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Curvature-Driven Smoothing: A Learning 
Algorithm for Feedforward Networks 

Chris M. Bishop 

Abstract-The performance of feedforward neural networks in real 
applications can often he improved significantly if use is made of a priori 
information. For interpolation problems this prior knowledge frequently 
includes smoothness requirements on the network mapping, and can he 
imposed by the addition to the e m r  function of suitable regularization 
terms. The new error function, however, now depends on the derivatives 
of the network mapping, and so the standard backpropagation algorithm 
cannot he applied. In this letter, we derive a computationally efficient 
learning algorithm, for a feedforward network of arbitrary topology, 
which can he used to minimize such error functions. Networks having 
a single hidden layer, for which the learning algorithm simplifies, are 
treated as a special case. 

I. INTRODUC~ON 
The practical application of feedforward networks requires the 

provision of suitable sets of data for training and testing the networks. 
In addition, however, there is often some a priori information 
available concerning the expected form of the network mapping. 
Inclusion of this prior knowledge into the network training procedure 
can lead to significant improvements in the network performance, 
particularly when the amount of training data available is limited [l]. 

We consider here the use of multilayer perceptron networks for 
interpolation applications in which the network is used to generate a 
continuous mapping between multidimensional spaces. Training data 
for such networks is specified as a set of P input vectors z, E RL 
and corresponding target vectors t ,  E RN where p = I , . . . ,  P. 
Network training algorithms are often chosen to minimize a mean 
square error function of the form 

l P  
E" = 2p 2 llYp - tP1I2 

where y, is the value of the output vector y corresponding to 
an input vector z,, and I I . . . I I denotes the Euclidean norm. For 
many such applications, it is known a priori that the network 
transfer function should satisfy certain smoothness requirements. A 
widespread technique for imposing smoothness in least mean square 
algorithms is to add to the error function a regularizing term which 
penalizes mappings with large curvature [2]-[4]. This leads to a total 
error function of the form 

E = ES +XEC (2) 

where the curvature smoothing term is given by 

l P L N  EC=-eC): 
2 p  p = l  I=1  n = l  

(3)  

where yn and 21 denote the components of y and z, respectively, and 
the parameter X controls the degree of smoothness of the network 
mapping. The optimum value for X will be problem dependent, 
and can be found by seeking the minimum error with respect to 
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a cross-validation data set, or by a variety of techniques based on 
the statistical properties of the training data [2]. The formalism of 
(2) and (3) has also been used in the training of radial basis function 
neural networks [5],  [6]. 

The standard mean square error E S  depends on the interconnection 
weights tuz3 through the network function y(z), and, for a given 
training set { zp , tP} ,  the derivatives of the error E S  with respect to 
the weights and thresholds in the network can be calculated using 
the backpropagation algorithm. The curvature term E C ,  however, 
depends on derivatives of y(z) and so the standard backpropagation 
procedure cannot be applied. The purpose of this letter is to derive a 
computationally efficient technique for calculating d E C / d w , ,  . In the 
next section we derive expressions for the derivatives of the curvature 
smoothing term with respect to the network weights and thresholds, 
for a feedforward network of arbitrary topology. The technique is 
related to a recent algorithm for the exact evaluation of the Hessian 
matrix for a multilayer perceptron [7]. 

11. LEARNING ALGORITHM 

Consider a network which has a feedforward architecture in which 
each hidden unit generates a nonlinear function of the weighted sum 
of its inputs: 

where tJ is the activation of the j t h  unit, wz3 is the connection weight 
from unit j to unit i, and the function f is taken to be the sigmoid 

f ( a )  z 2 
1 + e c a  

which has the useful property 

There also exist thresholds for each unit. Since, however, these are 
equivalent to weights from an extra unit whose output is permanently 
set to +1, they are contained implicitly in the formalism of (4). 

The network has inputs 21, 1 = 1,. . . , L and outputs y n ,  n = 
1. . . . , A'. Since we are interested in interpolation problems which 
require continuous outputs (rather than classification problems) we 
shall take the output units to be linear, so that 

yn = an  = CulntzZ (7) 
z 

where the sum runs over all units i which send connections to unit 
n. We next write the derivatives of the curvature smoothing term in 
the form 

where, using (3), we have defined 

N 

E$ = 7Z=l (%)', (9) 

For clarity we shall omit the explicit pattern suffix p from now on. 
Using (9) we can write 

1045-9227/93$03.00 0 1993 IEEE 

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on July 2, 2009 at 04:31 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACfIONS ON NEURAL NETWORKS, VOL. 4, NO. 5, SEPTEMBER 1993 883 

Since w; j  and 
order of the derivatives to give 

are independent variables, we can interchange the The derivatives of the hidden unit activations are calculated using 
forward propagation equations which follow from (4) and (6): 

d2yn d 2  

We now make use of (4) to write 

Substituting (12) into ( l l ) ,  we can write the required derivatives in 
the form 

where the 
i .  The initial conditions for this forward propagation are given by 

run Over all units which send connections to unit 

where we have defined the following quantities: For the output units, which are linear, we also evaluate 

From (4) and (6) we obtain the standard backpropagation equation 

where the sum runs over all units k to which unit i sends connections. 
Substituting (17) into ( 1 4 x 1 6 )  gives 

k 

k 

d z  

k 

Equations ( 1 8 x 2 0 )  allow the U ,  6 ,  and $ variables to be evaluated 
for all of the hidden units in the network by backpropagation from the 
output units. The initial conditions for this backpropagation follow 
from (7) which gives 

dy, = &,I 

dun,  

where 6,,1 is the Kronecker delta symbol, from which we obtain 

We can now summarize the evaluation of the derivatives of EC as 
follows: 

1) Apply inputs { x i }  and forward propagate to generate, layer by 
layer, the unit activations z J ,  yn using (4) and (7), and the various 
derivatives dz , /dx i ,  etc., using (23), (24), and (26). 

