
n

o
m

y

2
. S

te
p

 R
Q

1
 -

Ta
xo

n
o

m
y

2
.2

 P
ap

er
 R

ev
ie

w

2
.3

 S
e

co
n

d
 D

ra
ft

Ta

xo
n

o
m

y

2
.4

 F
in

al
 V

er
si

o
n

Ta

xo
n

o
m

y

n
ew

co

n
ce

p
ts

fo

u
n

d

Ta
xo

n
o

m
y

3
.1

 M
ap

p
in

g
o

f
Pa

p
er

s
ac

co
rd

in
g

to
 T

ax
o

n
o

m
y

3
. S

te
p

 R
Q

2
 –

A
p

p
lic

at
io

n
 T

ax
o

n
o

m
y

3
.2

 C
o

n
si

st
en

cy
 C

h
ec

ki
n

g

3
.3

 A
n

al
ys

is

Se
le

ct
e

d
P

ap
er

s
to

 b
e

re
vi

ew
e

d

A
n

al
ys

is

R
es

u
lt

s

4
. S

te
p

 R
Q

3
 –

Fu
tu

re
 R

es
ea

rc
h

 D
ir

ec
ti

o
n

s

4
.2

 C
ro

ss
 A

n
al

ys
is

4
.3

 T
re

n
d

 A
n

al
ys

is

Fu
tu

re
 R

es
e

ar
ch

R

ec
o

m
m

en
d

at
io

n
s

4
.1

 V
en

u
e

A
n

al
ys

is

2
.2

.1

C
le

an
si

n
g

Fig. 1: Procedure followed in the research method applied for the survey presented

6 Nelly Bencomo et al.

Name Type #All Papers #Included
Models@run.time Workshop 95 80
Requirements@run.time Workshop 13 11
RAM-SE Workshop 61 6
[32] Book 11 9
MODELS Conference 545 23
SEAMS Conference 182 29
ICAC Conference 366 31
SASO Conference 385 11
CompArch Conference 330 7
ECSA/WICSA Conference 334 8
RE Conference 528 6
SPLC Conference 120 2
ICSE Conference 640 6
[40], [44] Journal 25 9
SoSyM Journal n/a 3
JSS Journal n/a 2
TOSEM Journal n/a 1
TSE Journal n/a 4
TAAS Journal n/a 4
Google Scholar Search n/a n/a 19
Total 3635 271

Table 1: Quantified Overview of Included Papers in this Survey

SEAMS, which also has shown separate tracks on mod-

els@run.time, and, hence, has been included as data

source.

As models@run.time interfaces with many other re-

search areas, we decided to include the following ma-

jor conferences who offer intersecting areas: ICAC and

SASO representing the autonomous computing commu-

nity; CompArch, ECSA and WICSA representing the

software architecture community; RE representing the

requirements engineering community; SPLC represent-

ing the software product line community; and ICSE as

a general conference spanning all topics of software en-

gineering. We also included in the search the following

journals: SoSyM, TOSEM, TSE, TAAC, JSS, TAAS.

The inclusion of conferences and journals as sources

of information for this evaluation aims at identifying

mature work on models@run.time. To also include work

on models@run.time which is at an early stage, we addi-

tionally included the following workshops: the workshop

on adaptive and reflective middleware, which originally

inspired the models@run.time workshop; the workshop

on reflection, AOP and meta-data for software evo-

lution (RAM-SE); the European workshop on soft-

ware architecture (EWSA); the requirements@run.time

workshop and the workshop on dynamic software prod-

uct lines (DSPL).

In order to ensure the inclusion of relevant work,

we additionally performed a thorough search through a

big spectrum of published papers with Google Scholar,

using keywords such as runtime model and mod-

els@run.time. We indeed found additional papers that

had not been classified before.

2.3.1 Inclusion Criteria

We used the following criteria to filter the papers taken

from the data sources described above, based on their

title and abstract. For a paper to be included in this

survey, it has to meet the following key requirement:

• The paper covers research where a model, which re-

flects the state of a system, should be causally con-

nected with that system.

We consider every abstract representation of a sys-

tem for a given purpose as a model, following the defini-

tion by [169]. By this, we do not only include structural

representations of the system, but also models focusing

on a certain aspect of the system, such as performance

or variability.

For the causal connection, we follow the definition

by Maes: “A system is said to be causally connected

to its domain if the internal structures and the do-

main they represent are linked in such a way that if

one of them changes, this leads to a corresponding ef-

fect upon the other.“ [134][p.2]. Notably, this does not

require that changes in the runtime model can be di-

rectly mapped to changes in the system, but includes

approaches, where the effects are computed by (more

complex) reasoning (e.g., performance models).

To ease the detection of papers to be included, we

especially emphasised on the fact that at least one of

the following characteristics is approached in the paper:

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 7

W
o

rk
sh

o
p

(1
0

2
)

C
o

n
fe

re
n

ce
(1

2
8

)

Jo
u

rn
al

(2
9

)

B
o

o
k

(1
2

)

0

20

40

60

80

100

120

140

Fig. 2: Distribution of Papers by Venue Types

• The paper addresses runtime models or explicitly

uses the term models@run.time.

• The paper uses self-representation, reflection or self-

modelling.

Whilst the first characteristic can only be met by

papers after 2006, when the term models@run.time was

coined for the first time, the second criteria can be met

by papers published before 2006. As explained earlier,

papers published before 2006 have been included as

well, as they have also contributed in a significant way

to the development of the research topic.

2.3.2 Exclusion Criteria

Approaches on executable models are not to be con-

sidered models@run.time approaches, if they lack the

causal connection to the system, but are the actual

system. The survey includes papers published until De-

cember 2017.

2.4 Overview of all Included Papers

In total, our survey covers 271 papers. As a first in-

teresting observation, the distribution of these papers

among the venue types where they have been pub-

lished shows that models@run.time indeed matured:

most papers are published on conferences as illustrated

in Fig. 2.

Another observation is that more and more work

on models@run.time is not applying models@run.time

for some specific purpose, but addresses fundamental

research questions of models@run.time itself. Figure 3

illustrates that one fifth of all papers captured by this

survey addresses fundamental research questions.

Applied
(217)
80%

Fundamental
(54)
20%

Fig. 3: Applied vs. Fundamental Research

Papers per Year

before 2006 5

2006 10

2007 10

2008 27

2009 32

2010 26

2011 22

2012 22

2013 25

2014 31

2015 26

2016 15

2017 20

5

10 10

27

32

26

22 22

25

31

26

15

20

0

5

10

15

20

25

30

35

before
2006

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Papers per Year

Fig. 4: Publication Trend over the Years

A diagrammatic overview of the number of mod-

els@run.time papers published over the years is illus-

trated in Figure 4. It can be seen that after 2007

the number drastically increased and, except for 2016,

moves between 20 and 32 papers per year. The seem-

ingly declining trend starting after 2014 started to re-

verse this year.

3 A Taxonomy for Research on

Models@run.time

In this section, we provide a general description of our

taxonomy and a detailed description and analysis of

its five major dimensions: applied research, fundamen-

tal research, application domains, intersecting research

areas and supporting research initiatives.

3.1 Conceiving the Taxonomy

A first draft of the taxonomy was identified according

to 7 general questions, which are in line with seven (7)

of the dimensions shown in the taxonomy proposed.

The different nature of the first 4 and last 3 questions,

was already visible at this point in time, as the ques-

8 Nelly Bencomo et al.

tions have been grouped into primary and secondary

questions.

The primary questions used as basis for the taxon-

omy were:

1. What is the level of abstraction at which the run-

time model is conceived?

2. What types of runtime models have been employed?

3. What are the purposes of the runtime model?

4. Which techniques from Model-driven Software De-

velopment have been used?

The secondary questions did not refer to a runtime

model or concrete technique, but were more general:

5. To which application domain does the paper refer

(e.g., automotive software engineering or ambient

assisted living)

6. Which research areas are intersecting with the pa-

per? (e.g., software product lines or model checking)

7. Which research initiatives funded or supported the

conducted work?

The final quality of the results of undertaking a lit-

erature review process highly depends on the taxonomy

applied and therefore the questions above are relevant.

The taxonomy has driven the process and the under-

standing and has also allowed us to record each research

initiative reported. As a prerequisite for the develop-

ment of a taxonomy, an initial set of dimensions cross-

cutting the research area where identified. Based upon

our experience, and after discussions with key members

within the research community and, reviewing papers

from the various data sources described previously, we

derived the following seven (7) dimensions.

• Level of Abstraction

• Types of Used Models

• Purpose of Runtime Models

• Applied Techniques

• Domain of Application

• Intersecting Research Areas

• Related Research Initiatives

After an initial taxonomy was identified, we em-

ployed an iterative process to refine the taxonomy di-

mensions. While reviewing the collected papers with the

aim to assign the papers to the dimensions described

above, another general dimension was identified: the

type of research, which is partitioned into applied and

fundamental research. The first four dimensions are

specific to applied research, while the remaining three

are separate dimensions besides the type of research.

Based on the above, the final taxonomy was derived

and is depicted in Figure 5.

In the following, we discuss in detail each of the

fundamental questions described above to define the

final taxonomy. For each question we discuss the val-

ues of the corresponding dimension. That is, each di-

mension has a given number of possible values used to

characterise the studied models@run.time approaches.

As an example, the dimension Level of Abstraction has

at least the following values Goals/Aims/Requirements,

Architecture, Components and Code. In the following we

briefly discuss these values. For each value we found, we

show in braces how many papers fall into it. Note that

some papers fall into multiple values per dimension; for

example an approach combining goal and architectural

models.

3.2 Applied Research on Models@run.time

In the following, the four dimensions to classify ap-

plied research on models@run.time are discussed in de-

tail, which correspond to the first level in the dimen-

sions shown in Figure 5, i.e., the runtime model’s level

of abstraction, the types of runtime models applied,

the purpose for which the runtime models have been

used and the techniques from model-driven software-

development that have been used.

3.2.1 Level of Abstraction

Abstraction is the neglection of unnecessary detail and

an inherent characteristic of models by definition, as

models are “abstractions of a subject for a given pur-

pose” [169]. Models@run.time are specialized on ab-

stracting the runtime state of a system. This runtime
state can be observed from different levels of abstrac-

tion.

The most coarse-grain view onto a system is its ar-

chitecture, i.e., the top-level components and how they

are connected. Here, details of how the components

work are neglected. Instead, the focus is on how the

top-level components interact and which components

depend on each other. For example, a traffic manage-

ment system which focuses on streets and vehicles.

A finer-grained view is, if individual components are

modelled to capture, how they provide the offered func-

tionality. Here, models of a traffic light’s or a vehicle’s

behaviour serve as an example.

At the lowest level, software can be abstracted on

code level, where each individual statement is consid-

ered important. A typical notation for code-level mod-

els are abstract syntax trees. Among the various pur-

poses to keep and work on abstract syntax trees at

system runtime are well-formed code-composition [118]

and dynamic software updating [148].

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 9

Ta
xo

n
o

m
y

o
f

R
es

ea
rc

h
 o

n

M
o

d
el

s@
ru

n
.t

im
e

Type of Research

Applied Research

Level of
Abstraction

Types of Used
Models

Purpose of
Runtime Models

Applied MDSD
Techniques

Fundamental
Research

Domain of
Application

Intersecting
Research Areas

Related Research
Initiatives

Fig. 5: Taxonomy of Research on Models@run.time

In addition to modelling the system itself, runtime

models are also constructed from some specific perspec-

tives of abstraction, such as the semantics and context

of the system’s domain and external environment, the

status of system w.r.t. its goals and requirements, the

status of the system’s process, and its GUI. These ab-

straction perspectives may cross different levels of ar-

chitecture, component and code.

The level of abstraction is often not applicable to

fundamental approaches of models@run.time, i.e., ap-

proaches focusing on how runtime models should be

represented and processed. This includes in particular

meta-modelling for runtime models, model transforma-

tions (incl. megamodel processing) and techniques to

validate runtime models.

The abstraction levels we found during our study

are listed below. For each value, the number of occur-

rences is given in braces. The list is sorted according to

the number of these occurrences, except for the value

“none”, which is always at the bottom of the list.

• Architecture (134) denotes a runtime model rep-

resenting the current state of the static structure of

the system’s components and connectors. (e.g., [185,

203,219])

• Goals and Requirements (34) denotes a runtime

model representing the state of the goals a system

aims to achieve and the fulfilment of its require-

ments (occurs especially for self-optimizing systems)

(e.g., [152,160,162])

• Component (26) denotes a runtime model per

component, not taking the connections between

components into account (e.g., [179,208,218])

• Semantics/Context (21) denotes the current

state of the system’s domain instead of the system

itself (e.g., [140,157,188])

• Code (16) denotes a runtime model representing

the static (e.g., an abstract syntax tree) or dy-

namic (e.g., a state chart) structure of source code

or code in an intermediate representation (e.g., [99,

107,136])

• Process (13) denotes the current state of a sys-

tem’s dynamic structure, i.e., which components ex-

ist and when or in which order they interact with

each other (e.g., [20,74,84])

• GUI (1) denotes a description of the current state

of a system’s graphical user interface ([60])

• None (35) is used for fundamental approaches,
which do not refer to a specific level of abstraction

A comparative discussion on these findings is given

in section 5.1 for model types, section 5.2 for purposes

and section 5.3 for modelling techniques.

3.2.2 Types of models@run.time

Besides the level of abstraction of runtime models, we

also investigated which types of models were used at

runtime. We identified the following types of causally

connected runtime models in our study. For each value,

the number of occurrences is given in braces. Please

note that some papers presented approaches with more

than one type of runtime model.

• Structural (136) denotes a runtime model cap-

turing the system constituents and their state.

(e.g., [182,196,217])

• Behavioural (72) denotes a runtime model cap-

turing the dynamics of the systems, i.e., what the

10 Nelly Bencomo et al.

system can or will do based on its current state.

(e.g., [139,177,214])

• Quality (32) denotes models describing the cur-

rent values of quality properties (i.e., non-functional

properties) of a system or its constituents (e.g., [121,

187,216])

• Goal (16) denotes a runtime model capturing the

current state of the system’s goals (e.g., if they are

currently fulfilled or violated) (e.g., [192,205,212])

• Variability (16) denotes a runtime model cap-

turing possible variants of the system or it’s con-

stituents and which variant is currently in use

(e.g., [131,141,147])

• Requirement (8) denotes models representing the

current set of requirements a system has to meet

(e.g., [58,64,68])

• Design (7) denotes design-time decisions, which

are continuously synchronized with an evolving

running system (used, e.g, for eternal system ap-

proaches) (e.g., [186,189,206])

• Feedback loop (6) denotes models describing one

or more feedback loops, their connections and cur-

rent state (i.e., are a special type of behavioural

model) (e.g., [127,184,200])

• Physical (6) denotes models describing the dy-

namics and current state of physical (i.e., contin-

uous) phenomena (e.g., in Simulink) (e.g., [109,114,

116])

• Metamodel (3) denotes runtime models that are

used to specify how the system or its environment

are modelled [124,166,180]

• None (24) some fundamental approaches didn’t fo-

cus on a particular type of runtime model.

A comparative discussion on these findings is given

in section 5.1 for abstraction levels, section 5.4 for pur-

poses and section 5.5 for modelling techniques.

3.2.3 Purposes

An important aspect of applied research on models-

@run.time is the purpose for which runtime models are

actually used. We, hence, investigated our body of lit-

erature in this regard and found the following purposes

for using models@run.time.

• Self-adaptation (124) denotes the application

of runtime models to build and/or operate self-

adaptive systems. (e.g., [1,3,63])

• Assurance (42) denotes the application of runtime

models to assure selected non-functional properties

of a running system. (e.g., [9,16,96])

• Development (35) denotes the combination of

runtime models with models from the development

process to enable the usage of design-time knowl-

edge at runtime. (e.g., [2,4,10])

• Evolution (18) denotes the application of runtime

models to ease or enable the evolution of a software

product. (e.g., [8,17,50])

• Self-optimization and -organization (17) de-

notes the application of runtime models to build

and/or operate self-optimizing or -organizing sys-

tems. (e.g., [71,103,178])

• Interoperability (9) denotes the application of

runtime models to bridge architectural mismatches

between individual systems. (e.g., [31,38,45])

• Fault Tolerance (8) denotes the application of

runtime models to increase the fault tolerance of

systems. (e.g., [6,83,113])

• Prediction (6) denotes the application of runtime

models to predict the behaviour of a system under

observation. (e.g., [70,105,125])

• None (20) denotes approaches, which belong to

fundamental research, where no particular purpose

can be identified.

A comparative discussion on these findings is given

in section 5.2 for abstraction levels, section 5.4 for

model types and section 5.6 for modelling techniques.

3.2.4 Techniques

The forth dimension denotes the model-driven tech-

niques used in our body of literature on mod-

els@run.time. The intention of having this dimension is

to enable an analysis of which techniques from model-

driven software development, which have traditionally

been designed to be used at design time, are now trans-

ferred to be used at runtime. The following list summa-

rizes the techniques that we found are now applied at

runtime:

• Model-transformation (56) denotes all tech-

niques which realize a transformation of one model

into another. (e.g., [43,42,59])

• Analysis (44) denotes techniques to gain novel in-

sights from models. For example, to check their con-

sistency. (e.g., [54,110,156])

• Reflection (43) denotes techniques used to realize

a causal connection between a subject and its model.

(e.g., [18,19,81])

• Reasoning (34) denotes techniques to reason

about multiple models. For example, to enable self-

adaptation and optimization. (e.g., [23,47,49])

• Monitoring (27) denotes techniques to observe a

running system. (e.g., [126,138,171])

• Variability Modelling (26) denotes techniques to

model variants of a system. (e.g., [7,183,210])

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 11

• Machine Learning (13) denotes techniques to

give “computers the ability to learn without being

explicitly programmed” [170]. (e.g., [29,94,102])

• Requirements Engineering (10) denotes tech-

niques to capture and assess the requirements of a

system. (e.g., [161,191,198])

• Model Comparison (7) denotes techniques com-

paring models with each other. (e.g., [142,143,151])

• Workflows (7) denotes techniques to model and

execute complex processes. (e.g., [117,165,168])

• None (34) denotes approaches, which belong to

fundamental research, where no particular tech-

nique can be identified.

A comparative discussion on these findings is given

in section 5.3 for abstraction levels, section 5.5 for

model types and 5.6 for purposes.

3.3 Fundamental Research on Models@run.time

Besides approaches which make use of runtime mod-

els, we identified 54 approaches, which aim at improv-

ing models@run.time as such fundamentally, i.e., funda-

mental approaches for models@run.time. For such ap-

proaches, most often the dimensions of applied research

for models@run.time are not applicable. For example,

an approach focusing on extending the expressiveness

of runtime models, e.g., to capture a history of how

each value changed over time, does not have a particu-

lar purpose for which the runtime model is applied. In-

stead, applied approaches can make use of fundamental

approaches.

Our study revealed four main types of fundamental

research on models@run.time which are explained in

the following:

• Characteristics (27) of runtime models, i.e., ap-

proaches extending the expressiveness of runtime

models to capture, e.g., temporal, continuous or spa-

tial characteristics. (e.g., [72,78,87])

• Processing Runtime Models (11). Approaches

investigating novel ways to utilize runtime models,

e.g., approaches to model workflows of individual

processing steps of a runtime model. (e.g., [129,130,

202])

• Causal connection (9). Approaches trying to im-

prove the way a system and its model are kept

in synchronisation, e.g., approaches introducing the

concept of transactions to the causal connection.

