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Abstract: Two microporous organic frameworks based on adamantane (hereafter denoted as MF-Ads) were fabricated through 

Sonogashira-Hagihara coupling polycondensation of aryl halides and alkynes. Results show that both types of MF-Ad networks 

had similar porous properties and exhibited excellent CO2 uptake capacity (72.5 cm3 g-1) and CO2/N2 selectivity (59.1) at 273 K 

and 1.0 bar. Taking advantage of the superhydrophobic wettability of the resulting MF-Ad networks, wire mesh scaffolds were 

used to fabricate superhydrophobic films with polydimethylsiloxane (PDMS) acting as a binder. These films displayed excellent 

instant hydrocarbon/water separation efficiency (up to 99.6 %), which was maintained at a constant level after five repeated 

cycles. This work provides a novel insight into the fabrication of microporous organic frameworks and extends their applicability 

to carbon capture and absorption of hazardous organic pollutants. 
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1. Introduction 
During the past decade, considerable research effort has been devoted to the development of advanced 

materials for capturing CO2 efficiently, adsorbing hazardous organic pollutants and preventing further decline of 

our environment[1-3]. Work has  recently revealed that most frameworks with abundant porous s tructure, such as 

metal  organic frameworks (MOFs)[4], covalent organic frameworks  (COFs)[5] and microporous  organic polymers 

(MOPs)[6], to name a  few, are promising adsorbents  for capturing CO2 due to their remarkably high surface area, 

large adsorption capaci ty and tunable chemical  composition. Interestingly, in contrast to most reported MOFs  and 

COFs  which commonly suffer from poor chemical and thermal s tabilities , MOPs are fabricated through C-C 

covalent bonds  which provide better thermal  and physicochemical s tability. These improved properties  make 

MOPs more sui table candidates than MOFs and COFs for carbon capture and s torage (CCS) at high temperatures 

or in harsh environments[7, 8] For example, Woo and Manoranjan synthesized azo-linked polymers  with ultrahigh 

CO2 adsorption capaci ty (up to 195 mg g
-1

) with a weight loss of 10 % up to between 280 and 305 °C, depended 

on the network[9]. Kundu and Bhaumik reported a ni trogen- and sulfur-rich hyper-cross-linked microporous 

poly(triazine-thiophene) copolymer (HMC-1), which exhibi ted a CO2 uptake of 462 mg g-1 at 273 K and 3.0 bar, but 

gave a  weight loss of 10 % at 220 oC[1]. Conversely, for reported MOPs, Janiak et al. carried out a  mixed-linker 

approach to obtain a triazine-based framework (Ad2L1), which had good CO2 adsorption capacity (77.3 mg g-1 at 

273 K and 1.0 bar) and CO2/N2 selectivi ty (up to 13). Importantly, the Ad2L1 framework showed remarkable 

thermal stabili ty (stable up to 400 oC)[10]. Chang et al. reported microporous hydrocarbon particles based on 

adamantane building blocks, which exhibi ted high BET surface area  (up to 665 m
2
 g

-1
) and narrow pore size 

dis tribution (0.6 nm)[11]. Zul fiqar et al. synthesized a  nanoporous amide network based on 

tetraphenyladamantane (NAN-1), which exhibi ted ul trahigh thermal stability (s table up to 500 oC) and good CO2 

adsorption capaci ty (55.7 mg g -1 at 273 K and 1.0 bar)[12]. These excellent physicochemical  and hydrothermal 

stabili ties may be attributed to the exclusively aromatic s tructure and the sole presence of C-C covalent bonds 

within the framework of these MOP materials[13, 14]. However, compared with MOFs and COFs, most of 

reported MOPs  typically exhibit higher thermal s tability but with lower CO2 adsorption capacity and selectivi ty 

over N2. Furthermore, the large adsorption capaci ty of microporous frameworks is another signi ficant parameter 

for their use in CCS. Therefore, there is a need, yet significant challenge, to develop new strategies to synthesize 

MOPs  with higher CO2 adsorption capacity and selectivity over N2. 

On the other hand, to date, all of the reported microporous organic polymers  are found in powder form with 

poor processability, which has  severely limited their application in  gas s torage/separation. The development of 

MOPs with better processability and chemical inertness is beneficial to expand the potential of these 

microporous frameworks. Recently a small number of novel s trategies has received great attention to tackle these 

challenges [15-18]. However, it is s till difficul t to fully address these limitations  for any industrial application due to 

the inefficiency of these strategies.  

With these considerations in mind, herein, we report the synthesis of microporous frameworks based on 

adamantane (MF-Ad-1 and MF-Ad-2) via Sonogashira -Hagihara coupling between 4,4'-diethynylbiphenyl  and aryl 

halides . The gas-adsorption properties  of these microporous frameworks  ha ve been evaluated and exhibi t 

excellent selectivi ty for CO2 over N2. More interestingly, these microporous frameworks also showed 

superhydrophobicity when coated with polydimethylsiloxane (PDMS), which were particularly useful for the 

separation of hydrocarbons/water. These s tudies  elegantly extend the applications  of microporous  organic 

frameworks, particularly in CCS and adsorbing hazardous organic pollutants. 

 

2. Experimental 
2.1 Materials 

Unless otherwise stated, all s tarting materials were purchased from Guoyao Chemical Reagent Co., Ltd. 

