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Abstract

Direct femtosecond laser inscription has emerged as one of the most efficient methods for
direct three dimensional micro-fabrication of integrated optical circuits in dielectric crystals.
Lithium niobate is one of the most widely used dielectric crystal for a wide range of optical
functions. Using the direct femtosecond inscription technology, it is possible to produce
almost circular tracks of 1− 2.5µm diameters with negative refractive index changes up to
−0.012 in lithium niobate crystals. Those tracks can be used as a cladding region to confine
the propagating light inside a core region of a micro-structured waveguide. This dissertation
is focused on the numerical investigation of the propagation properties of depressed-cladding,
buried micro-structured waveguides in z-cut lithium niobate crystals which can be fabricated
by direct fs laser inscription method.

First of all, we discuss how experimentally achievable parameters of cladding tracks such
as their position, total number, refractive index contrasts between the low index cladding
structure and the core region can be used to design buried micro-structured waveguides
with good confinement properties and to achieve any control over the propagation properties
of different polarisation modes specific to a wide range of applications of lithium niobate.
Numerical analysis of micro-structured waveguides are implemented by using finite element
method.

The high nonlinear coefficient and wide transparency region of lithium niobate enable its
use for frequency conversion applications towards mid-infrared wavelength ranges. In this
thesis, optimisation of the guiding properties, specifically the confinement losses, of micro-
structured waveguides in lithium niobate is realised for both around telecom and mid-infrared
wavelength regions. Optimisation is based on a practical approach which takes into account
the variation of experimentally achieved track parameters over cladding region. It is shown
that the spectral region where confinement losses are below 1 dB/cm can be extended up to
a wavelength of 3.5µm.

In recent years, a variety of design geometries for micro-structured waveguides has been
a focus of research interest as a means of manipulating and controlling the properties of
propagating light. The flexibility of writing tracks at various depths inside lithium niobate
crystals allows direct fabrication of micro-structured waveguides with advanced design geo-
metries. The ability to write tracks at varying sizes by femtosecond laser inscription method
enables the fabrication of micro-structured waveguides with highly complex spiral geomet-
ries. Here, we explore design issues of equiangular, Fermat and Archimedes spiral geometries
in accordance with experimentally available track parameters. Optimisation of each geometry
is separately implemented for telecom and mid-infrared wavelength ranges. The primary
advantage of designing waveguides with spiral geometries is a much finer control and better
manipulation of propagating light stemming from a higher number of parameters available
for design. Also, it is found that the spectral region where confinement losses are below 1
dB/cm can be further extended up to a wavelength of 3.66 µm.
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Chapter 1

Introduction

1.1 Research motivation

On-going advances in optics and photonics has been a leading factor of fast progress in

various scientific areas such as communication, material science, computing, medicine, and

many others. Optical waveguides (WGs) [1–3] play an essential role in optics and photonics

because they enable efficient transmission of light between any two points, and they serve

as a basic tool of integrated optical (and photonic) circuits (IOCs) [4] to implement linear

and nonlinear functions for a variety of purposes. IOC technology refers to the fabrication

of advanced optical devices by combining and interconnecting multiple optical and photonic

components, for example, optical modulators, couplers, switchers, multiplexers, polarisers,

interferometers, optical sources and detectors on a single chip. Lowering the costs, decreasing

the sizes and thereby increasing the functionality of advanced complex devices in smaller

footprints are the primary motivations for the integration of multiple optical and photonic

functions in a single device.

Fabrication technologies of optical WGs are highly varied depending on the materials
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CHAPTER 1. INTRODUCTION

used and the relevant WG geometry. Glass, nonlinear crystals, semiconductors and polymers

are some of the materials which are frequently used to fabricate optical WGs and IOC

devices. Lithium niobate (LiNbO3) [5, 6] is one of the most widely used nonlinear optical

crystals in IOC devices due to its wide transparency range from 0.3 µm to 5 µm, high

second-order nonlinearity, electro-optical, acousto-optical and photorefractive properties.

Additionally, it is a birefringent material and has a high nonlinear optical coefficient. It

can be doped with active materials for the purpose of optical amplification. One of the most

important features of LiNbO3 in terms of IOC is that almost all basic IOC functions can be

fabricated to build complex IOC devices on LiNbO3 [7]. Functionality of basic blocks are

based on either just transmission of light or control and manipulation of the properties of

light during transmission through WGs.

There exist a number of techniques for the fabrication of optical WGs in LiNbO3 such as

metal ion (titanium, zinc, iron) indiffusion [8], proton exchange, ion beam techniques, pulsed

laser deposition, direct femtosecond laser inscription, etc. Each fabrication technique has its

advantages and disadvantages. Titanium indiffusion has been exploited to fabricate WG

based devices since the middle of 70s [9]. Basically, titanium is diffused into the LiNbO3

substrate at near 1000 ◦C for a duration of 4 to 12 hours, and the desired WG geometry is

obtained by selectively removing titanium layers by lithographic techniques. The titanium

indiffused regions in LiNbO3 maintain the electro-optic properties and ensure a positive

change for both ordinary and extraordinary refractive indexes (RIs), though the amount of

RI change is less compared to other techniques [10].

Proton exchange is another classical method to fabricate WGs in LiNbO3 [11]. It is

based on immersion of a masked LiNbO3 wafer into a high temperature (200− 250 ◦C)

acid bath for several days to exchange lithium ions with protons in unmasked regions at
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CHAPTER 1. INTRODUCTION

a surface depth of 1 to 10 µm, thereby leading to a small decrease in the ordinary RI and

an increase in the extraordinary RI of LiNbO3 up to about 0.01 [12]. The proton exchange

should be followed by an annealing process to maintain an effective nonlinear coefficient and

to improve the deterioration of the electro-optic coefficient. WGs fabricated by the proton

exchange method support the propagation of light polarised only along the extraordinary

direction of polarisation due to the positive induced RI change [13].

Ion implantation [14, 15], a well-known method for the fabrication of WGs in LiNbO3,

is implemented by bombarding the crystals surface with ions which are accelerated at an

impact energy and directed towards the material surface at a controlled angle to modify

the materials optical properties. Ion implantation in LiNbO3 produces locally reduced RI

changes. Guiding of optical waves is therefore realised in an unmodified region confined by

reduced RI regions [16, 17].

The conventional methods described above allow the fabrication of two dimensional (2D)

planar structures only on or near the surface of LiNbO3. Consequently, polishing the surface

of the crystal wafer after WG fabrication requires very delicate procedures. Also, the depth of

WGs from the crystal’s surface is very limited due to penetration insufficiency of metal ions

or protons. This entails no control on the shaping of the RIs and geometry of the WG. On the

other hand, controlling the WG geometry would permit to reduce the otherwise present high

coupling losses. Another issue with the WG inscription in LiNbO3 arises due to changes

in the material structure during WG fabrication, thereby leading to a decreased damage

threshold and disruption of the poled LiNbO3 domains. While communication applications

of LiNbO3 WGs use low signal powers, the efficiency of high power frequency conversion

applications is diminished due to the lowered damage threshold of the WG regions.

Besides, large-scale applications of LiNbO3 are in general limited because of expensive
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CHAPTER 1. INTRODUCTION

clean room facilities, time consuming processes, high cost and low throughput, and limited

possibility for fabricating integrated 3D complex optical devices. In recent years, the direct

femtosecond (fs) laser inscription method [18,19] has evolved as a rapidly evolving alternative

technology to fabricate IOCs in optical materials. It is based on focusing intense radiation

of a fs laser beam in a focal point inside the bulk material and translating the focal point at a

certain velocity along a 3D path. This method enables single-step, mask free fabrication

of isolated air holes or voids, continuous and smooth tracks or channels with arbitrary

and irregular 3D geometries which can be buried inside a broad range of materials like

glass [20, 21], polymers [22], ceramics [23] and crystals [24, 25]. A variety of 3D buried

structures with different optical functions can be fabricated and incorporated in LiNbO3 for

the realisation of compact and highly complex IOCs without the need for any clean room

facilities [26–28].

Different types of RI modifications have been reported in or around irradiated areas of

LiNbO3 crystals during the fabrication of continuous tracks, depending on the structure and

orientation of the crystal, and on the experimental parameters of the fs laser inscription

process [29]. A first type of RI modification, associated with low or moderate level of laser

energy densities, occurs in the irradiated focal volume with an increase of the extraordinary

RI and no change in the ordinary RI [30–34]. It supports guidance of light along the track,

so it has the inherent advantage of easy fabrication of single-line WGs and 3D structures.

However, the absorption and scattering properties as well as nonlinear and electro-optic

properties of the structurally modified regions also change and cause higher losses and

diminished WG functionality. Moreover, this type of RI modification occurs only along

one direction of the crystal, resulting in propagation of only one polarisation state of light

with asymmetric output mode [35, 36]. Also, positive RI modifications [34–36] reduce or
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CHAPTER 1. INTRODUCTION

completely vanish when exposed to thermal treatment, thereby showing thermally unstable

behaviours.

A second type of RI modification is associated with high laser energy densities, causing a

volume increase in the focal region with corresponding RI decrease in both polarisations and

an induced stress in the surrounding material [29,36]. Consequently, wave-guiding in single

line tracks with reduced RI changes is not possible. However, WGs can still be produced

by designing a depressed index cladding [37] such that light can be confined in a region of

material by writing multiple tracks with a reduced RI around an unmodified region, which

serves as the core of a WG. The depressed-cladding WG approach has some advantages

compared to directly written single track WGs. Firstly, light is guided in a region that is not

modified by fs laser irradiation, so the nonlinear and electro-optic properties of LiNbO3

are conserved. Secondly, such WGs support balanced confinement of both polarisation

states of light, which is highly important for applications based on the interactions between

different polarisation states. Besides, a fairly large number of arbitrarily arranged tracks can

be written to achieve light propagation with good confinement at different wavelengths. It is

also possible to pre-set the size and shape of both core and cladding regions. Flexible sizes of

WG cross sections are especially important for low loss coupling of fibres to WG integrated

photonic chips and of inter-connects between multiple functional devices in LiNbO3. Most

importantly, due to the geometric flexibility of writing buried tracks at any position inside

the material, the concept of periodically structured RI arrangements in dielectric materials,

which was first introduced by Yablonovitch [38] as photonic crystals (PCs) [39], can be

applied to fabricate 1D, 2D or 3D micro-structured (MS) WGs in LiNbO3 by fs laser inscrip-

tion. The PC technology has drawn considerable attention owing to its potential for realising

ultra compact IOCs and its ability to control the flow of light. In the 2D case, MS fibres [40]
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exhibit very interesting properties. For example, complete frequency band gaps can be

observed, which is very important for strong confinement of light in small volumes to reach

high light intensities. The WG dispersion and zero dispersion wavelength can be tailored by

changing the periodicity, size and shape of the tracks and the WG geometry. It has been also

shown that single mode propagation can be achieved over a wide wavelength range [41].

Arbitrarily shaped MS WGs consisting of an unmodified core region and a depressed-

index cladding can also be achieved in LiNbO3 crystals by using the fs laser inscription

method. MS WGs with just two tracks [27,28,35,42] or a circular geometry [37,43,44] have

already been achieved in various crystals. The primary motivation for this thesis work is to

study MS WGs comprising multiple tracks with reduced RIs based on the experimentally

obtained parameters for fs-induced modification tracks in LiNbO3 [45]. The aim is to ensure

good light confinement in the MS WG as depressed-index cladding WGs often exhibit leaky-

mode features, and to optimise the propagation properties of the WG with respect to the

geometrical design parameters.

1.2 Thesis structure

This thesis is organised according to the following structure:

Chapter 2 starts with a presentation of theoretical aspects relevant to wave propagation in

anisotropic materials. Then commonly used methods to analyse the properties of

MS WGs are discussed, and the choice of the finite-element method (FEM), which

is thereafter used in the thesis, is explained. The application of the general concept

of a perfectly matched layer (PML) to truncate the computational domain and, thus,

ensure correct analysis of the lossy nature of MS WGs, is described. The accuracy of
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the results obtained is validated through comparison with previously published results.

Chapter 3 starts with a review of the direct fs laser inscription method and then describes

the experimental settings of fs laser systems and the WG characterisation method. The

experimentally achievable operational parameters for fs laser inscription in LiNbO3

are given.

Chapter 4 is devoted to the numerical study of depressed-index cladding MS WGs that can

be formed in a LiNbO3 crystal by fs laser writing. The feasibility of controlling the

wave-guiding properties are investigated by exploiting WG geometric and structural

characteristics such as the track size, spacing, number of rings and RI contrast.

Chapter 5 presents a practical approach to the numerical optimisation of the guiding proper-

ties of MS WGs in LiNbO3, aiming at extending the spectral range of low-loss operation

of the WG into the mid-infrared region. A comparison between the results obtained

with the plane wave method (PWM) and the FEM is also provided.

Chapter 6 explores advanced WG geometries to enhance the propagation properties in LiNbO3.

Specifically, the design procedures for three different spiral geometries, namely the

equiangular, Fermat and Archimedes geometries, are presented. The parameters of

these geometries are then optimised, and the performances of the optimised geometries

are compared to those of the conventional hexagonal geometry.

Chapter 7 summarises the outcomes of the research work presented in this thesis and discus-

ses promising directions for future research.
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Chapter 2

Approaches to the modelling of

micro-structured waveguides

Whilst optical WGs with the desired propagation properties can be designed and fabricated

on a try and test procedure, this approach may be highly time consuming and not be capable

of fully exploiting the new degrees of freedom offered today by the possibility of engineering

the material properties at the micro-metre scale. Therefore, to develop the potential of MS

WGs, accurate and efficient modelling tools are necessary.

In this chapter, after reviewing the theoretical aspects concerned with wave propagation

in anisotropic materials, we describe the numerical modelling methods and approaches that

constitute the pillars of the work presented in this thesis.
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2.1 Propagation model

2.1.1 Maxwell’s equations

The most fundamental equations in electrodynamics are Maxwell’s equations, which are

given in the following in rationalised MKS units [46]

∇×~E +
∂~B
∂t

= 0 (2.1)

∇× ~H− ∂~D
∂t

= ~J (2.2)

∇ ·~D = ρ (2.3)

∇ ·~B = 0 (2.4)

In these equations, ~E and ~H are the electric field vector (in volts per meter) and the magnetic

field vector (in amperes per meter), respectively. The two field vectors are often used to

describe an electromagnetic field. The quantities ~D and ~B are called the electric displacement

(in coulombs per square meter) and the magnetic induction (in webers per square meter),

respectively, and they are introduced to include the effect of the field on matter. The quantities

ρ and ~J are the electric charge (in coulombs per cubic meter) and current (in amperes per

square meter) densities, respectively, and may be considered as the sources of the fields ~E

and ~H. These four Maxwell’s equations completely determine the electromagnetic field.

In optics, one often deals with propagation of electromagnetic radiation in regions of

space where both charge density and current density are zero. The solutions to Maxwell’s

equations with ρ = 0 and ~J = 0 are called electromagnetic waves.

To obtain a unique determination of the field vectors, Maxwell’s equations must be
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supplemented by the so-called constitutive equations (or material equations),

~D = ε~E = ε0~E +~P (2.5)

~B = µ~H = µ0~H + ~M (2.6)

where the constitutive parameters ε and µ are tensors of rank 2 and are known as the dielectric

tensor (or permittivity tensor) and the permeability tensor, respectively; ~P and ~M are electric

and magnetic polarisations, respectively. The constants ε0 and µ0 are called the permittivity

and permeability of a vacuum, respectively, and have respective values of 8.854×10−12 F/m

and 4π× 10−7 H/m. If the material medium is isotropic, both ε and µ reduce to scalars. In

many cases, the quantities ε and µ can be assumed to be independent of the field strengths.

The treatment of nonlinear optical effects occurring when the fields are sufficiently strong

are beyond the scope of this thesis.

2.1.2 Harmonic time dependence and wave equations

Maxwell’s equations simplify considerably in the case of harmonic time dependence. Through

the inverse Fourier transform, general solutions of Maxwell’s equation can be built as linear

combinations of single-frequency solutions: ~E(~r, t)=
∫
~E(~r,ω)eiωt dω/(2π). Thus, we assume

that all fields have a time dependence eiωt :

~E(~r, t) = ~E(~r)eiωt , ~H(~r, t) = ~H(~r)eiωt

where the phasor amplitudes ~E(~r), ~H(~r) are complex-valued.

We now derive the wave equations in material media, which is achieved by mathematical

elimination so that each of the field vectors satisfies a differential equation. We limit our

attention to regions where both charge density and current density vanish. We also consider
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a transparent, nonmagnetic medium for which µ = µ0. If we use the constitutive relation

(2.6) for ~B in Eq. (2.1), divide both sides by µ0 and apply the curl operator, we obtain

1
µ0

∇× (∇×~E)+
∂

∂t
∇× ~H = 0

If we now differentiate Eq. (2.2) with respect to time (using ∂t → iω), and combine it with

Eq. (2.1), and use the material Eq. (2.5), we obtain

∇× (∇×~E)− k2
0εr~E = 0 (2.7)

where εr = ε/ε0 is the relative permittivity, k0 = ω/c = 2π/λ is the free-space wave number,

and c= 1/
√

µ0ε0 = 2.997930×108 m/s is the phase velocity of the electromagnetic radiation

in a vacuum. We now employ the vector identity

∇× (∇×~E) = ∇(∇ ·~E)−∇
2~E

and Eq. (2.7) becomes

∇
2~E + k2

0εr~E−∇(∇ ·~E) = 0

By substituting for ~D from Eq. (2.5) into Eq. (2.3) and applying the vector identity

∇(ε~E) = ε∇ ·~E +~E ·∇ε

we obtain from the above equation

∇
2~E + k2

0εr~E +∇(~E ·∇ lnε) = 0 (2.8)

This, or equivalently Eq. (2.7), is the wave equation for the electric field vector. The wave

equation for the magnetic field vector can be obtained in a similar way and is given by

∇× (η∇× ~H)− k2
0
~H = 0 (2.9)
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where η = 1/εr, or

∇
2~H + k2

0
~H +(∇ lnε)× (∇× ~H) = 0 (2.10)

Inside a homogeneous and isotropic medium, the gradient of the logarithm of ε vanishes,

and Eqs. (2.8) and (2.10) reduce to the standard electromagnetic wave equations. In this

thesis, we will consider the solutions of wave Eqs. (2.8) and (2.10) in the context of waves

propagating in MS WGs within uniaxial anisotropic crystals.

2.1.3 Anisotropic media

Wave propagation in anisotropic media such as calcite, quartz, and LiNbO3 is determined by

the dielectric tensor εi j that links the displacement vector and the electric field vector (Eq.

(2.5)): Di = εi jE j, where the convention of summation over repeated indices is observed.

In nonmagnetic and transparent materials, this tensor is real and symmetric: εi j = ε ji. The

magnitude of these nine tensor elements depends, of course, on the choice of the x, y, and z

axes relative to the crystal structure. Because of its real and symmetric nature, it is always

possible to find three mutually orthogonal axes in such a way that the off-diagonal elements

vanish, leaving

ε = ε0


n2

x 0 0

0 n2
y 0

0 0 n2
z

=


εx 0 0

0 εy 0

0 0 εz

 (2.11)

where εx, εy, and εz are the principal dielectric constants and nx, ny, and nz are the principal

indices of refraction. These axes (x, y, and z) form the principal axes coordinate system.

Let us assume that a monochromatic plane wave of the form ~Dexp[i(ωt −~k ·~r)] can

propagate through an anisotropic medium. The direction of ~D specifies the direction of

polarisation of this wave. The wave vector~k of this plane wave is normal to the wavefront
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(the plane where the phase of the wave is everywhere equal) and has magnitude |~k| = ω/v;

v is the phase velocity of the wave, which is related to the velocity of light in vacuum by

the RI n experienced by the wave according to v = c/n. It is possible to show that for

propagation in a general direction, two distinct allowed linear polarisations specified by the

direction of ~D can exist for such wave. These two allowed polarisations are orthogonal and

the wave propagates with a phase velocity depending on which of these two polarisations

it has. Clearly, a wave of arbitrary polarisation which enters such an anisotropic medium

will not in general correspond to one of the allowed polarisations, and will therefore be

resolved into two linearly polarised components along the allowed polarisation directions.

The specification of the orientation of these allowed polarisation directions with respect to

the principal axes of the medium is done with the aid of a geometric figure called the index

ellipsoid or indicatrix [47]. This is an ellipsoid with the equation

x2

n2
x
+

y2

n2
y
+

z2

n2
z
= 1 (2.12)

This ellipsoid can be visualised as oriented inside a crystal consistent with the symmetry

axes of the crystal. For example, in any crystal with perpendicular symmetry axes, such

as those belonging to the cubic, tetragonal, hexagonal, trigonal or orthorhombic crystal

systems, the axes of the ellipsoid, which are the principal axes of the crystal, are parallel

to the three axes of symmetry of the crystal, which allows to determine the refractive indices

and polarisations of the two monochromatic plane waves which can propagate through the

crystal with a given wave vector. For the orientation of the indicatrix to be consistent with

the symmetry of the crystal, planes of mirror symmetry within the crystal must coincide

with planes of symmetry of the indicatrix: namely the xy, yz and zx planes. We can use

the geometrical properties of the indicatrix to determine the RIs and polarisations of the
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two monochromatic plane waves which can propagate through the crystal with a given wave

vector. This is illustrated in Fig. 2.1, which shows the direction of the wave vector~k for a

monochromatic wave propagating through a crystal, drawn relative to the orientation of the

indicatrix in the crystal. The plane surface that is orthogonal to the wave vector, and that

passes through the centre of the indicatrix, intersects this ellipsoid in an ellipse called the

intersection ellipse. The semi-axes of this ellipse define the directions of the two allowed

~D polarisations which can propagate through the crystal with the given wave vector~k, and

the lengths of these semi-axes give the RIs experienced by these two polarisations. In the

Figure 2.1: Left: Direction of the wave vector for a monochromatic wave relative to the
orientation of the indicatrix in a crystal. Right: Orientation of the indicatrix inside negative
and positive uniaxial crystals.

general case when the three principal indices nx, ny, nz are all different, there are two~k vector

directions through the centre of the indicatrix for which the intersection ellipse is a circle.

This is a fundamental geometric property of ellipsoids. These two directions are called the

principal optic axes and are fixed for a given crystal and frequency of light. Waves can
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propagate along these optic axes with any arbitrary polarisation, as in these directions the

RI is not a function of polarisation. In this general case, the crystal is said to be biaxial. If

the three principal indices are equal, the indicatrix is a sphere called the isotropic indicatrix,

there are no specific optic axes as the indicatrix is an axial and the propagation of waves

is independent of both the directions of ~k and ~D. In crystals belonging to the tetragonal,

hexagonal and trigonal crystal systems the crystal symmetry requires two of the principal

indices be equal: nx = ny and the indicatrix reduces to an ellipsoid of revolution. In this

case there is only one optic axis, oriented along the axis of highest symmetry of the crystal,

the z axis (or c axis of crystallographic terminology). These crystals classes are said to be

uniaxial. The equation of the uniaxial indicatrix is

x2 + y2

n2
o

+
z2

n2
e
= 1 (2.13)

where no is the index of refraction experienced by waves polarised perpendicular to the

optic axis, called ordinary or O - waves; ne is the index of refraction experienced by waves

polarised parallel to the optic axis, called extraordinary or E - waves. If ne > no the indicatrix

is a prolate ellipsoid of revolution as shown in Fig. 2.1 and such a crystal is said to be positive

uniaxial. If ne < no the indicatrix is an oblate ellipsoid of revolution as shown in Fig. 2.1 and

the crystal is said to be negative uniaxial.

