1	Clinical Comparison of Optimum and Large Diameter Soft
2	Contact Lenses
3	
4	
5	
6 7 8	AUTHORS: James Wolffsohn FCOptom PhD MBA b Lee Hall BSc PhD FBCLA a,b Graeme Young FCOptom MPhil PhD DCLP a,b
9	
10	^a Visioncare Research Ltd, Craven House, Arundell Place, West Street, Farnham, GU9 7EN, UK
11	^b Ophthalmic Research Group, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
12	
13	
14 15	CORRESPONDENCE: Graeme Young, <u>G.Young@visioncare.co.uk</u> , Visioncare Research Ltd, Craven House, Arundell Place, West Street, Farnham, GU9 7EN.
16 17 18	ACKNOWEDGEMENTS: We thank Chris Hunt for assistance with the statistical analysis and Nathan Greenaway for help in preparation of the manuscript.

1 Clinical Comparison of Optimum and Large Diameter Soft Contact Lenses

ABSTRACT

2

21

- 3 PURPOSE: To compare the clinical performance of large diameter lenses with optimally fit lenses in
- 4 the same material and monocurve back surface design.
- 5 METHOD: In a four-visit, randomised, bilateral, crossover, study, 25 myopic subjects wore optimum
- 6 diameter lenses (control) and large diameter lenses (test) in random succession for 1 week each. Both
- 7 study lenses were made of methafilcon A and of an identical design. Trial fittings with Frequency 55
- 8 (Coopervision) lenses modified with a design algorithm were used to determine the appropriate custom-
- 9 made study lenses.
- 10 RESULTS: The least squares mean scores (±SE) for overall comfort and end-of-day comfort (0-10
- scale) were 7.57 \pm 0.33 vs. 7.42 \pm 0.33 (P=0.59) and 7.00 \pm 0.31 vs. 7.27 \pm 0.32 (P>0.05) for the optimum
- 12 and large diameter lenses, respectively. There were no significant differences in mean (±SE) gradings
- for limbal hyperaemia (1.23 \pm 0.11 vs. 1.19 \pm 0.11, 0-4 scale, P=0.60) and corneal staining (1.79 \pm 0.25
- vs. 2.04 ±0.25, P=0.39). Conjunctival staining was greater for the optimum lens: 1.80 ±0.28 vs. 0.93
- ± 0.28 (0-4 scale, P=0.001). With regard to lens fit, the large diameter lenses showed significantly less
- post-blink movement (0.22 ±0.01 vs. 0.16 ±0.01 mm, P=0.004), and greater total decentration (0.15
- 17 ±0.02 vs. 0.21 ±0.02 mm, P=0.010). However, there was no significant difference in the key fit variable
- of tightness on push-up (46 $\pm 0.69\%$ vs. 48 $\pm 0.69\%$, 0-100 scale, P=0.12).
- 19 DISCUSSION: The findings suggest that larger than optimal soft lenses may be worn without detriment
- 20 to either comfort or ocular physiology, provided an optimal fit is otherwise maintained.
- 22 Keywords: soft contact lens, diameter, base curve radius, tightness, corneal coverage

1 INTRODUCTION

- 2 Corneal diameter (CD) varies widely in a typical population, for instance, horizontal CD has been
- 3 measured by ocular coherence tomography (OCT) to range from 12.1 to 14.4 mm.[1] The importance
- 4 of the relationship between lens and corneal diameter is clinically accepted and textbooks typically
- 5 suggest that lenses should overlap the limbus by at least 1-2 mm.[2][3]
- 6 Lenses that are too small for a given eye cause irritation due to the edge encroaching onto the cornea.
- 7 However, the clinical effects of lenses which are too large are uncertain and there has been little
- 8 previous work in this area.[4] Theoretical calculations suggest that relatively large lenses can cause
- 9 excess peripheral pressure.[5] Since many soft lens types are only available in a single diameter, it is
- 10 inevitable that a significant proportion of lenses dispensed are larger than optimum. It would therefore
- be useful to have a better understanding of the impact of large diameter lenses on comfort and ocular
- 12 physiology. The purpose of this study was to evaluate the clinical effect of relatively large diameter soft
- 13 lenses compared with the effects of optimally fit lenses.

METHOD

- 15 This was a randomised, bilateral, unmasked, crossover, study that compared the clinical performance
- of optimally fit methafilcon A lenses with larger diameter lenses of the same monocurve design and
- 17 material for 1 week each. The study was undertaken at two investigational sites in the United Kingdom
- 18 (Aston University, Birmingham; Visioncare Research, Farnham) between January and May 2015.
- 19 Twenty-five subjects, aged between 18 and 70 years, were enrolled and dispensed with lenses.
- 20 Subjects were required to have a spherical contact lens requirement in the range -0.50 to -6.00D and
- 21 astigmatism less than 1.50D in both eyes. Subjects were excluded if they demonstrated any signs of
- ocular infection, allergy, disease or corneal irregularity that could interfere with contact lens wear.
- 23 Subjects were also excluded who had undergone corneal refractive surgery or any anterior segment
- 24 surgery or had recently worn rigid contact lenses. Neophyte subjects were allowed, although most were
- 25 existing soft contact lens wearers.
- 26 Both lens types were lathecut methafilcon A hydrogel lenses which were ordered following trial fitting
- with a cast moulded lens of the same material (Frequency[®] 55, CooperVision, Pleasanton, CA, USA).
- 28 The lathecut lenses were custom manufactured to match the thickness and edge profile of the cast
- 29 moulded lens (Ultravision CLPL, Leighton Buzzard, UK). The lens used for trial fitting was a single
- 30 diameter and base curve design (Table 1) and, therefore, in order to select the optimum design for a
- 31 given eye, an algorithm was used to: i) compensate for non-optimum tightness (i.e. tight or loose),
- 32 ii) adjust for non-optimal lens diameters (Appendix 1). For a lens fitting to be judged as optimum, it was
- required to cover the cornea in all directions of gaze, be central to the cornea with around 1.2 mm of
- 34 conjunctival overlap, show sufficient post-blink movement with no edge stand-off, and to show optimal
- 35 tightness by the push-up test.[6][7] The methods for assessing lens fit have previously been
- 36 described.[7]
- 37 Horizontal visible iris diameter was measured with a 0.1mm increment graticule using a slit lamp
- 38 biomicroscope and horizontal corneal diameter with an Anterior Segment Optical Coherence
- 39 Tomographer (AS-OCT; Visante, Carl-Zeiss, Oberkochen Germany). Corneal topography was also
- 40 conducted (E300, Medmont, Nunawading, VIC, Australia).