(China). Tetrahydrofuran (THF, anhydrous , 99.5 %), triethylamine (TEA, anhydrous , 99.5 %), dimethyl  formamide 

(DMF, anhydrous, 99 %), toluene (99 %) and rhodamine B (99 %) were purchased from Shanghai  Macklin 

Biochemical  Co., Ltd. (China). 1,3-Dibromobenzene (anhydrous, 99.5%), 2-methyl-3-butyn-2-ol , 

4,4'-dibromobiphenyl , copper(I) iodide [CuI], tetrakis(triphenylphosphine)palladium(0)  [Pd(PPh3)4] and 

dichlorobis(triphenylphosphine)palladium(II) [Pd(PPh 3)2Cl 2] were all purchased from Sigma-Aldrich Co., Ltd. (UK). 

4,4'-diethynylbiphenyl  (DPE) was  synthesized according to the published method except that 

2-methyl-3-butyn-2-ol was used instead of trimethylsilylacetylene[6]. 

3,3',5,5',7,7'-Hexakis(4-bromophenyl)-1,1'-biadamantane (HBPBA) was synthesized according to published 

methods [19]. The PDMS (Sylgard 184) was  obtained from Dow Corning Co., Ltd. (China). The stainless -steel 

meshes (30 mm × 40 mm) with a  mesh opening size of 0.55 mm were obtained from Anping Park Lin Metal  Wire 

Mesh Co., Ltd. (China). The stainless-steel  meshes  ware pretreated by washing with hydrochloric acid (2.0 M), 

water and acetone for three times and then dried at 80 
o
C.  

2.2 Synthesis of 1,3,5,7-tetrakis(1,3-bibromophenyl)adamantane (TBBPA). 
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1,3-dibromobenzene (70 ml) was added to a  mixture of 1,3,5,7-tetrabromoadamantane (5.0 g, 11.1 mmol) 

and AlCl 3 powder (4.0 g, 30.0 mmol), at 0 oC. The mixture was then s tirred at ambient temperature for 36 h. After 

quenching the reaction by adding ice wate r, the organic layer was diluted with chloroform and fil tered. The 

fil trate was  washed with deionised water and brine and then dried over magnesium sul fate. After evaporation to 

remove volatiles, 1,3,5,7-tetrakis(1,3-bibromophenyl)adamantane was obtained as a  white solid from the 

crystallization in chloroform (9.6 g, 81 % yield). 1H NMR (DMSO-d6, 400 MHz): δ (ppm) 7.80 (s , 8H), 7.69 (s, 4H), 

2.05 (s , 12H); 13C NMR (CDCl 3-d3, 400 MHz): δ (ppm) 150.7, 131.5, 126.2, 122.4, 45.3, 38.3. Anal . Calcd for 

C34H24Br8: C, 38.10; H, 2.26; Found: C, 38.11; H, 2.21. 

2.3 Synthesis of networks MF-Ad-1 and MF-Ad-2 

For MF-Ad-1, a mixture of HBPBA (480.0 mg, 0.4 mmol), DPE (242.4 mg, 1.2 mmol), Pd(PPh 3)2Cl 2 (28.1 mg, 

0.04 mmol), CuI (152.4 mg, 0.08 mmol), dimethyl  formamide (DMF) (60 ml) and triethylamine (TEA) (60 ml) were 

s ti rred in a  250 ml  Schlenk flask and then heated to 90 
o
C for 48 h under argon atmosphere. After cooling to 

ambient temperature, the mi xture was fil tered, and the precipi tate was washed with hot THF, DMF, 2.0 M 

hydrochloric acid, 2.0 M sodium hydroxide, water and methanol in succession. Importantly, the polymer was 

rigorously s ti rred at 2000 rpm during acid and base immersions for 30 min and the process was repeated 3 times . 

After fil tration, the insoluble powder was dried under vacuum at 100 oC for at least 24 h to give MF-Ad-1 (492 mg, 

93 % yield) as a  light yellow fluffy powder. Anal. Calcd for C104H72: C, 94.54; H, 5.46. Found: C, 92.12; H, 5.75. 

The synthetic procedure of MF-Ad-2 was similar to that of MF-Ad-1, except that the linker (knot) used was 

TBBPA (321.6 mg, 0.3 mmol), instead of HBPBA (480.0 mg, 0.4 mmol), which also afforded a  light yellow fluffy 

powder (382 mg, 94 % yield). Anal. Ca lcd for C80H54: C, 94.67; H, 5.33. Found: C, 91.83; H, 5.57. 

2.4 Preparation of superhydrophobic MF-Ad-based mesh films. 

The following is an example for MF-Ad-1: MF-Ad-1 (0.2 g) was added to a  mixture of PDMS and toluene (at a 

total  ratio of PDMS/toluene/MF-Ad-1 of 1.1/10/0.2, w/w/w), at room temperature, and then the mixture was 

treated by ul trasonic tip-sonication for 30 min. A stainless-steel  mesh was  immersed into the mixture , dried at 85 
oC, then repeated 20 times until the MF-Ad-based mesh films had successfully formed. 

