
882 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 5, SEPTEMBER 1993

Curvature-Driven Smoothing: A Learning
Algorithm for Feedforward Networks

Chris M. Bishop

Abstract-The performance of feedforward neural networks in real
applications can often he improved significantly if use is made of a priori
information. For interpolation problems this prior knowledge frequently
includes smoothness requirements on the network mapping, and can he
imposed by the addition to the e m r function of suitable regularization
terms. The new error function, however, now depends on the derivatives
of the network mapping, and so the standard backpropagation algorithm
cannot he applied. In this letter, we derive a computationally efficient
learning algorithm, for a feedforward network of arbitrary topology,
which can he used to minimize such error functions. Networks having
a single hidden layer, for which the learning algorithm simplifies, are
treated as a special case.

I. INTRODUC~ON
The practical application of feedforward networks requires the

provision of suitable sets of data for training and testing the networks.
In addition, however, there is often some a priori information
available concerning the expected form of the network mapping.
Inclusion of this prior knowledge into the network training procedure
can lead to significant improvements in the network performance,
particularly when the amount of training data available is limited [l].

We consider here the use of multilayer perceptron networks for
interpolation applications in which the network is used to generate a
continuous mapping between multidimensional spaces. Training data
for such networks is specified as a set of P input vectors z, E RL
and corresponding target vectors t , E RN where p = I , . . . , P.
Network training algorithms are often chosen to minimize a mean
square error function of the form

l P
E" = 2p 2 llYp - tP1I2

where y, is the value of the output vector y corresponding to
an input vector z,, and I I . . . I I denotes the Euclidean norm. For
many such applications, it is known a priori that the network
transfer function should satisfy certain smoothness requirements. A
widespread technique for imposing smoothness in least mean square
algorithms is to add to the error function a regularizing term which
penalizes mappings with large curvature [2]-[4]. This leads to a total
error function of the form

E = ES +XEC (2)

where the curvature smoothing term is given by

l P L N EC=-eC):
2 p p = l I=1 n = l

(3)

where yn and 21 denote the components of y and z, respectively, and
the parameter X controls the degree of smoothness of the network
mapping. The optimum value for X will be problem dependent,
and can be found by seeking the minimum error with respect to

Manuscript received February 11, 1992.
The author is with the Neural Computing Research Group, Department of

IEEE Log Number 9208458.
Computer Science, Aston University, Birmingham, B4 7ET, U.K.

a cross-validation data set, or by a variety of techniques based on
the statistical properties of the training data [2]. The formalism of
(2) and (3) has also been used in the training of radial basis function
neural networks [5], [6].

The standard mean square error E S depends on the interconnection
weights tuz3 through the network function y(z), and, for a given
training set { zp , tP} , the derivatives of the error E S with respect to
the weights and thresholds in the network can be calculated using
the backpropagation algorithm. The curvature term E C , however,
depends on derivatives of y(z) and so the standard backpropagation
procedure cannot be applied. The purpose of this letter is to derive a
computationally efficient technique for calculating d E C / d w , , . In the
next section we derive expressions for the derivatives of the curvature
smoothing term with respect to the network weights and thresholds,
for a feedforward network of arbitrary topology. The technique is
related to a recent algorithm for the exact evaluation of the Hessian
matrix for a multilayer perceptron [7].

11. LEARNING ALGORITHM

Consider a network which has a feedforward architecture in which
each hidden unit generates a nonlinear function of the weighted sum
of its inputs:

where tJ is the activation of the j t h unit, wz3 is the connection weight
from unit j to unit i, and the function f is taken to be the sigmoid

f (a) z 2
1 + e c a

which has the useful property

There also exist thresholds for each unit. Since, however, these are
equivalent to weights from an extra unit whose output is permanently
set to +1, they are contained implicitly in the formalism of (4).

The network has inputs 21, 1 = 1,. . . , L and outputs y n , n =
1. . . . , A'. Since we are interested in interpolation problems which
require continuous outputs (rather than classification problems) we
shall take the output units to be linear, so that

yn = an = CulntzZ (7)
z

where the sum runs over all units i which send connections to unit
n. We next write the derivatives of the curvature smoothing term in
the form

where, using (3), we have defined

N

E$ = 7Z=l (%)', (9)

For clarity we shall omit the explicit pattern suffix p from now on.
Using (9) we can write

1045-9227/93$03.00 0 1993 IEEE

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on July 2, 2009 at 04:31 from IEEE Xplore. Restrictions apply.

