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Abstract

Empirical work has shown that societies can sometimes avoid antisocial out-

comes, such as the Tragedy of the Commons, by establishing institutional rules

that govern their interactions. Moreover, groups are more likely to avoid anti-

social outcomes when they design and enforce their own rules. But this raises

the question: when will group members put effort into maintaining their in-

stitution so that it continues to provide socially beneficial outcomes? Ostrom

derived a set of empirical principles that predict when institutions will endure,

which have subsequently been formalised in agent-based models that are based

on an executable description of the content of an individual’s behaviour. Here

we show how these models can be complemented by evolutionary game theory,

which focuses on the value or payoff of different behaviours, rather than on

the mechanistic content of the behaviour. Using such a value-based model, we

determine exactly when individuals will be incentivised to maintain their insti-

tution and enforce its rules, including the critical amount that a group must

invest into incentivising agents to monitor rule compliance. We highlight the

complementarity of content-based and value-based modelling approaches, and

therefore provide a step towards unifying theoretical and empirical approaches

to understanding enduring institutions and other social phenomena.
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1. Introduction

Cooperation can be defined as a behaviour that provides a benefit to other

individuals, i.e. increases the social welfare of the group. Under the assumption

of self-interested behaviour, micro-economic theory demonstrates that if agents

are to cooperate, then there needs to be the provision of individual incentives5

for them to do so (Oliver, 1980; Olson, 1965). Increasing social welfare in and of

itself is not sufficient; individuals must gain more from cooperating than from

defecting. Left unchecked, this leads to the phenomenon known as the Tragedy

of the Commons (Hardin, 1968), in which antisocial outcomes pervade, such

as the depletion of common-pool resources. This result has been the prevail-10

ing starting point for many socio-economic policy decisions, as well as many

distributed computing design decisions, for several decades.

However, the conclusions of the Tragedy of the Commons rest on the as-

sumption that individuals are playing a particular game form, corresponding to

an n-player version of the single-shot Prisoner’s Dilemma (Ostrom, 1990). In15

reality, individuals typically have the potential to change the rules of their social

interactions (North, 1990; Reiter, 1996), by reasoning through the situation in

which they find themselves. In economics, an institution is defined as a family

of game forms (strategies and the mappings between strategies and material

outcomes) that individuals can choose between, given the state of the physi-20

cal environment (e.g. their resource endowments) and their current technology

(Hurwicz, 1996). More informally, we can think of a game form as the “rules of

the game”, and hence of individuals as being able to choose the rules of their

game by creating an institution.

There are many empirical examples of societies being able to avoid anti-social25

outcomes by devising institutional rules that govern their interactions in the use

of common-pool resources such as grazing lands, fisheries, and irrigation systems

(e.g. Ostrom 1990). Example rules include how much water an individual may

take from a shared irrigation system, when they may take it, how often they

must perform maintenance, etc. Furthermore, the empirical work suggests that30
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these rules are self-enforcing (Greif, 2006), in the sense that it pays both for

individuals to follow them, and to take actions that encourage others to follow

them.

From a theoretical viewpoint, the creation of these rules changes the game

form into one where self-interested individuals do best by cooperating (Greif,35

2006; Hurwicz, 1996; North, 1990). The Folk Theorem of game theory explains

why this can work (Binmore, 2014): when interactions are repeated, cooperation

can be sustained as an equilibrium by conditional strategies that respond to the

past behaviour of other agents. One example of such a strategy is Tit-for-

Tat (Axelrod, 1984): cooperate on the first round, and thereafter mirror what40

the other agent did on the previous round. But this is just one example. In

general, the Folk Theorem shows that any strategy that gives an agent more than

the minimax payoff can be sustained as an equilibrium amongst self-interested

agents. The minimax payoff is the largest payoff that an agent can receive if its

opponent tries to minimise the agent’s payoff, which in the Prisoner’s Dilemma45

corresponds to the payoff received when the opponent defects. Therefore, any

strategy that gives the agent a higher payoff than always being defected against

will be an equilibrium when adopted by all of the agents, since if the agent

deviated from this strategy then it could have its payoff reduced to the minimax

payoff by its co-players. Importantly, this result also holds where N -agents50

interact simultaneously (Fudenberg & Maskin, 1986), e.g. in the management

of common-pool resources.

However, cooperation between self-interested agents under the Folk Theorem

requires that the agents value future payoffs, do not know when their interac-

tions will end, and have sufficient information about how other agents have55

behaved in the past. By creating institutional rules, individuals can create a

social environment that satisfies these conditions (Guala, 2012), e.g. by setting

up systems of monitoring (Ostrom, 1990), facilitating the spread of reputation

(Hardy & Norgaard, 2015; Milgrom, North & Weingast, 1990), and decreasing

the outside options of the agents so that they do indeed value future payoffs and60

do not know when their interactions will end (Casari, 2007). Furthermore, the
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creation of institutional rules helps agents to coordinate their behaviour onto

one of the many possible equilibria, by creating shared expectations about how

other agents will behave (Greif, 2006).

Creating, updating and implementing these institutional rules requires time65

and effort. Without this they are likely to collapse and individuals will revert

back to the default game form where cooperation is not favoured. Ostrom’s

field studies suggest that institutions are more likely to endure and maintain

socially beneficial outcomes in the long term when the institutional rules are

both created and implemented by the same agents whose economic interactions70

are affected by those rules. This then raises the question: under what conditions

will self-interested agents be willing to put the effort into doing this, by taking

on various institutional roles? Examples of institutional roles include acting as

a monitor to check for rule compliance, or organising votes on rule changes.

We cannot predict whether institutions will endure in the long term without75

examining the incentives for agents to take on institutional roles.

In order to examine the conditions under which institutions can endure and

maintain cooperation, researchers have recently formalised Ostrom’s principles

of enduring institutions using agent-based models (e.g. Pitt, Schaumeier & Ar-

tikis 2012; Smajgl, Izquierdo & Huigen 2008, 2010). Agent-based modelling80

provides a highly effective method with which to conduct experimental studies

on the consequences of different assumptions about behaviour (Di Paolo, Noble

& Bullock, 2000); in the humanities and social sciences, they have been referred

to as digital petri dishes (Gavin, 2014). Agent-based modelling is a highly at-

tractive approach, primarily due to its ability to capture complex behaviours and85

interactions in executable form, and to explore emergent phenomena simply by

“running” variants of the model (Bonabeau, 2002; Epstein & Axtell, 1996). This

is particularly helpful when building intuition or illustrating counter-examples.

However, due to the complexity of the formal description required, there is also

a limit to its explanatory power. This is particularly true when answering ques-90

tions related to incentivisation and critical values of parameters in a rigorous

way.
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As an alternative, evolutionary game theory (Maynard Smith, 1982) is a

more descriptive modelling technique first established in theoretical biology to

study the evolution of adaptive traits in populations of animals. It has since95

been applied in economics, sociology, anthropology, and elsewhere in biology,

and is used to explore both genetic and cultural evolution.