2.5 Characterization 

Fourier transform infrared (FTIR) spectra  were obtained using a  Thermo Electron Nicolet-6700 spectrometer. 
1H NMR, 13C NMR and solid-state cross polarization magic angle spinning (CP/MAS) NMR spectra were recorded 

on a Bruker AVANCE III  400 MHz Superconducting Fourier in deuterated chloroform (CDCl 3) or dimethyl 

sulfoxide-d6 (DMSO-d6). Powder X-ray diffraction (XRD) data  were collected on a  Bruker X’pertpro multipurpose 

di ffractometer (MPD). Samples were mounted on a  sample holder and measured using Cu Kα radiation with 2θ 

range of 5o to 70o. Thermogravimetric analysis (TGA) was performed in a ni trogen atmosphere on a  NETZSCH STA 

409 PC thermal analyzer with a  heating rate of 10 °C min -1 from ambient temperature to 800 °C. The ni trogen 

adsorption-desorption isotherms were measured on a 3H-2000PM2 analyzer and the adsorption of hydrogen, 

methane and carbon dioxide was measured on 3H-2000PS2 apparatus  at 77 K/1.0 bar (H2) and 273 K/1.0 bar (N2, 

CH4 and CO2). SEM analysis  was  performed on a  Hitachi  S-3400N scanning electron microscope to investigate the 

surface morphology of the polymers . Elemental analysis was performed with a Perkin Elmer Series II  2400 

elemental analyzer. All samples were dried at 100 
o
C for 24 h under vacuum prior to measurement.  

 

3. Results and discussion 
The synthesis of two microporous organic frameworks , MF-Ad-1 and MF-Ad-2, was  accomplished via 

Pd(0)/CuI-catalyzed Sonogashira -Hagihara cross coupling polymerization. These frameworks were constructed 

using two different 3D building links (or ‘knots’), HBPBA and TBBPA, as illustrated in Scheme 1. All  of the building 

units  dissolved in the solvent, leading to good yields (93 % for MF-Ad-1 and 94 % for MF-Ad-2) under mild 

reaction conditions . After the reaction, however, these frameworks  were found to be insoluble in conventional 

organic solvents , such as methanol , chloroform and tetrahydrofuran, suggesting the formation of crosslinked 

s tructures. 
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Scheme 1 Synthetic routes  to the MF-Ad-1 and MF-Ad-2 networks . 

 

3.1 Structural characterization 
1H NMR and 13C NMR spectra (Figures  S1 and S2, ESI) indicate the successful  synthesis of the building knot 

(TBBPA). Additionally, the molecular s tructure of the MF-Ad networks was confi rmed by FTIR and 13C CP/MAS 

solid-state NMR spectroscopies. As  shown in Figure 1, the two MF-Ad networks  showed bands  at 3031 and 1599 

cm-1, arising from aromatic C=C tretching. The broad band at 3440 cm-1 is  attributed to the C-H groups  from the C

≡CH end-groups  in the frameworks . The band at 2853 cm-1 is  characteristic of the C-H stretching vibrations  of 

adamantane, whereas the bands occurring at 2203 cm-1 for both MF-Ad-1 and MF-Ad-2 can be assigned to C≡C 

triple-bond stretching in the networks  and those at 1908 cm
-1

 are attributed to the C≡CH from the end-groups  in 

the MF-Ad networks. 

3500 3000 2500 2000 1500 1000 500

MF-Ad-2  

Wavenumber (cm-1)

MF-Ad-1

 
Figure 1. FTIR spectra  of the MF-Ad-1 and MF-Ad-2 networks . 

 
13C cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy was carried out to further confi rm 

the structure of these MF-Ad networks (Figure S3, ESI). In the case of MF-Ad-2, the spectra showed peaks at 

148.7, 138.8, 130.5, 125.8 and 123.2 ppm, assigned to the substi tuted phenyl  carbons. The ethynylene units are 

observed at 90.6 ppm and the peaks at 47.3 and 38.5 ppm correspond to the adamantane carbons . All  of the 

peaks  in the MF-Ad networks are in good agreement with previous  reports  on similar networks, which were 

prepared from 1,3,5,7-tetrakis(4-iodophenyl)adamantane and 1,4-diethynylbenzene[11]. 

The broad feature in the XRD profiles (Figure S4, ESI) indicate that these two MF-Ad networks are 

amorphous  in nature and therefore i t is di fficul t to predict the actual framework of these MF-Ad networks , 

without diffraction peaks arising from a regular network with long range order. However, the sharper peak 

located at 2θ ~ 43o (d-spacing = 2.10 Å), which is assigned to disordered  s tacking of the consecutive phenyl 
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rings[12], as well as the interlayer distance of the chiral  helical  frameworks in the ordered sections . Namely, these 

two MF-Ad frameworks have some degree of order through dispersed stacking of the aromatic units (which 

is more prevalent in MF-Ad-2), but primarily comprise amorphous frameworks[20, 21]. SEM was used to examine 

the surface morphology of the two MF-Ad networks (Figure 2). MF-Ad-1 consists  of more discrete, agglomerated 

spherical entities while MF-Ad-2 shows a more interconnected particulate framework. 

 
Figure 2. SEM images  of MF-Ad-1 (a ) and MF-Ad-2 (b). 