VISIONCARE RESEARCH

- 1 The large diameter lens was specified as being 1.2mm larger in diameter than the optimal lens and
- 2 0.6mm flatter in base curve so as to give a clinically equivalent fitting (e.g. Optimal lens = 8.6 /14.2;
- 3 Large diameter lens = 9.2 /15.4).[5] Since the lenses were custom made, the first pair was dispensed
- 4 at a second visit at which the lens fit and visual performance were assessed and confirmed to be
- 5 satisfactory.
- 6 Subjects were issued with the AOSept (Alcon, Fort Worth, TX, USA) hydrogen peroxide disinfection
- 7 system. The use of saline for rinsing prior to insertion and rewetting drops was allowed, only if
- 8 necessary.
- 9 A range of clinical variables was assessed at baseline and then reassessed at the 1-week follow-up
- 10 visit (Table 2) with the subjects having worn the lenses for at least 2 hours on those visit days. Slit lamp
- 11 findings were graded with reference to the CCLRU grading scales.[8] For assessment of corneal
- staining, a yellow filter was used to enhance the appearance of any staining and this was graded for
- each of five corneal sectors. Similarly, for conjunctival staining, this was graded for each of four
- 14 segments.
- 15 Lens comfort (insertion, during day and end-of-day) was graded by subjects on a 0-10 scale. Symptoms
- 16 were monitored with the CLDEQ-8 questionnaire.[9] The CLDEQ-8 results were consolidated to
- 17 produce a total score on a 0-33 scale. Subjects reported their typical insertion time and, if there was a
- 18 reduction in comfort, the time that this typically occurred so that their comfortable wearing time could
- 19 be determined.
- 20 Between follow-up visits, subjective comfort was monitored by SMS text messaging. Subjects were
- 21 contacted four times a day (08:00, 12:00, 16:00, 20:00) on Days 2 and 6 of each lens wear period and
- 22 asked to grade current lens comfort, also on a 0-10 scale. The SMS messages were pre-scheduled to
- 23 be sent and received via an internet-based messaging service, FASTSMS (Worcestershire, UK,
- 24 http://www.fastsms.co.uk/).
- 25 The study followed the tenets of the Declaration of Helsinki (2013). The protocol was reviewed by the
- 26 Aston University Ethics Committee and a favourable opinion was received prior to undertaking the
- 27 study. All subjects received detailed information about the study and signed an informed consent form
- 28 before participation.
- 29 Statistical Analysis
- 30 The statistical analysis was undertaken using SAS software Version 9.4 (SAS Institute, Cary, NC, USA).
- 31 Four hypotheses were tested, specifically, that the following four variables would be significantly poorer
- with the large diameter lenses compared with the optimal lenses: overall comfort (at visit), end-of-day
- 33 comfort, limbal hyperaemia, and conjunctival fluorescein staining. Each of these was tested using
- 34 mixed linear models. The models included the following fixed effects: lens, order, visit, and site; and
- 35 the random effect subject nested in site. Non-inferiority was concluded if the lower limit of the 95%
- 36 confidence interval of the difference (test-control) was greater than X and superiority if the lower bound
- was greater than zero (X = -0.5, -1 and +0.5 for comfort, limbal hyperaemia and conjunctival staining,
- respectively). Due to the repeated measures study design, the recommended 15 degrees of freedom
- 39 could be achieved with at least 16 subjects completing the study.[10] Additional variables were tested
- 40 for statistically significant differences using the mixed model analysis.

1 RESULTS

- 2 The results are summarised in Tables 3 to 6 and the statistical analysis of key variables in Tables 8 to
- 3 9.
- 4 A total of 25 subjects were enrolled and successfully completed the study. The subjects' average age
- 5 was 32.9 years (SD: 15.9, range: 18-60) and 60% (15/25) were female (Table 3). The mean sphere
- 6 refractive error was -2.97 D (SD: 1.07, range: -1.25 D to -5.50 D) and mean cylindrical refractive error
- 7 was -0.43 D (SD: 0.28, range: Plano to -1.00 D). The mean horizontal visible iris diameter, as measured
- 8 using a slit lamp graticule, was 11.40 mm (SD: 0.31, range 10.8 to 12.0) and mean palpebral aperture
- 9 was 10.12 (SD: 1.31, range 8.0 to 16.0).
- 10 The mean horizontal corneal diameter, measured by AS-OCT, was 13.23 mm (SD: 0.54, range 12.4 to
- 11 14.6) and mean vertical corneal diameter was 12.43 mm (SD: 0.51, range 11.2 to 13.5). The mean
- 12 corneal sagittal heights were 3.06 mm (SD: 0.24, range 2.61 to 3.59) and 2.75 mm (SD: 0.21, range
- 13 2.16 to 3.16) for the horizontal and vertical meridians, respectively.