In this paper, we therefore explore how agent-based models, based on execut-

ing the content of strategies, can be complemented by evolutionary game theory,

where a description of the value of strategies instead forms the basis. This allows100

us to draw on existing results and understanding from the evolutionary game

theory literature, in order to provide additional insight. Specifically, we provide

new analytical insight into the effects of different ways of incentivising agents

to take on an institutional monitoring role, and on the optimal proportion of its

resources that a group should invest into monitoring.105

The discussion and results in this paper therefore provide a step towards

unifying theoretical and empirical approaches to understanding the formation

of enduring institutions. Further, we anticipate that this will readily aid research

into other questions of social and cultural nature.

2. The Complementarity of Content-based and Value-based Models110

Both agent-based modelling (ABM) and evolutionary game theory (EGT)

are well-established approaches to modelling social systems, especially in regard

to answering questions relating to population-level results arising from inter-

actions between individuals with (potentially varying) behavioural strategies.

We characterise these as instances of content-based and value-based modelling115

approaches, respectively, and in this section, explore their complementarity in

general. Figure 1 illustrates this.

2.1. What do ABM and EGT capture and what do they assume?

Game theory defines a strategy as a mapping from environmental context to

actions (Binmore, 2005b). An agent’s strategy therefore defines its behaviour,120
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as its environment (including the behaviour of other agents) changes. This

is equivalent to the notion of Russell and Norvig’s agent function (Russell &

Norvig, 2010) in artificial intelligence: the mathematical object that maps a

given percept sequence to an action, and is made explicit through an agent

program. In agent-based modelling, many such agents are instantiated, usually125

employing a software approach based on object-oriented programming1. Each

agent’s program is executed either in turn or in parallel, and is responsible for

maintaining its own state between rounds of the simulation model, over time.

The environment is also typically modelled as a first-class object, again with a

state that may be changed over time, typically as a result of agent actions, or130

by a program that captures natural forces.

By contrast, in evolutionary game theory, an explicit description of the con-

tent of a behaviour and its impact on the environment is not given. Instead,

strategies are considered as traits that may be more or less prevalent in a popu-

lation (which is typically assumed to be infinite and well-mixed), and compete135

with each other in an evolutionary sense. The task is then to write equations

that describe the fitness (i.e., evolutionary value) of a strategy, given the current

frequency of each of all possible strategies in the population. The dynamics of

strategy frequency are then explored, under the assumption that the change in

strategy frequency is correlated with its fitness.140

A key distinction, therefore, can be made in terms of what is captured and

what is assumed in each case. In EGT the existence of a space of possible

behaviours and their expected fitness is presented in a descriptive (equation-

based) form. However, the content of the actions themselves that form part of

the strategy, and lead to this fitness, are omitted. This omission includes any145

deliberative or developmental processes that are assumed to be included in the

execution of the strategy; only the value of any such activity, in evolutionary

terms, is given.

1There are now a range of agent-oriented programming approaches and tools that build

on this basic design principle.
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By contrast, in ABM we provide a description of the content of the modelled

actions, typically in imperative or logical form, along with what effect they have150

on the world and other agents. Thus, it is possible to capture a deep and complex

set of behaviours in an agent, based (for example) on learning, deliberative, and

other cognitive processes. However, there is no explicit description of the value

of carrying out the described activities, and furthermore, such a value is hard

to arrive at, save by executing the agent programs and observing.155

In summary, both leave implicit what is made explicit in the other. Agent-

based models can capture rich behaviours, but struggle to support an analysis

of their value. Conversely, evolutionary game theory provides the necessary

primitives to analyse the incentives and outcomes associated with different be-

haviours in a rigorous way, yet in doing so lacks the ability to capture what may160

be crucial details of the nature of the strategies themselves, and assumes that

any value is accurately defined.

Evolutionary 

Game Theory

Classic 

Game Theory

Computational 

Logic

Imperative 

Behaviour 

Description

Value-based Content-based

Social Interaction 

Modelling Approaches

Figure 1: A sketch of a taxonomy of approaches for modelling systems of social interactions.

The primary distinction made in this paper is between approaches that capture the value

of different strategies, and those that capture the content of those strategies. A range of

game theory variants, including evolutionary game theory, can then be seen as value-based

approaches. Agent-based modelling, and other forms of executable simulation modelling,

instead model the content of agent strategies.
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2.2. Producing a Justifiable Model

In ABM, model justification is usually done through calibration against ob-

served phenomena (Janssen & Ostrom, 2006). First, one observes and captures165

micro-level behaviours (i.e., the behaviour of a single agent in a specific con-

text), producing an agent program that replicates that behaviour. Second, one

then observes macro-level behaviour for already well-understood phenomena,

and the model is calibrated to ensure that known global outcomes are repro-

duced. Additional macro-level outcomes are then reported as predictions of the170

model.

As discussed in Section 2.1, to produce an EGT model, it is required that the

modeller is able to arrive at the evolutionary ‘value’ of each possible strategy,

in a way that justifiably drives strategy frequency. Such a justification is often

plausible: in animal population studies, it is possible to identify which traits are175

correlated with greater numbers of successful offspring, and traits are assumed

to be heritable; in economics, firms are more likely to copy the traits embodied

by financially successful firms than those of bankrupt ones. However, in more

complex social systems where growth in frequency of a strategy is likely to be

strongly determined by human cognitive aspects, and not primarily driven by180

the copying of behaviour, we must be careful to ensure that such a modelling

decision is justified.

2.3. Performing Analysis with ABMs and EGT Models

The primary method of interrogation of ABMs is through experimentation

on the effects of varying different parameters and behavioural rules. Thus, hav-185

ing expressed a set of executable behaviours, one needs to take an inductive

scientific approach to arriving at claims. One varies parameters of the model

(often both those within individual behaviours, as well as those concerning the

world), and one can explore, in a black-box way, the outcomes the system pro-

duces. Typically, a full factorial or similar approach is taken, in order to building190

confidence in claims relating to the effect of varying each parameter.

8



  

In EGT, there is no requirement to execute the model, although the equa-

tions that form the model are often solved numerically through a computer

program, in addition to being analysed in the classic sense. Primarily with

EGT models, one is looking for relationships and critical values that can be195

deduced by solving the equations algebraically. Numerical simulation is often

used to validate these, or to solve where tractability becomes an issue.

2.4. The Complementarity of ABM and EGT

As is hopefully clear from the above discussion, neither ABM nor EGT is

able to replace the other in terms of supporting the full breadth of analysis forms200

that the other provides; both bring something to the table for the modeller of

social systems. Similarly to how, in software engineering, one uses different

language styles, e.g., imperative or functional, for different purposes, in the

modelling of social systems, different modelling approaches are better suited to

address different questions.205

One significant benefit of content-based approaches like ABM is the ability

to make the specification of the model its own execution. A further benefit is

that it is often easier to discern and model the content of an agent’s behaviour,

rather than the value of that behaviour, and to capture this in a model. Content-

based approaches therefore lend themselves more to empirical study, exploring210

the outcome of observed behaviour. This can be achieved without the need to

concern oneself with details of a method of analysis or the model’s solving, be-

yond running and interrogating a simulation. Content-based approaches vary in

how they approach the description of agent behaviours. When using an imper-

ative language (e.g., Lewis & Ekárt (2017) used Java), the solving is embedded215

in the description of the system itself. Alternatively, computational logic (e.g.,

Pitt et al. (2012) used Prolog) may be used to separate behaviour specification

from behaviour execution, the latter being carried out through query resolution.