 

3.2 Stability and porosity of MF-Ad networks 

The thermogravimetric analysis (TGA) of as-prepared MF-Ad networks (Figure 3) showed a  weight loss of 5 % 

at 395 and 408 oC for MF-Ad-1 and MF-Ad-2, respectively, under a  ni trogen atmosphere  [notably, the vast 

majori ty of the networks  (80 %) remained in place up to the end of the thermal  analysis, i.e. 800 oC]. Additionally, 

the MF-Ad networks  exhibi ted not only s tability in common organic solvents  but remained intact after immersion 

in both 2.0 M hydrochloric acid and sodium hydroxide  (the FTIR spectra  in Figure S5, ESI), demonstrating their 

excellent chemical s tability. The ultra -high thermochemical stabili ties of these frameworks are desi red for 

applications in harsh conditions, such as the adsorption of acidic or alkaline waste gas streams. 
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Figure 3. TGA profi les  of MF-Ad-1 and MF-Ad-2. 

The porosi ty of the MF-Ad networks was determined by N2 adsorption at 77 K. As illustrated in Figure 4 (a), 

the adsorption-desorption isotherms of MF-Ad-1 and MF-Ad-2 were very similar, both giving rise to type I 

isotherms, according to the IUPAC classification[13]. The sharp uptake at relatively low pressures (p/p0 < 0.0001) 

demonstrated the microporosi ty of the frameworks  in line with previous  reports[6]. The hysteresis  loop in the 

desorption isotherm is mostly attributed to the swelling of the frameworks  or the intersti tial voids  between 

polymeric particles[22, 23]. Moreover, both of the narrow hysteresis loops and the consecutive N2 uptake at 

higher relative pressures (1.0 bar) indicated the existence of interparticle void spaces or macropores within the 

frameworks . The Brunauer-Emmett-Teller (BET) surface area of MF-Ad-1 and MF-Ad-2 was evaluated to be 536 

and 642 m2 g-1, respectively. The low BET surface area in our systems may be attributed to the large space effect 

of adamantane in the knots , HBPBA and TBBPA, as  compared to reported non-adamantane-based microporous 

organic polymer, which exhibited higher BET surface area[24-26]. 
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Figure 4. (a) N2 sorption isotherms of MF-Ad-1 and 2 at 77.3 K and (b) pore size dis tribution for MF-Ad-1 and 2.  

 

Nonlocal  density functional  theory (NLDFT) was  used to investigate pore size distribution (PSD) of these two 

MF-Ad networks . According to Figure 4 (b), MF-Ad networks exhibi ted abundant ‘ultra-microporous’ structures , 

where microporous  diameters dominated a t around 0.57 and 0.49 nm for MF-Ad-1 and MF-Ad-2, respectively. 

Moreover, the microporosity (Vmicro/Vtotal) at a relative pressure of 1.0 bar was found to be 0.62 (62%) for MF-Ad-1 

and 0.65 (65%) for MF-Ad-2, in line with the PSD of the networks, indicating that the majority of the pores were 

in the microporous domain. The porous properties of these MF-Ad networks are summarized in Table 1.  

 

Table 1. Surface area  and poros i ty of the MF-Ad networks . 

Networks  
SBET

a 

(m2 g-1) 

Smicro
b 

(m2 g-1) 

Vtotal
c 

(cm3 g-1) 

Vmicro
d 

(cm3 g-1) 
Vmicro/Vtota- 

Pore Size e 

(nm) 

MF-Ad-1 536 345 0.29 0.18 0.62 0.57 

MF-Ad-2 642 444 0.34 0.22 0.65 0.49 
a Ca lculated using the Brunauer-Emmett-Teller (BET) method.  
b
 Microporous surface area calculated using the t-plot method.  

c Tota l  pore volume calculated at p/p0 = 1.0.  
d Micropore volume calculated at p/p0 = 1.0.  
e Pore s ize distributions obtained by NLDFT method. 

 

3.3 Gas transport properties 

Inspired by the relatively high surface area of our MF-Ad networks, the small gas (such as CO2, CH4 and N2) 

storage properties and selective uptake were evaluated at 273 K and 298 K with the pressure at 0 - 1.0 bar, as 

shown in Figure 5 and Table 2. MF-Ad-2 exhibi ted the highest CO2 uptake capaci ty (was  up to 72.5 cm3 g-1) at 273 

K / 1.0 bar, and 36.5 cm3 g-1 at 298 K / 1.0 bar. For comparison, the CO2 uptake capacity of MF-Ad-2 surpassed 

most previously reported polymeric organic frameworks (POFs) with higher BET surface area  in the same 

conditions , such as pyridine-based functional conjugated microporous  polymer (PCMP-1, 55.6 cm3 g-1, SBET = 1136 

m
2
 g

-1
)[27] polyhedral oligomeric silsesquioxane microporous  polymer (PMOP-1, 58.0 cm

3
 g

-1
, SBET = 806 m

2
 

g-1)[28], hyper-crosslinked aromatic polymer (NOP-47, 67.2 cm3 g-1, SBET = 1246 m2 g-1)[29]. Moreover, the values 

exceed several  reported microporous polymers  based on adamantane, which exhibi ted similar BET surface areas, 

such as, tetraphenyladamantane-based polyimide (API -6FA, 63.1 cm3 g-1, SBET = 752 m2 g-1)[25], 

tetraphenylethene-based microporous polymer (TPE-AD, 40.1 cm3 g-1, SBET = 615 m2 g-1)[30]. The comparable, or 

superior, CO2 uptake capaci ties of these two MF-Ad networks is attributed to the combination of an 