2.1.4 Eigenmodes of anisotropic micro-structured waveguides

Hereinafter, we will consider the propagation of monochromatic optical waves in a transparent,

uniaxial crystal with the z optic axis hosting a depressed-index cladding WG with the track

RI contrast δn < 0. For such a crystal, we can use the approximation introduced in [48] and
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express the RIs as

no,e(x,z) = no,e +δn f (x,z), f (x,z) =


1, (x,z) ∈ tracks

0, (x,z) ∈ otherwise
(2.14)

Given the direction of propagation along the y axis, a mode of propagation of the dielectric

structure, that is, a solution of (2.7) with (2.11) and (2.14), is characterised by the mode’s

field pattern and its effective RIs neff
o,e = βo,e/k0, where βo,e is the propagation constant for

x- and z-polarised light, respectively. Because of the finite transverse extent of the confining

structure, the effective RI is a complex value; its imaginary part ℑ(neff) is related to losses L

(in decibels per centimeter) through the relation L = 40πℑ(neff)×104/[λ ln(10)], where λ is

given in micrometers. Dispersion parameter D is computed through the usual formula from

the real part of effective RI ℜ(neff) [49]: D = −(λ/c)∂2ℜ(neff)/∂λ2. Chromatic dispersion

in micro-structured WGs arises from that of the unmodified material (Dmat) and also from

the WG dispersion (DW ) associated with the structure of the confining region. Solution of

Eqs. (2.7), (2.11) and (2.14) provides directly the total dispersion (D), so we deduced DW

from the relation DW ' D−Dmat. Finally, a quantitative measure of the area which a WG

mode effectively covers in the transverse dimensions is provided by the effective mode area:

Aeff = (
∫∫
|E(x,z)|2 dxdz)2/

∫∫
|E(x,z)|4 dxdz.

2.2 Numerical solution techniques

The optimisation of the performance of optical WG devices requires a knowledge of their

propagation characteristics and field distributions, and their dependence on the fabrication

parameters. As the range of guiding structures becomes more intricate, so the need for

computer analysis becomes greater and thus more demanding. Therefore, there is a particular
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interest in theoretical methods of WG analysis which has attracted the attention of many

researchers. Several computation models fundamentally relying on numerical techniques for

solving partial differential equations [50–53] have been developed and applied to a large

number of scientific and engineering problems. Numerical techniques devoted to the modal

analysis of WGs generally deal with the time-harmonic (frequency domain) Maxwell’s equa-

tions. Furthermore, the modal analysis of inhomogeneous WGs with anisotropic materials

requires a numerical method which can handle full vectorial wave equations (Eq. (2.7) and

(2.9)) under boundary conditions, which is to be incorporated to provide the continuity of

equations between different media. According to boundary conditions, tangential components

of electric and magnetic fields and normal components of electric displacement and magnetic

induction must be continuous across interfaces between different materials [54]. Well estab-

lished vectorial modal solvers that have been widely used to predict WG properties include

the finite-difference time-domain (FDTD) method, the plane wave method (PWM), the mul-

tipole method (MM), and the finite element method (FEM).

The principle of FD methods [53,55–57] is close to the numerical schemes used to solve

ordinary differential equations. It consists in approximating the differential operator by

replacing the derivatives in the equation using differential quotients. FDTD is a popular

computational electromagnetics technique that belongs in the general class of grid-based

differential time-domain numerical modelling methods. These methods discretise the space

in terms of grids (both orthogonal and non-orthogonal) and solve Maxwell’s equations at

each point in the grid. In FDTD, Maxwell’s equations (in partial differential form) are

modified to central-difference equations, discretised, and implemented in software. The

equations are solved in a cyclic manner: the electric field is solved at a given instant in

time, then the magnetic field is solved at the next instant in time, and the process is repeated
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over and over again. Modal solutions can be obtained from the observation of the field

distributions during propagation. As FDTD provides a direct approach to the computation

of the first- and second-order derivatives in the wave equations, a corresponding eigenvalue

matrix equation can be assembled and modal solutions can directly be obtained. The compu-

tational domain in FDTD needs to be finalised by boundary conditions. However, the

discretisation of the computational domain by regular sized rectangular grids consumes

computer memory, and solving the equations takes significant time, so large-scale problems

involving complex geometries generally face memory and CPU limitations.

The PWM computational technique [39, 51, 58–60] solves the Maxwell’s equations by

formulating and eigenvalue problem out of the equation. This method is popular among

the photonic crystal community as a method of solving for the band structure (dispersion

relation) of specific photonic crystal geometries. The PWM is traceable to the analytical

formulations, and is highly efficient for calculating modes in periodic dielectric structures.

The numerical computation is based on expanding the periodic functions of the fields and

material properties in Fourier series, inserting them into the wave equations and solving the

corresponding eigenvalue matrix problem. The finalisation of the computational domain is

not restricted by any boundary condition owing to the assumption of periodicity. The PWM

and its generalisations have already been used for the analysis of anisotropic WGs [61] and

MS optical fibres [62–64]. The PWM can be computationally fast, and it is also well suited

for the study of mode interactions as well dispersion characteristics changes under external

influences. However, PW treatments effectively replace the necessarily finite WG structure

with an infinite one and thus cannot address the issue of the loss associated with propagation

in a transversely finite confining structure (confinement loss). As a result, they cannot

provide an accurate description of leaky WGs, for which the imaginary parts of the effective
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mode indices are large. PWMs also do not accommodate general characteristics of the

geometry of the inclusions/tracks. Whereas they are highly general, they are consequently

not highly efficient.

The MM is based on the multipole expansion technique, and was first applied in computa-

tional electromagnetics by Engheta et al. (1992) [65]. In the MM [66–68], electromagnetic

fields which are modal solutions to wave equations are represented as a superposition of

scattered fields from all dielectric boundaries. Therefore, each inclusion/track and the outer

boundaries enclosing the core and cladding regions are considered as sources of field. Cylin-

drical harmonic functions are used as a natural basis for the cylindrical scatterers to represent

the scattered fields. When all incoming and outgoing fields of inclusions/tracks are related

to each other by boundary conditions, the resulting algebraic equations in terms of each

boundary equation can be transformed into an eigenvalue matrix equation whose solution

gives the corresponding propagation constant. This method has been successfully used to

calculate the confinement loss for the leaky modes of MS optical fibres with fast convergence

and high accuracy [66, 67]. However, the method is at present limited to designs composed

of non-intersecting circular inclusions/tracks [69], and a decrease in the spacing between

tracks may cause convergence problems.

The FEM [50, 70, 71] implements a variational form of the wave equation and applies

it over each small region formed by discretisation of the WG structure. The size and shape

of these subregions can be locally varying, thereby allowing for a better representation of

the fields in key regions. Instead of basis functions, the FEM uses interpolation functions

to define the fields over such subspaces. The variational form of the wave equation is

computed in each subregion in terms of edge and node coefficients of the interpolation

functions, and the corresponding equations are assembled into a global eigenvalue matrix
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equation. Among the different numerical approaches, the FEM has established itself as a

powerful method throughout engineering for its flexibility and versatility, being used to solve

partial differential equations over complex domains or when the desired precision varies

over the entire domain. One of the most important features of FEMs is that they are based

on unstructured grids, whereas FD methods use structured grids. This means that FEM is

more flexible with respect to the geometry. For example, in two dimensions, we do not

need the computational domain to be rectangular or something that can be mapped onto a

rectangle.The FEM is particularly advantageous for electromagnetic field problems, because

of its applicability to WGs with arbitrary geometry, arbitrary RI profile, and anisotropic

or nonlinear materials or materials with absorption (indicated by the imaginary part of the

RI). The FEM has been widely used during the last four decades in the analysis of various

optical WG structures. Thus it is probably the WG analysis method that is the most generally

applicable and most versatile. Based on these reasons, we have chosen the FEM as the

primary method for the modal analysis of MS WGs in anisotropic crystals. Additionally, we

have used the PWM as an efficient and convenient tool for preliminary calculations when

modelling complex WG structures. We will describe these two techniques in the following

sections.

2.2.1 Plane wave method

As we have seen in Section 2.1, monochromatic optical waves of angular frequency ω

propagating along the y axis of the cartesian coordinate system in a transparent, uniaxial

crystal with the z optical axis and relative permittivity εr, hosting a depressed-cladding WG

with the RI contrast δn can be described by the wave equation (2.9) and ∇ · ~H = 0 following
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from the Maxwell’s equations, along with Eqs. (2.11) and (2.14). The distance- and time-

dependence of the electromagnetic field: exp(iωt− iβy) is assumed, where β = k0neff is the

propagation constant of the mode propagating in the structure. To apply PW decomposition,

the WG structure should be put in a box and tiled periodically along the x- and z-axes. The

box should not be too large in order not to include a large area of unmodified material around

the structure and, at the same time, should not be too small in order to avoid overlapping of

modes in adjacent computational cells. Thus, the size of the box has to be a parameter for

the calculations.

The equation ∇ · ~H = 0 can be used to exclude Hy(x,z) from Eq. (2.9) and, thus, obtain

β
2Hx(x,z) =

∂2Hx

∂x2 +
∂2Hx

∂z2 + k2
0

1
ηo

Hx +
1

ηo

∂ηo

∂z

(
∂Hx

∂z
− ∂Hz

∂x

)
,

β
2Hz(x,z) =

ηo

ηe

∂2Hz

∂x2 +
∂2Hz

∂z2 + k2
0

1
ηe

Hz +

(
1− ηe

ηo

)
∂2Hx

∂x∂z
− 1

ηe

∂ηo

∂x

(
∂Hx

∂z
− ∂Hz

∂x

)
.

(2.15)

Equations (2.15) can be solved using the PWM [62, 63] to find out the (real) eigenvalues β2

and eigenvectors {Hx,Hz}. For this purpose, we use the following expansions in terms of

PWs:

Hx(x,z) =
∞

∑
m=−∞

∞

∑
n=−∞

Hx
m,n exp

[
iGx

m,nx+ iGz
m,nz
]
,

Hz(x,z) =
∞

∑
m=−∞

∞

∑
n=−∞

Hz
m,n exp

[
iGx

m,nx+ iGz
m,nz
]
,

1
ηo(x,z)

=
∞

∑
m=−∞

∞

∑
n=−∞

Uo
m,n exp

[
iGx

m,nx+ iGz
m,nz
]
,

1
ηe(x,z)

=
∞

∑
m=−∞

∞

∑
n=−∞

Ue
m,n exp

[
iGx

m,ny+ iGz
m,nz
]
,

ηo(x,z) =
∞

∑
m=−∞

∞

∑
n=−∞

Po
m,n exp

[
iGx

m,nx+ iGz
m,nz
]
,

ηe(x,z) =
∞

∑
m=−∞

∞

∑
n=−∞

Pe
m,n exp

[
iGx

m,nx+ iGz
m,nz
]
, (2.16)
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with unknown complex amplitudes Hx,z
m,n, and Gx

m,n = 2πm/a, Gz
m,n = 2πn/a. Substituting

these expansions into Eq. (2.15) and equalising the coefficients of the same exponential

factors one can obtain the following linear equations for the modal amplitudes Hx
m,n, Hz

m,n:

∞

∑
m′=−∞

∞

∑
n′=−∞

(
Lxx

m′,n′H
x
m′,n′+Lxz

m′,n′H
z
m′,n′

)
= β

2Hx
m,n,

∞

∑
m′=−∞

∞

∑
n′=−∞

(
Lzx

m′,n′H
x
m′,n′+Lzz

m′,n′H
z
m′,n′

)
= β

2Hz
m,n, (2.17)

where

Lxx
m′,n′ =−

[
(Gx

m,n)
2 +(Gz

m,n)
2]

δmm′δnn′+ k2
0Uo

m−m′,n−n′+ iGz
m′,n′V

o
m−m′,n−n′,

Lxz
m′,n′ = iGx

m′,n′V
o
m−m′,n−n′, Lzz

m′,n′ =−(G
z
m,n)

2
δmm′δnn′− (Gx

m′,n′)
2Wm−m′,n−n′,

−Gx
m′,n′G

x
m′,n′Tm−m′,n−n′+ k2

0Ue
m−m′,n−n′+ iGx

m′,n′V
e
m−m′,n−n′, Lzx

m′,n′ = iGz
m′,n′V

e
m−m′,n−n′,

V o,e
m,n =

∞

∑
m′=−∞

∞

∑
n′=−∞

iGz,x
m′,n′P

o
m′,n′U

o,e
m−m′,n−n′, Wm,n =

∞

∑
m′=−∞

∞

∑
n′=−∞

Po
m′,n′U

e
m−m′,n−n′,

Tm,n =
∞

∑
m′=−∞

∞

∑
n′=−∞

Po
m′,n′

(
Po

m−m′,n−n′−Pe
m−m′,n−n′

)
.

From Eq. (2.17), one can determine β2 and Hx,z
m,n. The transverse components of the electric

field Ex,z and the longitudinal component of the Poynting vector Sy will be then given by

Ex =
ηe(x,z)

βk0

(
β

2Hz−
∂2Hz

∂z2 −
∂Hx

∂x∂z

)
, Ez =−

ηo(x,z)
βk0

(
β

2Hx−
∂2Hz

∂x∂z
− ∂2Hx

∂x2

)
,

Sy = ℜ
[
E∗z Hx−E∗x Hz

]
. (2.18)

The solution of Eq. (2.17) involves the calculation of Fourier harmonics of the mode

profiles. For arbitrary shapes of the tracks of the WG structure, numerical methods have to

be employed to calculate the Fourier coefficients, including, when necessary, digital image

processing of real structure cross-sections [72]. In the special case of cylindrical tracks

(circular cross-sections), however, analytical expressions for the Fourier coefficients can be
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found. Let Y denote any of ηo,e, 1/ηo,e, with Y (x,z) = Y1 if (x,z) ∈ tracks and Y (x,z) = Y2

if (x,z) ∈ otherwise. For cylindrical tracks of radii ri, one can obtain

Ym,n =


∑

i

πr2
i

S
Y1 +

(
1−∑

i

πr2
i

S

)
Y2, m = n = 0

2π∑
i

exp
[
iGx

m,nxi + iGz
m,nzi

]r2
i
S

J1(ri

√
(Gx

m,n)
2 +(Gz

m,n)2)

ri

√
(Gx

m,n)
2 +(Gz

m,n)2
(Y1−Y2), m,n 6= 0

(2.19)

Here S is the area of the surrounding box, J1 is the Bessel function of the first kind, and xi,zi

are the coordinates of the centre of the ith track.

2.2.2 Finite Element Method

A typical work out of the FE solution procedure [73–75] involves the following steps.

1. Discretise the continuum. The first step is to divide the solution domain (the cross

section of the optical WG) into a number of subdomains or elements, usually triangles

or quadrilaterals, creating a covering mesh (see Fig. 2.2). Elements can have various

shapes, such as triangles or rectangles or even be with curved sides [76], and they can

also be of various sizes. Triangles are commonly used because they are easy to adapt

to complex shapes. The size of the elements defines the density of the mesh; smaller

triangles increase the mesh density and therefore the model’s accuracy. The trade-off

for high accuracy is the exponential increment of both the calculation time and the

computation capacity. A possible way of achieving optimum coverage of the domain

concerned without a significant increase of the number of elements consists in using

a non-uniform mesh. This way, it is possible to increase the density of the mesh only

around the complicated areas or areas of special interest. The FE mesh is typically

generated by a preprocessor program.
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2. Select shape functions. Shape functions are used to interpolate the field variables

over the element. Often, polynomials are selected as interpolation functions, with the

degree of the polynomial depending on the number of nodes assigned to the element.

However, the nodal-based FEM when applied to the vector wave equation results in

nonphysical or spurious solutions [77]. The most elegant and simple approach to

eliminate the disadvantages of the nodal-based elements is to use edge elements, which

are FE bases for vector fields assigning degrees of freedom to the edges rather than the

nodes of the element [78, 79].

3. Find the element properties. The matrix equation for the FE should be established,

which relates the nodal and/or edge values of the unknown function to other parameters.

Several approaches can be used to transform the physical formulation of the problem

to its FE discrete analogue. If the physical formulation of the problem is known as a

differential equation then the most popular method of its finite element formulation is

the Galerkin method [80]. If the physical problem can be formulated as minimisation

of a functional then variational formulation of the FE equations is usually used.

4. Assemble the element equations. To find the global equation system for the whole

solution region we must assemble all the element equations. In other words we must

combine local element equations for all elements used for discretisation. Element

connectivities are used for the assembly process. Before solution, boundary conditions

should be imposed.

5. Solve the global equation system. The FE global equation system has known solution

techniques, and can be calculated from the initial values of the original problem to

obtain a numerical answer.
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Figure 2.2: Mesh of a two-ring MS WG with an hexagonal geometry.

We now describe the formulation of the three-dimensional vector FEM for the analysis

of WGs [50, 81]. This approach can be followed by using either the ~E or ~H field. We

illustrate the case for the ~E field. The vector wave equation for the ~E field is given by (2.7),

where ~E = (Exx̂+Eyŷ+Ezẑ)exp(−iβy). By doing the curl-curl operation and separating the

transverse from the longitudinal components, Eq. (2.7) can be divided into two equations

and rewritten as

∇t× (∇t×~Et)− iβ∇tEy +β
2~Et = k2

0εr~Et ,

−∇t · (∇tEy + iβ~Et) = k2
0εrEy, (2.20)

and ~Et =Exx̂+Ezẑ. Separate β from k2
0 and to have real-valued matrices introduce the scaling

~Et = ~Et/β, Ey =−Ey/i. Then Eqs. (2.20) can be written as

∇t×∇t×~Et +β
2(∇tEy +~Et) = k2

0εr~Et ,

−∇t · (∇tEy +~Et) = k2
0εrEy. (2.21)

To apply Galerkin’s method to Eqs. (2.2.2), multiply the first and second equation with the

respective testing functions ~Tt and Ty and integrate both the equations over the cross section
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of the WG Ω; that is,

∫∫
Ω

[~Tt ·∇t×∇t×~Et +β
2(~Tt ·∇tEy +~Tt ·~Et)]ds = k2

0εr

∫∫
Ω

~Tt ·~Et ds,

−
∫∫

Ω

Ty[∇t · (∇tEy +~Et)]ds = k2
0εr

∫∫
Ω

TyEy ds. (2.22)

With the vector identities

~A · (∇t×~B) = (∇t×~A) ·~B−∇t · (~A×~B),∫∫
Ω

∇t · (~A×~B)ds =
∫

dΩ

(~A×~B) · n̂dl =−
∫

dΩ

~A · (n̂×~B)dl,

∇t · f~A = ~A ·∇t f + f ∇t ·~A,∫∫
Ω

∇t ·~Ads =
∫

dΩ

~A · n̂dl

Eqs. (2.2.2) can be written in their weak form as

∫∫
Ω

[(∇t×~Tt) · (∇t×~Et)+β
2(~Tt ·∇Ey +~Tt ·~Et)]ds

= k2
0εr

∫∫
Ω

~Tt ·~Et ds−
∫

dΩ

~Tt · (n̂×∇×~Et)ds,∫∫
Ω

(∇tTy ·∇tEy +∇tTy ·~Et)ds = k2
0εr

∫∫
Ω

TyEy ds+
∫

dΩ

(
Ty

∂Ey

∂n
+Tyn̂ · ~Et

)
ds. (2.23)

If the WG boundary dΩ is assumed to be perfectly conducting, then ~Tt = 0 and Ty = 0 on

dΩ. Hence, the line integrals on the right-hand side of Eqs. (2.2.2) can be neglected, and

Eqs. (2.2.2) can be written as

∫∫
Ω

(∇t×~Tt) · (∇t×~Et)ds− k2
0εr

∫∫
Ω

~Tt ·~Et ds =−β
2
(∫∫

Ω

~Tt ·∇tEy ds+
∫∫

Ω

~Tt ·~Et ds
)
,

β
2
∫∫

Ω

∇tTy ·∇tEy ds+β
2
∫∫

Ω

∇tTy ·~Et ds = k2
0β

2
εr

∫∫
Ω

TyEy ds. (2.24)

As the vector Helmholtz equation is divided into two parts, vector-based tangential elem-

ents can be used to approximate the transverse fields, and nodal-based Lagrangian interpola-

tion functions can be used to approximate the y-component. As an example, we consider
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Figure 2.3: Configuration of a triangular element.

here first-order interpolation functions. For a single triangular element shown in Fig. 2.3,

the edge elements permit a constant tangential component of the basis function along one

triangular edge while simultaneously allowing a zero tangential component along the other

two edges. Three such basis functions overlapping each triangular cell, provide the complete

expansion:

~Et =
3

∑
m=1

etm~Wtm (2.25)

where m indicates the mth edge of the triangle and ~Wtm is the edge element for edge m.

The testing function ~Tt is chosen to be the same as the basis function in Eq. (2.25); that is,

~Tt = ~Wtm. The y-component is written as

Ey =
3

∑
i=1

eyiαi (2.26)

where i indicates the ith node and αi is the simplex coordinate of node i. Also the testing

function ~Ty is chosen to be the same as the basis function in Eq. (2.26); that is, ~Ty = αi.
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Substituting Eqs. (2.25) and (2.26) into Eqs. (2.2.2), integrating over a single triangular

element, and interchanging the integration and summation give

3

∑
m=1

∫∫
∆

(∇t× ~Wtm) · (∇t~Wtn)etm ds− k2
0

3

∑
m=1

εr

∫∫
∆

(~Wtm · ~Wtn)etm ds

=−β
2

[
3

∑
m=1

∫∫
∆

(~Wtm ·∇α j)ey j ds+
3

∑
m=1

∫∫
∆

(~Wtm · ~Wtn)etm ds

]
,

β
2

3

∑
i=1

∫∫
∆

(∇αi ·∇α j)eyi ds+β
2

3

∑
i=1

∫∫
∆

(∇αi · ~Wtn)etn ds = β
2

3

∑
i=1

k2
0εr

∫∫
∆

αiα jeyi ds

(n = 1,2,3; j = 1,2,3). (2.27)

Subscripts for α indicate node numbers and subscripts for ~Wt indicate edge numbers. Equati-

ons (2.27) can be written in matrix form asSel(tt) 0

0 0


et

ey

=−β
2

Tel(tt) Tel(ty)

Tel(yt) Tel(yy)


et

ey

 , (2.28)

with the element matrices given by

Sel(tt) =
∫∫

∆

(∇t× ~Wtm) · (∇t~Wtn)ds− k2
0εr

∫∫
∆

(~Wtm · ~Wtn)ds,

Tel(tt) = εr

∫∫
∆

(~Wtm · ~Wtn)ds, Tel(ty) =
∫∫

∆

(~Wtm ·∇α j)ds,

Tel(yt) =
∫∫

∆

(∇αi · ~Wtn)ds, Tel(yy) =
∫∫

∆

(∇αi ·∇α j)ds− k2
0εr

∫∫
∆

αiα j ds. (2.29)

These element matrices can be assembled over all the triangles in the cross section of the

WG to obtain a global eigenvalue equation,Stt 0

0 0


et

ey

= (−β
2)

Ttt Tty

Tyt Tyy


et

ey

 , (2.30)

which can be solved to obtain β when the operating frequency is specified.

