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Abstract

The cost of implementing syntactically distinct Domain Specific Languages (DSLs) can be reduced by
homogeneously embedding them in a host language in cooperation with its compiler. Current homogeneous
embedding approaches either restrict the embedding of multiple DSLs in order to provide safety guarantees,
or allow multiple DSLs to be embedded but force the user to deal with the interoperability burden. In
this paper we present the μ-calculus which allows parameterisable language embeddings to be specified
and analysed. By reducing the problem to its core essentials we are able to show how multiple, expressive
language embeddings can be defined in a homogeneous embedding context. We further show how variant
calculi with safety guarantees can be defined.
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1 Introduction

Domain Specific Languages (DSLs) are mini languages used to aid the implementa-
tion of recurring problems. What identifies a particular language as being a ‘DSL’
is partly subjective; intuitively, it is a language with its own syntax and semantics,
but which is smaller and less generic than a typical GPL such as Java. The DSL
premise is simple: a one off, up front, cost allows classes of systems to be created at
low cost and in a reliable and maintainable fashion [16].

DSLs have a long history, although they have often gone by different names
[1]. Traditional, widely used DSLs such as the UNIX make program and the yacc

parsing system have been implemented as stand-alone systems, which are effectively
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cut-down programming language compilers and virtual machines rolled into one; the
associated implementation costs and lack of practical reusability have hampered the
creation of DSLs [10]. An alternative approach to stand-alone implementation is
embedding, where a DSL is ‘hosted’ within a host programming language; in other
words, the host languages’ syntax is extended with the DSLs syntax. A simple ex-
ample of such embedding is an SQL DSL; by using a DSL instead of an external
database library one gains several advantages such as the static detection of SQL
syntax errors and the safe insertion of external values into SQL statements. Lan-
guage extension has been a goal of language researchers for several decades (see
e.g. [12]) but most early efforts were unable to prevent unintended and unwanted
interactions between languages and their extensions [5]. Later approaches, though
largely theoretical, did show that certain forms of language extension could avoid
such problems [3,4]. More recently, DSL embedding approaches such as Stratego [2],
XMF [6,7], Converge [17], Metalua [9], and others (e.g. [14,8,13]) have shown that
this is a viable approach.

DSL embedding techniques can be classified as either heterogeneous or homoge-
neous [17]. Put simply, heterogeneous embedding (e.g. Stratego) is when the system
used to compile the host language, and the system used to implement the embedding
are different (note that this does not imply that the host language must be different
than the language used to implement the embedding). In contrast, homogeneous
embedding (e.g. Converge, Metalua, XMF) uses the language’s compiler to compile
the host language and to facilitate DSL embedding. Heterogeneous embedding has
the advantage that it can be applied to any host language and any embedded lan-
guage. However this means that heterogeneous embedding systems generally have
little or no idea of the semantics of the languages they are embedding into, meaning
that such techniques are hard to scale up [17]. Furthermore heterogeneous tech-
niques typically assume that a single DSL is embedded into a single host language:
multiple distinct DSLs must be manually welded together in order to create a single
heterogeneous embedding which does not suffer from syntax errors. Homogeneous
embedding, however, is inherently limited to a specific host language, but is typically
able to offer greater guarantees about the safety of the resulting embedding, allow-
ing larger and more complex DSLs to be embedded. Homogeneous embedding also
places no conceptual restrictions on embedding multiple DSLs in one host language,
or having DSLs interleaved within each other.

In practice, current homogeneous embedding technologies limit the extent to
which multiple DSLs can be embedded without resorting to unwieldy hacks [9].
For example, Metalua allows multiple DSLs to be embedded within it, but requires
manipulation of the global parser; no guarantees are made that different extensions
will co-exist peacefully, or even that individual extensions are well-formed. Converge,
on the other hand, allows multiple DSLs to co-exist and enforces reasonable safety
guarantees but does so by making DSLs unpleasantly syntactically distinct, and
making embedding DSLs within each other extremely difficult.

We believe that the distance between the conceptual promise and current practi-
cal realities of homogeneous embedding are in large part because of a lack of under-
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standing of the underlying theory of language embedding in a homogeneous setting.
In this paper we present the μ-calculus for specifying and analysing homogeneous
language embedding. The calculus extends the λ-calculus with facilities for defining
and using language embeddings, allowing parameterisable language definitions to be
scoped to portions of a source file, and to be nested arbitrarily within each other.