‘ultra-microporous ’ structure with conventional microporosi ty, where a narrow pore size distribution can 

enhance the affini ty between small  gas  and networks , resulting in high adsorption capaci ty[14, 31]. Interestingly, 

more reactive sites  on bulky cyclic aliphatic (six or eight) adamantanes  may produce less topological defects , 

which would result in narrower pore size distribution [32, 33]. Moreover, the physisorption isotherms had not 

reached saturation s tate at 1.0 bar. This  result suggests  that higher capaci ties can be obtained at increased 

pressures. 

The isosteric heat of adsorption (Qst) of these two frameworks were calculated from the Clausius-Clapeyron 

equation based on the CO2 adsorption branches  at 273 K and 298 K. The Qst values  were 32.2 and 36.7 kJ mol -1 at 

zero-coverage (Table 2 and Figure S6, ESI). The Qst values were much higher than those previously reported 

microporous  frameworks , to name a  few, thiadiazole-functionalized covalent organic framework (TH-COF-1, 31 kJ 
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mol -1)[34], borazine-linked polymers  (BLPs , 20.2 - 28.3 kJ mol -1)[35, 36] and metalloporphyrin-based microporous 

covalent triazine framework (MCTF-300-500, 24.6 - 26.3 kJ mol -1)[37]. The high Qst of two MF-Ads can be 

presumably attributed to the existence of abundant microporous , especially the ‘ultra-microporous ’ structure 

[Figure 2 and Figure 4 (b)], which would enhance the binding affinity between the frameworks  and CO2 

molecules[29, 38].  
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Figure 5. Adsorption isotherms of CO2, CH4 and N2 in MF-Ad-1 (a ) and MF-Ad-2 (b) at 273 K. 

 

On the other hands , the adsorption selectivi ty is one of the most crucial parameters for microporous 

frameworks  in CO2 capture and sequestration (CCS). Herein, the adsorption selectivi ties of CO2 over N2 or CH4 

were assessed using Henry’s  law at low pressure (Figure S7, ESI)[39]. As showed in Table 2, both MF-Ad-1 and 

MF-Ad-2 displayed much higher CO2/N2 selectivi ties (59.1 and 23.9) than CO2/CH4 (6.9 and 3.9), owing to the 

larger quadrupole moment of CO2 (13.4 ×10-40 C m2) over N2 (4.7 ×10-40 C m2), and nonpolar CH4[40, 41]. 

Additionally, CO2 has much a  higher cri tical temperature than CH4 and N2, which allows i t to be easily adsorbed 

into the narrow pores[39].  

The selectivi ty values for CO2/N2 were also comparable with most functional  microporous polymers  reported 

in the literature (Table S1, ESI)[14, 38, 42-45]. Interestingly, most reported functional  microporous  polymers 

possess  excellent CO2 uptake capaci ty but low selectivi ties for CO2/N2, which could be due to the presence of 

heteroatoms in the framework (absent in our materials), which not only aid CO2 capture, but also N2. On the 

other hand, in spi te of higher CH4 uptake capaci ty for each network than N2, i t is clearly seen that the selectivi ty 

of CO2/CH4 i s  much lower than CO2/N2 because of the higher polarizability of CH4 in comparison to N2[46, 47]. 

 

Table 2. The gas  uptake capaci ties  (cm3 g-1) of the networks  at 273 K (298 K) and 1.0 bar. 

Networks 
CO2 uptake N2 uptake CH4 uptake Selectivi tya Qst CO2 

[kJ mol -1]b 273 K 298 K 273 K 298 K 273 K CO2/N2 CO2/CH4 

MF-Ad-1 51.2 25.6 4.6 3.7 5.3 59.1 6.9 32.2 

MF-Ad-2 72.5 36.5 6.8 5.3 12.2 23.9 3.9 36.7 
a Adsorption selectivity based on the Henry’s  law. 
b
 Qst CO2 was  calculated from CO2 i sotherms collected at 273 K and 298 k at zero-coverage. 

 

3.4 Preparation and performance of the MF-Ad films 

Microporous  organic frameworks  possess excellent hydrothermal  stability. However, to date, as  they have 

been limited to the being amorphous powders with poor processability, there remains  a key bottleneck that 

hamper real world application of such microporous polymers . To address this fundamental constraint, herein , 

films based on stainless steel meshes have been fabricated by physically binding MF-Ad and PDMS to the metal 

scaffold. The water contact angle (CA) of these stainless-steel  mesh films reached 163 
o
 and 165 

o
 for MF-Ad-1 

and MF-Ad-2, respectively, while the s tainless-steel  mesh films  of pure PDMS films  attained 138 o (Figure S8, ESI). 

These results demonstrate  that the two as -prepared MF-Ad coated meshes possess excellent superhydrophobic 

or superoleophilic properties (water CA > 150 o). 
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Figure 6. The separation of octane/water mixture  us ing MF-Ad-2. 