Value-based approaches share this separation of concerns, however the key ben-

efit in the value-based case is that the description is already a statement that220

quantifies the outcome of carrying out a given behaviour. Therefore, critical
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parameters related to this are more readily accessible and they no longer need

to be induced from the execution. Much of the rest of this paper, especially

Section 5, is devoted to illustrating this benefit in the domain of institutional

modelling.225

2.5. Existing cross-fertilisation between Evolutionary Game Theory and Agent-

Based Modelling

Agent-based and evolutionary game theory models have been successfully

used to feed into each other. One of the first examples was Axelrod’s tour-

nament, where researchers were invited to submit different agent programs to230

play a repeated Prisoner’s Dilemma game (Axelrod, 1984). This allowed Ax-

elrod to empirically explore the space of different possible strategies, and their

behavioural interactions with each other, rather than having to presuppose a

fixed number in a model. However, analysis of the winning Tit-for-Tat strategy,

in terms of the conditions under which it was stable and the conditions under235

which it could become established in a group, was eased by using a value-based

evolutionary game theory approach (Axelrod & Hamilton, 1981). More recently,

a similar tournament where researchers submitted agent programs containing

different social learning strategies allowed the traditional assumptions of value-

based models of social learning to be relaxed. This produced new insights that240

have in turn fed back into more descriptive value-based models of social learning

(Rendell, Fogarty, Hoppitt, Morgan, Webster & Laland, 2011).

More generally, content-based ABMs have been used to expand results from

evolutionary game theory by relaxing assumptions such as only a small num-

ber of mutations being present at one time, and no communication between245

players (Adami, Schossau & Hintze, 2016). Going the other way, value-based

models have provided insight into when individual strategies that punish non-

cooperative behaviour can actually be stable (Lehmann, Rousset, Roze & Keller,

2007) that were difficult to achieve in simulation (Boyd, Gintis, Bowles & Rich-

erson, 2003). In the remainder of this paper we examine how similar cross-250

fertilisation can benefit the study of institutions.
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3. Institutions for Managing Common-pool Resources

Many individual behaviours are needed to sustain an institution. These in-

clude designing the rules, voting on them, monitoring the behaviour of group

members, and sanctioning those found breaking the rules. It has been shown255

that if we abstract away from how these behaviours are carried out then institu-

tions can both lead to stable cooperation (Pitt et al., 2012; Sasaki, Brännström,

Dieckmann & Sigmund, 2012), and can evolve de novo (Powers & Lehmann

(2013)). In these models institutional roles, such as designing rules or monitor-

ing rule compliance, are contracted out – it is assumed that some individuals260

will faithfully carry out these roles without shirking or free-riding. But to under-

stand when institutions will be sustainable, we need to understand under what

conditions it pays individuals to perform these roles. While many micro-level

models of monitoring and sanctioning have been produced using classical and

evolutionary game theory, these have not considered the context of institutional265

roles. How do evolving institutional rules affect individual incentives to moni-

tor and sanction? In this study, we analyse different incentivisation mechanisms

from both ABM and EGT perspectives.

3.1. Common-Pool Resource Allocation and the Tragedy of the Commons

A common-pool resource (CPR) is defined by Ostrom (1990, p.30) as “a nat-270

ural or man-made resource system that is sufficiently large as to make it costly

(but not impossible) to exclude potential beneficiaries from obtaining benefits

from its use”. Examples of such resource systems could be fisheries, various

water resources ranging from groundwater basins to lakes and oceans, irrigation

systems, bridges, and computer clusters. We study resource systems used by275

multiple individuals, who can appropriate or use resource units, such as tons

of fish harvested from a fishery, cubic meters of water withdrawn from a water

resource, number of crossings of a bridge, central processing units consumed on

a cluster computer.

In a game-theoretic formulation of the common-pool resource allocation280

problem, at each time step, given the allocation of resource units to individu-
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als, each individual can decide to comply and appropriate the allocated amount

(cooperate) or not comply and appropriate the amount they wish (defect).

The Tragedy of the Commons (Hardin, 1968) is defined as the inevitable

consequence of rational, self-interested individuals appropriating any number of285

resource units that they wish. Over time, as the individuals see the benefits of

their own appropriations, they will increase their appropriations. The common-

pool resource is expected to degrade and become depleted over time, due to the

uncontrolled appropriations from the limited resource.

Historically, attempts to avoid the Tragedy of the Commons have involved290

centralisation or privatisation. With centralisation, an imposed institution

would control the allocation of resource units to appropriators, monitor compli-

ance and sanction non-compliance. In the case of privatisation, the resource is

divided equally among individuals and they then become responsible for their

share. Based on studies of small, closed CPR instances, such as fisheries, Os-295

trom pioneered new forms of institutions, where once the institution is in place,

the individuals would self-organise and self-govern.

3.2. Ostrom’s principles for enduring institutions

Ostrom (1990) has extensively studied the governance of long-enduring, self-

organised and self-governed CPRs, including fisheries, water irrigation systems300

and forests, some as old as 1000 years. The main studied aspects were the

problems of commitment and mutual monitoring.

She defined eight principles for the design of long-enduring institutions:

1. Clearly defined boundaries: As a first step in organising for collective ac-

tion, both the individuals who have the right to appropriate resource units305

from the CPR and the boundaries of the CPR must be clearly defined.

2. Congruence between appropriation and provision rules and local condi-

tions: Having rules for appropriation and provision specific to the local

conditions of the particular resource contributes to the endurance of CPRs.

For example, in the Spanish huertas, substantially different rules must be310
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applied in different regions for water irrigation, depending on local speci-

ficity, even though the water management problem is broadly similar.

3. Collective-choice arrangements: Appropriators can participate in the de-

sign of the institution by tailoring the rules over time. It must be noted

that appropriators will not necessarily comply with good operational rules,315

when these exist, even if they took part in their design. Furthermore, even

when reputation is important and individuals share the norm of honouring

agreements, these are insufficient by themselves to ensure stable coopera-

tion in the long term.

4. Monitoring: Monitors, who audit both state condition and appropriation320

behaviour, are part of or accountable to the appropriators. The cost of

monitoring in long-enduring CPRs is often low. For example, in an irriga-

tion system using rotation appropriation rule, monitoring is a by-product:

the individual nearing the end of their turn might wish to extend their

turn, while the next individual ready to start their turn might wish to325

start earlier. They mutually monitor each other and ensure compliance to

the rule by both.

