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Abstract 

The distributed activation energy model (DAEM) has been widely used to analyze the 

thermal decomposition of solid fuels such as lignocellulosic biomass and its components, coal, 

microalgae, oil shale, waste plastics, and polymer etc. The DAEM with a single distribution 

of activation energies cannot describe those reactions well since the thermal decomposition 

normally involves multiple sub-processes of various components. The double DAEM 

employs a double distribution to represent the activation energies. The Gaussian distribution 

is usually used to represent the activation energies. However, it is not sufficiently accurate for 

addressing the activation energies in the initial and final stages of the thermal decomposition 
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reactions of solid fuels. Compared to the Gaussian distribution, the logistic distribution is 

slightly thicker at the curve tail and suits better to describe the activation energy distribution. 

In this work, a theoretical analysis of the double logistic DAEM for the thermal 

decomposition kinetics of solid fuels has been systematically investigated. After the 

derivation of the double logistic DAEM, its numerical calculation method and the physical 

meanings of the model parameters have been presented. Three typical types of simulated 

double logistic DAEM processes have been obtained according to the overlapped situation of 

two derivative conversion peaks, namely separated, overlapped and partially overlapped 

processes. It is found that, for the partially overlapped process, the form of the minor peak 

(overlapped peak or peak shoulder) depends on the values of the frequency factor and heating 

rate. Considering the simulated processes and related examples from literature, the double 

logistic DAEM has been remarked as a more reliable tool with abundant flexibility to explain 

the thermal decomposition of various solid fuels. More accurate results are expected if the 

double logistic DAEM is coupled with the computational fluid dynamics (CFD) simulation 

for those reactions mentioned above. 

Key words: Distributed activation energy model (DAEM); Solid fuels; Thermal 

decomposition; Kinetics; Simulation; Logistic distribution 

 

1 Introduction 

When solid fuels undergo thermal processing, they decompose and produce gases and 

volatiles.1, 2 Depending on the processing temperature and atmosphere, these processes can be 

classified as pyrolysis, gasification and combustion.3, 4 Pyrolysis is the thermal decomposition 

in non-oxidizing environment, resulting in the production of a liquid, solid and gases,5, 6 and 

the yields of these products rely on the feedstock and processing conditions.7, 8 The 

combustion of solid fuels first undergo endothermic pyrolysis to produce combustible gases, 
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which are subsequently combusted to supply heat required to produce further gases.9 

Gasification is the transformation of solid fuels into a gaseous fuel, which hinges on the 

gasifying medium on the solid fuels, the temperature and pressure.10 

A comprehensive understanding of the thermal decomposition kinetics of solid fuels 

plays an important role in the computational fluid dynamics (CFD) simulation,11-14 which is a 

useful tool in reactor design and process optimization.15-20 Many kinetic models have been 

proposed to describe the thermal decomposition kinetics of solid fuels.21-23 The basic model 

used to describe the thermal decomposition kinetics of biomass components is the single first 

order reaction (SFOR) model.24 However, the SFOR model is an empirical model, which is 

limited to a single reaction process occurring with a single activation energy.25 

The conventional complex model applied to describe the thermal decomposition kinetics 

of solid fuels is the distributed activation energy model (DAEM).13, 26-28 In this model, it is 

assumed that the thermal decomposition of different components in the solid fuels occurs 

through a series of reactions with their own activation energies which are described by a 

continuous distribution function.29, 30 In general, the activation energy distribution is presented 

by the Gaussian distribution function. However, it is not sufficiently accurate for addressing 

the activation energies in the initial and final stages of the thermal decomposition reactions of 

solid fuels.31 Cai and co-workers32 originally proposed to use the logistic distribution to 

represent the activation energy distribution and successfully applied it for describing cellulose 

pyrolysis kinetics.33 The differences between logistic and Gaussian distributions with the 

same distribution parameters values are presented in Figure 1, which shows that the logistic 

distribution has slightly thicker tails than the Gaussian distribution, thus offering improved 

accuracy for describing the thermal decomposition kinetics of solid fuels. Fiori and 

co-workers 34 found that the logistic DAEM gave a better fitting than the Gaussian DAEM for 

the pyrolysis kinetics of grape residues. Jain and co-workers35 concluded that the logistic 

