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In recent decades, advances in electrophysiological techniques have enabled 
understanding of neuronal network activity, with in vitro brain slices providing insights into 
the mechanisms underlying oscillations at various frequency ranges. Understanding the 
electrical and neuro-pharmacological properties of brain networks using selective receptor 
modulators in native tissue allows to compare such properties with those in disease models 
(e.g. epilepsy and Parkinson’s). In vivo and in vitro studies have implicated M1 in execution 
of voluntary movements and, from both local network in vitro and whole brain in vivo 
perspectives. M1 has been shown to generate oscillatory activity at various frequencies, 
including beta frequency and nested theta and gamma oscillations similar to those of rat 
hippocampus. In vivo studies also confirmed slow wave oscillations in somatosensory 
cortex including delta and theta band activity. However, despite these findings, non-thalamic 
mechanisms underlying cortical delta oscillations remain almost unexplored. Therefore, we 
determined to explore these oscillations in vitro in M1 and S1. 

Using a modified sagittal plane slice preparation with aCSF containing neuroprotectants, 
we have greatly improved brain slice viability, enabling the generation and study of dual 
rhythms (theta and gamma oscillations) in deep layers (LV) of the in vitro sensorimotor slice 
(M1 and S1) in the presence of KA and CCh. We found that theta-gamma activity in M1 is 
led by S1 and that the amplitude of gamma oscillations was (phase-amplitude) coupled to 
theta phase in both regions. Oscillations were dependent on GABAAR, AMPAR and 
NMDAR and were augmented by DAR activation. Experiments using cut/reduced slices 
showed both M1 and S1 could be intrinsic generators of oscillatory activity. 

Delta oscillations were induced in M1 and S1 by maintaining a neuromodulatory state 
mimicking deep sleep, characterised by low dopaminergic and low cholinergic tone, 
achieved using DAR blockade and low CCh. Delta activity depends on GABAAR, GABABR 
and AMPAR but not NMDAR, and once induced was not reversible. Unlike theta-gamma 
activity, delta was led by M1, and activity took >20mins to develop in S1 after 
establishement of peak power in M1. Unlike M1, S1 alone was unable to support delta 
activity. 

Dopamine modulates network activity in M1 and it is known that fast-spiking interneurons 
are the pacemakers of network rhythmogenesis. Recent studies reported that dopamine 
(DA) controled Itonic in medium spiny, ventrobasal thalamus and nucleus accumbens 
neurons by modulation of GABARs or cation channels. In the current study, voltage-clamp 
whole cell recordings were performed in fast spiking interneurons (FS cells) in Layer V of 
M1. These recordings revealed tonic and phasic GABAAR inhibition and when DA was bath 
applied, a slow inward current (IDA) was induced. IDA was mediated by non-specific cationic 
TRPC channels following D2R-like receptor activation. 

Overall, my studies show the strong interdependence of theta-gamma rhythmogenesis 
between M1 and S1, dominanace of M1 at delta frequency and the crucial role of dopamine 
in controlling FS cell activity. Further exploration of these rhythms in models of pathological 
conditions such as Parkinson`s disease and Epilepsy may provide insights into network 
changes underlying these disease conditions. 

Keywords: oscillations, delta, theta and gamma, PAC, dopamine, interneurons. 
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Abbreviations 

µM Micromolar 

µs Microsecond 

µV Microvolt 

2-APB 2-Aminoethoxydiphenylborane

2-APV D-(-)-2-Amino-5-phosphonopentanoic acid 

5HT Serotonin 

AA Ascorbic acid 

AC  Adenyl cyclase 

Ach Acetylcholine 

aCSF Artificial cerebrospinal fluid 

AD Alzheimer disease 

AHP Afterhyperpolarisation 

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AMPH Amphetamine sulphate 

AP Action potential 

AT Atropine 

BG Basal ganglia 

BS Brainstem nuclei 

BZD Benzodiazepine 

CA1 Cornu ammonis-1 of hippocampus 

Ca2+ Calcium ion 

CA3 Cornu ammonis-3 of hippocampus 

cAMP Cyclic adenosine monophosphate 

CB Calbindin 

CBNX Carbenexolone 

CCh Carbachol 

CFC Cross-frequency coupling 

CGP 55845 [(2S)-3-[[(1S)-1-(3,4-Dichlorophenyl)ethyl]amino]-2-hydroxypropyl] 
(phenylmethyl) phosphinic acid hydrochloride 

CHPG 2-Chloro-5-hydroxyphenylglycine

ChR2 Channel rhodopsin 2  

CL Centrolateral nucleus of thalamus 

Cl- Chloride ion 
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CNQX  6-Cyano-7-nitroquinoxaline-2,3-dione 

CNS  Central nervous system 

CPCCOEt 7-(Hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester 

CPPG  (RS)-α-Cyclopropyl-4-phosphonophenylglycine 

CR  Calretinin 

Cre  Causes recombination 

D1R  D1-like dopamine receptor 

D2R  D2-like dopamine receptor 

DA  Dopamine 

D-AP5  D-(-)-2-Amino-5-phosphonopentanoic acid 

DHPG  (S)-3,5-Dihydroxyphenylglycine 

EEG  Electroencephalography 

EPSC  Excitatory postsynaptic current 

EPSP  Excitatory postsynaptic potential 

fMRI  Functional magnetic resonance imaging 

FS  Fast-spiking 

GABAR γ-aminobutyric acid receptor 

GAD 67 Glutamic acid decarboxylase 67 kDa 

GBZ  Gabazine 

GIRK  G protein-coupled inwardly-rectifying potassium channel 

GPCR  G-protein-coupled receptor 

GYKI 53655 1-(4-Aminophenyl)-3-methylcarbamyl-4-methyl-3,4-dihydro-7,8-
methylenedioxy-5H-2,3-benzodiazepine hydrochloride 

HA  Histamine 

HCN  Hyperpolarisation-activated cyclic nucleotide–gated channels 

HCO3
+  Bicarbonate 

hr  Hour 

Hz  Hertz 

IB  Intrinsic bursting 

IFSECN International Federation of Societies for EEG and Clinical Neurophysiology 

Ih  Hyperpolarisation activated cation current 

IKca  Ca2+ dependent hyperpolarising K+ current 

IN  Interneuron 

ING  Interneuronal network gamma 

IPSC  Inhibitory postsynaptic current 
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IPSP  Inhibitory postsynaptic potential 

IT  Low-threshold calcium current 

iGluR  Ionotropic glutamate receptor 

K+  Potassium ion 

KA  Kainic acid/kainate 

KAR  Kainic acid receptor 

KCC2  Potasssium chloride co-transporter 

KO  Knock-out 

L I  Layer 1 

L II  Layer 2 

L III  Layer 3 

L IV  Layer 4 

L V  Layer 5 

L VI  Layer 6 

LFP  Local field potentials 

LTD  Long term depression 

LTP  Long term potentiation 

LTS  Low threshold spiking 

LY 341495 (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic 
acid 

LY 379268 (1R,4R,5S,6R)-4-Amino-2-oxabicyclo [3.1.0] hexane-4,6-dicarboxylic acid 

M1  Primary motor cortex 

M2  Secondary motor cortex 

mAchR Muscarinic acetylcholine receptor 

MEG  Magnetoencephalography 

mGluR  Metabotropic gutamate receptor 

MSNs  Medium spiny neurons (MSNs) 

MI  Modulation Index 

min  Minute 

MK-801 (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-
imine maleate 

mM  Millimolar 

MPEP  2-Methyl-6-(phenylethynyl) pyridine 

Ms  Millisecond 

MSNs  Medium spiny neurons 

MTEP  3-((2-Methyl-1,3-thiazol-4-yl) ethynyl)pyridine hydrochloride 
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NA Noradrenaline 

Na+ Sodium ion 

NE Norepinephrine 

NKCC Sodium and potassium coupled co-transporter 

NMDAR N-methyl-D-aspartate receptor

NREM Non-rapid eye movement 

OLM Oriens lacunosum moleculare 

PAC Phase-amplitude coupling 

PDPC Phase-dependent power correlations 

PD Parkinson’s disease 

PET Positron emission tomography 

PFC Prefrontal cortex 

PI Phosphoinositole/phosphoinositide 

PING Pyramidal-interneuron network gamma 

PIR Pirenzepine 

PLC Phospholipase C 

PO Posterior thalamic nucleus 

PPC Phase-phase coupling 

PPN Pedunculopontine nucleus 

PTX Picrotoxin 

PV+ Parvalbumin positive interneurons 

r Radius 

REM Rapid eye movement 

RMP Resting membrane potential 

RS Regular Spiking 

RSNP Regular spiking non-pyramidal cell 

RT/RTN Reticular nucleus of thalamus 

s Second 

S1 Primary sensory cortex 

S2/Par2 Secondary somatosensory/parietal area 

SC Superior colliculus 

SCH 23390 (R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-
benzazepine hydrochloride 

SKF96365  1-[2-(4-Methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole 
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SO  Somatostatin 

SWO  Slow wave oscillations 

SYM2206 (±)-4-(4-Aminophenyl)-1,2-dihydro-1-methyl-2-propylcarbamoyl-6,7-                                                  
             methylenedioxyphthalazine 

TLE  Temporal lobe epilepsy 

TRPC  Transient receptor potential cation channels 

UBP 304 (S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxythiophen-3-ylmethyl) 
pyrimidine 2,4-dione 

UBP 310 (S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxy-thiophene-3-yl-methyl)-5-
methylpyrimidine-2,4-dione 

Ve  Electrical potential 

VIP  Vasoactive intestinal polypeptide 

VL  Ventrolateral nucleus of thalamus 

ZI  Zona inserta 

ZOL  Zolpidem 

Α  Alpha 

β  Beta 

γ  Gamma 

θ  Theta 

δ  Delta 

π  Pi 

ρ  Rho 

Τ  Tau 
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1 Introduction 
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1.1 Brain rhythms 

Brain rhythms are voltage fluctuations of electrical activity of neuronal assemblies and are 

shaped by geometry and alignment of those assemblies (Buzsaki, 2006). Hans Berger first 

recorded rhythmic electric signal in humans in 1929 using the electroencephalograph (EEG) 

device. The reliable nature of the EEG device attracted both clinicians and scientists, which 

lead to research into brain rhythms, their mechanisms, origin, and roles in health and 

disease. Nowadays, neuronal voltage changes can be measured by EEG or indirectly via 

magnetoencephalography (MEG) on the scalp and intracranially with subdural electrodes 

(electrocorticography) in vivo. Extracellular local field potential recordings (LFPs; 

mechanisms detailed below) can also detect these rhythms and this approach is widely 

used in vitro alongside single-cell electrophysiology techniques. Brain rhythms are 

categorized depending on frequency band (number of cycles per second, units: Hertz (Hz)). 

Different types of rhythms include: very slow oscillations (<1 Hz), delta (2-4 Hz), theta (4-

11 Hz), alpha (8-13 Hz), mu (7-10 Hz) beta (13-30 Hz), gamma (30-100 Hz) and very fast 

oscillations (>100 Hz) (Steriade et al., 1993; Curio et al., 1994). In LFP experiments, activity 

at different frequency band is measured by their relative power (amplitude of the power 

spectrum). It is evident that brain rhythms are associated with specific brain functional 

activity. For example, research suggests roles in physiological functions such as sleep & 

wakefulness (delta rhythm), memory formation (theta and gamma rhythms) and 

consolidation (delta), cognitive processing and integration (gamma activity; Thallon and 

Bertrand, 1999; Singer, 1999) and in diseases such as Parkinson`s disease, schizophrenia, 

epilepsy, and Alzheimer`s disease (Brown et al., 2001; Herrmann and Demiralp, 2005). 

1.1.1 Neuronal contribution to the LFP 

Local field potential recording (electric potential Ve) is generated by the summation of 

currents flowing in and out (sink and source respectively) of neuronal elements (synapses, 

dendrites and somata) and across the extent of extracellular recording site. The amplitude 

and frequency of LFP activity depends upon contributions from these various current 

sources as well as properties of the brain tissue. Amplitude is inversely proportional to the 

distance (r) between recording site and source. Hence, larger the distance between the 

source and recording site the less information obtained from LFP (see review Buzsaki et 

al., 2012). The most important contributor to LFP is synaptic activity. The overlapping 

activity of several similar compartments induces a measurable signal, which is made 

possible by kinetically slow events like synaptic currents (Elul 1971; Logothetis, 2004 

Niedermayer et al., 2005). Hence, the tree-like structure of neurons formed by soma and 

dendrites with electrically excitable properties affected by several thousand synapses 

provides the basis of LFP signals.  
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Synaptic NMDA and AMPA receptors mediate excitatory events by enabling the flow of 

calcium and sodium ions respectively. Influx of these cations (Ca2+ and Na+) to intracellular 

space from extracellular space creates an extracellular current sink. To achieve electrical 

balance, this sink is balanced by a source. Passive current flows along the neurons as an 

opposing ion flow from intracellular to extracellular space which, together with the original 

sink, forms a dipole. Synaptic GABAA receptors mediate inhibitory currents involving the 

flow of Cl- which creates an active source in the extracellular space and need an intracellular 

sink to achieve electrical balance. However, it is difficult to determine if the identified source 

or sink is active or passive unless the type of synapse is known (Buzsaki et al., 2003, 2006, 

2012). Since the chloride ion equilibrium potential is near to resting membrane potential, 

inhibitory events are assumed to contribute very little to the LFP (Bartos et al., 2007; Koch 

1999). However, inhibitory currents can induce transmembrane hyperpolarising currents in 

fast spiking neurons (when the membrane gets depolarised) and are known to contribute to 

LFP in generating fast oscillations in hippocampus (Trevelyan et al., 2009; Glickfeld et al., 

2009; Oren et al., 2010; Bazelot et al., 2010). Pyramidal neurons also generate strong 

dipoles owing to the separation distance between active sink or source and the return 

current, and have been suggested to contribute greatly to the LFP (Buzsaki et al., 2012). 

Nevertheless, interneurons are significant contributors to LFP where the contribution from 

pyramidal neurons is paced and controlled via inhibitory interneurons, di-synaptically. This 

was reported in invasive studies in cortex of human and monkey (Telenczuk et al., 2017) 

and is consistent with data from hippocampal slices (Bazelot, 2010). Spike waveform 

features such as shape of the spike has enabled the classification of inhibitory (narrow 

spikes) and excitatory (broad spikes) neurons (Peyrache et al., 2012) but exceptions do 

exist such that non-fast spiking interneurons display a broad waveform spike (Fuentealba 

et al., 2008) whilst some excitatory neurons in motor cortex display narrow spikes 

(Vigneswaran et al., 2011). Intracellular and extracellular recordings at synaptic sites of 

excitatory (e.g. NMDAR) and inhibitory (GABAR) receptors are illustrated in figure 1.1. 
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Figure 1.1 An illustration of field potentials at an excitatory and inhibitory at both 

synaptic and non-synaptic sites. 

Intracellular and extracellular recordings shows a rapid EPSP/IPSP at a synaptic site on 
dendrite but a slower and smaller EPSP/IPSP at soma. (A) Source (positive) flows outward 
and inward (negative) sink at synaptic site whilst the opposite is true for inhibitory synapse 
(B) Note the source at synaptic site and sink at soma.
Source: http://clinicalgate.com/electroencephalography/.

Strong currents that are generated across extracellular space are fast action potentials that 

are detected as spikes or ‘units’ (e.g. Koch, 1999). Despite the high amplitude Ve generating 

ability of Na+ spikes, they were thought not to contribute greatly to LFP or EEG (Niedermeyer 

et al., 2005; Nunez et al., 2006) due to their short duration (<2 ms). However, synchronous 

firing from many neurons (population) is known to play a role in high frequency activity 

(Buzsaki et al., 2012) suggesting a role of action potentials in LFP (Pettersen et al., 2008). 

Voltage dependent Ca2+ spikes are often triggered by a back-propagating action potential 

to distal dendrites (lakram et al.,2009) or because of excitatory post synaptic potentials 

(EPSPs) mediated by NMDA receptors (Hirsch et al., 1995; Schiller et al., 2000; Polsky et 

al., 2004; Larkum et al., 2009). Due to their long-lasting nature (10-100 ms) and large power 

(10-50 mV) dendritic Ca2+ spikes are considered to play a role in the LFP (Wong et al., 1979; 

Llinas et al., 1988; Schiller et al., 2000; Stuart et al., 2008). Other non-synaptic contributors 

include voltage dependent intrinsic currents (Ih and IT) in resonance (neuronal ability to 

respond to a frequency band) (Llinas, 1998) and gap junctional potentials. 
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1.2 Gamma oscillations 

Gamma oscillations were first designated as beta-like waves (35-45 Hz) (Jasper and 

Andrews, 1938). Later, they began to be referred to as 40 Hz oscillation (Das and Gastaut, 

1955). Then, in the late 19th century, gamma rhythms were named based on the frequency 

range (30-70 Hz) of oscillations (Bressler and Freeman, 1980) and they have since become 

the most commonly studied type of oscillation in various regions of brain. Many studies have 

been carried out in hippocampus (in vitro and in vivo) due to its clear laminar organization 

and densely packed pyramidal neurons that give rise to high amplitude gamma oscillations 

spontaneously in vitro (Modebadze, 2014, Shah, 2016).  

 

1.2.1 Mechanistic aspects of gamma oscillatory activity 

In vivo studies have reported that there are two rhythm-generating structures in 

hippocampus: dentate gyrus and CA3 (Csicsvari et al., 2003). In vitro pharmacological 

induction methods of gamma oscillations have been demonstrated using approaches such 

as hypertonic potassium solution and tetanic stimulation but the most commonly used 

method is the bath application of cholinergic agonist, carbachol (CCh) and/or kainate 

receptor agonist, kainic acid (KA) or metabotropic glutamate receptor agonist (CHPG) 

(Whittington et al., 1995; Fisahn et al., 1998; Fisahn et al., 2004; Hajos and Paulsen, 2009). 

Gamma oscillations have been  reported in various regions: in hippocampus (CA3 and CA1) 

(Buzsaki et al., 1983; Whittington 1995; ; Bragin et al., 1995; Fisahn et al., 1998 ;Gillies et 

al., 2002; Mann et al., 2005), somatosensory cortex (Buhl et al., 1998) striatum (Berke et 

al., 2004; Tort et al., 2008) entorhinal cortex (Cunningham et al., 2003), amygdala (Sinfield 

and Collins, 2006), cerebral cortex (Middleton et al., 2008), olfactory bulb (Adrian, 1942, 

Freeman, 1975) and primary motor cortex (Johnson et al., 2017). However, the time 

required to induce activity and concentrations of KA and CCh varies with the region and 

slice preparation. ING (interneurons network gamma) (Whittington, 1995; Traub et al., 

1996a) and PING (pyramidal-interneuron network gamma) are the two models proposed as 

mechanisms of gamma oscillations in vitro as illustrated in figure below (Whittington et al., 

2010) both depending on interneuron populations in cortex. (McCormick, 1996; Wang, 

1993; Wang 1999; Minlebaev et al., 2011).  
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Figure 1.2 Schematic representation of acting models of ING and PING. 