 

Additionally, these MF-Ad-based films exhibited excellent affini ty for the organic component (such as  diesel, 

octane, chloroform) of aqueous-organic solvent mixtures (20.0 ml for each). Taking MF-Ad-2 based mesh as an 

example, for the mixture of DI water and octane, the octane (colorless  in the images in Figure 6) penetrated 

through the mesh directly while the DI water (dyed purple with rhodamine B, 0.2 g rhodamine B in 20 mL DI 

water) s tayed on the surface of the mesh and could be poured off easily- separated from the organic phase , as 

depicted in Figure 6. Similar results were observed in the separation of chloroform/water and diesel/water 

mixtures (Figure S9, ESI). As expected from the results reported herein, the MF-Ad-2 based mesh exhibi ted the 

most superior performance of ‘oil ’/water separation, while, conversely, for PDMS films (without MF-Ad), both 

water and octane penetrated the mesh and were not separated. The MF-Ad-2 separation efficiency was  99.6 % 

for the octane/water mixture  (calculated using a  previously reported method, Equation S1, ESI)[48]. After 

recycling 5 times , the separation efficiency did not vary significantly, highlighting the  excellent reusability of these 

materials (Figure S10, ESI). In short, these findings  inspire the expansion in application of such microporous 

polymers , particularly those with excellent gas capture/selectivi ty performance, but poor processability as a 

consequence of their extensively crosslinked framework. 

 

4. Conclusions 
In summary, two novel  MF-Ad-1 and MF-Ad-2 frameworks based on adamantane were designed and 

developed and have been shown to possess ultra -high thermochemical stabilities. With high surface area and 

ul tra-microporous  s tructure, these MF-Ad networks  exhibited significantly superior gas  permeability, with CO2/N2 

and CO2/CH4 selectivi ties up to 59.1 and 6.9, respectively. Based on their hydrophobic nature, the water CA of 

MF-Ad-1 and MF-Ad-2 films were up to 163 o and 165 o. Furthermore, after coating the MF-Ad-2 powder on a 

stainless-steel  mesh (with PDMS as a  binder), the MF-Ad-based mesh was shown to separate water and octane or 

water and chloroform or water and diesel instantly, with high separation efficiency (up to 97.8 % for the 

separation of water and octane ) after repeating for at least 5 cycles. We anticipate that this work will inspire the 

extension of application of these (and similar) functional microporous polymers , particularly in oil/water 

separation.  

 

Acknowledgments 
This work was supported by National Natural  Science Foundation of China  (No. 21476051), Science and 

Technology Program of Guangdong Province (No. 2016A050502057), Science and Technology Program of 

Guangzhou Ci ty (No. 201704030075 and No. 201604010015) and Natural Science Foundation of Guangdong 

Province (No. 2016A030310349). PDT thanks  the State Administration for Foreign Experts  Affai rs and the Royal 

Society of Chemistry for a  Visiting Researcher Programme grant to China. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

References 

[1] S.K. Kundu, A. Bhaumik, Novel Nitrogen and Sul fur Rich Hyper-Cross-Linked Microporous 

Poly-Triazine-Thiophene Copolymer for Superior CO2 Capture, Acs Sustainable Chemistry & Engineering, 4 (2016) 

3697-3703. 

[2] U. Diaz, A. Corma, Ordered covalent organic frameworks , COFs and PAFs . From preparation to application, 

Coordin Chem Rev, 311 (2016) 85-124. 

[3] M. Pera-Ti tus , Porous Inorganic Membranes  for CO2 Capture: Present and Prospects , Chem Rev, 114 (2014) 

1413-1492. 

[4] J.R. Li , R.J. Kuppler, H.C. Zhou, Selective gas  adsorption and separation in metal -organic frameworks, Chemical 

Society Reviews, 38 (2009) 1477-1504. 

[5] S.Y. Ding, W. Wang, Covalent organic frameworks  (COFs): from design to applications , Chem Soc Rev, 42 (2013) 

548-568. 

[6] S.N. Talapaneni, D. Kim, G. Barin, O. Buyukcakir, S.H. Je, A. Coskun, Pillar[5]arene Based Conjugated 

Microporous Polymers for Propane/Methane Separation through Host-Guest Complexation, Chem Mater, 28 

(2016) 4460-4466. 

[7] R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks , Progress in Polymer Science, 37 

(2012) 530-563. 

[8] J.W. Li , Y.W. Ren, C.R. Qi , H.F. Jiang, A chiral salen-based MOF catalytic material with high thermal , aqueous  and 

chemical stabilities, Dalton T, 46 (2017) 7821-7832. 

[9] N. Manoranjana, S.I. Woo, Synthesis of azo linked polymers by a diazotization-coupling reaction and its 

application for CO2 capture, Rsc Adv, 6 (2016) 93463-93468. 

[10] S. Dey, A. Bhunia, I . Boldog, C. Janiak, A mixed -linker approach towards improving covalent triazine -based 

frameworks for CO2 capture and separation, Micropor Mesopor Mat, 241 (2017) 303-315. 

[11] H. Lim, J.Y. Chang, Preparation of Clickable Microporous Hydrocarbon Particles Based on Adamantane, 

Macromolecules, 43 (2010) 6943-6945. 