14 Comfort

- None of the assessments of overall comfort showed a significant difference and, therefore, the
- hypothesis, that subjective comfort would be significantly poorer with large diameter, was not met (Table
- 17 4). The least squares (LS) mean 1-week comfort scores were 7.42 and 7.57 (0-10 scale) for the large
- diameter and control lenses, respectively. The LS mean scores for end-of-day comfort were 7.27 and
- 19 7.00 (0-10 scale) for the large diameter and control lenses, respectively.
- Overall, the comfort assessments by SMS also showed similar LS mean comfort scores: 7.60 vs. 7.73
- 21 (0-10 scale) for the large and optimal diameter lenses, respectively. When analysed by time point, two
- 22 statistically significant differences were noted. Comfort was significantly better for the optimum
- diameter lens at the midday assessment on Day 2 (8.25 vs. 7.58, *P*<0.05), however, the larger diameter
- lens was rated significantly higher at the evening assessment on Day 6 (7.52 vs. 6.76, P<0.05) (Figure
- 25 1). However, these findings must be treated with caution as they are based on only a proportion of the
- subject group; the overall response rate for the SMS assessments was 78.8%, and of those subjects
- 27 10.8% could not make an assessment because they were not wearing lenses at the time.
- The mean comfortable wearing times reported at the follow-up visit were 9.7 and 9.4 hours, for the large
- and optimal diameter lenses, respectively.
- 30 Symptoms: CLDEQ-8
- 31 The most frequently reported symptoms from the CLDEQ-8 questionnaire were ocular discomfort and
- 32 dryness. A greater proportion of subjects reported experiencing frequent or constant discomfort while
- 33 wearing the large diameter lens than for the optimum diameter lens (12 vs. 5, Figure 2).
- 34 A similar proportion of subjects reported frequent or constant dryness with the large diameter lens
- compared to the optimum diameter lens (6 vs. 7, respectively).
- 36 Lens Fit
- 37 The mean base curve and lens diameter dispensed were 8.57/14.15 mm for the optimal lenses and
- 38 9.17/15.35 mm, for the large diameter lenses (Table 5). The diameter of lens judged as optimum ranged

VISIONCARE RESEARCH

- 1 from 13.6 to 14.8 mm. All of the lens fittings at dispensing were judged as acceptable by the
- 2 investigators.
- 3 At the follow-up assessments, there were significant differences in lens fit with respect to centration,
- 4 post-blink movement and overall lens fit acceptance.
- 5 Total decentration was calculated as the vector summation of horizontal and vertical centration. There
- 6 was significantly greater total decentration with the large diameter lens compared to the optimum lens,
- 7 0.21 vs. 0.15 mm (P=0.01). There were also significant differences in vertical decentration and absolute
- 8 horizontal decentration, -0.03 vs. +0.03 mm, (P=0.004) and 0.14 vs. 0.07 mm, (P=0.002) respectively,
- 9 for the large and optimum diameter lenses. As expected, diameter acceptance was assessed as
- 10 significantly greater for the large diameter lenses: 1.20 vs. 0.01 mm (P<0.0001).
- 11 The large diameter lens showed significantly less post-blink movement than the optimum lens, 0.16 vs.
- 12 0.22 mm, (P=0.004). There was no significant difference in lens tightness between the two lenses, 48%
- vs. 46% for the large and optimum diameter lenses, respectively (P=0.12).
- 14 Despite the optimisation of fit, investigators rated overall fit acceptance significantly poorer for the large
- diameter lens compared with the optimum diameter lens, 3.48 vs. 3.88, (0-5 scale, P=0.0005). Six of
- the 100 lens fittings were judged as unacceptable due to insufficient movement on blink; four were large
- 17 diameter lenses and two were optimal diameter lenses.

18 Slit Lamp Findings

- 19 The slit lamp findings are summarised in Table 6. There was a significant difference between the
- 20 optimum and large diameter lenses for conjunctival fluorescein staining; however, there were no
- 21 significant differences for any of the other slit lamp variables.
- 22 The primary hypothesis, that limbal hyperaemia will be significantly greater with large diameter soft
- 23 lenses compared with optimally fit lenses, was not met: 1.19 vs. 1.23 (0-4 scale) [Least Square Mean
- 24 Difference (LSMD): 0.0, 95% CL: (-0.2, 0.1)]. The lower confidence interval is greater than the lower
- 25 confidence bound. Hence it can be concluded that the large diameter and optimum lenses were
- 26 equivalent with respect to limbal hyperaemia (Figure 3).
- 27 The secondary hypothesis, that corneal staining will be significantly greater with large diameter soft
- 28 lenses was not met: 2.04 vs. 1.79 (0-4 scale) [LSMD +0.3, 95% CL: (-1.3, -0.4)] (Figure 3). A similar
- 29 proportion of eyes showed corneal staining with the large and optimum diameter lenses (74% vs. 68%,
- respectively). Corneal staining type did not exceed >Grade 2 for either lens.
- 31 The primary hypothesis, that conjunctival fluorescein staining will be significantly greater with large
- 32 diameter soft lenses was not met: 0.93 vs. 1.80. (0-4 scale) [LSMD: -0.9, 95% CL: (-1.3, -0.4)],
- 33 P=0.0006. Since the upper bound was less than zero but still greater than the lower equivalence margin,
- 34 conjunctival staining was therefore statistically significantly greater with the optimum lens than the larger
- diameter lens, although this was not clinically significant (Figure 3, Figure 4).
- 36 In addition, a greater proportion of eyes showed conjunctival staining with the optimum lens than with
- 37 the large diameter lenses (52% vs. 34%).