Within this thesis, the execution of the FEM to compute the modal properties of MS

WGs has been realised via the commercial modelling software “COMSOL Multiphysics”.
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This software enables the definition of any MS WG geometry, material properties and type

of Maxwell’s equations in either their general or weak form via a graphical interface or

the Matlab software. It can generate a mesh geometry based on user-defined geometrical

properties, such as mesh element geometry, maximum and minimum element size, growth

rate from minimum to maximum, and others. Based on the user-defined parameters, the

software creates an eigenvalue matrix equation and start to solve it around a user-defined

approximate propagation constant (β) at a specified wavelength. The solution space includes

the electric and magnetic fields over the WG cross section, and the complex propagation

constants corresponding to different modal distributions. The spatial modes of the electric

field in the WG structure have been characterised by the mode field pattern. The most

compact, Gaussian-like mode has been selected as the fundamental mode of the structure

according to the criterium of ‘minimum effective mode area’.

Perfectly matched layer

One of the most important aspects of FD and FE implementations is the truncation of the

computational domain. An ideal truncation scheme must ensure that outgoing waves are

not reflected backwards at the mesh termination surface, i.e. the mesh truncation scheme

must simulate a surface which actually does not exist. The first attempts at non-reflecting or

absorbing boundaries for wave equations involved absorbing boundary conditions (ABCs)

[82, 83]. Given a solution on a discrete grid, a boundary condition is a rule to set the

value at the edge of the grid. For example, a simple Dirichlet boundary condition sets the

solution to zero at the edge of the grid (which will reflect waves that hit the edge). An

ABC tries to somehow extrapolate from the interior grid points to the edge grid point(s), to

fool the solution into ‘thinking’ that it extends forever with no boundary. However, existing
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ABCs restrict themselves to absorbing waves exactly only at a few angles, especially at

normal incidence: as the size of the computational grid grows, eventually normal-incident

waves must become the dominant portion of the radiation striking the boundaries. Another

difficulty is that many standard ABCs are formulated only for homogeneous materials at the

boundaries, and may even become numerically unstable if the grid boundaries are inhomoge-

neous.

In 1994, the problem of absorbing boundaries for wave equations was transformed in

a seminal paper by Bérenger [84]. Instead of finding an absorbing boundary condition,

Bérenger found an absorbing boundary layer, that is, a layer of artificial absorbing material

that is placed adjacent to the edges of the grid, completely independent of the boundary

condition. When a wave enters the absorbing layer, it is attenuated by the absorption and

decays exponentially; even if it reflects off the boundary, the returning wave after one round

trip through the absorbing layer is exponentially tiny. The problem with this approach is that,

whenever we have a transition from one material to another [85], waves generally reflect,

and the transition from non-absorbing to absorbing material is no exception – so, instead

of having reflections from the grid boundary, we now have reflections from the absorber

boundary. However, Bérenger showed that a special absorbing medium could be constructed

so that waves do not reflect at the interface for all incidence angles: a perfectly matched

layer (PML). There are several nearly equivalent formulations of PMLs. Bérenger’s original

formulation is called the split-field PML, because he artificially split the wave solutions into

the sum of two new artificial field components. Nowadays, a more common formulation is

the uniaxial PML, which uses a special uniaxial anisotropic absorbing medium introduced

into the ordinary (un-split) wave equation [85]. Further, both the split-field and uniaxial

PML formulations can be viewed as the result of a complex coordinate stretching [86–88].
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This complex-coordinate approach is essentially based on analytic continuation of Maxwell’s

equations into complex spatial coordinates where the fields are exponentially decaying. PML

absorbers offer ease of implementation coupled with excellent absorption characteristics

[84]. Unlike ABCs, PML truncation schemes do not require a priori knowledge of propagation

constants within the computational domain, and the use of boundary derivatives is avoided

altogether. Also, PML termination schemes facilitate de-embedding and parameter extraction

[89]. Because of these advantages, PML absorbers have been extensively employed for

truncating FEM domains. However, the inclusion of PML absorbers within the computational

domain in general deteriorates the condition of the resulting FEM systems, thus PML-

truncated meshes typically are quite slow to converge. It is therefore important to choose

the PML parameters in an optimal manner, so that speedup in the solution convergence can

be achieved without affecting PML absorption.

Figure 2.4: Cross section of MS WG surrounded by a circular PML.

In our numerical simulations, we chose a circular PML surrounding the cross-section

of the WG structure and isotropic in its absorption, as shown in Fig. 2.4. This artificial

absorbing layer is designed in such a way that the real part of the RI over its region is the
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same as that of the unmodified material, whereas the imaginary part, κ, increases from zero

at the inner edge to a maximum value at the outer edge, thereby introducing a gradually

increasing loss mechanism. The RI profile of the PML is therefore defined by [90]

nPML(r) = no,e− iκmax

(
r− rin

L

)2

, rin < r ≤ rin +L (2.31)

where r is the polar radial coordinate, rin and L are the respective inner radius and thickness

of the PML, and κmax is the maximum absorption value, which is assumed to be wavelength

independent.

Outside the absorbing regions, where κ = 0, the wave equation and thus the solution are

unchanged, and it is only inside the absorbing region that the oscillating solution becomes

exponentially decaying. In the exact wave equation, this transition occurs with no reflections,

no matter how fast κ changes, even if κ changes discontinuously. As soon as we discretise

the problem, we are only solving an approximate wave equation and the analytical perfection

of PML is no longer valid. PML is still an absorbing material: waves that propagate within

it are still attenuated, even discrete waves. The boundary between the PML and the regular

medium is no longer reflectionless, but the reflections are small because the discretisation

is (presumably) a good approximation for the exact wave equation. It turns out that, even

without a PML, reflections can be made arbitrarily small as long as the medium is slowly

varying. That is, in the limit as we turn on absorption from zero more and more slowly,

reflections go to zero due to an adiabatic theorem [91]. With a non-PML absorber, we might

need to go very slowly (i.e. a very thick absorbing layer) to get acceptable reflections. With

PML, however, experience shows that a quadratic or cubic turn-on of the PML absorption

over some length L usually produce negligible reflections [92]. In [93], the computational

error was estimated to scale down with the PML’s thickness approximately as 1/L8 for
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the case of a quadratic turn-on of the PML absorption as given in (2.31). Increasing the

resolution also increases the effectiveness of the PML, because it approaches the exact wave

equation. Therefore, the trade-off in the optimisation of the PML’s parameters κmax and L is

between minimisation of the computational error and minimisation of the random memory

access requirements.

2.2.3 Validation of FEM results

In order to confirm the accuracy of our numerical model for the analysis of MS WGs in

anisotropic crystals we simulated known micro-structured optical fibre (MOF) structures.

From the discussion above, other than from the use of different computational methods,

differences in simulation results are likely to stem from the choice of the PML parameters

and the computational mesh. The PML settings used throughout this thesis are described in

Chapter 4. The mesh size must be a few times smaller than the wavelength in use to ensure

good accuracy of the results. This was adjusted so to be as small as possible with the only

limitation of computer capacity. Examples of comparison of calculations of the confinement

loss in two different MOF structures are shown in Figs. 2.5 and 2.6. The standard Sellmeier

equation

n2(λ) = 1+
A1λ2

λ2−B2
1
+

A2λ2

λ2−B2
2
+

A3λ2

λ2−B2
3

was used to model the dispersion relation for pure silica with the following Sellmeier coeffi-

cients [49]:

A1 A2 A3
0.6961663 0.4079426 0.8974794

B1 B2 B3
0.0684043 0.1162414 9.896161

Table 2.1: Sellmeier coefficients for pure silica.
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Figure 2.5: Comparison of our calculations with: the FEM calculations of [94] using a
squared PML, the FEM calculations of [95] using a circular PML, and the MM calculations
of [67], for an MOF with two layers of air holes.

The core of the first MOF (Fig. 2.5) is made of silica, and the cladding region consists of

two layers of air holes with a diameter of 1.61µm and separated by a pitch of 2.3µm. Our

calculations are compared with the calculations of [94] using the FEM and a square PML,

those of [95] using the FEM and a circular PML, and those of [67] based on the MM. We

can see that in the wavelength range 1 to 2 µm our values of confinement loss are of the

same order of magnitude as those obtained in the other works. Our results for confinement

losses at the wavelengths of 1, 1.5 and 2 µm are 2.675× 10−3, 2.22× 10−1 and 9.1 dB/m,

respectively. The results reported in [67] by using the MM are 3.06× 10−3, 2.06× 10−1

and 7.73. The results reported in [94] by using the FEM and a square PML are 2.00×10−3,

2.00×10−1 and 6 dB/m. The results reported in [95] by using the FEM and a circular PML

are 3.47×10−3, 2.26×10−1 and 7.74 dB/m. Those results show that the maximum rate of

difference between our results and the confinement loss results of other computations goes

to % 50 at 2 µm wavelength.

The structure of the second MOF is given in Fig. 2.6(a). The cladding of this fibre is

47



CHAPTER 2. APPROACHES TO THE MODELLING OF MICRO-STRUCTURED WAVEGUIDES

(a) (b)

(c) (d)

Figure 2.6: (a) Cross section of MOF with ten layers of air holes. (b) Comparison of our
calculations of confinement loss with: the FEM calculations of [96] using a squared PML
and the FEM calculations of [95] using a circular PML. (c), (d) Computed MOF dispersion
and effective area.

composed of ten layers of air holes separated by a pitch of 0.89 µm. The diameter of the air

holes is the same for a given layer, but varies from layer to layer. The diameter values from

innermost to outermost layer are: 0.41 µm, 0.85 µm, 0.92 µm, 0.53 µm, and 0.60 µm for the

following six layers. Our calculations are compared with the FEM calculations of [96] using

a squared PML and the FEM calculations of [95] using a circular PML. Again, all results are

very close to each other, and variations of confinement loss are very small.

Our results for confinement losses at the wavelengths of 145, 1.55 and 1.65 µm are
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1.046×10−6, 1.895×10−5 and 3.92×10−4 dB/m, respectively. The results reported in [94]

by using the FEM and a square PML are 1.00×10−6, 2.00×10−5 and 3×10−4 dB/m. The

results reported in [95] by using the FEM and a circular PML are 1.00×10−6, 1.8×10−5 and

2.65×10−4 dB/m. While our results at 1.45 and 1.55 µm wavelengths are between the values

of other two computations, it is around %50 higher at 1.65 µm wavelength than the lower

value of other computation results. Furthermore, we have also plotted the WG dispersion

and effective area of the fundamental mode for this fibre as obtained in our numerical model

(Figs. 2.6(c) and 2.6(d)).

2.3 Summary

This chapter gave a detailed account of the theoretical approaches to the modelling of MS

WGs in anisotropic crystals that are employed in the remainder of this thesis. The FEM and

PWM for the modal analysis of these WGs have been described. The accuracy of the FEM

calculations performed by using the COMSOL Multiphysics software has been validated by

comparing our results to previously reported results for MOFs.
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Chapter 3

Experimental background

The design and optimisation of MS WGs in LiNbO3 crystals necessitate the use of available

parameters related to track structures for any fabrication purpose. Therefore, it is worth

first evaluating the fs laser inscription method and its use in LiNbO3, and then introducing

experimentally obtained operational parameters [45]: track sizes and RI contrasts, which

have been used in this theses.

3.1 Direct femtosecond laser inscription method

Dielectric transparent materials allow the transmission of low intensities of light without any

significant absorption due to wide gaps between the valence and conduction bands. However,

interactions between light and transparent materials may become triggered due to nonlinear

effects such as multiphoton absorption, avalanche ionization and plasma formation at very

high intensities of light, which is only available by use of spatially and temporally confined

high energies of ultra-short laser pulses. As such, tight focusing of fs laser pulses inside a

small volume of transparent materials leads to localised and permanent changes of material
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properties such as RI, absorption coefficient, susceptibility, crystal structure, and so forth.

Choosing proper light sources for permanent modification of RIs at specific intensities and

wavelengths with a micron size precise spatial control over a focal area inside bulk materials,

and continuous translation over multiple axes of 3D space allow for micro-fabrication of

complex IOC devices. Being developed over two decades into a research field to understand

the underlying phenomena, to optimise photo-induced structural modifications on various

transparent materials, and to exploit its capabilities on the micro-fabrication of a multitude

of optical devices, the direct fs laser inscription method [97, 98] has been considered as

a valuable alternative to more mature fabrication technologies due to the flexibility and

robustness of 3D volume micro-structuring of transparent dielectric materials.

The first demonstration of reproducible permanent RI modification by direct fs laser

writing was reported for bulk glasses in [99]. Since then, it has been implemented on a

variety of transparent materials such as polymers [22], amorphous and chalcogenide glasses

[100], crystalline materials [101], dielectric crystals [37, 102, 103] to fabricate buried WGs

[102, 104], lasers [37], amplifiers [105, 106], couplers [107], splitters [108], gratings [109],

computer holograms [110], and many more. All those devices utilise the modification of RIs

of transparent dielectric materials, which results from a combination of a highly complex

physical processes.

Fs laser induced RI changes depend on the properties of both material and fs laser source,

as well as focusing conditions. The availability of fs laser sources is the primary factor

leading to any ability to change material structure because it provides with high intensity

levels of light pulses required to start any physical process. Fs light sources can be focused

in a focal area inside the material by using a micro objective (MO). Numerical aperture

(NA) of the MO, a measure of the range of angles that light is emitted, needs be correctly
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chosen not just to adjust the width and depth of the focal area also not to cause any high

intensity dependent nonlinear processes such as self-focusing and white-light generation

because of Kerr effects, diffraction and dispersion during the propagation of light pulses

[111, 112]. The nonlinear nature of absorption in a material is the mechanism triggering a

process leading to controllable and small volumes of structural changes, so that any other

part including the surface of material do not become affected by laser light except focal

area in which pulses reach enough intensity. Depending on band-gap energy of material,

an electron moves from valence band to conduction band if sufficient multiple number of

photons incident at the same time on any electron is absorbed, which is called multi-photon

absorption [97]. Only if the NA of MO, pulse width, wavelength and energy of laser is chosen

properly, a nonlinear absorption mechanism takes place and creates a seed of electrons

at high energy levels [113]. Those free electrons at conduction band can subsequently

acquire extra energy and accelerate by linearly absorbing the incoming photons. As soon

as their accumulated kinetic energies is over band-gap energy, other electrons at valence

band acquire this extra energy and move also to conduction band [114]. The number of

free electrons increase exponentially as in an avalanche effect, leading to absorption of the

remaining pulse energy and plasma formation. Part of the accumulated energy in a focal

volume transfers to the lattice through carrier-carrier and carrier-phonon scattering, leading

to thermalisation and a hot focal volume [113]. Subsequently, accumulated energy leaves

out the focal volume through shock wave generation and heat diffusion to outside of the

focal area; meanwhile causing the RI modification of the material structure through several

mechanisms such as stress-induced changes, densification, color centre formation [113].

RI modifications reported for different transparent materials under various experimental

conditions have been varying from 10−4 to 10−2 [97]. An exact model which can quantify the
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highly complex interdependence of different physical processes do not exist to identify the

properties of material changes, even though there exist several numerical works to evaluate

the effects of separate system parameters [25, 112, 115]. Thereby, fabrication of optical

devices by fs laser inscription becomes an experimental optimisation problem within a para-

meter space: wavelength of fs light source, pulse energy, polarisation, spatial and temporal

pulse shape, repetition rate of the laser system, NA of the MO used, depth of focusing and

the aberrations of the laser wavefront and sample translation speed.

Irradiation of fs laser pulses in dielectric crystals may produce both negative [103, 116]

and positive RI changes [37], depending on the experimental parameter settings during the fs

laser inscription. While single line tracks can be used as WGs because it can confine light in

core regions with positive RI changes, light propagation along single written tracks can not be

accomplished with negative RI changes. However, confinement of light by use of multiple

number of single line tracks with negative RI changes is also possible by designing MS

buried WGs in such a way that a depressed-index cladding which consists of a certain number

of tracks with negative RI changes can be inscribed around an unmodified area of material

which serves as the core of WG [37, 103]. It is possible, in principle, that advanced designs

of light guiding channels consisting of tracks with negative RI changes can be achieved to

reduce propagation losses [97, 117]. But, the question of how good confinement can be

achieved by the implementation of this approach arises due to the fact that depressed-index

cladding WGs inherently have leaky-mode properties [118], specifically on the conditions

that cladding region of depressed-index MS WGs may consists of a limited number of tracks,

and that RI contrasts which can be achievable by current fs laser inscription technology

between tracks and unmodified core region are relatively small. Simplest depressed-index

claddings which have often been fabricated to date consists of either just two parallel tracks
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or a single layer of tracks surrounding the unmodified core region. Those simple geometries

can not effectively confine light and generally suffer from high propagation losses [117].

Additionally, these geometries do not allow for any control over wave-guiding properties,

such as confinement loss, WG dispersion, WG birefringence, insertion/coupling loss, effective

area and so on. Therefore, a large number of tracks with advanced design geometries need

to be configured to effectively lower confinement losses, and, ideally, to control the WG

parameters.

As the number of tracks necessary to provide a better confinement increases, laser writing

duration becomes a limiting factor in terms of fabrication of complex depressed-index clad-

ding MS WGs. Repetition rate of fs laser sources is one of the most important parameters

to improve the fabrication time of tracks. Even tough the structural deformations by one-

by-one energy deposition of separate fs laser pulses are a rather complex process, the use of

fs laser sources with low repetition rates, in practice, leads to longer inscription times and

becomes a limiting factor. As it is currently employed the most widely for WG inscription in

crystals, kHz fs laser systems use typical sample translation speeds from ten to a few hundred

µm/s. In comparison, fs laser sources with high repetition rates (HRR) enable much faster

fabrication times because higher number of pulses per unit time can be deposited into a

focal region, leading to a fast accumulation of heat and therefore faster translation speeds

[20, 119]. HRR fs laser sources have already been preferred for the fabrication of low-loss

WGs in glasses [20,120–123] because it enables up to five times higher RI contrasts between

exposed and unexposed regions than those of what are the maximum RI contrasts achieved

by LRR fs systems [20]. However, the use of HRR fs laser sources for the inscription of

crystals has got less attention in the literature [104]. It was shown that the energy absorption

efficiency of laser inscription with HRR lasers can be twice more than that with low repetition
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rate lasers due to heat accumulation effect [120, 121], which permits even faster translation

speeds. Since the time difference between successive pulses of HRR lasers are less than

the time for heat dissipation, heat accumulation is sustained throughout laser cycles in the

focal volume leading to a melting of the material [34]. Molten material starts cooling from

outside, resulting in smooth track formations with permanent RI change. Definitely, the

repetition rate is one of the key parameters to optimise permanent material modification. If

optimised results can be obtained by using HRR laser systems, faster energy deposition into

the focal volume reduces the fabrication time of tracks; thereby making the fabrication of a

large number of tracks feasible for complex depressed cladding MS WGs.

3.1.1 Direct femtosecond laser inscription in Lithium Niobate

Fs laser inscription method in z-cut LiNbO3 was demonstrated for the first time to fabricate

3D optical WGs and a Y splitter by Gui in 2004 [30, 31]. A positive RI change of around

6× 10−4 for elliptically shaped tracks was reported by using a fs laser system producing

150 fs pulse-width of laser pulses with a repetition rate of 1 kHz at 775 nm wavelength.

Circularly polarised fs laser beam with average pulse energy of 10 µJ was focused≈ 500 µm

under the surface by using a 20× MO with 0.4 NA and translation stage is moved with a

velocity of 50 µm/s. Propagation losses were estimated to be around 1 dB/cm at 632.8 nm

of wavelength [31].

Thomson [124] et al. reported the WG fabrication of z-cut LiNbO3 to demonstrate well-

confined propagation at 1550 nm. A 5 kHz laser system emitting 130 fs pulses at 800 nm

wavelength was used. Fs laser beam linearly polarised parallel to the x axis was focused

at ≈ 250 µm below the surface by using 20× MO with 0.4 NA. It was reported that WGs
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fabricated by using pulse energies from 0.1 to 40 µJ and translation speeds less than 5 µm/s

supported propagation at 1550 nm of wavelength. In his following report [32], Thomson

presented further characterisation results with the aim of producing high confinement at

1550 nm. The same laser system and focusing optics set-up but pulses with a duration

of 520 fs were used. Guiding was reported to be observed at 1550 nm when pulse energies

was between 300 to 400 nJ and to be improving with lower translations speeds. However, it

was later seen that guiding deteriorates over time with no guiding after 1 month. Thomson

also reported the formation of two different types of waveguides; first type supporting the

propagation of both polarisation state of light around central laser damage region and the

second type supporting highly polarisation sensitive guiding with confinement of only one

polarisation state which was perpendicular to material surface in the laser focus modification

region.

Burghoff et al. [35] reported the observation and discussion of different types of modifica-

tions in LiNbO3, as well as frequency doubling of 1064 nm using birefringent phase matching.

A laser system producing 1 kHz repetition rate of 40 fs pulses at 800 nm was used. Laser

beam was focused 200 µm below the surface by using 40×MO with a NA of 0.65. Linearly

polarised laser beam with 500 nJ pulse energy was translated at 100 µm/s. Inscription of

both x nd z-cut samples by applying an energy below 500 nJ produced tracks which guides

only one polarisation state of light and which vanished after heating to 150 ◦C for 1.5 hours.

When pulse energies above 500 nJ was applied on x-cut sample, guiding was not seen on

damaged material with reduced RI at the focal point, but guiding of both polarisation states

was supported through the sides of focus with no vanishing after heating to 150 ◦C for

several hours. Frequency doubling experiment was realised by fabricating a WG which
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located between two parallel tracks with reduced RIs.

In his paper [34], Nejadmalayeri et al. included the effects of pulse-widths and polarisation

of pulses into the optimisation of track properties in z-cut LiNbO3. A laser system capable

of producing 2.5 W average power and 1 kHz repetition rate of 35 fs pulses at 800 nm was

used. Laser beam was focused around 70 µm below the surface by using an aspheric lens

with 0.5 NA. Circular and linear polarisation parallel and perpendicular to scan direction,

pulse widths from 50 fs to 1 ps, pulse energies from 250 to 800 nJ and scan speed from 0.1

to 2 mm/s constituted the optimisation parameters. By using circularly polarised light with 1

ps pulse duration, fabrication of 0.7 dB/cm low loss tracks with positive RIs was reported at

telecommunication band with strong modal polarisation dependence. It was reported that no

depreciation of the WGs quality was observed after keeping in room temperature conditions

for 5 weeks. However, those WGs disappeared after applying a temperature test of 8 hours

slow heating to 450 ◦K over, keeping at this temperature for 24 hours and slow cooling to

room temperatures over 8 hours.

Lee et al. [33] demonstrated optical WGs fabricated in periodically poled LiNbO3 (PPLN)

for second harmonic generation. A fs laser system supplied 1 kHz repetition rate of pulses

with 130 fs pulse duration and 400 nJ pulse energy at 781 nm of wavelength. Laser beam

was focused approximately 20 µm below the surface by an objective lens with 0.4 NA and

translated with a velocity of 10 µm/s. Beam translation was translated 6 times with a line

spacing of 0.7 µm to broaden WG to about 4.7 µm. Guiding was observed for just one

polarisation state of light and propagation loss were measured to be 2.25 dB/cm at 1550 nm.