DAEM matched well with the experimental kinetic curves of coal pyrolysis at different 
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heating rates. Xiong and co-workers36 simulated the fast pyrolysis of biomass in fluidized bed 

reactors with a coupled logistic DAEM and CFD model and found that the kinetics with 

distributed activation energies could affect the predicted average value of the exit vapor-phase 

tar flux and its statistical distribution, compared to the single-valued activation-energy 

kinetics. Concerning the chemical kinetic analysis by using the logistic function, Burnham37 

also gave the examples of use and misuse of the logistic function for modeling chemical 

kinetics and pointed out that some works, such as making comparisons to kinetic parameters 

derived only with using a single heating rate experiment to fit models, might not qualify as 

kinetic analysis methods. 

 

 

Figure 1. Differences between the logistic and Gaussian distributions with same distribution 

parameter values 

 

The thermal decomposition of some solid fuels, such as biomass and coal, usually 

involves multiple decomposition processes due to varying kinetic behaviors of their 

components.38, 39 The DAEM can successfully describe a single process, but difficult to fit 

multiple sub-processes.40 Burnham and co-workers25, 31 developed the kinetics software LLNL 

(currently Kinetics2015) and proposed some comprehensive models with parallel Gaussian 

activation energy distributions or combination of the one sigmoidal model and the other 

Gaussian DAEM for the decomposition of polymers and oil shale. Recently, de Filippis and 

Page 4 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5 
 

co-workers41 proposed the double DAEM, which uses a double distribution function to 

represent the activation energy distribution. As presented in Supporting Information Table S1, 

this model was confirmed later as a suitable tool for explaining the pyrolysis kinetic behaviors 

of microalgae,40, 42 coal,35, 40 poly-vinyl chloride (PVC) and poly-methyl methacrylate 

(PMMA),43 olive residues,44 plant oil asphalt45 and raw and torrefied beech wood xylan 

samples46. 

The aim of this study is to perform a comprehensive theoretical analysis to the thermal 

decomposition processes of solid fuels that can be described by the double logistic DAEM. 

The structure of the paper is arranged as follows. Section 1 provides the background and aim 

of this work; Section 2 introduces the theory of the double logistic DAEM; Section 3 presents 

the numerical calculation method for the double logistic DAEM, followed by an investigation 

of physical meanings of the model parameters in Section 4; Section 5 gives the possible 

processes related to the thermal decomposition of solid fuels, with discussions on some 

representative examples in publications; Conclusions of the present work are given in Section 

6. 
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2 Double Logistic DAEM 

The DAEM can be deduced based on the following assumptions: (1) the decomposition 

of complex solid fuels contains a large number of independent and parallel first order 

reactions; (2) each reaction has its own activation energy and all reactions share the same 

frequency factor; (3) the activation energies of all reactions can be described by a continuous 

distribution.26, 31, 32, 47 The equation of the DAEM in the form of conversion can be obtained: 

 ( ) ( )
0 0

1 exp exp d d
t E

t A t f E E
RT

α
∞   = − − −      
∫ ∫   (1) 

where α is conversion degree (dimensionless), A is the frequency factor (s-1), E is the 

activation energy (J mol-1), R is the universal gas constant (8.3145 J K-1 mol-1), t is the time 

(s), T is the temperature (K), and f(E) is the activation energy distribution (mol J-1). 

The equation of the DAEM in the form of the conversion rate can be obtained by 

differentiating Equation (1) with respect to t: 

 ( ) ( )
0 0

d
exp exp d d

d

tE E
t A A t f E E

t RT RT

α ∞   = − − −    
∫ ∫  (2) 

The experimental kinetic data is usually obtained under linear heating programs where 

the temperature increases with time by a constant heating rate. 

 
d

d

T

t
β =   (3) 

where β is the heating rate (K s-1). 