This paper is structured as follows: Section 2 defines the syntax and semantics
of the μ-calculus and shows how to precisely define an embedded language; Section
3 describes different categories of language embedding and how they are encoded in
the calculus; Section 4 shows how a language with more than one embedding can be
defined using the calculus and how safety criteria are represented; finally, Section 5
concludes the paper with an analysis and discussion of further work.

2 μ: A Language Embedding Calculus

The μ-calculus is an extension of the λ-calculus that supports embedded languages.
New languages can be added to μ by defining their syntax, dynamic semantics, and
their relationship to the execution context of the host language.

The definition and subsequent use of an embedded language takes the form of
a standard structure within the μ-calculus. This section defines the calculus and
defines how languages are embedded within it. It is structured as follows: Section
2.1 defines the syntax of the calculus and provides an example of its use; languages
are embedded in terms of their abstract syntax, Section 2.2 defines a data type
that represents μ-calculus abstract syntax; Section 2.3 defines the semantics of the
μ-calculus by embedding it within itself.

2.1 Overview

The syntax of the μ-calculus is:
E ::= expressions

V variables

| fun(V )E functions

| EE applications

| if E then E else E conditionals

| (E,E,E) language definition

| lang E : T [C] language embedding

T ::= . . . syntax types

C ::= . . . raw text

μ contains the conventional λ-calculus, plus language definition and language em-
bedding components. A language definition defines a language’s semantics as an
interpreter and how to embed it in the context of a host.

A language embedding allows the use of a language within the host calculus.
In essence, language definitions define interpreters and a translation from a host
interpreter to the embedded language’s interpreter. A language embedding is a use
of the definition in a context provided by the host language.
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More specifically, the language definition triple (eval, load, unload) defines: an
evaluator, eval, which evaluates the language in terms of its state; a loader, load,
that maps from the host language state to the embedded language state; and an
unloader, unload, that translates the embedded state back into a host state. The
following is an overview of how the calculus might be used:

// Define an embedded SQL-like language...
type SQL = ... // type definition for SQL.
let sql = (evalSQL,loadSQL,unloadSQL)

where
evalSQL = ...
loadSQL = ...
unloadSQL = ...

// Define an embedded HTML-like language...
type HTML = ... // type definition for HTML.
let html = (evalHTML,loadHTML,unloadHTML)

where ...
// Use the two embedded language definitions.
// Perform database queries to produce all the
// (name,age) pairs for adults...
let results =

lang sql:SQL[SELECT name,age from Customer WHERE age > 18]
in // Produce the HTML table showing the results...

lang html:HTML[
<TABLE>
for name,age in results do
<TR>
<TD> name </TD>
<TD> age </TD>

</TR>
</TABLE>

]

2.2 Abstract Syntax Types

The type definition for the μ-calculus is as follows:
type Exp(T) =

Var(String)
| Lambda(String,Exp(T))
| Apply(Exp(T),Exp(T))
| If(Exp(T),Exp(T),Exp(T))
| Lang(T)

The type definition is parameterized with respect to the type of embedded languages:
T. If a single language L is embedded then the resulting type is Exp(L). If more than
one language is embedded, then we use a disjoint type combinator to express the
type of the resulting language: Exp(L + M). Finally, a fix-point operator Y can be
used to construct a type. For example, Y(Exp) is the type of languages constructed
by embedding the μ-calculus in itself.

2.3 Semantics

The semantics of the μ-calculus is defined as a language embedding as follows. The
evaluator for the calculus can be any suitable definition. To maximise the potential
for future extension we implement the evaluator as a state machine. This ensures
that any embedded language has access to all data and control structures of the
language. The canonical state machine for a λ-calculus is the SECD machine [11].
The type definition is as follows:

type State = ([Value],Env,[Instr],State) | Empty
type Env = String->Value
type Instr = Exp(T) | App | If(Exp(T),Exp(T))
type Value = Basic | Closure | State
type Closure = (String,Env,Exp(T))
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The evaluator is a state transition function. It is supplied with a current machine
state, performs a single transition, producing a new state. It is also supplied with an-
other state transition function eval to which it supplies the new state. By supplying
eval, the basic μ-calculus evaluator can be extended:

evalExp(eval)(s) =
case s of
([v],_,[],Empty) -> s
(s,e,Var(n):s,d) -> eval(e(n):s,e,c,d)
(s,e,Lambda(n,b):c,d) -> eval((n,e,b):s,e,c,d)
(s,e,Apply(o,a):c,s) -> eval(s,e,a:o:App:c,d)
(s,e,If(f,g,h):c,s) -> eval(s,f:If(g,h):c,d)
(true:s,e,If(g,h):c,d) -> eval(s,e,g:c,d)
(false:s,e,If(g,h):c,d) -> eval(s,e,h:c,d)
((n,e’,b):v:s,e,App:c,d) -> eval([],e’[n->v],[b],(s,e,c,d))
(R:():s,e,App:c,d) -> eval((s,e,c,d):s,e,c,d)
(I:v:s,e,App:c,d) -> eval(v)
([v],_,[],(s,e,c,d)) -> eval(v:s,e,c,d)

end

The case statement above defines a state transition machine where states have the
form (S,E,C,D) where S is a stack of intermediate results implemented as a list, E
is an environment of variable bindings, C is a sequence of machine instructions, and
D is a machine resumption state. The syntax of the above language is largely self
explanatory. Lists are represented as either standard square bracketed sequences of
elements, or cons pairs h:t. A name n is looked up in an environment e with e(n),
and a value v is added to the environment with e[n->v]. The builtin operators
R and I are used to reify and intern machine states. Assuming the existence of a
parsing mechanism that indexes on the type of a language definition, the expression
lang(e,l,u):t[c] is equivalent to the following expression:

I(newState)
where newState = u(termState,initialState)
where termState = e(startState)
where startState = l(initialState,parse(t)(c))
where initialState = R()

The expression above uses a parser that is indexed on the type t of the embedded
language. It is outside the scope of this paper to analyse how parsing mechanisms
can be supported by the μ-calculus; however, the parser produces values of the
appropriate abstract syntax type.

The initial state is created by reifying the current μ-context. The initial state
is supplied to the loader l together with the abstract syntax to produce a starting
state for the embedded language evaluator. The starting state is supplied to the
evaluator e to produce a terminal state. The terminal state along with the original
initial state is supplied to the unloader to produce a new host language state. The
new state is then interned by supplying it to the host language interpreter.

If we embed μ in itself then the load and unload operations are identity. Therefore
the definition of μ is:

let Mu = Y(Exp)
let evalMu = Y(evalExp)
let loadMu((s,e,c,d),x) = (s,e,x:s,d)
let unloadMu(s,_) = s
let muL = (evalMu,loadMu,unloadMu)

Now we can write programs that arbitrarily nest the calculus in itself (given suitable
sugarings for infix operators):

fun(x) lang muL:Mu[fun(y) lang muL:Mu[x + y]]
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In conclusion a language definition consists of: a parser for the language (which is
not considered further by this paper); a data type for the language abstract syntax;
a context data type for the language evaluator; an evaluator that processes the
context; a loader that maps from host contexts to embedded contexts; an unloader
that maps from embedded contexts to host contexts.

3 Categories and Styles of Language Embedding

The μ-calculus can be used to embed any language l within a host h. The intended
usage is that h is defined as a language within μ and then l is defined within h.
The approach supported by μ forces a precise definition of how l is embedded within
h including any safety criteria. μ allows the embedding to be analysed prior to
implementation.

There are a number of different types of language embedding. Some embeddings
are functional because uses of the language denote values; some are non-functional
because they modify the host language context; many language embeddings require
that the bindings from the host language are transferred to the embedded language;
some embedded languages require private state and some require that the state can
be communicated to other embedded languages.

The μ-calculus can be used to define what we term uniform and ad-hoc languages.
Uniform languages are those that extend the μ-calculus interpreter, and thus allow
languages to be embedded inside them using the standard μ-calculus techniques.
Ad-hoc languages are those that define an arbitrary interpreter; while it is still
possible to embed other languages within them, this must be done manually on a
case-by-case basis. This section provides examples of different categories of language
embedding using the μ-calculus.