Burghoff et al. investigated the influence of processing and focusing parameters on

the structural modifications induced in LiNbO3 by fs laser writing [125]. A laser system

operating at 1 kHz repetition rate of 40 fs duration of pulses at 800 nm of wavelength was
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used. Laser pulses with 380 fs duration, 0.2 µJ energy and with 420 fs duration, 1 µJ energy

were focused at a depth of 100 µm and 130 µm on x-cut and z-cut LiNbO3 samples by using

a 40×MO with 0.65 NA, respectively. Polarisation was linear and perpendicular to scanning

direction. x-cut LiNbO3 was written in the y direction. Translation velocity was kept constant

at 100 µm/s. Two different types of structural modification were reported. First, a positive

RI increase along E polarisation direction was observed at low laser fluences, which was

thermally unstable and the electro-optic coefficient was substantially reduced. Second, a RI

decrease along both polarisation directions accompanied by material damage and stresses

in the surrounding regions was observed at high laser fluences. The discussion concluded

that decreased RI regions can be used to fabricate symmetrically confined WGs by writing

two parallel lines. In his following work [36] with similar experimental settings, using a

pulse duration of 420 fs and a pulse energy of 1 µJ, a different behavior was observed

in both polarisations. A decreased RI at the center and positive RI changes at the sides

were observed along the E polarisation direction while it was just a decreased RI along

O polarisation direction. After a thermal treatment at 200 ◦C for 30 minutes, positive RI

changes disappeared and negative RI changes slightly increased along both polarisation

directions. It was shown that two different modification types were obtained by changing

just pulse duration. The RI increase along E polarisation was associated with moderate laser

fluences and short pulse durations which generated small structural changes. The second type

modification with decreased RI changes along both polarisation directions was associated

with high laser fluences and long pulse durations around 1 ps. Burghoff et al. [126] also

demonstrated the use of an optical WG consisting of two parallel tracks with reduced RIs

and with 17 µm separation from each other for second harmonic generation of 1064 nm

laser irradiation. The shape and polarisation dependence of propagation modes over those
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WGs were modeled by FEM simulations and seen to be in agreement with experimental

results [29].

Thomas et al. [42] reported the fabrication of symmetric and thermally stable optical

WGs formed between two tracks in z-cut PPLN for a second harmonic generation of 1064

nm wavelength of light by using a quasi-phase matching approach. A laser system operating

at 800 nm wavelength and 1 kHz repetition rate was used. Circularly polarised pulses with

2.5 ps pulse duration and 0.4 µJ pulse energy were focused 50 µm under the surface by using

a 40×MO with 0.65 NA. Focus point was translated at a velocity of 800 µm/s.

HRR fs laser pulses was applied for the inscription of LiNbO3 by Nejadmalayeri et al.

[119]. A fiber based chirped laser system which provided minimum pulse duration of

400 fs at 1045 nm wavelength with variable repetition rate from 0.1 to 5 MHz was used.

Both linearly and circularly polarised beams were examined. Pulses with 600 fs pulse

duration were focused 110 µm below the surface with an aspheric lens having 0.55 NA. After

examinations by changing pulse energy, scanning speeds from 1 to 80 mm/s, polarisation

and repetition rate, best results were obtained for positive RI modifications of tracks along

E polarisation direction at 1300 nm wavelength of light when scan speed, pulse energy,

polarisation and repetition rate were, 46 mm/s, 500 nJ/pulse, circular and 700 kHz, respecti-

vely. Thermal stability of WGs were not tested. It was also reported that heat accumulation

effects due to higher repetition rates were the cause of smooth WG formation.

Huang et al. [127] investigated the tuning characteristics of fs second harmonic generation

in WGs formed between double tracks with reduced RIs in PPLN. Linearly polarised pulses

with 50 fs pulse duration, 10 µJ pulse energy and 1 kHz repetition rate at 800 nm of waveleng-

th were focused 200 µm below the surface by a 25× MO with 0.4 NA and were translated

at a velocity of 400 µm/s.

59



CHAPTER 3. EXPERIMENTAL BACKGROUND

Thomas [28] demonstrated a combination of a frequency doubling unit and a Match-

Zehnder modulator on a single chip to convert 1.06 µm wavelength of light to 0.53 µm and

to modulate. WGs for both units were formed between two tracks with reduced RI indices

around 30 to 50 µm below the surface. First unit was designed for converting laser irradiation

from 1064 µm to 532 µm by second harmonic generation in z-cut PPLN. The WG was

designed for sustaining the guidance of fundamental mode at both of the wavelengths. A total

conversion efficiency of 58% was achieved thanks to the unchanged electro-optic coefficient

of the core region and to a good overlap of fundamental modes. A Match-Zehnder modulator

was formed in x-cut LiNbO3 by two y-junctions combined by double-track WGs. A tapered

section was added to the modulator for higher-order modes filtering, and propagating lights

in both arms was modulated by gold-coated surface electrodes. A modulation depth upto

11 dB was achieved at 80 Hz with a half voltage of 23 V at 532 nm of wavelength.

Horn et al. reported the fabrication of first-order WG Bragg gratings by fs laser writing

in x-cut LiNbO3 and demontrated the electro-optic tuning of narrowband reflections around

a 1550 nm wavelength of light by an external electric field. Bragg gratings were structured

between two tracks with negative RI changes which function as an optical WG. A laser

system producing 1 kHz repetition rate of 120 fs duration of pulses at 800 nm was used.

Linearly polarised pulses with an energy of 400−600 nJ was focused at a depth of 250 µm

by using a 100×MO with 0.9 NA and translated at a speed of 30 µm/s to write two paralel

tracks separated 7 to 15 µm from each other.

He et al. [44] demonstrated the fabrication of depressed cladding WGs in x-cut LiNbO3

crystal with a circular geometry of one layer of tracks, which was written by linearly polarised

pulses of 120 fs duration at a 1 kHz repetition rate and at the wavelength of 800 nm. 4

different WGs was fabricated, two of which were written along z axis with 50 µm and 110 µm
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of circular diameters of core regions by using a pulse energy of 2.1 µJ, and other two of which

were written along x axis with the same diameters of core regions by using a 5.04 µJ pulse

energy. The laser beam was focused at a maximum depth of 150 µm by using a 20×MO with

0.4 NA, and scanned at a velocity of 0.5 mm/s. Separation distances between tracks was set

to 3 µm. Depressed-cladding WGs with 50 µm of circular diameter showed a single-mode

propagation at 4 µm wavelength of light, while it was multi-mode at 0.633 and 1.064 µm

wavelengths. Minimum insertion losses including coupling and propagation losses in 10

mm long WG written along z direction with a diameter of 110 µm were estimated to be 1.0

dB, 0.5 dB and 3.0 dB at 0.633 µm, 1.064 µm and 4 µm wavelengths. It was seen that those

WGs support confinement along both polarisation directions.

Year
λ

(µm)
P

PW
(fs)

PE
(µJ)

RR
(kHz)

TS
(mm/s)

NP Cut Type
Depth
(µm)

δn
Loss

(dB/cm)
Gui et al. [30] 2004 775 C 150 10 1 0.05 20 z I 500 6 ·10−4 1 / 632.8 µm
Thomson et al. [32, 124] 2005 800 L 520 0.4 5 0.02 250 z I 250 * 9 / 650 µm
Burghoff et al. [35, 126] 2006 800 L 40 18 1 0.1 10 x II 200 -12 ·10−4 2.4 / 1064 µm
Nejadmalayari et al. [34] 2006 800 C 1000 0.7 1 0.9 1.1 z I 70 * 0.7 / 1300 µm
Nejadmalayari et al. [34] 2006 800 C 1000 0.7 1 0.62 1.6 z I 70 * 1 / 1550 µm
Lee et al. [33] 2006 781 * 130 0.4 1 0.01 100 * I 20 * 2.25 / 1550 µm
Thomas et al. [42] 2007 800 C 2500 0.4 1 0.8 1.25 z II 50 -2 ·10−4 1.2 / 1064 µm
Nejadmalayari et al. [119] 2007 1045 C 600 0.5 700 46 15.2 z I 110 * 0.6 / 1300 µm
Osellame et al. [128] 2008 1030 L 350 0.37 600 4 150 z I 250 1 ·10−3 0.6 / 1550 µm
Huang et al. [127] 2010 800 L 50 10 1 0.4 2.5 z II 200 3 ·10−3 0.8 / 1550 µm
Horn et al. [27] 2012 800 L 120 0.6 1 0.03 33.3 x II 250 * *
He et al. [44] 2013 800 L 120 2.1 1 0.5 2 x III 150 −4.1 ·10−3 4.3 / 4000 µm

Table 3.1: A comparison of experimental settings used by various researchers during fs laser
inscription in LiNbO3. P: Polarisation (L: Linear, C: Circular), PW: Pulse width, PE: Pulse
energy, RR: Repetition rate, TS: Translation speed, NP: Number of pulses per µm

. (* indicates missing information)

To summarise, WG fabrication in LiNbO3 by using fs laser inscription method has been

experimentally studied by various research groups with different experimental settings and

fabrication parameters, which are given in Table 3.1 for comparison purposes. Taking into

account different forms of RI changes, WGs have been classified as: Type-I WG which is a

single line track supporting the confinement of light with increased RI changes, Type-II WG

which supports the propagation of light between double-line parallel tracks with decreased
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RIs in the focal regions of tracks and stress induced small and positive RI changes in between,

and Type-III WG on which light propagates in an unchanged core region surrounded by

multiple number of tracks with negative RI changes. Exact reasons and specific experimental

settings leading to the formation of different kinds of RI changes and WGs have not clearly

been identified yet. Optimisation efforts to improve WG properties, as can be seen in Table

3.1, have mostly been conducted experimentally by varying pulse energies, pulse widths,

focus depths or translation speeds.

Type-1 WGs have the practical advantage of single line writing for the fabrication of

complex IOC circuits. However, those WGs intrinsically have the disadvantages of confine-

ment along just one polarisation direction, degradation of nonlinear properties during fs laser

inscription and stability of RI changes at room or higher temperatures especially over 150

◦C [34,35,128]. Most of the research efforts have been implemented by using low-repetition-

rate fs laser systems. On the other hand, the first use of a HRR laser system was reported

by [119] for a Type-I WG fabrication in LiNbO3, achieving a lowest loss value of 0.6 dB/cm

at telecommunication wavelengths, and a general trend towards lower losses by increasing

repetition rates can be seen in Table 3.1. Interestingly, Type-II and Type-III WGs have

only been reported by using low repetition rate laser systems. Especially, type-III WGs are

advantageous due to symmetric mode propagation, conservation of nonlinear properties due

to propagation in an unmodified region, RI changes along both polarisation directions and

corresponding confinement of both polarisation states of light, and possibility to design MS

WGs which can allow to control propagation properties. The decrease of the RI in LiNbO3

can be explained as an amorphisation of the material in the focal area by heat accumulation

and subsequent densification of the surrounding region. Also, time for heat diffusion out

of the near-focal region has been assumed to be around 1 µs. The primary difference
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between high and low repetition rate systems appears at this stage. The time interval between

subsequent pulses is 1 ms in a 1 kHz laser system, while it is 0.1 µs in a, for example, 10 MHz

laser system. So, by using a kHz laser system, there will exist a temperature rise and drop

after all subsequent pulses. On the other hand, by using a HRR laser system with appropriate

pulse energy, pulse shape, scan speed and so on, heat will be accumulated over a focal

region by subsequent pulse trains and temperature can be kept almost constant with very

low range of fluctuation while focal area moves smoothly to next regions. Although HRR

laser systems enable an easier accumulation of heat over a focal region with low temperature

fluctuations, to our knowledge, fabrication of Type-II or Type-III WGs by using HRR laser

systems have not been studied or reported yet. Of equal importance, using a HRR laser

system increases the possible range of translation speeds to find better inscription regimes

during experimental optimisation process. In Table 3.1, NP gives the number of pulses when

focal spot is translated 1 µm, calculated by RR/TS. Interestingly, it ranges from 2 to 250

for a wide variety of inscription settings. For example, for an inscription setting [44] by

using 2 pulse during 1 µm translation of focal spot, the translation speed is 0.5 mm/s. If

translation speed is increased to 1 mm/s, only one pulse can be focused per a length of 1 µm

region, which means that the optimisation range for possible translation speeds is drastically

reduced. What is more important is that faster translation speeds can be employed during

fabrication by using HRR laser systems. Translation speeds for various inscription regimes

by using low and high repetition laser systems can compared in Table 3.1. For example,

the best loss results had been reported by using a 46 mm/s translation speed [119], which is

approximately 50 times faster compared to 0.9 mm/s translation speed in [34] reported by

the same author, or which is 460 times faster than an average 0.1 mm/s translation speed

of low repetition rate inscription regimes. Surely, those translation times of HRR incription
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regimes may even increase or decrease, depending on the repetition rate of the laser systems

and other optimisation parameters, thereby providing a bigger optimisation interval. This is

very important because next generation IOCs especially in optical communication or optical

computing systems will demand the fabrication of highly complex optical systems consisting

of thousands of optical devices. As direct fs laser inscription method enables the fabrication

of highly complex 3D IOCs in a small foot-print, the use of HRR laser systems seems to be

a key factor for mass production of future all-optical communication and computing devices

by decreasing fabrication durations and corresponding production costs.

3.2 Experimental setup and procedures
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Figure 3.1: Experimental setup. WP: wave plate, PBS: polarisation beam splitter, M: folding
mirror, MO: micro-objective, CCD: charge-couple device.

The experimental setup used for HRR fs laser inscription of LiNbO3 is shown in Fig.

3.1. The fs laser is a commercial chirped-pulse oscillator (CPO) system [129] (Femtosource

Scientific XL, Femtolasers), which consists of a diode-pumped solid state Verdi V-10 (10W,

green, 532nm laser), a 3 mm length of highly doped Ti:Sapphire crystal, a broad-band

(BB) and chirped intracavity mirrors, and a saturable Bragg reflector (SBR) end mirror.

It operates at the central wavelength of 792nm with a repetition rate around 11MHz. A
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frequency-resolved optical gating device (Grenouille) is used to measure temporal pulse

widths. Dispersion compensation is implemented by use of chirped BB and SBR mirrors.

Pulses have a radially symmetric beam profile and the shortest full-widths at half maximum

of temporal pulses are around 50 and 26 fs when SBR is used or not, respectively [25, 112].

Spectral bandwidth is approximately 30 nm in the case of SBR inclusion. Laser system

produces on-target pulse energies of maximum 75 nJ. The same system produces two times

shorter pulse duration with approximately more than twice the energy output without SBR.

Starting of fs laser system is achieved by first operating in total negative dispersion regime

and shifting to total positive dispersion by adjusting the mirror at the end of the cavity.

CPO system generates linearly polarised laser pulses. The first half-wave plate and two

Brewster angle polariser are employed to control the intensity of the laser beam. Second

wave plate in Fig. 3.1 is used to adjust the polarisation state. The following steering mirrors

carry laser beam to the MO, as well as to auxiliary diagnostic equipments: a FROG, a

spectrometer, a power meter and a beam shifter. Broadband, highly reflective and polarisation-

insensitive dielectric mirrors with a low group-velocity dispersion (GVD) around 20 fs2 and

a high reflectivity of 99% are chosen. He-Ne laser beam and a CCD camera are employed

to observe and to adjust the alignment of light beam as perpendicular to the surface of

transparent material. Spatial beam profiles after CPO and before MO are checked by a beam

profiler to be circular or slightly elliptical by small laser cavity adjustments.

During the inscription of LiNbO3 crystal, a Zeiss MO with 1.25 NA is used after trying

a number of MO lenses to observe the possibility of writing smooth, non-damaged tracks.

It has a fixed spherical aberration correction at the depth of 0.17 mm in standart glass and

it is immersed in oil, the RI of which is n = 1.523. Any dispersion which can be induced

by the MO glass or any other optical element is compensated by a slight tuning of the prism
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compensator at the CPO output by observing the minimum threshold level for a continuum

of light [25]. Polarisation state of laser beam is adjusted as linear and perpendicular to the

sample scanning direction based on the reports regarding the fs laser inscription in various

glasses [20, 98] and crystals [25, 98], which state that the optimum HRR fs laser inscription

regimes are independent of the polarisation state of laser beam. Polarisation state of laser

beam irradiated on LiNbO3 can be adjusted by the second wave plate which is next to

Brewster angle polarisers.

A z-cut LiNbO3 wafer of 75 mm diameter and 1 mm thickness (supplied by University

Wafer) is used to obtain the results presented in the following section. A 3D Aerotech

translation stage, which consists of the air-bearing 2D stages (ABL10050) for the x and

y directions and an independent mechanical roll-bearing type stage (ABS-100) for the z

direction, are used to translate the positions of samples at speeds up to 100 mm/s with sub-

micrometer accuracy and are controlled by computer through the NPAQ controller (Aerotech).

Sample is mounted on a rotary and homemade platform (Ekspla, Lithuania) with heavy load

carrying capacity. Accurate positioning of the top surface of the sample is checked to be

transverse to the x-y plane and perpendicular to laser beam direction by adjusting precision

screws and by observing the reflection from the sample top surface. The first wave plate in

Fig. 3.1 is controlled by computer to adjust the intensity of light reaching over the sample.

A transverse inscription direction is used such that laser beam is transmitted along the z

direction. Inscription of a WG with multiple number of tracks start from the deepest track

along the z direction. Inscription of any track is started by turning on a computer-controlled-

electronic-shutter, and sample is moved transversely in the x-y plane. After the inscription

of a track has been completed on any x-y point; the shutter is turned off, sample is moved

back to the starting point of the next deepest track to be written on the x-y plane, the depth of
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focal point of the next track is adjusted by changing the position of the MO on z direction,

and shutter is turned on for the inscription of the next track.

Experimental settings which are used to focus fs laser beams inside the sample take

extra importance with respect to the distribution of spatial and temporal intensity around

the focal volume and to the accurate positioning of focal point beneath the sample top

surface. If fs laser beams can not be focused well enough, energy of laser beam is distributed

over a bigger area and, consequently, intensity or energy threshold of material can not be

reached. The better the focusing of the fs laser beam, the lower the pulse energy to produce a

continuum of light within LiNbO3 [112,115]. For example, energy threshold is measured to

be approximately 12 nJ at an inscription depth of 0.5 mm in borosilicate (BK7) glass using an

oil-immersed MO with an effective NA of 1.2 [130]. On the other hand, the energy threshold

of LiNbO3 is measured to be three times higher at inscription depths of approximately 0.25

mm by using a commercial MO with a NA of 1.25 [45]. The threshold for residual material

modification is respectively higher than the threshold for the appearance of a continuum in

LiNbO3 as well as in other crystals [25]. It is also worth emphasizing that the difficulty of

focusing of high intensity laser beams in LiNbO3 crystals [131] puts extra importance over

the choice of MOs due to the RI difference between E and O axis. Aberration-free focusing at

arbitrary depths in such crystals may become possible by using special focusing equipments

rather than standart MOs. The results presented in the next section can be improved by

using computer-controlled spatial phase modulators [131] and an on-line feedback loop

mechanism. However, unavailability of methods to determine optimum focusing conditions

puts limitations on its implementation for birefringent crystals.

Fs laser inscribed tracks are visually inspected by using an optical microscope, Axioscope-

2 MOT (Zeiss), which is equipped for both transmitted light and differential interference
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contrast (DIC) measurements. A charge-couple device (CCD), 10 megapixel and 16 bits

camera, on the microscope is interfaced to a computer by a fibre-optic link to reduce the

level of electronic noise and to achieve high data throughput. Cumulative phase profile

and RI distribution of tracks are estimated by using Quantitative Phase Microscopy (QPM)

method by using a commercial software (IATIA). The QPM technique is based on taking

bright field images at different focus distances (an in-focus image and a number of slightly

positive and negative defocused images) and calculating the differential of these data for

phase recovery [132, 133]. This technique requires an accurate positioning along the z axis

for the extraction of correct phase information. Since the motorised version of microscope

has a built-in, electronically controlled z translation stage with an approximate positioning

accuracy of 100 nm, choosing a z step size which is equal to an integer multiple of the motor

stepper size let avoid any interpolation due to the motion controller and achieve a positioning

accuracy up to an (estimated) value of 20 nm. Further improvements are possible by using a

position feedback encoder or by reducing any noise arising during the image acquisition and

transmission. Also, any additional noise due to short exposure times can be minimised by

choosing large exposure times over a fraction of a second. Extra care is required during the

application of QPM technique for objects with absorption or gain because of the fact that this

method is based on the transport-of-intensity equation [133, 134], which is valid only when

the beam energy is preserved. A comparison between QPM measurements of BK7 glasses

and those by scattering interferometry clearly disclose this problem [130].

The radial RI profiles of the tracks can be extracted from the cumulative phase data

obtained from QPM by using Abel inverse transform method [135], which is based on the

assumption that the structure is axisymmetric. Phase retardation maps and corresponding RI

values can be obtained by using QPM and Abel transform over 300µm×400µm view area of
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microscope for an image magnification factor of 20. It is worth emphasizing that the phase

retardation maps obtained by QPM software for z-cut LiNbO3 samples are not sensitive to

the polarisation of the illumination light, so necessitating extra care to interpret the phase

maps on wafers with different orientations due to the host birefringence.

3.3 Results

The results [45] presented below is a result of an investigation in search of the optimal

conditions over the parameters space: fs laser pulse energy, the speed of translation stage,

focus depth inside the LiNbO3 sample, polarisation state of the laser beam relative to the

scanning direction, and the duration of laser pulses. The results are obtained by using

laser pulses with a minimum pulse duration, polarised in the x direction perpendicular to

the scanning direction. Additionally, beam profile, calculated by 1−b/a where a and b are

the respective major and minor semi-axes, exhibits a small ellipticity of 0.05 with the larger

semi-axis in the scan (y) direction [25, 45]. The physical characteristics of tracks inscribed

by using different inscription parameters except those showing any apparent instabilities are

evaluated by employing a white-light microscope and the QPM technique based on the Abel

transform. An example of tracks obtained with a high inscription energy is shown in Fig.

3.2. Those tracks shown are written by using an inscription energy of 58 nJ. Two pairs of

tracks on the left and right side are written at a scanning speed of 40 mm/s and 60 mm/s,

respectively, and tracks of each pair are scanned at opposite direction with respect to other

track. A typical example of the reconstructed RI profile of a track written at the inscription

energy of 58 nJ and at the scan velocity of 12 mm/s is shown in Fig. 3.2(b). As it can be seen,

highly uniform tracks are obtained even at high inscription speeds in z-cut LiNbO3 crystal,
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(a) (b)

Figure 3.2: (a) DIC microscope views of two pairs of tracks [45] (Inscription energy is
58nJ, scanning speeds are 40mm/s (left pair) and 60mm/s (right pair), inscription depth is
≈ 200µm) (b) Radial RI profile of a track [45] (Inscription energy is 58nJ, scan velocity is
12mm/s and inscription depth is ≈ 200µm ).

and any significant morphological change on tracks due to different scanning directions do

not exist. RIs of those tracks have a negative contrast and it do not permit guiding of light.