The equations of the DAEM under the linear heating program can be expressed by the 

following equations (Equations (4) and (5)): 

 ( ) ( )
0 0

1 exp exp d d
TA E

T T f E E
RT

α
β

∞   = − − −   
   

∫ ∫   (4) 

 ( ) ( )
0 0

d
exp exp d d

d

TA E A E
T T f E E

T RT RT

α
β β

∞   = − − −  
  

∫ ∫   (5) 
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The Gaussian distribution function is widely used to represent the activation energy 

distribution.26, 48, 49 Whereas it is inappropriate to address the initial and final stages of thermal 

decomposition of solid fuels. In this regard, the logistic distribution has slightly thicker tails 50 

and is reported to be more suitable to describe the thermal decomposition kinetics of solid 

fuels.34, 35 Therefore, the logistic distribution for the representation of the activation energies 

is considered in this work. 

In order to better describe the thermal decomposition of solid fuels, which involves two 

sub-processes, the double logistic distribution is used to represent the activation energy 

distribution: 

 ( ) ( ) ( ) ( )1 21f E wf E w f E= + −   (6) 

 ( )
( ) ( )
( ) ( ){ }

1 1

1 2

1
1 1

exp / 3

3 1 exp / 3

E
f E

E

π µ σπ
σ π µ σ

 − −
 =
 + − −
 

  (7) 

 ( )
( ) ( )
( ) ( ){ }

2 2

2 2

2
2 2

exp / 3

3 1 exp / 3

E
f E

E

π µ σπ
σ π µ σ

 − − =
 + − −
 

  (8) 

where w is a constant, 0 < w < 1, µ is the mean value (J mol-1) and σ is the standard deviation 

(J mol-1) of the activation energy distribution, the subscripts 1 and 2 represent the values 

related to the first and second sub-processes. 

 

3 Numerical calculation 

There are an inner dT integral and an outer dE integral in Equations (4) or (5), which 

result in difficulties in solving them. For this reason, a numerical approach for calculating the 

DAEM is developed in this section. 

In fact, the inner dT integral is the temperature integral,51-53 which can be expressed in 

the following form: 
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( )
20 /( )

exp
exp d d

T

E RT

xE E E E
T x P

RT R x R RT

∞ −   − = =   
   ∫ ∫   (9) 

 
[ ] ( )

/( )

exp / ( ) exp
d

/ ( ) E RT

E RT xE
p x

RT E RT x

∞− −  = − 
  ∫   (10) 

In mathematics, there is a special integral named the exponential integral: 

 ( )Ei d
t

x

e
x t

t

−∞

−
= −∫   (11) 

The exponential integral can be easily solved by using a specific function “ExpIntegralEi” in 

the Mathematica software system.54 Substituting Equations (10) and (11) into Equation (9) 

results in 

 
0

exp d exp Ei
T E E E E

T T
RT RT R RT

     − = − + −     
     ∫   (12) 

As for the outer dE integral, the upper integration limit is ∞. According to Güneş and 

Güneş,55 if the upper integration limit is replaced by a value high enough, there is almost no 

deviation from the real value. The effect of different upper integration limits (µ+3σ, µ+10σ 

and µ+30σ, where µ is the greater one of µ1 and µ2, σ is the greater one of σ1 and σ2) on the 

numerical results of the double logistic DAEM was investigated and shown in Figure 2. It 

can be observed that the dα/dT – T curves would converge into a curve with increasing of 

upper integration limit values. Since there was almost no deviation from the final converge 

curve when the upper integration limit increased to µ+10σ, µ+10σ is selected as the upper 

integration limit of the outer dE integral for further calculation of the double logistic DAEM. 

Then, the outer dE integral can be converted to a normal definite integral, as shown in 

Equations (13) and (14). 

 

( ) ( )

( )

0

10

0

1 exp d

        1 exp d

A E E
T P f E E

R RT

A E E
P f E E

R RT

µ σ

α
β

β

∞

+

   = − −      

   ≈ − −   
   

∫

∫
  (13) 
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( ) ( )

( )

0

10

0

d
exp d

d

           exp d

A E A E E
T P f E E

T RT R RT

A E A E E
P f E E

RT R RT

µ σ

α
β β

β β

∞

+

  = − −   
  

  ≈ − −   
  

∫

∫
  (14) 

For numerical calculations of Equations (13) and (14), Simpson’s rule,56 a common 

method for numerical integration, was used. Figure 3 shows the numerical calculation 

flowchart of the double logsitic DAEM. 