1.2.2 ING 

Interneuronal gamma (ING) arises from a neuronal population consisting of only inhibitory 

interneurons in which the important factors include: mutually connected interneurons, a time 

constant mediated by GABAAR, driving current to initiate interneuron spiking in the absence 

of fast phasic excitatory drive (Wang & Rinzel 1992; Whittington et al., 1995; Wang & 

Buzsáki 1996; Traub et al., 1996b;). During ING (figure 1.2), one population (group 1) of 

interneurons fire action potentials (AP), generating IPSC in another connected population 

of interneurons (group2). When the required net excitation of interneurons is available then 

group 2 generates rebound spikes with IPSCs in group 1 and the cycle repeats. This 

recurrent chain of events suggest inhibition to be essential for synchronisation (Van 

Vreeswijk et al., 1994). Oscillatory frequency is strongly determined by the IPSC decay time 

kinetics (Wang and Buzsaki, 1996; Tiesinga and Jose, 2000; Buzsaki and Wang, 2012). 

Hence, a GABAAR modulator, pentobarbital, decreases the frequency of oscillations via 

increased IPSC decay time, confirming the critical role of IPSC kinetics in determining the 

frequency (Segal and Baker, 1984; Fishan et al., 2004). Nevertheless, there is no clear 

understanding of where the source of exciatation in ING model. 

1.2.3 PING 

Pyramidal-Interneuronal gamma (PING) is a mechanism of gamma oscillations based on 

reciprocal interactions between populations of pyramidal and inhibitory neurons (Wilson and 

Cowan, 1972; Freeman, 1975; Leung, 1982; Ermentrout & Kopell, 1998; Borgers and 

Kopell, 2003; Brunel & Wang, 2003; Geisler et al., 2005). These oscillations rely upon 

phasic excitation and inhibition to synchronise (Roopun et al., 2009; Fisahn et al., 1998). 

These oscillations have been suggested to be more persistent than ING like oscillations 

due to their alternative fast excitation and delayed inhibition that occurs in a cyclic manner 

(Buzsaki and Wang, 2012). Like ING model, enhancing IPSC kinetics using pentobarbital 

reduced the frequency and oscillations were abolished upon addition of GABAAR 

antagonist. Hence, GABAAR mediated IPSC decay time determines the frequency of the 

oscillations (Freeman, 1975, Leung, 1982) which is now known to be a characteristic feature 

of PING both in vivo and in vitro (Mann et al., 2005; Hájos and Paulsen, 2009; Bragin et al., 
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1995; Csicsvari et al., 2003; Hasenstaub et al., 2005; Tiesinga and Sejnowski, 2009). Unlike 

ING model, PING like oscillations were found to be dependent on AMPAR due to the 

reliance on excitatory drive (Cunningham et al., 2003). Interestingly, pharmacological 

manipulation of IPSC kinetics has shown to have comparatively more impact on frequency 

of ING, suggesting the stability of the network was enhanced upon the recruitment of 

pyramidal cells in PING (Whittington et al., 2000). 

1.2.4 Evidence for ING and PING in vivo and in vitro 

In vitro ING-like mechanism was first observed in CA1 in the presence of the metabotropic 

glutamate receptor agonist, DHPG or high potassium solution plus blockade of ionotropic 

glutamate receptors (Whittington et al., 1995; Traub, 1996; LeBeau et al., 2002; Whittington 

et al., 2010) and also by bath application of KA (Fisahn et al., 2004). Cholinergically induced 

PING like mechanisms have also been identified in hippocampal and cortical slices (Fisahn 

et al., 1998) and KA and CCh also induced the same (Whittington, 2010; Modebadze, 2014; 

Nicholas, 2016). Further studies (Fuchs et al., 2007) have shown that the amplitude of 

gamma oscillations was decreased when AMPAR expression was genetically knocked 

down, presumably due to disturbed interaction between pyramidal and interneuron cells. 

Depolarising cortical interneurons by optogenetically exciting ChR2 channels in vivo has 

shown an increase in gamma amplitude when recording extracellularly whilst a decrease in 

gamma power was observed by hyperpolarising interneurons via halorhodopsin (Sohal et 

al., 2009). It was also reported that when random light pulses were used to drive 

interneurons in vivo, power in the gamma frequency range was enhanced in comparison to 

other frequency bands (Cardin et al., 2009). However, many studies suggest ING to be an 

artefact since the source of excitation is unknown which needs further exploration. 

1.3 Theta oscillations 

Theta rhythm with a frequency range of 4-10 Hz has been the subject of many investigations 

in the rodent hippocampus (Bland, 1986; Bland et al., 2002; Cunningham et al., 2003; 

Jacobs, 2010; Jacobs, 2014). Previous studies have defined hippocampal 1-4 Hz as delta 

(Clemens et al., 2013), as theta (Fell et al., 2003) and also theta/delta (Mormann et al., 

2008) and discrepancies still exist. Despite these issues relating to frequency banding, 

hippocampal 1-4 Hz and 4-8 Hz oscillations found in human and rodents respectively have 

been reported to have functional similarities in that they exhibit an activation during 

navigation and memory tasks and show analogous coupling pattern with gamma oscillations 

(Ekstrom et al., 2005; Jacobs, 2014).  

Hippocampal theta in rodents can be divided into two types: atropine sensitive theta (4-9 

Hz) which is associated with automatic movement and atropine insensitive theta (6-12 Hz) 
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which is found during voluntary movements (Vanderwolf, 1969; Kramis et al., 1975).  Since 

Local field potential is the summation of EPSPs and IPSPs on the soma and dendrites of 

pyramidal cells it is assumed that theta activity is the interplay between two different dipoles 

(current generators). One being the excitatory input received by pyramidal cells and the 

other being inhibitory input from GABAergic neurons (Buzsaki, 2002). The role of theta 

oscillations in spatial memory was demonstrated by behavioural studies in which specific 

pattern at theta frequency corresponds to firing of place cells corresponding to visual cues 

(O`Keefe, 1976) and the phase relationship between spiking and theta activity of place cells 

was identified to shift depending on the location (O`Keefe and Reece, 1993), suggesting 

that location was encoded by phase precession. 

 

1.4 Phase-amplitude coupling (PAC) 

Studies have demonstrated that certain brain functions such as cognition are achieved by 

simultaneous activity in multiple frequency bands (Schutter and Knyazev, 2012). It is 

evident that each frequency band plays a specific role in functional aspects like perception 

and cognition (Cohen, 2008) but further insight may be provided by uncovering the relation 

and interaction between different frequency band oscillations (Jensen and Colgin, 2007). 

Such interaction is termed cross-frequency coupling (CFC) which has received greater 

interest in recent years in the field of neuroscience. CFC has been identified in signals 

obtained from LFP, electroencephalogram, electrocortigram recordings (Bragin et al., 1995; 

Lakatos et al., 2005; Canolty et al., 2006; Demiralp et al., 2007; Jensen and Colgin, 2007; 

Cohen, 2008; Kramer et al., 2008; Young and Eggermont 2009). 

CFC was categorised in two forms: phase-amplitude coupling (PAC) and phase-phase 

coupling (PPC). The former is the type of CFC investigated in this thesis. PAC is also known 

as nested oscillations in which the phase of low frequency oscillations (example: theta) 

determines the power or amplitude of high frequency oscillations (example: gamma). Thus, 

amplitude of high frequency oscillation (nested) is synchronised with the phase of low 

frequency oscillation (nesting) (Palva et al., 2005). This type of CFC enables observation of 

the inter-frequency relationship aspects that correspond to low frequency and the amplitude 

of higher frequency components of local cortical circuit (Canolty and Knight, 2010). 

Behavioural studies have suggested that PAC is involved in sensory integration, 

attentiveness and memory organisation (Lisman and Idiart, 1995; Lisman, 2005; Schroeder 

and Lakatos, 2009; Voytek et al., 2010). Several brain regions have been reported to show 

PAC, including hippocampus (Bragin et al., 1995), neocortex (Canolty et al., 2006) and 

basal ganglia (Cohen et al., 2008) and PAC is evident in rodents (Bragin et al., 1995; Tort 

et al., 2008), sheep (Nicol et al., 2009) and monkeys (Lakatos et al., 2005) as well as in 
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humans (Cohen et al., 2008), Schematic representation is shown in figure 1.3. Note from 

the figure that the amplitude of fast oscillations is always greatest at a certain phase of low 

frequency oscillation, this is called the coupling phase. 

Figure 1.3 Representative PAC 

Top trace is the sum of both (fast and slow) oscillations in 

which the amplitude of fast oscillations corresponds to the 

phase of slow oscillation. 

Figure 1.4 Illustration of phase-amplitude coupling analysis with different modulation 

indices (cases 1-4).  

(A) Left traces are the example summation of fast and slow oscillations (top traces) and
filtered data of coupling strength (bottom traces), right traces are the corresponding phase-
amplitude analysis graphs (B) bar graph of corresponding modulation index of all cases (1-
4). Note greater the coupling strength greater the modulation index. Obtained from Tort et
al., 2010 for illustration purposes.

Several methods of measuring PAC have been reported (Canolty et al., 2006; Tort et al., 

2010) but each of them have advantages and disadvantages. The figure 1.4 illustrates 

phase amplitude coupling analysis and corresponding modulation index of theta and 

gamma taken as an example. In this thesis, the method and Matlab scripts provided by Tort 

et al., 2010 were used for PAC analysis (see results chapter 3). 
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1.5 Oscillatory patterns during sleep 

Various sleep stages were first described by Loomis et al., (1937) who demonstrated the 

spectrum of EEG from wakefulness to deep sleep. In the 1950, REM (Rapid Eye Movement) 

stage was distinguished and sleep stages were reclassified as NREM (Non-Rapid Eye 

Movement) and REM stage (Dement and Kleitmen, 1957). Various rhythmic patterns were 

described in thalamocortical systems during sleep stages, including infra-slow: 0.02-0.1 Hz, 

slow (0.2-1 Hz), delta (1-4 Hz), spindle (12-14 Hz) theta (3-7 Hz), and fast: 20-60 Hz and 

ultra-fast: 100-600 Hz (Bazhenov and Timofeev, 2006). 

Figure 1.5 Elucidating the EEG recordings during various stages from awake to deep 
sleep stages and the associated oscillations during each stage. 

Low amplitude but high frequency oscillations were identified in wakeful stages and REM 
stages whereas, high amplitude low frequency oscillations were characterized in deep sleep 
stages. Source: Hockenbury and Hockenbury 2010. 

Five stages of sleep cycle were characterized in humans. The first four stages are grouped 

as (NREM) sleep stage with last deepest one (stage 4) is punctuated by episodes of REM 

(Rechtschaffen and Kales, 1968) as illustrated in figure 1.5. 

The sleep cycle is known to progress in following order, N1-N2-N3-N4-REM (Feinberg and 

Floyd, 1979). Stage 1 is a transitional stage between sleep and waking and is associated 

with low voltage EEG with mixed frequencies at alpha (4-7 Hz) and theta (7-10 Hz) band. 

Alpha oscillations are often seen in this relaxed state (Carskadon and Dement, 2011) and 

this stage lasts about 1-7 minutes, constituting about 2% of the sleep cycle. Stage 2 

comprises sleep spindles (10-17 Hz), K+ complexes, typically constitutes about 45-55% in 

adults (even more in young adults) of sleep cycle and lasts about 20-30 minutes. Stage 3 

consists of a mixture of theta and delta waves of frequency 0.1-1 and 1-4 Hz. Stage 3 occurs 
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longer periods during initial sleep cycles. This stage is characterized by the lowest breathing 

rate and blood pressure with increased dreaming (Carskadon and Dement, 2011) and delta 

activity. Stage 4 is defined by high amplitude delta oscillations (2-4 Hz). Stage 3 and 4 are 

often described as slow-wave or delta sleep stage and represents 15-20% of sleep cycle. 

EEG recordings revealed that these stages are characterised by ‘up’ and ‘down’ states of 

cortex in which neurons in cortex are depolarised in ‘up’ state and may fire action potentials 

whilst ‘down’ state is when the cells are hyperpolarised and do not fire (Steriade et al., 1991, 

1993a, 1993b, 2001; Contreras and Steriade, 1995; Werth et al., 1996; Timofeev et al., 

2000a, 2000b, 2001; Molle et al., 2002; Clemens et al., 2007). Stage 5 (REM stage), which 

lasts for 5-15 minutes is an indication of end of NREM stages and is characterized with 

rapid eye movements, loss of muscle tone and dreaming. It is thought that sleep stages 

always begin with NREM stages (lasts about 50-70 minutes) followed with REM (5-25 

minutes) stage in a cyclic manner for about four times every night (Rechtschaffen and Kales, 

1968; Amzica and Steriade 1998; Carskadon and Dement, 2011). REM sleep was found to 

be dominant during later cycles of sleep whilst N3 and 4 are dominant in earlier cycles 

(Aeschbach and Borbely, 1993). 

 

1.6 Delta oscillations and sleep 

The delta rhythm was first described by Walter in 1936 as a specific slow wave recorded 

during an EEG investigation of pathological tumours. The frequency range for delta wave 

activity is between 0 and 4 Hz as implicated in International Federation of Societies for 

Electroencephalography and Clinical Neurophysiology (IFSECN) (1974). However, 

frequency ranges such as 1-4 Hz (Ursin, 1968), 0.5-4 Hz (Frost and Kellaway et al., 1966), 

0.5-5 Hz (Gibbs and Gibbs, 1951) and 0.1-3.5 Hz (Niedermeyer 1999) are often mentioned 

in the literature. A wide range of research has been carried out to disclose the relation 

between the EEG and cellular mechanisms (Creutzfeldt et al., 1966; Frost and Kellaway et 

al., 1966; Rappelsberger et al., 1982). There is more than one phenomenon in the 

frequency range of 0-4 Hz which includes slow oscillations (<1 Hz) and delta (1-4 Hz) 

oscillations. Several studies are available demonstrating the origins of slow-wave 

oscillations (<1 Hz) in thalamus (Crunelli and Hughes, 2010) neocortex (Compte et al., 

2003; Shu et al., 2003; Hasenstaub et al., 2005; Haider et al., 2006), in cortex (Sanchez-

Vives and McCormick, 2000) yet very little is known about delta oscillations in terms of origin 

and mechanism underlying the rhythm at 2-4 Hz, though it is assumed that there are at least 

two types such as thalamic and cortical delta oscillations, depending on the source of origin. 
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1.6.1 Thalamic delta oscillations 

Thalamic delta oscillations were characterized in vivo in motor, sensory, association and 

intralaminar thalamic nuclei of cats (Steriade et al., 1991b; Dossi et al., 1992) and in vitro in 

neurons of the rodent lateral geniculate (LG) (McCormick and Pape, 1990; Leresche et al., 

1990). The rhythmicity in these oscillations is generated intrinsically as a result of interplay 

between two inward currents of thalamic relay neurons: low-threshold Ca2+ current (IT) and 

hyperpolarisation activated cation (Na+ and K+) current (Ih). Long-lasting hyperpolarisation, 

below -65 mV in a neuron of thalamus activates slow Ih, which causes depolarisation of 

membrane potential which activates IT, generating a Ca2+ spike which in turn triggers a burst 

of high frequency Na2+ action potentials. Ih is deactivated and IT is inactivated during the 

burst of spikes and burst termination is followed by hyperpolarising overshoot mediated by 

a Ca2+-dependent afterhyperpolarising K+ current (IKCa). During bursts, both Ih and IT are 

deactivated and inactivated because of voltage dependency and transient nature 

respectively. The post-burst after hyperpolarisation (AHP) activates Ih and starts the next 

cycle of oscillations (McCormick and Pape, 1990). This mechanism is illustrated in figure 

1.6. 

Figure 1.6 Intracellular mechanism of thalamic delta oscillations (adapted from 
McCormick and Pape 1990). 

Ih is sensitive to both voltage and Ca2+ concentration, the fluctuations in Ca2+ concentration 

can alter the strength of Ih. This converts delta activity into a waxing/waning pattern which 

is like that of thalamocortical neurons in intact cat (Dossi et al., 1992) and changes to clock-

like after neocortex removal (Timofeev et al., 2000). Moreover, similar activity of rebound 

bursts at delta range was also noticed in thalamic slice preparations (McCormick and Pape, 
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1990; Leresche et al., 1990; Soltesz et al., 1991) and in single neurons of computer models 

(Toth and Crunelli, 1992; Destexhe et al., 1993; Wang, 1994). 

1.6.2 Cortical delta oscillations 

Early studies reported delta oscillations in isolated cortex of cats (Frost and Kellaway et al., 

1966) and of neocortical origin after thalamectomy (Villablanca and Salinas-Zeballos, 1972; 

Villablanca, 1974). In addition, Ball et al., demonstrated that the delta oscillations emerge 

in between ll/lll and V layers of cortex (Ball et al., 1977). Cortical delta is far less well 

understood than thalamic delta. Some studies suggest that thalamic delta is independent 

of cortical delta rhythm as it existed after decortication (Steriade et al., 1985; Pare et al., 

1987). On the other hand, delta oscillations were desynchronised after decortication proving 

that the thalamic delta is synchronised by long-range cortical connections (Timofeev and 

Steriade, 1996). These controversial reports suggest the need for further investigation of 

cortical delta rhythm. Nevertheless, a recent study in slices containing secondary 

somatosensory/parietal area S2/Par2 has enabled pharmacological induction of delta 

oscillations first time in vitro by maintaining a neuro-modulatory state equivalent to that of 

sleep (Carracedo et al., 2013). 

1.7 Primary motor cortex (M1) 

The primary motor cortex (M1) contributes greatly to the execution of voluntary movements 

and motor learning (Rioult-Pedotti et al., 1998). In early studies, Penfield and Boldrey used 

low intensity micro-stimulation of M1 in human surgical patients to show its organization in 

a somatotopic manner of leg, arm, head and face, which was termed the “Motor 

Homunculus” (Penfield and Boldrey, 1937). The homunculus elucidates a somatotopic M1 

map with each area and corresponding body parts (see figure 1.7). In 1968 Stoney et al., 

(1968) followed up the studies in M1 using the intra-cortical electrical stimulation method. 

This technique enabled various researches to investigate and prove the topographic 

organization in M1, where the microelectrode was inserted into M1 and moved in small 

steps across the area (Asanuma and Ward, 1971; Kwan et al., 1978; Donoghue et al., 

1992). However, areas associated with body parts showed overlap and were also widely 

spread and/or were present in multiple representations (Nudo et al., 1992; Sane and 

Donoghue, 2000). This functional overlapping was further established by various imaging 

techniques (positron emission tomography (PET) and functional magnetic resonance 

imaging (fMRI)) (Colebatch et al., 1991) and, hence, the homunculus is perhaps too simple 

a representation of motor somatotopy. Pyramidal cells form 70% of the neuronal population 

in M1 (Sloper et al., 1979). Moreover, a greater diversity in size of pyramidal cell is observed 

in M1 than in any other cortical area. For instance, there is a fourfold range of pyramidal 

cell body area in precentral gyrus compared to a tenfold range of pyramidal cell body area 
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in M1 (Jones and Wise, 1977). M1 is oriented in vertical columnar pattern which comprises 

of five horizontal layers: superficial (l,ll&lll) and deep (V,Vl) layers. 

Figure 1.7 Somatotopic representation of the sensory and motor cortical 
representation of body regions. 

Note the extensive representation of the hands in the motor map. Source: Joseph R (2000) 
http://brainmind.net/BrainLecture5.html. 