Keeping other inscription parameters constant and changing just the inscription energy

from 35 to 60 nJ, the variation of radial size (r) and peak RI contrast of tracks are shown in

Fig. 3.3 (scanning velocity is 12 mm/s, approximate depth from the surface of the crystal is

250 µm). It is obvious that both sizes of tracks and the magnitude of the peak RI contrast

increase with pulse energy. A maximum index change of −0.0127, which is the highest

RI contrast achieved in LiNbO3 by fs laser inscription, is seen at the inscription energy of

58 nJ. However, it is worth reminding that those values are obtained by varying just pulse

energy and by keeping other experimental parameters constant during fs laser inscription

in LiNbO3, which means that track radius and RI contrast, without any interdependence,

still have the possibility of being tuned to any desired value in a certain range by some

70



CHAPTER 3. EXPERIMENTAL BACKGROUND

exploration in the parameter space of fs laser inscription. For example, uniform tracks

can be achieved within a wide range of scanning velocities from a few mm/s to 60 mm/s,

though the uniformity of the immersion layer underneath the MO may pose problems when

the inscription of tracks are performed by using high pulse energies and fast scanning.

Fabrication of MS WGs with any desired geometry necessitates the inscription of tracks

(a) (b)

Figure 3.3: (a) Radius and (b) peak RI contrast of the tracks as a function of inscription
energy [45] ( Scanning velocity is 12mm/s and approximate inscription depth is 250µm ).

at different depths under the sample top surface, and relative positions of tracks need to be

controlled with high precision. Most important parameters which can effectively determine

the depth of tracks are both the distance of the MO from sample surface and its NA. Any

straightforward approach to relate the actual focusing depth of the inscription beam with MO

shift of the z-axis stage do not exist due to a multitude of nonlinear effects during the wave

front propagation. However, once any inscription regime is determined, the use of advanced

optical devices such as spatial light modulators, which can reconstruct the formation of

similar wavefronts at any inscription depth, makes it possible to obtain similar track sizes

and RI contrasts. Microscope images of a MS WG written in a z-cut LiNbO3 sample are

shown in Fig. 3.4. All tracks are written by using fs laser pulses with an energy of 48 nJ,

transverse scanning velocity of 15 mm/s, and at an approximate depth of 250 µm. The
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a) b)

Figure 3.4: Microscope (a) overhead view, and (b) cross section view of a fabricated MS
WG with two rings of tracks [45] ( Inscription energy is 48nJ, scan velocity is 15mm/s, and
inscription depth is ≈ 250µm ).

depressed cladding consists of two circular rings, each of which have equally distributed

sixteen tracks. The radii of inner and outer circles are 24 µm and 30 µm, and average

sizes of tracks are 3.7 and 1.4 µm for its major and minor axis, respectively. Guiding

properties of this MS WG are investigated by using a broadband light source with a total

bandwidth from 0.4 to 2 µm. It is filtered by using an external acousto-optic tunable filter

which have six separate channels with an approximate bandwidth of 20 nm. The filtered

light is coupled into the MS WG through a multi-mode optical fiber with a core diameter

of 40 µm. Total propagation losses are estimated through integration of mode field profiles

on the CCD camera. Calculated propagation loss is approximately 3 dB/cm around 0.6 µm

of wavelength , and it is approximately ten times bigger around 1 µm of wavelength. Those

loss results obtained from this MS WG with just two rings of tracks are a clear indication of

a necessity that structural properties of MS WGs should be designed to lower confinement

losses and evaluated for any possibility to control the propagation properties. Taking into

account the relatively moderate levels of track RI contrasts, which are possible to achieve by

72



CHAPTER 3. EXPERIMENTAL BACKGROUND

current fs inscription technology, lower confinement losses may become possible by using

higher number of tracks and by employing some design strategies. Micro-fabrication of such

large number of tracks make HRR fs laser inscription the preferred technique over that of

kHz fs laser inscription or other fabrication methods. The reason for this fact can be more

clear by calculating the fabrication time of a MS WG at the length of 10 cm and with total

number of 200 tracks over the cladding region. It may exceed 60 hours if a kHz fs system

(with a typical translation speed of 10 to 500 µm/s [25]) is used, whereas it is less than

an hour if a HRR system is used. More importantly, it is worth reminding that HRR fs

laser inscription technology can be extended for the micro-fabrication of periodically poled

crystals to enable a wide spectrum of applications in classical and quantum optics.

3.4 Summary

In conclusion, this chapter first introduces direct fs laser inscription method and gives a

review of experimental settings previously used by other researchers and obtained results

regarding to WG properties fabricated in LiNbO3. Then, experimental setup used during

WG fabrication in LiNbO3 is introduced, and results with regard to experimentally achieved

track parameters [45] are provided. It is shown that the RI contrasts of individual tracks

fabricated in LiNbO3 can be at a record-high value of -0.0127, and that RI contrasts and

sizes of individual tracks can be varied by the applied pulse energy.
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Chapter 4

Design of depressed-cladding

micro-structured waveguides in LiNbO3

4.1 Introduction

As mentioned in Chapter 1, the combination of excellent electro-optical, acousto-optical and

nonlinear optical (χ2) properties, as well as its wide transparency window, make LiNbO3

an attractive material to integrate various linear and nonlinear optical applications in IOC

devices [6, 7, 136]. After the advent of quasi-phase matching by poling of ferroelectric

crystals [137], LiNbO3 has become one of the most commonly used materials in devices

such as acousto-optical filters, frequency converters and optical parametric generators.

MS WGs with low losses, high damage threshold and controllable dispersion in a broad

spectral range are highly demanded for both traditional applications and applications in

recently emerged fields, such as integrated quantum optics and mid-IR range frequency comb

generation. In this chapter, we numerically study the design of depressed-index cladding
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MS WGs with an hexagonal geometry, which can be formed in a z-cut LiNbO3 crystal by fs

laser writing [138]. Depressed-cladding MS WGs have been demonstrated to achieve light

propagation with good mode confinement and low propagation losses at various wavelengths

of light in comparison to directly written, single-track WGs [37, 43, 117, 139, 140]. The

simplest type of depressed-index cladding consists of only two parallel tracks positioned

close to each other [97, 125]. But such a WG structure does not allow for control over

the wave-guiding properties. On the other hand, owing to geometric flexibility in track

positioning, the depressed cladding may consist of a fairly large number of arbitrarily arran-

ged tracks confining the flexibly large and shaped core guiding area [43]. Our goal is here

to establish how experimentally accessible parameters, such as the size, RI contrast, number

and positions of tracks in the depressed cladding region, can be used to achieve control over

the propagation constants of modes with different polarisations in the WG geometry [138].

A similar approach has already been used for controlling the wave-guiding properties of MS

optical fibres (MOFs) [141–143], where tracks/rods with a reduced RI are naturally formed

by introducing air holes during the fibre drawing process.

4.2 Waveguide packing geometry and methodology

For this study, we modeled depressed-cladding WG structures with an hexagonal geometry.

This is a fairly commonly used WG shape, which has already been well studied in the

case of isotropic materials such as MOFs [143]. The depressed cladding was formed by

a finite number of rings of regularly spaced, cylindrical tracks whose centers were arranged

hexagonally, as shown in Fig. 4.1. These tracks can be written in a LiNbO3 crystal by

direct fs laser irradiation using a transverse inscription geometry (cf. chapter 3) [97]. In our
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Figure 4.1: Cross section of modeled depressed-cladding WG with two rings of tracks, and
ellipsoid of indices for LiNbO3 host.

modeling, the reduced RI of the tracks was assumed to be a real value, uniform across the

cross section of a track, and polarisation- and wavelength-independent. Note that this might

not be the case in practical scenarios, especially under arbitrary fs laser irradiation protocols.

Indeed, direct measurements of the ultrafast dynamics of the dielectric permittivity of glass

materials [130] revealed that irradiation by HRR fs laser can generate changes in both real

and imaginary parts of the permittivity, especially for long irradiation times or high laser

pulse energies. Importantly, fs-written tracks in crystals possess a complex geometry and

include volumes of material with increased and decreased RIs [37]. However, the change of

RI, averaged across the cross section of each track, has always negative sign.

Key parameters that were varied in the numerical model were extracted from experiments

(cf. Chapter 3). They include the track size d, the track spacing or pitch a, the RI contrast

between the cladding and core regions δn, and the number of track rings or depressed-

cladding layers Nr. On the other hand, in this work we did not explore other symmetries,

more complex topologies or tiling, and disorder. Some of such examples can be found

in [144].
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In this study we considered a z-cut LiNbO3 wafer with the larger surfaces perpendicular

to the z axis of the coordinate system (Fig. 4.1). The z axis is the optical axis of the

crystal, and light is assumed to propagate along the y axis. Following [145], a three-oscillator

Sellmeier equation of the form:

n2 = 1+
Aλ2

(λ2−B)
+

Cλ2

(λ2−D)
+

Eλ2

(λ2−F)
(4.1)

was used for the RIs of congruently grown LiNbO3 doped with 5 mol.% magnesium oxide

(MgO), with the following Sellmeier coefficients:

Coefficient ne no

A 2.4272 2.2454
B 0.01478 0.01242
C 1.4617 1.3005
D 0.05612 0.05313
E 9.6536 6.8972
F 371.216 331.33

Table 4.1: Sellmeier coefficients for 5 mol.% MgO doped LiNbO3

As mentioned in Chapter 2, the wave equation for electric field vector (Eq. (2.4) with

(2.11) and (2.14) were solved using the COMSOL software based on the FEM to find out the

complex effective RIs neff
o,e of the modes of the structure for the two orthogonal polarisation

states x and z, hence the WG dispersion and confinement losses. In our numerical simulations,

the wavelength was varied in the transparency window of 5% MgO-doped LiNbO3, from

0.3 µm to 3 µm. As mentioned in Chapter 2, the FEM results presented in this thesis refer to

the fundamental mode of the structure, which was selected using the criterium of minimum

effective mode area during the wavelength scanning.
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4.3 Mesh and PML setting

Special care was given to the choice of the computational mesh and the parameters of the

PML. As mentioned in Chapter 2, the mesh size must be a few times smaller than the

wavelength being used to ensure good accuracy of the results. In our simulations, the

computational domain was mapped with an automatically configured, triangle mesh with

the minimum size 0.003 µm in the core of the domain and the relative growth rate 1.1. The

maximum mesh size at the periphery of the domain is of the same order of magnitude as the

shortest wavelength in use. The same mesh is used for all wavelengths in the range being

studied.

The PML was configured according to Eq. (2.31). As mentioned in Chapter 2, the

PML must have sufficiently large κmax to provide an adequate level of absorption and be

wide enough to guarantee a small absorption gradient across its extent. We performed a

number of testing runs for a hexagonal MS WG with two rings of tracks, with the diameter

d = 1.6 µm and the pitch a = 2 µm. The induced RI contrast was δn = −0.05. Parameters

L and κmax were varied between 10 µm and 50 µm, and between 0.03 and 0.2, respectively.

The evaluation range of κmax was determined by a prior testing such that κ was considered

as a constant value all over the PML region, and the value of κ at which transition reflection

became significant was found. In Fig. 4.2 we show the confinement loss L for the O wave

as a function of the PML thickness L for different values of κmax at different wavelengths.

A common feature of the results obtained is that transition and round-trip reflections are

dominant when L is small, whereas they become increasingly less important with increasingly

larger PML thickness. The confinement losses at all wavelengths being studied converge to a

constant value when the PML is wide enough and κmax is 0.05. Considering that mesh sizes
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Figure 4.2: Confinement loss for O wave as a function of PML thickness for different values
of the PML maximum absorption for a depressed-cladding WG with two rings of tracks
(Nr = 2) at various wavelengths: (a) λ = 0.5 µm, (b) λ = 1 µm, (c) λ = 1.3 µm, and (d)
λ = 1.6 µm. WG parameters are: d = 1.6 µm, a = 2 µm, δn =−0.05.

are small enough to correctly represent all the wavelengths being used, we can conclude

from Fig. 4.2 that, if the PML is chosen to be sufficiently wide, κmax can be assumed to be

wavelength-independent. So, in the simulations described hereafter we set L = 40 µm and

κmax = 0.05.

4.4 Results and discussion

One of the important features of MS WGs is the control that their geometry and structural

parameters can exert on the dispersion and loss characteristics of modes. The confinement
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Figure 4.3: Real parts of effective RIs for O and E waves as a function of wavelength for a
depressed-cladding WG with two rings of tracks, Nr = 2. The O and E RIs of the unmodified
material are also shown. WG parameters are: d = 1.6 µm, a = 2 µm, δn =−0.05.

losses that are intrinsically related to the WG geometry, in particular, are the most important

parameter to consider in any practical design of WGs. In Fig.4.3 we show a typical evolution

of the real parts of the effective RIs for the O and E waves with wavelength, for a depressed-

cladding WG with two rings of tracks. In this example, we modeled tracks with the diameter

d = 1.6 µm and the pitch a = 2 µm. Direct fs laser inscription experiments in 5% MgO-

doped LiNbO3, as described in Chapter 3, have revealed that the track diameters may vary

in the range from 1 to approximately 3.5 µm. In the example of Fig. 4.3, the pitch was

set to the minimum value ensuring no overlap of the tracks for the chosen track size. The

induced RI contrast was δn = −0.05. This value is above the RI contrasts of the tracks of

depressed-cladding WGs that can be achieved in 5% MgO-doped LiNbO3 with current fs

micro-fabrication technology - typical values are around −0.01. However, since there is

some experimental evidence that larger RI contrasts can in fact be obtained, in a number of

simulations we exceeded the value −0.01 to demonstrate the effect of higher RI contrasts on
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the waveguiding properties. It is seen from Fig. 4.3 that the deviation of the RIs neff
o,e curves

from the corresponding curves in the unmodified material no,e becomes larger for longer

wavelengths. This is an indication that with only two rings of tracks, the WG structure can

not confine the modes well at long wavelengths.

(a) (b)

Figure 4.4: (a) WG dispersion DW for O wave, and (b) confinement losses for O and E
waves as a function of wavelength for a depressed-cladding WG with two rings of tracks
with various pitches. The material dispersion Dmat is also shown. Other WG parameters are:
d = 1.6 µm, δn =−0.05.

In Fig. 4.4 we show the variation of the key WG quantities: WG dispersion DW and

confinement loss L , as a function of both wavelength and track spacing for a WG with two

rings of tracks. The pitch a was varied from 2 to 7 µm, whereas other WG parameters were

kept the same as in Fig. 4.3. A noticeable trend in the dispersion curves is that the dispersion

changes introduced by the WG are more pronounced for smaller a. These changes, however,

are not big enough to affect the total dispersion of the structure significantly. Note that at the

shorter wavelengths, the depressed cladding can effectively confine the modes in the core

guiding region. Guidance becomes worse at longer wavelengths, hence the modes behave

like ’leaky modes’. Because of such a leakage at longer wavelengths, none of the resonance

features which would be expected due to the periodicity of the structure can be observed.
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Moreover, band-gap resonances could be observed for this structure at wavelengths three or

four times larger than the pitch, which fall outside the wavelength range used in our study.

Our simulations also show that the change of the pitch in itself does not extend the spectral

range where the loss figures for the modes are acceptably low. We assume hereafter 1 dB/cm

to be an acceptable loss level for practical applications. The influence of the RI contrast of

tracks on the WG dispersive and loss properties is illustrated in Fig.4.5. There δn was varied

from −0.02 to −0.05. It is clear that larger RI contrasts expand the wavelength region

where the values of geometric loss are acceptably low, even with only two rings of tracks.

The wavelength region where the WG contribution to the total dispersion is not negligible

becomes also wider though the dispersion changes due to the WG remain small.

(a) (b)

Figure 4.5: (a) WG dispersion DW for O wave, and (b) confinement losses for O and E waves
as a function of wavelength for a depressed-cladding WG with two rings of tracks of various
RI contrasts. The material dispersion Dmat is also shown. Other WG parameters are: d =
1.6 µm, a = 2 µm.

A general fact that emerged from our study is that control over the waveguiding properties

is better for compact cladding structures with small-sized and densely packed tracks with

the largest possible RI contrasts. Fig.4.6 highlights the more interesting scenario that can

be achieved with a varying number of cladding layers. The RI contrast was set to δn =
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−0.01 in these simulations. As can be seen from Fig.4.6, while the dispersion changes due

to the WG become increasingly more pronounced with increasing Nr, the overall effect of

adding rings 3-7 on the dispersion properties of the structure is little. On the other hand,

importantly, adding further rings of tracks can reach much better control over the losses even

at the relatively moderate RI contrasts that are currently technologically feasible. As Fig.4.6

shows, adding rings (3-7) results in an extension of the spectral range where the confinement

losses in both O and E polarisations are below 1 dB/cm to the wavelengths near 2 µm, and

in a reduction of the losses in both polarisations by more than three orders of magnitude near

the telecommunication wavelength λ = 1.55 µm. This is an important result for any practical

applications of such WG structures. We would like to note, however, that the figures reported

here include only confinement losses showing the limitations that are due to the confinement

by a MS WG. In practice the total losses of the modes propagating in the structure will

always be higher because of various factors, including: material absorption induced by fs

irradiation, scattering losses due to irregularities (non-smoothness) of the cladding tracks,

and imperfect positioning of the tracks which would increase the leakage of modes out of

the guiding region.

As it was shown in Ref. [143] in the case of MOFs, a natural strategy to achieve low

losses with fewer tracks or, equally, to extend the spectral range of low-loss operation of

the WG structure, is to allow the track diameter to differ from one ring to another with the

exterior rings that have large tracks. This design concept is illustrated in Fig. 4.7, which

shows the variation of the confinement losses in the O and E polarisations with wavelength

for a seven-ring structure with different track diameters. The track diameter of the innermost

ring was arbitrarily set to d1 = 1 µm, and the diameter of subsequent rings was increased

linearly up to the maximum value d7 = 2.2 µm for the outermost ring. Such a variation of
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(a) (b)

Figure 4.6: (a) WG dispersion DW for O wave, and (b) confinement losses for O and E waves
as a function of wavelength for a depressed-cladding WG with varying number of track rings.
The material dispersion Dmat is also shown. Other WG parameters are: d = 1.6 µm, a= 2 µm,
δn =−0.01.

the track size can be easily realised in practice by changing the energy of the irradiating fs

laser pulses from one ring to another. Note, however, that this would entail a slight change in

the induced RI contrast since also the latter depends on the pulse energy (cf. Chapter 3). The

pitch was a = 2.5 µm, and the RI contrast was δn =−0.01 in these simulations. One can see

from Fig. 4.7 that, compared to the usual WG structure made of tracks of identical diameter

(Fig.4.6), this WG design allows us to expand the diapason of low-loss operation for both O

and E polarisations into the mid-IR spectral region. As we will see in Chapter 5, optimisation

of these WG geometries may enable further expansion of their low-loss operational spectral

range.

An important issue that should be addressed here relates to the practical feasibility of the

investigated WG structures. As mentioned in Chapter 3, there are experimental limitations on

the magnitude of the RI contrasts that can be reached for smooth tracks in crystals. Thus, to

provide WG structures that display low-loss operation over a wide spectral range, the most

viable solution is to write a fairly large number of rings of tracks, possibly with different
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(a) (b)

Figure 4.7: (a) confinement losses for O and E waves as a function of wavelength for
depressed-cladding WG with seven rings of tracks, Nr = 7, with different diameters d =
1.2−2 µm. Other WG parameters are: a = 2.5 µm, δn =−0.01. The losses for seven rings
of identical diameter are also shown (extracted from Fig. 4.6). (b) cross section of modeled
WG structure.

sizes. These requirements on the number of rings make HRR fs laser inscription the preferred

micro-fabrication technique, as high-repetition-rate fs systems can enable up to four orders

of magnitude quicker fabrication than the low-repetition-rate ones [20]. For example, for

a propagation length of 10 centimeters in a WG with seven rings (around 200 tracks) the

total length of the inscribed lines would amount to approximately 20 meters. Clearly, if

one uses a kHz fs system (with a typical sample translation speed of 10 to 100 mm/s),

the fabrication time required on a single structure may exceed 60 hours, whereas a high-

repetition-rate system can do the job in less than an hour.

4.5 Conclusion

We have shown numerically the feasibility of controlling the guiding properties of depressed-

index cladding WGs that can be formed in a LiNbO3 crystal by fs laser writing, by exploiting

the WG geometric and structural characteristics. Our study ranged over the parameter space:
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track size, spacing, number of rings, and RI contrast, that is accessible experimentally. As

shown, the relatively moderate RI contrasts that are feasible by use of current fs micro-

fabrication technology mean that geometric WG parameters have little control over the

chromatic dispersion properties of the WG. On the other hand, the number of track rings

revealed to play a major role in the control of the geometric losses. Importantly for technolo-

gical applications, it is shown that for the typical induced RI contrast −0.01, increasing the

number of rings from two to seven results in an extension of the spectral range where the

confinement losses in both O and E polarisations are acceptably low (below 1 dB/cm) to the

wavelengths near 2 µm, and in a reduction of the losses in both polarisations by more than

three orders of magnitude near the telecommunication wavelength λ = 1.55 µm. We have

also shown that WG designs with track diameters that differ from one ring to another [143]

can further expand the spectral region of low-loss operation into the mid-IR range. Similarly,

these designs would allow us to achieve low losses with fewer tracks.
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Chapter 5

Optimisation of micro-structured

waveguides for broadband operation

In the previous chapter, we have demonstrated to which extent the wave-guiding properties

of depressed-cladding WGs written in LiNbO3 can be controlled by the WG geometry at

the induced RI contrasts that are feasible by use of current fs micro-fabrication technology.

In particular, the number of track rings revealed to play a major role in the control of the

confinement losses. We have also shown that WG designs with track diameters that differ

from one ring to another can extend the spectral region of low-loss operation of the WG to

longer wavelengths. Obviously, with virtually an infinite number of structural parameters

the design of such WG structures is not as trivial. In this chapter we describe how the wave-

guiding properties of MS WGs in LiNbO3 can be optimised for low-loss operation in the

mid-infrared spectrum [146].

It emerged from our previous study that a systematic procedure is required to find opti-

mum laws for the variation of WG parameters such as the track size among different rings
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of tracks. Another motivation for the work presented in this chapter is that, as discussed in

Chapter 3, the RI contrast and the track size are not independent parameters - if the track

size varies the RI contrast changes too, thus a meaningful optimisation should also account

for this dependence. Additionally, the direct fs laser inscription always generates losses both

within and around the tracks [130], whose effect should be properly accounted for. All the

fore-mentioned effects become more significant at the long wavelengths, where we observed

an unusual variation of the confinement losses in the O and E polarisations. Here, we present

a practical approach to the numerical optimisation of the guiding properties of depressed-

cladding WGs inscribed in z-cut LiNbO3 crystals. The approach accounts for both a suitable

variation of the track size among different track layers, the relationship between track size

and induced RI contrast, and the intrinsic losses due to fs laser inscription [146].

5.1 Set-up of MS WG geometry for optimisation

For this study, we modelled WGs with an hexagonal packing geometry and up to seven rings

of cylindrical tracks, as shown in Fig. (5.1).

Figure 5.1: Cross-section of WG structure with seven rings of tracks with different diameters,
and ellipsoid of RIs of z-cut LiNbO3 crystal.

