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Abstract:  

Surface functionalisation of mesoporous silicas is critical to their application as sorbents and catalyst 

supports. Here we report the impact of chloride on the physicochemical properties of SBA-15, 

notably the surface density of reactive hydroxyl groups. Bulk and surface properties were 

characterised by N2 porosimetry, X-ray diffraction, SEM, TEM, FTIR spectroscopy, and Inverse gas 

chromatography (IGC). Increasing the HCl concentration from 0.1→2.0 M during the sol-gel 

preparation of SBA-15 increased the surface silanol coverage two-fold, and slightly widened 

mesopores from 4.2 to 4.9 nm. IGC reveals that the specific surface energy and corresponding 

surface polarity of SBA-15 correlate with surface silanol properties, and hence tuning the HCl 

concentration during SBA-15 synthesis offers a facile route to hydrophilic or hydrophobic silicas, 

and in turn a means to control their functionalisation and sorptive properties.  
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1. Introduction 

Since the discovery of mesostructured templated silicas by the Mobil Oil Corporation in 1992 [1] 

they have found application in catalysis,[2] drug delivery and release,[3] adsorption and separation 

science, and liquid chromatography.[4-6] Such templated porous materials offer ordered pore 

networks and high surface areas which afford high loadings of uniformly dispersed active sites for 

catalysis or adsorption/separation applications, rendering them superior to conventional supports 

possessing disordered pore networks. Since the report of MCM,[1] other silica-derived materials 

have been discovered such as HMS,[7] KIT-6[8] and SBA-15.[9, 10] The latter is attractive as a 

catalyst support since the associated Pluronic templates facilitate large average pore diameters (5-15 

nm),[11] thick walls and excellent structural stability.[12] Organic modification of SBA-15 via post 

synthesis grafting (silylation) with alkyoxysilanes is a popular method to incorporate functional 

groups such as amines,[13, 14] nitriles,[15] carboxylic acids,[15] thiols,[13] and sulfonic acids[16] 

for catalysis or adsorption applications. The broad appeal of such surface modification processes is 

evident from the wide range of associated literature, with incorporation of acidic moieties explored 

for a range of reactions including esterification, transesterification, and dehydration,[17],[18] basic 

moieties exploited for CO2 adsorption[19] and condensation reactions,[20] and chelating agents such 

as carboxylic acid, thiol, or amine groups showing promise for heavy metal adsorption[21] and 

enzyme immobilisation.[15] However, post-grafting methods are limited by the low surface silanol 

loadings (essential for functional group attachment) intrinsic to conventional SBA-15.[22]  

The nature and distribution of silanol groups on silica surfaces are highly sensitive to the 

synthetic route. Infra-red studies on amorphous silica identify the presence of isolated and geminal 

silanols at 3700-3750 cm-1, weakly interacting vicinal pairs at 3500 cm-1,[23] and perturbed silanols 

at 3650 cm-1 (which are identified as non-accessible being located within intergrain voids).[24] 
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While the surface of mesoporous materials such as MCM-41 is composed of similar isolated, 

geminal and vicinal pairs of silanol groups,[25] SBA-15 exhibits another wide band at 3200-3500 

cm-1 attributed to vicinal chains, which are less reactive towards grafting due to a strong interaction 

with neighbouring silanols. Identifying the location of particular silanol classes on silica surfaces is 

difficult, however it is suggested that SBA-15 possesses a high concentration (~70 %) of silanol 

groups within the micropores produced by conventional sol-gel and hydrothermal syntheses, which 

may be inaccessible to even small silanes.[26]  

  Organosilane grafting on pre-formed silica surfaces is typically performed using either 

chloroform[27],[28], toluene,[16] or H2O/NaCl mixtures[18] as a solvent. Methods using organic 

solvents under anhydrous conditions are believed to favour preferential grafting of the isolated 

silanol groups prevalent on more hydrophobic silica surfaces.[29] However, the use of H2O/NaCl 

mixtures in hydrothermal saline promoted grafting (HSPG) treatments, can activate hydrophobic and 

hydrophilic silica surfaces, delivering higher loadings of grafted groups; it is believed that Cl- 

influences the silanol distribution by disrupting (surface) hydrogen bonded networks.[18] 