[12] S. Zulfiqar, D. Mantione, O. El Tall, M.I. Sarwar, F. Ruiperez, A. Rothenberger, D. Mecerreyes , Nanoporous 

amide networks based on tetraphenyladamantane for selective CO2 capture, J Mater Chem A, 4 (2016) 

8190-8197. 

[13] X. Li , J.W. Guo, H.B. Yue, J.W. Wang, P.D. Topham, Synthesis of thermochemically stable 

tetraphenyladamantane-based microporous polymers as gas s torage materials, Rsc Adv, 7 (2017) 16174-16180. 

[14] M.G. Rabbani , T. Islamoglu, H.M. El-Kaderi , Benzothiazole- and benzoxazole-linked porous  polymers for 

carbon dioxide storage and separation, J Mater Chem A, 5 (2017) 258-265. 

[15] R. Du, Q. Zhao, Z. Zheng, W. Hu, J. Zhang, 3D Sel f-Supporting Porous  Magnetic Assemblies for Water 

Remediation and Beyond, Adv Energy Mater, 6 (2016) 1600473. 

[16] Y. Lim, M.C. Cha, J.Y. Chang, Compressible and monoli thic microporous polymer sponges  prepared via 

one-pot synthesis, Sci Rep, 5 (2015) 15957. 

[17] W.J. Fan, X.F. Liu, Z. Zhang, Q.J. Zhang, W. Ma, D.Z. Tan, A. Li , Conjugated microporous  polymer nanotubes 

and hydrophobic sponges, Micropor Mesopor Mat, 196 (2014) 335-340. 

[18] A. Li , H.X. Sun, D.Z. Tan, W.J. Fan, S.H. Wen, X.J. Qing, G.X. Li , S.Y. Li, W.Q. Deng, Superhydrophobic conjugated 

microporous polymers for separation and adsorption, Energ Environ Sci, 4 (2011) 2062-2065. 

[19] J.W. Guo, X.F. Lai , S.Q. Fu, H. Yue, J.W. Wang, P.D. Topham, Microporous  organic polymers based on 

hexaphenylbiadamantane: Synthesis, ultra-high stability and gas capture, Mater Lett, 187 (2017) 76-79. 

[20] O. Buyukcakir, S.H. Je, S.N. Talapaneni , D. Kim, A. Coskun, Charged Covalent Triazine Frameworks for CO 2 

Capture and Conversion, ACS Appl Mater Interfaces, 9 (2017) 7209-7216. 

[21] J.X. Jiang, F. Su, A. Trewin, C.D. Wood, N.L. Campbell , H. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. 

Khimyak, A.I. Cooper, Conjugated microporous  poly (aryleneethynylene) networks , Angew Chem Int Edit, 46 (2007) 

8574-8578. 

[22] J. Weber, A. Thomas, Toward stable interfaces in conjugated polymers : Microporous  poly(p-phenylene) and 

poly(phenyleneethynylene) based on a  spirobifluorene building block, J Am Chem Soc, 130 (2008) 6334-6335. 

[23] M. Saleh, H.M. Lee, K.C. Kemp, K.S. Kim, Highly Stable CO2/N2 and CO2/CH4 Selectivi ty in Hyper-Cross -Linked 

Heterocyclic Porous Polymers, Acs  Appl Mater Inter, 6 (2014) 7325-7333. 

[24] Y. Yuan, F. Sun, H. Ren, X. Jing, W. Wang, H. Ma, H. Zhao, G. Zhu, Targeted synthesis of a  porous  aromatic 

framework with a high adsorption capacity for organic molecules, J Mater Chem, 21 (2011) 13498-13502. 

[25] G.Y. Li , B. Zhang, J. Yan, Z.G. Wang, Microporous polyimides with functional groups for the adsorption of 

carbon dioxide and organic vapors, J Mater Chem A, 4 (2016) 11453-11461. 

[26] D.-P. Liu, Q. Chen, Y.-C. Zhao, L.-M. Zhang, A.-D. Qi, B.-H. Han, Fluorinated Porous  Organic Polymers  via  Direct 

C–H Arylation Polycondensation, ACS Macro Letters, 2 (2013) 522-526. 

[27] J.K. Zang, Z.Q. Zhu, H.X. Sun, W.D. Liang, A. Li , Synthesis of functional conjugated microporous polymers 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

containing pyridine units with high BET surface area for reversible CO2 storage, React Funct Polym, 99 (2016) 

95-99. 

[28] J. Liu, Y.F. Liu, X.W. Jiang, Y.L. Luo, Y.N. Lyu, POSS-based microporous  polymers : Efficient Friedel -Crafts 

synthesis, CO2 capture and separation properties, Micropor Mesopor Mat, 250 (2017) 203-209. 

[29] D.Y. Chen, S. Gu, Y. Fu, X.B.A. Fu, Y.D. Zhang, G.P. Yu, C.Y. Pan, Hyper-crosslinked aromatic polymers with 

improved microporosity for enhanced CO2/N2 and CO2/CH4 selectivity, New J Chem, 41 (2017) 6834-6839. 

[30] H. Lee, H.W. Park, J.Y. Chang, Preparation of microporous  polymers  consisting of tetraphenylethene and 

a lkyne units, Macromolecular Research, 21 (2013) 1274-1280. 