3.1 A Simple Extension

One of the simple programming language-like features not found in μ is a let-binding.
In this section we show how this can be added as a language embedding to μ. The
type for expressions in the language Let is defined by extending the basic expression
language:

type LetExp(T) = Let(String,Let(T),Let(T)) | Exp(T)
type Let = Y(LetExp)

An evaluator for Let is defined by extending the evaluator for the basic calculus:
let evalLetExp(eval)(s) =
case s of
(s,e,Let(n,x,b):c,d) -> eval(s,e,x:Let(n,b):c,d)
(v:s,e,Let(n,b):c,d) -> eval([],e[n->v],[b],(s,e,c,d))
else evalExp(eval)(s)

end

The Let language definition follows the same structure as the Mu language definition:
the load and unload operations are essentially identity mappings:

type Let = Y(LetExp)
let evalLet = Y(evalLetExp)
let loadLet((s,e,c,d),x) = (s,e,x:c,d)
let unoadLet(s,_) = s
let letL = (evalLet,loadLet,unloadLet)
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Now, the let language can be used when it is embedded in the basic calculus which
is now of type Exp(Let):

fun(x) lang letL:Let[let y = x + 1 in y ]

Note also that because the Let language is uniform, it can be used as the basis for
further language embeddings. This is shown in the following section.

3.2 Localized Data

A language extension is often useful when creating data structures. If the application
domain is specialized then the language extension can provide abstractions that make
the construction of the data declarative in the sense that low-level language features
that are necessary to create the structure are hidden away.

The definition of a new feature for data is an example of a functional language
embedding. Such a language is not necessarily uniform, however it does not modify
the state of the host language and is used exclusively for its value.

This section provides an example of a functional embedding for implementing
arrays. An array can be encoded in the μ-calculus using functions:

let mkArray(j) = null
let set(i,v,a) = fun(j) if i = j then v else a(j)

There may be many initial values when an array is created. Without a declarative
language feature to achieve this, the creation will involve many nested calls to set.
The language Array is used to create arrays:

lang letL:Let[
let mkArray = fun(limit) lang arrayL:Array [ 0 .. limit ]
in mkArray(100)]

The abstract syntax of the array language is not an extension to Exp:
type ArrayExp = (ArrayVal,ArrayVal)
type ArrayVal = Var(String) | Int

The evaluator for the array language only requires information about the binding
context from the host language. The evaluator creates a value of type [Value]:

let evalArray((lower,upper),env) =
letrec mkList(l,u) = if l = u then [l] else lower:mkList(l+1,u)

deref(Var(n)) = env(n)
deref(i) = i

in mkList(deref(lower),deref(upper))

The host language cannot manipulate values of type [Value] (and in general for
an embedded language there may be a wide variety of ‘foreign’ values). Therefore
the array unloader must translate between the array representation and the calculus
representation:

let transArray : [Value] -> Closure
let transArray([],i) = (j,[],[| null |])
let transArray(v:a,i) =
(j,a->transArray(a,i+1),[| if j = <i> then <v> else a(j) |])

The operation transArray defined above uses quasi-quotes to construct and manip-
ulate abstract syntax in terms of concrete syntax. We will assume that this language
feature is available in the μ-calculus since it is simply sugar for the equivalent ex-
pression in terms of AST constructors. Quasi-quotes have been implemented in a
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number of languages to support syntax manipulation including Template Haskell
[15], Converge and XMF.

Given the translation from arrays (lists of values) to a closure-based representa-
tion, it is possible to define the array loader and unloader:

let loadArray((s,e,c,d),(l,u)) = ((l,u),e)
let unloadArray(a,(s,e,c,d)) = (transArray(a,0):s,e,c,d)

We can now define a language that embeds both the μ-calculus and arrays into Let

type Lang(T) = Exp(Let(Exp(T) + ArrayExp)
type Array = Y(Lang)
let arrayL = (evalArray,loadArray,unloadArray)

The language used in the example above is defined by Exp(Array).

3.3 State Modification

Not all languages are functional. A non-functional language can affect the state of
the host language in some way. The impact of the language can be on the data, on
the control flow or both. This section provides a simple ad-hoc language embedding
that affects the state of data in the host language.

Consider the case where we want to print out a message each time a μ-calculus
function is called. The calculus does not provide any features that allow us to toggle
function tracing on and off. A new language feature is required that allows the
following:

lang traceL:Trace[ traceOn ]
... // Tracing is now on...
lang traceL:Trace[ traceOff ]
... // No more tracing

We will assume that there are builtin functions called enter and exit in the μ-
calculus that allow functions to be traced. So a function fun(x) b can be traced by
changing the function body to:

fun(x) exit(b,enter(x))