Anion addition during the synthesis of templated silica materials is usually motivated by their 

role in aiding micelle formation through decreasing the solubility of organic solutes in water. Such 

anions can be classified according to the so-called ‘Hofmeister series’ according to their ability to 

shift the phase equilibrium at a given molar concentration and follows: SO4
2- = HPO4

2- > F- > Cl- > 

Br- > I- > SCN-. Anions to the left-hand side of the Hofmeister series are believed to be ‘structure-

makers’, while those on the right-hand side are ‘structure-breakers’. Micellisation and phase 

separation thermodynamics are perturbed by the increased ionic strength following salt addition, with 

smaller halides having a higher heat of solvation in water,[30] thereby lowering the CMT (critical 

micellisation temperature) and CP (cloud point) of aqueous PEO-PPO-PEO solutions. Such effects 
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have been exploited for acid-free, sol-gel routes to 2D hexagonally-ordered SBA-15 materials, in 

which alcoholic NaCl is added to Pluronic P123 templating solutions.[31] Halides also offer a means 

to control the formation kinetics and domain size of silica mesostructures,[32] with NH4F/decane 

addition affording porous materials with a highly ordered, cuboid-like morphology: in this example, 

disordered mesoporous silicas formed in the absence of NH4F.[33] 

  SBA-15 is conventionally synthesised in the presence of HCl, and while only a handful of 

studies have investigated the influence of HCl concentration on the morphology of sol-gel 

synthesised SBA-15,[32, 34] none have explored its impact on surface hydroxylation and surface 

energetics. Here we explore the latter effect, through varying the concentration of HCl employed 

during the sol-gel synthesis of a SBA-15 mesoporous silica. Silanol densities were proportional to 

[HCl] during sol-gel synthesis, and favoured by shorter gelation periods. Increased silanol densities 

correlate with enhanced surface polarity. 

 

2. Experimental 

2.1. Preparation of SBA-15 with different HCl concentrations 

Briefly, 2.4 g of Pluronic P123 triblock copolymer was dissolved in 84 ml of aqueous HCl of chosen 

concentration (2, 1.5, 1, 0.5, or 0.1 M), and stirred at 35 °C for 72 h. Subsequently 5.5 ml of 

tetraethoxyorthosilicate (TEOS, 98 %, Acros Organics) was added to the solution which was 

maintained at 35 °C for a further 72 h gelation period under stirring (to ensure full hydrolysis and 

condensation of TEOS even at low [HCl]). A conventional SBA-15 reference was also prepared 

using 2 M HCl and a 24 h gelation period. The resulting sol-gel slurries were hydrothermally aged at 

80 °C for 24 h, after which the solid product was filtered, washed 3 times with deionised water, and 
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calcined in static air at 550 °C for 6 h (ramp rate 5 °C.min-1). These materials are denoted xSBA-15 

where x = 2.0, 1.5, 1.0, 0.5, or 0.1 M, with the reference denoted 2.0SBA-15-24h. 

 

2.3. Characterisation 

Surface areas and BJH pore size distributions were determined by N2 porosimetry using a 

Quantachrome Nova 2000e porosimeter, with isotherms processed using NOVAWin software. 

Samples were degassed at 120 °C for 2 h before analysis by N2 adsorption at -196 °C. BET surface 

areas were calculated over the relative pressure range 0.01-0.2, while pore diameters and volumes 

were calculated by applying the BJH method to the desorption isotherm for relative pressures >0.35. 