(e.g., [95,158,159])

• Distributed Models@run.time (7). Approaches

investigating the effects and new challenges when

multiple systems, each having their own runtime

model, have to work together. (e.g., [37,62,204])

An interesting observation is that most fundamen-

tal work focused on novel characteristics for runtime

models. But, the remaining three types of fundamen-

tal research are likely to be addressed more heavily in

future work, due to the effects of the Internet of Things.

3.4 Application Domains

Alongside the type of research, we also classified our

body of literature w.r.t. the domain to which the ap-

proach has been applied. Typically the application do-

main denotes the origin of the case studies used to eval-

uate the respective approach. The following list summa-

rizes all domains to which models@run.time has been

applied so far according to our body of literature.

• Enterprise Software (23), e.g., enterprise re-

source planning (ERP) or customer relationship

management (CRM) software (e.g., [33]).

• Cloud (17) systems, especially Software as a Ser-

vice (SaaS) (e.g., [56]).

• Energy-efficiency (10) of software systems like,

e.g., optimization approaches trading performance

and energy consumption (e.g., [101]).

• Home Automation Systems (10), e.g., ap-

proaches for the Smart Home (e.g., [128]).

• Communication Technology (8), i.e., telecom-

munication networks (e.g., [138]).

• Cyber-Physical Systems (8), i.e., networked em-

bedded systems (e.g., [42]).

• Monitoring Systems (7), i.e., approaches to in-

telligently observe the state of a running physical or

virtual system (e.g., [11]).

• eCommerce Systems (7), e.g., sales platforms

and webshops (e.g., [93]).

• Embedded Systems (6), i.e., single devices,

which are embedded into a physical environment

and react to changes in it (e.g., [109]).

• Healthcare (6), e.g., approaches to monitor pa-

tient data (e.g., [195]).

• Robotics (6), e.g., approaches to reason about the

collaboration of multiple robots (e.g., [220]).

• Games (5), e.g., approaches to improve the rea-

soning about strategies of non-player characters

(e.g., [215]).

• Traffic Advising (5), i.e., routing/navigation soft-

ware (e.g., [16]).

• Crisis Management (5), e.g., flood warning sys-

tems (e.g., [20]).

• Ambient Assisted Living (AAL) (4), i.e., sys-

tems designed with the aim to help elderly people

or people with special needs in their everyday life

(e.g., [153]).

12 Nelly Bencomo et al.

• Internet of Things (4), i.e., approaches to cap-

ture the network of connected devices, typically

with the aim to integrate previously unknown sys-

tem with each other (e.g., [137]).

• Travel Advising (4), i.e., software suggesting holi-

day packages, including flights, hotel, rental car and

activities (e.g., [75]).

• IT Management Systems (4), i.e., systems used

to manage all electronic devices in a building

(e.g., [162]).

• Database Management Systems (3), i.e., ap-

proaches to reason about how (data format) and

where to store data (e.g., [70]).

• Office Management Systems (3), i.e., systems

used to manage all software applications of a com-

pany (e.g., [149]).

• Mobile Software (2), i.e., software applications

running on mobile devices, which need to react to

changes in their environment (e.g., [89]).

• eGovernment (1), i.e., software systems enabling

citizens to interact with governmental administra-

tion over the Internet [112].

• Java Virtual Machine (1), i.e., approaches to im-

prove garbage collection [115].

• Scientific Computing (1), e.g., simulations of cli-

mate models [13].

• Social Networks (1), i.e., approaches to analyze

trends and to identify hot topics based on what peo-

ple share in social networks [193].

• None (126), i.e., no case study has been conducted.

A surprising observation is that most approaches

have been evaluated in the domain of enterprise soft-

ware. Additionally, it can be observed that the list of

domains where models@run.time has been applied, is

very long (25 domains), showing the general applicabil-

ity of models@run.time.

3.5 Intersecting Research Areas

Whilst the application domain discussed in the previ-

ous subsection focuses on the domain in which case

studies have been conducted to evaluate the respective

approach, the dimension of intersecting research areas

denotes which other research disciplines are addressed.

In other words, the intersecting research areas denote

areas to which the approach is contributing instead of

just using it as a domain for evaluation.

In the following, we list all interfacing research areas

we found by classifying our body of literature.

• Self-adaptive Software (78)

• Model-driven Software Development (37)

• Software Architecture (36)

• Distributed Systems (21)

• Formal Methods (13)

• Cloud Computing (12)

• Resource Management (12)

• Software Evolution (9)

• Security (9)

• Requirements Engineering (9)

• Fault Tolerance (8)

• Programming Languages (7)

• Software Product Lines (7)

• Autonomic Computing (5)

• Aspect-oriented Programming (5)

• Interoperability (5)

• Database Engineering (4)

• Multi-agent Systems (4)

• Performance Engineering (4)

• Business Process Engineering (3)

• Embedded Systems (3)

• Human-Computer Interaction (3)

• Optimization (3)

• Safety Engineering (3)

• Social Sciences (2)

• None (24)

Interestingly, the list of interfacing research areas is

long (25). This emphasizes the high degree of interdisci-

plinarity of models@run.time as a research area. There

is a strong overlap with the research areas self-adaptive

systems and model-driven software development, which

is not surprising as models@run.time originated from

these two.

3.6 Supporting Research Initiatives

Finally, we investigated the research initiatives in which

work on models@run.time has been conducted. We fo-

cused our search on research projects. In the follow-

ing we list all research projects we found, grouped by

their origin of funding. For each funding organization,

we provide the number of identified research projects

in braces.

• European Union (19)

– NeCS: European Network for Cyber-security.

EU H2020 (EU.1.3.1)

– ALIVE: Coordination, Organisation and Model

Driven Approaches for Dynamic,Flexible, Ro-

bust Software and Services Engineering. EU

FP7-ICT

– CHOReOS: Large Scale Choreographies for the

Future Internet. EU FP7-ICT

– CONNECT: Emergent Connectors for Eternal

Software Intensive Systems. EU FP7-ICT

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 13

– DiVA: Dynamic Variability in Complex, Adap-

tive Systems. EU FP7-ICT

– DIVERSIFY: Ecology-inspired software diver-

sity for distributed adaptation in CAS. EU FP7-

ICT

– EINS: Network of Excellence in Internet Sci-

ence. EU FP7-ICT

– MASSIF: MAnagement of Security information

and events in Service InFrastructures. EU FP7-

ICT

– MODAClouds: MOdel-Driven Approach for

design and execution of applications on multi-

ple Clouds. EU FP7-ICT

– Lucretius: Foundations for Software Evolution.

ERC Advanced Investigor Grant.

– PaaSage: Model Based Cloud Platform Upper-

ware. EU FP7-ICT

– PERSIST: PERsonal Self-Improving SmarT

spaces. EU FP7-ICT

– RECOGNITION: Relevance and cognition for

self-awareness in a content-centric Internet. EU

FP7-ICT

– REMICS: REuse and Migration of legacy ap-

plications to Interoperable Cloud Services. EU

FP7-ICT

– S-Cube: Software Services and Systems Net-

work. EU FP7-ICT

– SeSaMo: Security and Safety Modelling. EU

FP7-JTI

– SMSCom: Self-Managing Situated Computing.

EU FP7-IDEAS-ERC

– MODELPLEX: Modelling solution for com-

plex software systems. EU FP6-IST

– MUSIC: Self-adapting applications for mobile

users in ubiquitous Computing Environments.

EU FP6-IST

• German Research Foundation (DFG) (4)

– CRC 912 - HAEC: Highly Adaptive En-

ergy Efficient Computing. DFG collaborative re-

search centre (CRC)

– RTG 1907 - RoSI: Role-based Software Infras-

tructures for continuous-context-sensitive Sys-

tems. DFG research training group (RTG)

– SPP 1593: Design For Future - Managed Soft-

ware Evolution. DFG priority programme (SPP)

– RAMSES: Reflective and Adaptive Middle-

ware for Software Evolution of Non-stopping In-

formation Systems.

• German Federal Ministry of Education and

Research (BMBF) (4)

– CoolSoftware. BMBF cluster of excellence

– SysPlace: EcoSystem of Displays.

– OptimAAL: Kompetenzplattform fr die

Einfhrung und Entwicklung von AAL-Lsungen.

– SPES2020: Software Plattform Embedded Sys-

tems.

• France National Research Agency (ANR) (2)

– FAROS: Composition Environment for Build-

ing Reliable Service-oriented Architectures.

– SALTY: Self-Adaptive very Large disTributed

sYstems

• French Institute for Research in Computer

Science and Automation (Inria) (1)

– Project M@TURE: Models @ run Time for

self-adaptive pervasive systems: enabling User-

in-the-loop, REquirement-awareness, and inter-

operability in ad hoc settings. Inria/Brazil Inter-

national Scientific Cooperation Program. (year

2014)

– Project M@TURE 2 Inria/Brazil Interna-

tional Scientific Cooperation Program. (year

2015)

• Netherlands Organisation for Applied Scien-

tific Research (TNO) funded projects (2)

– AMSN: Adaptive Multi-Sensor Networks re-

search program.

– Trader: Reliability by design.

• iMinds funded projects (2)

– D-BASE: Decentralized support for Business

Processes in Application Services.

– DMS2: Decentralized Data Management and

Migration of SaaS.

• UK Engineering and Physical Sciences Re-

search Council (EPSRC) funded projects (2)

– DAASE: Dynamic Adaptive Automated Soft-

ware Engineering.

– LSC-ITS: Large Scale Complex IT System.

• Projects funded by other grants (9)

– ARM: Adaptive Resource Management project.

Funded by University of Milano-Bicocca.

– CAPUCINE: Context-aware Service-oriented

Product Lines. Funded by Fonds Unique Inter-

ministeriel (France).

– CARAMELOS: Collaborative Action Re-

search on Agile Methodologies for Enterprises in

the Little, adhering to the Open Source prin-

ciple. Funded by the Vlaamse Interuniversitaire

Raad (Belgium).

– GenData 2020: Data-Driven Genomic Com-

puting. Funded by the Ministry of Education,

University and Research (Italy).

– GIOCOSO: GIOchi pediatrici per la COmuni-

cazione e la SOcializzazione (Regione Lombar-

dia)

14 Nelly Bencomo et al.

– MAIS: Multichannel Adaptive Information Sys-

tems. Funded by Politecnico di Milano (Italy)

– MEDICAL: Embedded middleware for sensor

and application integration for in-home services.

Finded by Minalogic.

– MORISIA: Models at Runtime for Self-

Adaptive Software. Funded by HPI.

– Value@Cloud: Model-Driven Incremental De-

velopment of Cloud Services Oriented to the

Customers’ Value. Funded by CICYT.

In conclusion, there has been a large variety of re-

search projects and funding agencies supporting work

on models@run.time, but (except for some such as

DiVA, MORISIA, and M@TURE) a minority explic-

itly focus on models@run.time. The above shows that

models@run.time has become a underlying technology.

However, the small number of projects explicitly fo-

cusing on models@run.time hinders its further devel-

opment w.r.t. the fundamental dimension.

4 Threats to Validity

As in any survey, there are several threats to the validity

of our study. In the following, we discuss the different

aspects of these threats.

Research questions The research questions defined

might not provide complete coverage of the current re-

search field. To address this threat, we had several dis-

cussions, collected initial feedback from the community

and followed a thorough reflection process to validate

the questions. The research questions were in line with

the dimensions of the taxonomy identified and refined.

Set of dimensions An initial set of dimensions crosscut-

ting the research area of models@runtime were identi-

fied. We cannot guarantee that all relevant dimensions

were identified. It is possible that other dimensions were

missed or the current dimensions were biased. Also, the

initial draft of the taxonomy was based on the experi-

ence of the authors, although collected by a constant

exchange with the community over several years, could

have steered the revisions of the taxonomy in a re-

stricted way. In consequence, possibly not all classes

were identified due to the restricted set of initial di-

mensions. We mitigated this characteristic threat to the

extent possible by receiving early feedback and with

discussions with key members within the research com-

munity. Also, we underwent an initial review of seminal

papers from the various data sources following a thor-

ough reflection process that ended in a refined set of

dimensions.

Publication bias As in any study, we show no guaran-

tee that all relevant studies were selected. It is possible

that some relevant studies were not chosen throughout

the search process. However, we think we have miti-

gated this threat. We decided against a keyword-based

search to gather an initial set of papers subject to re-

view. Instead, we initially targeted several relevant and

well-known conferences, workshops and journals as the

initial data source. Although, using this approach, it

is likely to find more relevant papers compared to the

keyword-based search, there is still the possibility to

miss relevant papers, which have been published in con-

ferences, workshops, journals or books, which were not

included as a data source. The latter was mitigated dou-

ble checking with a thorough search using the ACM

digital library search services using specific keywords

(run-time model, runtime model and models@runtime)

to allow the search through a big spectrum of publica-

tions (including IEEE publications and others).

Search conducted To mitigate the bias included in any

survey when performing the search, we established a

systematic two-phase search. The first phase was based

on an initial list of relevant venues followed by searches

performed in a digital database (using specific mean-

ingful terms). The second phase of search came up with

other publications that were not considered initially as

they were not published in the the traditional venues

where models@run.time and software engineering pub-

lications are usually hold, but are known in the com-

munity. The result is that our survey covers publication

venues from different domains, too.

Data extraction During the extraction process, the

analysis was conducted based on our judgement. How-

ever, despite double checking, some studies could have

been classified incorrectly. In order to mitigate this

threat, the classification process was performed by

more than one researcher. Also, undergraduate students

helped during the process by providing us with scripts

to support automation of the process in an open-source

toolkit 3 and therefore avoid pitfalls.

5 Cross-Dimensional Analysis of the Taxonomy

In the following, we describe a cross-dimensional anal-

ysis of the work that has been conducted for all six

combinations of the four applied research dimensions,

i.e., the level of abstraction, the type of runtime model,

the purpose of using a runtime model and the modelling

3 https://github.com/sebastiangoetz/slr-toolkit

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 15

12

13

96 10

13

fe
ed

ba
ck

 lo
op

 (1
)

m
et

am
od

el
 (0

)

go
al

 (1
4)

de
si

gn
 (6

)

re
qu

ire
m

en
t (

6)

be
ha

vi
or

 (4
5)

va
ria

bi
lit

y
(1

0)

ph
ys

ic
al

 (4
)

st
ru

ct
ur

e
(1

28
)

qu
al

ity
 (2

3)

component (26)

process (12)

code (16)

context (20)

gui (1)

architecture (130)

goals (32)

Type of Runtime Model

Le
ve

l o
f A

bs
tra

ct
io

n

Fig. 6: Level of Abstraction vs. Type of Runtime Model

17 20 61 11

25

as
su

ra
nc

e
(3

8)

de
ve

lo
pm

en
t (

28
)

fa
ul

t-t
ol

er
an

ce
 (7

)

pr
ed

ic
tio

n
(6

)

se
lf-

ad
ap

ta
tio

n
(1

13
)

in
te

r-
op

er
ab

ilit
y

(7
)

ev
ol

ut
io

n
(1

5)

se
lf-

op
tim

iz
at

io
n

an
d

or
ga

ni
za

tio
n

(1
7)

component (26)

process (10)

code (16)

context (20)

gui (1)

architecture (126)

goals (32)

Applied Model-driven Technique

Le
ve

l o
f A

bs
tra

ct
io

n

Fig. 7: Level of Abstraction vs. Purpose of Runtime Model

16 Nelly Bencomo et al.

25 30 18 16 10 14

10

re
fle

ct
io

n
(4

1)

m
od

el
-

tra
ns

fo
rm

at
io

n
(4

8)

w
or

kf
lo

w
 (4

)

re
as

on
in

g
(3

2)

va
ria

bi
lit

y-
m

od
el

lin
g

(2
2)

m
ac

hi
ne

-
le

ar
ni

ng
 (1

4)

m
on

ito
rin

g
(2

2)

an
al

ys
is

 (3
0)

re
qe

ng
 (1

0)

m
od

el
-

co
m

pa
ris

on
 (4

)

component (26)

process (11)

code (16)

context (18)

gui (1)

architecture (123)

goals (32)

Applied Model-driven Technique

Le
ve

l o
f A

bs
tra

ct
io

n

Fig. 8: Level of Abstraction vs. Applied Model-driven Techniques

13

14 20

15 18 56 11 12

10

as
su

ra
nc

e
(1

8)

de
ve

lo
pm

en
t (

11
)

fa
ul

t-t
ol

er
an

ce
 (0

)

pr
ed

ic
tio

n
(0

)

se
lf-

ad
ap

ta
tio

n
(5

1)

in
te

r-
op

er
ab

ilit
y

(2
)

ev
ol

ut
io

n
(5

)

se
lf-

op
tim

iz
at

io
n

an
d

or
ga

ni
za

tio
n

(3
)

feedback loop (6)

metamodel (3)

goal (14)

design (7)

requirement (6)

behavior (44)

variability (10)

physical (4)

structure (125)

quality (23)

Purpose of Runtime Model

Ty
pe

 o
f R

un
tim

e
M

od
el

Fig. 9: Type of Runtime Model vs. Purpose of the Runtime Model

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 17

12

27 35 19 13 12

re
fle

ct
io

n
(9

)

m
od

el
-

tra
ns

fo
rm

at
io

n
(1

3)

w
or

kf
lo

w
 (4

)

re
as

on
in

g
(1

1)

va
ria

bi
lit

y-
m

od
el

lin
g

(1
3)

m
ac

hi
ne

-
le

ar
ni

ng
 (2

)

m
on

ito
rin

g
(8

)

an
al

ys
is

 (1
3)

re
qu

ire
m

en
ts

-
en

gi
ne

er
in

g
(1

0)

m
od

el
-

co
m

pa
ris

on
 (0

)

feedback loop (1)

metamodel (3)

goal (14)

design (7)

requirement (4)

behavior (44)

variability (10)

physical (3)

structure (126)

quality (21)

Applied Model-driven Technique

Ty
pe

 o
f R

un
tim

e
M

od
el

Fig. 10: Type of Runtime Model vs. Applied Model-driven Technique

17

11 20

21

14

17

as
su

ra
nc

e
(1

6)

de
ve

lo
pm

en
t (

18
)

fa
ul

t-t
ol

er
an

ce
 (5

)

pr
ed

ic
tio

n
(6

)

se
lf-

ad
ap

ta
tio

n
(8

4)

in
te

r-
op

er
ab

ilit
y

(9
)

ev
ol

ut
io

n
(1

7)

se
lf-

op
tim

iz
at

io
n

an
d

or
ga

ni
za

tio
n

(1
2)

model-
comparison (4)

reflection (41)
model-
trans-

formation (50)
workflow (5)

reasoning (32)

variability-
modelling (22)

machine-
learning (13)

monitoring (23)

analysis (30)

reqeng (10)

Purpose of Runtime Model

Ap
pl

ie
d

M
od

el
-d

riv
en

 T
ec

hn
iq

ue

Fig. 11: Applied Model-driven Technique vs. Purpose of Runtime Model

18 Nelly Bencomo et al.

techniques transferred to runtime. The aim of this anal-

ysis is to identify gaps in the research landscape of mod-

els@run.time. The analysis highlights value pairs, which

either have been extensively addressed (e.g., the use of

structural models for self-adaptation) or have not been

addressed at all (e.g., variability models for assurance).

For this, we illustrate and analyse for each combina-

tion the number of approaches we have found during

the survey.