5. Graduated sanctions: Appropriators, who do not respect community rules,

are applied sanctions dependent on the seriousness of their offence, by

appropriators or assigned officials accountable to appropriators, or both.330

The graduated sanctions will have to work hand-in-hand with monitoring

to ensure sufficient level of rule-following and avoid increase in infractions.

6. Conflict-resolution mechanisms: There must exist cheap and easily acces-

sible mechanisms to resolve conflicts between appropriators and officials

or among appropriators. Although this by itself does not ensure enduring335

institutions, the maintenance of complex rule systems over time is helped

by it.

7. Minimal recognition of rights to organize: External governmental officials

do not challenge the right of appropriators to devise their own institutions.

For example, in a fishery, local fishers can devise the rules who can use the340

fishing ground and with what equipment, without their authority being
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challenged by external governmental officials.

8. Nested enterprises: In case of larger CPRs, organisation of all activities is

in the form of multiple layers of nested enterprises, with small, local CPRs

at their bases.345

3.3. Agent-based modelling of enduring institutions

In this section, we highlight three studies contributing to the agent-based

modelling of enduring institutions, starting from formal axiomatisation (Pitt

et al., 2012) and continuing with the relationship between institutional features

and forms of learning (Lewis & Ekárt, 2017) and relaxation of norms for sus-350

tainable institutions (Kurka & Pitt, 2017).

Pitt et al. (2012) develop a formal axiomatisation of Ostrom’s first six prin-

ciples for CPR in Event Calculus. They implement an executable test-bed and

show that these principles support enduring institutions. They build gradually

more complex and realistic tests for the principles. They find that when the355

agents comply with the rules for appropriation, the first three principles are

sufficient for the institution to endure.2 When the assumptions on compliance

are relaxed, this is not the case any more and the next three principles become

necessary. In their setting, these six principles ensure enduring institutions

with high membership and resource sustainability. Thus, with this work, they360

establish the feasibility of an institution-based approach to dynamic resource

allocation, specifically when long-term endurance is sought.

Lewis & Ekárt (2017) focus on the interplay between institutional features

and forms of learning used by agents. They show that the way the agents learn

influences directly the existence and sustainability of the institution, and at365

the same time, the institution’s features can either tolerate or inhibit learning.

Institutional pardons in the sanctioning mechanism (Ostrom’s principle 5) have

a key role, as they allow for tolerance of behaviours associated with ongoing

learning, such as complacency and exploration.

2Their experiments consider a lifespan of 500 time steps.
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Kurka & Pitt (2017) study the relaxation of norms, in particular of sanction-370

ing strategies for non-compliance in socio-technical systems, in a scenario where

monitoring comes at a cost and also subjective and diverse behaviour of agents

can be expected. They define principled violation of policy as“the active and

intentional decision of an agent of not applying a policy to which it is entitled”

(i.e. a sanction). They demonstrate via a series of experiments on CPR allo-375

cation that strategies of partially applying sanctions lead to more cost-effective

solutions, that are flexible to different scenarios and behaviour.

So, agent-based modelling shows how both institutional pardons and partial

sanction application are mechanisms that can lead to more sustainable insti-

tutions. But how can agents be incentivised to take on the roles that lead to380

sustainable institutions (such as monitoring behaviour or organising votes)?

4. The Challenge of Predicting Conditions for Establishment and Sus-

tenance of Cooperation-Promoting Institutions

Having established the complementarity of value-based and content-based

models in general, and ABM and EGT in particular, in Section 2, our aim is385

to establish the value of each approach in understanding and controlling the

behaviour of agents forming an institution to resolve common-pool resource

allocation problems. The role of ABM has already been well demonstrated in

prior work (as discussed already in this section), therefore, in the remainder of

this paper we focus on illustrating additional insight that can be obtained by390

taking a value-based, evolutionary game theoretic approach.

Using an evolutionary game theoretic model, we focus on the challenge of

predicting conditions for the formation and sustenance of cooperation-promoting

institutions, when individual agents have to be incentivised to take on the insti-

tutional roles that are necessary for this. These predictions would be difficult to395

make from an agent-based model, other than by interrogating it rather labori-

ously in a black-box fashion. Here we aim to derive relations between parameters

in order to answer the following questions:
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1. How many agents need to take on a monitoring role in order to incentivise

cooperation?400

2. What level of investment into monitoring is necessary to incentivise this

number of agents to become monitors?

3. What are the conditions for cooperation to become established given an

initial state where no agent cooperates and no agent monitors?

5. Illustrating the Role and Benefits of Value-based Models405

To illustrate the role and benefits of value-based models, we consider under

what conditions agents can be incentivised to monitor each other’s compliance

with institutional rules. Previous work has recognised that monitoring rule

compliance is necessarily costly. Monitoring can carry both physical costs, e.g.,

energy or CPU cycles, or opportunity costs where the time spent on monitoring410

is time lost carrying out other productive activities. This is true both in natu-

ral systems, such as irrigation systems (Weissing & Ostrom, 2000) and fisheries,

and artificial systems such as community clouds (Khan, Freitag & Rodrigues,

2015) or community co-production energy systems (Torrent-Fontbona, López,

Busquets & Pitt, 2016). Therefore, if self-interested agents are to be incen-415

tivised to monitor rule compliance then they need to be reimbursed for this cost

somehow.

One empirically grounded way in which the costs of monitoring can be re-

imbursed is by using a fraction of the group’s common-pool resource to pay

for monitoring. This fraction of the resource invested into monitoring is an in-420

stitutional fact, i.e., it is determined by the current institutional rules. Several

models have examined the effect of different levels of investment into monitoring

at an abstract level (Balke, De Vos & Padget, 2013; Jaffe & Zaballa, 2010; Pitt

& Schaumeier, 2012; Powers, 2018; Powers & Lehmann, 2013), by assuming that

the probability that an agent is monitored for rule compliance is proportional425

to the amount of resource invested into monitoring. But these models did not

examine what would happen if agents have to choose whether or not they will
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take on the monitoring role, and how the level of monitoring will consequently

evolve over time. Here we take this theoretical work further by developing a

micro-level model that considers agents explicitly choosing whether or not to430

take on a monitoring role when they must pay a cost for doing so.

In the sections below we develop a general descriptive model and then con-

sider several variants in which monitoring is incentivised in different ways.

5.1. Base Model

We consider a model in which n agents take part in a linear public goods435

game to provision a common-pool resource. Each agent makes three decisions: i)

whether or not to cooperate by provisioning the common pool at a cost to itself;

ii) whether or not to pay a tax to support implementation of the institution; and

iii) if a member, whether or not to monitor other agents to determine whether

or not they have contributed.440

Agents that both did not provision to the common pool and were monitored

(thus caught) are sanctioned, creating a cost to free-riding (CF).

Provisioning the common- pool resource, as well as taking on the monitoring

role, carries some cost to the agent (CC and CM, respectively). Monitors are

reimbursed for their work according to two different schemes that we compare445

and contrast below. The process is then repeated for a number of rounds T .