1 Lens Metrology

- 2 Centre thickness, peripheral junction thickness and edge thicknesses were measured for a sample of
- 3 lenses from nine subjects (Table 7). Thicknesses were measured using a Rehder thickness gauge
- 4 (West Lafayette, IN, USA).

5

6

DISCUSSION

7 Comfort

- 8 There were few differences in comfort ratings between the large and optimum diameter lenses.
- 9 Interestingly, there was no significant difference in either overall comfort or end-of-day comfort. These
- are unexpected findings given the increased interaction between the lids and lens edge as a result of
- 11 the greater surface area of the larger lenses. The fact that there was no difference might, in part, be
- explained by the similar centre thickness and peripheral thickness for the two lens types. The fact that
- the lenses were identical material and all fitted to give optimum fit also reduces the risk of one lens type
- being less comfortable than the other.[4]
- 15 Subjects did, however, report more frequent discomfort with the larger diameter lens, although there
- 16 was no significant difference in the intensity of discomfort. Given that there was no difference in overall
- 17 comfort, these findings would suggest that subjects experienced more frequent but transitory episodes
- 18 of lens awareness.

19 Slit Lamp Findings

- 20 The only difference in ocular physiology was related to conjunctival staining, which was significantly
- 21 greater for the optimum diameter lens than the large diameter lens. This is a surprising finding, as the
- 22 pressure of the eyelids acting over a larger surface area might have been expected to produce greater
- 23 mechanical interaction between the lens and conjunctiva. Two possible explanations for the greater
- 24 conjunctival staining with the optimal design are: i) increased conjunctival exposure, and ii) greater lens
- 25 movement.
- 26 Some mid-peripheral corneal staining (especially superior epithelial arcuate lesions [SEAL] or pre-SEAL
- staining), might have been expected with the larger diameter lens, but was not the case. It is likely that,
- in both instances, such staining may have been avoided by the lower modulus material employed in the
- 29 manufacture of the study lenses.
- 30 A greater degree of limbal hyperaemia might have been expected with the larger lens as a result of
- 31 greater mechanical interaction coupled with reduced oxygen supply. The fact that this was not the case
- 32 may have been due to the fact that both lenses were fitted so as to give optimum tightness of fit. In
- 33 relation to oxygen, although the larger lens covered a larger area of conjunctiva (15% difference
- 34 between the diameters), the lens thicknesses were similar over the cornea and therefore supplied
- 35 similar levels of oxygen to the cornea.

36 Lens Fit

37 Post-blink movement was significantly less with the large diameter lenses, even though the larger

surface area of the large lens might have been expected to encourage greater movement. However, F:\PAPERS\VCR\Aston Diameter/9Feb17 - 6 - PAP Aston Diameter

VISIONCARE RESEARCH

- 1 increased surface area is also likely to increase friction between the lens and ocular surface which
- 2 would discourage movement. On balance, this finding suggests that the latter effect predominates.
- 3 Despite the fact that the larger diameter lenses were optimised for fit, overall lens fit acceptability was
- 4 still rated significantly poorer than for the optimum diameter lenses. This was partly due to the greater
- 5 decentration seen with the larger lenses, most likely a result of the greater mass of the lens acting with
- 6 gravity. Also, the reduced movement with the larger lenses resulted in four fittings being downgraded
- 7 to unacceptable.
- 8 It is possible that differences in lens fit may have been evident if the large diameter lenses had not been
- 9 optimised with respect to base curve; in other words, if the diameter had been increased without a
- 10 compensating change to base curve. In particular, greater lens tightness might have been apparent due
- 11 to the increased sagittal depth of the lens. This might also have resulted in greater peripheral
- 12 pressure,[5] leading to conjunctival indentation and increased conjunctival staining.

13 Optimum Design

- 14 To the best of the authors' knowledge, this study was unique in selecting the optimum soft lens
- 15 parameters to the nearest 0.2mm and placing no limits on BC or diameter. It is notable that this led to
- the use of a wide range of parameters. The range of optimum diameters was 1.2mm, however, this
- was small in comparison with the range of horizontal corneal diameters (>2.2 mm). Table 7 shows that
- a large proportion of the optimal lens designs selected were outside of the range of lenses typically
- 19 offered. Although the present study suggests that the larger than optimal lens diameters should not be
- a concern, other compromises of lens fit may be problematic. Small lens diameters are known to cause
- 21 discomfort.[11] In addition, a previous study has shown that relatively loose or tight fittings can lead to
- 22 increased corneal staining and conjunctival hyperaemia.[12]

23 <u>Limitations of the Study</u>

- 24 Although objective ways of assessing soft lens fit have been developed, subjective evaluation is almost
- as repeatable, though the range of values is generally reduced.[13] Since there are currently no reliable
- 26 objective methods for selecting an optimal soft lens design for a given eye, a possible source of error
- 27 is that this relied on the judgement of the investigator. However, the lens fit assessments with the final
- 28 lenses suggest that this was relatively successful. All of the final optimal lenses were judged on-eye to
- be within 0.3 mm of optimal.
- 30 The larger lenses were optimised for tightness of fit whereas theoretical data suggest that, in a typical
- 31 population, large diameter lenses tend to be tighter than optimum.[5] It is possible, therefore, that the
- 32 results would be different when looking at large lenses coupled with a relatively tight fit.
- In conclusion, this study has shown that larger than optimal soft lenses may be worn without detriment
- 34 to comfort or ocular physiology provided an optimal fit is otherwise maintained.