The figures in the following sections list the values of

the two dimensions under comparison as a bubble ma-

trix chart. In all figures for each dimension the value

none has been omitted for clarity. For each value, a

number is provided in braces before its name. This

number denotes how many papers have been classi-

fied with this value and any value of the other dimen-

sion. Notably, this excludes papers which have not been

classified in the other dimension (i.e., are classified as

“none”). Accordingly, the numbers shown here can be

smaller than those shown in Sections 3.2. For example,

in Figure 6, the value “goals” is accounted as 32, while

in Section 3.2.1 it is accounted as 34. The missing 2 pa-

pers are of fundamental nature, focus on the abstraction

level of goals and requirements, but do not focus on any

particular type of runtime model. Each bubble in the

bubble matrix charts depicts the number of approaches,

which have been classified w.r.t. the two dimensions at

this intersection. This number is visualized by differ-

ently sized circles. For the combination with the most

approaches, the circle spans the full size of the cell. For

other combinations the size is scaled w.r.t. this refer-

ence number. For each combination with at least 10

approaches, the number is shown additionally.

In this section, we draw conclusions based on the

data we have found, but do not, yet, derive challenges.

Based on this section, the resulting challenges will be

explained in the succeeding section.

5.1 Comparing the Level of Abstraction and Type of

Runtime Model

Figure 6 shows that the most common combination

is the use of structural runtime models at the archi-

tectural level (96 approaches). All remaining combina-

tions have less than 5 approaches. Both categories are

also clearly the most dominant in their respective di-

mension. However, besides this clear difference, further

conclusions can be drawn from Figure 6. Namely, and

unsurprisingly, most work has been done on higher lev-

els of abstraction.

Notably, meta-models are only used in fundamental

approaches [124,166,180]. As such approaches typically

do not focus on a particular abstraction level, no ap-

proach can be found at any level of abstraction, which

makes use of meta-models.

The sparsity of combinations in Figure 6 indicates

that many types of runtime models have only been in-

vestigated for few levels of abstraction. For example, it

seems that the use of variability models is still to be

investigated on all levels except for the goal and archi-

tectural level. On the other hand, some runtime model

types, like behaviour and quality models have been in-

vestigated at almost all levels of abstraction.

Finally, the graphical user interface (GUI) is an in-

teresting level of abstraction. In our study, we only

found one approach [60] at this level of abstraction.

The approach uses structural runtime models. Quality,

goal and requirement models could be promising fur-

ther types of runtime models to be investigated in this

context.

5.2 Comparing the Level of Abstraction and Purpose

of Runtime Model

Figure 7 shows how models@run.time in different Levels

of Abstraction are used for different Purposes.

From Figure 7, it is evident to see that the combi-

nation of architecture and self-adaptation is dominant.

Although this is consistent with the dominant positions

of the two concepts in their own dimensions, it still indi-

cates that an architecture-level runtime model does pro-

vide strong support for self-adaptation. In fact, modern

software systems usually provide a flexible architecture

in order to be able to adapt to the ever-changing en-

vironment at runtime. Models@run.time is a natural

choice to enhance such architecture level adaptation

and provide the necessary semantic basis for the system

to achieve self-adaptation. A runtime model at a high

abstraction level with a global view appears to be more

useful for self-adaptation. There are many approaches

using a higher-level goal-based runtime model for self-

adaptation [23,29,49]. On the contrary, there are rel-

atively few self-adaptation approaches using runtime

models on component or source code level. Actually,

we expect to see more work using context-level models

at runtime to support self-adaptation, because it is still

in a high abstraction level and the context changes are

a main driving force behind self-adaptation.

Besides self-adaptation, there is also a significant

number of approaches using architecture-level mod-

els@run.time on development and assurance. Assurance

used to be the main purpose of using static architecture

models [58,81,97,145]. By analysis and validation of the

system architecture, designers can have an early view

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 19

on the high-level properties before starting the devel-

opment. It is not a surprise to see there are still many

approaches using runtime information carried by an ar-

chitecture model to support high-level assurance. How-

ever, what is interesting to see is that by connecting

an architecture model with the running system, more

researchers seek for a full loop self-adaptation rather

than only analysis and assurance of the system. An ar-

chitectural runtime model is either used for developers

as a reference [156,173], or by the program itself as a

context at runtime [186].

The usage of goal-level runtime models is also

concentrated on self-adaptation [23,29,49]. Mod-

els@run.time at the levels of context, component and

code are used as well [15,66,73]. In the context level, be-

sides self-adaptation, we expected more approaches on

self-optimisation and prediction. There are approaches

attempting to use component and code level mod-

els@run.time for almost every purpose, but so far, there

is not a dominant purpose for either level revealing the

real strength of models@runtime.

On the level of processes and GUIs, there are only

few approaches using models@run.time, and only for

few selected purposes.

5.3 Comparing the Level of Abstraction and Applied

Model-driven Techniques

In Figure 8, the Level of Abstraction is mapped onto

Applied Model-driven Techniques.

Specifically, Figure 8 shows that a big part of the re-

search efforts have been towards the application of ap-

plied model-driven techniques at the abstraction level

of architecture. Specifically, at this level of abstrac-

tion, the most popular model-driven techniques are

model-transformations [55,59,121,182,215,219] and re-

flection [105,125] followed by reasoning [15] and vari-

ability modelling [141] as well as analysis [177]. Simi-

larly, it is also shown that there have been efforts in

the application of model-driven techniques at the ab-

straction level of components. We concluded that it is,

up to a point, related to the work performed at the

architecture level of abstraction.

There is a list of natural pairs which are visible in

Figure 8, such as the application of workflow-based

techniques [144,165] at the abstraction level of pro-

cesses. The same applies to both, the pair of goal-based

abstraction level with requirements engineering tech-

niques [212] and goal-based abstraction level with rea-

soning techniques [220,24,49,163].

The model-driven techniques reflection [18,64],

model-transformations [112], monitoring [71] and anal-

ysis [65] have been virtually applied to all levels of ab-

straction with the exception of the level of abstraction

dictated by the GUI, which has been less active. In fact,

we only found one paper, where it has been approached

with model-transformation techniques [60].

The model-driven techniques reasoning [47,61,163]

and variability modeling [131,147,53,33] have been ap-

plied to different levels of abstraction. However, there

is no representation at the level of processes or GUIs.

5.4 Comparing the Type of Runtime Model and their

Purpose

In Figure 9, the Type of Runtime Model is mapped onto

the Purpose of the Runtime Model dimension.

Among the surveyed approaches, the main driver

behind models@run.time research appears to be the us-

age of structural models for self-adaptation [80,86,92].

A structural runtime model supports self-adaptation

with a high-level, holistic view of the running system,

so that the self-adaptation engines can use the model

to analyse the runtime phenomenon and enact the sys-

tem directly. A related purpose is assurance [97], which

involves mainly the analysis part of self-adaptation. In

addition, structural models are also widely used in de-

velopment and evolution [87,99].

Behavioural runtime models are mainly used for

self-adaptation [144] and assurance [145], exposing the

behaviour of the running system to the adaptation en-

gines based on runtime models. Goal models are also

manipulated at runtime, providing a high-level refer-

ence for self-adaptation [152]. Although self-adaptation

is often built on top of control theory, there are not

many approaches directly using a feedback loop to con-

struct runtime models [200]. Instead, they rather use

a feedback loop on top of a structure or behaviour

model [185].

Quality models are widely used at design and de-

velopment time for assurance and fault-tolerance pur-

poses, but they are not widely used as a way to con-

struct models@run.time. A similar conclusion can be

drawn for variability models. Although we admit that

there is an abstraction gap between the system’s run-

time phenomenon and the quality or variability model,

we still expect more approaches investigating the usage

of these two types of models at runtime.

5.5 Comparing the Type of Runtime Model and the

Applied Model-driven Techniques

Figure 10 depicts which model-driven techniques have

been transferred or applied to which types of runtime

20 Nelly Bencomo et al.

models. Interestingly, in this comparison, the model-

driven techniques can be classified into major, middle

and minor techniques in terms of the numbers of ap-

proaches we found.

Not surprisingly, the major techniques are model

transformations and reflection. Especially, reflection is

an expected technique, as it is part of the definition

of models@run.time. Model transformations are a nat-

ural prerequisite for models@run.time in order to con-

nect the runtime model and the system it reflects. Mid-

dle techniques are analysis, reasoning, monitoring and

variability modelling. This, again, is an expected re-

sult, as all four techniques are natural means to achieve

the different purposes for which runtime models are

used (cmp. Section 5.6). Minor techniques are model

comparison, machine learning, requirements engineer-

ing and workflow modelling.

An analogous categorization can be done for the

types of models. Major types are structural and be-

havioural models. Middle types are quality and goal

models and the remaining ones are minor types.

It is not surprising that the major techniques are

applied to major types of models. However, an inter-

esting exception is that model transformation and re-

flection, as major techniques, are applied in a relatively

lower level on behaviour models, comparing to struc-

ture models. By contrast, analysis is the most popular

technique on behaviour model. This reveals the com-

plexity of behaviour models at runtime, and as a result

the current research is more in a stage of directly ob-

serving runtime behaviours rather than utilizing them

together with other models.

An interesting observation from Figure 10 is the lack

of techniques applied to runtime physical models, meta-

models, feedback loops and requirement models.

5.6 Comparing Applied Model-driven Techniques and

the Purpose of Runtime Models

Figure 11 depicts a comparison between Applied Model-

driven Techniques vs. Purpose of Runtime Model.

Among the surveyed applied model-driven tech-

niques, self-adaptation [15,6,29] as a purpose ap-

pears as the main driver. Further, it has had a

strong emphasis on the use of the techniques model-

transformation [59], reasoning [63], and reflection [79,

13] followed by variability modelling [52], requirements

engineering techniques, analysis [84], and monitor-

ing [85,113]. However, even if smaller, efforts have been

made using techniques such as model comparison [11,

142], data mining, and machine learning [31,78,82].

Techniques such as model-transformation have been ap-

plied for different purposes apart from self-adaptation

such as development, evolution and interoperability.

Unsurprisingly, the technique reflection has been

used in all the surveyed purposes. It is unsurprisingly

as reflection is a technique that supports the implemen-

tation of models@run.time at any level of abstraction.

An observation from Figure 11 is the small use

of model-driven techniques for prediction and fault-

tolerance followed by evolution and interoperability.

The research efforts, in terms of the application of

model-driven techniques, are related to the purposes

self-adaptation, assurance development, followed by

self-optimization and interoperability.

6 Kiviat Graphs for Cross-Dimensional

Analysis

In the following, we show Kiviat graphs for each com-

bination of the four dimensions of applied research

in models@run.time. In contrast to the bubble matrix

charts shown in Section 5, here we show all 12 combina-

tions. The reason is that, in contrast to Kiviat graphs,

for bubble matrix charts, the exchange of the two axis

does not provide another perspective worth investiga-

tion.

Figures 12a, 12b, and 12c compare the levels of

abstraction with the three other dimensions. The dom-

inance of the worked done at the architectural abstrac-

tion level is clearly visible across all three figures. Also,

Figures 12a and 12b show that for the dimensions ab-

straction level, type of model and purpose, the work has

mainly focused on structural models at architectural

level to build self-adaptive systems. Such a clear focus

on a single combination is not visible in Figure 12c.

Although again the architectural level stands out as

being most dominant, many techniques have been in-

vestigated at the architectural level.

Figures 13a, 13b, 13c compare the types of run-

time models with the other dimensions. Here, the dom-

inance of structural runtime models stands out. Again,

the comparison at the level of abstraction and purpose

shows a very strong focus on the architectural level and

self-adaptation. Again, the comparison to the applied

model-driven techniques reveals that several techniques

have been investigated, although the focus is still on

structural models.

Figures 14a, 14b, 14c compare the purpose of us-

ing runtime models with the other dimensions. Here,

the dominance of using runtime models for self-adaptive

systems stands out. But, interestingly, the focus is a bit

more diverse compared to the previous Kiviat graphs.

For the comparison with the level of abstraction, be-

sides the architectural level also the goal level can be

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 21

0

20

40

60

80

100
feedback loop

metamodel

goal

design

requirement

behavior

variability

physical

structure

quality

Level of Abstraction by Type of Model

component

process

code

context

gui

architecture

goals

(a) Level of Abstraction vs. Type of Model

0

10

20

30

40

50

60

70
assurance

development

fault-tolerance

prediction

self-adaptation

interoperability

evolution

self-optimization and
organization

Level of Abstraction by Purpose

component

process

code

context

gui

architecture

goals

(b) Level of Abstraction vs. Purpose

0

5

10

15

20

25

30
reflection

model-transformation

workflow

reasoning

variability-modelling

machinelearning

monitoring

analysis

reqeng

model-comparison

Level of Abstraction by Applied MDSD Technique

component

process

code

context

gui

architecture

goals

(c) Level of Abstraction vs. Technique

Fig. 12: Kiviat Graphs for Level of Abstraction

identified as having been investigated. For the compar-

ison with model types, besides structural models, goal

and behavioural models protrude. The comparison with

the applied model-driven techniques reveals that be-

sides the fact that many model-driven approaches have

been investigated for self-adaptive systems, the same

holds in reduced form for assurance, especially with re-

spect to analysis techniques.

Finally, Figures 15a, 15b and 15c compare the ap-

plied model-driven techniques with the other dimen-

sions. Here, the findings are less clear than in compari-

son with the Figures 12, 13 and 14. Figures 15a and 15b

again show the strong focus on the architectural ab-

straction level and the structural type of runtime mod-

els. However, two techniques stand out to be promi-

nent: model transformations and reflection. Finally,

0

20

40

60

80

100
component

process

code

contextgui

architecture

goals

Type of Model by Abstraction Level

feedback loop

metamodel

goal

design

requirement

behavior

variability

physical

structure

quality

(a) Type of Model vs. Level of Abstraction

0

10

20

30

40

50

60
assurance

development

fault-tolerance

prediction

self-adaptation

interoperability

evolution

self-optimization and
organization

Type of Model by Purpose

feedback loop

metamodel

goal

design

requirement

behavior

variability

physical

structure

quality

(b) Type of Model vs. Purpose

0

5

10

15

20

25

30

35
reflection

model-transformation

workflow

reasoning

variability-modelling

machinelearning

monitoring

analysis

reqeng

model-comparison

Type of Model by Applied MDSD Technique

feedback loop

metamodel

goal

design

requirement

behavior

variability

physical

structure

quality

(c) Type of Model vs. Technique

Fig. 13: Kiviat Graphs for Type of Model

Figure 15c shows that different techniques have been in-

vestigated for different purposes. While model transfor-

mations have been investigated for self-adaptation, de-

velopment and assurance, analysis techniques have been

investigated for assurance. Reflection as model-driven

technique has been investigated for self-adaptation as

well.

A general observation across all Kiviat graphs is

that no Kiviat graph exists showing a good coverage

of all dimensions. Most graphs depict a very strong fo-

cus on a single dimension by a single other dimension.

Thus, as in the analysis supported by the other type

of graphs used previous, in conclusion, the work on

models@run.time over the last 12 years still present dif-

ferent research gaps. In the next section we elaborate

further on the research challenges we have identified to

bridge the gaps.

22 Nelly Bencomo et al.

0

10

20

30

40

50

60

70
component

process

code

contextgui

architecture

goals

Purpose by Level of Abstraction

assurance

development

fault-tolerance

prediction

self-adaptation

interoperability

evolution

(a) Purpose vs. Level of Abstraction

0

10

20

30

40

50

60
feedback loop

metamodel

goal

design

requirement

behavior

variability

physical

structure

quality

Purpose by Type of Model

assurance

development

fault-tolerance

prediction

self-adaptation

interoperability

evolution

(b) Purpose vs. Type of Model

0

5

10

15

20

25
model-comparison

reflection

model-
transformation

workflow

reasoning

variability-modelling

machinelearning

monitoring

analysis

reqeng

Purpose by Applied MDSD Technique

assurance

development

fault-tolerance

prediction

self-adaptation

interoperability

evolution

(c) Purpose vs. Technique

Fig. 14: Kiviat Graphs for Purpose of Runtime Models

7 Research Challenges

Based on the data collected and the analysis performed,

in this section we discuss the research challenges and

the efforts needed to bring forward the state of the

art up to the envisioned future of models@run.time re-

search. We aim to classify the fundamental challenges

based on the taxonomy proposed in Fig. 5. This strate-

gically enables us to portrait the challenges in the con-

text provided by the concepts previously discussed, and

the analysis performed in Sections 5 and 6.

In general, the analysis applied using the pro-

posed taxonomy reveals that the research in the mod-

els@run.time community has concentrated on a set of

dominant topics such as architectural runtime models,

which have targeted particular purposes such as self-

0

5

10

15

20

25

30
component

process

code

contextgui

architecture

goals

Applied MDSD Technique by Abstraction Level

reflection

model-transformation

workflow

reasoning

variability-modelling

machinelearning

monitoring

analysis

reqeng

model-comparison

(a) Technique vs. Level of Abstraction

0

5

10

15

20

25

30

35
feedback loop

metamodel

goal

design

requirement

behavior

variability

physical

structure

quality

Applied MDSD Technique by Type of Model

reflection

model-transformation

workflow

reasoning

variability-modelling

machinelearning

monitoring

analysis

reqeng

model-comparison

(b) Technique vs. Type of Model

0

5

10

15

20

25
assurance

development

fault-tolerance

prediction

self-adaptation

interoperability

evolution

self-optimization and
organization

Applied MDSD Technique by Purpose

model-comparison

reflection

model-transformation

workflow

reasoning

variability-modelling

machinelearning

monitoring

analysis

reqeng

(c) Technique vs. Purpose

Fig. 15: Kiviat Graphs for Applied MDSD Techniques

adaptation. As a result, potentially relevant topics, as

well as their combination, have been overlooked by re-

searchers. We hope that this survey helps to reveal some

of these potentially useful combinations.

In this section, we summarize the areas where we

consider that the state of the art of models@run.time

can be improved and discuss research topics having the

potential to push forward the state of the art.

7.1 Challenges Based on the Level of Abstraction

The survey has shown that a big part of research ef-

forts has been focused on the architectural level of

abstraction, exploiting structural runtime models for

running systems. Further, most of these approaches

have targeted the particular purpose of self-adaptation.

There has not been a strong focus on the use of mod-

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 23

els@run.time for neither lower levels of abstractions

than those offered at the architecture level, i.e., code

or components, nor higher levels of abstraction, such as

systems of systems and the use of contextual situations.

The need to apply models@run.time at lower levels than

architecture: Technology is complex and rapidly chang-

ing and, therefore, software engineering researchers also

need to provide approaches with more direct support

to developers [40] who have to deal with very specific

technical knowledge. Therefore, there is the need to fo-

cus not just on architectural models, but on artefacts

at lower levels of abstraction and finer grained models,

such as configurations of components and source code.

For instance, authors in [51] explain initial ideas about

how runtime models can be used to deal with what they

call software changes in-the-small, i.e., changes at the

code level, as opposed to software changes in-the-large,

i.e., changes at the component or component configu-

ration levels.

It is relevant to understand the runtime phe-

nomenon of software systems from lower levels of ab-

straction than the macro architectural level, such as the

status inside individual components, or the behaviour

of a particular piece of code while, at the same time,

being able to exploit the use of abstractions and mod-

els. We especially foresee potential in approaches that

deal with structural and behavioural runtime models

used at the level of code (e.g., [5,178]). In fact, various

models of code have been investigated by the compiler

construction community (e.g., control flow graphs rep-

resenting behavioural models or abstract syntax trees

representing structural models). Traditionally, models

used in compilers aren’t available at runtime, i.e., after

the compilation process. The rising need for dynamic

software updates with zero downtime (see, e.g., [148])

poses the challenge to re-compile programs while they

run and, hence, to keep the compiler models at runtime.