Thus, the utility of an individual agent will be built up from a base utility,

the individual’s share of the common-pool resource, the individual’s cost if they

contribute to the common-pool, the individual’s cost if instead they free-ride,

the individual’s net benefit if they take on a monitoring role, and the individual’s450

cost of paying a tax to support the institution (Cτ ).

More formally, the utility of agent i at round t is given explicitly by the

following function:

ui(t) = u0 +BG(t)− ιiCCC − (1− ιiC)CF(t) + ιiM[BM(t)− CM]− ιiτCτ , (1)

where ιiC, ιiM and ιiτ are indicator variables that take the value 1 if the agent455

contributes to the common pool, monitors, and pays tax to support the insti-
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tution, respectively, and 0 otherwise. In this utility function, u0 is a baseline

utility in the absence of social interactions. The term BG(t) represents the

individual’s share of the common-pool resource, computed as:

BG(t) =
1

n
× αnC(t), (2)460

where nC(t) is the number of agents that provisioned the common resource on

round t (the number of agents with ιC = 1) and α is a model parameter repre-

senting the amount of resource that each agent provides when they provision.

The parameter CC represents the cost to the agent of provisioning α units of

common-pool resource. Following the definition of a linear public goods game,465

we assume that CC < α, i.e. there is a benefit to agents of cooperating together

to share their resources.

The term CF(t) represents the cost of free-riding, i.e. of an agent not pro-

visioning the common pool. This cost is paid by all agents with ιC = 0. The

cost is calculated as the probability than an agent is monitored, multiplied by470

the sanction imposed if detected free-riding, s. This is computed as:

CF(t) =
pnM(t)

n
s, (3)

where nM(t) is the number of agents that take on the monitoring role at round t,

i.e. the number of agents with ιM = 1, and p is the number of agents monitored

by each monitor. We assume that each monitor monitors a different, non-475

overlapping, set of agents, and that an agent is not monitored more than once.

This corresponds to an assumption that agents have the technology to perfectly

coordinate their monitoring.

The term BM(t) represents the amount that monitors are reimbursed for

their monitoring work. We examine different ways in which monitoring can be480

paid for, and hence different expressions for BM(t), in Section 5.2 and 5.3.

The term CM represents the cost to agent i of monitoring other agents. The

cost of monitoring a single agent is δ, so the total cost to an agent of monitoring

on one round is

CM = pδ. (4)485
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Finally, the parameter Cτ represents the tax paid each round to support

implementation of the institutional arrangements, which is paid by all agents

with ιτ = 1.

The costs of monitoring, contributing to the common pool, and paying tax

to support implementation of the institutional arrangements are constant ev-490

ery round, depending only on model parameters. By contrast, the individual’s

share of the common-pool resource, the benefit of monitoring, and the cost of

free-riding are dynamic variables that depend on the values of the model state

variables nC(t), nM(t) and nτ (t) during that round.

We are interested in the conditions under which agents will create a system of495

monitoring that incentivises cooperation, i.e. that makes the cost of provisioning

less than the cost of freeriding (CC < CF(t)). To determine this, we consider

the evolution of the three agent behavioural traits ιC, ιM, and ιτ when agents

with those traits are in competition with each other (Maynard Smith, 1982).

An evolutionary game theory analysis considers that there are eight possible500

types of agents depending on the values of their ι traits, and tracks the frequency

of each type in the population. All agents with the same type are assumed to

have the same utility. Specifically, we take an agent type’s utility in round t

from Equation 1 as the fitness of that type of agent in generation t, i.e. one

round corresponds to one generation. The frequency of an agent type in the next505

generation is then proportional to its fitness (i.e. fitness proportionate selection),

as described by the standard replicator equation (see, e.g. Maynard Smith 1982).

However, direct analysis by means of the replicator equation is complicated

because of the large number of types, and the possible effects of covariance

between the different traits. To ease analysis we therefore consider each trait510

independently, asking when an agent will gain fitness by switching the corre-

sponding ι value from 0 to 1 (or vice versa).

Importantly, an evolutionary game theory analysis does not assume genetic

transmission of traits. Rather, it can be used to capture social learning where

agents imitate the traits of other agents, and are more likely to imitate traits that515

they observe to bring a higher payoff – so-called payoff-biased social learning
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(Boyd & Richerson, 1985; Cavalli-Sforza & Feldman, 1981). We proceed by

analysing the above equations to determine inequalities capturing the conditions

under which provisioning is favoured (i.e. individuals evolve an ιC value of 1).

5.2. Variant 1: Individuals make a unilateral decision about whether to con-520

tribute to a separate pool of monitoring fees

In the first variant of the model, monitors take their payment from the

separate pool of institutional taxes paid by agents with ιτ = 1. Specifically, BM

is computed as:3

BM =
βnτCτ
nM

, (5)525

where β is the proportion of institutional taxes that are invested into monitoring

and nτ is the number of agents that pay the institutional taxes (i.e that have

ιτ = 1).

This model represents each agent making a unilateral decision about whether

to make a separate contribution to sustain implementation of the institutional530

rules or not, in a manner similar to pool punishment models studied in evolu-

tionary biology (Sigmund, De Silva, Traulsen & Hauert, 2010; Sigmund, Hauert,

Traulsen & Silva, 2011; Traulsen, Röhl & Milinski, 2012).

The first question that we can ask from our value-based evolutionary game

theoretic model is: when does it pay an agent to cooperate, i.e. when will the535

fitness (utility) of an agent be greater if they cooperate than if they do not?

In other words, when is cooperation incentivised, such that agents with ιC = 1

outcompete agents with ιC = 0? Cooperation will be incentivised when the cost

of cooperating is less than the cost of free-riding, i.e. CC < CF. This occurs

when CC < psnM

n , which entails that the proportion of monitors must satisfy540

the inequality:
nM
n

>
Cc

ps
. (6)

3For the purpose of analysis, we do not use the time step in the remainder of the paper.

As we are not interested in the evolution over time, but the analysis at a given moment in

time, this makes the expressions easier to read.
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We can see from this that increasing CC will increase the number of monitors

that are necessary to incentivise cooperation, while increasing either the number

of agents that each monitor monitors for rule compliance (p) or the sanction545

imposed on a free-riding agent when they are monitored (s) will decrease the

number of monitors that are necessary. As such, the value-based model makes

clear and precise predictions about the amount of monitoring that is necessary.

This is in contrast to executable content-based models of institutions (e.g. Pitt

& Schaumeier, 2012), where large numbers of experiments have to be run to550

attempt to derive such inequalities by brute force numeric searching of the

effects of model parameter values.

The next question that it is important to ask is: when will this level of

monitoring be sufficiently incentivised, such that it individually pays all of these

agents (nM) to take on the monitoring role? Performing monitoring will be555

advantageous for an agent when BM > CM, that is when βnτCτ

nM
> pδ. We can

rearrange this to highlight the relationship between the frequency of tax payers

and the frequency of monitors:

nτ
n

βCτ
pδ

>
nM
n
. (7)

This means that, to incentivise monitoring, the frequency of tax payers mul-560

tiplied by the amount βCτ

pδ needs to be greater than the frequency of monitors.