35

1 REFERENCES

- 2 [1] L. Hall, C. Hunt, G. Young, J. Wolffsohn, Factors affecting corneoscleral topography, Invest. Ophthalmol. Vis. Opt. 54 (2013) 3691–3701.
- 4 [2] G. Young, Soft Contact Lens Design and Fitting, in: N. Efron (Ed.), Contact Lens Practice, second ed., Butterworth-Heinemann, Oxford, 2000, pp. 109–118.
- 6 [3] L. Jones, K. Dumbleton, Soft Contact Lens Fitting, in: A. Phillips, L. Speedwell (Eds.), Contact Lenses, fifth ed., Butterworth- Heinemann/Elsevier, Edinburgh, 2007, pp. 223–240.
- 8 [4] L. Jones, N. Brennan, J. Gonzalez-Meijome, J. Lally, C. Maldonado-Codina, T. Schmidt, L. Subbaraman, G. Young, J. Nichols, The international workshop on contact lens discomfort: report of the contact lens materials, design & care subcommittee, Invest. Ophthalmol. Vis. Sci. 54 (11) (2013) TFOS37–TFOS70.
- 12 [5] G. Young, A. Sulley, K. Osborn, L. Hall, J. Wolffsohn, The inter-relationship of soft contact lens diameter, base curve radius, and fit, Optom. Vis. Sci. In press.
- 14 [6] D.K. Martin, J. Boulos, J. Gan, et al., A unifying parameter to describe the clinical mechanics of hydrogel contact lenses, Optom. Vis. Sci. 66 (1989) 87–91.
- 16 [7] G. Young, Evaluation of soft contact lens fitting characteristics, Optom. Vis. Sci. 73 (1996) 247– 254.
- 18 [8] Terry R L, Schnider CM, Holden BA, Cornish R, Grant T, Sweeney D, La Hood D, Back A. CCLRU standards for success of daily and extended wear contact lenses. Optom Vis Sci 1993; 70:234-43.
- 20 [9] R.L. Chalmers, C.G. Begley, K. Moody, S.B. Hickson-Curran, Contact lens dry eye questionnaire-8 (CLDEQ-8) and opinion of contact lens performance, Optom. Vis. Sci. 89 (2012) 1435–1442.
- 22 [10] R.A. Armstrong, F. Eperjesi, B. Gilmartin, The application of analysis of variance (ANOVA) to different experimental designs in optometry, Ophthal. Physiol. Opt. 22 (2002) 248–256.
- 24 [11] N.A. McNamara, K.A. Polse, R.J. Brand, A.D. Graham, J.S. Chan, C.D. McKenney, Tear mixing under a soft contact lens: effects of lens diameter, Am. J. Ophthalmol. 127 (1999) 659–665.
- 26 [12] G. Young, S. Coleman, Poorly fitting soft lenses adversely affect ocular integrity, CLAO J 27 (2001) 67–74.
- 28 [13] L. Belda-Salmeron, T. Drew, L. Hall, J.S. Wolffsohn, Objective analysis of lens fit, Cont. Lens Anterior Eye 38 (2015) 163–167.

30

2 Table 1: Lens Details

	Trial Lenses	Controls	Test	
Manufacturer	CooperVision	Ultra	vision	
Material	methafilcon A	methat	filcon A	
Water content (%)	55	55		
Design	Frequency® 55	Custom manufactured, monocurve back surface, tricurve front surface		
Base curve (mm)	8.60	8.20 to 9.00	in 0.2 steps	
Diameter (mm)	14.2	13.5 to 16.0	in 0.1 steps	
Fitting	-	Optimal Optimal diamete 1.2mm; optimal base curve + 0.6		
Sphere powers (D)	-0.50 to -6.00	-0.50 to -6.00		

Frequency® 55 lenses were used as trial lenses to determine the optimum diameter for a given subject by using photography to determine the limbal overlap.

5

3 4

1 Table 2: Summary of Clinical Assessments

Comfort & Symptoms

Comfort (0-10, where 10=cannot be felt)

CLDEQ-8 (0-33 scale, 0=no problems)

Lens Fit

- Lens centration (mm, -ve value = inferior or temporal)
- Corneal coverage (Y/N)
- Post blink movement (mm)
- Primary-gaze lag (mm)
- Tightness on push-up (0-100, 50 = optimal, <50 loose, >50 tight)
- Overall fit acceptance (0-5, Grade 3-5 = acceptable)

Slit lamp Examination

- Limbal hyperaemia (0-4, 0.1 steps)
- Bulbar hyperaemia (0-4, 0.1 steps)
- Palpebral hyperaemia (0-4, 0.1 steps)
- Palpebral roughness (0-4, 0.1 steps)
- Corneal staining (0-4 in 5 sectors, i.e. 0-20)
- Conjunctival fluorescein staining (0-4 in 4 segments, i.e. 0-16)
- Conjunctival indentation (0-4)
- Other findings (0-4).