As it is shown in Fig. 3.3, the track diameter D (in [µm]) and the induced RI contrast δn
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depend on the laser pulse energy E (in [nJ]), and a linear fit to the experimental data yields

the following functions:

δn =−5.1×10−4 (E−Eth) , D = 0.193(E−Eth) , (5.1)

where Eth = 36.45 nJ is the energy threshold of the 100×MO used for inscription (numerical

aperture NA = 1.25). These relations were found to be valid for a laser repetition rate of

11 MHz and the optimum (sample translation) inscription speed of 10 or 20 mm/s (determin-

ed by a trade-off between inscription depth and laser pulse energy), up to a maximum

available laser pulse energy of approximately 75 nJ. These fitting functions serve as the

basis for the optimisation of MS WGs being described. As discussed in Chapter 4, a natural

strategy to extend the spectral range of low-loss operation of the WG structure, is to allow

the track diameter to differ from one ring to another with the exterior rings that have large

tracks. The rate of growth of the track size from the innermost to the outermost ring can be

parameterised with a single parameter p > 0, so that the track diameter Dn in the n-th ring is:

Dn = Dmin +

(
n−1
Nr−1

)p

(Dmax−Dmin), n ∈ [1,Nr], (5.2)

where Dmax and Dmin are the respective maximum and minimum diameters. Examples

of how the growth rate parameter p changes the track diameter in a seven-ring WG structure

and the cross-sections of structures for different values of p are given in Fig. 5.1.

5.2 Numerical results by PWM and comparison with FEM

As mentioned in Chapter 2, the rather large size of the PML absorber used in the FEM-based

numerical model limits the number of modes that can be followed simultaneously over a

wide wavelength range. In order to explore the behaviour of a larger number of modes,
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Figure 5.2: Left: track diameter versus cladding layer number for a seven-ring WG structure
with different growth rate parameters p. Right: Cross-sections of seven-ring structures for
(from top to bottom and left to right) p = 0 (uniform structure), 0.2, 1, 5. Other parameters
are: pitch a = 2.5 µm, Dmax = 2.4 µm, Dmin = 1 µm.

we use here the PWM described in Chapter 2, and compare the results with those obtained

by the FEM. For practical applications, MS WG structures built of low-RI-contrast tracks

may feature low confinement losses by having a fairly large number of cladding layers. For

the PWM calculations being discussed, we considered seven-ring structures with the pitch

a = 2 µm, a track radius of r = 0.8 µm and a track RI contrast of δn = −0.01. The Fourier

coefficients and matrices Uo,e, Po,e, etc. in Eqs. 2.17 were calculated for values of the indices

m,n up to ±35, and 578 PWs. These PWs included mostly modes propagating along the

x-axis. The eigenvalue problem was solved numerically using the “cg.f” program from the

“EISPACK” package (NetLib). Figure 5.3 shows the computed modes of the structure. We

can note an overlap between the O and E polarisations at the wavelength of 1.5 µm. This

overlap will lead to additional losses in the E mode due to a perturbation induced in the WG.

In Fig. 5.4, the effective RI profiles for the fundamental mode are compared to those

obtained using the FEM. The PWM and FEM results are in excellent agreement for the

O polarisation, whereas a small deviation within the wavelength range 0.5 µm to 1.5 µm

can be observed for the E polarisation. This is likely due to a leakage of the E mode with
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Figure 5.3: Real parts of effective RIs as a function of wavelength for the PWM computed
modes of a WG structure with seven rings of tracks.

Table 5.1: Real parts of effective mode indices for O and E waves calculated using the PWM
and the FEM. The RIs of the unmodified material no,e are also displayed.
λ (µm) no ne R

(
neff

o
)

PWM R
(
neff

e
)

PWM R
(
neff

o
)

FEM R
(
neff

e
)

FEM
0.5 2.33624 2.23809 2.3354 2.2372 2.33543 2.23728
1 2.23297 2.15087 2.23 2.1498 2.23001 2.14791

1.5 2.20986 2.13135 2.2039 2.129 2.20547 2.12545
2 2.19398 2.11805 2.1847 2.1087 2.18470 2.10877

2.5 2.17775 2.1045 2.165 2.098 2.16498 2.09173
3 2.15921 2.08905 2.1431 2.0758 2.14301 2.07285

lower RI into the higher-RI O polarisation, which is not accounted for by PWM calculations.

The effective mode index values obtained from PWM and FEM calculations at different

wavelengths are given in Table 5.1.

5.3 Optimisation of WG structural parameters

To minimise the confinement losses in the WG structure at the long wavelengths and, thus,

extend the spectral range where the loss figures for the modes are acceptably low, we perfor-

med FEM simulations. A simple idea to address the numerical optimisation problem descri-

bed in this chapter came from the observation that the confinement losses become monotonic
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Figure 5.4: Real parts of effective RIs for O and E waves as a function of wavelength for
the fundamental mode of a seven-ring WG structure, as obtained from PWM and FEM
simulations.

functions of wavelength at sufficiently long wavelengths. Thus, one can vary different WG

structural parameters at a fixed wavelength of interest, and only when the best loss figures

are obtained, perform a full wavelength scan. This makes the optimisation procedure much

less time consuming and practically feasible.

The RI contrast induced by fs inscription is the most important parameter for mid-IR

operation of the WG. Figure 5.5 illustrates the dependence of the confinement loss on the

track diameter at the wavelength λ= 1.55 µm for a seven-ring, uniform (p= 0) structure with

different values of δn. It is seen that for δn =−0.01 and δn =−0.02 there is a “plateau” of

low losses over the diameter range from 2.2 µm to 2.5 µm, and from 1.4 µm to approximately

2.2 µm, respectively. Remarkably, such a plateau does not appear for lower RI contrasts,

which are typically obtained by low-repetition rate fs laser inscription [25]. As mentioned

in the previous chapters, the RI contrasts of smooth tracks that can be achieved in crystals

with current fs micro-fabrication technology are around −0.01. Higher RI contrasts can still

be obtained by fs inscription, with the fs laser creating severe damage tracks inside the bulk

at the focal volume [147, 148]. Damage tracks, however, are not smooth and, thus, typically
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not suitable for low-loss light guiding.
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Figure 5.5: Confinement loss for E wave at λ = 1.55 µm versus track diameter for a seven-
ring WG structure with a = 2.5 µm and different values of δn.

The influence of a varying track diameter among the different cladding layers on the

loss properties of the WG at the wavelengths 1.55 µm and 3 µm is illustrated in Fig. 5.6.

Our simulations showed that the most interesting range of growth rate parameter values is

0 < p ≤ 1. It can be seen from Fig. 5.6 that as p decreases from 1, the confinement loss

also decreases down to much lower values than that of a uniform structure (corresponding to

p = 0 when Dn = Dmax ∀n). At λ = 1.55 µm, the loss profile is flat over the p range p→ 0

(yielding D1 = Dmin and Dn ≈ Dmax, n > 1) to p = 0.5 for the maximum track diameter

Dmax = 2.4 µm. For a uniform structure Dmax = 2.2 µm yields lower confinement loss than

Dmax = 2.4 µm. On the other hand, the loss for a structure with p = 1 is higher than that

for the uniform structure at Dmax = 2.2 µm. Differently, at λ = 3 µm the decrease of the

confinement loss with decreasing p values is approximately linear for both Dmax = 2.2 µm

and Dmax = 2.4 µm. The smallest loss value of L = 0.5 dB/cm is obtained for p very close

to 0 and Dmax = 2.4 µm. The possibility of achieving such low loss figures at λ = 3 µm

makes the WG suitable for mid-IR applications. Note that the transparency region of the

WG can be further extended to longer wavelengths by increasing Dmax and properly fitting
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the p parameter to the RI contrasts being used.
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Figure 5.6: Confinement loss for E wave versus growth rate parameter p at λ= 1.55 µm (left)
and λ = 3 µm (right), for a seven-ring WG structure with δn =−0.01. Here, Dmin = 1 µm.

Figure 5.7 shows the variation of the confinement loss across the wavelength range

0.3 µm to 3 µm for WG structures with various growth rate parameters. One can see that

while for a uniform structure the losses in both O and E polarisations are below 1 dB/cm for

wavelengths up to approximately 1.8 µm, the spectral range where the losses are acceptably

low is extended up to λ = 3 µm for a structure with p = 0.01. The optimisation of the

growth rate parameter results in a reduction of the losses in both polarisations by two orders

of magnitude at λ = 3 µm. One may also notice that while the confinement losses of a WG

with p = 0.5 are lower than those of a WG with p = 1 for wavelengths below 2.6 µm, a

reversal of trend happens at the wavelengths above 2.6 µm. Further, Fig. 5.6 highlights the

distinctly different behaviours of the confinement losses in the O and E polarisations at the

low wavelengths. The confinement loss for the E wave stops decreasing with decreasing

wavelength below some wavelength which is specific to the WG structure, and features

resonance effects. The critical wavelengths below which such behaviour is observed are

1.8 µm, 1.6 µm, 1.4 µm and 1.2 µm for WGs with the respective growth rates p = 0.01, p =

0.5, p = 1 and p = 0. This resonance behaviour which is peculiar to E polarised propagating
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waves in anisotropic WGs, stems from the coupling of the E-polarised fundamental mode

to the radial modes of O polarisation and consequent leakage of the E wave through these

modes [61].
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Figure 5.7: Confinement losses for O and E waves as a function of wavelength for a seven-
ring WG structure with different growth rate parameters p. Other parameters are: δn =
−0.01, Dmax =2.2 µm, Dmin =1 µm.

The results presented so far were obtained by assuming that the RI change induced in the

material by direct fs laser inscription is a real value. In fact, as previously mentioned, the fs

irradiation always induces material absorption, which needs to be accounted for in the WG

design. To this end, we computed the confinement loss in a WG with p = 0 and p = 0.5

at λ = 1.55 µm, and with p = 0.01 at λ = 3 µm for a range of fs laser-induced loss values.

The results are shown in Fig. 5.8, which reveals that the higher is the confinement loss of the

WG, the lower is the WG sensitivity to the imaginary part of the induced RI contrast. Indeed,

induced losses of up to 1 dB/cm do not affect the confinement loss at λ = 3 µm, whereas

the effect of induced loss is more important at λ = 1.55 µm, where the WG exhibits lower

confinement loss. We note that the imaginary part of the modified RI could be measured by

using, for example, the Born scattering interferometry method recently proposed in [130].
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Figure 5.8: Confinement loss for E wave versus loss induced on tracks by fs inscription for
a WG with p = 0 and p = 0.5 at λ = 1.55 µm, and with p = 0.01 at λ = 3 µm. Other WG
parameters are: δn =−0.01, a = 2.5 µm, Dmax = 2.4 µm, Dmin = 1 µm.

Finally, we included in our design procedure also the relationship between induced RI

contrast δn and track size D. Indeed, as we mentioned before, the dependence of δn and D

on the laser pulse energy makes such parameters correlated if the sample translation speed

is fixed (Eq. (5.1)). Note that it is possible to experimentally trim these parameters to the

desired values by tuning both the laser pulse energy and the sample translation speed, which

as both produce albeit connected but not identical changes to δn and D (cf. Chapter 3).

Simulation results are presented in Fig. 5.9, which shows the variation of the confinement

losses in the O and E polarisations as a function of wavelength for a seven-ring WG structure

with a growth rate parameter of p = 0.01 and where the RI contrast was changed from one

ring of tracks to another following the change in the track size. It is seen that the spectral

region where the losses in both polarisations are below 1dB/cm extends up to 3.5 µm for this

optimised structure.
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Figure 5.9: Confinement losses for O and E waves as a function of wavelength for a seven-
ring WG structure with p = 0.01. Other parameters are: maximum RI contrast δn =−0.01,
Dmax = 2.4 µm, Dmin = 1 µm.

5.4 Summary

A numerical approach to the optimisation of the guiding properties of depressed-index clad-

ding WGs in a z-cut LiNbO3 crystal by direct fs laser inscription has been presented. The

approach accounted for both a suitable variation of the track size among different cladding

layers, the relationship between the track sizes and induced RI contrasts, and the losses

induced on the tracks by fs irradiation. We have shown that the spectral region where the

confinement losses in both O and E polarisations are acceptably low (below 1 dB/cm) can

extend up to a wavelength of 3.5 µm for optimised, hexagonal WG structures with seven

rings of tracks. This makes such structures suitable for mid-IR applications. We note that

the possibility of further extending the low-loss operation region of these WGs depends

on the ability to experimentally achieve higher RI contrasts than those which are currently

achieved by fs micro-fabrication technology.
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Chapter 6

Advanced waveguide geometries

6.1 Introduction

Various geometries of MS WGs have been explored over the years for the purpose of improv-

ing the propagation properties of light in a wide number of optical applications [39, 40, 141,

149]. The kind of possible WG geometries has generally been dependent on the ability of

any fabrication technology to form specific RI modulated areas in a WG material. As the

most commonly considered, geometries with translational symmetries (triangular, square

and hexagonal geometries) have successfully been applied on fulfilling the potentials of

PhC technology. As one of the primary reasons to study in the previous chapters, the

hexagonal geometry has been known to provide with the densest packing of tracks/rods,

thereby allowing for the lowest leakage of the propagation modes [141]. However, the

use/study of more complex or advanced geometries has generally been restricted due to the

difficulties on fabricating specific shapes and sizes of tracks/rods. It is shown [45] that tracks

in LiNbO3 can be fabricated at varying sizes, and this allows for the design and fabrication
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of more advanced WG structures.

Among the structures with the lack of translation symmetry, spirals [150, 151] are the

most attractive from our point of view, as the geometrical curves which turn around a fixed

center point and in which radius vector changes both its length (i.e. radius) and direction

(i.e. polar angle) in accordance with a certain law [152]. Spiral equations can most easily be

derived in the polar coordinate system, and one can construct structures with both adjustable

high order rotational symmetries or no rotational/translational symmetry. Spirals are very

Figure 6.1: Cross sections of MS WGs with optimised parameters of Equiangular spiral
geometry, Fermat spiral geometry, Archimedes spiral geometry and Hexagonal geometry.

abundant in Nature because it reflects the harmony and balance of dynamical systems that

living or non-living structures follow during their formation and growth [151]. The design

of many human-made products have been inspired by spiral geometries. In recent years,

various optical devices with 1D, 2D or 3D spiral geometries have also been proposed, such

as, antennas [153, 154], micro-disk resonators [155–157], WG Bragg gratings [158] and

optical delay lines [159]. The design of MS fibers with 2D spiral geometries has also been

proposed to achieve, such as, high birefringence [160,161], increased nonlinearity [161,162],

tunable zero dispersion wavelength [163] and low bending and confinement losses.

As one can see on the Fig. 6.1, the spiral geometries can allow for both dense packing
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and variable ‘periods’ at the same time, which was not possible with hexagonal geometry

(as it had a translation symmetry, i.e. the period was constant). So, the spirals can offer a

number of additional design parameters, which needs to be explored.

6.2 The design of MS WGs with spiral geometries

In this work, 3 different spiral geometry has been studied. The first one is the Equiangular

spiral (ES) [150,162,164], in which the radius grows exponentially with identical increments

in polar angle. The second one is the Fermat spiral (FS), in which the radius scales as a square

root of identical angle increments, thereby producing almost equally separated spiral arms.

In the third case it scales linearly with the angle, giving the Archimedes spiral (AS). The

curve of an ES spiral can generally be expressed in polar coordinates (ρ,θ) by the equation

ρ = aebθ, where ρ is the distance from the center, θ is the angle, a is a real constant of the

spiral, and b is a positive number called ‘growth constant’, b = cotα [164]. The angle (α)

between the line from the spiral center towards a point on the spiral curve and its tangent

is same for all points on the ES curve, an indication of a self-similar property such that the

shape of the curve does not change while it grows outwards [164]. Archimedian spiral is a

general name including a group of spirals, and it is formulated in polar coordinates by the

equation ρn = apθ, where a is a real constant and n is the power coefficient. Both FS and

AS are two different types of Archimedian spiral, differing from each other by the value of

p (p = 1/2 for FS and p = 1 for AS).

To design a MS WG by using an ES geometry, we had to use multi-arm spirals, not a

single one. We can define the positions of all tracks (Rn,m,φn,m) in polar coordinate system

(Rn,m and φn,m are the radial distance and polar angle, respectively, of the n-th track in the

100



CHAPTER 6. ADVANCED WAVEGUIDE GEOMETRIES

Figure 6.2: Cross section of ES modeled depressed-cladding WG with six arms (Marm = 6)
and five ring (Nring = 5) of tracks

m-th arm , i.e. the index n - is the sequential number of the point/track in the arm of the

ES spiral, n = 1...Nring, m is the number of the arm, m = 1...Marm, where this n-th track is

located). A MS WG consisting of six arms (Marm = 6) and five rings (Nring = 5) within an

ES geometry is shown in Fig. 6.2. The tracks in the first arm is colored by red. The total

number of tracks in the structure with ES geometry (we agreed to keep it approx. constant)

is: Ntotal = Nring ·Marm. The location of any track can be defined by using the track positions

in the first arm (m = 1) [162]:

Rn,1 = R0.eθ(n−1)cotα (6.1)

φn,1 = θ(n−1) (6.2)

To build the whole multi-arm geometry we implement the rotation operator, T̂ ; T is the

rotation angle for the whole arm (T = 2π/Marm). Since two nearby tracks on a ring is

separated by a polar angle of T , and a track on the following ring should be placed at an

equal polar angle difference from both the track on the previous ring of the same arm and the

track next to it, θ in Eq. (6.1) becomes θ=T/2 =π/Marm [162, 165, 166]. So the positions of
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tracks (xn,m,yn,m) in Cartesian coordinate system is:xn,m

yn,m

=

Cos(2θ · (m−1)) −sin(2θ · (m−1))

Sin(2θ · (m−1)) Cos(2θ · (m−1))


Rn,1 ·Cos(θ · (n−1))

Rn,1 ·Sin(θ · (n−1))

 (6.3)

Figure 6.3: Positions of tracks within FS geometry

The design of a MS WG by using FS or AS geometry can be realised by positioning all

tracks just on a single arm without any need for rotations. The positions of tracks in polar

coordinates (Rn,φn) can be defined by the following equation:

Rn = R0(nθ)p, n ∈ [N0,N0 +Ntotal−1] (6.4)

φn = nθ (6.5)

where R0 is spiral radius and p is power coefficient. A core region can be designed by

omitting a certain number of tracks from n = 1 to n = N0−1, where N0 is the starting track

number to form cladding region. A total number of Ntotal tracks can be positioned in the

cladding region starting from n = N0 to N0 +Ntotal− 1. The arrangement of tracks within

both FS and AS geometries have been governed by accepting the value of θ as the golden

angle (θ = π(3−
√

5) = 137.507..◦) [152], which is the smaller of two angles corresponding

to the two arcs obtained by dividing a circle into two parts with a golden ratio [167] such that
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the ratio of the bigger arc to the smaller arc is equal to the ratio of the full circle to the bigger

arc. Being seen also in nature, for example, in the arrangements of leafs on some plants or

of seeds on sunflowers, spirals with golden angle is shown to provide with the optimal filling

of space with minimal overlaps [152], because successive rotations never end up at the same

polar angle since the value of the golden angle is an irrational number.

In most of the spiral geometries observable in Nature, specimens like seeds, leafs, and

so on, located on the spiral arms show a varying size profile. This is because spirals reflect

the optimum geometry during the appearance and growth of those specimens [151]. It was

shown that writing tracks at varying sizes is possible [45]. The design of a MS WG with

varying sized tracks on spiral geometries brings an extra degree of freedom to adjust WG

properties by increasing the possible range of spiral design parameters. On the other hand,

incorporation of possible track sizes and RI contrasts is a challenging task for both the design

and optimisation of those MS WGs, and should be carefully handled. A linear fit was already

applied on experimentally achieved track diameters and induced RI contrasts (cf. Eq. (5.1)),

which are both co-related by the applied pulse energy (if the sample translation speed is

fixed). Following a similar design strategy as in [146], track sizes are allowed to increase

from innermost ring to outermost ring. The sizes of tracks in each ring has been calculated

by the following equation:

Dn = Dmin +

(
n−1

Nring−1

)p

(Dmax−Dmin), n ∈ [1,Nring], (6.6)

where Dmax and Dmin are the respective maximum and minimum track diameters, p is a

parameter to control the growth rate of track sizes, Nring is the number of rings, n is the

corresponding ring that a track is located.

For spiral geometries holding rotational symmetries such as ES geometry, that is easy
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to identify specific rings in which a group of tracks are equally distanced from core center,

and the Eq. (5.1) and Eq. (6.6) can be easily applied on tracks according to corresponding

ring number in which a track resides. However, MS WGs with FS and AS geometries has

been formed on a single arm in this work, therefore the radial distance of all tracks get a

different value. Also, when θ is chosen as a golden angle, all tracks take place at a different

polar angle. As a consequence, there will exist no specific ring formation. In this case, the

strategy followed is based on classifying all tracks in some pseudo-rings according to their

distance from the core center; first, Nring is determined, then Ntotal/Nring tracks closest to core

center are categorised as existing in the first ring, and following Ntotal/Nring closest tracks are

categorised as existing in the second ring, and so on. Tracks which are located inside any of

the corresponding ring are assumed to have a same track size and RI contrast.

6.3 Optimisation of WG structural parameters

The optimisation of MS WGs designed by ES, FS and AS geometries, and a comparison

between each other with respect to their confinement properties are much more complex

to handle than those of MS WGs with conventional geometries, since each spiral geometry

has a multitude of specific design parameters and different shapes, let alone the parameters

for the variation of track sizes. Moreover, optimisation by tuning spiral parameters around

intuitively chosen values may not produce proper structures worth any evaluation due to,

such as, track overlaps or excessive core or cladding sizes. To exclude such structures, some

properties of MS WGs, such as core and cladding sizes, have only been accepted in certain

limits, and parameter sets realising only several criteria have been used during optimisation.

To design MS WGs which have similar structural traits to previously studied hexagonal
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geometry, and to make it easier to compare between those structures, the design of MS WGs

with spiral geometries has been based on using the same number of tracks in the cladding

region and similar core sizes as with seven rings hexagonal geometry. MS WGs with seven

ring hexagonal geometry consisted of 210 tracks, and tracks at hexagonal corners of the first

ring were positioned at a 5 µm distance from the core center. Also, the distances between

nearby tracks follow an irregular order in spiral geometries. Therefore, as a design strategy,

the minimum track separation distance − between the outer regions − of tracks have been

set to a fixed value of 0.1 µm.

(a) (b)

Figure 6.4: (a) α and p pairs, and (b) confinement losses of MS WGs with ES geometry at
3 µm wavelength.

The design and optimisation of each spiral geometry involve a different evaluation process

by using specific design parameters; Narm, Nring, R0, α and p for ES geometry, and R0, N0,

Ntotal and p for FS and AS geometries. For ES geometry, firstly, Narm and Nring parameters

providing a total track number (Ntotal) of 210 is determined. Then, for each Narm-Nring pair,

tracks at the first ring is adjusted to be at a 5 µm distance by setting R0 = 5 µm. The

minimum of all of the track separations has been adjusted to be at 0.1 µm with no overlap

of tracks by finding specific α-p pairs shown in Fig. 6.4(a). Confinement losses at 3 µm
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wavelength on those MS WGs with given α− p pairs have been calculated, as shown in

Fig. 6.6(a). The lowest value of confinement loss has been obtained for a MS WG with the

following parameters of ES geometry: Narm = 16, Nring = 13, θ = π/16, R0 = 5, α = 1.0524,

p = 0.8536.

(a) (b)

Figure 6.5: The change of confinement loss (blue) and effective area (red)(a) by N0 (Ntotal =
210, p = 0), and (b) by p (N0 = 11, Ntotal = 210) for a MS WG with FS geometry at 3 µm of
wavelength.