If this amount is less than 1 – assuming that all of the agents are self-interested –

then not every tax payer can be a monitor. Although there are possibilities to

make this amount larger than 1 (i.e. by setting Cτ to a large value or having a

low cost of monitoring δ), we are most interested in the case when this is less565

than 1, because then there is a decision to be made, whether to monitor or not.

As inequalities 6 and 7 are both expressed in terms of the proportion of agents

in the population performing monitoring, we can combine them to obtain the

inequality nτ

n
βCτ

pδ > CC

ps that must hold irrespective of the value of nM

n . By

rearranging, we obtain570

δ

s
<

1

n

βnτCτ
CC

. (8)

So, the ratio of the monitoring cost (δ) to the sanction for free-riding (s) needs to
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be less than the ratio of one agent’s share of the monitoring pool tax ( 1nβnτCτ )

to the cost of cooperation (CC). Of these, s, β and Cτ are likely to be at least

partly under the control of the agents themselves, i.e. they are institutional575

facts. Choosing values for these accordingly ensures that it pays for nM agents

to do monitoring.

Finally, we need to examine the incentives to pay the institutional taxes,

which in turn pay for some agents to monitor by providing βCτ units of resource

for monitoring. Exactly as for our analysis for the traits ιC and ιM, for tax580

paying to be incentivised the cost of the tax needs to be less than the benefit

to the individual agent of paying the tax. But we can see from Equation 1 that

there is no individual benefit to paying the tax, i.e. there is no Bτ term. The

benefits of paying tax are manifest through their use in incentivising monitoring

and hence cooperation. But these benefits are shared equally with all of the585

agents, since the common-pool resource that is provisioned through cooperation

is shared equally by all agents (Equation 2). Therefore, in this model self-

interested agents will not pay institutional taxes, which means that there will

be no resources invested into monitoring, and hence self-interested agents will

not monitor. Then, in the absence of monitoring self-interested agents will not590

cooperate. In other words, monitoring itself becomes subject to a second-order

tragedy of the commons (Axelrod, 1986; Boyd & Richerson, 1992; Fowler, 2005;

Perc, 2012).

This problem is clearly highlighted by the equations of this model, since it

is specified in terms of the value of each strategy. This shows that monitoring595

cannot be favoured for any set of parameters. Relying solely instead on a model

that captured the content of behaviours, and not their value, would mean that

an exhaustive search of parameter settings would need to be carried out in order

to be sure that the lack of monitoring and cooperation was not an artefact of

the particular parameter values chosen.600

We now turn to investigate other ways in which monitoring can be incen-

tivised.
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5.3. Variant 2: Monitoring is paid for from the common-pool resource

In this variant, monitors take their payment directly from the common-pool

resource according to a parameter β, which represents the proportion of the605

group’s common-pool resource that is invested into monitoring. This is an in-

stitutional fact, i.e. part of the institutional rules. It corresponds more closely

to several of the empirical examples given by Ostrom (1990), where agents use

their common resources to either hire monitors that are accountable to them-

selves, or to reward certain group members for taking on the monitoring role.610

This involves agents making a collective decision about how much their group

invests into monitoring (Conradt & List, 2009; Conradt & Roper, 2003), in con-

trast to the unilateral decision in Variant 1 of the model. In other words, agents

play a political game in which they bargain and negotiate over the institutional

rules and how to enforce them (Hurwicz, 1996; Reiter, 1996). This political615

game would result in setting the value of β in our model. The evolutionary

dynamics of individual agent preferences for the value of β have been studied

elsewhere (Powers, 2018; Powers & Lehmann, 2013). Here we do not consider

the dynamics of exactly how β is set by a political game, but we instead focus

on the effects of β on the level of monitoring that is incentivised.620

In Variant 2 of the model, Cτ is set to 0, since monitoring is now paid for

from the common-pool resource. This means that we no longer have to consider

the evolution of ιτ (it is a neutral trait). Since a fraction β of the common-

pool resource is now used to pay for monitoring, the remaining fraction 1−β is

distributed amongst all of the agents. Thus Equation 2 becomes:625

BG(t) = (1− β)
1

n
× αnC(t) (9)

The individual benefit of monitoring, BM, is then computed as:

BM =
αβnC
nM

. (10)

The inequality for cooperation to be favoured remains the same as in Variant

1, i.e. nM

n > Cc

ps . Monitoring, however, will now be incentivised when αβnC

nM
>

pδ. Rearrangement of this highlights the relationship between the frequency
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of monitors and the frequency of cooperation that is necessary to provide a630

sufficient amount of common-pool resource to pay for these monitors:

nM
n

<
nC
n

αβ

pδ
. (11)

From this we can draw out the roles of the parameters α, β, p and δ.

For full cooperation (i.e. every agent cooperates) to be an equilibrium, the

largest frequency of monitors for which monitoring is individually incentivised635

in (11) needs to be greater than the frequency of monitors that is necessary to

sustain full cooperation. This means that the following condition must hold,

based on (11) and (6):
nC
n

>
CC

s

δ

αβ
(12)

where by setting nC

n = 1 we obtain:

αβ

δ
>
Cc

s
. (13)

The parameter p, the number of agents monitored by each monitor, appears on640

the denominator of both sides and so cancels out. This is a result of the assump-

tion that monitors sample agents to monitor without replacement (Equation 3),

and so doubling p means that half as many monitors are needed to sample the

same number of agents.

When the relationship among the parameters in (13) holds then full coop-645

eration will be an equilibrium. At this equilibrium, monitoring will go to the

maximum frequency at which it is incentivised, which is when nM

n = αβ
pδ (subject

to the constraint that nM

n cannot exceed 1). When αβ < pδ then this will be

less than 1, and so selection on ιM will depend on the frequency of monitoring

already in the population, leading to an interior equilibrium for the frequency650

of monitoring. Conversely, when αβ >= pδ and (13) hold then there is an

equilibrium in which every agent cooperates and every agent monitors. From

(11) it follows that if αβ < pδ then monitoring and cooperation cannot be

linked (or the same) traits, since the number of incentivised monitors is less

than the number of incentivised cooperators by a fraction αβ
pδ . Thus if we force655

every cooperator to monitor then self-interested agents will neither cooperate
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or monitor if αβ < pδ. To promote cooperation in this kind of environment

we should not, therefore, promote a policy in which every agent should both

cooperate and monitor. This is in contrast to the findings of models of “peer

punishment”, where each agent makes a unilateral decision about whether or660

not to monitor and punish other agents and pays a unilateral cost for doing

so. In these models, monitoring and punishment are promoted if cooperation

and monitoring are linked traits, such that agents copy them as a pair (Boyd

& Richerson, 1992; Lehmann et al., 2007). Thus, changing from unilateral to

collective decision-making about how much to invest into monitoring changes665

whether or not we should try to force all agents to monitor, or only a subset.