Low-angle powder XRD patterns were recorded on a PANalytical X’pertPro diffractometer fitted 

with an X’celerator detector and Cu Kα (1.54 Å) source with the goniometer calibrated against a Si 

standard (PANalytical). Low-angle patterns were recorded over the range 2θ = 0.3-8 ° with a step 

size of 0.01 °. TEM was performed using a JEOL 2100 transmission electron microscope operated at 

200 kV, with images recorded by a Gatan Ultrascan 1000XP digital camera, and image analysis 

undertaken using ImageJ software. Transmission IR measurements were recorded with a Nicolet 

Protege System 460 equipped with a MCT detector, using self-supporting wafers (5 mg.cm-2) 

prepared from uniformly-ground samples. Samples were placed in a transmission cell and heated at 

200 °C under high vacuum (10-6 mbar) for 2 hr prior to spectral acquisition, sufficient to remove any 

contribution from physisorbed water to the silanol region.[35] DRIFTS measurements were 

conducted using a Thermo Scientific Nicolet environmental cell and smart collector accessory on a 

Thermo Scientific Nicolet iS50 FT-IR Spectrometer with MCT detector. The catalysts diluted in KBr 

(10 wt%) were loaded in the environmental cell and evacuated at 200 °C for 2 h to remove 

physisorbed water/moisture.  Analyses were performed at 200 °C, with final spectra normalised to 
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the band at 1850 cm-1 characteristic Si-O-Si vibrations of SBA-15. 

Surface energies at infinite dilution were determined by a fully-automated Inverse GC system 

(IGC) (Surface Measurement Systems Ltd), following our previously reported method.[36, 37] 

Briefly samples were outgassed for 2 h at 120 °C to remove physisorbed water and impurities, after 

which they were exposed to pulses of polar (dichloromethane, acetonitrile, ethyl acetate, methanol) 

and apolar (hexane, heptane, octane, nonane, and decane) probe molecules. Dispersive surface 

energies were calculated from the gradient of a plot of ������	versus �(
�
�)

�

� (equation 1): 

������	 = 		2��(
�
�)

�

��(
�
�)

�

� + ��������    (1) 

where NA is Avogadro’s number, α is the surface area occupied by the probe molecule, VN is the 

specific retention volume and 
�
�and 
�

�are dispersive components of the solid and liquid surface 

energy respectively. Specific surface energies are calculated from the deviation of ������	values for 

polar probes and the gradient of the plot of ������	versus �(
�
�)

�

�. 

 

3. Results  

3.1 Effect of [HCl] on textural properties 

The successful synthesis of a family of xSBA-15 materials, employing 0.1-2 M HCl and a gelation 

period of 72 h, was first verified by N2 porosimetry and XRD. N2 porosimetry (Fig. S1) confirmed 

all materials exhibit Type IV isotherms with H1 hysteresis loops characteristic of SBA-15. The 

isotherm hysteresis loop shifted slightly to higher partial pressure with increased [HCl], while BJH 

pore size distributions revealed a monotonic increase in the average pore diameter from 4.2→4.9 nm 

(Fig. 1). All materials exhibit well-defined low-angle reflections (Fig. 2) corresponding to the 100, 
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110 and 200 planes characteristic of the p6mm hexagonal structure of SBA-15,[10] confirming that 

structural integrity and long range order was retained with increasing [HCl]. The hydrodynamic 

diameter of P123 micelles in water is reported to increase with [HCl] due to stronger hydrogen 

bonding with protonated water molecules and expansion of the outer PEO micellar corona.[38, 39] In 

the presence of TEOS, high [HCl] are proposed to increase the density of silicatropic liquid-crystal 

seeds arising from acid catalysed hydrolysis of the silane, and passivate their growth, resulting in 

thinner walls. [40] The net result is an increase in pore diameter, but constant unit cell size. 

 

 

 

Fig. 1. BJH pore size distribution of SBA-15 prepared with varying [HCl] (offset for clarity). 
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Fig. 2. Low-angle XRD patterns of SBA-15 prepared with varying [HCl] (offset for clarity). 