IEEE TRANSACfIONS ON NEURAL NETWORKS, VOL. 4, NO. 5, SEPTEMBER 1993 883

Since w; j and
order of the derivatives to give

are independent variables, we can interchange the The derivatives of the hidden unit activations are calculated using
forward propagation equations which follow from (4) and (6):

d2yn d 2

We now make use of (4) to write

Substituting (12) into (l l) , we can write the required derivatives in
the form

where the
i . The initial conditions for this forward propagation are given by

run Over all units which send connections to unit

where we have defined the following quantities: For the output units, which are linear, we also evaluate

From (4) and (6) we obtain the standard backpropagation equation

where the sum runs over all units k to which unit i sends connections.
Substituting (17) into (1 4 x 1 6) gives

k

k

d z

k

Equations (1 8 x 2 0) allow the U , 6 , and $ variables to be evaluated
for all of the hidden units in the network by backpropagation from the
output units. The initial conditions for this backpropagation follow
from (7) which gives

dy, = &,I

dun,

where 6,,1 is the Kronecker delta symbol, from which we obtain

We can now summarize the evaluation of the derivatives of EC as
follows:

1) Apply inputs { x i } and forward propagate to generate, layer by
layer, the unit activations z J , yn using (4) and (7), and the various
derivatives dz , /dx i , etc., using (23), (24), and (26).

2) Compute u,6, and 6 for the oTtput units using (22) and
backpropagate to obtain the u,6, and 6 for the hidden units using
(18x20) .

3) Evaluate the derivatives of E? using (13).
The complete derivative of E," is then found by summing over

all values of the index 1 . For gradient descent techniques, weight
corrections, in the direction of the negative of this gradient, can
be applied after the presentation of each pattern. With conjugate
gradients and quasi-Newton methods, the derivatives are summed
over all patterns to give a total error derivative.

111. SINGLE HIDDEN LAYER

In Section I1 we obtained a genral learning algorithm for a network
of arbitrary feedforward topology. For more specific architectures the
algorithm can sometimes be expressed in a simplified form, and in
this section we consider the case of a network having a single layer
of hidden units. The expressions given below follow directly from
the results obtained in Section 11.

For each input pattern, we first calculate the derivatives of the
hidden unit activations by forward propagation using

5 = z m (l - Z m) W m l
ax1

ez = z m (l - z m) (l - 2zm)wK1 (28)

where m labels the hidden units. Similarly, for the output units, we
evaluate

M d2Y" d 2 zm

m = l

where M is the total number of units in the hidden layer. Introducing
the definition

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on July 2, 2009 at 04:31 from IEEE Xplore. Restrictions apply.

884 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 5, SEPTEMBER 1993

we have the following results:

unit n,

Single Layer Neural Networks for Linear System
Identification Using Gradient Descent Technique A) For a weight w n m between a hidden unit m and an output

B) For a weight wmlt between an input unit I’ and a unit m in
the hidden layer,

where ti,,(is the Kronecker symbol.
C) For a weight between an input unit I ’ and an output unit n,

- = o (33)
dE,“
dWn1‘

where (33) expresses the fact that, with linear output units, weights
which directly connect input and output units contribute an additive
linear transformation to the network mapping function, and this
necessarily has zero curvature.

IV. DISCUSSION
The learning algorithm derived in this letter is straightforward to

implement, involving the forward and backward propagation of terms
in an analogous way to the standard algorithm. Furthermore, it can
easily be adapted to other error measures which are differentiable
functions of the network mapping and its derivatives, and to other
forms of the activation function f().

For each pattern, the curvature error function has L x N terms,
where L is the number of input units and N is the number of
outputs. The quantities which are backpropagated, however, contain
implicit sums over the output unit index n (as is the case in standard
backpropagation) and so, compared with the standard algorithm,
the number of extra computational steps required to evaluate the
curvature error derivatives scales like L. The algorithm is therefore
most applicable to those applications in which the number of input
units is relatively small.