For both of the FS and AS geometries (cf. Eq. (6.4)), Ntotal is chosen as 210, θ is a

constant number (Golden angle), so R0, N0 and p remain to be determined. In the case of

just FS geometry, separation distances between nearby tracks on all over the cladding region

are very similar (cf. Fig. 6.3) due to the almost constant growth rate of FS geometry. So, the

change of p in Eq. (6.6) does not make much impact on the variation of the core size. It has

been observed that, when N0 is bigger than 5, R0 remains same. Only way to fix the position

of the closest track to the core center at 5 µm remains the adjustment of starting track number

(N0). Fig. 6.5(a) shows the change of confinement loss by N0 when all FS design parameters

are kept same (Ntotal = 210, p= 0). It can be seen that the lowest confinement loss is obtained

for N0 = 11. Interestingly, the radial distance of N0 = 11-th track to core center becomes
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5.008 µm, which is closest to 5 µm. After setting N0 = 11 and corresponding R0 = 0.9747,

optimisation of MS WGs with FS geometry has been realised by keeping the positions of

all tracks same and by changing just the p parameter. As shown in Fig. 6.6(b), the lowest

confinement loss at 3 µm wavelength has been obtained by a MS WG with the following

parameters of FS geometry; R0 = 0.9747, p = 0.01, N0 = 11, Nring = 10, Ntotal = 210.

(a) (b)

Figure 6.6: (a) N0− p pairs, and (b) confinement losses of MS WGs with N0− p pairs of AS
geometry at 3 µm wavelength (Ntotal = 210).

In the case of AS geometry, the growth rate of separation distances between tracks from

inner side to outer side shows similarity to ES geometry. The radial distance of the first track

to core center− if the smallest of track separations is kept at a certain value− highly depends

on p parameter, as well as N0 and R0, which means that it is possible to flexibly adjust the

core and cladding structure. So, it is possible to find a multitude of N0 realising our criteria.

For different N0 values, all N0-p pairs providing both the smallest track separation at 0.1

µm and the first track located at a 5 µm distance have been searched. It is found that a

MS WG with the above given criteria can be obtained when N0 is between 39 to 85 with

corresponding only one p and R0 values for each. Those N0-p pairs can be seen in Fig.

6.6(a). The confinement loss and effective area of light at 3 µm wavelength for MS WGs

with those N0− p pairs of AS geometry are shown in Fig. 6.6(b). The lowest confinement
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loss at 3 µm wavelength has been obtained by a MS WG with the following parameters of

AS geometry; N0 = 45, R0 = 0.0463, p = 0.083, Nring = 10). On the other hand, the effective

area has the lowest value when N0 is 61.

6.4 Comparison of MS WG geometries in LiNbO3

The ability to fabricate varying sizes of tracks in LiNbO3 provide with greater freedom

to design MS WGs with spiral geometries. It allows to design advanced geometries of

2D circular WGs with adjustable lengths of core and cladding regions with varying local

densities of tracks. As one of the most suitable to utilise track size variations, spiral geometries

offer the advantage of adjusting flexibly the propagation properties of MS WG structures,

such as dispersion, confinement loss, birefringence, effective area and so on.

In this work, the design of MS WGs with three different spiral geometries; ES, FS and AS

have been studied based on the experimentally obtained parameters by direct HRR fs laser

inscription in LiNbO3. So, optimised parameters of MS WGs with each spiral geometry

should be considered as a result of presently achieved experimental parameters. Improving

the properties of MS WGs with a much better control on the propagation properties of light

may even become possible by achieving flexibly obtainable experimental parameters, such

as varying sizes of tracks accompanied by constant RI contrasts.

LiNbO3 has a very wide transmission window, which allows a wide range of applications

operating at telecommunication, mid-IR, and ultraviolet wavelength regions. Some applicati-

ons such as frequency conversion devices even require the propagations of more than one

light at different wavelength regions together in the same WG so as to obtain maximum

conversion efficiencies. In the light of general design concepts of MS WGs with spiral
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geometries, as given above, it is always possible to choose the most appropriate geometry and

to find the optimised parameters in accordance with the specific needs of LiNbO3 applications.

In this work, MS WGs in LiNbO3 with different design geometries have been compared with

a focus on confinement losses at 3 µm wavelength of light. Considering a high number of

different geometric design parameters, a comparison has been realised between MS WGs

which have similar core sizes and which use the same number of tracks in their cladding

regions. Core sizes have been approximated to be similar by positioning the nearest tracks

at the same distance to core centre in each geometry .

(a) (b)

(c) (d)

Figure 6.7: A comparison of MS WG geometries in terms of confinement loss for (a) E
polarisation, (b) O polarisation, (c) effective area and (d) WG dispersion.

The propagation properties (confinement loss for O and E polarisations, effective area
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and WG dispersion) of MS WGs with optimised parameters have been shown in Fig. 6.7.

The best results in terms of confinement loss have been obtained by FS geometry. In

our previous work, the optimisation of an hexagonal geometry with 7 rings of tracks had

resulted in the extension of the wavelength of 1 dB/cm confinement loss from 2.94 µm to

3.48 µm [146]. In this work, the optimisation of a MS WG with FS geometry has provided a

better result with an extension of the wavelength of 1 dB/cm confinement loss from 3.295 µm

to 3.665 µm. For MS WGs with optimised parameters of ES and AS geometries, the

maximum wavelengths of 1 dB/cm confinement losses have been calculated to be 2.315

and 3.054 µm, respectively. On the other hand, it can be seen in Fig. 6.7(c) that hexagonal

geometry provides a better result in terms of the effective area. At the wavelengths of 1

dB/cm confinement loss, the effective areas of propagating light in MS WGs with optimised

parameters of ES, FS, AS and hexagonal geometries have been found to be 143.4, 252.15,

213.3 and 146.8 µm2, respectively.

It is also worth considering to evaluate those results with respect to the structural differen-

ces of MS WGs with those geometries. First, the density of tracks over the cladding region of

a MS WG with hexagonal geometry do not change from inner side to outer side. However,

the density of tracks on different parts of MS WGs with spiral geometries may show big

differences. Secondly, considering the experimentally obtained parameters that RI contrasts

of tracks with smaller sizes are less than those of tracks with bigger sizes, average RI

contrasts in inner sides of each cladding region with ES and AS geometries become less, even

though tracks may become positioned more densely on those parts. Propagation properties

of MS WGs with ES and AS geometries, such as confinement loss and effective area, could

get better if tracks could have been written at varying sizes with constant RI contrasts. On

the other hand, some other properties, such as dispersion and zero dispersion wavelength,
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can be controlled better over a wide frequency range by the variation of both track sizes and

RI contrasts. Fig. 6.7(d) shows the waveguide dispersions of MS WGs with optimised

parameters. As it can be seen, all WG dispersion profiles are very different, and zero

dispersion wavelength can be tuned over a very wide wavelength range.

Figure 6.8: The change of confinement loss by positioning errors of tracks in MS WGs
with ES (blue), FS (pink), FS (green) spiral geometries and hexagonal (red) geometry for O
polarisation vs. effective RI (neff

O ) at 3 µm wavelength.

MS WGs with hexagonal and spiral geometries should also be compared with respect to

the stability of propagation properties in case positions of tracks may have been fabricated

by errors during inscription process. For an evaluation purpose of the effect of positioning

errors, the positions of tracks in MS WGs with optimised parameters of all studied geometries

have been induced a random noise along transverse directions of Cartesian coordinate system.
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Any overlap of tracks have been assumed to be not occurring by keeping the maximum level

of absolute position fluctuation of each track at half of the minimum track separation. Fig.

6.8 shows the confinement losses of MS WGs at 3 µm wavelength when randomly generated

noises have been induced on the positions of all tracks. A comparison between how MS

WGs with different geometries react on any positioning error is made by calculating the rate

of mean absolute deviation of confinement loss to the confinement loss without any noise

induced, as expressed by the following equation:

Deviation Rate =
∑

j
i=1 |L

with−noise
i −Lwithout−noise|

j ·Lwithout−noise (6.7)

where Lwith−noise
i is confinement loss (dB/cm) when positioning noise has been introduced,

Lwithout−noise
i is confinement loss (dB/cm) when tracks are on their original positions, j is

iteration number. To summarise the calculation process, a randomly generated noise has

been induced on the positions of all tracks, and this has been repeated 100 times (J = 100)

with different randomly generated values in each MS WG with hexagonal, ES, FS and AS

geometries. Then, Eq. 6.7 has been calculated by using the 100 different confinement

losses and the confinement loss of a MS WG without any noise induced. It has been

found that the deviation rates of confinement losses under positioning errors are %0.31 for

Hexagonal, AS and ES geometries, and %0.13 for FS geometry. This result shows that,

under any perturbations during inscription process, the change of confinement loss for FS

geometry is 2.5 times less than those of other geometries, and that FS geometry is much less

vulnerable to positioning errors. All in all, the wavelengths at 1 dB/cm confinement loss and

corresponding effective areas, zero waveguide dispersion wavelengths (ZDW) and stability

rates of optimised WGs has been given in Table 6.1.

Lastly, it is considered to be worth evaluating the differences between the birefringence
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Wavelength (µm)
at 1 dB/cm

Effective
Area (µm2)

ZDW (µm) Stability

Equiangular 2.315 143.4 1.4642 0.31
Fermat 3.665 252.15 3.2729 0.13

Archimede 3.054 213.3 2.20 0.31
Hexagonal 3.48 146.8 2.489 0.31

Table 6.1: A comparison of optimised WG properties

properties of MS WGs with spiral geometries. Excluding intrinsic material birefringence of

LiNbO3, any birefringence due to WG structure arises mostly due to asymmetry of core or

cladding region of MS WGs, or any perturbations that break symmetrical MS WG structure.

The birefringence of MS WGs with optimised parameters of hexagonal, ES, FS and AS

geometries has numerically been calculated between 0.4 µm and 4 µm wavelengths of light

and shown in Fig. 6.9(a). As it can be seen, the MS WG with hexagonal geometry appears to

have the biggest birefringence, which is at least two times more than maximum of any spiral

geometry. Indeed, hexagonal geometry have a six-fold rotational symmetry, which cause a

structural difference both in core and cladding region along polarisation directions of x and

y crystal axes. Optimised ES geometry, as shown in Fig. 6.1(a), has a sixteen-fold rotational

symmetry. Even though the core and cladding region of optimised ES geometry has a

symmetric nature along both polarisation directions, it has, interestingly, bigger birefringence

than AS and FS geometries. This seems to be a direct result of the effect of material

anisotropy in combination with WG geometry .

FS and AS geometries have no rotational symmetry, and tracks are distributed with

golden angle. The lowest birefringence has been obtained for the MS WG with FS geometry,

which has no rotational symmetry and has an approximately equal-distanced distribution of

tracks. This result may appear to contradict with previous studies [168, 169] of MS fibres

with FS geometry which produce even bigger birefringence than MS fibres with hexagonal
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(a) (b)

Figure 6.9: (a) The change of birefringence by wavelength for optimised MS WGs with
hexagonal, ES, FS and AS geometries, (b) the change of birefringence of an optimised MS
WG with FS geometry by Ntotal at 1.55 µm wavelength.

geometry. Large birefringence has been explained to be due to small core area (N0 = 2)

and asymmetry in the air hole arrangement near the core area in [168]. However, it should

be clear that there exist major differences between those and our WG structures: such as,

our core area is relatively bigger (N0 = 11), therefore core area appears to be much more

symmetrical; RI contrast between tracks and unmodified regions is much smaller compared

to RI difference between air and silica; LiNbO3 is an anisotropic material while silica is

an isotropic material. Additionally, it has been shown in [168] that increasing number

of tracks around cladding region does not have much impact on birefringence. Indeed,

cladding regions of MS WGs with FS and AS geometries (by using Golden angle) consist

of tracks, each of which has been positioned at a different distance to core center and holds

no rotational symmetry to other tracks. For those geometries, increasing number of tracks

placed around the cladding have an averaging effect on the difference between effective

RIs along x and y polarisation directions while it is a cumulative effect for geometries with

rotational symmetries as the number of layers around cladding increases. The effect of

placing an extra track around the cladding region of a MS WG with optimised parameters
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of FS geometry has been shown in Fig. 6.9(b) at 1.55 µm wavelength. The birefringence is

calculated by: (neff
O − nO)− (neff

E − nE). An additional birefringence occurs with each track

positioned, however it averages out while the total number of tracks is increased from 120 to

220 around the core center.

6.5 Summary

The design of spiral geometries for MS WGs in LiNbO3 have numerically been studied by

using FEM. Specifically, design procedures for MS WGs with ES, FS and AS geometries

have been explored by taking into account the experimentally achieved track parameters.

Additionally, an optimisation procedure is applied based on obtaining the lowest confinement

losses at 3 µm wavelength by using a similar number of tracks in the cladding region and

similar sizes of core regions. MS WGs with optimised parameters of spiral geometries and

of hexagonal geometry have been compared between each other in terms of confinement

loss, effective area, dispersion and birefringence. In the light of obtained results, it has been

shown that the design of a MS WG with FS geometry can extend the maximum operation

wavelength of 1 dB/cm confinement loss to around 3.66 µm. It has also been shown

that each spiral geometry has different specific properties, which can be proper to use for

different photonic applications. Positioning errors of tracks during fabrication process have

numerically been evaluated, and shown that a MS WG with FS geometry provides more

stable propagation properties compared to MS WGs with other geometries.
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Conclusions

In this chapter, a brief summary of topics covered in the previous chapters will be given, and

a quick look towards future about how this work could be furthered in light of what has been

done will be presented.

In chapter 2, approaches to the modelling of MS WGs in anisotropic crystals hve been

presented. First, a theoretical analysis of light propagation in anisotropic crystals has been

given in terms of full-vectorial Maxwell equations. Any analytical solution to the equations

for the propagation of light could not have been obtained due to the couplings of polarised

light components in inhomogeneous MS WGs with anisotropic crystals. Therefore, numerical

methods which can cope with full-vectorial Maxwell equations in complex materials have

been investigated. The FEM has generally been used for the modal analysis of those MS

WGs during this work, and thus, the FEM and PWM have been described in detail. The

accuracy of calculations has been validated by making a comparison work on the results of

previously reported MOFs.

In chapter 3, the direct fs laser inscription method in LiNbO3 has been introduced.
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Experimentally obtained results regarding to WG properties in LiNbO3 has been given.

Those results has constituted the bases for the study on this thesis.

In chapter 4, the design of depressed-cladding MS WGs in LiNbO3 has numerically been

investigated. First, a methodology to design MS WGs in LiNbO3 has been introduced by

using an hexagonal geometry. The presented approach exploited the parameter space such

as track size, spacing, number of rings, and RI contrasts, that is accessible experimentally.

It appeared from this work that the relatively moderate RI contrasts which can be achievable

by current fs micro-fabrication technology and geometric WG parameters have relatively

little control over the dispersion properties of the MS WGs. On the other hand, the number

of rings have played a major role in the control of the confinement losses. Increasing the

number of rings from two to seven for the typical induced RI contrast −0.01 has resulted

in an extension of the spectral range where the confinement losses are below 1 dB/cm to

the wavelengths near 2 µm, and in a reduction of the losses by more than three orders of

magnitude at the telecommunication wavelength λ = 1.55 µm.

In chapter 5, a practical approach for the optimisation of guiding properties of depressed-

cladding MS WGs in z-cut LiNbO3 has been presented. First, the optimisation geometry

of a MS WG in z-cut LiNbO3 has been introduced. An optimisation procedure has been

applied to find the lowest confinement losses at 3 µm wavelength by taking in to account

the experimentally achieved track properties. It has been shown that the spectral region

where the confinement losses are below 1 dB/cm can extend up to a wavelength of 3.5 µm

for optimised, hexagonal WG structures with seven rings of tracks, thereby making such

structures suitable for mid-IR applications.

In chapter 6, advanced WG geometries have been explored to design MS WGs in z-cut

LiNbO3. First, the design procedures for MS WGs with Equiangular, Fermat and Archimedes
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spiral geometries have been given in terms of corresponding mathematical representations

and of experimentally obtained track sizes. Then, an optimisation procedure has been applied

to find the lowest confinement loss at 3 µm of wavelength based on using similar sizes of core

regions and similar number of tracks in the cladding regions. Finally, propagation properties

of optimised MS WGs with those spiral geometries and the MS WG with hexagonal geometry

have been compared between each other. It has been shown that MS WGs with Fermat spiral

geometry can extend the operation wavelength of maximum 1 dB/cm confinement loss to

around 3.66 µm.

7.1 Future Work

Direct fs laser incription method is a newly emerging, but an enabling technology to achieve

many appealing applications and to build highly complex high performance IOC devices

in a small footprint. It is clear that the range of packing geometries and parameters that

can be investigated are far from being fully explored at present. A future work should

be in the direction of establishing new inscription processes and regimes for the direct fs

laser inscription of crystals with controllable properties of material modifications beyond the

limits by current technology. New inscription processes and regimes could be optimised in a

controllable and generalisable manner by a prior modelling of hierarchical physical effects.

Major limitations are the unavailability of the precise understan- ding of the underlying

physical effects leading to material modifications, the unavailability of physical parameters

and material constants, and the computational inefficiency of commercial softwares to handle

a huge space of parameters coming into play at different stages of material modifications. So,

it is a further future work to develop efficient analytic and numerical tools which can able to
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solve the optimisation problem for generalisable MS WGs.

LiNbO3 is one of the most ideal materials to realise a vast majority of both linear and

nonlinear optical applications in a single platform. Curved and straight WGs constitute the

basic blocks of IOCs. To give just an example, it is possible to design various devices

relying on the coupling properties between closely spaced multiple WGs. It would be

further research work to study and optimise the coupling properties of MS WGs. To make

a step further towards building IOC devices, a future work should also be considered in the

direction of modelling the propagation properties of light and optimising the bending losses

in curved WGs. It is not possible to mention all of the application areas of LiNbO3 as a

future work, since each of which operates on specific device requirements. The propagation

properties of light over the WG region of any specific linear or nonlinear device application

need to be adjusted to optimise the output properties of optical devices in LiNbO3.
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“Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate”,
Applied Physics Letters, vol. 91, no. 15, October 2007.

[43] A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed
cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses”,
Optics Express, vol. 20, no. 4, pp. 3832–3843, 2012.

[44] R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. V. Aldana, and F. Chen, “Femtosecond
laser micromachining of lithium niobate depressed cladding waveguides”, Optical
Materials Express, vol. 3, no. 9, pp. 1378–1384, September 2013.

[45] M. Dubov, S. Boscolo, and D. Webb, “Microstructured waveguides in z-cut LiNbO3
by high repetition rate direct femtosecond laser inscription”, Optical Materials
Express, vol. 4, no. 8, pp. 1708–1716, August 2014.

[46] P. Yeh, Optical Waves in Layered Media, Wiley, 2005.

[47] A. Yariv and P. Yeh, Optical waves in crystals: propagation and control of laser
radiation, Wiley, 1984.

[48] H. Karakuzu, M. Dubov, S. Boscolo, L. Mel’nikov, and Y. Mazhirina, “Control of the
properties of micro-structured waveguides in lithium niobate crystals”, in Advanced
Solid-State Lasers Congress. 2013, p. JTh2A.22, Optical Society of America.

[49] G.P. Agrawal, Nonlinear fiber optics, Academic Press, San Diego, CA, 1989.

[50] J. M. Jin, The Finite Element Method in Electromagnetics, Wiley, 1993.

[51] S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods
for Maxwell’s equations in a planewave basis”, Optics Express, vol. 8, no. 3, pp.
173–190, January 2001.

[52] J. Shibayama, J. Yamauchi, and H. Nakano, “Application of the finite-difference
beam-propagation method to optical waveguide analysis”, in 17th International
Conference on Applied Electromagnetics and Communications, ICECom 2003,
October 2003, pp. 262–265.

123



REFERENCES

[53] G. Lifante, F. Cusso, and E. Cantelar, “Numerical methods for optical waveguide
devices”, in Mathematical Methods in Electromagnetic Theory, 2006 International
Conference on, 2006, pp. 77–82.

[54] B. M. A. Rahman and A. Agrawal, Finite Element Modeling Methods for Photonics,
Artech House, 2013.

[55] Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured
optical fibers”, Optics Express, vol. 10, no. 17, pp. 853–864, August 2002.

[56] K. A. Rutkowska and L. W. Wei, “Full-vectorial description of the light guidance in
anisotropic photonic liquid crystal fibers”, Acta Physica Polonica A, vol. 122, no. 5,
pp. 880–890, 2012.

[57] N. Schulz, K. Bierwirth, F. Arndt, and U. Koster, “Finite-difference method without
spurious solutions for the hybrid-mode analysis of diffused channel waveguides”,
IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 6, pp. 722–
729, June 1990.

[58] J. Arriaga, J. C. Knight, and P. S. J. Russell, “Modelling photonic crystal fibres”,
Physica E: Low-dimensional Systems and Nanostructures, vol. 17, pp. 440 – 442,
2003.

[59] K. M. Leung and Y. F. Liu, “Photon band structures: The plane-wave method”,
Physical Review B, vol. 41, no. 14, pp. 10188–10190, May 1990.

[60] H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems
with the plane-wave method”, Physical Review B, vol. 45, no. 24, pp. 13962–13972,
June 1992.

[61] M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides”, Journal of Optical
Society of America A, vol. 10, no. 2, pp. 246–261, February 1993.

[62] I. A. Khromova and L. A. Mel’nikov, “Anisotropic photonic crystals: Generalized
plane wave method and dispersion symmetry properties”, Optics Communications,
vol. 281, no. 21, pp. 5458–5466, November 2008.

[63] Y. A. Mazhirina and L. A. Mel’nikov, “On the structure of waveguiding regions
for high-order core modes of solid-core photonic-crystal fibers”, Optics and
Spectroscopy, vol. 107, no. 3, pp. 454–459, 2009.

[64] Y. A. Mazhirina and L. A. Mel’nikov, “Numerical modelling of waveguiding
properties of solid core photonic crystal fibers”, AIP Conference Proceedings, vol.
1291, pp. 136–138, 2010.

[65] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole
method (FMM) for electromagnetic scattering problems”, IEEE Transactions on
Antennas and Propagation, vol. 40, no. 6, pp. 634–641, June 1992.

124



REFERENCES

[66] T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M.
Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I.
formulation”, Journal of Optical Society of America B, vol. 19, no. 10, pp. 2322–
2330, October 2002.

[67] B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. Sterke,
and R. C. McPhedran, “Multipole method for microstructured optical fibers. II.
implementation and results”, Optical Society of America B, vol. 19, no. 10, pp. 2331–
2340, October 2002.

[68] D. G. Popescu and P. Sterian, “Photonic crystal fiber mode characterization with
multipole method”, University Politehnica of Bucharest Scientific Bulletin, Series A,
vol. 75, no. 2, pp. 205–215, 2013.

[69] T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. Sterke,
“Calculations of air-guided modes in photonic crystal fibers using the multipole
method”, Optics Express, vol. 9, no. 13, pp. 721–732, December 2001.

[70] O. C. Zienkiewicz, The finite element method in engineering science, McGraw-Hill,
1971.

[71] K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers”, Journal
of Lightwave Technology, vol. 23, no. 11, pp. 3580–3590, November 2005.

[72] L. A. Mel’nikov, Y. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and
R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure”,
in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), June 2003, pp.
609–.

[73] O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill, London, England, 3rd
edition, 1977.

[74] P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge
Press, 2nd edition, 1990.

[75] J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York,
1st edition, 1984.

[76] D. Welt and J. Webb, “Finite-element analysis of dielectric waveguides with curved
boundaries”, IEEE Transactions on Microwave Theory and Techniques, vol. 33, no.
7, pp. 576–585, July 1985.