1.7.1 Layer l 

Layer l (Ll) is termed as the plexiform layer, and is known to be devoid of excitatory 

pyramidal neurons (Chu et al., 2003). Hence, it is mostly comprised of inhibitory 

interneurons (Gabbott and Somogyi, 1986) which provide inhibitory input to pyramidal cells 

in other layers (Chu et al., 2003). Douglas and Martin identified two structurally different 

interneurons such as Retzius-Ccajal neurons and small neurons in Ll. This layer possesses 

axons from Lll-Vl and receives inputs from other cortical areas and thalamus (Douglas and 

Martin, 2004). 

1.7.2 Layer ll/lll 

Layer ll (Lll) and Layer lll (Llll) are termed as external granular layer and external pyramidal 

layer respectively. Both pyramidal and non-pyramidal cells were characterised in Lll/lll. 

Pyramidal cells receive inputs from S1 and send axon collaterals either to LV or are confined 

to Lll/lll. Non-pyramidal cells do not possess apical dendrites and are categorised into fast 

spiking (FS), late spiking (LS), low threshold spiking (LTS), and regular spiking non-

pyramidal cells (RSNP) (Kawaguchi, 1995) in these layers. Douglas and Martin reported 

that cells Lll/lll have dense thalamic axonal inputs and bear receptors for various 

neuromodulators including 5-HT, dopamine, and noradrenaline (Douglas and Martin, 2004). 

http://brainmind.net/BrainLecture5.html
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1.7.3 Layer lV 

M1 has always been considered to be agranular (Brodmann, 1909; Shipp, 2005; Bastos et 

al., 2012; Shipp et al., 2013) due to the apparent absence of an anatomically definable LlV 

(Donoghue and Wise, 1982; Beaulieu, 1993; Zilles et al., 1995) which makes it unique 

compared to other cortical regions. However, several recent studies (Krieg, 1946; von 

Bonin, 1949; Caviness, 1975; Deschênes et al., 1979; Skoglund et al., 1997; Cho et al., 

2004, Kuramoto et al., 2009; Rowell et al., 2010; Mao et al., 2011; Kaneko, 2013; García-

Cabezas and Barbas, 2014; Yamawaki et al., 2014) suggest the existence of connectivity 

patterns that are like those of LlV in other sensory regions, despite the lack of cyto-

architectural visibility of this layer. The cells present in a thin area between Llll and LVa in 

mouse have been identified to have synaptic connections like LlV which includes: excitatory 

projections from thalamus, long range corticocortical projections and excitatory projections 

to Lll/lll (Yamawaki et al., 2014). Interestingly, LlV of M1 does not contain stellate cells that 

were present in sensory regions but instead have pyramidal type neurons across a thin 

laminar zone (Yamawaki et al., 2014; Barbas et al., 2015).  

1.7.4 Layer V 

Layer V (LV) is called the internal pyramidal layer and is characterised by the presence of 

large, special cells called Betz cells (Betz, 1894) which is the unique feature of LV in M1 

(but like the large Meynert cells of deep primary visual cortex (V1)). Betz cells occupy a 

large volume in deep layers of M1 and have giant cell bodies (Meyer 1987) and make up 

12% of the pyramidal cell assemblies (Rivara et al., 2003). Also, these cells are 

heterogeneous in structure and therefore exist not just pyramidal form but also triangular 

and spindle like forms (Braak, 1976). The smaller pyramidal cells are known to possess 

prominent apical dendrites which project to the pial surface and have terminations in 

superficial layers of M1 (Cho et al., 2004) whilst the axons from these cells projects to spinal 

cord. Those large cells in LVa project their axons to basal ganglia (BG) (Lei et al., 2004) 

and their apical dendrites receive input from Lll/lll (Kaneka et al., 2000). 

1.7.5 Layer Vl 

Layer Vl is called the fusiform layer. It has been demonstrated that many of pyramidal cells 

in this layer have their inputs from, and projections to thalamus (Kaneka et al., 2000). 

Colossal interneurons form a source of input to pyramidal and non-pyramidal cells in this 

layer (Karayannis et al., 2007). Parvalbumin (PV) positive interneurons are also prominently 

identified in this layer. 
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1.8 Cortico-cortical and sub-cortical connections 

Major cortico-cortical connections (as represented in figure 1.8) in rats are granular S1 

(transfers contralateral and ipsilateral sensorimotor signal), S2-PV region somatosensory 

cortex (dysgranular) of both same and contralateral cerebral hemisphere (White and 

DeAmicis, 1977; Porter and White, 1983; Welker et al., 1988) contralateral M1 had callosal 

connections. Sub-cortical reciprocal connections (as indicated in Fig 3B) are found with 

motor thalamus (Ventral lateral thalamus), reticular thalamic nucleus, central lateral nucleus 

(cerebello-thalamic pathway) and Zona inserta (regulatory inputs in and out M1) (Donoghue 

and Parhan, 1983; Koralek et al., 1990; Reep et al., 1990; Fabri and Burton, 1991; Rouiller 

et al., 1993; Izraeli and Porter, 1995; Hoffer et al., 2013). 

Figure 1.8 Cortical and subcortical connections of M1 in rats and mice 

A) Representation of cortical connections. S1-somatosensory cortex, dysgranular
somatosensory cortex, PP-posterior parietal cortex, S2-second somatosensory area, PV-
parietal ventral somatosensory cortex, M2-second motor area, V1-primary visual cortex. B)
Subcortical connections of M1 in rats and mice. VL-Ventral lateral nucleus, CL-central
lateral nucleus, RT-reticular nucleus, ZI-Zona inserta. Other connections to spinal cord and
brain stem. Arrows indicate reciprocal connections. Adapted from: Young N et al., 2012
Motor cortex. The mouse nervous system.

1.9 Intrinsic laminar organisation of M1 in rats 

It is thought that the major ascending pathway is LVa to Lll/lll and the dominant descending 

pathway is from Lll/Llll to L Va (Weiler et al., 2008). It is assumed corticocortical connectivity 

is obtained from cells in both deep and superficial layers whereas thalamocortical output is 

onto deep layers. Photo-stimulation techniques recently revealed excitatory circuits (Weiler 

et al., 2008) connecting to various regions. Synaptic transmission is regulated by calcium 

binding protein containing interneurons which include parvalbumin (PV), calbindin (CB), and 

calretinin (CR) expressing cells in rats and mice (Celio 1990; Van Bredrode et al., 1991; 
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Resibois and Rogers 1992; Mucignat-Caretta et al., 2002) most of these neurons appear in 

two bands which correspond to Lll/lll and LV/VI. In spite of well-established long-range 

connections between M1 and other regions of cortex as well as M1 and sub-cortical 

connections in rodents, far less is known about intrinsic circuit organization in rat M1 

compared to other cortical regions. 

1.10 Primary somatosensory cortex (S1) 

Brain architecture studies were started in 20th century (Broadmann, 1909; Vogt and Vogt, 

1919; Von Economo, 1929) but only in the middle of this century were various sensory parts 

of the brain like auditory cortex, visual cortex, and somatosensory cortex described 

(Woolsey et al., 1946, 1958). Primary somatosensory cortex (S1) which is also called a 

Broadmann Area 3b and consists of a mediolateral strip of cortex that extends from the 

medial wall of the cerebral hemisphere towards the lateral sulcus, where it curves anterior 

and ends on the ventral surface of the frontal cortex. S1 is known to share a similar 

anatomical structure within various species except the absence of barrel cortex in humans. 

1.10.1 Layer l 

L1 of S1 is known to contribute to modulating feed forward transfer of information from 

thalamus (Galazo et al., 2008) but does not contain pyramidal cells (Ren et al., 1992). Also, 

known to have reciprocal connections with the arborizing pyramidal tufts of Lll (Zhu and 

Zhu, 2004). 

1.10.2 Layer ll/lll 

Lll and lll have high proportion of pyramidal cells, densely packed but no apical dendrites in 

Lll whilst there are apical dendrites in Llll that extend to Ll. Inputs to Lll are from LIV and LV 

whereas Llll inputs are only from LIV (Lefort, 2009), but outputs extend to LVa and LVI. Lll 

is known to process long range connections to M1 (Alloway, 2008) 

1.10.3 Layer IV 

LIV also known as Barrel cortex in rodents contains star pyramidal cells and spiny stellate 

cells. Input projections are known to be from lemniscus thalamus (Gibson et al., 1999; 

Bureau et al., 2006) and from neurons within same column (Feldmeyer et al., 1999; 

Petersen and Sakmann, 2000) besides intracolumnar projections and trans-columnar 

projections form LlV (Schubert et al., 2003; Egger et al., 2008; Staiger et al., 2009;). 

Doughlas and his colleagues described “canonical microcircuit” which is a closed loop 

comprising of series of excitatory feed forward connection, which were innervated by 

thalamus LIV via the lemniscal pathway which in turn projects to Lll and Llll (Douglas et al., 
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1989). In rodents, every whisker is characterised by well-structured arrangement almost 

similar to whisker layout (Woolsey and Vander Loos, 1970). 

1.10.4 Layer V 

LV receives feedback from LVI (Mercer et al., 2005). LVa constitutes medium principal 

neurons projecting to M1 and striatum (Alloway, 2008), connections have been reported 

from the layer itself as well as LlV. LVb contains very large pyramidal cells (Schubert et al., 

2001) and IB neurons which are involved sub-cortical connections (de Kock and Sakmann, 

2008). Projections from this layer have been identified to be thalamus to trigeminal nucleus 

and spinal cord. 

1.10.5 Layer VI 

Layer Vl in S1 is characterised as LVIa and b. whilst the former contain spiny pyramidal 

neurons LVIb contains fewer neurons and is known to intermingle with horizontal pathways 

(Clancy and Cauller, 1999). Input projections to this layer are from LV and LlV (Mercer et 

al., 2005; lefort et al., 2009) and output projections are reciprocally connected to thalamus, 

reticular nucleus and ventrobasal nucleus (Ledergerber and larkum, 2010) 

1.11 Sensorimotor circuit 

Mao et al., managed to sketch a vibrissal sensorimotor loop in mice (Mao et al., 2011) by 

assembling their long-range connections with local cortical circuits (Lefort et al., 2009; Sato 

and Svoboda, 2010; Hooks et al., 2011) and thalamocortical circuits (Lu and Lin, 1993; 

Bureau et al., 2006; Petreanu et al., 2009; Meyer et al., 2010b). When some external input 

triggers sensory neurons in trigeminal ganglion activity passes via the brain stem, VPM and 

to LIV of S1 (Petersen 2007; Sato and Svoboda, 2010). LIV projections activate Lll/lll which 

in turn activates LVb (Armstrong-James and Fox, 1987; Brecht and Sakmann, 2002; Brecht 

et al., 2003; Manns et al., 2004; Lefort et al., 2009; Hooks et al., 2011). Projections from 

Lll/lll and LVa connect to M1 with strong targets mostly in upper layers such as Lll/lll and 

LVa but also have weak projections to LVb and LVl (Mao et al., 2011). Lll and LVa which 

receive strong input from S1 reciprocate projections back to S1 unto Lll/lll, LVa and strong 

synapses were found in LVb (Petreanu et al., 2009) making a dual synaptic feedback loop 

(S1, L2/3/5A ←→ M1, L2/3/5A) creating connection between M1 and S1 as described in 

figure 1.9. 



37 

Figure 1.9 Sensorimotor circuit representing reciprocal and long-range connections. 

Trans-cortical projections from M1 to S1 are represented in purple and red for projections 
from S1 to M1. Intra-cortical projections are denoted in blue, Lll/lll to LVa, Lll/Llll to LVa and 
LVb in M1, LIV to Lll/lll, Lll/lll to LVb, LVa to Lll/lll in S1. Thickness of the lines represent 
connection strength. Targets of M1 include (LVb and LVl to PO (posterior thalamic nucleus) 
magenta, brainstem nuclei (LVb to BS, green), superior colliculus (LVa and LVb to SC, 
cyan), Zona inserta (LVa and LVb to ZI, orange). Adapted from Mao et al., 2011. 

1.12 Types of cells in cortex 

Neurons in cortex are categorised as excitatory (glutamatergic/principal) pyramidal or 

stellate cells (pyramid or star-like like morphology) and inhibitory (GABAergic) non-

pyramidal interneurons cells. In cortex, principal cells constitute about 80 % (Gao and 

Zheng, 2004; Halabisky et al., 2006) whilst the rest comprises interneurons which play a 

critical role in regulating cortical activity and rhythmogenesis (Beaulieu et al., 1992). 

1.12.1 Pyramidal cells constitute most of the neuronal population and are known to be 

prime output cells in M1 (Sloper et al., 1979). These cells also contribute to excitatory inputs 

within the local circuit in M1 due to the presence of axonal collaterals (Douglas and Martin, 

2004). Electrophysiological studies in rats revealed two types of pyramidal cells in 

sensorimotor slices (Connors et al., 1982; McCormick et al., 1985; Van Brederode and 

Snyder; 1992; Chen et al., 1996). Intrinsically bursting (IB) neurons are identified by their 

bursts of spikes followed by non-adapting and low frequency action potentials. In contrast 

to regular spiking (RS), pyrmaidal cells show adaptation in spike frequency (Chen et al., 

1996). 

Layer V of M1 is characterised with specialised large, pyramidal cells called Betz cells like 

Meynert cells in visual cortex (Betz, 1874). Betz cells are 20 times the size of other 
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pyramidal cells in deep layers of cortex and constitute up to 12 % of total pyramidal 

population (Rivara et al., 2003). Betz cells are classified into two types depending upon their 

projections. Type I cells have thick, tufted apical dendrites and perform intrinsic burst firing 

activity (Molnar and Cheung 2006) and have their projections to striatum, superior colliculus, 

spinal cord and basal pons. Type ll Betz cells are always regular spiking and have slender 

and obliquely aligned apical dendrites (Molnar and Cheung, 2006). These cells have their 

projections to ipsilateral striatum or contralateral hemisphere. Betz cells are further 

categorised depending on the increase or decrease of firing rate upon the injection of 

hyperpolarising current (Spain 1991a, 1991 b, 1994). Betz cells are larger but fewer in the 

superficial region (LVa) than in deep area (LVb).  

1.12.2 Interneurons constitute a minority of the population yet are crucial for controlling 

network activity by forming short range connections and are known to inhibit the target cells 

by releasing GABA (McBain and Fishan, 2001; Somogyi and Klausberger 2005). 

Interneurons are often categorised based on morphology, physiology, histology but it is 

rather difficult to categorise them using electrophysiological methods due to overlapping 

characteristics (Kawaguchi, 1993; Jones, 1993; McBain and Fisahn, 2001). Broadly 

speaking, however, electrophysiological classification in M1 has revealed four types of 

interneurons: low threshold spiking (LTS), fast spiking cells (FS), regular spiking non-

pyramidal cells (RSNP) and late spiking cells (LS) (Kawaguchi and Kubota, 1997) as 

described in table below. 
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Cell type RMP (mV) Spike 

width 

(ms) 

Neurochemical 

substances 

Morphological 

type 

Synaptic 

targets 

FS -77.4- -

73.0 

0.43-0.59 parvalbumin, 

cholecystokinin 

basket, 

chandelier 

soma, AIS, 

thick 

dendrites 

RSNP -66.0- -

60.06 

0.75-1.06 somatostatin Martinotti thin 

dendritic 

branches 

LTS, 

BSNP 

~-57.5 0.94 VIP, calrectin, 

NPY 

double bouquet dendrites, 

soma 

LS ~-67.2 0.77 calbindin neurogliaform dendritic 

spines 

Table 1.1 Types of interneurons that M1 may contain and their properties 

Various types of cells based on electrophysiological properties: FS (fast spiking), RSNP 
(regular spiking non-pyramidal), LTS (low threshold spiking), LS (late spiking). 
Neurochemical classification (immune positive to): parvalbumin, cholecystokinin, 
somatostatin, calrectin, calbindin. Morphological classification (based on the shape): 
Basket, chandelier, Martinotti, double bouquet, Neurogliaform. RMP: resting membrane 
potential (mV) FS<LS<RSNP<LTS, and spike width (ms), FS<LS≤RSNP<LTS. 
(Kawaguchi, 1995; Halasy et al., 1996; Kawaguchi and Kubotoa, 1997; Cauli et al., 1997).  

Fast spiking cells (FS) are basket and chandelier type which fire at high frequency (non-

adapting) upon depolarising current. They exhibit short half-width action potentials (AP) but 

large afterhyperpolarisation (AHP). FS cells are immunopositive for parvalbumin and 

cholecystokinin proteins (Kawaguchi, 1993a, 1993b; Kawaguchi, 1995; Kawaguchi and 

Kubota, 1997; Galarreta and Hestrin, 2002). Late spiking (LS) are neurogliaform cells with 

symmetrical dendrites. They show a delay in onset of action potential preceded by slow 

ramp to threshold level (Chu et al., 2003). Firing can be generated from hyperpolarised and 

depolarised states and they also show non-adapting patterns of firing. These cells are 

immunopositive to calbindin. (Kawaguchi, 1995; Kawaguchi and Kubota, 1996). Low 

threshold spiking (LTS) are double bouquet-like cells, immunopositive for calretinin. These 

cells show multiple spike behaviour on current injection (Kawaguchi and Kubota, 1997; 

McBain and Fisahn, 2001). Regular spiking non-pyramidal cells (RSNP) are different to 

those that are described above. Regular and adapting spike behaviour was noticed 
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displaying two groups based on the “notch” after spike behaviour upon application of 

depolarising current (Kawaguchi and Kubota, 1996, 1997 and 1998). 

1.12.3 Inhibition in cortex 

Synaptic inhibition in cortex is present in diverse groups of GABAergic interneurons (as 

described above in 1.12.2 section) and are classified based on their morphology, chemical 

and electrical properties (Fishell and Rudy, 2011). There are distinct subtypes of 

interneurons based on the chemical they produce which include: Parvalbumin (PV) 

neurons, somatostatin (SOM) neurons, vasoactive intestinal polypeptides (VIPs) producing 

neurons and calbindin (CB) in mouse neocortex (Xu et al., 2010).  PV neurons are identified 

to target cell bodies and proximal dendrites of pyramidal cells to control pyramidal activity 

(Thomson and Lamy, 2007, Tanaka et al., 2011). The mutual connections between basket 

shaped fast spiking neurons have also been reported to be primarily on soma and proximal 

dendrites in majority of populations by performing paired recording experiments and light 

microscopic analyses (Gupta et al., 2000; Tamas et al., 2000). However, immunoreactivity 

for connexin36 protein has revealed that gap junctions were distributed not just on proximal 

but the distal dendrites in rat neocortex (Fukuda and Kosaka, 2003; Fukuda et al., 2006). 