 

 

Figure 2. Effect of upper intergration limit on numerical results of double logistic DAEM 
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START

    Initialize

                      Input

Establish Activation Energy Distribution

Process Inner dT  Integral

Process Outer dE Integral

    Output

STOP

 

Figure 3. Numeical calcualtion flowchart of double logistic DAEM (Ei: Exponential integral; 

Ti: Temperature integral; Ni: Numerical integration function) 

 

4 Physical meaning of model parameters 

The influences of various parameters on α for the Gaussian DAEM can be found in our 

previous study. 57 In fact, the dα/dT data is more sensitive to reveal model details.58, 59 

Therefore, in this section, the influences of the model parameters on the dα/dT – T curve are 
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investigated and the physical meanings of model parameters are presented. 

Substituting Equation (6) into Equations (4) and (5) leads to: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

10 0

20 0

1 2

1 exp exp d d

            1 1 exp exp d d

       1

T

T

A E
T w T f E E

RT

A E
w T f E E

RT

w T w T

α
β

β

α α

∞

∞

   = ⋅ − − −   
   

   + − ⋅ − − −   
   

= ⋅ + − ⋅

∫ ∫

∫ ∫   (15) 

 

( ) ( )

( ) ( )

( ) ( ) ( )

10 0

20 0

1 2

d
exp exp d d

d

              1 exp exp d d

d d
           1

d d

T

T

A E A E
T w T f E E

T RT RT

A E A E
w T f E E

RT RT

w T w T
T T

α
β β

β β

α α

∞

∞

  = ⋅ − − −  
  

  + − ⋅ − − −  
  

= ⋅ + − ⋅

∫ ∫

∫ ∫   (16) 

From Equations (15) and (16), it can be obtained that the double DAEM can be 

considered as the weighted sum of two single DAEMs and w is the weight parameter. Figure 

4 shows the influences of w on the numerical results of the double logistic distribution and the 

double logistic DAEM. It can be also elucidated that w can affect the height of each dα/dT 

peak from Figure 4. 

 

 

Figure 4. Effect of w on numerical results of (a) double logistic distribution and (b) 

double logistic DAEM 
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Since the double DAEM is considered as the weighted sum of two single DAEMs, the 

single DAEM can be used to investigate the physical meaning of µ and σ in the logistic 

DAEM. The study is carried out by changing each parameter, taking one parameter at a time 

and keeping the remaining parameters unchanged. 

Figure 5 shows the effect of µ on the numerical results of the logistic distribution and the 

logistic DAEM. It can be observed that increasing µ can result in the change of the dα/dT 

peak location. Along with the increase of µ, the dα/dT - T curve is shifted to higher 

temperature. This is consistent with the kinetic theory that the higher activation energy needs 

higher temperature to trigger the reaction.60, 61 Therefore, µ can be considered as the location 

parameter in the logistic DAEM while increasing µ may cause a decrease in dα/dT peak 

height. 

 

 

Figure 5. Effect of µ on numerical results of (a) logistic distribution and (b) logistic DAEM 

 

Figure 6 shows the effect of σ on the numerical results of the logistic distribution and the 

logistic DAEM. It can be observed that increasing σ exerts significant effect on the dα/dT 

peak height while the dα/dT - T curve becomes broader and shallower with increasing σ. 