[77] B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide
solution by finite elements”, IEEE Transactions on Microwave Theory and
Techniques, vol. 32, no. 8, pp. 922–928, August 1984.

[78] H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.

[79] A. Bossavit, “Simplicial finite elements for scattering problems in electromagnetism”,
Computer Methods in Applied Mechanics and Engineering, vol. 76, no. 3, pp. 299 –
316, 1989.

125



REFERENCES

[80] R. F. Harrington, Field Computation by Moment Methods, R. E. Krieger Publishing
Company, Florida, 1968.

[81] J. F. Lee, D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides
using tangential vector finite elements”, IEEE Transactions on Microwave Theory
and Techniques, vol. 39, no. 8, pp. 1262–1271, August 1991.

[82] B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical
simulation of waves”, Mathematics of Computation, vol. 31, no. 139, pp. 629–651,
1977.

[83] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference
Time-domain Method, Artech House, 2 edition, 2000.

[84] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic
waves”, Journal of Computational Physics, vol. 114, no. 2, pp. 185 – 200, 1994.

[85] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic
absorber for use as an absorbing boundary condition”, IEEE Transactions on Antennas
and Propagation, vol. 43, no. 12, pp. 1460–1463, December 1995.

[86] W. C. Chew and W. H. Weedon, “A 3D Perfectly Matched Medium from modified
Maxwell’s equations with stretched coordinates”, Microwave and Optical Technology
Letters, vol. 7, no. 13, pp. 599–604, 1994.

[87] C. M. Rappaport, “Perfectly matched absorbing boundary conditions based on
anisotropic lossy mapping of space”, IEEE Microwave Guided Wave Letters, vol.
5, no. 3, pp. 90–92, March 1995.

[88] F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to
match arbitrary bianisotropic and dispersive linear media”, IEEE Microwave and
Guided Wave Letters, vol. 8, no. 6, pp. 223–225, June 1998.

[89] Y. Y. Botros and J. L. Volakis, “Detailed convergence study for perfectly matched
layer PML applications”, Naval Postgraduate School, Monterey, CA, 1998, 14th
Applied Computational Electromagnetics Conference.

[90] Y. Tsuji and M. Koshiba, “Guided-Mode and Leaky-Mode Analysis by Imaginary
Distance Beam Propagation Method Based on Finite Element Scheme”, Journal of
Lightwave Technology, vol. 18, no. 4, pp. 618, 2000.

[91] S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D.
Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient
taper transitions in photonic crystals”, Physical Review E, vol. 66, pp. 066608,
December 2002.

[92] A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly
matched layers, and towards their redemption by adiabatic absorbers”, Optics Express,
vol. 16, no. 15, pp. 11376–11392, July 2008.

126



REFERENCES

[93] A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals
and a corrected unsplit PML for anisotropic, dispersive media”, Journal of
Computational Physics, vol. 230, no. 7, pp. 2369–2377, 2011.

[94] K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation
method based on a finite element scheme: application to photonic crystal fibers”,
IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 927–933, July 2002.

[95] P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in
photonic crystal fibres using a novel perfectly matched layer design”, Proceedings of
the COMSOL Multiphysics User’s Conference 2005 Paris, vol. 10, no. 17, pp. 853–
864, August 2005.

[96] K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal
fibers for supercontinuum generation in a telecommunication window”, Optics
Express, vol. 12, no. 10, pp. 2027–2032, May 2004.

[97] R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining:
Photonic and Microfluidic Devices in Transparent Materials, Springer, 2012.

[98] M. Dubov, Direct femtosecond laser inscription in transparent dielectrics, PhD thesis,
Aston University, 2011.

[99] K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical
waveguides in various glasses with ultrashort pulse laser”, Applied Physics Letters,
vol. 71, no. 23, pp. 3329–3331, 1997.

[100] O. M. Efimov, L. B. Glebov, K.A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park,
M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train
of femtosecond laser pulses”, Optical Materials, vol. 17, no. 3, pp. 379 – 386, 2001.

[101] B. Zhu, Y. Dai, H. Ma, S. Zhang, and J. Qiu, “Direct writing Eu3+-doped
Ba2TiSi2O8 crystalline pattern by femtosecond laser irradiation”, Journal of Alloys
and Compounds, vol. 460, no. 1–2, pp. 590–593, July 2008.

[102] C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P.
Salathe, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by
femtosecond laser irradiation”, Applied Surface Science, vol. 253, no. 19, pp. 8300–
8303, July 2007.

[103] I. Bennion, M. Dubov, I. Khrushchev, and J. Mitchell, “Laser inscription of optical
structures in crystals”, June 2005, WO Patent App. PCT/GB2004/004,334.

[104] F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials
produced by femtosecond-laser micromachining”, Laser & Photonics Reviews, vol.
8, no. 2, pp. 251–275, 2014.

[105] N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame,
G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide
amplifier fabricated using femtosecond laser inscription”, Applied Physics Letters,
vol. 90, no. 13, 2007.

127



REFERENCES

[106] G. D. Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm
single longitudinal mode waveguide laser fabricated by femtosecond laser writing”,
Optics Express, vol. 15, no. 6, pp. 3190–3194, 2007.

[107] A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler
written in glass by nanojoule femtosecond laser pulses”, Optics Letters, vol. 26, no.
1, pp. 42–43, January 2001.

[108] J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, “Directly writing of 1-to-
N optical waveguide power splitters in fused silica glass using a femtosecond laser”,
Optics Communications, vol. 253, no. 4-6, pp. 315–319, 2005.

[109] A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre bragg
gratings by femtosecond laser”, Electronics Letters, vol. 40, no. 19, pp. 1170–1172,
September 2004.

[110] W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated
holograms realized in glass by femtosecond laser induced nanogratings”, Optics
Express, vol. 14, no. 9, pp. 3785–3791, 2006.

[111] S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin,
“Dynamics of femtosecond laser interactions with dielectrics”, Appl. Phys. A, vol. 79,
pp. 1695–1709, 2004.

[112] V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer,
“Femtosecond laser microfabrication of subwavelength structures in photonics”,
Proceedings of SPIE, vol. 6459, pp. 64590B–64590B–11, 2007.

[113] R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent
materials”, Nature Photonics, vol. 2, no. 4, pp. 219–225, 2008.

[114] G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by
femtosecond laser pulses”, Journal of Optics A: Pure and Applied Optics, vol. 11, no.
1, 2009.

[115] V. Mezentsev, M. Dubov, J. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of
plasma in femtosecond laser pulse propagation”, AIP Conference Proceedings, vol.
876, no. 1, pp. 169–180, 2006.

[116] A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index
in crystals”, 2003, vol. 4941, pp. 51–57.

[117] N. Dong, F. Chen, and J. R. V. Aldana, “Efficient second harmonic generation
by birefringent phase matching in femtosecond-laser-inscribed KTP cladding
waveguides”, Physica Status Solidi (RRL) - Rapid Research Letters, vol. 6, no. 7,
pp. 306–308, 2012.

[118] J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguides revisited”,
Advances in Optics and Photonics, vol. 1, no. 1, pp. 58–106, January 2009.

128



REFERENCES

[119] A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition
rate ultrafast laser waveguide writing in lithium niobate”, Optics Express, vol. 15, no.
17, pp. 10842–10854, August 2007.

[120] S. M. Eaton, M. L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, and
P. R. Herman, “Low-loss waveguides fabricated in BK7 glass by high repetition rate
femtosecond fiber laser”, Applied Optics, vol. 47, no. 12, pp. 2098–2102, April 2008.

[121] S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman,
“Transition from thermal diffusion to heat accumulation in high repetition rate
femtosecond laser writing”, Optics Express, vol. 16, no. 13, pp. 9443–9458, June
2008.

[122] S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford,
“Femtosecond direct-write überstructure waveguide bragg gratings in ZBLAN”,
Optics Letters, vol. 37, no. 19, pp. 3999–4001, October 2012.

[123] S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication
of fully integrated antiresonant reflecting optical waveguides using the femtosecond
laser direct-write technique”, Optics Letters, vol. 38, no. 11, pp. 1872–1874, June
2013.

[124] R. R. Thomson, S. Campbell, G. Brown, I. J. Blewett, A. K. Kar, and D. T.
Reid, “Femtosecond waveguide fabrication in bulk lithium niobate (LiNbO3)”, in
Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science
and Photonic Applications Systems Technologies. 2005, p. CThV5, Optical Society of
America.

[125] J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of
femtosecond laser-induced modifications in LiNbO3”, Applied Physics A, vol. 86, no.
2, pp. 165–170, 2007.

[126] J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium
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Appendix A
Numerical computation

A.1 A Comsol - Matlab script to calculate the propagation

modes of a MS WG

%An example of the Comsol- Matlab Script to calculate the propagation modes of MS

%WGs in a material is given below. More details can be found on the web page of the

program- www.comsol.com

clear all

% creating a model

model = ModelUtil.create(‘Model’);

%A name can be set by

model.name(‘MS WG’);

%Parameters are the wavelength of light (Lambda) [µm], track radius (radius) [µm], separation

%of tracks (pitch)[µm], RIs of material along polarization directions (no,ne), RI contrast (δn),

%PML length (L) [µm]. All of those parameters can be varied by creating a loop.

model.param.set(’Lambda’, ’1’);

model.param.set(‘no’,‘(1+2.245*Lambdaˆ2/(Lambdaˆ2-0.012ˆ2)+

1.3*Lambdaˆ2/(Lambdaˆ2-0.053ˆ2)+6.897*Lambdaˆ2/(Lambdaˆ2-331.33ˆ2))ˆ0.5’);

model.param.set(‘ne’,‘(1+2.247*Lambdaˆ2/(Lambdaˆ2-0.0147ˆ2)+

1.461*Lambdaˆ2/(Lambdaˆ2-0.056ˆ2)+9.65*Lambdaˆ2/(Lambdaˆ2-371.2ˆ2))ˆ0.5’);

model.param.set(‘delta n’, ‘0.01’);
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model.param.set(‘pitch’, ‘2.5’);

model.param.set(‘radius’, ‘1’);

model.param.set(‘claddingradius’, ‘3*pitch’);

model.param.set(‘L’, ‘10’);

model.param.set(‘pmlradius’, ‘claddingradius+L’);

%Creating a 2D geometry node

model.modelNode.create(‘mod1’);

%Create the geometry

model.geom.create(‘geom1’, 2);

model.geom(‘geom1’).lengthUnit([native2unicode(hex2dec(‘00b5’), ‘Cp1252’) ’m’]);

%Track1

model.geom(‘geom1’).feature.create(‘c3’, ‘Circle’);

model.geom(‘geom1’).feature(‘c3’).set(‘pos’, ’0’ ‘sqrt(3)*pitch’);

model.geom(‘geom1’).feature(‘c3’).set(‘r’,‘radius’);

%Track2

model.geom(‘geom1’).feature.create(‘c4’, ‘Circle’);

model.geom(‘geom1’).feature(’c4’).set(‘pos’, ‘0’ ‘-sqrt(3)*pitch’);

model.geom(‘geom1’).feature(‘c4’).set(‘r’,‘radius’);

%Track3

model.geom(‘geom1’).feature.create(‘c5’, ‘Circle’);

model.geom(‘geom1’).feature(‘c5’).set(‘pos’, ‘-2*pitch’ ‘0’);

model.geom(‘geom1’).feature(‘c5’).set(‘r’,‘radius’);

%Track4

model.geom(‘geom1’).feature.create(‘c6’, ‘Circle’);

model.geom(‘geom1’).feature(‘c6’).set(‘pos’, ‘2*pitch’ ‘0’);

model.geom(‘geom1’).feature(‘c6’).set(‘r’,‘radius’);

%Track5

model.geom(‘geom1’).feature.create(‘c7’, ‘Circle’);

model.geom(‘geom1’).feature(‘c7’).set(‘pos’, ‘-3/2*pitch’ ‘sqrt(3)/2*pitch’);

model.geom(‘geom1’).feature(‘c7’).set(‘r’,‘radius’);

%Track6
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model.geom(‘geom1’).feature.create(‘c8’, ‘Circle’);

model.geom(‘geom1’).feature(‘c8’).set(‘pos’, ‘3/2*pitch’ ‘sqrt(3)/2*pitch’);

model.geom(‘geom1’).feature(‘c8’).set(‘r’,‘radius’);

%Track7

model.geom(‘geom1’).feature.create(‘c9’, ‘Circle’);

model.geom(‘geom1’).feature(‘c9’).set(‘pos’, ‘-3/2*pitch’ ‘-sqrt(3)/2*pitch’);

model.geom(‘geom1’).feature(‘c9’).set(‘r’,‘radius’);

%Track8

model.geom(‘geom1’).feature.create(‘c10’, ‘Circle’);

model.geom(‘geom1’).feature(‘c10’).set(‘pos’, ‘3/2*pitch’ ‘-sqrt(3)/2*pitch’);

model.geom(‘geom1’).feature(‘c10’).set(‘r’,’radius’);

%Track9

model.geom(‘geom1’).feature.create(‘c11’, ‘Circle’);

model.geom(‘geom1’).feature(‘c11’).set(‘pos’, ‘-1*pitch’ ‘sqrt(3)*pitch’);

model.geom(‘geom1’).feature(‘c11’).set(‘r’,‘radius’);

%Track10

model.geom(‘geom1’).feature.create(‘c12’, ‘Circle’);

model.geom(‘geom1’).feature(‘c12’).set(‘pos’, ‘1*pitch’ ‘sqrt(3)*pitch’);

model.geom(‘geom1’).feature(‘c12’).set(‘r’,‘radius’);

%Track11

model.geom(‘geom1’).feature.create(‘c13’, ’Circle’)

model.geom(‘geom1’).feature(‘c13’).set(‘pos’, ‘-1*pitch’ ‘-sqrt(3)*pitch’);

model.geom(‘geom1’).feature(‘c13’).set(‘r’,‘radius’);

%Track12

model.geom(‘geom1’).feature.create(‘c14’, ‘Circle’);

model.geom(‘geom1’).feature(‘c14’).set(‘pos’, ‘1*pitch’ ‘-sqrt(3)*pitch’);

model.geom(‘geom1’).feature(‘c14’).set(‘r’,‘radius’);

%Enclosing circle 1

model.geom(‘geom1’).feature.create(‘c2’, ‘Circle’);

model.geom(‘geom1’).feature(‘c2’).set(‘pos’, ‘0’ ‘0’);

model.geom(‘geom1’).feature(‘c2’).set(‘r’,‘claddingradius’);
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%Enclosing circle 2

model.geom(‘geom1’).feature.create(‘c1’, ‘Circle’);

model.geom(‘geom1’).feature(‘c1’).set(‘pos’, ‘0’ ‘0’);

model.geom(‘geom1’).feature(‘c1’).set(‘r’,‘pmlradius’);

model.geom(‘geom1’).feature.create(‘uni1’, ‘Union’);

model.geom(‘geom1’).feature(‘uni1’).set(’intbnd’, false);

model.geom(‘geom1’).feature(‘uni1’).set(’edge’, ’all’);

model.geom(‘geom1’).feature(‘uni1’).selection(‘input’).set(‘c1’);

model.geom(‘geom1’).run;

%Selection of materials for different domains

model.material.create(‘mat1’);

model.material(‘mat1’).propertyGroup.create(‘RefractiveIndex’, ‘Refractive index’);

model.material(‘mat1’).selection.set([1 2]);

model.material.create(‘mat2’);

model.material(‘mat2’).propertyGroup.create(‘RefractiveIndex’, ’Refractive index’);

model.material(‘mat2’).selection.set([3:14]);

%Selection of study

model.physics.create(‘emw’, ‘ElectromagneticWaves’, ‘geom1’);

%Mesh

model.mesh.create(‘mesh1’, ‘geom1’);

model.mesh(‘mesh1’).feature.create(‘ftri1’, ‘FreeTri’);

%Selection of PML

model.coordSystem.create(‘pml1’, ‘geom1’, ‘PML’);

model.coordSystem(‘pml1’).selection.set([1]);

%Defining material RIs

model.material(‘mat1’).name(‘unmodified lithium niobate’);

model.material(‘mat1’).propertyGroup(‘RefractiveIndex’).set(‘n’, ”);

model.material(‘mat1’).propertyGroup(‘RefractiveIndex’).set(‘ki’, ”);

model.material(‘mat1’).propertyGroup(‘RefractiveIndex’).set(‘n’, ’no’ ‘0’ ‘0’ ‘0’ ‘ne’ ‘0’

‘0’ ‘0’ ‘no’);

model.material(‘mat1’).propertyGroup(‘RefractiveIndex’).set(‘ki’, ’0’ ‘0’ ‘0’ ‘0’ ‘0’ ‘0’ ‘0’
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‘0’ ‘0’);

model.material(‘mat1’).propertyGroup(‘RefractiveIndex’).set(‘lambda0’, ‘c const/freq’);

model.material(‘mat2’).name(‘modified lithium niobate’);

model.material(‘mat2’).propertyGroup(‘RefractiveIndex’).set(‘n’, ‘’);

model.material(‘mat2’).propertyGroup(‘RefractiveIndex’).set(‘ki’, ‘’);

model.material(‘mat2’).propertyGroup(‘RefractiveIndex’).set(‘n’, ‘no-delta n’ ‘0’ ‘0’ ‘0’ ‘ne-

delta n’ ‘0’ ‘0’ ‘0’ ‘no-delta n’);

model.material(‘mat2’).propertyGroup(‘RefractiveIndex’).set(‘ki’, ‘0’ ‘0’ ‘0’ ‘0’ ‘0’ ‘0’ ‘0’

‘0’ ‘0’);

model.material(‘mat2’).propertyGroup(‘RefractiveIndex’).set(‘lambda0’, ‘c const/freq’);

%Defining the feature of study

model.physics(‘emw’).feature(‘wee1’).set(‘DisplacementFieldModel’, ‘RefractiveIndex’);

%Defining the features of mesh. The same type of mesh is applied, here, on all domains.

%User-defined values can also be applied for different domains.

model.mesh(‘mesh1’).feature(‘size’).set(‘hauto’, 3);

model.mesh(‘mesh1’).run;

%Setting the coordinate system for PML. PML settings here are program defined. User

%defined PML settings may also be applied.

model.coordSystem(‘pml1’).set(‘ScalingType’, ‘Cylindrical’);

%Creating a study mode and defining its properties.

model.study.create(‘std1’);

model.study(‘std1’).feature.create(‘mode’, ‘ModeAnalysis’);

model.sol.create(‘sol1’);

model.sol(‘sol1’).study(‘std1’);

model.sol(‘sol1’).attach(‘std1’);

model.sol(‘sol1’).feature.create(‘st1’, ‘StudyStep’);

model.sol(‘sol1’).feature.create(‘v1’, ‘Variables’);

model.sol(‘sol1’).feature.create(‘e1’, ‘Eigenvalue’);

model.study(‘std1’).feature(‘mode’).set(’neigs’, ‘30’);

model.study(‘std1’).feature(‘mode’).set(‘shift’, ‘no’);

model.study(‘std1’).feature(‘mode’).set(‘modeFreq’, ‘c const/(Lambda[um])’);
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model.sol(‘sol1’).attach(‘std1’);

model.sol(‘sol1’).feature(‘st1’).name(‘Compile Equations: Mode Analysis’);

model.sol(‘sol1’).feature(‘st1’).set(‘studystep’, ‘mode’);

model.sol(‘sol1’).feature(‘v1’).set(‘control’, ‘mode’);

model.sol(‘sol1’).feature(‘e1’).set(‘control’, ‘mode’);

model.sol(‘sol1’).feature(‘e1’).set(‘transform’, ’effective mode index’);

model.sol(‘sol1’).feature(‘e1’).set(‘shift’, ‘no’);

model.sol(‘sol1’).feature(‘e1’).feature(‘aDef’).set(‘complexfun’, true);

%Defining the plotting properties.

model.result.create(‘pg1’, ‘PlotGroup2D’);

model.result(‘pg1’).feature.create(‘surf1’, ‘Surface’);

%The script given above can be run inside a loop to study the change of any of the parameters

defined in the parameter defining section.

track radius=0.5:0.1:1;

for j=1:1:size(track radius)

rd=track radius(j);

model.param.set(‘radius’, rd);

model.sol(‘sol1’).runAll;

RIs of eigenmodes(:,j) = mphinterp(model,‘emw.neff’,‘coord’, [0 0 0;0 0 0], ‘complexout’,‘on’);

end

%%%%%The script given above is just an introductory example.%%%

A.2 A matlab code to construct RI profile from cumulative

phase data

% A matlab program to construct RI profile from cumulative phase data

lambda=0.480; %filter wavelength

lambda rad=lambda/2/pi; % filter wavelength (in radians)

ph=load(’phaseprofile.txt’); % Read the phase data

vx=ph(:,1)-min(ph(:,1));
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L=max(vx);

ud=abs(ph(2,1)-ph(1,1));

udu=ud/L;

vy=lambda/2/pi.*(ph(:,2)-min(ph(:,2)));

ll=length(vy);

subplot(2,2,1)

plot(vx,vy);

xlabel(’Distance ( µm )’);

ylabel( ’OPD (radian)’);

title(’One sided phase profile taken from microscope’);

fvy=flipdim(vy,1);

fvy(ll+1:1:2*ll-1,1)=vy(2:1:ll);

fvx=-flipdim(vx,1)/L;

fvx(ll+1:1:2*ll-1,1)=vx(2:1:ll)/L;

c=spline(fvx,fvy);

stp1=udu/40;

fvxx= -1:stp1:1;

fvyint = ppval(c, fvxx);

subplot(2,2,2)

plot(fvxx,fvyint,’o’,fvx,fvy,’r’)

xlabel(’Distance ( Normalized )’);

ylabel( ’OPD (radian)’);

title(’Mirrored Optical Path Difference (OPD) image (Red) & Fitting Function (Blue)’);

nf=70; % Number of coefficients in Fourier series expansion.

stp2=abs(fvxx(1)-fvxx(2));

A0=sum(fvyint*stp2)/2; % A0 in Fourier series expansion

fp=A0;

for n=1:1:nf

A(n)=sum(stp2*fvyint.*cos(n*pi*fvxx));% A parameters in Fourier series expansion

B(n)=sum(stp2*fvyint.*sin(n*pi*fvxx));% B parameters in Fourier series expansion

fp=fp+A(n).*cos(n*pi*fvxx)+B(n).*sin(n*pi*fvxx);
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end

subplot(2,2,3)

plot(fvxx,fp,’o’,fvx,fvy,’r’) % Phase profile

xlabel(’Distance ( Normalized )’)

ylabel( ’OPD (radian)’)

title(’Fourier Polynomial fitting (Red) and original phase data (Blue) ’)

n point=91;

for jj=0:1:n point

ro=jj*L/n point;

for kk=1:1:nf

zz=ro/L;

fun = @(t)sin(pi*kk*sqrt(t.ˆ2+zzˆ2))./sqrt(t.ˆ2+zzˆ2);

q = integral(fun,0,sqrt(1-zzˆ2));

gg(kk)=2*kk/pi*q;

end

refr ind(jj+1)=pi/2/L*sum(A.*gg);

end

subplot(2,2,4)

plot(L/n point*(0:1:n point),refr ind) % Refractive Index profile

xlabel(’Distance ( µm )’)

ylabel( ’Refractive Index ’)

title(’Reconstructed RI Profile ’)
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