Martinotti cells which are SOM producing cells target distal dendrites of pyramidal cells 

(Kawaguchi and Kubota, 1997). VIP+ and CR+ neurons have known to modulate local 

SOM+ cells enabling dendritic disinhibition to pyramidal neurons in cortex (Lee et al., 2013) 

and this disinhibition was found to be engaged in specific behavioural states. The activity of 

VIP+ cells was high in S1 during whisking (Lee et al., 2013) 

1.13 Neurotransmitters, receptors and mechanism of action in cortex 

1.13.1 GABA 

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian 

central nervous system (CNS) (Bormann, 2000) which controls neuronal firing, network 

oscillation and regulates excitability of neurons (Kullmann et al., 2012). GABA was identified 

in brain tissue in 1950 (Roberts, 1950; Awapara, 1950) but the inhibitory action of GABA 

was only identified in 1956 by Takashi Hayashi and Nagai (Hayashi and Nagai, 1956; 

Hayashi, 1956). L-glutamic acid decarboxylase is an enzyme that promotes the synthesis 

of GABA in presynaptic neurons which is stored in synaptic vesicles (Jin et al., 2003). GABA 

is released at the synapse from vesicles upon neuronal activation. A number of GABA are 

released from a single vesicle fusion into synaptic cleft, raising the concentration of GABA 

in millimolar range (Mody et al., 1994; Mozrzymas et al., 2003; Mozrzymas 2004) which can 

act either on post synaptic receptors or on extra synaptic receptors by diffusing to 
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extracellular space. GABA transporters take up GABA away from postsynaptic receptors 

(Cherubini 2001; Deken et al., 2003). The balance between GABA release from synaptic 

vesicles and uptake of GABA by transporters regulate the extracellular GABA levels (Deken 

et al., 2003). Mode of action of GABA can be via fast acting ionotropic GABAA and GABAC 

receptors or slow acting metabotropic GABAB receptors (Bormann 2000). Ionotropic GABAA 

receptors are predominant type of GABAARs (Bowery et al., 1987) which are known to 

constitute about 20-50% synapses in the brain (Nutt and Malizia, 2001). 

  

1.13.2 GABAAR are pentameric ion channels consisting of 21 distinct subunits (α1-8, β1-3, 

γ1-3, δ, ε, π, θ and ρ1–3) and a central pore which is permeable to anions (Cl- and HCO3
+) 

(Bormann, 1987; Kaila, 1994; Wafford et al., 1996; Whiting et al., 1997; Wafford et al., 2005; 

see figure 1.10). The combination of various subunit binding sites creates ligand specific 

sites for benzodiazepines and barbiturates (Mohler, 1992; Wafford et al., 1993; Graham et 

al., 1996).  GABAARs have been identified both pre-and post-synaptic neurons in various 

regions in the brain. In rats these receptors are found more in Lll/lll than in LV and are 

implicated to play a role in cortico-cortical connections (Jones and Wise, 1977; Jones et al., 

1986). Moreover, GABAAR expression was found to be denser in sensory regions than 

motor regions (Zilles et al., 1995). 

In most mature neurons, equilibrium potential of Cl- becomes more negative than resting 

membrane potential via KCC2 (potassium chloride co transporter) activity which enables 

receptor activation with an influx of Cl- and response is measured as IPSP (inhibitory post 

synaptic potential). This hyperpolarisation effect and increase in conductance shunt 

excitatory inputs which in turn decreases the probability of action potential generation 

(Payne et al., 2003; Farrant and Nusser, 2005). However, hyperpolarising GABA input is 

not always functionally inhibitory as recovery from deep hyperpolarisation may sometimes 

activate excitatory conductances which generate rebound spikes (Chavas et al., 1994; 

Llinas et al., 1988). Similarly, when the concentration of Cl- is higher inside the cell, opening 

of GABA receptors may cause efflux of the anion, thereby generating action potentials 

(Staley, 1992; Owens et al., 1996). Interestingly, GABA response is depolarising in most 

immature neurons due to the lack of KCC2 and presence of NKCC1 (sodium and potassium 

coupled co-transporter) (Riwera et al., 1999; Riwera et al., 2005). The depolarising action 

of GABA is also seen in some mature neurons (Chavas et al., 2003; Stein et al., 2003), 

however, in mature cells under normal circumstances activation of GABAAR generates 

inhibition in two ways described below.  
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Figure 1.10 Representation of a typical GABAAR structure. 

A pentameric structure which consists of two GABA binding sites (black) between α and β 
subunits whilst the benzodiazepine site (grey) exists between α and γ subunits with a central 
pore for Cl- transmission. 

1.13.3 Types of Inhibition 

1.13.3.1 Phasic Inhibition 

Phasic inhibition is rapid (short lasting) and precise transmission mediated by synchronous 

activation of small number of GABAAR at synapses. The mechanism involves the 

presynaptic calcium influx which initiates the fusion of vesicles that contain GABA upon 

arrival of an action potential. Each vesicle is known to release several thousand GABA 

molecules (with a synaptic concentration in mM) onto a few hundred receptors located on 

post synaptic neurons. These receptors witness large number of molecules for a short 

duration enabling synchronous opening of the pore for Cl- travel across the membrane 

generating IPSPs (Edwards et al., 1990; Mody et al., 1994; Nusser et al., 1997; Brickley et 

al., 1999). Studies using low affinity competitive antagonist revealed that decay of GABA 

concentration and GABA binding occurs at time constants of < 500 µs (Overstreet, 2002) 

and about 100 µs (Mozrzymas et al., 2003; Mozrzymas et al., 2004) respectively which 

inputs to short duration and fast diffusion from synapse. The occupancy of various receptors 

varies between synapses on a single neuron or on multiple neurons. Vesicle size, nature of 

fusion, geometry of synapse, arrangement of GABA transporters and postsynaptic receptor 

expression and conformational changes of receptors during ion transition are the various 

factors that contribute to phasic inhibition (Frerking et al., 1996; Nusser et al., 1997; Perrais 

et al., 1999; Hajos et al., 2000; Mozrzymas et al., 2003) leading to decrease in number of 

IPSCs and amplitude.  
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1.13.3.2 Tonic Inhibition 

Tonic inhibition is long lasting transmission by activating non-synaptic GABAAR (Connolly 

and Wafford, 2004), often via spilling of extracellular GABA causing diffusion away from the 

synaptic cleft which then activates receptors on extra- and peri-synaptic sites that contain 

alpha6 or delta subunits, which display a high affinity for GABA binding (Farrant and Nusser, 

2005). This type of inhibition was reported in rat cerebellar granule cells in voltage clamp 

recording (Kaneda et al., 1995a), then in hippocampus (Semyanov et al., 2003), dentate 

gyrus (Nusser and Mody, 2002), pyramidal cells in LV of somatosensory cortex (Keros and 

Hablitz et al., 2005; Yamada et al., 2007). It was identified that pyramidal neurons may 

require an additional increase in GABA concentrations whilst interneurons are thought to 

display tonic inhibition without any external GABA (Seymanov et al., 2003; Scimemi et al., 

2005). It was evident that tonic activation was noticed in embryonic neurons prior to synapse 

formation (Valeyev et al., 1993; LoTurco et al., 1995; Owen et al., 1999; Demarque et al., 

2002). Several studies revealed that reduction of spontaneous IPSCs as well as decrease 

in holding current suggesting the reduction in conductance due to the decrease in open 

GABAAR channels (Kaneda et al., 1995b; Brickely et al., 1996; Tia et al., 1996; Wall et al., 

1997). Ambient GABA may be enough to activate persistent tonic conductance which was 

thought to be nM to mM concentration range (Tossman, 1986; Lerma et al., 1986; Kennedy 

et al., 2002; Xi et al., 2003). Tonic currents play a role in setting the frequency of neuronal 

network oscillations, hence tonic NMDAR activity on interneurons in mouse CA3 increase 

the frequency of gamma oscillations while delta subunit containing GABAAR mediated tonic 

inhibition decreases gamma frequency (Mann and Mody, 2010). Therefore, the balance 

between tonic inhibition and tonic excitation is critical for modulating gamma oscillations via 

progressive interneuronal synchronisation (Mann and Mody, 2010). 

 

1.13.4 GABABR are G-protein coupled metabotropic receptors (Hill and Bowery, 1981, 

Bowery et al., 1983, Bowery, 2002) which acts via intracellular transduction cascades by 

regulating calcium and potassium channels and are expressed in both presynaptic and 

postsynaptic neurons (Axmacher and Draguhn, 2004). Reversal potential of slow IPSP 

mediated by GABABR is -100 mV. Pre-synaptically, they have been implicated in inducing 

membrane hyperpolarisation or shunting the action potential by inhibiting the opening of 

voltage gated Ca+ channels leading to inhibition of GABA release. Post-synaptically, they 

generate long lasting hyperpolarisation by activating inwardly rectifying K+ channels (GIRK 

channels) (Gage, 1992; Kulik, 2006). GABABRs can be pharmacologically isolated by 

activation via baclofen and blocked by 2-OH-saclofen (Terunuma et al., 2010). 
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1.14 Glutamate 

Glutamate is a crucial excitatory neurotransmitter in CNS and has been known to play a 

significant role in several functions (Hollmann and Heinemann, 1994; Monaghan et al., 

1989). Glutamate acts on two different type of receptors: ionotropic and metabotropic (Pin 

and Duvosin, 1995). Ionotropic receptors (iGluR) are further divided (based on the agonist 

sensitivity) in to AMPA (α-amino- 3-hydroxy-5-methyl-4-isoxazole-propionic acid), NMDA 

(N-methyl-d-aspartate) and KA (Kainate) receptors (Watkins and Evans, 1981). 

Metabotropic receptors (mGluR) are categorised to three groups (l, ll and lll) which are G-

protein coupled receptors (Nakanishi, 1994).   

1.14.1 AMPAR are tetrameric, either homo or heteromeric (Nakanishi et al., 1990; 

Rosenmund et al., 1998) structures formed of different combination of subunits: GluA1-4 

(Keinanen et al. 1990; Hollmann, 1999; Dingledine, 1999). AMPARs are activated directly 

by glutamate leading to postsynaptic membrane potential by allowing the influx of Na+ and 

K+. Therefore, the reversal potential EPSP mediated via non-NMDAR (AMPA) is 0 mV. 

Different combinations of AMPAR subunits have significant impact on receptor functions as 

the receptor kinetics and ion selectivity are dependent on subunit compositions (see review 

Traynelis et al., 2010). For instance, slow gating properties have been identified in a 

receptor containing GluA2 subunit compared to one that lack GluA2 subunit (Lomeli et al., 

1994; Swanson et al., 1997) and increased receptor kinetics was identified in receptors 

containing GluA4 subunit (Swanson et al., 1997). PV-positive hippocampal interneurons are 

known to express low GluA2 and high GluA4 (Geiger et al., 1995; Pelkey et al., 2015) 

resulting in rapid EPSPs and high Ca2+ permeability (Geiger et al., 1995; Lawrence and 

McBain, 2003) when compared to pyramidal cells (Hestrin, 1993). GluA2 subunit containing 

AMPAR have been found to be Ca2+
 impermeable whilst the other subunits combine to form 

a Ca2+ permeable receptors (Hollmann et al., 1991; Verdoorn et al. 1991). The expression 

of fast acting Ca2+ permeable AMPAR on fast spiking interneurons was found to be a 

requirement for control of oscillatory activity (Bartos et al., 2007, Hu et al., 2014). Also, PV-

positive interneurons of cortex have shown a correlation between action potential timing 

and EPSCs which are AMPAR mediated (Helm et al., 2013). Moreover, over expression of 

GluA2 subunit in GAD67-positive interneurons has shown significant disruption in long 

range synchronization (Fuchs et al., 2001). Furthermore, GluA1 and A4 subunit KO on PV-

positive interneurons altered gamma oscillations and hippocampal memory (Fuchs et al., 

2007). These studies (above) suggest a role of subunit combination in network entrainment 

and a need for new subunit specific targets. 
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Rapid kinetics of AMPAR produces fast EPSPs which enables rapid synaptic transmission 

in CNS. Gamma oscillations have been found to decrease in power in rats upon the 

application of AMAPAR antagonists or by genetically reducing AMPA currents implying a 

significant role of this receptor in the maintenance of gamma oscillations (Cunningham et 

al., 2003, 2004; Palhalmi et al., 2004; Fuchs et al., 2007). In contrast, a study by Fisahn et 

al., (2004) on mice demonstrated that AMPAR antagonist did not alter oscillation suggesting 

AMPAR do not contribute to gamma oscillations. These contradicting reports of AMPAR 

sensitivity could be due to the species like rat vs mouse, the area of experiment: 

hippocampus (AMPAR-sensitive) or entorhinal cortex (insensitive) and AMPAR antagonists 

used (SYM2206, GYKI 53655). 

1.14.2 NMDAR are tetramers, consists of GluN1 and GluN2 (A-D) subunits (Hollmann, 

1999; Dingledine, 1999) with GluN1 being the obligatory subunit for functional receptors 

and most receptors comprising combinations of GluN1 and GluN2 subunits of various 

subtypes. When the pore is open, Ca2+ influx is initiated by which various intracellular 

process such as second messenger signalling cascades in the post-synaptic neuron are 

activated due to rather slow activation and deactivation kinetics of NMDARs when 

compared to AMPAR. But, the permeability of these receptors at hyperpolarised 

membranes (negative membrane potentials) is limited due to the block of the receptor pore 

by Mg2+. Hence, the activation of NMDAR requires depolarisation (>40 mV) (Mayer, 1984; 

Nowak, 1984). NMDAR expression varies across various brain regions and is known to be 

regulated by development and disease conditions (Watanabe et al., 1992; Monyer et al., 

1994; Akbarian et al., 1996; Purcell et al., 2001; The pharmacological properties of these 

receptors have been known to be determined by subunit compositions (McBain and Mayer, 

1994; Traynelis et al., 2010). NMDARs containing GluN2A generate rapid kinetics whilst 

those containing GluN2B have slower kinetics and GluN2C and GluN2D even slower 

kinetics. The slowest decay (τ ~ 2s) was identified in receptors with di-heteromeric receptors 

of GluN1 and GluN2D subunits (Vicini et al., 1998). Knockout mice studies revealed that 

slow gating GluN2B and GluN2D are highly expressed in early development stages, whilst, 

GluN2A is highly expressed at later stages which enhance the synaptic responses in 

hippocampus (von Engelhardt et al., 2015).  

Earlier findings assumed that NMDARs have minimal contribution to fast synaptic 

transmissions in interneurons when compared to pyramidal cells. However, various studies 

after extensive research suggested that NMDAR contribution depend on subunit 

composition and type of interneuron. NMDAR mediated EPSPs have been documented at 

low levels of Mg2+ (Bekkers and Stevens, 1989; Watt et al., 2000; Myme et al., 2003) or at 

depolarised potentials (McBain and Dingledine, 1992).  It is interesting to note that NMDAR 
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correlates with AMPAR expressed on same neuron (McBain and Dingledine, 1993, Monyer 

et al., 1994; Matta et al., 2013; von Engelhardt et al., 2015). When NMDA mediated currents 

were pharmacologically blocked synapses containing AMPA/NMDAR has shown a 

significant decrease in summation of EPSPs and hence reduction in action potential firing 

irrespective of ratios of AMPA/NMDARs (Lei and McBain, 2002). Augmented activation of 

NMDAR has been observed in stroke and trauma (Nicoletti et al., 1996) also in neuro-

degenerative disease like Parkinson`s and Huntington`s (Shaw, 1993).  

 

1.14.3 KAR are homo or heteromeric structured, consisting of following subunits: GluK1 

(GluR5) (Bettler et al., 1990), GluK2 (GluR6) (Egebjerg et al., 1991), GluK3 (GluR7) (Bettler 

et al., 1992), GluK4 (KA1) or GluK5 (KA2) (Werner et al., 1991; Herb et al., 1992, Lerma, 

2001; for review see Traynelis et al., 2010 and Akgul and McBain, 2016). KARs were 

expressed widely in the brain both on pyramidal neurons and interneurons (Wisden and 

Seeburg, 1993). Higher expression of GluK1, 2 and 4 have been identified on interneurons 

that regulate both pre- and post-synaptic activity (Fisahn et al., 2004; Lein et al., 2007; see 

review Carta et al., 2014). Post-synaptic KAR are known to modulate neuronal excitability 

by integrating only excitatory synapses, due to their slow kinetics (Frerking and Nicoll, 2000; 

Pinheiro et al., 2013). However, KARs located pre-synaptically regulate NT release at both 

inhibitory and excitatory synapses (Cossart et al., 2001; Lerma and Marques, 2013). 

Exogenous application of micromolar concentration of KA pre-synaptically reduced 

inhibitory effects of CA1 interneurons on to principal cells (Fisher and Alger, 1984; Kehl et 

al., 1984; Rodriguez-Moreno et al., 1997). Various pharmacological and genetic 

experiments have revealed conflicting results due to poor receptor specific pharmacology 

as well as lack of specific targets (Mulle et al., 2000; Fishan et al., 2004). KAR, like AMPAR 

are activated by glutamate release but are known to have much slower kinetics (decay t 

~10 ms) and low amplitude EPSCs (Cossart et al., 2002; Goldin et al., 2007). KAR, 

sometimes act via metabotropic mechanisms without depending on depolarisation 

(Rodriguez-Moreno and Lerma, 1998; Frerking et al., 2001). In a study by Frerking and 

Ohliger-Frerking (2002) revealed that AMPAR induce transient, variable membrane 

depolarisations, whilst KARs trigger tonic depolarisations with low variability.  

Application of nano molar concentration of KA (and/or CCh) has generated persistent 

gamma oscillations in vitro in primary motor cortex (Johnson, 2016), somatosensory cortex 

(Buhl et al., 1998; Cunningham et al., 2003), hippocampus (Hajos et al., 2000, Hormuzdi et 

al., 2001, Fisahn et al., 2001, Modebadze, 2014). GluK1 and K2 KO mice experiments 

performed have revealed a critical role of these subunits since it was not possible to induce 

gamma oscillations (Fisahn et al., 2004). It was assumed in this study that GluK1 KARs 

were localised on the axons of interneurons and did not contribute to oscillatory activity 
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whilst GluK2 subunit containing KARs were located on somato-dendritic area of 

interneurons and pyramidal cells which enhanced action potential firing upon activation, 

which enabled GABA and glutamate release. However, it was not possible to induce 

oscillatory activity in the presence of GluK1 antagonists suggesting the role of this subunit 

in maintaining gamma oscillations (Stanger et al., 2008). Moreover, KARs have been 

implicated in spike entrainment at theta frequencies in oriens lacunosum-moleculare (OLM) 

cells (Goldin et al., 2007) suggesting a significant role of KARs in oscillatory activity. 

Furthermore, KARs have implicated to contribute to slow wave oscillations SWO, as SWO 

was abolished upon the application of the GluK1-slective KAR antagonist, UBP302 

(Cunningham et al., 2006; Sheroziya et al., 2009). Interestingly, KAR  also plays a critical 

role in epilepsy since systemic administration of KA has been used as a widely accepted 

model for investigating seizures like those observed in temporal epilepsy (TLE) (Ben-Ari et 

al., 1985). 

iGluRs are known to play a significant role in synchronising network activity by recruiting 

inhibitory interneurons. Recent subunit knockout studies (Akgul and McBain et al., 2016) 

revealed the sub-unit composition expressed on type of interneurons were involved in the 

network oscillations (some examples are shown in table below). 
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sub-unit 

knockout 

Interneuron 

subtype 

physiological effect oscillatory effect reference 

AMPAR 

(GluR1-4) 

PV (PV-

Cre), 

GAD67 

decrease in AMPA 

mediated EPSPs, 

altered firing 

altered gamma 

oscillations, 

disrupted long range 

synchrony 

Fuchs et 

al., 2007 

NMDAR 

(N2C, N2D) 

GAD67, 

Ppp1r2-Cre 

increased EPSP 

amplitude,decreased 

frequency 

Reduced 

synchronous activity 

Kelsch et 

al., 2012, 

Belforte et 

al., 2010 

KAR 

(GluK1-2) 

Global does not increase 

IPSC frequency 

disrupted/enhanced 

kainate induced 

gamma oscillations 

Mulle et al., 

2000, 

Fishan et 

al., 2004 

Table 1.2 Role of iGluR subunits in various physiological and oscillatory activity 
Adapted from Akgul and McBain et al., 2016 

1.14.4 mGluR are classified in to three groups based on the subunit sequence homology. 