The language for tracing is very simple:
type Trace = traceOn | traceOff

When tracing is switched on, the embedded language makes a global change to the
host state. Each closure and function expression must be modified to insert calls to
the tracing functions:

let trace(s,e,c,d) = (trace(s),trace(e),trace(c),trace(d))
let trace(Empty) = Empty
let trace([]) = []
let trace(x:s) = trace(x):trace(s)
let trace(n->v) = n->trace(v)
let trace(n,e,b) = (n,trace(e),[| exit(<trace(b)>,enter(<n>)) |])
let trace(Var(n)) = Var(n)
let trace(Lambda(n,b) = Lambda(n,[| exit(<trace(b)>,enter(<n>)) |])
let trace(Apply(m,n)) = Apply(trace(m),trace(n))
let trace(App) = App

The untrace operator performs the changes in reverse. Now the tracing language
can be defined in terms of the global modifier to the host language state:

let evalTrace(s,traceOn) = trace(s)
let evalTrace(s,traceOff) = untrace(s)
let loadTrace(s,t) = (s,t)
let unloadTrace(s,s’) = s

T. Clark, L. Tratt / Electronic Notes in Theoretical Computer Science 253 (2010) 75–8882



let traceL = (evalTrace,loadTrace,unloadTrace)

The calculus with tracing in is defined by Y(Lang) where:
type Lang(T) = Exp(Exp(T) + Trace)

3.4 Control Flow

The previous section defines a non-functional embedding that influences the struc-
ture of data in the host language. Another form of non-functional embedding affects
the control flow of the host language. This is only possible if the embedded language
has access to the complete state of the host language. It can be achieved by passing
continuations to the embedded language, however this makes it difficult to define
transformations on the state. Instead, if evaluators are defined in terms of transition
machines then embedded languages have access to the required information in an
appropriate format.

Suppose that we want a new language construct that aborts the program under
a given condition:

lang letL:Let[
let x = f(100)
in lang abortL:Abort[ stop if(x > 100) ]]

The condition under which the program aborts is written in the μ-calculus, therefore
the language is defined as:

type Abort(T) = Exp(T)
type Lang(T) = Exp(Let(Exp(T) + Abort(Exp(T))))

Note that in the example above the type Abort is a synonym for Exp, however the
parser will use a different constructor to tag the result of parsing the embedded
language.

The evaluator for the embedded language must extend that of the μ-calculus:
let evalAbort(eval)(expState,trueState,falseState) =
trueState when eval(expState) = ([true],_,_,_)
falseState otherwise

The loader and unloader for the Abort language are defined as follows:
let loadAbort((s,e,c,d),x) =
(([],e,[x],Empty),(s,e,c,d),([error],[],[],Empty)

let unloadAbort(s,_) = s

The language for Abort is defined:
let abortL = (evalAbort(Y(evalExp)),loadAbort,unloadAbort)

3.5 Private State

Previous examples have shown how the identifiers that are in scope within the host
language can be passed down to an embedded language. In general, this is achieved
by the loader for the language passing the current environment to the evaluator for
the embedded language.

Multiple occurrences of the same embedded language may require access to
shared data. This can be achieved through binding in the host language and mak-
ing the variables in scope available to the embedded language. However, this is not
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always desirable since the embedded language must know the names of the vari-
ables that hold the values of its state. In general, it is unsafe to rely on the use of
particular variable names to pass information from one language to another.

Another option is to encode the state required by the embedded language as part
of the evaluation state of the host language. This requires the host language state
to be extended. This section shows how the state is extended.

Consider a language Secret that has a single boolean flag. Each occurrence of
the embedded language may choose to toggle the flag or print it out:

type Secret = Toggle | Print

There are two new elements of state required by the secret language: the flag; the
stream of outputs. Therefore, the state of the host calculus becomes: (s,e,c,d,f,o)
where f is a boolean flag and o is a sequence of boolean representing the output of
the program.

type SecretState = ([Value],Env,[Instr],SecretState,Bool,[Bool])

We have already defined evalExp and do not want to change it to reflect the extended
state. The solution is to wrap the definition of evalExp with a new definition that
lifts the signature from State -> State to SecretState -> SecretState. This is
defined as follows:

let evalExp’(eval)(s,e,c,d,f,o) = evalExp(eval’)(s,e,c,d)
where eval’(s,e,c,d) = eval(s,e,c,d,f,o)

The evaluator for Secret is simple:
let evalSecret((f,o),Toggle) = (!f,o)
let evalSecret((f,o,Print) = (f,f:o)