OC1).			
Variable			
No. of Subjects / Eyes		25 / 50	
Age (years)	Mean (SD) Range	32.9 (15.9) 18-60	
Sex	Male: Female	10:15	
Spectacle sphere (D)	Mean (SD) Range	-2.97 (1.07) -5.50 to -1.25	
Spectacle cylinder (D)	Mean (SD) Range	-0.43 (0.28) -1.0 to 0.00	
Cylinder axis (N eyes(%))	WTR ATR Oblique	22 (44%) 14 (28%) 14 (28%)	
Palpebral Aperture (mm)	Mean (SD) Range	Horizontal -	Vertical 10.12 (1.31) 8.0-16.0
Horizontal Visible Iris Diameter (mm)	Mean (SD) Range	11.40 (0.31) 10.8-12.0	-
Corneal Apical Radius (mm)	Mean (SD) Range	7.77 (0.20) 7.40-8.15	7.76 (0.20) 7.37-8.14
Corneal Shape Factor	Mean (SD) Range	0.46 (0.13) 0.09-0.65	0.76 (0.12) 0.40-1.00
Corneal Diameter (mm)	Mean (SD) Range	13.23 (0.54) 12.35-14.59	12.43 (0.51) 11.20-13.45
Corneal Sagittal Height (mm)	Mean (SD) Range	3.06 (0.25) 2.61-3.59	2.75 (0.21) 2.16-3.16
Corneo-scleral Junction Angle (°)	Mean (SD) Range	172.0 (2.5) 166-177	177.7 (2.2) 172-183
Corneo-scleral Junction Angle (°)	Mean (SD) Range	177.4 (1.6) 174-180	177.7 (1.8) 173-184

WRT = With The Rule (180±20°); ATR = Against The Rule (90±20°)

4

3

 Table 4:
 Summary of Subjective Assessments and Wearing Times.

			Dispe	nsing	Follo	w-up	
Variable		Frequency 55	Large Diameter	Optimum Diameter	Large Diameter	Optimum Diameter	P-values
No. of Subjects		25	25	25	25	25	
Overall Comfort (0-10)	Mean (SD) Range	8.86 (1.1) 6-10	9.00 (1.0) 7-10	8.95 (0.9) 7-10	7.31 (1.6) 5-10	7.46 (1.8) 3-10	0.59
End-of-day Comfort (0-10)	Mean (SD) Range	-	-	-	7.27 (3.2) 2-10	7.00 (3.1) 4-10	0.55
CLDEQ-8 (0-33)	Mean (SD) Range	-	-		9.16 (6.1) 2-25	8.64 (5.5) 2-23	0.65
Average WT (hrs)	Mean (SD) Range	-	-	-	11.9 (2.4) 8-18	11.5 (2.6) 6-18	-
Comfortable WT (hrs)	Mean (SD) Range	-	-	-	9.5 (3.4) 3-17	9.1 (3.7) 3-18	0.67

Table 5: Summary of Lens Fit at Dispensing and Follow-up.

1

			Dis	spensing	F	ollow-up	
Variable		Frequency 55	Large Diameter	Optimum Diameter	Large Diameter	Optimum Diameter	P-value
No. of Eyes		50	50	50	50	50	
Tightness on Push-up (%)	Mean (SD) Range	44.8 (6.0) 38-	48.6 (5.6) 42-	48.7 (5.0) 43-	47.3 (4.6) 40-	45.9 (4.2) 35-	0.12
Post-blink Movement (mm)	Mean (SD) Range	0.22 (0.1) 0.1-0.6	0.17 (0.1) 0.1-0.3	0.18 (0.1) 0.1-0.4	0.17 (0.1) 0.0-0.4	0.23 (0.1) 0.0-0.5	0.0038
Primary-gaze Lag (mm)	Mean (SD) Range	0.26 (0.1) 0.1-0.6	0.29 (0.2) 0.1-0.6	0.27 (0.1) 0.0-0.6	0.32 (0.3) 0.0-1.5	0.32 (0.1) 0.0-0.7	-
Total Decentration (mm)	Mean (SD) Range	0.21 (0.1) 0.0-0.6	0.31 (0.2) 0.1-0.8	0.24 (0.1) 0.1-0.5	0.20 (0.2) 0.0-0.5	0.14 (0.1) 0.0-0.3	0.010
Horizontal Decentration (mm)	Mean (SD) Range	-0.08 (0.1) -0.3 to 0.3	-0.11 (0.2) -0.6 to 0.3		-0.06 (0.2) -0.5 to 0.3		
Vertical Decentration (mm)	Mean (SD) Range	0.04 (0.2) -0.3 to 0.6	-0.05 (0.3) -0.6 to 0.4		-0.03 (0.2) -0.5 to 0.4		0.0044
Corneal Coverage (n eyes(%))	Yes No	50 (100%) 0 (0%)	20 (100%) 0 (0%)	20 (100%) 0 (0%)	50 (100%) 0 (0%)	50 (100%) 0 (0%)	
Diameter Acceptance (mm)	Mean (SD) Range	-0.01 (0.27) -0.6 to 0.7			1.21 (0.12) 1.0 to 1.5		<0.0001
Overall Fit Acceptance (0-5)	Mean (SD) Range	3.45 (0.42) 3.0-4.5	3.55 (0.43) 3-4	3.85 (0.56) 3-5	3.53 (0.61) 2-4.5	3.93 (0.56) 2-5	0.0005
Fitting Success (n eyes(%))	Yes No	50 (100%) 0 (0%)	20 (100%) 0 (0%)	20 (100%) 0 (0%)	46 (92%) 4 (8%) *	48 (96%) 2 (4%) *	

^{*} Insufficient movement on blink

Table 6: Summary of Slit Lamp Findings.