Postsynaptically expressed, group l (mGluR1, mGluR5) are positively coupled to 

phosphoinositide (PI) which increases cyclic AMP (cAMP) via second messenger cascades 

and are known to enhance neuronal excitation. In contrast, presynaptically expressed group 

ll (mGluR2, mGluR3) and lll (mGluR4, mGluR6, mGluR7, mGluR8) mGluRs are negatively 

coupled to adenylyl cyclase and inhibits cAMP which accounts for the reduction in synaptic 

transmission (decrease in excitation). Group ll and lll also regulate glutamate release by 

acting as auto receptors in presynaptic neurons (Schoepp et al., 1992; Shigermoto et al., 

1997) playing a role in both LTP (upregulate glutamate release) and LTD (downregulate 

glutamate release) (Holscher et al., 1999). However, peri-synaptic expression of group l 

mGluR often regulate the excitability of neurons via iGluR channels (Shigermoto et al., 

1993; Baude et al., 1993; Shigermoto et al., 1997). mGluRs have been implicated in many 

process like neuronal development, neurodegeneration, synaptic plasticity, learning and 

memory (Nakanishi, 1994; Pin and Bockaert, 1995; Pin and Duvosin, 1995; Conn and Pin, 

1997; Dale et al., 2003). 
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1.15 Dopamine 

Dopamine (DA), a catecholamine present in the brain, was identified as a neurotransmitter 

in 1972 (Brown and Maknman, 1972; Kebabian et al., 1972). Pharmacological evidence 

revealed the presence of more than one binding sites for DA DA receptors can be classified 

as D1-like and D2-like based on their differential coupling to AC (Kabebian and Calne, 

1979). D1 (D1 and D5) receptors activate Gαs/olf family of G-proteins and thus enhance 

cAMP. (Dearry et al., 1990; Monsma et al., 1990; Zhou et al., 1990) and D1R are found 

exclusively on post synaptic neurons such as medium spiny neurons (MSNs) in striatum. 

D2 (D2, D3, D4) receptors unlike D1, are expressed in both pre- and postsynaptic terminals 

and known to be negatively coupled to AC via Gαi/o family of G proteins (Sokoloff et al., 

2006; Rankin et al., 2010; Rondou et al., 2010). It is evident that DA induces long lasting 

effect via different mechanisms (reviewed in Jay 2003; Luft and Schwarz, 2009) which 

include: intracellular Ca2+ levels (via L-type channels) increase and decrease upon 

activation of D1 and D2 receptors respectively (Neve et al., 2004), increased cAMP due to 

the activation of D1R (but not D2R) activates (protein kinase A) PKA which in turn enhances 

the currents mediated by AMPA and NMDA receptors (Snyder et al., 1998; Gurden et al., 

2000; Wang and O`Donell, 2001) as illustrated in the figure 1.10. 

Figure 1.11 Representation of various signal transduction mechanisms of action D1-
like and D2-like receptors. 

D1-like receptors are positively coupled to AC whilst the opposite is true for D2-like 
receptors and their corresponding effects on K+ channels, Arachinoid acid, Na+/H+ 

exchange, Na+-K+-ATPase. + indicates positively coupled and – indicates negative 
coupling, AC-adenylate cyclase, PLC- phospholipase C (adapted from Missale et al., 1988). 
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The physiological roles of DA include (but are not limited to) sleep, immune system, renal 

functions and sympathetic regulatory function (Snyder et al., 1970; Missale et al., 1998; 

Sibley, 1999; Carlsso, 2001; Iversen and Iversen 2007). On the other hand, several studies 

have implicated a role of DA in pathological conditions such as Parkinson`s disease from 

loss of dopaminergic innervation (Ehringer and Hornykiewicz, 1960), Schizophrenia 

(Snyder et al., 1970; Creese et al., 1976; Seeman et al., 1976; Carlsson et al., 2001) and 

associated with drug abuse (Hyman et al., 2006; Di Chiara and Bassareo, 2007; Koob and 

Volkow, 2010). 

Network activity in primary motor cortex (M1) has been shown to be modulated by DA 

(Alexander et al., 1986). D1 and D2 receptors have a crucial role in direct and indirect 

pathways associated with Parkinson`s disease (Ueki et al., 2006). D1R is more abundant 

than D2R in rat cortex (Boyson et al., 1986). M1 and PFC (pre-frontal cortex) show similar 

organization of DR although M1 expresses fewer DR than PFC (Lidow et al., 1989). The 

laminar distribution of both receptors is found to correspond to dopaminergic terminals in 

M1 which are predominately in deep layers (LV and LVl) (Martes et al., 1985; Dawson et 

al., 1986). 

Additionally, recent studies have indicated that DA modulates tonic currents in various 

regions of brain (Aman et al., 2006; Yague et al., 2013; Liang et al., 2014) and may directly 

inhibit GABA-R (Hoerbelt et al., 2015). These novel activities of DA may impel new 

definitions of dopaminergic signalling in the brain. 
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1.16 Aims and Objectives 

The primary objective of this thesis is to explore the oscillatory cortical dynamics at different 

frequencies that were induced by various pharmacological manipulations. Given the 

inadequate in vitro research, we aimed to explore delta, nested theta and gamma 

oscillations in primary motor and sensory cortices in rat brain slices. Studies have implicated 

M1 in execution of voluntary movements and S1 in sensory information from both local 

network in vitro and whole brain in vivo perspectives and interactions between these two 

regions are known to play critical roles in motor learning and control skills (Asanuma and 

Arissian, 1984; Asanuma and Pavlides, 1997) which forms the basis for choosing M1 and 

S1 in our study. 

Objectives: 

 To explore oscillatory activity in primary motor cortex (M1) and primary sensory 

cortex (S1) using KA and CCh using extracellular, local field potential (LFP) 

recordings from control rats. 

 To induce and characterise the origin and mechanisms involved in delta oscillations 

in M1 and S1 using pharmacological manipulations. 

 To investigate interactions between rhythms in M1 and S1.  

 To examine the role of dopamine in tonic and phasic inhibition by using single cell 

patch clamp technique. 
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2 Methods 
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2.1   Animals and ethical approval 

All the experiments were carried out in accordance with  the Animals (Scientific Procedures) 

Act 1986 UK, European Communities Council Directive 1986 (86/609/EEC) and the Aston 

University ethical review document. 

2.2   Slice preparation 

Sagittal slices containing primary motor cortex (M1) and somatosensory cortex (S1) were 

obtained from male Wistar rats (50-70 g). Initially, rats were anesthetized by placing them 

in a chamber containing 2% Isoflurane and N2/O2 and then by injecting pentobarbital (600 

mg/kg) subcutaneously (SC). Xylazine (100 mg/kg) was administered through the 

intramuscular route and when pedal reflexes were completely lost transcardial perfusion 

was performed with ice-cold sucrose based artificial cerebrospinal fluid (aCSF). aCSF 

contained (mM): 180 sucrose, 2.5 KCl, 10 MgSO4, 25 NaHCO3, 1.25 NaH2PO4, 0.5 CaCl2, 

10 glucose, 1 L-ascorbic acid, 2 N-acetyl-L-cysteine, 1 taurine, 20 ethyl pyruvate. 

Neuroprotectants such as 0.04 indomethacin, 0.3 uric acid and 0.2 aminoguanidine were 

also added and aCSF was saturated with carbogen (95% O2, 5% CO2). The brain was 

carefully extracted and sagittal slices of 450 µm thickness for extracellular recordings and 

350 µm thickness for intracellular recording were prepared using a vibrating microtome 

(Campden Instruments, UK) using the same solution at room temperature. Prepared slices 

for extracellular recording were then stored in an interface chamber (Scientific System 

Design Inc., Canada) whereas slices for intracellular recording were submerged in aCSF 

which was constantly bubbled with carbogen at room-temperature and was composed of 

glucose-based aCSF containing (mM): 126 NaCl, 3 KCl, 1.6 MgSO4, 26 NaHCO3, 1.25 

NaH2PO4, 2 CaCl2, 10 glucose. 0.04 of indomethacin (a cyclooxygenase inhibitor) and 0.3 

of uric acid were added as neuro-protectants to improve cell viability (Pakhotin et al., 1997; 

Rice et al., 1994). Slices for extracellular recordings were then immediately transferred 

carefully unto a recording chamber (Scientific System Design Inc., Canada), where they 

were perfused with glucose-based aCSF at a flow rate of 2 ml/min for an hour before 

recording. PTC03 proportional temperature controller (Scientific System Design Inc., 

Canada) was used to maintain 33-34 °C. Slices for intracellular recording were placed in 

submerged holding chamber for an hour prior to being placed into a submerged recording 

chamber and allowed to settle for 15 minutes prior to recording. 
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Figure 2.1 Representation of various types of rat brain slice preparations used for extracellular and intracellular recordings. 

Nissl stained sagittal sensory motor slice locating Primary motor cortex (M1) and primary somatosensory cortex (S1). Adapted from The Rat Brain Atlas 
(Paxinos and Waston, 1998). A) Sensory motor sagittal slice with both M1 and S1 intact, areas of each region were represented by lines. B) Sensory 
motor sagittal slice with a micro-cut made between M1 and S1 regions only, which was represented by a dashed line. C) Primary motor cortex sagittal 
slice (boxed area) segregated from sensory motor slice. D) Primary somatosensory cortex (boxed area) segregated from sensory motor slice. Cut was 
made all through the slice separating M1 and S1 which was represented by dashed line in C and D. E) micro slice with just M1 and S1, isolated from 
rest of the slice (boxed area). F) M1 slice isolated from a sensory motor slice with surroundings intact. This type of slice was used for intracellular 
recordings whereas all the other types of slices were used for extracellular recordings. 
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The M1 region of the cortex was identified as being dorsal to the lateral ventricle and the 

caudal extent of the striatum and S1 being adjacent to M1 dorsal to hippocampus. With the 

aid of The Rat Brain Atlas (Paxinos and Waston, 1998) various types of slices were 

prepared based on regions of interest as illustrated in figure 2.1. These different types of 

slices were used to perform region-specific studies and correlation studies. Type A slices 

were 450 µm in thickness used for extracellular recordings. This type of slice contain intact 

M1 and S1 and recordings were made from one region or simultaneously from both regions. 

Type B slices are the same as type A except a cut (dashed line in figure 2.1) was made 

between M1 and S1 using a surgical scalpel blade and were carefully transferred on to the 

recording chamber where they were settled for an hour before recording. Simultaneous 

recordings were made from this type of slice which was used to determine the correlation 

between rhythms in the two regions. Type C slices were again 450 µm thick and were used 

for extracellular recordings. M1 was isolated from sensory motor slice by cutting all through 

the slice and boxed region from the figure C was used for region-specific recording. Type 

D slices were same as type C but this type has S1 isolated (boxed region) from the sensory 

motor slice. Type E slices were also 450 µm thick and were used for extracellular recordings 

but this type is a micro slice with just M1 and S1 isolated from rest of the sensory motor 

slice. This isolation was made diligently with surgical scalpel blade and were transferred to 

the recording chamber. Type F slices were 350 µm thick and were used for intracellular 

recordings. This type of slice had M1 with surroundings intact (boxed region in figure 2.1). 

These slices were carefully transferred to and submersion chamber to settle before 

experiments. All the recordings were made from layer V of both M1 and S1 (unless 

otherwise stated) which was located through visual inspection using microscope (Olympus 

BX51W1, Japan) unless otherwise stated. 

2.3   Extracellular recordings 

Local Field Potentials (LFPs) of neuronal network activity were recorded using an 

extracellular field potential technique. LFPs reflect local neuronal network mechanisms of a 

specific brain region and are known to arise from activity within approximately 250 µm at 

the tip of electrode. These recordings are often used to investigate synchronous activity of 

neuronal networks (Logothesis, 2003; Mitzdorf, 1985; 1987; Rasch et al., 2007). A Flaming-

Brown micropipette puller (Sutter Instruments, CA) was used to pull borosilicate glass 

microelectrodes with open tip resistance of 2-3 MΩ which were placed into Layer V of M1 

and/or S1 using the rat brain atlas of Paxinos and Watson (Paxinos and Waston, 2012) as 

a reference by viewing under a LEICA MZ6 field microscope. The activity was recorded 

using an EXT amplifier head-stage (NPI electronics GMBH, Germany) mounted on to a 
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manually operated micromanipulator (MM-33; Narishige, Japan). The signal was amplified 

10 x using an LHBF-48X preamplifier/signal conditioner (NPI, Germany) set to band-pass 

filter between 700 Hz and 0.1 Hz and then amplified a further 100 times using EXT-102F 

amplifier (NPI, Germany). Humbugs (Quest Scientific, Canada) signal conditioners were 

used to eliminate low amplitude (<100 μV p-p) 50 Hz noise. The signal was simultaneously 

digitised using a CED 1401 digital converter in to a disk using Spike2 software (figure 2.2). 

Figure 2.2 The extracellular local field potential recording setup 

The signal from micro-electrode which was mounted onto head stage was amplified 100x 
by EXT 10-2F amplifier (1), 50 Hz noise was eliminated by humbugs (2), signal was further 
amplified (x10) and high and low pass filtered by LHBF-48X amplifiers (3) signals was then 
converted from analogue to digital signal by CED 1401 digitizer (4) recordings were made 
and saved on a PC (5). 
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2.3   Intracellular recordings 

Patch clamp technique was used to make whole cell recordings of synaptic currents. A 

Flaming-Brown micropipette puller (Sutter Instruments, CA) was used to pull borosilicate 

glass microelectrodes of 4-6 MΩ. The tip of the electrode filled with internal solution 

(composition below) was then carefully placed on the surface of the neurons located visually 

using infra-red video microscopy with differential inference contrast (DIC) optics (Olympus, 

BX51WI) which enabled the visibility of neurons located in deep surface of the slice. Cells 

with smooth edges tends to give successful patch recordings. Slight positive pressure was 

applied from inside the electrode to maintain the resistance of the electrode by keeping off 

contamination. The tip of the electrode was advanced onto the chosen cell. Pipette offset 

was reset to zero and signs for slight rise in resistance and indentation of the cell membrane 

were examined, which indicates the electrode tip was on the neuron surface. As soon as 

the tip was confirmed to have contacted the membrane, positive pressure was turned off 

and a natural suction was noticed, after which gentle mouth suction was applied to seal the 

tip onto the membrane. At this stage pipette capacitance was compensated. When gigaseal 

(>1 GΩ as measured using a 5 mV step injected at line frequency) was observed, a gentle 

suction was applied to rupture the membrane under the patch electrode tip, with the pipette 

holding current set to -70 mV. A sudden appearance of large capacitance transients at the 

leading and trailing edges of the pulse is an indication of successful breakthrough.  

2.3.1 Voltage clamp  

Voltage clamp technique was used to characterise phasic and tonic inhibitory currents in 

the layer V of M1 the rat brain atlas of Paxinos and Watson as a reference. In this technique 

membrane potential was held constant (-70 mV) so that the current flow resulting from ion 

channel opening was measured in pA in the form of Inhibitory Post Synaptic currents 

(IPSCs). Electrodes used for this purpose were filled with internal solution containing (in 

mM): 100 CSCl (blocks K+ channels), 40 HEPES (buffering agent, maintains pH), 1 Qx-314 

(voltage activated Na+ channel blocker), 0.6 EGTA (calcium chelator), 5 MgCl2 (salt), 10 

TEA-Cl (blocks K+ channels), 80ATP-Na, GTP-Na and 1 IEM 1460 (AMPA blocker) (titrated 

with CsOH (to adjust pH =7.25) at 290-295 mOsm. This solution was maintained in ice-cold 

conditions as ATP and GTP degrade at room temperature and was stored at -20 degrees 

in aliquots until required. This chloride based solution (which has a Cl- equilibrium potential 

around 0 mV) enables the IPSCs to be recorded as apparent inward currents at -70 mV 

using Axopatch 700A amplifier (Molecular Devices, USA). Frequent measurements of 

series resistance (Rs) were made using the capacitance transient on a line-frequency 

voltage step (5 mV) during recording. Sampling rate of the recording was 10 KHz, filtered 

(8-pole low-pass Bessel filter) at 2 KHz which was digitised using a Digidata 1440A (figure 
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2.3). Under these conditions of high internal Cl- concentration, IPSCs were recorded as 

downward deflections ranging in amplitude from 10-500 pA. Since IPSC parameters were 

only compared prior to and following drug addition, whole cell capacitance and electrode 

series resistance were monitored, but not compensated. Recording in which series 

resistance (as measured at the peak of the capacitance transient recorded in response to 

seal test at 5 mV) changed by >25% were routinely rejected from analysis. 

Figure 2.3 The patch clamp recording setup. 

Slices were observed under microscope with differential interference (Nomarski) optics and 
a contrast enhancer (BRSL CE-4) (1), cells were visualised on a basic video monitor 
(Panasonic) (2), head stage on which microelectrode was mounted was connected to a 
manipulator which enables movement (Scientifica device) (6), Axopatch 700A amplifier 
(Molecular Devices, USA (4), signal was digitised using Digidata 1440A (Axon Instruments, 
Molecular devices) (5). Digitised data were recorded and saved on a standard PC (3). Water 
heater circulator C-85A (7). 
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2.5   Drugs 

All drugs were obtained from Tocris, Sigma-Aldrich, Abcam, Actavis, Thermo Fisher 

Scientific and Sigma-Aldrich. Powdered drugs were diluted into 1-100 mM stock solutions 

using suitable solvents which were then stored at -20oC until use. Depending on the 

experimental design the drugs were added directly to perfusing aCSF in required amounts 

at desired concentration. The concentrations used throughout this thesis are both empirical 

and theoretical (literature). 

2.6   Data collection and analysis 

2.6.1   Extracellular (LFP) analysis 

Data were analysed offline using Spike2 v7.1 software (Cambridge electronic design). To 

reconstruct the original signal below 200 Hz, the sampling rate was chosen to be 10 KHz 

based on Nyquist sampling theorem (Axon guide). The sampling frequency must be more 

than twice the frequency of the input signal to enable proper reconstruction of digital signal. 

Time-frequency analysis was performed to create power spectra using Fast Fourier 

Transform (FFT) algorithm where the waveform was divided to frequency components 

against power. The FFT block size used for theta and gamma oscillations was 8192 (0.983 

s), results showed frequencies 0 to 4166.67 Hz in 4096 bins with a resolution of 1.01 Hz. 

For delta oscillations, 16384 (1.966 s), results showed frequencies 0 to 4166.67 Hz in 8192 

bins with a resolution of 0.050 Hz. The obtained data were copied to Graph-Pad Prism 5 

and 7 (GraphPad Software, Inc. USA) for further analysis. 60 second epochs were used to 

analyse rhythms. 2 seconds’ raw data presented in the figures throughout this thesis was 

filtered using a band pass second order Infinite impulse response (IIR) Bessel digital filter 

between 1 and 6 Hz for delta, between 5 and 13 Hz for theta, between 4 and 8 Hz for slow 

theta, between 22 and 30 Hz for beta and between 30 and 40 Hz for gamma oscillations. 