Therefore, σ can be suggested as the shape parameter of the logistic DAEM. 
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Figure 6. Effect of σ on numerical results of (a) logistic distribution and (b) logistic DAEM 

 

 

 

5 Typical double logistic DAEM processes 

To present a wide range of thermal decomposition processes, some theoretical double 

logistic DAEM processes are simulated. All simulated α – T and dα/dT – T curves are 

calculated in 10,000 temperature points (300 K ≤ T ≤ 1300 K). According to a series of 

pre-calculations, it was found that the shape of the dα/dT curve mainly depends on the shape 

of the corresponding double logistic distribution, like µ1, µ2, σ1, σ2 and w. According to the 

results about the double distribution from Robertson and co-workers,62 the distribution shape 

depends on the values of the following three parameters: w, r=σ2/σ1 and u=(µ2-µ1)/σ1 when the 

modality of the distribution shape is unaffected by location and scale changes. Based on the 

above conclusion, without loss of generality, the parameters µ2 and σ2 are set as fixed values 

(µ2 = 240 kJ mol-1 and σ2 = 20 kJ mol-1) for the simulation of the double logistic DAEM 

processes. The values of the other parameters were set as follows: µ1 (from 120 to 240 kJ 

mol-1 with an interval of 10 kJ mol-1), σ1 (from 1.0 to 50.0 kJ mol-1 with an interval of 1.0 kJ 

mol-1), A (from 1011 to 1021 s-1 with a ratio of 10), w (from 0.2 to 0.8 with an interval of 0.05) 
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and β (from 0.125 to 128 K min-1). 

According to the shapes of the simulated dα/dT curves, those simulated double logistic 

DAEM processes can be divided into three types: (1) separated process; (2) overlapped 

process; and (3) partially overlapped process. The corresponding f(E), α – T and dα/dT – T 

curves are listed in Table 1. Some examples of the thermal decomposition of solid fuels 

corresponding to the above typical processes are also presented in Table 1. 
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Table 1. Typical processes described by double logistic DAEM 

No. Name 
Typical curves 

Characteristics Examples from literature 
f(E) curve α – T curve dα/dT – T curve 

1 Separated process 

   

� There are two significantly separate 

peaks in the dα/dT curve. 

� The left peak value is lower than the 

right peak value. 

Pyrolysis of oil shale 49 

   

� There are two significantly separate 

peaks in the dα/dT curve. 

� The left peak value is higher than the 

right peak value. 

Gasification of municipal solid waste (MSW) 

under 80%N2/20%CO2 atmosphere 63 

Pyrolysis of poly-vinyl chloride (PVC) 43 

2 Overlapped 

process 

   

� There is one sharp peak in the dα/dT 

curve. 

Combustion of coal and biomass char blends 64 

   

� There is one flat peak in the dα/dT 

curve. 
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3 Partially 

overlapped 

process 
   

� There are two partially overlapped peaks 

in the dα/dT curve. 

� The left peak value is lower than the 

right peak value. 

Pyrolysis of Russian coal (anthracite) 41 

   

� There are two partially overlapped peaks 

in the dα/dT curve. 

� The left peak value is higher than the 

right peak value. 

Pyrolysis of Sulcis coal (Italian sub-bituminous 

coal) 41 

   

� There is one peak in the dα/dT curve. 

� There is a peak shoulder in the left side 

of the peak. 

Pyrolysis of cotton stalk, pine wood and wheat 

straw  (lignocellulosic biomass) 30 

Pyrolysis of plant oil asphalt 45 

Pyrolysis of poly-methyl methacrylate 

(PMMA) 43 

   

� There is one peak in the dα/dT curve. 

� There is a peak shoulder in the right side 

of the peak. 

Pyrolysis of microalgae 42 

 

Page 16 of 31

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 
 

(1) Separated processes 

The main characteristic of the first type is that there are two separate peaks in the 

dα/dT curve. In this type of process, there are two distinguishable sub-processes, 

which occur in completely different temperature ranges. 