Variable		Baseline	Large Diameter	Optimum Diameter	P- values
No. of Eyes		50	50	50	
Limbal	Mean (SD)	1.04 (0.51)	1.18 (0.53)	1.23 (0.52)	0.60
Hyperaemia (0-4)	Min	0-2.4	0.1-2.2	0.2-2.3	
Bulbar Hyperaemia (0-4)	Mean (SD) Range Range	1.22 (0.43) 0.4-2.5	1.30 (0.57) 0.3-2.8	1.37 (0.60) 0.2-2.7	0.39
Upper Palpebral	Mean (SD)	1.16 (0.37)	1.29 (0.53)	1.30 (0.40)	-
Hyperaemia (0-4)	Range	0.5-2.4	0-2.4	0.6-2.5	
Upper Palpebral	Mean (SD)	1.00 (0.34)	0.83 (0.38)	1.02 (0.40)	-
Roughness (0-4)	Range	0.4-2.5	0.3-1.8	0.3-2.5	
Lower Palpebral	Mean (SD)	1.17 (0.43)	1.34 (0.59)	1.34 (0.57)	-
Hyperaemia (0-4)	Range	0.4-2.4	0.4-2.6	0.2-2.5	
Lower Palpebral	Mean (SD)	1.28 (0.56)	1.20 (0.49)	1.21 (0.51)	-
Roughness (0-4)	Range	0.2-2.8	0.3-2.3	0.5-2.6	
Corneal Staining Type - Total (0-20)	Mean (SD) Range	0.62 (1.10) 0-4	1.94 (1.75) 0-7	1.66 (1.66) 0-7	-
Conjunctival Staining - Total (0-16)	Mean (SD) Range	0.84 (1.81) 0-7	0.76 (1.41) 0-6	1.62 (2.11) 0-8	0.0006

Table 7: Summary of Study Contact Lens Parameters.

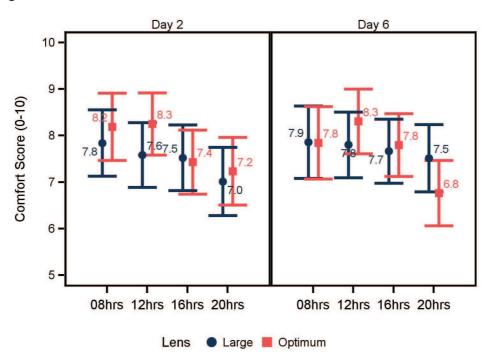
		Large Diameter	Optimum Diameter
No. of Eyes		50	50
Base Curve (mm)	Mean (SD)	9.17 (0.19)	8.57 (0.19)
	Range	8.70-9.70	8.10-9.10
Diameter (mm)	Mean (SD)	15.35 (0.29)	14.15 (0.29)
	Range	14.8-16.0	13.6-14.8
Back Vertex Power (D)	Mean (SD)	-3.04 (1.02)	-3.04 (1.02)
	Range	-1.25 to -5.25	-1.25 to -5.25
Centre Thickness* (µm)	Mean (SD)	93 (±17)	92 (±14)
Peripheral junction thickness* (µm)	Mean (SD)	164 (SD: ±14)	157 (SD: ±10)
Edge thickness* (µm)	Mean (SD)	150 (SD: ±17)	142 (SD: ±15)

^{*} Lens thickness measurements taken from nine pairs optimum and large diameter lenses using Rehder gauge (n=36)

2

 Table 8:
 Tests of Fixed Effects from the Analysis of Primary Variables.

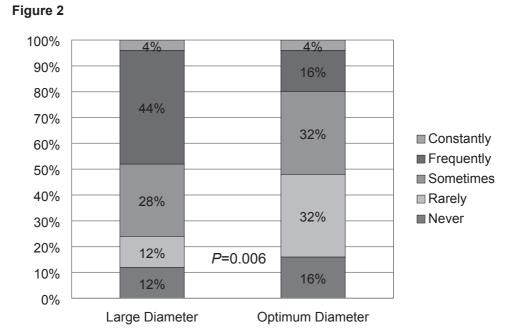
Variable	Model Term	Numerator Degrees of Freedom	Denominator Degrees of Freedom	F-Value	P-Value
Comfort	Lens Type	1	23.0	0.29	0.5931
	Lens Order	1	22.0	0.75	0.3962
	Pair	1	23.0	0.11	0.7379
	Site	1	22.0	2.82	0.1073
Comfort (SMS)	Lens Type	1	242.8	1.07	0.3030
	Day	1	242.5	0.24	0.6223
	Time	3	242.0	10.08	<.0001
	Lens Order	1	21.1	0.02	0.8783
	Pair	1	242.7	0.92	0.3384
	Day x Type	1	241.8	1.72	0.1913
	Type x Time	3	242.0	2.26	0.0823
	Day x Time	3	241.7	0.52	0.6716
	Day x Type x Time	3	242.1	1.09	0.3550
	Site	1	21.0	2.99	0.0985
Limbal Hyperaemia	Lens Type	1	23.0	0.29	0.5971
	Lens Order	1	22.0	1.27	0.2724
	Pair	1	23.0	0.52	0.4762
	Site	1	22.0	0.00	0.9444
Conjunctival Staining	Lens Type	1	23.0	15.98	0.0006
	Lens Order	1	22.0	0.34	0.5651
	Pair	1	23.0	0.98	0.3333
	Site	1	22.0	10.66	0.0035


Table 9: Least Square Mean Differences Estimates and 95% Confidence Intervals for Primary Variables at the 1-Week Follow-Up Visit.