Filtering was performed on wider range for example in between 1 and 6 Hz for delta than 

corresponding frequency range (2-4 Hz) so that the data were not lost due to `rolling off` 

effect from using IIR filters.  

2.6.2   Intracellular analysis 

Spontaneous IPSCs (sIPSCs) were recorded using Clampex10.2, viewed using Clampfit 

10.2 (Molecular Devices, USA) and were analysed in the Mini-analysis programme 

(synaptosoft, USA). 



60 

2.6.3.1 Tonic current analysis 

The method of Nusser and Mody (2002) was used to measure tonic currents to exclude 

confounding effects of IPSCs overlapping. A baseline current amplitude (pA) of a 5-ms 

epoch was taken every 100 ms. The mean and SD of the averaged baseline points were 

calculated for 10 s (~100 averaged baseline points) at three distinct times of the recordings 

(for example: periods A, B, and C). Two changes in the baseline current were calculated 

between the three periods. The first (DBL) was the value of the difference during recording 

periods A and B, both taken during the control period and reflecting baseline fluctuation. 

The second (DDrug) was the value of the difference during recording periods C and B, and 

reflecting drug induced changes to the holding current. The two baseline changes (DBL and 

DDrug) were then statistically compared (paired t-test).  Raw traces were shown to illustrate 

changes in baseline in control and drug conditions which were made using PowerPoint. 

2.6.3.2 Phasic current analysis 

The Mini Analysis programme (synaptosoft, USA) was used. Minimum 200 events were 

taken from the recordings to calculate the amplitude and the inter event interval of the 

IPSCs. Double events were also scanned and were considered in analysis. The cumulative 

probability distributions were plotted for sIPSC amplitude and inter event interval (IEI) to 

compare control and drug conditions using Graph Pad Prism 5 and 7 (GraphPad Software, 

Inc. USA). Raw traces were shown to illustrate the changes in IPSCs amplitude and IEI in 

control and drug conditions (after 15 min of drug application) which were made using 

PowerPoint. 

2.6.1   Statistical analysis 

For extracellular recordings, pooled data are presented as mean ± SEM. Wilcoxon (non-

parametric) signed rank test (ns, not significant, p>0.05; * significant 0.05>p>0.01; ** very 

significant, 0.01>p>0.001, *** extremely significant) was used to determine statistical 

significance for one drug (example: PTX). The Friedman test (*p>0.05, **p>0.01, ***p> 

0.001) was used to detect significant differences for multiple drug applications (example: 

Zolpidem). 

For intracellular recordings, pooled data are presented as mean ± SEM. Significance of 

changes in tonic currents were determined using paired t-tests and Dunn`s multiple 

comparisons using Graph Pad prism software and are designated by p values and *. 

For Phasic currents, a cumulative probability distribution was plotted for sIPSC amplitude 

and inter event interval (IEI) during control and drug conditions. The significance between 
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these two distributions are determined by two sample Kolmogorov-Smirnov test using 

Graph Pad prism software. 

2.6.2   Correlation analysis 

Correlation analysis is a measure of linear relationship of variables with correlation 

coefficient values in between -1 and 1 which was performed in Spike2. 

Auto correlation function of a signal is defined with respect to the signal itself. This means 

that the signal is being compared (for similarity) with a time shift. Mathematically, its function 

is the average of the sequence x(t) with a time shift of m within itself which measure 

periodicity of a signal in time domain format. This analysis was used to identify signals at 

various frequency bands (delta, theta, and gamma) to determine the level of correlation. 

Cross correlation function of a signal is correlation of two independent signals with a time 

shift in one of the two independent signals. This analysis was used to determine temporal 

relationship between two independent signals x(t) and y (t) to estimate the degree to which 

two waveforms are correlated which ranges from -1 to +1. +1 indicates positive correlation, 

-1 indicated negative correlation whilst zero (0) implies no correlation. 

 

2.6.3   Linear regression analysis 

Linear regression is the most commonly used predictive analysis.  Regression analyses are 

used to describe data and to explain the relationship between a dependent variable and 

one or more independent variables. This analysis assembles the data as a single line 

through a scatter plot.  The simplest form with one dependent and one independent variable 

is defined by the formula y = c + b*x (y = estimated dependent, c = constant, b = regression 

coefficients, and x = independent variable). Linear regression analysis was performed in 

Graph Pad Prism software to determine the significance of the elevation or trend (y-

intercepts) of two data sets. 

 

2.6.4   Phase amplitude coupling analysis 

Phase amplitude coupling (PAC), is a type of cross frequency coupling (CFC). PAC analysis 

was performed to determine the coupling of phase of low frequency oscillations and 

amplitude of high frequency oscillations by using a customised MATLAB script 

‘CalleRoutine3’ developed by Tort et al., 2010. To measure PAC, the low (theta) and high 

(gamma) frequency data of 60 s with a sampling rate of 1000 Hz were band pass filtered in 

the range of 3-15 Hz and 30-45 Hz respectively. To remove any phase distortion, the filters 
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were applied to the original time series in the forward and then the reverse direction using 

MATLAB’s function ‘filtering.m’. These zero-phase filtered data were then used to conduct 

PAC studies based on a Hilbert transform. Amplitudes were normalized by subtracting the 

temporal mean and dividing the result by the temporal standard deviation to create the set 

of normalized band-passed signals. Normalization was performed to facilitate comparison 

between different frequency bands (Tort et al., 2010). 

The degree of PAC between theta and gamma oscillations were measured by modulation 

index (MI) in the desired frequency bands: (theta) phase modulating and (gamma) 

amplitude modulated and was represented by bi-dimensional cross-frequency coupling in 

frequency domain in which high coupling was represented by hot (red) colours. Several 

other hotspots observed in some PAC plots could account for harmonic activity or artefacts. 
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3 Characterisation of pharmacologically 

induced theta and gamma oscillations in 

LV of M1 and S1 
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3.1 Introduction 

3.1.1 Oscillations in M1 and S1 

The use of in vitro electrophysiological techniques has enabled a greater understanding of 

neuronal activity, primarily through the use of the brain slice preparation (Yamamoto and 

Mcllwain, 1966; Andersen et al., 1972). Over the last 20 years, this preparation has provided 

insight into the mechanisms underlying oscillations at various frequency ranges. 

Understanding the electrical and neuropharmacological properties of brain networks using 

selective receptor modulators in native tissue enables comparison with such properties with 

those in disease models (e.g. epilepsy and PD). In vivo and in vitro studies have reported 

M1 in execution of voluntary movements and, from both local network in vitro and whole 

brain in vivo perspectives, M1 has shown to generate oscillatory activity at beta frequency 

(Murthy and Fetz, 1992; Baker et al., 1997, Jensen et al., 2005; Yamawaki, 2008, Prokic, 

2011, 2015). However, MEG studies in human have also revealed nested rhythms at theta 

and gamma frequencies (Cheyne et al., 2008) like those of rat hippocampus (Bragin et al., 

1995) and in vivo studies also confirm slow wave oscillations in somatosensory cortex 

including delta and theta band activity (Steriade, 2006). Whilst gamma oscillations have 

been reported in vitro in somatosensory cortex (Buhl et al., 1998), this has not since been 

followed up with detailed mechanistic studies. To date, rhythms in other bands, such as 

delta, theta and alpha frequencies, have not been demonstrated in somatosensory and 

motor cortices in vitro and hence their mechanisms remain unexplored. 

Using a modified sagittal plane slice preparation (Prokic et al., 2015; Johnson et al., 2017; 

Ozkan et al., 2017), with aCSF containing neuro-protectants, we have greatly improved 

brain slice viability, enabling the generation and study of dual rhythms (theta and gamma 

oscillations) in the in vitro sensorimotor slice in the presence of KA and CCh (Johnson et 

al., 2017) and enabling production of theta-gamma and delta waves in vitro for the first time. 

Over the next 3 chapters, this thesis describes the physiology and pharmacology of these 

various rhythms in rat sensorimotor cortex in vitro. 

3.1.2 Significance of gamma oscillations 

Gamma oscillations have been identified to play critical role in cognitive integration in brain 

(Herrmann et al., 2004). They have found to be involved in attention (Tiitinen et al., 1993) 

sensory and motor functions, learning and memory (Hopfield et al., 1995; Lisman and Idiart, 

1995; Buzsaki and Chrobak, 1995; Lisman, 1999) arousal (Struber et al., 2000), language 

perception, focussed attention, recognition (Bouyer et al., 1981; Sheer et al., 1989; Murthy 

and Fetz, 1992; Pfurtscheller and Neuper, 1992) and memory formation, processing and 

retrieval (Buzsaki, 1989; Fell et al., 2001; Kaiser et al., 2003). Besides these role of gamma 
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oscillations in healthy brain, they have been implicated too in disease conditions such as 

hyperactivity disorder (Yordanova et al., 2001), Alzheimer`s disease (Stam et al., 2007) and 

epilepsy (Willoughby et al., 2003), autism (Brock et al., 2002). Gamma oscillations have 

also been found to be profoundly altered in schizophrenia (Moghaddam et al., 2003; Lewis 

et al., 2005) and high-frequency gamma oscillations were reported in cortex before and 

after the onset of epileptic seizures (Allen et al., 1992; Fisher et al., 1992).  

3.1.3 Significance of theta oscillations 

The occurrence of theta rhythm is mostly associated with REM sleep, locomotor activity 

(Jouvet, 1969; Vanderwolf, 1969) and learning and memory (Vertes, 1997; Buzsaki, 2002; 

kowalczyk et al., 2013). It has been suggested that theta oscillations play a major role in 

synchronising long-range circuits, facilitating transfer of information between distant brain 

regions (Sirota et al., 2008; Gordon, 2011; Buzsaki and Watson, 2012). Theta oscillations 

are known to be synchronised with the activity in amygdala, pre frontal cortex, and medial 

septum during cognitive functions (Seidenbecher et al., 2003; DeCoteau et al., 2007; 

Adhikari et al., 2010; Benchenane et al., 2010; Hernandez-Perez et al., 2015) and 

furthermore, gamma oscillations in hippocampus and other cortical regions like M1 are often 

phase-locked to theta rhythm (Bragain, 1995; Canolty et al., 2006; Sirota et al., 2008; 

Montgomery et al., 2009; Colgin et al., 2009; Johnson et al., 2017), suggesting functional 

interactions between theta and gamma rhythms. Hence, theta oscillations contribute to both 

local network function as well as widely dispersed cortico-cortical, and sub-cortical circuits 

(Hernandez-Perez et al., 2015). In vitro studies demonstrate that theta can be 

pharmacologically induced in hippocampus (Kowalczyk et al., 2013) and in cortex (Lukatch 

and Maclver, 1997) using CCh. 

3.1.4 Significance of theta and gamma coupling 

Neuronal network oscillations do not function as single-frequency representations of 

network states, rather, they exist as complex activity patterns that appear to code 

information in cross-frequency relationship between the phase, amplitude and frequency 

components of the various waves. For example, evidence exists that phase-amplitude 

coupling (PAC) contributes to sensory signal detection (Handel and Haarmeier, 2009), and 

memory processes (Tort et al., 2009; Axmacher et al., 2010), maintenance of working 

memory (Lisamn and Idiart, 1995), sequential memory organisation (Lisamn, 2005), 

attentional selection (Schroeder and Lakatos, 2009). According to theoretical models 

(Lisman, 2005), PAC has a functional role in cognitive functions (Lakatos et al., 2008; Tort 

et al., 2008, 2009; Cohen et al., 2009a, b; Axmacher et al., 2010). PAC has been reported 

in vivo in rodent hippocampus (Bragin et al., 1995; Buzsaki et al., 2003; Hentschke et al., 

2007; Tort et al., 2008; Tort et al., 2009; Wulff et al., 2009), rodent basal ganglia (Tort et al., 
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2008), macaque neocortex (Lakatos et al., 2005) and in various cortical and sub-cortical 

regions in humans (Bragin et al., 1995; Buzsaki et al., 2003; Bruns and Eckhorn, 2004; 

Vanhatalo et al., 2004; Mormann et al., 2005; Canolty et al., 2006; Hentschke et al., 2007; 

Demiralp et al., 2007; Osipova et al., 2008; Monto et al., 2008;Tort et al., 2008; Penny at 

al., 2008; Wulff et al., 2009; Tort et al., 2009; Cohen et al., 2009a, 2009b; 2009c; Handel 

and Heermeier, 2009; He et al., 2010; Axmacher et al., 2010; Sadaghiani et al., 2010; 

Voytek et al., 2010). A recent study in our own laboratory, (Johnson et al., 2017) has 

reported PAC in primary motor cortex slices of rats in vitro and this is the first demonstration 

of PAC in cortex in vitro. 

 

3.1.5 M1 and S1 interactions 

Both regions (M1 and S1) have similar laminar structure, though some studies suggest 

absence of LIV in M1 (Donoghue and Wise, 1982; Beaulieu, 1993; Zilles et al., 1995) which 

makes it unique compared to other cortical regions. However, several studies (Krieg, 1946; 

von Bonin, 1949; Caviness, 1975; Deschênes et al., 1979; Skoglund et al., 1997; Cho et 

al., 2004, Kuramoto et al., 2009; Rowell et al., 2010; Mao et al., 2011; Kaneko, 2013; 

García-Cabezas and Barbas, 2014; Yamawaki et al., 2014) suggest the existence of 

connection patterns that are similar to that of LlV in other sensory regions. Topographic 

maps of both M1 and S1 are well established (Brooks et al., 1961, Woolsey 1952, Li and 

Waters 1991) and interactions between these two regions are known to play critical roles in 

motor learning and control skills (Asanuma and Arissian, 1984; Asanuma and Pavlides, 

1997). Recovery of motor function after a brain injury requires changes in structure and 

function (Bornschlegl and Asanuma, 1987) and these changes may be mediated by inter-

cortical interactions between M1 and S1 (Paperna and Malach, 1991). Changes in motor 

function due to the projections from S1 have been reported in several species and vice 

versa. In cats, LTP in M1 is generated by exciting the neurones that project from S1 and 

thalamus to M1 (Iriki et al., 1989). In humans and rodents, somatosensory entrainment 

enhances the excitability of M1 (Luft et al., 2002; Kaelin and Lang et al., 2002). Disrupting 

S1 projections in primates causes disturbances in chewing (Lin et al., 1993, 1998; Hiraba 

et al., 2000), muscle contraction, motor coordination and ability to carry heavy objects 

(Rothwell et al., 1982; Johansson and Westling, 1984; Hikosaka et al., 1985; Brochier et 

al., 1999). It is evident that neurones in S1 fire prior to the onset of actual movement in 

rhesus macaques (Soso and Fetz, 1980) and also in non-human primates (Nelson, 1987). 

This phenomenon, in which somatosensory integration plays a critical role in voluntary 

movements, is termed as efference copy (EC) which was used to distinguish between 

sensory inputs obtained from internal and external stimuli (Wolpert et al., 1995; Helmholtz, 

2011). Physiological properties of individual regions have been well characterised but inter-
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cortical connectivity remains less explored despite its clear functional significance. 

Sensorimotor integration has been studied in-vivo (Wannier et al., 1991; Smith et al., 1983) 

but this does not enable a full understanding of the pathways and local network interactions. 

We have recently developed a novel slice preparation method (details in section 3.3) based 

upon use of numerous neuroprotectants to aid preservation of inhibitory neurons critical for 

maintenance of rhythmic network activity. Using this modified preparation, dual theta-

gamma oscillations could reliably be induced in M1 (Johnson et al., 2017.) and S1. We 

determined to use the same slice preparation to induce theta-gamma activity and to explore 

rhythms generated in both M1 and S1, with a view to exploring potential interactions 

between M1 and S1 in the functionally connected sagittal cortical slice.  
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3.2 Results 

3.2.1 Induction of theta and gamma oscillations in M1 and S1 

M1 and S1 are adjacent to each other and when simultaneous extracellular LFP recordings 

were performed in deep layers of M1/S1 in the absence of exogenously applied neuronal 

excitants we found no spontaneous oscillatory activity. Subsequently, KA and CCh were 

used to induce oscillations both in M1 and S1. Sagittal sensory motor slices were used in 

these experiments as it was easy to locate M1 and S1 and functional connectivity is well 

preserved (Woodhall, unpublished observations). Since there seems to be greater 

oscillatory power in deeper layers (Yamawaki, 2008) than in superficial, recordings were 

made from LV of both M1 and S1 simultaneously or non-simultaneously from slice type A 

in this section 3.2 (unless otherwise stated) located using the rat brain atlas of Paxinos and 

Watson (Paxinos and Waston, 2012). 

Co-application of 150 nM of KA and 10 µM CCh reliably induced theta (6-11 Hz) and gamma 

(30-40 Hz) oscillations in both M1 and S1 (figure 3.1) which were stable for 3-4 hrs. Mean 

values: theta (M1 7.5 ± 0.2 Hz; S1 7.7 ± 0.3 Hz, n=40) and gamma (M1 33.4 ± 1.2 Hz; S1 

33.7 ± 1.8 Hz, n=40). Whilst, most of the recordings have high gamma power but there are 

some recordings with high theta power (example: Figure 3.10). Therefore, noemalised 

values are used for analysis. Various receptor modulators were bath applied to perform 

pharmacological studies to determine the mechanisms involved in these oscillations. 

`Control` (normalised to 100%) in experiments in this chapter indicates stable theta and 

gamma oscillations where there was no change noticed in frequency and amplitude over 

20 min period. The effect of drug was measured after 40 min of bath application (unless 

otherwise stated) which was compared with control.  
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Figure 3.1 Theta and gamma oscillations were induced both in M1 and S1 in the 
presence of KA and CCh. 

(Ai) raw data of 60 s LFP recording of theta and gamma oscillations in LV of M1 (scale: 20 
μV vs 200 ms) (Bi) in LV of S1 filtered using Bessel IIR filter (scale: 20 μV vs 200 ms). (ii) 
A typical representative power spectrum of 60 s extracellular recording of M1 and S1 (8 Hz 
and 32 Hz) and S1 (7 Hz and 33 Hz). 
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3.2.2 GABAAR modulation of theta and gamma oscillations in M1 and S1 

To uncover the dependence of theta and gamma oscillations on inhibitory mechanisms, 

gabazine (GBZ), a competitive GABAAR antagonist was applied to the solution perfusing 

the slices. 250 nM GBZ significantly attenuated the synchronous activity of gamma 

oscillations but increased the amplitude of theta oscillations both in M1 and S1. In M1, GBZ 

increased the power of theta oscillations to 146 ± 9% of control (n=8, p<0.01 and 

significantly decreased the power of gamma oscillations to 38 ± 2% (n=8, p<0.001) (figure 

3.2A). In S1, GBZ increased the power of theta oscillations to 122 ± 4% of control (n=8, 

p<0.05) and significantly decreased the power of gamma oscillations to 24 ± 3% (n=8, 

p<0.001) (figure 3.2B). 
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Figure 3.2 GABAAR receptor block increases theta oscillatory power whilst 
decreasing gamma oscillatory power in M1 and S1. 