[31] C. Zhang, X. Yang, Y. Zhao, X. Wang, M. Yu, J.-X. Jiang, Bifunctionalized conjugated microporous  polymers  for 

carbon dioxide capture, Polymer, 61 (2015) 36-41. 

[32] M.M. Trandafi r, L. Pop, N.D. Hadade, M. Florea, F. Neatu, C.M. Teodorescu, B. Duraki, J.A. van Bokhoven, I . 

Grosu, V.I. Parvulescu, H. Garcia, An adamantane -based COF: stability, adsorption capability, and behaviour as a 

cata lyst and support for Pd and Au for the hydrogenation of nitrostyrene, Catal Sci Technol, 6 (2016) 8344-8354. 

[33] H. Yu, C.J. Shen, Z.G. Wang, Micro- and Mesoporous Polycyanurate Networks Based on Triangular Units , 

Chempluschem, 78 (2013) 498-505. 

[34] L.Y. Wang, B. Dong, R.L. Ge, F.X. Jiang, J.H. Xiong, Y.N. Gao, J.K. Xu, A thiadiazole-functionalized covalent 

organic framework for efficient CO2 capture and separation, Micropor Mesopor Mat, 224 (2016) 95-99. 

[35] T.E. Reich, S. Behera, K.T. Jackson, P. Jena, H.M. El-Kaderi , Highly selective CO2/CH4 gas uptake by a 

ha logen-decorated borazine-linked polymer, J Mater Chem, 22 (2012) 13524-13528. 

[36] K.T. Jackson, M.G. Rabbani , T.E. Reich, H.M. El -Kaderi , Synthesis  of highly porous  borazine -linked polymers 

and their application to H2, CO2, and CH4 s torage, Polym Chem-Uk, 2 (2011) 2775-2777. 

[37] X.M. Liu, H. Li , Y.W. Zhang, B. Xu, A. Sigen, H. Xia , Y. Mu, Enhanced carbon dioxide uptake by 

metalloporphyrin-based microporous covalent triazine framework, Polym Chem-Uk, 4 (2013) 2445-2448. 

[38] Y.F. Xu, D. Chang, S. Feng, C. Zhang, J.X. Jiang, BODIPY-containing porous organic polyme rs  for gas adsorption, 

New J Chem, 40 (2016) 9415-9423. 

[39] C.J. Shen, J. Yan, G.Y. Deng, B.A. Zhang, Z.G. Wang, Synthetic modulation of micro- and mesopores in 

polycyanurate networks for adsorptions of gases and organic hydrocarbons, Polym Chem-Uk, 8 (2017) 1074-1083. 

[40] M. Saleh, S.B. Baek, H.M. Lee, K.S. Kim, Triazine -Based Microporous Polymers for Selective Adsorption of CO2, 

J Phys  Chem C, 119 (2015) 5395-5402. 

[41] M. Saleh, J.N. Tiwari, K.C. Kemp, M. Yousuf, K.S. Kim, Highly Selective and Stable Carbon Dioxide Uptake in 

Polyindole-Derived Microporous Carbon Materials, Environ Sci Technol, 47 (2013) 5467-5473. 

[42] R. Bera, M. Ansari, S. Mondal, N. Das, Selective CO2 capture and versatile dye adsorption using a microporous 

polymer with triptycene and 1,2,3-triazole motifs, Eur Polym J, 99 (2018) 259-267. 

[43] H.J. Zhang, C. Zhang, X.C. Wang, Z.X. Qiu, X.M. Liang, B. Chen, J.W. Xu, J.X. Jiang, Y.D. Li , H. Li, F. Wang, 

Microporous organic polymers based on tetraethynyl  building blocks with N-functionalized pore surfaces : 

synthesis, porosity and carbon dioxide sorption, Rsc Adv, 6 (2016) 113826-113833. 

[44] X.Y. Wang, Y. Zhao, L.L. Wei, C. Zhang, J.X. Jiang, Nitrogen-rich conjugated microporous polymers : impact of 

bui lding blocks on porosity and gas adsorption, J Mater Chem A, 3 (2015) 21185-21193. 

[45] T. Ratvi ji tvech, R. Dawson, A. Laybourn, Y.Z. Khimyak, D.J. Adams, A.I. Cooper, Post-synthetic modification of 

conjugated microporous polymers, Polymer, 55 (2014) 321-325. 

[46] J.W. Zhang, M.C. Hu, S.N. Li , Y.C. Jiang, Q.G. Zhai, Microporous  rod metal-organic frameworks with diverse 

Zn/Cd-triazolate ribbons as secondary building units for CO2 uptake and selective adsorption of hydrocarbons , 

Dalton T, 46 (2017) 836-844. 

[47] P. Arab, M.G. Rabbani , A.K. Sekizkardes , T. Islamoglu, H.M. El -Kaderi , Copper(I)-Catalyzed Synthesis of 

Nanoporous  Azo-Linked Polymers : Impact of Textural Properties  on Gas Storage and Selective Carbon Dioxide 

Capture, Chem Mater, 26 (2014) 1385-1392. 

[48] Q.M. Pan, M. Wang, H.B. Wang, Separating small amount of water and hydrophobic solvents  by novel 

superhydrophobic copper meshes, Appl Surf Sci, 254 (2008) 6002-6006. 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

Graphical abstract 

ACCEPTED MANUSCRIPT