 

Comparison of N2 porosimetry data with the 2.0SBA-15-24h reference material (Fig. S2) shows that 

the hysteresis loop of the desorption isotherm shifted to higher partial pressure upon decreasing the 

gelation time from 72→24 h, associated with an increase in the average mesopore diameter (Fig. 

S3a) and consistent with a shift of low-angle XRD reflections to lower angle (Fig S3b). Such 

observations are in accordance with literature, wherein silicate assembly is reported to occur rapidly 

around the Pluronic template during the first two hours of SBA-15 synthesis,[41] and followed by 

micelle contraction and elongation during densification of the walls; [42] gelation times up to 24 h 

result in decreased pore diameters.[43] Longer gelation times are not reported in the literature, 

however our present results suggest that the evolution of structural properties continues. 

Textural and structural properties of the different SBA-15 materials are summarised in Table 1, 

which shows that 2.0SBA-15 exhibited a higher specific area and pore volume for shorter aging 

times (24 h) 
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Table 1. Textural and structural properties of SBA-15 prepared with 0.1-2.0 M [HCl] and 72 h gelation time. 
Conventional SBA-15 prepared at 2 M [HCl] and 24 h gelation time shown for reference. 

Materials 
BETa 

/m²g-1 

Vp 

/cm3.g-1 

BJH pore 

diameterb 

/nm 

Plane  

spacingc  

/nm 

Unit cell  

parameterd    

 /nm 

 Wall  

thicknesse  

/nm 

0.1SBA-15 611 0.63 4.2 8.1 9.4  5.1 
0.5SBA-15 766 0.74 4.7 8.2 9.5  4.8 
1.0SBA-15 845 0.90 4.9 8.3 9.6  4.7 
1.5SBA-15 873 0.80 4.9 8.2 9.5  4.6 
2.0SBA-15 928 0.87 4.9 8.1 9.4  4.6 
2.0SBA-15-24h 1130 1.2 5.4 8.6  9.9  4.5 
aFrom BET equation. bAnalyzed from the desorption branch. cFrom Braggs law assuming that the peak corresponds to the 
(100) plane. da0 = (2d100)/√3. ea0 - pore diameter. 

 

SEM micrographs demonstrate that increasing the acid concentration between 0.1 and 1.5 M HCl has 

little impact on the size or morphology of SBA-15, which forms extended worm-like fibrous bundles 

(Fig. 3). However, high concentrations of HCl are known to increase the rate of silica condensation 

and hence favour lower aspect ratio nanostructures, consistent with the transition from a fibre to 

particulate morphology observed for the 2.0SBA-15 sample.[9] TEM (Fig. 4) confirmed preservation 

of the 2D hexagonal structure for all the SBA-15 materials, irrespective of [HCl] or gelation time. 
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Fig. 3: SEM of xSBA-15 prepared with 0.1-2.0 M HCl and 72 h gelation; conventional 2.0SBA-15-24h shown bottom 
right for comparison. 
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Fig. 4: TEM of xSBA-15 prepared with 0.1-2.0 M HCl and 72 h gelation; conventional 2.0SBA-15-24h shown bottom 
right for comparison. 

 

Transmission FTIR spectra were subsequently recorded to assess the effect of [HCl] and 

gelation time on the surface hydroxyl content of SBA-15. Fig. 5 shows that all materials exhibited 

vibrational modes over the range 3200-3800 cm-1 characteristic of isolated, germinal, and vicinal 

silanols as depicted in Scheme 1. The band at 3710-3750 cm-1 is assigned to the stretching mode of 

either terminal silanols in a hydrogen-bonded vicinal chain, isolated silanols, or geminal silanols that 

lack hydrogen-bonded neighbours, while the broad band at 3000-3550 cm-1 is assigned to H-bonded 