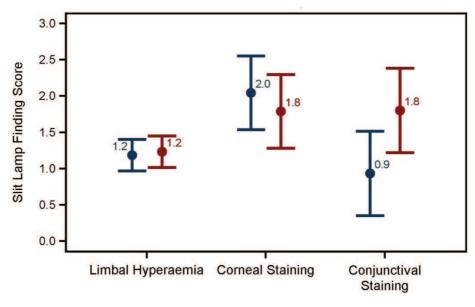
Variable	Difference	LS Mean Difference	Std. Err	95% CL	Non- Inferiority Met?	Superiority Met?
Comfort	Test-Control	-0.2	0.28	-0.7 to 0.4	No	No
SMS comfort - overall	Test-Control	-0.13	0.12	-0.4 to 0.1	Yes	No
Limbal Hyperaemia	Test-Control	-0.0	0.09	-0.2 to 0.1	Yes	No
Conjunctival Staining	Test-Control	-0.9	0.22	-1.3 to -0.4	Yes	Yes

LS-Means: least-square means, Std. Err: standard error, CL: confidence limits Non-inferiority is established if the upper confidence limit is less than +0.5. Superiority is established if the upper confidence limit is less than 0.

2


Figure 1

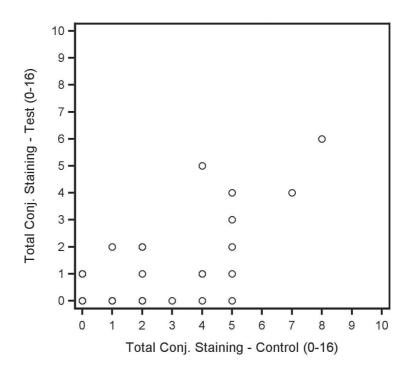
3


4

5

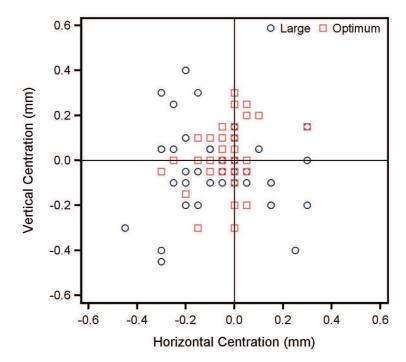
6

1 Figure 3

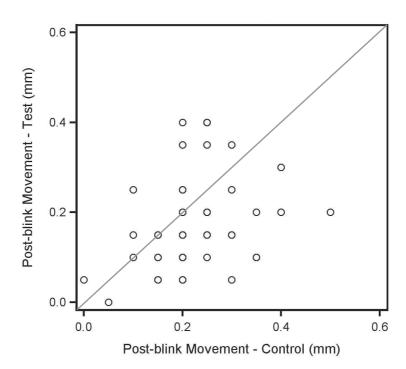

Type

Large

Optimum


2

4 Figure 4


5

1 Figure 5

2

3 Figure 6

- 20 -

1 Legends for Figures:

2 Fig. 1: Least square mean estimates for SMS comfort by day and time (and 95% confidence 3 intervals) 4 Fig. 2: Frequency of Eye Discomfort from CLDEQ-8 responses Fig. 3: Least square mean estimates for slit lamp findings at 1-week follow-up visit (and 95% 5 6 confidence intervals) 7 Fig. 4: Scatter plot of conjunctival staining at 1-week follow-up visit 8 Fig. 5: Scatter plot of lens decentration 1-week follow-up visit 9 Fig. 6: Scatter plot of subjective lens post-blink movement 1-week follow-up visit

1 APPENDIX 1

2 LENS SELECTION GUIDE

3

5

6

Guide for selection of optimum lens parameters (BC/Diameter) based on Frequency[®] 55 trial lens

Diameter Acceptance (mm) *		Loose	Optimum Fit	Tight
	+1.0	-	8.1 / 13.2	8.5 / 13.4
	+0.8	-	8.2 / 13.4	8.6 / 13.6
Large	+0.6	-	8.3 / 13.6	8.7 / 13.8
_	+0.4	8.0 / 13.6	8.4 / 13.8	8.8 / 14.0
	+0.2	8.1 / 13.8	8.5 / 14.0	8.9 / 14.2
Optimum	0.0	8.2 / 14.0	8.6 / 14.2	9.0 / 14.4
	-0.2	8.3 / 14.2	8.7 / 14.4	9.1 /14.6
_	-0.4	8.4 / 14.4	8.8 /14.6	9.2 / 14.8
Small	-0.6	8.5 / 14.6	8.9 / 14.8	-
	-0.8	8.6 / 14.8	9.0 / 15.0	-
	-1.0	8.7 / 15.0	9.1 / 15.2	-

^{* +}ve indicates larger than optimum for given cornea.

For the Large diameter lens, add 1.2mm to the diameter and flatten the base curve by 0.6mm to give clinical equivalent; e.g. Optimal = 8.6 /14.2; Large diameter = 9.2 /15.4.