(A) Effect of gabazine (250 nM) on theta and gamma oscillations in M1 (i) Raw data showing
the changes in oscillatory activity before (black) and after (red) drug application of theta
(top) and gamma (bottom) (scale: 20 μV vs 200 ms) (iii) Representative power spectra of
60s of extracellular recording showing peak power before (black) and after (red) gabazine
(iv) Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red
bars) oscillations normalised to control (**p<0.01, *** p<0.001; n=8).

(B) Effect of gabazine (250 nM) on theta and gamma oscillations in S1 (i) Raw data showing
the changes in oscillatory activity before (black) and after (red) drug application of theta
(top) and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of
60s of extracellular recording showing peak power before (black) and after (red) gabazine
(iv) Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red
bars) oscillations normalised to control (*p<0.05, *** p<0.001; n=8).
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3.2.3 iGluR modulation of theta and gamma oscillations 

3.2.3.1 AMPAR modulation of theta and gamma oscillations in M1 and S1 

To investigate whether AMPAR are involved in the generation of theta and gamma 

oscillations in M1 and S1, SYM2206 (a specific AMPAR antagonist) was applied to bath. 20 

µM of SYM2206 decreased the gamma activity whilst increasing theta activity both in M1 

and S1. In M1, SYM2206 increased theta activity to 225 ± 12% of control (n=8, p<0.001) 

and significantly decreased gamma oscillations to 32 ± 2% of control (n=8, p<0.001) (figure 

3.3A). In S1, theta oscillations were significantly increased to 301 ± 8% of control (n=8, 

p<0.001) and decreased gamma oscillations to 41 ± 6% (n=8, p<0.01) (figure 3.3B). 
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Figure 3.3 AMPA receptor block increases theta oscillatory power whilst increasing 
gamma oscillatory power in M1 and S1. 

(A) Effect of SYM2206 (20 μM) on theta and gamma oscillations in M1 (i) raw data showing
the changes in oscillatory activity before (black) and after (red) drug application of theta
(top) and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of
60s of extracellular recording showing peak power before (black) and after (red) SYM2206
(iv) Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red
bars) oscillations normalised to control (**p<0.01, *** p<0.001; n=8).

(B) Effect of SYM2206 (20 μM) on theta and gamma oscillations in S1 (i) raw data showing
the changes in oscillatory activity before (black) and after (red) drug application of theta
(top) and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of
60s of extracellular recording showing peak power before (black) and after (red) SYM2206
(iv) Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red
bars) oscillations normalised to control (**p<0.01, *** p<0.001; n=8).
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3.2.3.2 KA/AMPAR modulation of theta and gamma oscillations in M1 and S1 

After confirming the significance of AMPAR in generation of theta and gamma oscillations 

in M1 and S1 by using SYM2206, CNQX (a KAR/AMPAR antagonist) was used to examine 

the combined impact of KAR and AMPAR on these oscillations.  25 µM of CNQX decreased 

the gamma activity whilst increasing theta activity both in M1 and S1. In M1, CNQX 

increased the power of theta oscillations to 189 ± 14% of control (n=8, p<0.001) and 

significantly decreased the power of gamma oscillations to 44 ± 4% (n=8, p<0.01) (figure 

3.4A). In S1, CNQX increased the power of theta oscillations to 194 ± 16% of control (n=8, 

p<0.001) and significantly decreased the power of gamma oscillations to 58 ± 3% of control 

(n=8, p<0.01) (figure 3.4B) suggesting a role of both KA and AMPA receptors. Specific KAR 

antagonists, UBP 304 and UBP 310 would be beneficial. 
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Figure 3.4 AMPA/KA receptor block increases theta oscillatory power whilst 
increasing gamma oscillatory power in M1 and S1. 

(A) Effect of CNQX (25 μM) on theta and gamma oscillations in M1 (i) raw data showing
the changes in oscillatory activity before (black) and after (red) drug application of theta
(top) and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of
60s of extracellular recording showing peak power before (black) and after (red) CNQX (iv)
Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red
bars) oscillations normalised to control (**p<0.01, *** p<0.001; n=8).

(B) Effect of CNQX (25 μM) on theta and gamma oscillations in S1 (i) raw data showing the
changes in oscillatory activity before (black) and after (red) drug application of theta (top)
and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of 60s of
extracellular recording showing peak power before (black) and after (red) CNQX (iv) Bar
graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red bars)
oscillations normalised to control (**p<0.01, *** p<0.001; n=8).
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3.2.3.3 NMDAR modulation of theta and gamma oscillations in M1 and S1 

To investigate the dependence of theta and gamma oscillations on NMDAR mechanisms, 

2-AP5, a competitive NMDAR antagonist was applied to bath solution perfusing the slices. 

50 µM of 2-AP5 significantly enhanced the synchronous activity of gamma oscillations but 

had differential effects on amplitude of theta oscillations in M1 and S1. In M1, 2-AP5 had 

no significant effect on the power of theta oscillations (n=8, p>0.05) but significantly 

increased the power of gamma oscillations to 174 ± 7% of control (n=8, p<0.001) (figure 

3.5A). In S1, 2-AP5 decreased the power of theta oscillations to 80 ± 3% of control (n=8, 

p<0.05) and significantly increased the power of gamma oscillations to 180 ± 8% (n=8, 

p<0.001) (figure 3.5B). Although the power spectrum in the figure (Aiii) shows a decrease 

in peak frequency it is not significant when data were pooled. 
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Figure 3.5 NMDA receptor block has differential effects on theta oscillatory power 
whilst increasing gamma oscillatory power in M1 and S1. 

(A) Effect of -2-AP5 (50 μM) on theta and gamma oscillations in M1 (i) raw data showing
the changes in oscillatory activity before (black) and after (red) drug application of theta
(top) and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of
60s of extracellular recording showing peak power before (black) and after (red) 2-AP5 (iv)
Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red
bars) oscillations normalised to control (**p<0.01, *** p<0.001; n=8).

(B) Effect of -2-AP5 (50 μM) on theta and gamma oscillations in S1 (i) raw data showing
the changes in oscillatory activity before (black) and after (red) drug application of theta
(top) and gamma (bottom) (scale: 20 μV vs 200 ms) (iii) Representative power spectra of
60s of extracellular recording showing peak power before (black) and after (red) 2-AP5 (iv)
Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red
bars) oscillations normalised to control (*p<0.05, *** p<0.001; n=8).



82 

3.2.4 Dopamine modulation of theta and gamma oscillations in M1 and S1 

3.2.4.1 DAR modulation of theta and gamma oscillations 

DA was bath applied along with 250 µM ascorbic acid to prevent DA oxidation (Hastings et 

al., 1996) to determine the effect of DAR in generation of theta and gamma oscillations in 

M1 and S1. 30 µM DA enhanced the synchronous oscillatory activity of theta and gamma 

oscillations both in M1 and S1. In M1 DA increased theta to 120 ± 2% of control (n=8, 

p<0.01) and gamma to 148 ± 4 % of control (n=8, p<0.001) (figure 3.6A). In S1, DA 

significantly increased the theta activity to 153 ± 5% of control (n=8, p<0.01) and gamma 

oscillation to 160 ± 6 % of control (n=8, p<0.01) (figure 3.6B) suggesting a role in these 

oscillations. 
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Figure 3.6 Dopamine increases both theta and gamma oscillatory power in M1 and 
S1. 

(A) Effect of DA (30 μM) on theta and gamma oscillations in M1 (i) raw data showing the
changes in oscillatory activity before (black) and after (red) drug application of theta (top)
and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of 60s of
extracellular recording showing peak power before (black) and after (red) DA (iv) Bar
graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red bars)
oscillations normalised to control (**p<0.01, *** p<0.001; n=8).

(B) Effect of DA (30 μM) on theta and gamma oscillations in S1 (i) raw data showing the
changes in oscillatory activity before (black) and after (red) drug application of theta (top)
and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of 60s of
extracellular recording showing peak power before (black) and after (red) DA (iv) Bar
graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red bars)
oscillations normalised to control (**p<0.01; n=8).
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3.2.4.2 AMPH modulation of theta and gamma oscillations in M1 and S1 

It may be argued that application of micromolar concentrations of dopamine is not 

physiological, and we decided to investigate the effect of endogenously released DA. To 

this end, we applied amphetamine sulphate, which is known to release DA from vesicles by 

direct displacement, as well as to block DA transport across the neuronal membrane. 20 

µM of AMPH was bath applied. AMPH in M1 enhanced the synchronous oscillatory activity 

of theta and gamma oscillations both in M1 and S1. In M1, AMPH had significantly increased 

theta to 171 ± 11% of control (n=8, p<0.001) and gamma to 213 ± 5 % of control (n=8, 

p<0.001) (figure 3.7A). In S1, AMPH significantly increased the theta activity to 196 ± 8% 

of control (n=8, p<0.001) and gamma oscillation to 164 ± 15 % of control (n=8, p<0.001) 

(figure 3.7B). 
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Figure 3.7 AMPH increases both theta and gamma oscillatory power in M1 and S1 via 
DA release. 

(A) Effect of AMPH (20 μM) on theta and gamma oscillations in M1 (i) raw data showing 
the changes in oscillatory activity before (black) and after (red) drug application of theta 
(top) and gamma (bottom) (scale: 20 μV vs 200 ms) (iii) Representative power spectra of 
60s of extracellular recording showing peak power before (black) and after (red) AMPH (iv) 
Bar graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red 
bars) oscillations normalised to control (*** p<0.001; n=8). 

(B) Effect of AMPH (20 μM) on theta and gamma oscillations in S1 (i) raw data showing the 
changes in oscillatory activity before (black) and after (red) drug application of theta (top) 
and gamma (bottom) (scale: 10 μV vs 200 ms) (iii) Representative power spectra of 60s of 
extracellular recording showing peak power before (black) and after (red) AMPH (iv) Bar 
graphs showing pooled peak oscillatory power of theta (grey bars) and gamma (red bars) 
oscillations normalised to control (***p<0.001; n=8). 
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3.2.5 Summary of results 

The pharmacology of theta and gamma oscillations in M1 and S1 is summarised in the table 

below. 

Drug 

(concentration) 

Region % Change in Control N Significance 

Theta gamma 

gabazine (250 nM) 

[GABAR 

antagonist] 

M1 146 ± 9 38 ± 2 8 **,*** 

S1 122 ± 4 24 ± 3 8 *,*** 

SYM2206 (20 µM) 

[AMPAR 

antagonist] 

M1 225 ± 12 32 ± 2 8 ***,*** 

S1 301 ± 8 41 ± 6 8 ***,** 

CNQX (25 µM) 

[KAR+AMPAR 

antagonist] 

M1 189 ± 14 44 ± 4 8 ***,** 

S1 194 ± 16 58 ± 3 8 ***,** 

2-AP5 (50 µM)

[NMDAR 

antagonist] 

M1 ns 174 ± 7 8 ns, *** 

S1 80 ± 3 180 ± 8 8 *,*** 

Dopamine (30 µM) M1 120 ± 2 148 ± 4 8 **,*** 

S1 153 ± 5 160 ± 6 8 **,** 

AMPH (20 µM) 

[endogenous DA 

release 

M1 171 ± 11 213 ± 13 8 ***,*** 

S1 196 ± 8 164 ± 15 8 ***,*** 

Table 3.1 Pharmacology of theta and gamma oscillations in LV of M1 and S1 

Peak power changes after application of various receptor modulators is represented as 
mean ± SEM when compared to control (normalised to 100%). N= number of recordings 
(obtained from 3 different animals), significance: ns, p>0.05, * p<0.05, **p<0.01, ***p<0.001. 
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3.3 Correlation and Phase-amplitude coupling studies 

As noted above, oscillations at different frequencies coexist and interact with each other                                                                       

in in vivo networks. The ability to investigate such interaction in the in vitro slice preparation 

would, therefore, be invaluable in answering mechanistic questions about cross-frequency 

interactions. To this end, correlation analysis was performed to determine the relation 

between theta and gamma activity in M1 and S1 in vitro, to examine intra and inter regional 

interactions across and between different frequency bands. Auto-correlation analysis was 

conducted for theta and gamma oscillations in M1 and S1 to determine the frequency of 

oscillations. To explore the potential for cross-frequency interactions, cross-correlation 

analysis was performed between theta in M1 and theta in S1, between gamma in M1 and 

gamma in S1 and between theta and gamma oscillations. Analysis of phase-amplitude 

coupling (PAC) was performed between theta and gamma oscillations, with theta frequency 

(3 –12 Hz) as phase and gamma frequency (25-50 Hz) as amplitude that was driven by low 

frequency using a script developed by Tort et al., 2010. PAC was performed on 60 s epochs 

of data in various slice types (refer methods section) and was represented as Modulation 

Index (MI) which indicates the degree of coupling that existed between two oscillations. As 

shown above, results obtained from autocorrelation, as expected, revealed the frequency 

of low frequency in theta range and high frequency in gamma range explaining internal 

positive correlation between each frequency range in a time series. Cross correlation 

analysis showed that theta and gamma oscillatory activity was phase delayed by 5.5 ± 1 

ms and 1 ± 0.3 ms respectively to that of in S1. Average MI of theta and gamma oscillations 

in M1 was found to be 1.6 x 10-4 ± 0.8 x 10-4 (n=5) whilst in S1 it is 1.1 x 10-4 ± 0.5 x 10-4 

(n=5). MI in M1 was higher than of S1 in this intact slice preparation (figure 3.8). However, 

there is no correlation within theta or gamma oscillations between M1 and S1 in slice type 

B (figure 3.10) in which there was a cut made between two regions. Average MI of theta 

and gamma oscillations in M1 was found to be 2.4 x 10-4 ± 1.4 X 10-4 z (n=5) whilst in S1 it 

was 2.1 x 10-4 ± 1.3 x 10-4 (n=5). MI was found to be slightly higher in M1 than in S1 (figure 

3.11). 

Phase lag that was noticed in M1 with reference to S1 in intact slice suggests that theta and 

gamma oscillations originated in S1 (figure 3.8 G, H), however, further investigations 

revealed that when M1 was isolated from S1, both regions produced theta and gamma 

oscillations suggesting the existence of independent local rhythm generators (figures 3.12, 

3.14). In slice type C, the average MI of theta and gamma oscillations was found to be 4.2 

x 10-4 ± 1 x 10-4 (n=5) (figure 3.13). In slice type D, average MI of theta and gamma 

oscillations was found to be 3.6 x 10-4 ± 0.9 x 10-4 (n=5) (figure 3.15). Overall, high coupling 

was found in slice types C and D in which M1 and S1 are isolated along with adjacent 

regions.  
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3.3.1 Correlation and PAC studies of theta and gamma oscillations in slice type A 

Figure 3.8 Theta and gamma oscillations are phase delayed in M1 when compared to 
S1 in slice type A. 

(A) Representative power spectrum of theta and gamma oscillations of 60 s extracellular
recording from LV of M1 and (B) of S1 (C) auto-correlation analysis of theta oscillation in
M1 and (D) in S1 (E) auto-correlation analysis of gamma oscillations in M1 and (F) in S1.
(G) cross-correlation analysis of theta oscillations between S1/S1 (black) and M1//S1 (red)
(H) cross-correlation analysis of gamma oscillations between S1/S1 (black and M1/S1 (red).
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Figure 3.9 Phase amplitude coupling exists between theta and gamma oscillations 
both in M1 and S1 in slice type A 

(Ai) pooled phase amplitude coupling (PAC) graph of theta and gamma oscillations in M1 
(Bi) of S1 (Aii), (Bii) representative comodulogram showing the cross frequency coupling 
in frequency domain, areas of high modulation are in red in M1 (MI=4.08x10-4) and S1 
(MI=1.3x10-4) respectively. 
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3.3.2 Correlation and PAC studies of theta and gamma oscillations in slice type B 

Figure 3.10 No correlation exists between theta and gamma oscillations between M1 
and S1 in slice type B. 

(A) Representative power spectrum of theta and gamma oscillations of 60 s extracellular
recording from LV of M1 and (B) of S1 (C) auto-correlation analysis of theta oscillation in
M1 and (E) in S1 (D) auto-correlation analysis of gamma oscillations in M1 and (F) in S1.
(G) cross-correlation analysis of theta oscillations in M1 and S1 (H) cross-correlation
analysis of gamma oscillations in M1 and S1.
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Figure 3.11 Local phase amplitude coupling exists between theta and gamma 
oscillations both in M1 and S1 in slice type B 

(Ai) pooled phase amplitude coupling (PAC) graph of theta and gamma oscillations in M1 
(Bi) of S1 (Aii), (Bii) representative comodulogram showing the cross frequency coupling 
in frequency domain, areas of high modulation are in red in M1 (MI=6.06x10-4) and S1 
(MI=1.4x10-4) respectively. 
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3.3.3 Correlation and PAC studies of theta and gamma oscillations in slice type C 

Figure 3.12 No correlation exists between theta and gamma oscillations in (M1) slice 
type C 

(A) Representative power spectrum of theta and gamma oscillations of 60 s extracellular
recording from LV of M1 (B) cross-correlation analysis of theta and gamma oscillations. (C)
auto-correlation analysis of theta oscillation in M1 (D) auto-correlation analysis of gamma
oscillations in M1.

Figure 3.13 Local phase amplitude coupling exists between theta and gamma 
oscillations in M1 slice type C 

(A) pooled phase amplitude coupling (PAC) graph of theta and gamma oscillations in M1
(B) representative comodulogram showing the cross-frequency coupling in frequency
domain, areas of high modulation are in red (MI=3.19x10-4).
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3.3.4 Correlation and PAC studies of theta and gamma oscillations in slice type D 

Figure 3.14 No correlation exists between theta and gamma oscillations in (S1) slice 
type D 

(A) Representative power spectrum of theta and gamma oscillations of 60 s extracellular
recording from LV of S1 (B) cross-correlation analysis of theta and gamma oscillations. (C)
auto-correlation analysis of theta oscillation in S1 (D) auto-correlation analysis of gamma
oscillations in S1.

Figure 3.15  Local phase amplitude coupling exists between theta and gamma 
oscillations in S1 slice type D 

(A) pooled phase amplitude coupling (PAC) graph of theta and gamma oscillations in S1
(B) representative comodulogram showing the cross-frequency coupling in frequency
domain, areas of high modulation are in red (MI=1.62x10-4).
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3.3.5 Correlation and PAC studies of theta and gamma oscillations in slice type E 

In this type of micro slice where only M1 and S1 were isolated from rest of the regions, there 

was no activity noticed in the presence of KA (150 nM) and CCh (10 µM). Application of 

double concentrations of KA and CCh also did not induce any oscillatory activity, probably 

because of many cuts that were made in slice preparation as well as suggesting local 

networks are essential for neuronal activity within M1 or/and S1 (data not shown). 

3.3.6 Comparison of modulation index in various slice types 

Bar graph below represents MI in various slice types. Note the significant differences 

between M1 in intact slice (A) and M1 only slice (C)  (**, p<0.01, n=5), S1 in intact (A) and 

S1 only slice (D) (**, p<0.01, n=5), S1 in intact (A) and M1 only slice (C) (***, p<0.001, n=5), 

S1 in cut slice (B) and M1 only slice (C)  (*, p<0.05, n=5). 

Taken together (table below), high percentage (74%) of coupling was observed in slice type 

C, then in slice type D (66%) followed by slice type B (41%) and A (36%). This could 

probably mean the biological differences in each slice obtained daily however needs further 

investigations of the mechanisms behind the coupling. 