silanols in vicinal chains.[29] Note that solid state 1H and 29Si NMR studies demonstrate that vicinal 

silanols are stable at the surface of porous silicas and aluminosilicates even after high temperature 

calcination at between 550 and 600 °C.[26, 44, 45] Clustering of silanol groups on SBA-15 gives rise 

to surface regions having different polarity: hydrophobic regions where siloxane bridges are located 

alongside isolated and geminal silanols (>3730 cm-1), and hydrophilic regions dominated by vicinal 
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groups (<3730 cm-1). According to Cauvel and co-workers,[46] the local environment of isolated 

silanols further modulates their acidity and stretching frequency.  

 

Fig. 5. Transmission FTIR spectra of SBA-15 as a function of [HCl] and gelation time: a) representative spectra of 
silanol region for 0.1 and 2.0 M [HCl] after 72 h gelation, alongside 2.0SBA-15-24h reference for comparison (spectra 
are normalised to the band at 1850 cm-1 characteristic of Si-O-Si vibrations); b) total silanol peak area from normalised 
spectra as function of [HCl] for xSBA-15. 
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Scheme 1: Typical frequencies of silanol groups on silica surfaces 

 

H-bonded silanols typically have a longer average O-H bond than isolated silanols, leading to lower 

vibrational frequencies in the order isolated (non-H bonded) > proton donor > proton donor-acceptor. 

Hence, the sharp band at 3743 cm-1 in Fig. 5a is assigned to isolated and geminal silanols, while the 

shoulder at 3710 cm-1 is assigned to terminal silanol groups with a H-bonded partner. Fig. 5a shows 

that for SBA-15 prepared using 2 M HCl, the gelation time strong influences the distribution of 

isolated, germinal, and vicinal silanols, with 24 h aged samples exhibiting a high density of vicinal 

silanols, whereas 72 h ageing favours isolated, germinal, and terminal silanols at the expense of 

vicinal silanols. Increasing the gelation time in acidic media promotes condensation of vicinal 

silanols, breaking up their domains and redistributing more hydrophobic silanol species. These 

observations are consistent with Si29 MAS-NMR studies which reveal an increased contribution from 

Q4 species on increasing gelation time from 2→24 h, attributed to silanol condensation.[43] 

Increased crosslinking of silanols under acidic conditions is also expected to densify silica walls, 

resulting in narrower pore diameters and increased wall thickness,[12]  consistent with our results in 

Table 1.  

Varying the [HCl] provides further insight into the silanol cross-linking process during SBA-

15 synthesis, and a potential role of the Cl- anion in influencing the -OH distribution or stability. Fig. 

5b shows that the overall intensity of silanol modes is directly proportional to [HCl], a surprising 
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observation since the concomitant increase in acidity would be expected to favour condensation 

reactions. This observation suggests that surface Cl- inhibits cross-linking of adjacent silanols, 

thereby helping to stabilise vicinal chains, particularly at short gelation times (≤24 h). DRIFT spectra 

(Fig. S4) of the Si-O-Si vibrational modes over the range 960-1450 cm-1 evidence little sensitivity of 

the local silica framework to [HCl]. These spectra are characterised by siloxane modes, which fall in 

two broad bands. The first, spanning 960-1110 cm-1, is assigned to ν(Si-OH), νas(Si–O–Si) modes of 

cyclic structures, and the transverse TO3 νas(Si–O–Si) mode of 6-ring structures. The second, 

spanning 1110-1250 cm-1 is assigned to the νas(Si–O–Si) mode of linear chains (associated with Si-

OH groups[47]), and the νas(Si–O–Si) and longitudinal LO3 νas(Si–O–Si) modes of 6-ring structures 

[48, 49]. 