As a direct consequence, models used in such compil-

ers can be enriched with knowledge only available at

system runtime. The effectiveness of combining model-

driven techniques with code-level techniques from the

domain of compiler construction has just recently been

promoted at the MODELS 2017 conference in a keynote

by Ira Baxter [25].

To support lower-level runtime models, novel tech-

niques are required to realize the causal connection be-

tween the running system and such models. In order

to keep a code-level runtime model (e.g., an abstract

syntax tree) in synchronisation with a running appli-

cation subject to dynamic program rewriting or dy-

namic code analysis, current approaches focusing on

architectural models cannot be directly applied (e.g.,

compare [178] with [181]). Current approaches do not

offer enough support and therefore, further research ef-

forts are needed.

The need to apply models@run.time at higher level of

abstractions than systems architectures: The external

context of systems and their interactions with other

systems as is the case in systems-of-systems [135] have

not yet been exhaustively investigated in the con-

text of models@run.time. Indeed, we haven’t found

any work on models@run.time for systems-of-systems,

but some work focusing on context-adaptive systems

(e.g., [111,205]). In [46], an overview of the current

state of the art in self-aware computing systems [123],

i.e., systems which are aware of themselves, their con-

text and their collaboration partners (i.e., systems-of-

systems), is given. As we have shown in the previous

sections, most work on models@run.time focused on

self-adaptive software systems, which are–in contrast

to self-aware computing systems–mainly aware of them-

selves, but typically neither on their environmental con-

text nor their interaction with other systems. Current

and most future types of software systems are inher-

ently embedded into complex environments (e.g., au-

tonomous vehicles including cars, trains and ships; or

wearables like fitness trackers and health monitors) that

work in different contexts. Hence, more work is required

to investigate the application of models@run.time to

capture and reason about the context of and interac-

tions between these systems. Thus, we consider the ap-

plication of the models@run.time paradigm to context-

aware systems and systems-of-systems as a highly rele-

vant research topic.

7.2 Challenges Based on the Runtime Model Type

Regarding the model types, it was observed that the

ample majority of the surveyed papers represent the

running system using structural models. Structural

models tend to focus on how the software is composed,

for example, in terms of components and their connec-

tions (i.e., architecture); or aspects and their patterns

of composition. In contrast, behavioural models empha-

sise how the system executes, e.g., in terms of flows of

events through the system.

Goal models at runtime to address uncertainty: Ac-

cording to our findings, runtime representations of goal-

based models have not been studied exhaustively (just

16 papers were found, cf. Section 5.1). Goal-based mod-

els allow mirroring the domain problem in declarative

ways in contrast to procedural ways. Their use has

opened possibilities to tackle decision-making using the

24 Nelly Bencomo et al.

support of machine learning (e.g., [29,154]) in order

to tackle uncertainty, making them relevant in the de-

sign and development of future software systems. The

emergence of the need to deal with uncertainty adds to

the significance of the need of runtime goal-models and

models that in general offer support for reasoning about

the domain problem in more declarative ways [36,172].

A particular aspect that needs to be addressed by mod-

ern software w.r.t. uncertainty is self-explanation [36].

Goal-based models have already been used to support

self-explanation [211], but–as our analysis shows–have

not, yet, been investigated extensively at runtime.

Towards variability models at runtime: Surprisingly,

only few research initiatives have investigated variabil-

ity models at runtime (10 papers). Further, they have

been applied only at the level of goals and architecture,

which contrasts to the needs claimed by the variability

community (i.e., SPLC and DSPL) [21,34,41,106,108,

150]. Especially, the vision of dynamic software product

lines, i.e., the ability to support runtime updates with

zero downtime for products of a software product line,

denotes an obvious link between variability models be-

ing used at runtime to adapt the respective programs.

The challenge for dealing with runtime variability is

that it should support a wide range of product cus-

tomizations under various circumstances that might be

unknown until execution as new product variants can

be identified only at runtime [34]. Contemporary vari-

ability models face the challenge of representing run-

time variability to therefore allow the modification of

variation points during the execution of the system, and

underpine the automation of the system reconfigura-

tion [48]. The runtime representation of feature models

(i.e. their runtime models) is required to automate the

decision making.

Towards Runtime Models to Support Feedback Loops:

Even though the feedback loop is a core concept behind

self-adaptation and it has been shown to be beneficial to

separate it from the system itself [213], there are only

few approaches investigating the usage of an explicit

model of this feedback loop for self-adaptation (6 of

271 papers; cmp. Figure 9 on page 16). We expect that

further research is done with respect to this aspect. An

example of its use is to enable analyses and reasoning

about feedback loops, e.g., to support resource man-

agement as shown in [119]. Multiple runtime models

would be required to provide views for various stages of

feedback loops, such like monitoring,analysis, decision-

making, or adaptation [?].

7.3 Challenges Based on the Purposes for Using

Models@run.time

Regarding the purpose of models@run.time, it can be

observed that self-adaptation is dominant in the sur-

veyed approaches. Self-adaptation approaches mostly

exploit structural (i.e., architecture) and behavioural

models (cf. Fig. 9). Only few approaches using qual-

ity and variability models exist for self-adaptation (10

and 8 of 271 papers; cmp. Figure 9 on page 16). Below

we discuss challenges on the purposes for using mod-

els@run.time that can be related to self-adaptation but

also can transcend it.

Model-driven techniques have been poorly investi-

gated for the purposes of prediction, fault-tolerance and

interoperability (6, 7 and 9 of 271 papers; see Figure 11

on page 17). However, all three purposes are highly

required to build future software systems. For exam-

ple, for the Internet of Things (IoT), vast amounts

of connected devices from different vendors need to

work together by interoperability [76]. Some of these

devices will be safety-critical (e.g., autonomous cars)

and, hence, need to be fault-tolerant. Finally, IoT de-

vices have to operate energy-efficiently as they are often

battery-powered, i.e., only have a limited capacity of en-

ergy until they need to be recharged. Prediction is one

central element for realising energy-efficient software in

general [100].

Models@run.time for Assurances: Assurance is another

purpose besides self-adaptation that has attracted rea-

sonable research interest (cf. Section 3.2.3). However,

other than at the architecture level and using struc-

tural models, there is a lack of approaches w.r.t. this

purpose (cmp. Fig. 7 and Fig. 9). Still further research

on assurances for models@run.time-based systems is re-

quired, as already stated four years ago in [32].

Among others, a compelling application for assur-

ances in the context of models at runtime are au-

tonomous vehicles. Increasingly, cars offer intelligent

driver assistance [133,57]. Such driving software is

safety-critical and, thus, poses the need for methods to

assure required safety qualities. For this, such systems

require quality models to capture the respective non-

functional properties, environmental context models to

enable the adaptation to contextual changes and goal

models representing the connection between required

quality assurances and contextual situations. Currently,

such models are typically implicit and coded manu-

ally into the running system. In order to provide assur-

ance of properties, these models need to be leveraged

explicitly during the full life cycle, including runtime.

An interesting first step in this direction has been de-

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 25

scribed by Schneider et al. in [174,175,176,177], who in-

troduced the concept of conditional safety certificates,

which allow safety checks at system runtime.

Assurance is required for functional (i.e, those which

specify the functions of the systems) and non-functional

properties of the system (i.e., those which specify how

these functions need to work, e.g., efficiency, perfor-

mance, availability, robustness, and stability). The abil-

ity to guarantee these properties at runtime poses chal-

lenges due to the variations of the systems, their envi-

ronment and their inherent uncertainty [77,164]. How-

ever, addressing these challenges offers as well new op-

portunities for runtime verification and validation, en-

abling assurances for critical system properties at run-

time. Further, since runtime models form the founda-

tion of many assurance tasks [57], their quality depends

upon the quality of the runtime models. The definition

of performance and accuracy for the assessment of run-

time models is a crucial research challenge [192]. Ef-

forts in the research area of models@run.time are fun-

damental to the development of runtime assurance tech-

niques [57]. The central issue in this context is the mod-

elling of uncertainty, as understanding and leveraging

uncertainty is central to deliver assurance guarantees.

This topic is discussed further in section 7.5 as it can

be considered as fundamental and not applied research

in models@run.time.

Models@run.time for Development: Development has,

too, attracted some research interest (cf. Section 3.2.3).

As for assurances, there are no approaches despite than

at the architecture level and using structural models

(see the Figures 7 and 9).

Software engineers have come to the conclusion that

there is no clear separation between development-time

and runtime [22]. Here, there are opportunities for mod-

els@run.time as it can act as a vehicle to understand

and address the issues that inevitably arise. However, as

in development time while using MDE, different interre-

lated models need to be used to systematically build up

a software system. Different interrelated runtime mod-

els as representation of different parts of the executing

systems are employed simultaneously, and their rela-

tionships need to be maintained at runtime. The result

is a complex development process as the models and

their relationships need to be managed [204] that in

the case of runtime is aggravated by the fact that the

runtime models are treated and even conceived during

the execution of the system. Just few initiatives exist

that address the issues of managing runtime models and

their relationships [204]. However the issues are rather

neglected by applying ad-hoc solutions if at all. Fur-

ther, some authors [201] advocate for the unification

of development and runtime models to systematically

realize their integration and management. It may not

be the case that a comprehensive unification is possible

or even advised, however it may be a way to support

an incremental strategy of adoption of runtime models

from manual maintenance to automated management.

Models@run.time for Self-awareness: Mod-

els@run.time are at the core of self-aware systems [46]

and their role in self-awareness is studied in [122,

123]. Runtime models provide the vehicle for the

self-representation needed by a self-aware system.

Runtime models correspond to the models that contain

knowledge about the environment and the system

itself. They support learning of that knowledge.

Runtime models can be traversed and consulted to

provide up-to-date information for analysis, prediction

and planning. Different types of runtime models may

be needed to capture different facets of which a system

needs to be self-aware. What aspects a system needs

to be aware of and what kinds of runtime models are

needed is subject to future studies.

7.4 Challenges Based on Applied Model-driven

Techniques

The major model-driven technique that has been trans-

ferred from design to runtime is the model transfor-

mation technique. We indeed found work on runtime

model transformations at all identified abstraction lev-

els (cmp. Figure 8 on page 16). The main focus again,

as for all other model-driven techniques, was on archi-

tectural runtime models. However, other techniques are

relevant for the models at runtime vision.

Machine Learning. Machine learning can be used to

build context-aware systems, systems-of-systems and

self-aware systems. As discussed before, we consider

work on models@run.time for systems aware of their

context and their interactions with other systems as

a promising research challenge. The use of machine

learning is a promising direction to address this chal-

lenge as for example shown in [82] for the case self-

organizing systems, in [207] for the case of resource

management in data centers and in [56] for the case of

non-functional properties in the context of cloud-based

systems. In general, we only found 14 approaches in-

vestigating the use of machine learning in the context

of models@run.time. The need to apply machine learn-

ing to address the challenges of context-aware systems,

systems-of-systems and self-aware systems among oth-

ers has just recently been highlighted again in the con-

text of self-aware computing systems [123]. Accordingly,

26 Nelly Bencomo et al.

the rise of AI is a should be tackled by the community

of models@run.time.

Towards Runtime Model Comparison: A counter-

intuitive observation we found was that very little

work has been conducted on applying model compar-

ison techniques at runtime (7 of 271 papers, see Sec-

tion 3.2.4). The motivation of the approaches with non-

trivial runtime model comparisons we found in our sur-

vey is either originating from the problem domain (e.g.,

error detection [109]) or from novel types of models

(e.g., aspect-oriented models [142]). This is in contrast

to the finding that most initiatives focus on approaches

for self-adaptive software, for which comparisons be-

tween the current and desired system state are essen-

tial. Presumably, current approaches only use simple,

custom-made comparison approaches for this purpose.

The application of comparison techniques at runtime

poses additional requirements compared to design time.

Namely, especially for self-adaptive systems, the run-

time model required to perform comparisons is getting

more important, e.g., to meet real-time deadlines. We,

thus, assume that the application or transfer of exist-

ing comparison techniques to runtime is a promising

candidate for future research.

Towards Runtime Models for Workflows: Another

poorly investigated technique is workflow modelling

and execution (7 of 271 papers; see Section 3.2.4). Al-

though this topic is close to the research area of model

execution (which we explicitly excluded from this sur-

vey), the need to couple workflows with the system for

which they specify the order of actions to take is in-

evitably required. Surprisingly, most of the papers we
found in our survey have been published at least 4 years

in the past (e.g., [144] on self-tuning BPEL processes in

2009 or [117] with a vision paper on business processes

at runtime in 2013). In consequence, approaches focus-

ing on the causal connection between workflows and

the systems they are bound to are a promising field for

future research, where initial investigations have been

made, but the research efforts almost stagnated.

7.5 Challenges for Fundamental Research on

Models@run.time

As already discussed in Section 2.4, 20% of the papers

we included in this survey address fundamental research

on models@run.time. A more detailed look is provided

in Figure 16, which shows the number of applied and

fundamental papers published per year as stacked bar

chart. Notably, a small but constant research effort fo-

cusing on fundamental research for models@run.time

0

5

10

15

20

25

30

35

1995 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Papers per Year

Applied Fundamental

Fig. 16: Research on Models@run.time per Year

can be observed since 3 years after the term mod-

els@run.time was coined (i.e., since 2009). This section

summarizes the challenges we have concluded for fun-

damental research on models@run.time.

Towards Managed Uncertainty at Runtime: Further

techniques to deal with uncertainty and incompleteness

of events and information from systems and their envi-

ronment are required [58]. One aspect of this challenge

is monitoring and sensing, which is widely used by mod-

ern intelligent and adaptive software. Monitoring can

be imprecise and can provide just partial information.

Using the correct runtime abstractions to enable the

measurement of uncertainty is a core challenge. Run-

time models can be used to represent uncertainty while

more evidence is collected by the running system. In

[30], the authors use Bayesian Learning to model the

level of confidence related to the monitoring infrastruc-

ture.

Further, in order to design software systems that

are able to tackle uncertainty, inferring the knowledge

necessary to reason about the system behaviour seems

to be an essential task. Such models can be used to dy-

namically build runtime models during the execution

of the system. The acquired knowledge could support

solving uncertainty, but on the other hand it could in-

corporate more. Suitable mathematical and formal ab-

stractions should be used to represent and reason upon

uncertainty. Probability theory, fuzzy set theory with

the use of machine learning should be used to further in-

vestigate this issue. Probability theory, based on histor-

ical data, can be used to identify which non-functional

properties are less likely to be satisfied [28]. Bayesian

learning can be used to manipulated values of proba-

bilities or parameters of utilities that change over time

and therefore, enable the quantification of the impact

of these values during the decision making [155]. Like-

wise, fuzzy set theory can be used to produce an initial

model a flexible design that can be progressively com-

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 27

pleted as more information about the environment and

the system itself becomes available [35].

Towards Runtime Model Inference during Execution:

This challenges is somehow a consequence of the pre-

vious one posed by the uncertainty modern software

systems face. In the area of self-adaptive systems, con-

ventional software adaptation techniques and more con-

temporary models@runtime approaches usually require

an a priori model to specify the system’s behaviour and

structure. In contrast, runtime models can be learned

and reified at runtime. However, just few research ef-

forts have been done towards these research lines. For

instance, the authors in [78] proposed mining software

component interactions based on the execution traces

of the underlying running system, in order to build a

probabilistic model that will be used to analyze, plan,

and execute adaptations. The domain in [78] was self-

adaptation. In [31], the runtime models are automati-

cally inferred during execution and refined by exploiting

learning techniques and ontologies. The final goal was

the dynamic synthesis of code to generate mediators to

support the interoperability of systems that were built

without previous knowledge of the interaction needed.

Several issues exist that are worth further considera-

tion. For example, the replacement or insertions of a

component may introduce new unexpected behaviours

by changing the functional behaviour of the system, or

their non-functional properties (e.g., availability, reli-

ability, etc.). The recent progress in machine learning

is key for the extraction of information at runtime to

dynamically build the models [82,29,153].

Towards Runtime Code Synthesis: Runtime models can

support the extension of the success of model-driven en-

gineering to synthesise code at runtime [171,31]. This

issue still requires much more research and, obviously

depends on the previous issues on runtime model infer-

ence and uncertainty. Ontology-based solutions seem to

be a promising direction in this respect. Ontologies have

been exploited to enrich the runtime models with infor-

mation that was not know before runtime [29], but is

required to dynamically synthesise code.

Towards Distributed Runtime Models: Current and

previous methods to support the discovery of runtime

architecture take centralized approaches, meaning that

the process of discovery is carried out from a single lo-

cation [91,173,194]. These methods are inadequate for

large distributed systems because they either present a

single point of failure or do not scale up well [197,167].

A key characteristic of future software systems is that

they will operate in collaboration with other systems

as covered by the terms systems-of-systems [135], col-

lective adaptive systems [12] and collective self-aware

computing systems [69]. In our survey, we only found

8 papers investigating distributed models@run.time,

whereof two [37,157] only describe the necessity for

such approaches. The most prominent approach in this

area originates from the EUREMA project (cf. Sec-

tion 3.6) by Holger Giese and Thomas Vogel, who in-

vestigated how the integration and/or synchronisation

of multiple runtime models of different systems can be

systematically described and automated [204,199,209,

200]. For this, they transfer the term megamodel [39],

i.e., a model comprised of other models, to runtime.

In their approach, the processing of models at runtime

can be described as a workflow. But, still several re-

search questions for this topic remain open. For exam-

ple, how to handle partial distributed runtime mod-

els [104], i.e., models of different systems representing

overlapping knowledge. Thus, further research on dis-

tributed runtime models is required.

Towards Transaction-safe Causal Connections: The

causal connection between the system and the runtime

model should support the concept of transactions to,

e.g., offer roll-back capabilities for consistency. Various

research questions in this regard are still unanswered:

When are system and model allowed to be out of sync?

What happens when a decision is made based on out-

dated information in the model? What happens when

an effect is realized on the system based on an out-

dated model? What about race conditions when multi-

ple models reflect upon and control the same system?

These questions related to transactional concepts and

the frequency of the synchronisation have, until now,

only once [67] been addressed by the research commu-

nity, even though the topic has been highlighted in the

workshop’s call for papers since 2015.

Towards Self-modelling Systems: Increasingly, more

and more approaches are proposed for the engineer-

ing of systems with emergent properties [27]. Such ap-

proaches go beyond the state of the art in self-adaptive

or -organizing systems, they aim at self-modelling sys-

tems [26]. Making a complex system build itself is done

by both letting it autonomously change the organiza-

tion of its components and by enabling these latter

parts change as well their behaviour in an autonomous

way. Autonomous, self-adaptive and self-organizing sys-

tems, hence, will need to act as a non-human modeller,

treating models according to high-level goals rather

than a predefined script [90]. Traditional approaches

to self-adaptive and self-organizing software require hu-

man experts for the specification of models, policies

28 Nelly Bencomo et al.

Fig. 17: Screenshot of SLR Toolkit

and processes by which software can adapt according to

its goals and environment. For future software systems,

these tasks need to be automated, i.e., the systems need

to be enabled to perform modelling themselves. In other

words, future systems required self-modelling capabil-

ities. Some initial approaches have already been pro-

posed such as [78,82,31] . The authors of [78,82,31]

have proposed approaches, which do not require defin-

ing the system’s behaviour beforehand, but instead in-

volve techniques to infer the interactions from system

execution using, e.g., probabilistic usage models and

machine learning. The challenges of self-modelling sys-

tems still require much more research. Formal methods

and models@run.time-based solutions, with the aid of

model/constraint checking, seem to be a promising di-

rection to follow.