We can now ask, what is the minimum value of β necessary to make full

cooperation an equilibrium? This can be derived from rearranging (13):

β >
δCC

αs
. (14)

When this inequality holds, and the agents are all cooperating, then a sufficient670

level of monitoring is incentivised to maintain full cooperation. This allows us to

answer the important practical question: how much of their resources should a

group invest into monitoring? The proportion of their common-pool resources,

β, that they should invest in order to maintain cooperation is the smallest value

that satisfies (14). Investing any more than this is wasteful. This highlights675

how value-based models can produce precise predictions about how to control

a system.

So far our analysis has focussed on the conditions under which full coop-

eration will be an equilibrium. However, a separate question is under what

conditions a group of agents will reach this equilibrium if they start out with680

no cooperation and no monitoring. We first ask what frequency of monitoring

is necessary to incentivise cooperation when there are no cooperators in the

group? From the previous results this is given by (6), which is independent of

the frequency of cooperators. We then need to ask if this level of monitoring

is incentivised when there are no cooperators in the population. Monitoring685

is incentivised when condition (11) is met. We can immediately see that this
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cannot be satisfied when nC

n = 0, i.e. when no agents are currently cooperating.

Consequently, there is also an equilibrium in which no agent monitors and no

agent cooperates (6 and 11).

This equilibrium in which no agent cooperates or monitors represents a nat-690

ural starting point when considering the origin of institutions. How, then, might

a group break free from this equilibrium and move to the cooperate and monitor

equilibrium that increases social welfare? Moving away from this equilibrium

will initially require some agents to monitor for free, i.e. to discount the cost

of monitoring in their utility functions. The critical fraction of monitors to695

select for an increase in cooperation is CC

ps (as per (6)). Therefore, initially

at least this proportion of agents needs to start monitoring while ignoring the

costs. Then, as some agents start to cooperate then the costs of monitoring

will start to be repaid. For a given non-zero frequency of cooperators, a greater

frequency of monitoring costs will be repaid when the proportion of CPR used700

for monitoring (β) is greater. This suggests that in order to reduce the amount

of “charity” that monitors must initially perform, a group should initially set its

β to a large value. This can then be reduced down to that given by (14) once

full cooperation is reached (see also Chen, Sasaki, Brännström & Dieckmann

2015 for a similar argument concerning switching from rewards to punishments705

to incentive cooperation as cooperation increases in frequency).

The frequency of cooperation required to fully pay for monitoring is given by

the limit in (12), nC

n = δ
αβ

CC

s . When this is less than 1 then there will be excess

funds available at the full cooperation equilibrium that can be used to reimburse

agents that initially suffered a cost for their monitoring, such that they do not710

pay a net lifetime cost even if they initially perform monitoring for free. This

effect could likely be captured to some extent in a value-based model using

strategies that make a commitment (Han, Pereira & Lenaerts, 2017), or that

incorporate reinforcement learning of payoffs from imagined actions (Dridi &

Lehmann, 2014). However, because we are describing a behaviour that requires715

agents to be forward-looking to some degree, it cannot be fully captured in

an evolutionary game theory model where individuals’ cognition is completely
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myopic. It could, however, be explored easily in an executable content-based

model that implements cognitive theories of agent behaviour.

6. Recommendations720

In this section, we offer some recommendations arising from this study, aimed

at those using modelling approaches to understand, control and design social

and socio-technical systems.

6.1. Recommendation 1: Use both content-based and value-based approaches

In this study, we have shown that existing results, found in the literature,725

and obtained from agent-based modelling techniques, can be complemented with

those obtained by taking an evolutionary game theory approach. The results in

Section 5 would have been difficult to obtain empirically. However, the evolu-

tionary game theory approach would also struggle to obtain results concerning

the interactions of more complex cognitive agent behaviours, such as those asso-730

ciated with richer human social interactions. Therefore, in order to benefit from

the complementarity that each provides, our first recommendation is to use both

content-based and value-based modelling approaches to build understanding of

a social or socio-technical system.

The risk associated with not doing this is that it is easy otherwise for the re-735

sulting understanding to be limited by the assumptions present in one modelling

form. By taking only a content-based approach, it is unlikely that the modeller

will arrive at statements concerning the utility of a particular behaviour in a

particular context, even though these might in some cases be quite obvious, once

considered. Conversely, taking a purely value-based approach may discourage740

consideration of the effect of interacting cognitive agents. As an example of the

latter, Ostrom’s work highlights that, while the Tragedy of the Commons is a

perfectly valid result given the assumed game rules and behaviour model, hu-

mans in practice are able to reflect on this situation, and put measures in place

to change the rules of the game. Such a solution does not naturally arise within,745
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say, a purely game theoretic framing of the problem. However, by viewing the

problem from multiple theoretical standpoints, assumptions become more ap-

parent and therefore open to challenge.

6.2. Recommendation 2: Don’t worry if the value-based model is not complete

It is tempting to think that, unless one has a complete value-based model of750

the system, any model that has been produced would have limited value. While

it is true that we can obtain more complete results from more complete models,

even partial value-based models can expose inequalities that provide valuable

insight.

For example, a more complete analysis of the common-pool resource alloca-755

tion problem studied in this article would consider selection on both cooperation

and monitoring at the same time, and arrive at statements accounting for the

co-variance between them. However, even without doing this, we have been

able to arrive at useful analytical results that provide insight beyond what was

readily obtainable using agent-based methods.760

6.3. Recommendation 3: Go for the qualitatively equivalent, but more tractable

alternative

Often seemingly innocuous changes to a model can drastically change the

tractability of value-based models. An example is provided by the assumption

here that each monitor perfectly coordinates to monitor a non-overlapping set765

of agents, i.e. that sampling from the pool of agents to be monitored is without

replacement. An alternative would be to assume that this sampling is with

replacement, so that different monitors may end up monitoring the same agent

in the same round, because their monitoring actions are uncoordinated. This

then means that the proportion of agents monitored does not increase linearly770

with the number of monitors, but instead increasing the number of monitors

produces diminishing marginal returns in terms of the proportion of agents

covered.
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This assumption would be operationalised in the model by changing Equa-

tion 3 to CF(t) = [1−(1− p
n )
nM(t)]s. This would leave our results concerning the775

number of agents that are incentivised to monitor (inequality 11) unchanged.

However, it would change the level of monitoring that is necessary to incen-

tivise cooperation (inequality 6). But presenting this revised inequality in an

intuitive form in terms of nM

n is now much more difficult. Consequently, it is

much harder to gain insight into how cooperation is likely to change with in-780

vestment into monitoring, and harder to gain insight into the conditions under

which cooperation and monitoring can become established in a group.

In reality, groups are likely to lie somewhere on a continuum between per-

fectly coordinated monitoring and completely uncoordinated monitoring, with

their position depending on the monitoring technology available to them. This785

suggests that assuming perfectly coordinated monitoring, as in Equation 3, is

as reasonable as assuming completely uncoordinated monitoring, but has the

crucial advantage of providing intuitive insight. More generally, it is often pos-

sible to tweak model assumptions such that the qualitative insight of the model

is still valid, but the analysis is both more tractable and more intuitive.790

7. Discussion

In this article we have demonstrated and explored the complementarity of

agent-based and evolutionary game theoretic modelling approaches for social

and socio-technical systems, which we characterised as instances of content-based

and value-based approaches, respectively. We have shown that each approach795

brings with it different assumptions, and also offers the potential for different

insights, and hence both provide value.