 

3.3 Effect of [HCl] on surface energetics: 

The redistribution of surface silanols between isolated silanols and (hydrophobic) siloxane bridges 

and (hydrophilic) geminal and H-bonded vicinal silanol groups or vicinal chains are expected to 

perturb the corresponding surface energy and polarity. The latter properties are amenable to 

quantification by inverse gas chromatography (IGC), a powerful tool for probing the surface 

chemistry of porous materials.[36] Specific (polar) and non-specific (dispersive) interactions of polar 

and non-polar molecules can be correlated with surface hydrophilicity, while the interaction of non-

polar molecules (alkanes) with surfaces via weak London forces correlates with surface 

hydrophobicity. IGC can be thus be used to elucidate changes in the distribution of hydrophobic 

siloxane and hydrophilic silanol groups on SBA-15 surfaces according to the surface polarity, Xp, 

defined as the ratio of the specific (hydrogen bonding) surface energy to the total surface energy [50] 

(Equation 2).  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Pirez et al      Microporous & Mesoporous Materials revised 
 

15 
 

�� = 	
��
��

(��
�� 	��

!)
                 (2)  

 

Fig. 6 and Table 2 shows that both Xp, and free energy of methanol adsorption of a 

prototypical polar probe molecule, -∆Gads (MeOH), of our xSBA-15 materials is directly proportional 

to the total silanol group loading determined from transmission FTIR (Fig. 5). This relationship 

accords with chemical intuition that increasing the surface coverage of geminal and H-bonded vicinal 

silanols should increase the polarity of silica, and provides a semi-quantitative scale by which the 

surface polarity of SBA-15 can be tuned to control subsequent functionalisation and/or 

adsorption/catalysis through shifting reaction equilibria [37, 51].  

 

Table 2: Integrated silanol peak areas from FTIR for sol-gel SBA-15 at different [HCl], and corresponding data from 
IGC surface energy analysis.  

[HCl] used in SBA-15 
synthesis 

Silanol area / 
a.u 

Dispersive 
surface energy 

(γS
D) 

/mJ.m-2 

Specific surface. 
energy (γp

s) 
/mJ.m-2 

Surface 
polarity  

-∆Gads 
methanol 
(kJ/Mol) 

0.1 M 75.6 80 227 0.74 13.9 

0.5 M 98.2 84 235 0.74 14.2 

1.0 M 110.9 88 235 0.73 14.5 

1.5 M 168.0 78 252 0.76 14.5 

2.0 M 170.1 78 261 0.77 14.6 

2.0 M – 24 h 203.8 79 260 0.77 14.6 
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Fig. 6. Correlation between surface silanol loading, surface polarity, and specific free energy of methanol adsorption of 
xSBA-15 as a function of [HCl]. 
 

 

Conclusions 

The impact of chloride anions on the structure and surface properties of SBA-15 has been 

investigated with the aim of tuning the surface density of reactive hydroxyl groups amenable for 

subsequent derivatisation. Silanol distributions of SBA-15 materials were controlled by varying the 

[HCl] and/or gelation time during a conventional sol-gel synthesis. Increasing [HCl] from 0.1-2.0 M 

resulted in a doubling of the surface silanol coverage, possibly through Cl- stabilisation of surface 

silanols and concomitant hindering of silanol cross linking during hydrothermal aging. Longer 

gelation time under acidic conditions lowered silanol coverages, associated with enhanced 

crosslinking. Specific surface energies for methanol adsorption and overall surface polarity, 

measured by IGC, increase with [HCl] mirroring the rise in geminal and H-bonded vicinal surface 

silanols. The resulting insight offers a simple means to tune the surface hydrophobicity and 

hydrophilicity of SBA-15, and its subsequent derivatisation for improved catalysts and sorbents. 
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Highlights 

 

• Impact of [HCl] on silanol distribution of sol-gel synthesised SBA-15 explored. 
• Increasing [HCl] from 0.1 to 2.0 M doubles the surface silanol loading.  
• Increased [HCl] favours hydrophilic geminal and vicinal silanols. 
• SBA-15 surface energy and polarity correlates with [HCl] and surface silanols. 

 