The language definition for Secret is:
let loadSecret((s,e,c,d,f,o),x) = ((f,o),x)
let unloadSecret((f,o),(s,e,c,d,_,_)) = (s,e,c,d,f,o)
let secretL = (evalSecret,loadSecret,unloadSecret)

The calculus with Secret embedded within Let can be defined as Y(Lang):
type Lang(T) = Exp(Let(Exp(T) + Secret))

3.6 New Binding Schemes

The μ-calculus is statically scoped. Dynamic scoping allows variables to be bound to
values such that they are available anywhere in the program during the evaluation
of a given expression. Dynamic scoping is useful to capture the situation where a
variable would need to be passed to many operations as an argument. Common Lisp
is an example of a language that provides both static and dynamic scoping. The
following example shows how a dynamic binding scheme works:

lang letL:Let[
let add = fun(x) x + y
in lang dynL:Dyn[dyn y = 100 in add(20)]]

The function add takes a formal parameter x and adds it to y which is currently not
in scope. The embedded language Dyn binds y and then calls add supplying it with
20. The result of the program is 120.
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The dynamic binding language requires a new type of environment for dynamic
variables. Just as Let extends and contracts the static environment, Dyn extends
and contracts the dynamic environment. However, the evaluator for the basic Exp

language cannot reference a new type of environment since the state is fixed.
The solution is to introduce a new state element for a dynamic environment

and to merge the static and dynamic environments when the Dyn interpreter passes
control to the Exp interpreter. When the state is returned by the Exp interpreter,
the dynamic environment is extracted and replaced into the Dyn state. The type
Dyn is defined:

type Dyn(T) = DLet(String,Dyn(T),Dyn(T)) | Exp(T)

The evaluator for Dyn is:
let evalDyn(eval)(s) =
case s of
(s,e,y,DLet(n,x,b):c,d) -> eval(s,e,y,x:DLet(n,b):c,d)
(v:s,e,y,DLet(n,b):c,d) -> eval([],e,y[n->v],[b],(s,e,y,c,d))
([v],_,_,[],(s,e,y,c,d)) -> eval(v:s,e,y,c,d)
else evalExp’(eval)(s)

end

When the evaluator evalDyn is called it checks for dynamic binding expressions at
the head of the control. The dynamic binding expression evaluates the value-part
and extends the dynamic environment in the machine state. The evaluator evalExp
must be lifted to take account of the extra state component:

let evalExp’(eval)(s,e,,y,c,d) = evalExp(eval’)(s,y + e,c,d)
where eval’(s,e,c,d) = eval(s’,e’,y,c,d’)
where (s’,e’,c,d’) = (s,e,c,d)/y

The definition of evalExp’ given above merges the dynamic and lexical environments
when it calls evalExp. When the environments are merged. the lexical environment
always takes precedence allowing lexically bound variables to shadow the dynamic
variables. Since the lexical environment always shadows the dynamic environment,
it is possible to remove the dynamic environment from the resulting state. The /

operator removes the ’base’ environment wherever it occurs in the supplied state.

3.7 Summary

This section has described categories of language embedding using the μ-calculus.
The calculus can be used to design embedded languages in terms of the semantics
both of the language and its embedding within the host and each language definition
takes the form of a triple: evaluator, loader and unloader. The design of an em-
bedding must answer questions relative to the host and sibling languages: syntax;
semantics; load and unload; safety criteria.

4 Example Application

This section provides an example of multiple embedded languages that can work
together. When designing multiple embeddings we must consider the interaction
of the languages and any safety criteria that prevent the languages interacting in
undesirable ways. The μ-calculus approach explicitly represents components of the
embeddings that make it easy to ensure safety criteria are achieved.
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Consider writing web-applications that use relational database tables to store
data and HTML to provide the user-interface. We will use the basic μ-calculus as
the host language; it is representative of a general purpose host. Two languages are
embedded within the host: SQL is used to process the database tables; HTML is
used to produce the user-interface. See Section 2.1 for the language definitions.