Simulations using this algorithm, and applications to a number
of mutlidimensional interpolation problems, will be described in a

Satyendra Bhama and Harpreet Singh

Abstract-Recently, some researchers have focused on the applications
of neural networks for the system identification problems. In this letter
we describe how to use the gradient descent (GD) technique with single
layer neural networks (SLNN’s) to identify the parameters of a linear
dynamical system whose states and derivatives of state are given. It
is shown that the use of the GD technique for the purpose of system
identification of a linear time invariant dynamical system is simpler and
less expensive in implementation because it involves less hardware than
the technique using the Hopfield network as discussed by Chu. The circuit
is considered to be faster and is recommended for on-line computation
because of the parallel nature of its architecture and the possibility of
the use of analog circuit components. A mathematical formulation of
the technique is presented and the simulation results of the network are
included.

I. INTRODUC~ION
Some researchers have recently focused on the applications of

neural networks for nonlinear system modeling and identification [11,
[2]. Shoureshi et al. [3] have proposed Hopfield network for iden-
tifying a linear time invariant dynamical system, by measuring the
inputs, states, and derivative of states. However, for some problems, a
globally optimal solution is not guaranteed by the Hopfield network;
the network computes locally optimum solutions [4], [5]. In such
cases it might not be advisable to use this network, as it gives quite
inaccurate results and is computationally complex [5], [6].

This letter proposes a technique that uses a gradient descent
learning algorithm also known as instant back-propagation to train a
single layer neural network (SLNN) for identifying the parameters of
a linear system. An appropriately formulated least mean square error
(LMSE) is used as a performance measure for the network proposed
in [7], [8]. In recent papers, the present authors have suggested the use
of such a network for dynamic image modeling [9], [lo]. It is shown
by mathematical arguments and simulation results that the neural
network trained by this technique produces output results which are
similar to that obtained by [3]. The proposed network is simpler
in structure and, therefore, less expensive in implementation. The
circuit is suitable for on-line computation because of the parallel
nature of its architecture and possibility of the use of analog circuit
elements. The work in this letter is organized as follows: Section I1

subsequent paper. deals with the basics of system dynamics, error function formulation,

REFERENCES

W. H. Joerding and J. L. Meador, “Encoding a priori information in
feedforward networks,” Neural Networks, vol. 4, pp. 847456, 1991.
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill Posed Problems.
New York: Wiley, 1977.
C. M. Bishop, “Curvature-driven smoothing in backpropagation neural
networks,” in Proc. h t . Neural Network Conf, Paris, France, vol. 2,
1990, pp. 749-752.
C. M. Bishop, “Curvature-driven smoothing in backpropagation neural
networks,” in Theory and Applications of Neural Networks. Springer-
Verlag, 1992, pp. 139-148.
C. M. Bishop, “Improving the generalization properties of radial basis
function neural networks,’’ Neural Computation, vol. 3, pp. 579-588,
1991.
T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, p. 1481, 1990.
C. M. Bishop, “Exact calculation of the Hessian matrix for the multilayer
perceptron,” Neural Computation, vol. 4, pp. 494-501, 1992.

and a brief mathematical analysis of the proposed technique. Section
I11 addresses some design issues of the structure of the network. In
Section IV, the algorithm for computer simulation of SLNN is given.
Our simulation results, some recommendations for fine tuning the
network, and a brief performance comparison with the traditional
system identification approaches are summarized in Section V. Fi-
nally, in Section VI, we conclude by giving some comments on the
application of the technique.

Manuscript received March 25, 1992; revised October 8, 1992.
S. Bhama was with the Computer Research Laboratory, Department of

Electrical and Computer Engineering, Wayne State University, Detroit, MI
48202. He is now with the GM Research and Development Center (GMR&D),
Warren, MI 48090.

H. Singh is with the Computer Research Laboratory, Department of
Electrical and Computer Engineering, Wayne State University, Detroit, MI
48202.

IEEE Log Number 9209804.

1045-9227/93$03.00 0 1993 IEEE

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on July 2, 2009 at 04:31 from IEEE Xplore. Restrictions apply.