8 Conclusions

The main motivation for this work was to investigate

the state-of-the-art in models@run.time, through iden-

tifying three main research questions and systemati-

cally mapping the literature creating and using a tax-

onomy to answer those questions. We have determined

what issues have been studied, as well as their mean-

ing, to therefore provide aid and guidance to researchers

who are planning future research in the topic.

The list of all papers included in our survey as well

as our classification and taxonomy are available online4

as example project of the SLR Toolkit–a software tool

for systematic literature reviews one of the authors de-

veloped with the help of students while we performed

4 https://github.com/sebastiangoetz/slr-
toolkit/tree/master/examples/mrt

this survey. Figure 17 depicts a screenshot of the tool,

showing the list of papers on the left, a detail view of a

selected paper in the center top, the taxonomy on the

right and, at the center bottom, a bar chart enumerat-

ing all papers by their level of abstraction.

Throughout our literatury study, we followed three

objectives (cf. Section 1, which we rephrased into three

research questions (cf. Section 2.1). In the following, we

provide the answers to these three research questions,

which represent the main contribution of this article.

RQ1: How can existing research on models@run.time by

classified? In Section 3, we presented a novel taxonomy

to classify research on models@run.time. We classified

271 papers on models@run.time using this taxonomy,

which evaluates its suitability. Our taxonomy, concisely

depicted in Figure 5 on page 9, is comprised of four main

dimensions: the type of research, the domain of appli-

cation (e.g., healthcare), the intersecting research areas

(e.g., software product lines) and related research initia-

tives. The type of research was further refined into ap-

plied and fundamental research, where applied research

denotes approaches using models@run.time to address a

particular research question and fundamental research

denotes approaches answering research questions about

the models@run.time paradigm itself (e.g., how to re-

alize a transaction-safe causal connection). Finally, the

dimension of applied research is further refined into the

level of abstraction at which a runtime model is used

(e.g., at the architectural level), the type of runtime

model used (e.g., behavioural models), the purpose for

which the runtime model was used (e.g., to enable the

interoperation of systems) and the model-driven tech-

niques, which have been applied in the approach (e.g.,

model comparison).

RQ2: What is the state of the art of models@run.time

research w.r.t. the classification? To answer this re-

search question, we first analysed the frequency of

the values we found for each dimension of the taxon-

omy (cf. Sections 3.2 till 3.6). Furthermore, in Sec-

tion 5, we performed a cross-dimensional analysis us-

ing bubble-matrix charts for our classification covering

271 papers. In Section 6, another perspective on the

cross-dimensional analysis is given using Kiviat graphs.

Our main findings are that most research on mod-

els@run.time has a strong focus on particular topics

w.r.t. our taxonomy. Namely, by far the most applied

research on models@run.time (a) focused on the archi-

tectural level of abstraction, (b) used structural runtime

models, (c) used the runtime models for self-adaptive

software and (d) used model transformations. An anal-

ysis of the application domains (25) and intersecting

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 29

Level of Abstraction
Type of

Runtime Model
Purpose of

Runtime Model
Applied

Model‐driven
Technique

Code‐levelModels

Runtime
ContextModels

Runtime Models for
Systems‐of‐Systems

Goal Models

Variability Models

Feedback Loops

Providing
Assurances

Machine Learning

Model Comparison

Workflow Modeling

Fundamental Research Topics

Runtime Model Inference Managed Uncertainty Distributed Runtime Models

Runtime Code Synthesis Self‐modelling Systems Transaction‐safe
Causal Connections

Using Development
Models at Runtime

Self‐awareness

Fig. 18: Challenges for Research on Models@run.time

research areas (25) shows that models@run.time is a

highly interdisciplinary research topic. Finally, the con-

clusion to be drawn from analysing related research

initiatives is that although there are many initiatives

supporting or using models@run.time (45), almost no

initiatives exist, which focus on fundamental research

topics.

RQ3: What can be inferred from the results associated

with RQ2 that will lead to timely, relevant research di-

rections for further investigation? In Section 7, we de-
rived and motivated a set of research challenges, which

have been rarely investigated according to our study.

We categorized our identified challenges using our tax-

onomy into fundamental research challenges and chal-

lenges w.r.t. the four dimensions of applied research on

models@run.time. In total we described 18 challenges

as shown in Figure 18.

In conclusion, the work on models@run.time over

the last 13 years has been very proliferous and has been

applied in different domain areas. However, it has also

been largely focused on the use of structural models at

the architectural abstraction level to build examples of

self-adaptive systems using model-transformations. The

researchers of the area of models@run.time still have

many research opportunities to develop future software

that inevitably will increasingly need to work under un-

certainty and will need to take advantage of new tech-

niques based AI or nature-inspired algorithms. Models

at runtime will certainly serve as a vehicle to underpin

the building of such systems.

Acknowledgements This work has been partially funded
by the German Research Foundation (DFG) under project
agreement SFB912/2 and GRK1907.

30 Nelly Bencomo et al.

References

1. Abeywickrama, D., Ovaska, E.: Reflexive and evolu-
tional digital service ecosystems with models at run-
time. In: Proceedings of the 12th International Work-
shop on Models@run.time co-located with 20th Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2016), Austin, Texas,
US, September 19, 2017. (2017)

2. Abeywickrama, D.B., Serbedzija, N., Loreti, M.: Mon-
itoring and visualizing adaptation of autonomic sys-
tems at runtime. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, SAC ’15, pp.
1857–1860. ACM, New York, NY, USA (2015). DOI
10.1145/2695664.2695983. URL http://doi.acm.org/

10.1145/2695664.2695983
3. Abi-Antoun, M., Aldrich, J.: Static extraction of sound

hierarchical runtime object graphs. In: Proceedings of
the 4th International Workshop on Types in Language
Design and Implementation, pp. 51–64 (2009). URL
http://dx.doi.org/10.1109/SEAMS.2013.6595498

4. Agarwala, S., Bathen, L.A., Jadav, D., Routray, R.: Par-
adise: parallel discovery engine for enterprise datacen-
ters. In: Proceedings of the 6th international conference
on Autonomic computing, pp. 51–52. ACM (2009). DOI
1145/1555228.1555241

5. Al-Refai, M., Cazzola, W., France, R.: Using models
to dynamically refactor runtime code. In: Proceed-
ings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pp. 1108–1113. ACM, New York,
NY, USA (2014). DOI 10.1145/2554850.2554954. URL
http://doi.acm.org/10.1145/2554850.2554954

6. Albassam, E., Porter, J., Gomaa, H., Menasc, D.A.:
Dare: A distributed adaptation and failure recovery
framework for software systems. In: 2017 IEEE Inter-
national Conference on Autonomic Computing (ICAC),
pp. 203–208 (2017). DOI 10.1109/ICAC.2017.12

7. Alfarez, G., Pelechano, V., Mazo, R., Salinesi, C., Diaz,
D.: Dynamic adaptation of service compositions with
variability models. Journal of Systems and Software
91, 24 – 47 (2014). DOI http://dx.doi.org/10.1016/j.
jss.2013.06.034

8. Alférez, G.H., Pelechano, V.: Dynamic evolution of
context-aware systems with models at runtime. In: Pro-
ceedings of the 15th international conference on Model
Driven Engineering Languages and Systems, pp. 70–86.
Springer-Verlag (2012)

9. Almorsy, M., Grundy, J., Ibrahim, A.S.: Adaptable,
model-driven security engineering for saas cloud-based
applications. Automated Software Engineering 21(2),
187–224 (2014)

10. Amoui, M., Derakhshanmanesh, M., Ebert, J., Tahvil-
dari, L.: Achieving dynamic adaptation via manage-
ment and interpretation of runtime models. Journal
of Systems and Software 85(12), 2720 – 2737 (2012).
DOI http://dx.doi.org/10.1016/j.jss.2012.05.033. Self-
Adaptive Systems

11. Anaya, I.D.P., Simko, V., Bourcier, J., Plouzeau, N.,
Jézéquel, J.M.: A prediction-driven adaptation ap-
proach for self-adaptive sensor networks. In: Proceed-
ings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS 2014, pp. 145–154. ACM, New York, NY, USA
(2014). DOI 10.1145/2593929.2593941

12. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van
Steen, M.: Adaptive collective systems: Herding black
sheep. Bookprints (2013)

13. Andersson, J., Ericsson, M., Löwe, W.: Automatic rule
derivation for adaptive architectures. In: Seventh Work-
ing IEEE/IFIP Conference on Software Architecture,
pp. 323–326. IEEE (2008)

14. Andersson, J., Lemos, R., Malek, S., Weyns, D.: Mod-
eling dimensions of self-adaptive software systems. In:
B.H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee
(eds.) Software Engineering for Self-Adaptive Systems,
chap. Modeling Dimensions of Self-Adaptive Software
Systems, pp. 27–47. Springer-Verlag, Berlin, Heidelberg
(2009). DOI 10.1007/978-3-642-02161-9\ 2

15. Anthony, R., Pelc, M., Ward, P., Hawthorne, J., Pul-
nah, K.: A run-time configurable software architecture
for self-managing systems. In: Autonomic Computing,
2008. ICAC ’08. International Conference on, pp. 207–
208 (2008). DOI 10.1109/ICAC.2008.23

16. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and
analyzing mape-k feedback loops for self-adaptation. In:
Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’15, pp. 13–23. IEEE Press, Pis-
cataway, NJ, USA (2015). URL http://dl.acm.org/

citation.cfm?id=2821357.2821362
17. Arcelli, F., Raibulet, C.: Evolution of an adaptive mid-

dleware exploiting architectural reflection. In: W. Caz-
zola, S. Chiba, Y. Coady, G. Saake (eds.) Proceedings of
the 3rd Workshop on Reflection, AOP and Meta-Data
for Software Evolution, pp. 49–58 (2006)

18. Arias, T.B.C., America, P., Avgeriou, P.: Defining ex-
ecution viewpoints for a large and complex software-
intensive system. In: Software Architecture, 2009
& European Conference on Software Architecture.
WICSA/ECSA 2009. Joint Working IEEE/IFIP Con-
ference on, pp. 1–10. IEEE (2009). They never use the
term ”models@runtime”, nor cite our paper, but it is
essentially the same idea

19. Aßmann, U., Götz, S., Jézéquel, J., Morin, B., Trapp,
M.: A reference architecture and roadmap for mod-
els@run.time systems. In: Models@run.time - Foun-
dations, Applications, and Roadmaps [Dagstuhl Sem-
inar 11481, November 27 - December 2, 2011]., pp. 1–
18 (2014). DOI 10.1007/978-3-319-08915-7\ 1. URL
http://dx.doi.org/10.1007/978-3-319-08915-7_1

20. Barbier, F., Cariou, E., Le Goaer, O., Pierre, S.: Soft-
ware adaptation: Classification and a case study with
state chart xml. IEEE software 32(5), 68–76 (2015)

21. Baresi, L.: Self-adaptive systems, services, and product
lines. In: Proceedings of the 18th International Software
Product Line Conference - Volume 1, SPLC ’14, pp. 2–
4. ACM, New York, NY, USA (2014). DOI 10.1145/
2648511.2648512

22. Baresi, L., Ghezzi, C.: The disappearing boundary be-
tween development-time and run-time. In: Proceedings
of the FSE/SDP Workshop on Future of Software En-
gineering Research, FoSER ’10, pp. 17–22. ACM, New
York, NY, USA (2010). DOI 10.1145/1882362.1882367.
URL http://doi.acm.org/10.1145/1882362.1882367

23. Baresi, L., Pasquale, L.: Live goals for adaptive service
compositions. In: Proceedings of the 2010 ICSE Work-
shop on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’10, pp. 114–123. ACM,
New York, NY, USA (2010). DOI 10.1145/1808984.
1808997

24. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for
requirements-driven adaptation. In: RE 2010, 18th
IEEE International Requirements Engineering Confer-
ence, Sydney, New South Wales, Australia, Septem-

http://doi.acm.org/10.1145/2695664.2695983
http://doi.acm.org/10.1145/2695664.2695983
http://dx.doi.org/10.1109/SEAMS.2013.6595498
http://doi.acm.org/10.1145/2554850.2554954
http://dl.acm.org/citation.cfm?id=2821357.2821362
http://dl.acm.org/citation.cfm?id=2821357.2821362
http://dx.doi.org/10.1007/978-3-319-08915-7_1
http://doi.acm.org/10.1145/1882362.1882367

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 31

ber 27 - October 1, 2010, pp. 125–134 (2010). DOI
10.1145/1808984.1808997. URL http://dx.doi.org/

10.1109/RE.2010.25
25. Baxter, I.: Keynote: Supporting forward and reverse en-

gineering with multiple types of models. In: Proceedings
of the 20th International Conference on Model-driven
Engineering, Systems and Languages. IEEE (2017)

26. Bellman, K.L., Landauer, C., Nelson, P., Bencomo, N.,
Götz, S., Lewis, P., Esterle, L.: Self-modeling and Self-
awareness, pp. 279–304. Springer International Publish-
ing, Cham (2017). DOI 10.1007/978-3-319-47474-8 9.
URL https://doi.org/10.1007/978-3-319-47474-8_9

27. Bencomo, N.: The role of models@run.time in au-
tonomic systems: Keynote. In: 2017 IEEE Interna-
tional Conference on Autonomic Computing, ICAC
2017, Columbus, OH, USA, July 17-21, 2017, pp. 293–
294 (2017). DOI 10.1109/ICAC.2017.55. URL https:

//doi.org/10.1109/ICAC.2017.55
28. Bencomo, N., Belaggoun, A.: Supporting Decision-

Making for Self-Adaptive Systems: From Goal Models
to Dynamic Decision Networks, pp. 221–236. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013). DOI
10.1007/978-3-642-37422-7 16. URL https://doi.org/

10.1007/978-3-642-37422-7_16
29. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic de-

cision networks for decision-making in self-adaptive sys-
tems: a case study. In: Proceedings of the 8th In-
ternational Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2013,
San Francisco, CA, USA, May 20-21, 2013, pp. 113–
122 (2013). DOI 10.1109/SEAMS.2013.6595498. URL
http://dx.doi.org/10.1109/SEAMS.2013.6595498

30. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic de-
cision networks for decision-making in self-adaptive sys-
tems: A case study. In: Proceedings of the 8th Interna-
tional Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’13, pp. 113–122.
IEEE Press, Piscataway, NJ, USA (2013). URL http:

//dl.acm.org/citation.cfm?id=2487336.2487355
31. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Is-

sarny, V.: The role of models@run.time in supporting
on-the-fly interoperability. Computing 95(3), 167–190
(2012)

32. Bencomo, N., France, R., Cheng, B.H.C., Aßmann,
U. (eds.): Models@run.time. Foundations, Applications,
and Roadmaps, vol. 8378. Springer LNCS (2014)

33. Bencomo, N., Grace, P., Flores-Cortés, C.A., Hughes,
D., Blair, G.S.: Genie: supporting the model driven de-
velopment of reflective, component-based adaptive sys-
tems. In: 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-
18, 2008, pp. 811–814 (2008). DOI 10.1145/1368088.
1368207. URL http://doi.acm.org/10.1145/1368088.

1368207
34. Bencomo, N., Hallsteinsen, S., d. Almeida, E.S.: A view

of the dynamic software product line landscape. Com-
puter 45(10), 36–41 (2012). DOI 10.1109/MC.2012.292

35. Bencomo, N., Torres, R., Salas, R., Astudillo, H.:
An architecture based on computing with words to
support runtime reconfiguration decisions of service-
based systems 11(1), 272 – 281 (2018). Copy-
right 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-
NC license (http://creativecommons.org/licenses/by-
nc/4.0/). Funding: UNAB Grant DI-1303-16/RG,
grant FONDEF IDeA ID16I10322, FONDECYT Grant
1140408.

36. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A.,
Letier, E.: Requirements reflection: requirements as run-
time entities. In: 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 2, pp. 199–202
(2010). DOI 10.1145/1810295.1810329

37. Bennaceur, A., France, R.B., Tamburrelli, G., Vogel,
T., Mosterman, P.J., Cazzola, W., Costa, F.M., Pieran-
tonio, A., Tichy, M., Aksit, M., Emmanuelson, P.,
Huang, G., Georgantas, N., Redlich, D.: Mechanisms
for leveraging models at runtime in self-adaptive soft-
ware. In: Models@run.time - Foundations, Applica-
tions, and Roadmaps [Dagstuhl Seminar 11481, Novem-
ber 27 - December 2, 2011]., pp. 19–46 (2014). DOI
10.1007/978-3-319-08915-7\ 2. URL http://dx.doi.

org/10.1007/978-3-319-08915-7_2

38. Bennaceur, A., Issarny, V.: Automated synthesis of me-
diators to support component interoperability. IEEE
Trans. Software Eng. pp. 221–240 (2015)

39. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for
Megamodels. In: Proceedings of the OOPSLA/GPCE:
Best Practices for Model-Driven Software Development
workshop, 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications,(2004). Vancouver, Canada (2004). URL
https://hal.archives-ouvertes.fr/hal-01222947

40. Blair, G., Bencomo, N., France, R.: Models@run.time.
Computer 42(10), 22–27 (2009). DOI 10.1109/MC.
2009.326

41. Bosch, J.: Delivering customer value in the age of au-
tonomous, continuously evolving systems. In: 2016
IEEE 24th International Requirements Engineering
Conference (RE), pp. 1–1 (2016). DOI 10.1109/RE.
2016.16

42. Bures, T., Hnetynka, P., Plasil, F.: Strengthening ar-
chitectures of smart CPS by modeling them as run-
time product-lines. In: CBSE’14, Proceedings of the
17th International ACM SIGSOFT Symposium on
Component-Based Software Engineering (part of Com-
pArch 2014), Marcq-en-Baroeul, Lille, France, June 30
- July 4, 2014, pp. 91–96 (2014). DOI 10.1145/2602458.
2602478. URL http://doi.acm.org/10.1145/2602458.