4.1 Database Queries

The first step is to define an SQL-like language. We limit this to selecting fields from
a named database table where the field values satisfy a given predicate expression:

type SQLExp(T) = ([String],String,Exp(T))

The evaluator for SQL requires an extra state component that maps table names to
tables. We represent tables as sequences of table rows:

type SQLState = ([Value],Env,[Instr],SQLState,Tables) | Empty
type Tables = String->DBTable
type DBTable = [DBRow]
type DBRow = String->Value

The evaluator must handle the extra SQL constructs:
let evalSQL(eval)(s) =
case s of
(s,e,(ns,n,b):c,d,t) -> eval(t(n)/ns:[]:s,e,sel(b):c,d,t)
((vs:vss):s,e,sel(b):c,d,t) ->
eval([],e[ns->vs],[b],(vss:s,e,cif(vs):sel(b):c,d,t),t)

(true:rs:vss:s,e,cif(vs):c,d,t) -> eval(vss:(vs:rs):s,e,c,d,t)
(false:rs:vss:s,e,cif(vs):c,d,t) -> eval(vss:rs:s,e,c,d,t)
else evalExp(eval’)(s,e,c,d)

where (s,e,c,d,t) = s
eval’(s,e,c,d) = eval(s,e,c,d,t)

end

The SQL evaluator defined above detects SELECT expressions at the head of the
control, looks up the table in the environment t(n) and selects the named fields
t(n)/ns. The machine then uses the new instructions sel and cif to process each
value-tuple in turn and build up a sequence of values that satisfy the predicate
expression b.

4.2 Web Page Generation

The HTML language is defined as follows:
type HTML(T) = [Row(T)]
type Row(T) = Row[Col(T)] | ForRow([String],String,Row(T))
type Col(T) = Col(Exp(T)) | ForCol([String],String,Exp(T))

The state for the HTML language uses a new state component that models the output:
type HTMLState = ([Value],Env,[Instr],HTMLState,[String]) | Empty

The evaluator is defined as follows:
let evalHTML(eval)(s) =
case s of
(s,e,[rs]:c,d,o) -> eval(s,e,:rs:tend:c,d,"<TABLE>":o)
(s,e,tend:c,d,o) -> eval(s,e,c,d,"</TABLE>":o)
(s,e,Row(cs):c,d,o) -> eval(s,e,cs:rend:c,d,"<TR>":o)
(s,e,rend:c,d,o) -> eval(s,e,c,d,"</TR>":o)
(s,e,Col(b):c,d,o) -> eval(s,e,b:cend:c,d,"<TD>":o)
(v:s,e,cend:c,d,o) -> eval(s,e,c,d,"</TD>":v:o)
(s,e,for(ns,n,r):c,d,o) -> eval(e(n):s,e,next(ns,r):c,d,o)
(vs:vss:s,e,next(ns,r):c,d,o) -> eval(vss:s,e[ns->vs],r:c,d,o)
([]:s,e,next(ns,r):c,d,o) -> eval(s,e,c,d,o)
else evalExp(eval’)(s,e,c,d)

where (s,e,c,d,o) = s
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eval’(s,e,c,d) = eval(s,e,c,d,o)
end

The HTML evaluator defined above detects table declarations at the head of the con-
trol. HTML output is built up as each element of the table declaration is processed.
The evaluator uses the new instructions tend, rend and cend to produce the ter-
minating tags. The for-loops within rows and columns are processed using the new
instructions for and next.

4.3 Language Collaboration and Safety Criteria

The state of the host language must merge the requirements of the two embedded
languages. Therefore:

let evalExp’(eval)(s,e,c,d,t,o) = evalExp(eval’)(s,e,c,d)
where eval’(s,e,c,d) = eval(s,e,c,d,t,o)

The load and unload mappings for the language definitions can then perform the
appropriate state projections:

let loadSQL((s,e,c,d,t,o),sql) = (s,e,sql:c,d,t)
let unloadSQL((s,e,c,d,t),(_,_,_,_,_,o)) = (s,e,c,d,t,o)
let loadHTML((s,e,c,d,t,o),html) = (s,e,html:c,d,o)
let unloadHTML((s,e,c,d,o),(_,_,_,_,t,_)) = (s,e,c,d,t,o)

The definition above specifies two languages and how they interact. Each language
requires state—t for database tables and o for the HTML output. The specification
requires that these states are maintained separately and interact in well-defined
ways (in the calculus this is specified by scoping rules). Any implementation that is
consistent with μ, SQL and HTML is required to respect this safety criteria.

5 Conclusions

In this paper we defined the μ-calculus which allows languages and homogeneous
language embeddings to be specified. We showed that it is sufficiently expressive
that it can be used to add new language features to itself in a coherent fashion.
We identified and defined functional, non-functional, ad-hoc and uniform language
embedding categories. We finally showed how the μ-calculus can be used to specify
how DSLs such as an HTML generation language and SQL can be embedded within
each other.
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