7.1. Implications for enduring institutions

Our results suggest that how agents decide on the amount that their group

should invest into monitoring is critical to whether or not a sufficient investment800

to promote cooperation will be achieved. If each agent makes a completely uni-

lateral decision about the amount of its resources to invest, then the model
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predicts that agents are unlikely to produce a sufficient investment. This ac-

cords with the findings of peer-punishment (Boyd & Richerson, 1992; Lehmann

et al., 2007) and pool-punishment (Perc, 2012; Sigmund et al., 2010, 2011) mod-805

els from evolutionary biology. Various suggestions have been made to overcome

this problem, including punishment of individuals that do not invest into mon-

itoring (i.e. second-order punishment Axelrod 1986; Boyd & Richerson 1992;

Perc 2012), signalling an intention to punish beforehand (Boyd, Gintis & Bowles,

2010), and the proposition that agents do conformity-biased social learning and810

so will tend to imitate behaviour to invest into monitoring when the majority

of other agents are already investing (Boyd et al., 2003).

There is likely to be some element of conformity bias in human groups

(but see also Binmore 2005a; Burton-Chellew, Mouden & West 2017; Burton-

Chellew, Nax & West 2015; Lamba 2014; Lamba & Mace 2011 for critiques of815

experiments that argue for conformity in collective action situations). However,

field studies suggest that real collective-action problems tend to be solved by

the creation of institutional rules that promote cooperation and monitoring (Os-

trom, 1990). These often involve groups making a collective decision to invest a

share of their common-pool resources to either hire monitors, or to incentivise820

group members themselves to act as monitors. Where this occurs, then our

micro-level model demonstrates that sufficient monitoring can be incentivised

(Variant 2), in contrast to the case where the decision is unilateral (Variant 1).

By explicitly modelling incentivisation using evolutionary game theory, we

can make a precise prediction about the proportion of its resources that a group825

should invest into monitoring (relation 14). Furthermore, the model suggests

that a group should invest more into monitoring when an institution is trying

to become established from an initial state with little cooperation. Finally, the

model predicts that cooperation will not become established unless some agents

initially monitor “for free”, i.e. discount the cost of monitoring in their utility830

function. Then, as cooperation starts to become established more and more

of this monitoring will become incentivised. Moreover, we showed conditions

under which when agents are at the full cooperation equilibrium then there is
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sufficient investment into monitoring not only to pay for monitoring at that

time, but to reimburse agents that initially monitored for free, such that they835

do not pay a lifetime cost for this.

7.2. Implications for modelling social and socio-technical systems

Figure 1 illustrated that, even within the family of value-based approaches,

there are a variety of alternatives available, and the potential for others to be

developed. Exploring these, and characterising the assumptions between classic840

game theory and evolutionary game theory, we can see two ends of a possible

spectrum where different levels of (bounded) rationality are captured. Game

theory, in its various forms, provides a natural way to examine issues related

to the incentivisation of behaviour. It has proven to be useful across both the

natural and social sciences, from biology through to anthropology, sociology,845

economics and computer science. A key point is what the various types of game

theory assume about the cognition of agents.

On the one hand, classic game theory assumes that agents are both rational

and fully forward-looking, being able to work out the consequences of their ac-

tions for an infinite number of rounds in the future. It is recognised that neither850

human nor artificial agents have the computational power or sufficient infor-

mation about the consequences of their actions to do this. Consequently, this

assumption has been relaxed to some extent with models of bounded rational-

ity (Gigerenzer & Selten, 2001). On the other hand, evolutionary game theory

assumes that agents are completely myopic, only caring about their payoff in855

that “generation” (Maynard Smith, 1982). For this reason, evolutionary game

theory is often seen as a safe minimal assumption to make about the cognition

of agents. Most formal models of cultural evolution theory also rest on this as-

sumption of myopia and extremely limited cognition, which they operationalise

by using equations from population genetics to model the spread of cultural860

traits by imitation (Boyd & Richerson, 1985; Cavalli-Sforza & Feldman, 1981).

Put bluntly, humans are assumed to copy others because they are unable to

attempt to calculate what they should do, or it is too costly for them to do so
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(Richerson & Boyd, 2005).

Our model suggests that an assumption of complete myopia is problematic865

for explaining the origin of cooperation-promoting institutions. Our results

imply that some agents initially need to take on a monitoring role while ignoring

the immediate costs, since this will lead to an equilibrium where these costs can

be more than repaid. But if individuals are completely myopic, monitoring will

not get off the ground unless we assume forces exogenous to the model such as870

“stochastic shocks” that induce a proportion of agents to simultaneously start

cooperating (Foster & Young, 1990), or large numbers of cooperating agents

arriving from other groups (Boyd et al., 2003). While both of these forces

can theoretically produce the result where agents reach the full cooperation

equilibrium, they do not correspond particularly well to human behaviour in875

many common-pool resource situations in the field (Ostrom, 1990). Rather,

they are a way of forcing equilibrium shifts into a myopic model.

This suggests that a more natural way to model the origin of cooperation-

promoting institutions is needed, for example by using content-based models as

a complement. Content-based models allow us to capture different theories of880

cognition in the agent’s architecture and examine the result of interactions be-

tween agents based on those theories. For example, BDI (Rao & Georgeff, 1995),

HCogAff (Sloman, 2001), ACT-R (Anderson, Bothell, Byrne, Douglass, Lebiere

& Qin, 2004), SOAR (Laird, 2012), or the range of agent architectures discussed

by Russell & Norvig (2010), are all viable approaches to capture bounded rea-885

soning processes as well as, in some cases, human emotions and other qualitative

states and values such as trust, fairness and justice (Pitt, 2016).

In the short term, however, we believe that it is important for modellers

to provide clarity concerning whether their models either assume or explore the

extent to which agents engage in cognition, or if they assume that agents simply890

‘behave’. This is important, because model predictions may vary drastically as

a result, and thus it provides the context for any resulting insight.

Finally, another line of research would be to consider whether evolutionary

game theory, or other value-based approaches, can be extended to capture more
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complex agent behaviour, where the value of a behaviour is not readily obtain-895

able in general. One idea could be to induce the value of behaviours empirically,

perhaps as a second layer in a value-based model. How, for example, might the

assumption of bounded rationality be parametrised in order to capture varying

levels of agents’ capacities for knowledge gathering and reasoning, with this be-

ing linked to the value (e.g., fitness) of carrying out such cognitive behaviour?900

An architectural schema or styles perspective (Lewis, Platzner, Rinner, Tørre-

sen & Yao, 2016; Russell & Norvig, 2010; Sloman, 2001) provides one way to

explore this space, and combining this with the evolution of traits may provide

a way of exploring the extent to which agents faced with a social dilemma can

be expected to engage in cognitive behaviour to reason through their situation.905
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