2602478

43. Bürger, C., Mey, J., Schöne, R., Karol, S., Langner, D.:
Using reference attribute grammar-controlled rewrit-
ing for energy auto-tuning. In: S. Gtz, N. Bencomo,
G. Blair, H. Song (eds.) Proceedings of the 10th In-
ternational Workshop on Models@run.time, pp. 31–40.
CEUR-WS.org (2015)

44. Calinescu, R., France, R., Ghezzi, C.: Models@run.time.
Computer 95(3), 165–166 (2013)

45. Calinescu, R., France, R.B., Ghezzi, C.: Editorial.
Computing 95(3), 165–166 (2013). DOI 10.1007/
s00607-012-0238-4. URL http://dx.doi.org/10.1007/

s00607-012-0238-4

46. Cámara, J., Bellman, K.L., Kephart, J.O., Autili, M.,
Bencomo, N., Diaconescu, A., Giese, H., Götz, S., In-
verardi, P., Kounev, S., Tivoli, M.: Self-aware Com-
puting Systems: Related Concepts and Research Ar-
eas, pp. 17–49. Springer International Publishing, Cham
(2017). DOI 10.1007/978-3-319-47474-8 2. URL https:

//doi.org/10.1007/978-3-319-47474-8_2

47. Cámara, J., Correia, P., De Lemos, R., Garlan, D.,
Gomes, P., Schmerl, B., Ventura, R.: Evolving an adap-
tive industrial software system to use architecture-based
self-adaptation. In: Proceedings of the 8th International
Symposium on Software Engineering for Adaptive and

http://dx.doi.org/10.1109/RE.2010.25
http://dx.doi.org/10.1109/RE.2010.25
https://doi.org/10.1007/978-3-319-47474-8_9
https://doi.org/10.1109/ICAC.2017.55
https://doi.org/10.1109/ICAC.2017.55
https://doi.org/10.1007/978-3-642-37422-7_16
https://doi.org/10.1007/978-3-642-37422-7_16
http://dx.doi.org/10.1109/SEAMS.2013.6595498
http://dl.acm.org/citation.cfm?id=2487336.2487355
http://dl.acm.org/citation.cfm?id=2487336.2487355
http://doi.acm.org/10.1145/1368088.1368207
http://doi.acm.org/10.1145/1368088.1368207
http://dx.doi.org/10.1007/978-3-319-08915-7_2
http://dx.doi.org/10.1007/978-3-319-08915-7_2
https://hal.archives-ouvertes.fr/hal-01222947
http://doi.acm.org/10.1145/2602458.2602478
http://doi.acm.org/10.1145/2602458.2602478
http://dx.doi.org/10.1007/s00607-012-0238-4
http://dx.doi.org/10.1007/s00607-012-0238-4
https://doi.org/10.1007/978-3-319-47474-8_2
https://doi.org/10.1007/978-3-319-47474-8_2

32 Nelly Bencomo et al.

Self-Managing Systems, SEAMS ’13, pp. 13–22. IEEE
Press, Piscataway, NJ, USA (2013)

48. Capilla, R., Bosch, J.: The promise and challenge of run-
time variability. Computer 44(12), 93–95 (2011). DOI
10.1109/MC.2011.382

49. Castañeda, L., Villegas, N.M., Müller, H.A.: Self-
adaptive applications: On the development of person-
alized web-tasking systems. In: Proceedings of the 9th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2014,
pp. 49–54. ACM, New York, NY, USA (2014). DOI
10.1145/2593929.2593942

50. Cazzola, W., Rossini, N.A., Al-Refai, M., France, R.B.:
Fine-grained software evolution using uml activity and
class models. In: A. Moreira, B. Schätz, J. Gray,
A. Vallecillo, P. Clarke (eds.) Model-Driven Engineer-
ing Languages and Systems: 16th International Confer-
ence, MODELS 2013, Miami, FL, USA, September 29
– October 4, 2013. Proceedings, pp. 271–286. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013). DOI
10.1007/978-3-642-41533-3\ 17

51. Cazzola, W., Rossini, N.A., Bennett, P., Mandalaparty,
S.P., France, R.B.: Fine-grained semi-automated run-
time evolution. In: Models@run.time - Foundations,
Applications, and Roadmaps [Dagstuhl Seminar 11481,
November 27 - December 2, 2011]., pp. 237–258 (2014).
DOI 10.1007/978-3-319-08915-7\ 9. URL http://dx.

doi.org/10.1007/978-3-319-08915-7_9
52. Cetina, C., Giner, P., Fons, J., Pelechano, V.: A model-

driven approach for developing self-adaptive pervasive
systems. In: Proceedings of the Third International
Models@ Runtime Workshop, pp. 97–106 (2008)

53. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Auto-
nomic computing through reuse of variability models at
runtime: The case of smart homes. Computer 42(10),
37–43 (2009)

54. Chauvel, F., Ferry, N., Morin, B., Rossini, A., Solberg,
A.: Models@runtime to support the iterative and con-
tinuous design of autonomic reasoners. In: Proceedings
of the 8th Workshop on Models@run.time, pp. 26–37.
CEUR-WS.org (2013)

55. Chen, B., Peng, X., Yu, Y., Nuseibeh, B., Zhao, W.:
Self-adaptation through incremental generative model
transformations at runtime. In: 36th International Con-
ference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, pp. 676–687 (2014).
DOI 10.1145/2568225.2568310. URL http://doi.acm.

org/10.1145/2568225.2568310
56. Chen, T., Bahsoon, R.: Self-adaptive and online qos

modeling for cloud-based software services. IEEE Trans-
actions on Software Engineering 43(5), 453–475 (2017).
DOI 10.1109/TSE.2016.2608826. URL https://doi.

org/10.1109/TSE.2016.2608826
57. Cheng, B.H.C., Eder, K.I., Gogolla, M., Grunske, L.,

Litoiu, M., Müller, H.A., Pelliccione, P., Perini, A.,
Qureshi, N.A., Rumpe, B., Schneider, D., Trollmann, F.,
Villegas, N.M.: Using models at runtime to address as-
surance for self-adaptive systems. In: Models@run.time
- Foundations, Applications, and Roadmaps [Dagstuhl
Seminar 11481, November 27 - December 2, 2011].,
pp. 101–136 (2011). DOI 10.1007/978-3-319-08915-7 4.
URL https://doi.org/10.1007/978-3-319-08915-7_4

58. Cheng, B.H.C., Eder, K.I., Gogolla, M., Grunske,
L., Litoiu, M., Müller, H.A., Pelliccione, P., Perini,
A., Qureshi, N.A., Rumpe, B., Schneider, D., Troll-
mann, F., Villegas, N.M.: Using models at runtime
to address assurance for self-adaptive systems. In:

Models@run.time - Foundations, Applications, and
Roadmaps [Dagstuhl Seminar 11481, November 27 - De-
cember 2, 2011]., pp. 101–136 (2014). DOI 10.1007/
978-3-319-08915-7\ 4. URL http://dx.doi.org/10.

1007/978-3-319-08915-7_4
59. Combemale, B., Broto, L., Crégut, X., Daydé, M., Hag-

imont, D.: Autonomic management policy specification:
From uml to dsml. In: Model Driven Engineering Lan-
guages and Systems, pp. 584–599. Springer (2008)

60. Criado, J., Vicente-Chicote, C., Padilla, N., Iribarne,
L.: A model-driven approach to graphical user interface
runtime adaptation. In: Proceedings of the 5th Work-
shop on Models@run.time, pp. 49–59 (2010)

61. De Oliveira Filho, J., Papp, Z., Djapic, R., Oosteveen,
J.: Model-based design of self-adapting networked sig-
nal processing systems. In: Self-Adaptive and Self-
Organizing Systems (SASO), 2013 IEEE 7th Interna-
tional Conference on, pp. 41–50 (2013). DOI 10.1109/
SASO.2013.16

62. Debbabi, B., Diaconescu, A., Lalanda, P.: Controlling
self-organising software applications with archetypes.
In: Self-Adaptive and Self-Organizing Systems (SASO),
2012 IEEE Sixth International Conference on, pp. 69–78
(2012). DOI 10.1109/SASO.2012.21

63. deGrandis, P., Valetto, G.: Elicitation and utilization of
application-level utility functions. In: Proceedings of the
6th international conference on Autonomic computing,
pp. 107–116. ACM (2009). DOI 1145/1555228.1555259

64. DeLoach, S.A., Ou, X., Zhuang, R., Zhang, S.: Model-
driven, moving-target defense for enterprise network se-
curity. In: Models@run.time - Foundations, Applica-
tions, and Roadmaps [Dagstuhl Seminar 11481, Novem-
ber 27 - December 2, 2011]., pp. 137–161 (2014). DOI
10.1007/978-3-319-08915-7\ 5. URL http://dx.doi.

org/10.1007/978-3-319-08915-7_5
65. Denker, M., Ressia, J., Greevy, O., Nierstrasz, O.: Mod-

eling features at runtime. In: Model-Driven Engineering
Languages and Systems, pp. 138–152. Springer-Verlag
(2010)

66. Derakhshanmanesh, M., Amoui, M., O’Grady, G.,
Ebert, J., Tahvildari, L.: Graf: Graph-based runtime
adaptation framework. In: Proceedings of the 6th In-
ternational Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’11, pp.
128–137. ACM, New York, NY, USA (2011). DOI
10.1145/1988008.1988026

67. Derakhshanmanesh, M., Grieger, M., Ebert, J.: On the
need for extended transactional models@run.time. In:
S. Gtz, N. Bencomo, G. Blair, H. Song (eds.) Pro-
ceedings of the 10th International Workshop on Mod-
els@run.time, pp. 21–30. CEUR-WS.org (2015)

68. Devries, B., Cheng, B.: Using models at run time to de-
tect incomplete and inconsistent requirements. In: Pro-
ceedings of the 12th International Workshop on Mod-
els@run.time co-located with 20th International Confer-
ence on Model Driven Engineering Languages and Sys-
tems (MODELS 2016), Austin, Texas, US, September
19, 2017. (2017)

69. Diaconescu, A., Bellman, K.L., Esterle, L., Giese, H.,
Götz, S., Lewis, P., Zisman, A.: Architectures for Col-
lective Self-aware Computing Systems, pp. 191–235.
Springer International Publishing, Cham (2017). DOI
10.1007/978-3-319-47474-8 7. URL https://doi.org/

10.1007/978-3-319-47474-8_7
70. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Trans-

actional auto scaler: elastic scaling of in-memory trans-
actional data grids. In: Proceedings of the 9th inter-

http://dx.doi.org/10.1007/978-3-319-08915-7_9
http://dx.doi.org/10.1007/978-3-319-08915-7_9
http://doi.acm.org/10.1145/2568225.2568310
http://doi.acm.org/10.1145/2568225.2568310
https://doi.org/10.1109/TSE.2016.2608826
https://doi.org/10.1109/TSE.2016.2608826
https://doi.org/10.1007/978-3-319-08915-7_4
http://dx.doi.org/10.1007/978-3-319-08915-7_4
http://dx.doi.org/10.1007/978-3-319-08915-7_4
http://dx.doi.org/10.1007/978-3-319-08915-7_5
http://dx.doi.org/10.1007/978-3-319-08915-7_5
https://doi.org/10.1007/978-3-319-47474-8_7
https://doi.org/10.1007/978-3-319-47474-8_7

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 33

national conference on Autonomic computing, pp. 125–
134. ACM (2012). DOI 1145/2371536.2371559

71. Ding, Y., Namatame, N., Riedel, T., Miyaki, T., Budde,
M.: Smartteco: context-based ambient sensing and mon-
itoring for optimizing energy consumption. In: Proceed-
ings of the 8th ACM international conference on Au-
tonomic computing, pp. 169–170. ACM (2011). DOI
1145/1998582.1998612

72. Dustdar, S., Dorn, C., Li, F., Baresi, L., Cabri, G., Pau-
tasso, C., Zambonelli, F.: A roadmap towards sustain-
able self-aware service systems. In: Proceedings of the
2010 International Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’10,
pp. 10–19. ACM, New York, NY, USA (2010). DOI
10.1145/1808984.1808986

73. Ebraert, P., Tourwe, T.: A reflective approach to dy-
namic software evolution. In: W. Cazzola, S. Chiba,
G. Saake (eds.) Research report C-196, Deptartment of
Mathematical and Computing Sciences, Tokyo Institute
of Technology, pp. 37–43 (2004)

74. Eichler, J., Rieke, R.: Model-based situational security
analysis. In: Proceedings of the 6th Workshop on Mod-
els@run.time, pp. 25–36 (2011)

75. Elkhodary, A., Malek, S., Esfahani, N.: On the role of
features in analyzing the architecture of self-adaptive
software systems. In: Proceedings of the 4th Workshop
on Models@run.time, pp. 41–50 (2009)

76. Elkhodr, M., Shahrestani, S.A., Cheung, H.: The inter-
net of things: New interoperability, management and se-
curity challenges. CoRR abs/1604.04824 (2016). URL
http://arxiv.org/abs/1604.04824

77. Esfahani, N., Malek, S.: Uncertainty in Self-Adaptive
Software Systems, pp. 214–238. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2013). DOI 10.1007/
978-3-642-35813-5 9. URL https://doi.org/10.1007/

978-3-642-35813-5_9
78. Esfahani, N., Yuan, E., Canavera, K.R., Malek, S.: In-

ferring software component interaction dependencies for
adaptation support. ACM Transactions on Autonomous
and Adaptive Systems pp. 26:1–26:32 (2016)

79. Evesti, A., Ovaska, E.: Ontology-based security adapta-
tion at run-time. In: Self-Adaptive and Self-Organizing
Systems (SASO), 2010 4th IEEE International Confer-
ence on, pp. 204–212 (2010). DOI 10.1109/SASO.2010.
11

80. Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli,
J.Y., Riveill, M.: Models at runtime: Service for device
composition and adaptation. In: Proceedings of the 4th
Workshop on Models@run.time, pp. 51–60 (2009)

81. Fiadeiro, J.L., Lopes, A.: A model for dynamic recon-
figuration in service-oriented architectures. In: Soft-
ware Architecture, 4th European Conference, ECSA
2010, Copenhagen, Denmark, August 23-26, 2010.
Proceedings, pp. 70–85 (2010). DOI 10.1007/
978-3-642-15114-9\ 8. URL http://dx.doi.org/10.

1007/978-3-642-15114-9_8
82. Filho, R.R., Porter, B.: Defining emergent software us-

ing continuous self-assembly, perception, and learning.
ACM Trans. Auton. Adapt. Syst. 12(3), 16:1–16:25
(2017). DOI 10.1145/3092691. URL http://doi.acm.

org/10.1145/3092691
83. Filieri, A., Ghezzi, C., Grassi, V., Mirandola, R.:

Reliability analysis of component-based systems with
multiple failure modes. In: Component-Based Soft-
ware Engineering, 13th International Symposium,
CBSE 2010, Prague, Czech Republic, June 23-25,
2010. Proceedings, pp. 1–20 (2010). DOI 10.1007/

978-3-642-13238-4\ 1. URL http://dx.doi.org/10.

1007/978-3-642-13238-4_1

84. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-
adaptation via quantitative verification and sensitiv-
ity analysis at run time. IEEE Trans. Software Eng.
42(1), 75–99 (2016). DOI 10.1109/TSE.2015.2421318.
URL http://doi.ieeecomputersociety.org/10.1109/

TSE.2015.2421318

85. Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., , Jeze-
quel, J.M.: Modeling and validating dynamic adapta-
tion. In: Proceedings of the Third International Mod-
els@ Runtime Workshop, pp. 36–46 (2008)

86. Fouquet, F., Morin, B., Fleurey, F., Barais, O.,
Plouzeau, N., Jézéquel, J.: A dynamic component model
for cyber physical systems. In: Proceedings of the 15th
ACM SIGSOFT Symposium on Component Based Soft-
ware Engineering, CBSE 2012, part of Comparch ’12
Federated Events on Component-Based Software En-
gineering and Software Architecture, Bertinoro, Italy,
June 25-28, 2012, pp. 135–144 (2012). DOI 10.1145/
2304736.2304759. URL http://doi.acm.org/10.1145/

2304736.2304759

87. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais,
O., Plouzeau, N., Jézéquel, J.M.: An eclipse modelling
framework alternative to meet the models@ runtime re-
quirements. In: Proceedings of the 15th international
conference on Model Driven Engineering Languages and
Systems, pp. 87–101. Springer-Verlag (2012)

88. France, R., Rumpe, B.: Model-driven development of
complex software: A research roadmap. In: L. Briand,
A. Wolf (eds.) Future of Software Engineering. IEEE-CS
Press (2007)

89. Gamez, N., Fuentes, L., Troya, J.: Creating self-
adapting mobile systems with dynamic software product
lines. Software, IEEE 32(2), 105–112 (2015)

90. Garcia, A., Bencomo, N.: Non-human modelers: Can
they work? In: STAF 2017, SOFTWARE TECHNOLO-
GIES: APPLICATIONS AND FOUNDATIONS, Pro-
ceedigns of Workshops (2017)

91. Garlan, D., Schmerl, B.: Using Architectural Models at
Runtime: Research Challenges. Springer Berlin Heidel-
berg (2004)

92. Gerbert-Gaillard, E., Lalanda, P.: Self-aware model-
driven pervasive systems. In: 2016 IEEE International
Conference on Autonomic Computing (ICAC), pp. 221–
222 (2016). DOI 10.1109/ICAC.2016.26

93. Ghahremani, S., Giese, H., Vogel, T.: Efficient utility-
driven self-healing employing adaptation rules for large
dynamic architectures. In: 2017 IEEE International
Conference on Autonomic Computing (ICAC), pp. 59–
68 (2017). DOI 10.1109/ICAC.2017.35

94. Ghanbari, S., Soundararajan, G., Chen, J., Amza,
C.: Adaptive learning of metric correlations for
temperature-aware database provisioning. In: Auto-
nomic Computing, 2007. ICAC ’07. Fourth International
Conference on, pp. 26–26 (2007). DOI 10.1109/ICAC.
2007.3

95. Ghezzi, C., Mocci, A., Sangiorgio, M.: Runtime monitor-
ing of component changes with spy@runtime. In: Pro-
ceedings of the 34th International Conference on Soft-
ware Engineering, ICSE ’12, pp. 1403–1406. IEEE Press,
Piscataway, NJ, USA (2012). URL http://dl.acm.org/

citation.cfm?id=2337223.2337430

96. Goldsby, H., Cheng, B., McKinley, P., Knoester, D.,
Ofria, C.: Digital evolution of behavioral models for
autonomic systems. In: Autonomic Computing, 2008.

http://arxiv.org/abs/1604.04824
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-35813-5_9
http://dx.doi.org/10.1007/978-3-642-15114-9_8
http://dx.doi.org/10.1007/978-3-642-15114-9_8
http://doi.acm.org/10.1145/3092691
http://doi.acm.org/10.1145/3092691
http://dx.doi.org/10.1007/978-3-642-13238-4_1
http://dx.doi.org/10.1007/978-3-642-13238-4_1
http://doi.ieeecomputersociety.org/10.1109/TSE.2015.2421318
http://doi.ieeecomputersociety.org/10.1109/TSE.2015.2421318
http://doi.acm.org/10.1145/2304736.2304759
http://doi.acm.org/10.1145/2304736.2304759
http://dl.acm.org/citation.cfm?id=2337223.2337430
http://dl.acm.org/citation.cfm?id=2337223.2337430

34 Nelly Bencomo et al.

ICAC ’08. International Conference on, pp. 87–96
(2008). DOI 10.1109/ICAC.2008.26

97. Gonzalez-Herrera, I., Bourcier, J., Daubert, E.,
Rudametkin, W., Barais, O., Fouquet, F., Jézéquel,
J.M.: Scapegoat: an adaptive monitoring framework for
component-based systems. In: Software Architecture
(WICSA), 2014 IEEE/IFIP Conference on, pp. 67–76.
IEEE (2014)

98. Götz, S., Bencomo, N., France, R.B.: Devising the fu-
ture of the models@run.time workshop. ACM SIGSOFT
Software Engineering Notes 40(1), 26–29 (2015). DOI
10.1145/2693208.2693249. URL http://doi.acm.org/

10.1145/2693208.2693249
99. Götz, S., Kühn, T.: Models@run.time for object-

relational mapping supporting schema evolution. In:
S. Gtz, N. Bencomo, G. Blair, H. Song (eds.) Pro-
ceedings of the 10th International Workshop on Mod-
els@run.time, pp. 41–50. CEUR-WS.org (2015)

100. Götz, S., Schöne, R., Wilke, C., Mendez, J., Assmann,
U.: Towards predictive self-optimization by situation
recognition. In: Proceedings of 2nd Workshop ”En-
ergy Aware Software - Engineering and Development”
(EASED) (2013)