There were several examples corresponding to this type of process in 

publications. Tiwari and Deo49 investigated the pyrolysis of oil shale, which involved 

the organic and carbonate decomposition. The organic decomposition has been 

reported between 250 and 500 °C while the carbonate decomposition commenced at 

525 °C or above depending on the heating rate. In addition, the derivative conversion 

curves of oil shale pyrolysis showed two separate peaks. Lai and co-workers63 

performed the gasification kinetics of municipal solid waste (MSW) under 

80%N2/20%CO2 atmosphere. The derivative conversion curves showed two separate 

peaks, which corresponded to the thermal decomposition of MSW from 200 to 650 °C, 

and the reaction between CO2 and the char production at above 700 °C. Following the 

above conclusion, the derivative conversion curves of biomass gasification process 

will generate two separate peaks, which corresponded to the thermal decomposition of 

biomass (drying and pyrolysis, < 650 °C), and the reaction between fuel gas (syngas, 

CO2, steam) and hot reactive charcoal above 650 °C. Bhargava and co-workers43 

performed the pyrolysis of poly vinyl chloride (PVC). The resulting derivative 

conversion curves at different heating rates showed two separate peaks, which were 

mainly attributed to the release of hydrogen chloride and the formation of aliphatic, 

olefinic and aromatic hydrocarbons and char, respectively. 

According to the simulation results obtained in this work, if the value of

1 2

2 2
1 2

µ µ

σ σ

−

+
 is high enough (the critical value depends on the values of A and β), the 
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double logistic DAEM shows two separate peaks, which is consistent with the 

results from Ashman and co-workers65 for the double normal distribution. 

(2) Overlapped processes 

When the difference between the mean values of two distribution components,

1 2µ µ− , is small, the double logistic DAEM shows one single peak in the dα/dT 

curve. Researchers usually used certain single process kinetic models (such as the 

SFOR model or the single DAEM) to describe this type of process. 

Moyo64 performed the combustion kinetic analysis of a blend of 50% biomass 

char and 50% coal char. The derivative conversion curves at different heating rates (8, 

12 and 15 K min-1) showed a single peak, which was attributed to the fact that the 

combustion kinetic behaviors of biomass char and coal char were similar. 

(3) Partially overlapped processes 

This type can describe the process which involves two partially overlapped 

sub-processes. The curve shows a main peak with a minor peak appearing as an 

overlapped peak or a peak shoulder. 

The form of overlapped peak or peak shoulder depends on the values of A and β, 

except w, r and u. Figure 7 (a) shows an example of the effect of A on the dα/dT – T 

curve of the double logistic DAEM. It can be observed that the form of the minor 

peak varies from the peak shoulder to the overlapped peak when the value of A 

increases from 1011 to 1021 s-1. The increase of the frequency factor shifts the dα/dT – 

T curve to the left side. An example of the effect of β on the dα/dT – T curve of the 

double logistic DAEM is presented in Figure 7 (b), where the minor peak varies from 

the overlapped peak to the peak shoulder with an increasing value of β from 0.125 to 

128 K min-1. As β increases, the dα/dT – T curve is shifted to higher temperatures, but 

the dα/dT peak height decreases. 
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Figure 7. Examples of effects of (a) A and (b) β on the dα/dT – T curve of the double 

logistic DAEM 

 

Many examples of the thermal decomposition of solid fuels from literature 

belongs to this type of process. 

Cai and co-workers30 conducted the pyrolysis of eight lignocellulosic feedstocks 

and presented the corresponding derivative conversion curves had a main peak and a 

peak shoulder on the left side of the main peak. The main peak corresponded to the 

pyrolysis of cellulose, while the peak shoulder on the left side of the main peak 

corresponded to the pyrolysis of hemicellulose.66 Tang and co-workers45 performed 

the pyrolysis kinetics of plant oil asphalt, a lipid-based residue biomass generated in 

biodiesel and fatty acid industries. The corresponding derivative conversion curves 

had a main peak with a left peak shoulder which corresponded to the pyrolysis of two 

pseudo-components, respectively. In contrast, de Filippis and co-workers40, 42 found 

that the derivative conversion curve presented a main peak with a peak shoulder on its 

right side during the pyrolysis of microalgae. The breakage of the weakest chemical 

bonds in microalgae has been reported during the primary pyrolysis sub-process, 

whereas the secondary pyrolysis sub-process favors the rupturing of stronger bonds 
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and releases the hydrogen from the aromatic and aliphatic groups. Bhargava and 