2) Compute u,6, and 6 for the oTtput units using (22) and 
backpropagate to obtain the u,6, and 6 for the hidden units using 
(18x20) .  

3) Evaluate the derivatives of E? using (13). 
The complete derivative of E," is then found by summing over 

all values of the index 1 .  For gradient descent techniques, weight 
corrections, in the direction of the negative of this gradient, can 
be applied after the presentation of each pattern. With conjugate 
gradients and quasi-Newton methods, the derivatives are summed 
over all patterns to give a total error derivative. 

111. SINGLE HIDDEN LAYER 

In Section I1 we obtained a genral learning algorithm for a network 
of arbitrary feedforward topology. For more specific architectures the 
algorithm can sometimes be expressed in a simplified form, and in 
this section we consider the case of a network having a single layer 
of hidden units. The expressions given below follow directly from 
the results obtained in Section 11. 

For each input pattern, we first calculate the derivatives of the 
hidden unit activations by forward propagation using 

5 = z m ( l  - Z m ) W m l  
ax1 

ez = z m ( l  - z m ) ( l -  2zm)wK1 (28) 

where m labels the hidden units. Similarly, for the output units, we 
evaluate 

M d2Y" d 2  zm 

m = l  

where M is the total number of units in the hidden layer. Introducing 
the definition 
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we have the following results: 

unit n, 

Single Layer Neural Networks for Linear System 
Identification Using Gradient Descent Technique A) For a weight w n m  between a hidden unit m and an output 

B) For a weight wmlt between an input unit I’ and a unit m in 
the hidden layer, 

where ti,,( is the Kronecker symbol. 
C) For a weight between an input unit I ’  and an output unit n, 

- = o  (33) 
dE,“ 
dWn1‘ 

where (33) expresses the fact that, with linear output units, weights 
which directly connect input and output units contribute an additive 
linear transformation to the network mapping function, and this 
necessarily has zero curvature. 

IV. DISCUSSION 
The learning algorithm derived in this letter is straightforward to 

implement, involving the forward and backward propagation of terms 
in an analogous way to the standard algorithm. Furthermore, it can 
easily be adapted to other error measures which are differentiable 
functions of the network mapping and its derivatives, and to other 
forms of the activation function f( ). 

For each pattern, the curvature error function has L x N terms, 
where L is the number of input units and N is the number of 
outputs. The quantities which are backpropagated, however, contain 
implicit sums over the output unit index n (as is the case in standard 
backpropagation) and so, compared with the standard algorithm, 
the number of extra computational steps required to evaluate the 
curvature error derivatives scales like L. The algorithm is therefore 
most applicable to those applications in which the number of input 
units is relatively small. 

Simulations using this algorithm, and applications to a number 
of mutlidimensional interpolation problems, will be described in a 
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Abstract-Recently, some researchers have focused on the applications 
of neural networks for the system identification problems. In this letter 
we describe how to use the gradient descent (GD) technique with single 
layer neural networks (SLNN’s) to identify the parameters of a linear 
dynamical system whose states and derivatives of state are given. It 
is shown that the use of the GD technique for the purpose of system 
identification of a linear time invariant dynamical system is simpler and 
less expensive in implementation because it involves less hardware than 
the technique using the Hopfield network as discussed by Chu. The circuit 
is considered to be faster and is recommended for on-line computation 
because of the parallel nature of its architecture and the possibility of 
the use of analog circuit components. A mathematical formulation of 
the technique is presented and the simulation results of the network are 
included. 

I. INTRODUC~ION 
Some researchers have recently focused on the applications of 

neural networks for nonlinear system modeling and identification [ 11, 
[2]. Shoureshi et al. [3] have proposed Hopfield network for iden- 
tifying a linear time invariant dynamical system, by measuring the 
inputs, states, and derivative of states. However, for some problems, a 
globally optimal solution is not guaranteed by the Hopfield network; 
the network computes locally optimum solutions [4], [5]. In such 
cases it might not be advisable to use this network, as it gives quite 
inaccurate results and is computationally complex [5], [6]. 

This letter proposes a technique that uses a gradient descent 
learning algorithm also known as instant back-propagation to train a 
single layer neural network (SLNN) for identifying the parameters of 
a linear system. An appropriately formulated least mean square error 
(LMSE) is used as a performance measure for the network proposed 
in [7], [8]. In recent papers, the present authors have suggested the use 
of such a network for dynamic image modeling [9], [lo]. It is shown 
by mathematical arguments and simulation results that the neural 
network trained by this technique produces output results which are 
similar to that obtained by [3]. The proposed network is simpler 
in structure and, therefore, less expensive in implementation. The 
circuit is suitable for on-line computation because of the parallel 
nature of its architecture and possibility of the use of analog circuit 
elements. The work in this letter is organized as follows: Section I1 

subsequent paper. deals with the basics of system dynamics, error function formulation, 
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and a brief mathematical analysis of the proposed technique. Section 
I11 addresses some design issues of the structure of the network. In 
Section IV, the algorithm for computer simulation of SLNN is given. 
Our simulation results, some recommendations for fine tuning the 
network, and a brief performance comparison with the traditional 
system identification approaches are summarized in Section V. Fi- 
nally, in Section VI, we conclude by giving some comments on the 
application of the technique. 
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