101. Götz, S., Wilke, C., Cech, S., Aßmann, U.: Runtime
variability management for energy-efficient software by
contract negotiation. In: Proceedings of the 6th Work-
shop on Models@run.time, pp. 61–72 (2011)

102. Gouko, M., Ito, K.: Action generation model for mul-
tiple tasks based on the ecological approach. In: Self-
Adaptive and Self-Organizing Systems, 2008. SASO ’08.
Second IEEE International Conference on, pp. 457–458
(2008). DOI 10.1109/SASO.2008.29

103. Grohmann, J., Herbst, N., Spinner, S., Kounev, S.: Self-
tuning resource demand estimation. In: 2017 IEEE
International Conference on Autonomic Computing
(ICAC), pp. 21–26 (2017). DOI 10.1109/ICAC.2017.19

104. Gtz, S., Gerostathopoulos, I., Krikava, F., Shahzada, A.,
Spalazzese, R.: Adaptive exchange of distributed par-
tial models@run.time for highly dynamic systems. In:
Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE (2015)

105. Guo, T., Shenoy, P.: Model-driven geo-elasticity in
database clouds. In: Autonomic Computing (ICAC),
2015 IEEE International Conference on, pp. 61–70
(2015). DOI 10.1109/ICAC.2015.46

106. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dy-
namic software product lines. Computer 41(4), 93–95
(2008). DOI 10.1109/MC.2008.123

107. Hamann, L., Gogolla, M., Honsel, D.: Towards support-
ing multiple execution environments for uml/ocl mod-
els at runtime. In: Proceedings of the 7th Workshop on
Models@Run.Time, MRT ’12, pp. 46–51. ACM, New
York, NY, USA (2012). DOI 10.1145/2422518.2422526.
URL http://doi.acm.org/10.1145/2422518.2422526

108. Hinchey, M., Park, S., Schmid, K.: Building dynamic
software product lines. Computer 45, 22–26 (2012).
DOI doi.ieeecomputersociety.org/10.1109/MC.2012.332

109. Hooman, J., Hendriks, T.: Model-based run-time error
detection. In: H. Giese (ed.) Models in Software Engi-
neering, Lecture Notes in Computer Science, vol. 5002,
pp. 225–236. Springer Berlin Heidelberg (2008). DOI
10.1007/978-3-540-69073-3\ 24. URL http://dx.doi.

org/10.1007/978-3-540-69073-3_24
110. Huber, N., Brosig, F., Kounev, S.: Model-based self-

adaptive resource allocation in virtualized environ-
ments. In: Proceedings of the 6th International Sym-

posium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’11, pp. 90–99. ACM, New
York, NY, USA (2011). DOI 10.1145/1988008.1988021

111. Hussein, M., Han, J., Yu, J., Colman, A.: Enabling run-
time evolution of context-aware adaptive services. In:
2013 IEEE International Conference on Services Com-
puting, pp. 248–255 (2013). DOI 10.1109/SCC.2013.77

112. Iordanov, B., Alexandrova, A., Abbas, S., Hilpold, T.,
Upadrasta, P.: The semantic web as a software modeling
tool: An application to citizen relationship management.
In: Model-Driven Engineering Languages and Systems,
pp. 589–603. Springer (2013)

113. Jacques-Silva, G., Challenger, J., Degenaro, L., Giles, J.,
Wagle, R.: Towards autonomic fault recovery in system-
s. In: Autonomic Computing, 2007. ICAC ’07. Fourth
International Conference on, pp. 31–31 (2007). DOI
10.1109/ICAC.2007.40

114. Jacquet, C., Mohamed, A., Boulanger, F., Hardebolle,
C., YacineBellik: Building heterogeneous models at run-
time to detect faults in ambient-intelligent environ-
ments. In: Proceedings of the 8th Workshop on Mod-
els@run.time, pp. 50–61. CEUR-WS.org (2013)

115. Janik, A., Zielinski, K.: Transparent resource manage-
ment and self-adaptability using multitasking virtual
machine rm api. In: Proceedings of the 2006 Interna-
tional Workshop on Self-adaptation and Self-managing
Systems, SEAMS ’06, pp. 51–57. ACM, New York, NY,
USA (2006). DOI 10.1145/1137677.1137688

116. Javed, F., Arshad, N.: Adopt: An adaptive optimiza-
tion framework for large-scale power distribution sys-
tems. In: Self-Adaptive and Self-Organizing Systems,
2009. SASO ’09. Third IEEE International Conference
on, pp. 254–264 (2009). DOI 10.1109/SASO.2009.26

117. Johanndeiter, T., Goldstein, A., Frank, U.: Towards
business process models at runtime. In: Proceedings
of the 8th Workshop on Models@run.time, pp. 13–25.
CEUR-WS.org (2013)

118. Karol, S., Bürger, C., Aßmann, U.: Towards well-formed
fragment composition with reference attribute gram-
mars. In: V. Grassi, R. Mirandola, N. Medvidovic,
M. Larsson (eds.) Proceedings of the 15th ACM SIG-
SOFT Symposium on Component Based Software En-
gineering, CBSE 2012, part of Comparch 12 Federated
Events on Component-Based Software Engineering and
Software Architecture, pp. 109–114. ACM (2012)

119. Kikava, F., Rouvoy, R., Seinturier, L.: Infrastructure as
runtime models: Towards model-driven resource man-
agement. In: Model Driven Engineering Languages
and Systems (MODELS), 2015 ACM/IEEE 18th In-
ternational Conference on, pp. 100–105 (2015). DOI
10.1109/MODELS.2015.7338240

120. Kitchenham, B.: Kitchenham, 2004 procedures for per-
forming systematic reviews (2004)

121. Kounev, S., Brosig, F., Huber, N.: Self-aware qos man-
agement in virtualized infrastructures. In: Proceed-
ings of the 8th ACM international conference on Au-
tonomic computing, pp. 175–176. ACM (2011). DOI
1145/1998582.1998615

122. Kounev, S., Kephart, J.O., Milenkoski, A., Zhu, X.
(eds.): Self-Aware Computing Systems. Springer (2017)

123. Kounev, S., Lewis, P., Bellman, K.L., Bencomo, N.,
Camara, J., Diaconescu, A., Esterle, L., Geihs, K.,
Giese, H., Götz, S., Inverardi, P., Kephart, J.O., Zis-
man, A.: The Notion of Self-aware Computing, pp. 3–16.
Springer International Publishing, Cham (2017). DOI
10.1007/978-3-319-47474-8 1. URL https://doi.org/

10.1007/978-3-319-47474-8_1

http://doi.acm.org/10.1145/2693208.2693249
http://doi.acm.org/10.1145/2693208.2693249
http://doi.acm.org/10.1145/2422518.2422526
http://dx.doi.org/10.1007/978-3-540-69073-3_24
http://dx.doi.org/10.1007/978-3-540-69073-3_24
https://doi.org/10.1007/978-3-319-47474-8_1
https://doi.org/10.1007/978-3-319-47474-8_1

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 35

124. Kuhn, A., Verwaest, T.: FAME - a polyglot library for
metamodeling at runtime. In: Proceedings of the Third
International Models@ Runtime Workshop, pp. 57–66
(2008)

125. Kusic, D., Kandasamy, N., Jiang, G.: Approximation
modeling for the online performance management of dis-
tributed computing systems. In: Autonomic Comput-
ing, 2007. ICAC ’07. Fourth International Conference
on, pp. 23–23 (2007). DOI 10.1109/ICAC.2007.8

126. Kutare, M., Eisenhauer, G., Wang, C., Schwan, K., Tal-
war, V., Wolf, M.: Monalytics: online monitoring and
analytics for managing large scale data centers. In:
Proceedings of the 7th international conference on Au-
tonomic computing, pp. 141–150. ACM (2010). DOI
1145/1809049.1809073

127. Křikava, F., Collet, P., France, R.B.: Actor-based run-
time model of adaptable feedback control loops. In: Pro-
ceedings of the 7th Workshop on Models@Run.Time,
MRT ’12, pp. 39–44. ACM, New York, NY, USA (2012).
DOI 10.1145/2422518.2422525. URL http://doi.acm.

org/10.1145/2422518.2422525

128. Lalanda, P., Gerber-Gaillard, E., Chollet, S.: Self-aware
context in smart home pervasive platforms. In: 2017
IEEE International Conference on Autonomic Comput-
ing (ICAC), pp. 119–124 (2017). DOI 10.1109/ICAC.
2017.1

129. Landauer, C.: Mitigating the inevitable failure of knowl-
edge representation. In: 2017 IEEE International Con-
ference on Autonomic Computing (ICAC), pp. 239–246
(2017). DOI 10.1109/ICAC.2017.32

130. Landauer, C., Bellman, K.L.: Reflective systems need
models at run time. In: Proceedings of the 11th Inter-
national Workshop on Models@run.time co-located with
19th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2016), Saint
Malo, France, October 4, 2016., pp. 52–59 (2016). URL
http://ceur-ws.org/Vol-1742/MRT16_paper_10.pdf

131. Lee, J., Muthig, D., Naab, M.: An approach for de-
veloping service oriented product lines. In: Proceed-
ings of the 12th international on Software Product
Line Confer SPLC 2008, pp. 275–284 (2008). DOI
10.1109/SPLC.2008.34

132. de Lemos, R., Giese, H., Müller, H.A., Shaw, M., An-
dersson, J., Litoiu, M., Schmerl, B., Tamura, G., Ville-
gas, N.M., Vogel, T., Weyns, D., Baresi, L., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dust-
dar, S., Engels, G., Geihs, K., Göschka, K.M., Gorla, A.,
Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes,
A., Magee, J., Malek, S., Mankovskii, S., Mirandola, R.,
Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C.,
Schäfer, W., Schlichting, R., Smith, D.B., Sousa, J.P.,
Tahvildari, L., Wong, K., Wuttke, J.: Software Engi-
neering for Self-Adaptive Systems: A Second Research
Roadmap, pp. 1–32. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013). DOI 10.1007/978-3-642-35813-5 1

133. Loulou, H., Saudrais, S., Soubra, H., Larouci, C.: Adapt-
ing security policy at runtime for connected autonomous
vehicles. In: 2016 IEEE 25th International Conference
on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE), pp. 26–31 (2016). DOI
10.1109/WETICE.2016.16

134. Maes, P.: Concepts and experiments in computational
reflection. In: Conference Proceedings on Object-
oriented Programming Systems, Languages and Appli-
cations, OOPSLA ’87, pp. 147–155. ACM, New York,
NY, USA (1987). DOI 10.1145/38765.38821

135. Maier, M.W.: Architecting principles for systems-
of-systems. Systems Engineering 1(4), 267–284
(1998). DOI 10.1002/(SICI)1520-6858(1998)1:
4〈267::AID-SYS3〉3.0.CO;2-D. URL http:

//dx.doi.org/10.1002/(SICI)1520-6858(1998)1:

4<267::AID-SYS3>3.0.CO;2-D

136. Maoz, S.: Model-based traces. In: Proceedings of the
Third International Models@ Runtime Workshop, pp.
16–25 (2008)

137. Moawad, A., Hartmann, T., Fouquet, F., Nain, G.,
Klein, J., Traon, Y.L.: Beyond discrete modeling: A con-
tinuous and efficient model for iot. In: Model Driven
Engineering Languages and Systems (MODELS), 2015
ACM/IEEE 18th International Conference on, pp. 90–
99 (2015). DOI 10.1109/MODELS.2015.7338239

138. Mocci, A., Sangiorgio, M.: Detecting component
changes at run time with behavior models. Com-
puting 95(3), 191–221 (2013). DOI 10.1007/
s00607-012-0214-z. URL http://dx.doi.org/10.1007/

s00607-012-0214-z

139. Mongiello, M., Pelliccione, P., Sciancalepore, M.: Ac-
contract: Run-time verification of context-aware appli-
cations. In: Proceedings of the 10th International Sym-
posium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’15, pp. 24–34. IEEE Press,
Piscataway, NJ, USA (2015). URL http://dl.acm.org/

citation.cfm?id=2821357.2821363

140. Mordacchini, M., Passarella, A., Chorley, M., Colombo,
G., Tanasescu, V.: Making mobile users’ devices aware
of the surrounding physical environment: An approach
based on cognitive heuristics. In: Self-Adaptive and
Self-Organizing Systems (SASO), 2013 IEEE 7th In-
ternational Conference on, pp. 199–208 (2013). DOI
10.1109/SASO.2013.38

141. Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg,
A.: Models@ run. time to support dynamic adaptation.
Computer 42(10), 44–51 (2009)

142. Morin, B., Barais, O., Nain, G., Jézéquel, J.: Tam-
ing dynamically adaptive systems using models and
aspects. In: 31st International Conference on Soft-
ware Engineering, ICSE 2009, May 16-24, 2009, Van-
couver, Canada, Proceedings, pp. 122–132 (2009). DOI
10.1109/ICSE.2009.5070514. URL http://dx.doi.org/

10.1109/ICSE.2009.5070514

143. Morin, B., Nain, G., Barais, O., Jezequel, J.M.: Leverag-
ing models from design-time to runtime. a live demo. In:
Proceedings of the 4th Workshop on Models@run.time,
pp. 21–30 (2009)

144. Mosincat, A.D., Binder, W.: Self-tuning bpel processes.
In: Proceedings of the 6th international conference on
Autonomic computing, pp. 47–48. ACM (2009). DOI
1145/1555228.1555239

145. Moyano, F., Fernandez-Gago, C., Lopez, J.: A model-
driven approach for engineering trust and repu-
tation into software services. Journal of Net-
work and Computer Applications 69, 134 – 151
(2016). DOI http://dx.doi.org/10.1016/j.jnca.2016.04.
018. URL http://www.sciencedirect.com/science/

article/pii/S1084804516300698

146. Mullins, R.: The EternalS Roadmap – Defining a
Research Agenda for Eternal Systems, pp. 135–147.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
DOI 10.1007/978-3-642-45260-4 10

147. Nascimento, A., Rubira, C., Castor, F.: Using cvl to
support self-adaptation of fault-tolerant service compo-
sitions. In: Self-Adaptive and Self-Organizing Systems

http://doi.acm.org/10.1145/2422518.2422525
http://doi.acm.org/10.1145/2422518.2422525
http://ceur-ws.org/Vol-1742/MRT16_paper_10.pdf
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://dx.doi.org/10.1007/s00607-012-0214-z
http://dx.doi.org/10.1007/s00607-012-0214-z
http://dl.acm.org/citation.cfm?id=2821357.2821363
http://dl.acm.org/citation.cfm?id=2821357.2821363
http://dx.doi.org/10.1109/ICSE.2009.5070514
http://dx.doi.org/10.1109/ICSE.2009.5070514
http://www.sciencedirect.com/science/article/pii/S1084804516300698
http://www.sciencedirect.com/science/article/pii/S1084804516300698

36 Nelly Bencomo et al.

(SASO), 2013 IEEE 7th International Conference on,
pp. 261–262 (2013). DOI 10.1109/SASO.2013.34

148. Neamtiu, I.G.: Practical dynamic software updating.
Ph.D. thesis (2008)

149. Nguyen, P.H., Nain, G., Klein, J., Mouelhi, T.,
Le Traon, Y.: Model-driven adaptive delegation. In:
Proceedings of the 12th Annual International Confer-
ence on Aspect-oriented Software Development, AOSD
’13, pp. 61–72. ACM, New York, NY, USA (2013). DOI
10.1145/2451436.2451445. URL http://doi.acm.org/

10.1145/2451436.2451445

150. Park, S., Hinchey, M., In, H.P., Schmid, K.: 8th inter-
national workshop on dynamic software product lines
(dspl 2014). In: Proceedings of the 18th International
Software Product Line Conference - Volume 1, SPLC
’14, pp. 355–355. ACM, New York, NY, USA (2014).
DOI 10.1145/2648511.2648554. URL http://doi.acm.

org/10.1145/2648511.2648554

151. Parra, C., Blanc, X., Cleve, A., Duchien, L.: Unify-
ing design and runtime software adaptation using as-
pect models. Sci. Comput. Program. 76(12), 1247–
1260 (2011). DOI 10.1016/j.scico.2010.12.005. URL
http://dx.doi.org/10.1016/j.scico.2010.12.005

152. Pasquale, L., Baresi, L., Nuseibeh, B.: Towards adap-
tive systems through requirements@runtime. In: Pro-
ceedings of the 6th Workshop on Models@run.time, pp.
13–24 (2011)

153. Paucar, L.H.G., Bencomo, N.: Runtime models based
on dynamic decision networks: Enhancing the decision-
making in the domain of ambient assisted living ap-
plications. In: Proceedings of the 11th International
Workshop on Models@run.time co-located with 19th
International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2016), Saint
Malo, France, October 4, 2016., pp. 9–17 (2016). URL
http://ceur-ws.org/Vol-1742/MRT16_paper_12.pdf

154. Paucar, L.H.G., Bencomo, N.: Juggling preferences in a
world of uncertainty. In: 25th IEEE International Re-
quirements Engineering Conference, RE 2017, Lisbon,
Portugal, September 4-8, 2017, pp. 9–17 (2017). URL
https://doi.org/10.1109/RE.2017.12

155. Paucar, L.H.G., Bencomo, N., Yuen, K.K.F.: Juggling
preferences in a world of uncertainty. In: 25th IEEE In-
ternational Requirements Engineering Conference, RE
2017, Lisbon, Portugal, September 4-8, 2017, pp. 430–
435 (2017). DOI 10.1109/RE.2017.12. URL https:

//doi.org/10.1109/RE.2017.12

156. Pickering, B., Robert, S., Menoret, S., Mengusoglu, E.:
Model-driven management of complex systems. In: Pro-
ceedings of the Third International Models@ Runtime
Workshop, pp. 117–126 (2008)

157. Piechnick, C., Piechnick, M., Götz, S., Püschel, G.,
Aßmann, U.: Managing distributed context models re-
quires adaptivity too. In: S. Gtz, N. Bencomo, G. Blair,
H. Song (eds.) Proceedings of the 10th International
Workshop on Models@run.time, pp. 61–70. CEUR-
WS.org (2015)

158. Porter, J., Menascé, D.A., Gomaa, H.: Desarm: A de-
centralized mechanism for discovering software architec-
ture models at runtime in distributed systems. In: Pro-
ceedings of the 11th International Workshop on Mod-
els@run.time co-located with 19th International Con-
ference on Model Driven Engineering Languages and
Systems (MODELS 2016), Saint Malo, France, Octo-
ber 4, 2016., pp. 43–51 (2016). URL http://ceur-ws.

org/Vol-1742/MRT16_paper_3.pdf

159. Provensi, L.L., Costa, F.M., Sacramento, V.: Manage-
ment of runtime models and meta-models in the meta-
orb reflective middleware architecture. In: Proceedings
of the 4th Workshop on Models@run.time, pp. 81–88
(2009)

160. Qureshi, N., Liaskos, S., Perini, A.: Reasoning about
adaptive requirements for self-adaptive systems at run-
time. In: Requirements@Run.Time (RE@RunTime),
2011 2nd International Workshop on, pp. 16–22 (2011).
DOI 10.1109/ReRunTime.2011.6046243

161. Qureshi, N., Perini, A., Ernst, N., Mylopoulos, J.: To-
wards a continuous requirements engineering framework
for self-adaptive systems. In: Requirements@Run.Time
(RE@RunTime), 2010 First International Workshop on,
pp. 9–16 (2010). DOI 10.1109/RERUNTIME.2010.
5628552