co-workers 43 investigated the pyrolysis of poly-methyl methacrylate (PMMA) and 

found a main broad peak and a minor peak shoulder on the left side of the main peak, 

which was attributed to the reactions occurring at the chain ends and random scission 

process producing only monomers. In the kinetic study of coal pyrolysis from de 

Caprariis and co-workers41, the derivative conversion curves at different heating rates 

showed two partially overlapped peaks, which corresponded to a primary and 

secondary pyrolysis sub-processes, respectively. Light volatiles and tar were released 

in the primary pyrolysis sub-process while the repolymerization of coal molecules to 

produce char took place in the secondary pyrolysis sub-process.40 

According to aforementioned theoretical analyses, the double logistic DAEM can 

be suggested as the most suitable tool for explaining the pyrolysis, combustion, or 

gasification of various solid fuels which involve two thermal decomposition 

sub-processes. When double logistic DAEM is applied to describe thermal 

decomposition of solid fuels, the model parameters (A, µ1, µ2, σ1 and σ2) will provide 

information about the activation energy distribution of each sub-process and weights 

of both sub-processes. In the future work, these parameters will also be investigated 

with optimization tools. It can be expected that the simulation results of the thermal 

decomposition of solid fuels should fit the experimental data more accurately if the 

double logistic DAEM would be coupled with the CFD simulation. 

 

6 Conclusions 

� The equations of the double logistic DAEM were obtained and shown in 

Equations (4)-(8). 

� The numerical calculation of the double logistic DAEM can be performed by the 
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following method: the inner dT integral can be expressed in the form of the 

exponential integral which can be easily processed in some mathematical 

software systems, and the outer dE integral can be numerically solved by using 

Simpson’s rule. 

� The double logistic DAEM is the weighted sum of two single logistic DAEMs 

and the parameter w is the weight parameter. The parameters µ1 and µ2 are the 

location parameters and mainly affect the locations of the dα/dT – T curve peaks. 

The parameters σ1 and σ2 are the shape parameters and mainly determine the 

shape of the dα/dT – T curve. 

� Three typical types of simulated double logistic DAEM processes were obtained: 

separated, overlapped and partially overlapped processes. 

(1) When the value of 1 2

2 2
1 2

µ µ

σ σ

−

+
 is high enough, the dα/dT – T curve of the 

double logistic DAEM shows two separate peaks. 

(2) If the difference between the mean values ( 1 2µ µ− ) of two distribution 

components is small, the double logistic DAEM shows one single peak in the 

dα/dT curve. 

(3) As for the overlapped process, the form of the minor peak is the overlapped 

peak or peak shoulder depending on the values of A and β. 

� The double logistic DAEM is a suitable tool with abundant flexibility in 

explaining the thermal decomposition of solid fuels, such as the pyrolysis, 

combustion or gasification of various solid fuels (e.g. lignocellulosic biomass, 

coal, microalgae, plant oil asphalt, plastics). 

� The analysis of experimental kinetic data by using the double DAEM as well as 

the comparison between the logistic and Gaussian distributions in DAEM will be 
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our next work. It is hoped that our work can help to establish a comprehensive 

research framework for the double logistic DAEM. 
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Nomenclature 

Acronyms  

DAEM Distributed activation energy model 

CFD Computational fluid dynamics 

SFOR Single first order reaction 

PVC Poly-vinyl chloride 

PMMA Poly-methyl methacrylate 

MSW Municipal solid waste 
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TGA Thermo-gravimetric analysis 

Ei Exponential integral 

Ti Temperature integral 

Ni Numerical integration function 

Variables  

α Conversion degree (dimensionless) 

A Frequency factor (s-1) 

E Activation energy (J mol-1) 

R Universal gas constant (8.3145 J K-1 mol-1) 

t Time (s) 

T Temperature (K) 

f(E) Activation energy distribution (mol J-1) 

β Heating rate (K s-1) 

w Constant, 0 < w < 1 

µ Mean value of f(E) (J mol-1) 

σ Standard deviation of f(E) (J mol-1) 

Subscript  

1 Values related to the first sub-processes 

2 Values related to the second sub-processes 
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