162. Ramirez, A.J., Cheng, B.H.: Evolving models at run
time to address functional and non-functional adapta-
tion requirements. In: Proceedings of the 4th Workshop
on Models@run.time, pp. 31–40 (2009)

163. Ramirez, A.J., Cheng, B.H., Bencomo, N., Sawyer, P.:
Relaxing claims: coping with uncertainty while evaluat-
ing assumptions at run time. In: Proceedings of the
15th international conference on Model Driven Engi-
neering Languages and Systems, pp. 53–69. Springer-
Verlag (2012)

164. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxon-
omy of uncertainty for dynamically adaptive systems.
In: Proceedings of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’12, pp. 99–108. IEEE Press, Pis-
cataway, NJ, USA (2012). URL http://dl.acm.org/

citation.cfm?id=2666795.2666812
165. Redlich, D., Blair, G.S., Rashid, A., Molka, T., Gilani,

W.: Research challenges for business process models at
run-time. In: Models@run.time - Foundations, Applica-
tions, and Roadmaps [Dagstuhl Seminar 11481, Novem-
ber 27 - December 2, 2011]., pp. 208–236 (2014). DOI
10.1007/978-3-319-08915-7\ 8. URL http://dx.doi.

org/10.1007/978-3-319-08915-7_8
166. Ressia, J., Renggli, L., Girba, T., Nierstrasz, O.: Run-

time evolution through explicit meta-objects. In: Pro-
ceedings of the 5th Workshop on Models@run.time, pp.
37–48 (2010)

167. Riva, C., Rodriguez, J.V.: Combining static and dy-
namic views for architecture reconstruction. In: Pro-
ceedings of the Sixth European Conference on Software
Maintenance and Reengineering, pp. 47–55 (2002). DOI
10.1109/CSMR.2002.995789

168. Roth, S., Hauder, M., Matthes, F.: A tool for col-
laborative evolution of enterprise architecture mod-
els at runtime. In: Proceedings of the 8th Work-
shop on Models@run.time, pp. 1–12. CEUR-WS.org
(2013). URL http://ceur-ws.org/Vol-1079/mrt13_

submission_6.pdf
169. Rothenberg, J., Widman, L.E., Loparo, K.A., Nielsen,

N.R.: The Nature of Modeling. In: Artificial Intelligence,
Simulation and Modeling, pp. 75–92. John Wiley & Sons
(1989)

170. Samuel, A.L.: Some studies in machine learning using
the game of checkers. IBM Journal of Research and
Development 44(1.2), 206–226 (2000). DOI 10.1147/rd.
441.0206

171. Saudrais, S., Staikopoulos, A., Clarke, S.: Using specifi-
cation models for runtime adaptations. In: Proceedings
of the 4th Workshop on Models@run.time, pp. 109–117
(2009)

http://doi.acm.org/10.1145/2451436.2451445
http://doi.acm.org/10.1145/2451436.2451445
http://doi.acm.org/10.1145/2648511.2648554
http://doi.acm.org/10.1145/2648511.2648554
http://dx.doi.org/10.1016/j.scico.2010.12.005
http://ceur-ws.org/Vol-1742/MRT16_paper_12.pdf
https://doi.org/10.1109/RE.2017.12
https://doi.org/10.1109/RE.2017.12
https://doi.org/10.1109/RE.2017.12
http://ceur-ws.org/Vol-1742/MRT16_paper_3.pdf
http://ceur-ws.org/Vol-1742/MRT16_paper_3.pdf
http://dl.acm.org/citation.cfm?id=2666795.2666812
http://dl.acm.org/citation.cfm?id=2666795.2666812
http://dx.doi.org/10.1007/978-3-319-08915-7_8
http://dx.doi.org/10.1007/978-3-319-08915-7_8
http://ceur-ws.org/Vol-1079/mrt13_submission_6.pdf
http://ceur-ws.org/Vol-1079/mrt13_submission_6.pdf

Models@run.time: a Guided Tour of the State-of-the-Art and Research Challenges 37

172. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkel-
stein, A.: Requirements-aware systems: A research
agenda for re for self-adaptive systems. In: 2010 18th
IEEE International Requirements Engineering Confer-
ence, pp. 95–103 (2010). DOI 10.1109/RE.2010.21

173. Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan,
H.: Discovering architectures from running systems.
IEEE Transactions on Software Engineering 32(7), 454–
466 (2006). DOI 10.1109/TSE.2006.66

174. Schneider, D., Becker, M.: Runtime models for self-
adaptation in the ambient assisted living domain. In:
Proceedings of the Third International Models@ Run-
time Workshop, pp. 47–56 (2008)

175. Schneider, D., Becker, M., Trapp, M.: Approaching run-
time trust assurance in open adaptive systems. In: Pro-
ceedings of the 6th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’11, pp. 196–201. ACM, New York, NY,
USA (2011). DOI 10.1145/1988008.1988036

176. Schneider, D., Trapp, M.: A safety engineering frame-
work for open adaptive systems. In: Self-Adaptive and
Self-Organizing Systems (SASO), 2011 Fifth IEEE In-
ternational Conference on, pp. 89–98 (2011). DOI
10.1109/SASO.2011.20

177. Schneider, D., Trapp, M.: Conditional safety certifi-
cation of open adaptive systems. ACM Trans. Au-
ton. Adapt. Syst. 8(2), 8:1–8:20 (2013). DOI 10.1145/
2491465.2491467. URL http://doi.acm.org/10.1145/

2491465.2491467

178. Schöne, R., Götz, S., Aßmann, U., Bürger, C.: Incre-
mental runtime-generation of optimisation problems us-
ing rag-controlled rewriting. In: Proceedings of the
11th International Workshop on Models@run.time co-
located with 19th International Conference on Model
Driven Engineering Languages and Systems (MODELS
2016), Saint Malo, France, October 4, 2016., pp. 26–
34 (2016). URL http://ceur-ws.org/Vol-1742/MRT16_

paper_5.pdf

179. Simmonds, J., Ben-David, S., Chechik, M.: Mon-
itoring and recovery for web service applications.
Computing 95(3), 223–267 (2013). DOI 10.1007/
s00607-012-0215-y. URL http://dx.doi.org/10.1007/

s00607-012-0215-y

180. Song, H., Huang, G., Chauvel, F., Sun, Y.: Applying
mde tools at runtime: Experiments upon runtime mod-
els. In: Proceedings of the 5th Workshop on Mod-
els@run.time, pp. 25–36 (2010). Tool demo paper

181. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z.,
Mei, H.: Generating synchronization engines between
running systems and their model-based views. In: Pro-
ceedings of the 4th Workshop on Models@run.time, pp.
11–20 (2009)

182. Song, H., Zhang, X., Ferry, N., Chauvel, F., Solberg, A.,
Huang, G.: Modelling adaptation policies as domain-
specific constraints. In: Model-Driven Engineering Lan-
guages and Systems, pp. 269–285. Springer (2014)

183. Soria, C.C., Pérez, J., Carśı, J.A.: Dynamic adapta-
tion of aspect-oriented components. In: Component-
Based Software Engineering, 10th International Sym-
posium, CBSE 2007, Medford, MA, USA, July 9-11,
2007, Proceedings, pp. 49–65 (2007). DOI 10.1007/
978-3-540-73551-9\ 4. URL http://dx.doi.org/10.

1007/978-3-540-73551-9_4

184. Souza, V., Mylopoulos, J.: From awareness requirements
to adaptive systems: A control-theoretic approach. In:
Requirements@Run.Time (RE@RunTime), 2011 2nd

International Workshop on, pp. 9–15 (2011). DOI
10.1109/ReRunTime.2011.6046242

185. Spinner, S., Kounev, S., Zhu, X., Lu, L., Uysal, M.,
Holler, A., Griffith, R.: Runtime vertical scaling of virtu-
alized applications via online model estimation. In: Self-
Adaptive and Self-Organizing Systems (SASO), 2014
IEEE Eighth International Conference on, pp. 157–166
(2014). DOI 10.1109/SASO.2014.29

186. Staikopoulos, A., Saudrais, S., Clarke, S., Padget, J.,
Cliffe, O., De Vos, M.: Mutual dynamic adaptation of
models and service enactment in alive. In: Proceedings
of the Third International Models@ Runtime Workshop,
pp. 26–35 (2008)

187. Stehle, E., Lynch, K., Shevertalov, M., Rorres, C., Man-
coridis, S.: On the use of computational geometry to de-
tect software faults at runtime. In: Proceedings of the
7th international conference on Autonomic computing,
pp. 109–118. ACM (2010). DOI 1145/1809049.1809069

188. Strassner, J., Samudrala, S., Cox, G., Liu, Y., Jiang,
M., Zhang, J., Meer, S.v.d., Foghl, M.., Donnelly, W.:
The design of a new context-aware policy model for au-
tonomic networking. In: Autonomic Computing, 2008.
ICAC ’08. International Conference on, pp. 119–128
(2008). DOI 10.1109/ICAC.2008.36

189. Szvetits, M., Zdun, U.: Enhancing root cause analysis
with runtime models and interactive visualizations. In:
Proceedings of the 8th Workshop on Models@run.time,
pp. 38–49. CEUR-WS.org (2013)

190. Szvetits, M., Zdun, U.: Systematic literature review of
the objectives, techniques, kinds, and architectures of
models at runtime. Software & Systems Modeling pp.
1–39 (2013)

191. Tallabaci, G., Souza, V.E.S.: Engineering adaptation
with zanshin: An experience report. In: Proceedings of
the 8th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS
’13, pp. 93–102. IEEE Press, Piscataway, NJ, USA
(2013)

192. Tamura, G., Villegas, N.M., Müller, H.A., Duchien,
L., Seinturier, L.: Improving context-awareness in self-
adaptation using the dynamico reference model. In: Pro-
ceedings of the 8th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’13, pp. 153–162. IEEE Press, Piscataway,
NJ, USA (2013)

193. Tanvir Al Amin, M., Li, S., Rahman, M., Seetharamu,
P., Wang, S., Abdelzaher, T., Gupta, I., Srivatsa, M.,
Ganti, R., Ahmed, R., Le, H.: Social trove: A self-
summarizing storage service for social sensing. In: Au-
tonomic Computing (ICAC), 2015 IEEE International
Conference on, pp. 41–50 (2015). DOI 10.1109/ICAC.
2015.47

194. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural
styles for runtime software adaptation. In: Software
Architecture, 2009 & European Conference on Soft-
ware Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on, pp. 171–180. IEEE (2009).
Need to define for fundamental

195. Torjusen, A.B., Abie, H., Paintsil, E., Trcek, D.,
Skomedal, A.: Towards run-time verification of adap-
tive security for iot in ehealth. In: Proceedings of the
2014 European Conference on Software Architecture
Workshops, ECSAW ’14, pp. 4:1–4:8. ACM, New York,
NY, USA (2014). DOI 10.1145/2642803.2642807. URL
http://doi.acm.org/10.1145/2642803.2642807

196. Trollmann, F., Albayrak, S.: Expressing model rela-
tions as basis for structural consistency analysis in mod-

http://doi.acm.org/10.1145/2491465.2491467
http://doi.acm.org/10.1145/2491465.2491467
http://ceur-ws.org/Vol-1742/MRT16_paper_5.pdf
http://ceur-ws.org/Vol-1742/MRT16_paper_5.pdf
http://dx.doi.org/10.1007/s00607-012-0215-y
http://dx.doi.org/10.1007/s00607-012-0215-y
http://dx.doi.org/10.1007/978-3-540-73551-9_4
http://dx.doi.org/10.1007/978-3-540-73551-9_4
http://doi.acm.org/10.1145/2642803.2642807

38 Nelly Bencomo et al.

els@run.time. In: Proceedings of the 7th Workshop on
Models@Run.Time, MRT ’12, pp. 74–75. ACM, New
York, NY, USA (2012). DOI 10.1145/2422518.2422530.
URL http://doi.acm.org/10.1145/2422518.2422530

197. Vasconcelos, A., Werner, C.: Software architecture re-
covery based on dynamic analysis. In: XVIII Brazil-
ian Symposium on Software Engineering, Workshop on
Modern Software Maintenance (2004)

198. Vialon, A., Tei, K., Aknine, S.: Soft-goal approximation
context awareness of goal-driven self-adaptive systems.
In: 2017 IEEE International Conference on Autonomic
Computing (ICAC), pp. 233–238 (2017). DOI 10.1109/
ICAC.2017.25

199. Vogel, T., Giese, H.: A language for feedback loops in
self-adaptive systems: Executable runtime megamodels.
In: Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, pp. 129–138 (2012). DOI 10.1109/SEAMS.
2012.6224399

200. Vogel, T., Giese, H.: Model-driven engineering of self-
adaptive software with eurema. ACM Trans. Auton.
Adapt. Syst. 8(4), 18:1–18:33 (2014). DOI 10.1145/
2555612. URL http://doi.acm.org/10.1145/2555612

201. Vogel, T., Giese, H.: On unifying development models
and runtime models. In: S. Gtz, N. Bencomo, R. France
(eds.) Proceedings of the 9th International Workshop on
Models@run.time, pp. 5–10. CEUR-WS.org (2014)

202. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H.,
Becker, B.: Incremental model synchronization for ef-
ficient run-time monitoring. In: Proceedings of the 4th
Workshop on Models@run.time, pp. 1–10 (2009)

203. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H.,
Becker, B.: Model-driven architectural monitoring and
adaptation for autonomic systems. In: Proceedings of
the 6th international conference on Autonomic com-
puting, pp. 67–68. ACM (2009). DOI 1145/1555228.
1555249

204. Vogel, T., Seibel, A., Giese, H.: The role of mod-
els and megamodels at runtime. In: Proceedings of
the 5th Workshop on Models@run.time, LNCS 6627,
pp. 13–24. Springer Berlin Heidelberg (2010). DOI
10.1007/978-3-642-21210-9 22

205. Vrbaski, M., Mussbacher, G., Petriu, D., Amyot, D.:
Goal models as run-time entities in context-aware sys-
tems. In: Proceedings of the 7th Workshop on Mod-
els@Run.Time, MRT ’12, pp. 3–8. ACM, New York,
NY, USA (2012). DOI 10.1145/2422518.2422520. URL
http://doi.acm.org/10.1145/2422518.2422520

206. Waignier, G., Sriplakich, P., Meur, A.F.L., Duchien, L.:
A framework for bridging the gap between design and
runtime debugging of component-based applications. In:
Proceedings of the Third International Models@ Run-
time Workshop, pp. 87–96 (2008)

207. Walter, J., Marco, A.D., Spinner, S., Inverardi, P.,
Kounev, S.: Online learning of run-time models for
performance and resource management in data cen-
ters. In: Self-Aware Computing Systems., pp. 507–528.
IEEE Press, Los Alamitos, CA, USA (2017). DOI
https://doi.org/10.1007/978-3-319-47474-8\ 17

208. Wang, Y., Clarke, P.J., Wu, Y., Allen, A., Deng, Y.:
Runtime models to support user-centric communica-
tion. In: Proceedings of the Third International Mod-
els@ Runtime Workshop, pp. 77–86 (2008)

209. Wätzold, S., Giese, H.: Classifying distributed self-* sys-
tems based on runtime models and their coupling. In:
S. Gtz, N. Bencomo, R. France (eds.) Proceedings of

the 9th International Workshop on Models@run.time,
pp. 11–20. CEUR-WS.org (2014)

210. Weissbach, M., Chrszon, P., Springer, T., Schill, A.: De-
centralized coordination of adaptations in distributed
self-adaptive software systems. In: Self-Adaptive and
Self-Organizing Systems (SASO), 2017 IEEE Eleventh
International Conference on (2017)

211. Welsh, K., Bencomo, N., Sawyer, P., Whittle, J.: Self-
explanation in adaptive systems based on runtime
goal-based models pp. 122–145 (2014). DOI 10.1007/
978-3-662-44871-7 5. URL https://doi.org/10.1007/

978-3-662-44871-7_5

212. Welsh, K., Sawyer, P., Bencomo, N.: Run-time reso-
lution of uncertainty. In: RE 2011, 19th IEEE Inter-
national Requirements Engineering Conference, Trento,
Italy, August 29 2011 - September 2, 2011, pp. 355–
356 (2011). DOI 10.1145/1808984.1808997. URL http:

//dx.doi.org/10.1109/RE.2011.6051673

213. Weyns, D., Iftikhar, M.U., Söderlund, J.: Do exter-
nal feedback loops improve the design of self-adaptive
systems? a controlled experiment. In: Proceedings
of the 8th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems,
SEAMS ’13, pp. 3–12. IEEE Press, Piscataway, NJ,
USA (2013). URL http://dl.acm.org/citation.cfm?

id=2487336.2487341

214. Williams, J., Poulding, S., Paige, R., Polack, F.: Ex-
ploring the use of metaheuristic search to infer models
of dynamic system behaviour. In: Proceedings of the
8th Workshop on Models@run.time, pp. 74–85. CEUR-
WS.org (2013)

215. Wolfe, C., Graham, T.N., Phillips, W.G.: An incremen-
tal algorithm for high-performance runtime model con-
sistency. In: Model Driven Engineering Languages and
Systems, pp. 357–371. Springer (2009)

216. Woodside, M., Zheng, T., Litoiu, M.: Service system re-
source management based on a tracked layered perfor-
mance model. In: Autonomic Computing, 2006. ICAC
’06. IEEE International Conference on, pp. 175–184
(2006). DOI 10.1109/ICAC.2006.1662396

217. Wu, Y., Zhang, Y., Xiong, Y., Zhang, X., Huang, G.:
Towards rsa-based ha configuration in cloud. In: Pro-
ceedings of the 8th Workshop on Models@run.time, pp.
98–109. CEUR-WS.org (2013)

218. Zhang, J., Cheng, B.H.C.: Model-based development
of dynamically adaptive software. In: 28th Interna-
tional Conference on Software Engineering (ICSE 2006),
Shanghai, China, May 20-28, 2006, pp. 371–380 (2006).
DOI 10.1145/1134337. URL http://doi.acm.org/10.

1145/1134337

219. Zhang, X., Chen, X., Zhang, Y., Wu, Y., Yao, W.,
Huang, G., Lin, Q.: Runtime model based management
of diverse cloud resources. In: Model-Driven Engineering
Languages and Systems, pp. 572–588. Springer (2013)

220. Zhong, C., DeLoach, S.A.: Runtime models for auto-
matic reorganization of multi-robot systems. In: Pro-
ceedings of the 6th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’11, pp. 20–29. ACM, New York, NY,
USA (2011). DOI 10.1145/1988008.1988012

http://doi.acm.org/10.1145/2422518.2422530
http://doi.acm.org/10.1145/2555612
http://doi.acm.org/10.1145/2422518.2422520
https://doi.org/10.1007/978-3-662-44871-7_5
https://doi.org/10.1007/978-3-662-44871-7_5
http://dx.doi.org/10.1109/RE.2011.6051673
http://dx.doi.org/10.1109/RE.2011.6051673
http://dl.acm.org/citation.cfm?id=2487336.2487341
http://dl.acm.org/citation.cfm?id=2487336.2487341
http://doi.acm.org/10.1145/1134337
http://doi.acm.org/10.1145/1134337

	Introduction
	Research Method Applied
	A Taxonomy for Research on Models@run.time
	Threats to Validity
	Cross-Dimensional Analysis of the Taxonomy
	Kiviat Graphs for Cross-Dimensional Analysis
	Research Challenges
	Conclusions