Figure 3.16 Bar chart representing modulation index (MI) in various slice types. 
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MI (Mean+SEM) of theta and gamma oscillations coupling in M1 and S1 in slice types A, B, 
C and D. 

Slice preparation 

type 

Modulation Index (MI) x 10-4 

mean+SEM (n=5) 

  M1                         S1 

% of slices 

showing 

coupling 

(A) Intact M1&S1 1.6 ± 0.8 1.1 ± 0.5 36 

(B) Cut M1/S1 2.4 ± 1.4 2.1 ± 1.3 41 

(C) only M1 4.2 ± 1 - 74 

(D) only S1 - 3.6 ± 0.9 66 

Table 3.2 Mean modulation index of theta and gamma oscillations in M1 and S1 and 
the percentage of coupling in various slice types. 
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3.3 Discussion 

Initial investigations in the lab (Yamawaki, 2008) using coronal sensorimotor slices that are 

obtained from decapitated animals using standard storage glucose-based aCSF and the 

cutting aCSF was sucrose-based (Aghajanian and Rasmussen, 1989). aCSF in these 

studies contained neuro-protectants such as indomethacin (cyclooxygenase inhibitor, 450 

µM) (Pakhotin et al., 1997). There was no spontaneous activity in these slices, however, 

bath application of KA (400 nM) and CCh (50 µM) (as used by Buhl et al., 1998) induced 

beta oscillations with a mean frequency of 27.8 ± 1.1 Hz which was in consistent with 

previous in vivo studies (Murthy and Fetz, 1992; Baker et al., 1997; Jensen et al., 2005). 

Beta oscillations in M1 were reported to originate in layer V and were dependent on GABAR, 

NMDAR, M1R as well as gap junctions (Yamawaki, 2008). It was only in subsequent years 

it was identified that the slices were less viable and only a very low percentage of slices 

showed oscillatory activity (Prokic, 2011), possibly due to the damage that occurred during 

preparation of slices. Numerous studies have explored this issue and it was indicated that 

addition of neuro-modulators to standard sucrose-based aCSF solutions would enable 

increased viability of slices (Hajos and Mody, 2006). Ascorbic acid is known to be abundant 

in cerebral cortex (up to 500 µM) (Rice, 2000) which was found to be depleted during slice 

preparation. Hence, addition of 1 mM Ascorbate was used to compensate any loss. Taurine 

has been identified to play a role in cell viability (Boldyrev et al., 1999), mitochondrial 

function (Palmi et al., 1999) and intracellular calcium levels (Wu and Prentice, 2010) and 

NAC has been suggested to revive the functioning of mitochondria during brain injury 

(Xiong, Peterson and Lee 1999). Therefore, we (Prokic et al., 2011) decided to modify the 

standard aCSF (see methods chapter for full composition of modified aCSF) by adding 

ascorbate (1 mM), taurine (1 mM) and NAC (2 mM). Also, indomethacin (22.5 µM), uric acid 

(400 µM) and ascorbic acid (300 µM) and aminoguanidine (200 µM) were added to modified 

aCSF as neuro-protectants (Griffiths et al., 1993; Rice et al., 1994; Pakhotin et al., 1997). 

Storage aCSF also contained indomethacin (22.5 µM) and uric acid (400 µM). Slices were 

stored on a storage chamber before recording to enable the above-mentioned neuro-

protectants to be washed off. Also, several studies in the past have suggested that slices 

required an hour of recovery period due to the structural damage that occurred during slicing 

(Hajos et al., 1989; Kirov et al., 1999). Recordings made from slices immediately after slicing 

did not enable the generation of oscillatory activity even in the presence of KA and CCh 

confirming the need for recovery period before recording. 

Pietersen et al., has showed that trans-cardial perfusion using sucrose-based aCSF has 

increased the generation of spontaneous gamma oscillations in hippocampus (Pietersen et 

al., 2009). These modifications and additions to aCSF along with trans-cardial perfusion 

has enabled a better cell viability and improved oscillatory activity to greater extent (about 
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60%) (Prokic, 2011) when compared to original work in the lab (Yamawaki, 2008). 

Recordings made from these slices revealed no spontaneous activity. However, an increase 

in frequency to 29.9 ± 1.0 Hz in coronal plane whilst, 32.66 ± 0.89 Hz in sagittal plane in the 

presence of KA (100-150 nM) and CCh (5-10 µM) was observed since high concentration 

used previously (400 nM) and CCh (50 µM) (Buhl et al., 1998; Yamawaki, 2008) induced 

seizure like activity. This reduced requirement of KA and CCh could be accounted for by 

the modified solutions as well as sagittal plane slicing which aided in better preservation of 

network connections (Prokic, 2011; Johnson, 2016). 

3.3.1 KA and CCh induced oscillations in M1 and S1 

KA has been shown to induce oscillatory activity in sensory cortex (Roopun et al., 2006), 

hippocampus (Fishan et al., 1998; Modebadze, 2014) and entorhinal cortex (Cunningham 

et al., 2003). Wang and Buzsaki have reported that increasing excitatory drive by application 

of KA or CCh induced high power and high frequency gamma oscillations when compared 

to spontaneous gamma in hippocampus (Wang and Buzsaki, 1996). KA alone failed to 

induce oscillations in mouse somatosensory cortex (Buhl et al., 1998). However, co-

application of muscarinic receptor agonist in micro-molar concentration has enabled 

oscillatory activity at gamma frequency (Buhl et al., 1998). Various concentrations of CCh 

(4-60 µM) has enabled the generation of delta, theta and gamma oscillations (Fellous and 

Sejnowski, 2000; Tiesinga et al., 2001). Currently, nested rhythms have become of more 

interest in electrophysiology and may have a role in memory processing, sensory 

information and coding (Lisman and Jensen, 2013). Theta and gamma oscillations were 

observed previously in hippocampus (Soltesz and Deschenes, 1993; Bragin et al., 1995; 

Colgin et al., 2009; Belluscio et al., 2012). Co-application of KA and CCh was found to be 

essential to generate oscillatory activity in M1 (Yamawaki, 2008, Prokic, 2011, Johnson, 

2017).  

Co-application of KA and CCh reliably induced theta and gamma oscillations in both M1 

and S1 and which were stable for 3-4 hrs in line with other in vitro studies (Dickinson et al., 

2003). Beta was initially defined as 25-35 Hz (Murthy and Fetz, 1992) but was redefined as 

20-40 Hz (Murthy and Fetz, 1996 a, b), then as 20-30 Hz (Baker et al., 1999) and the others 

defined as 15 Hz (Traub et al., 1996). It was then considered as low (15-20 Hz) and high 

beta (20-30 Hz). These frequencies overlap with gamma which is either 25 Hz above or 35 

Hz and above (Whittington et al., 1995). The classification of frequency ranges has always 

been in conflict between several studies. Nevertheless, theta was defined as 6-10 Hz and 

gamma as 30-40 Hz in this study. 

 



100 
 

3.3.2 Role of KA and CCh in oscillatory activity 

KA enables neuronal excitation and synaptic transmission (Contractor et al., 2011). It was 

established that KA acts via direct pre-synaptic effect (Cossart et al., 2001) as it enhances 

AP-independent miniature (m) IPSC frequency (Cossart et al., 1998; Frerking et al., 1998). 

Moreover, KA was known to activate KAR by resulting in enhancing the excitability of 

neurons. Furthermore, nanomolar concentrations of KA have been identified to increase 

both sEPSPs and mEPSPs recorded from pyramidal cells (Campbell et al., 2007) by 

postsynaptic depolarisation of excitatory synapses. Nevertheless, in vivo studies in rats 

revealed that low concentrations of KA cause a reduction in GABA mediated inhibition 

(Lerma, 1997) and KA when used in higher concentration can induce seizures (Smolders 

et al., 2002). 

CCh was co-applied along with KA to induce oscillatory activity in M1 and S1. CCh activates 

muscarinic mACh receptors. These receptors are known to be post synaptically expressed 

and are G-protein coupled (Muller and Misgeld, 1986). This receptor depolarises by 

regulating various K+ channels which include leak K+ current (IK-leak), Ca2+ dependent K+ 

current (IAHP), rectifying outward current (IM) (Lucas-Meunier et al., 2003). Moreover, mAchR 

modulates Ih currents which are known to play a critical role in oscillatory activity (Traub et 

al., 2000; Fishan et al., 2002). Furthermore, CCh acts by increasing glutamate release first 

in interneurons by fast hyperpolarisation and then in pyramidal cells via slow depolarisation 

(McCormick and Prince, 1986; Lucas-Meunier et al., 2003). Pirenzepine, a mAChR 

antagonist, was found to abolish CCh induced gamma oscillations (Fishan et al., 1998; 

Fishan et al., 2002).  

3.3.3 GABAAR modulation 

GABAA receptors are ligand gated ion channels. These receptors act by increasing the 

membrane permeability of anions (Cl- and HCO3
- ions) which hyperpolarises the membrane 

resulting in inhibition (Rivera et al., 1999). Theta oscillations and gamma oscillations have 

suggested to be dependent on GABAR in several studies (Gokebiewski et al., 1996; 

Konopacki et al., 1997; Buhl et al., 1998; Fisahn et al., 1998; Cunningham et al., 2003; 

Cardin et al., 2009) Theta oscillations were increased upon application of gabazine. The 

increase in power of theta oscillations could attributed to disinhibition (inhibiting the 

inhibitory inputs) generated by theta-off neurons in cortex (Lukatch and Maclver, 1997). 

Gamma oscillations were abolished upon the application of GABAR antagonists in line with 

previous studies in hippocampus, CA3 and cortex (Fisahn et al., 1998; Fisahn et al., 2004; 

Palhalmi et al., 2004; Cunningham et al., 2003; Pietersen et al., 2009). Frequency of gamma 

oscillations were known to be dependent on decay time constant of GABAAR mediated 

IPSCs (Traub  
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et al., 1996). Pentobarbital has shown a decrease in hippocampal gamma frequency owing 

to prolonged IPSC decay kinetics (Segal and Barker, 1984; Modebadze, 2014). Moreover, 

fast spiking interneurons are known to be essential for gamma oscillations in cortex (Cardin 

et al., 2009). However, it was not possible to investigate interactions between pyramidal 

neurons and adjacent interneurons due to experimental limitations in the current study. 

Dependence of theta and gamma oscillations on GABAAR implies the requirement of 

inhibitory currents in M1 and S1 like in hippocampal brain regions (Whittington et al., 1995; 

Fishan et al., 1998, Modebadze, 2014). It is however assumed from the above results that 

gamma oscillations may originate from synaptic mechanisms whilst theta oscillations reflect 

non-synaptic mechanisms since the power of theta increased upon application of GABAAR 

antagonist unlike gamma oscillations (decreased in power). A colleague in the lab has 

recently reported that high concentration (2.5 µM) of GBZ has shown a similar effect as low 

concentration (Johnson et al., 2017) implying the blockade of synaptically driven oscillations 

enhances the non-synaptically driven oscillation (Roopun et al.,2006). 

3.3.4 Glutamate modulation 

Excitatory currents have been identified to contribute to network oscillatory activity in M1 

including delta, theta, gamma and beta oscillations (Yamawaki, 2008; Prokic, 2011; 

Johnson, 2016, Carrecedo et al., 2013), somatosensory cortex of mouse (Buhl et al., 1998) 

and in hippocampus (Fisahn et al., 1998; Modebadze, 2014).  

SYM2206, an AMPAR antagonist (Pelletier et al., 1996) abolished gamma oscillations, 

whilst increasing theta oscillations in M1 and S1. When CNQX, a KAR/AMPAR antagonist 

was bath applied, similar effects to that of SYM2206 were observed. Requirement of KAR 

and AMPAR mediated excitation for the generation of gamma oscillations has been 

previously reported in various studies in hippocampus (Whittington et al., 2000; 

Cunningham et al., 2003; Pietersen et al., 2009). Gamma oscillations in M1 and S1 

represent PING-like oscillations based on their reliance on phasic excitatory transmission 

(Whittington et al., 2000) and are not comparable to beta oscillations in M1 which were 

insensitive to AMPAR block (Yamawaki, 2008). Gamma oscillations have been shown to 

be altered upon the reduction of AMPAR mediated EPSPs in GluA3 and A4 subunits 

(expressed on PV+ interneurons) KO experiments suggesting a role of specific sub-unit 

expression on interneurons in oscillatory activity (Fuchs et al., 2007). Increases in the power 

of theta oscillations is in consistent with a study performed in the conditions of decreased 

AMPAR activity in hippocampus (Gillies et al., 2002) and it was suggested that a subset of 

interneurons have set this theta frequency. This could mean the existence of neuronal 

population with similar intrinsic properties to that of in hippocampus that are being recruited 

in the conditions suppressing AMPA currents. Further investigations of neuronal 

populations in M1 and S1 using optogenetic or labelling studies would be beneficial. 
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It was previously reported that NMDAR blockade induced an increase of beta frequency 

oscillatory power in M1 (Yamawaki, 2008). We found the NMDAR antagonist, 2-AP5, 

increased gamma oscillations in M1 and S1 whilst decreasing theta power in S1, but no 

effect on theta oscillations in M1. NMDAR have shown differential effect on gamma 

oscillations in various studies. For instance, no significant change was identified in KA 

induced gamma oscillations (Fishan et al., 2004). In contrast, spontaneous gamma 

oscillations were decreased, and KA induced activity was increased in the presence of 

NMDAR antagonist, AP-5 (Pietersen et al., 2009). CCh induced gamma oscillations have 

been reported to be enhanced upon NMDAR suppression (Modebadze, 2014) in 

hippocampal slices. Similar results were identified with NMDAR modulators at delta 

frequency in M1 and S1 as well (see chapter 4 and 5). GluN1 subunit played a significant 

role in neuronal activity as knocking out this specific subunit has increased firing rate of 

pyramidal neurons and decreased synchrony in cortex (Belforte et al., 2010). It was also 

evident that, increase in theta oscillations, decrease in the gamma oscillations and altered 

theta and gamma coupling have been identified in PV+ interneurons using GluN1 KO mice 

experiments (Korotkova et al., 2010) suggesting NMDAR that is localised on GABAergic 

interneurons drive them to spike at gamma frequency (Borgers and Kopell, 2003). Increase 

in theta power in S1 could mean that there are more cells available to entrain at theta 

frequency and no change in M1 could be attributed to the region-specific organisation 

suggesting a need for various subunit expression investigations using KO studies. However, 

theta oscillations were found to be increased when non-competitive antagonists MK-801 

and ketamine were bath applied by a colleague in lab (Johnson et al., 2017) which contrasts 

with an in vivo study in hippocampus has shown a reduction of theta oscillations using 

ketamine (Sabolek et al., 2009) in accordance with Gillies et al., (2002) suggesting a need 

for further studies using various receptor modulators.  

 

3.3.5 DA and AMPH modulation 

D1-like receptors have identified to be abundantly expressed on pyramidal neurons in deep 

layers of M1 (Vitrac et al., 2014) with D1R located on soma and D5R on apical dendrites 

(Awenowicz and Porter, 2002). However, Both D1 and D2 like receptors are known to be 

localised on PV+ interneurons that are present in deep layers (Le Moine and Gasper, 1995). 

DA plays a critical role in network activity in M1 (Alexander et al., 1986). Exaggerated beta 

oscillations (12-30 Hz) have been reported in DA depleted conditions associated with PD 

(Bevan et al., 2002). DA is known to oxidise which was noticed by colour change. Hence, 

Ascorbic acid was added to prevent this. Ascorbic acid on it own at the concentrations used 

in our study did not affect oscillations. Ozkan et al., (2017) demonstrated that “bath 

application of DA resulted in a decrease in gamma power with no change in theta power. 
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However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist 

quinpiroleco increased the power of both theta and gamma suggesting that the DA-

mediated inhibition of oscillatory power is by action at other sites other than classical DA 

receptors”. In the current study, when DA was bath applied, it increased the power of both 

theta and gamma in M1 and S1 respectively. There could be several possible mechanisms 

as to why DA enabled the excitation as following: In vivo studies have revealed that 

administration of DA in to M1 of awake rat enhanced excitability (Storozhuk et al., 2004) in 

accordance with previous work in LV of primate M1 in which DA increased the spontaneous 

activity of the neurons (Sawaguchi et al., 1986). Activation of D1 receptors on pyramidal 

neurons or D2 receptors in interneurons (by inhibiting the inhibitory drive) could be the basis 

for excitation. Similarly, there is evidence that D2 antagonists, but not D1 receptor 

antagonists decreased the excitability of pyramidal neurons in motor cortex of rats (Hosp et 

al., 2009). Also, α-adrenergic receptors have shown to contribute to DA mediated responses 

(Yang et al., 2014). Moreover, D1R, via PKA cascades has reported to directly influence 

the function and trafficking of iGluRs. For instance, PKA increases the surface expression 

of NMDA and AMPA receptors (Snyder et al., 2000; Hallett et al., 2006) trafficking could be 

a result of direct interaction between D1 and NMDAR (Lee et al., 2002; Scott et al., 2006). 

Furthermore, it was evident from recent years that DA directly modulates GABAAR (Hoerbelt 

et al., 2015) which could form the grounds for increase in power of theta and gamma 

oscillations in M1 and S1. The mechanism involved here could be disinhibition in which 

increase in GABA would increase inhibiton on inhibitory interneurons which is enhancing 

the power through consequent increased excitation of principal cells. Given the ubiquity of 

GABAARs, it might be beneficial to perform investigations using selective and specific drugs 

that target DA-GABA mechanisms. Amphetamine sulphate, a potent CNS stimulant, when 

bath applied has shown a significant increase in power of theta and gamma oscillations to 

in M1 and S1 similar to that was observed upon DA application.  AMPH enhances DA levels 

by inhibiting DA uptake via (dopamine transporter) DAT, facilitates the release of DA from 

vesicles to cytoplasm and by enabling the DAT mediated reverse transit from cytoplasm to 

extracellular space (synaptic cleft) independent of action potential mediated vesicular 

release (Richfield et al., 1989; Fleckenstein et al., 2007) which was termed as DA efflux 

enabling increased locomotion (German et al., 2015; Kopra et al., 2017) in line with a study 

suggesting extracellular dopamine levels have indicated to be higher after AMPH 

administration in rats (O`Leary et al., 2016.). This may explain DA mediated effects of 

AMPH. Auto-radiographic investigations have shown that deep layers (LV and LVI) of motor 

areas (M1 and S1/2) have been identified to be innervated by dopamine (Descarries et al., 

1987; Berger et al., 1988) which may suggest a robust disruption of M1 and S1 interactions 

in PD pathophysiology caused due to DA depletion suggesting a requirement for further 

research. 



104 
 

 

3.3.6 Possible mechanism of theta and gamma oscillations in M1 and S1. 

Co-application of KA and CCh at very low concentrations (150 nM and 10 µM CCh) 

compared to earlier studies (Buhl et al., 1996, Yamawaki, 2008) reliably induced theta and 

gamma oscillations both in M1 and S1. Basic pharmacology performed using various 

receptor modulators has revealed the contribution of GABAAR, NMDAR, AMPAR as well as 

DAR. Gamma oscillations were decreased by GABAAR antagonists (gabazine and 

picrotoxin) and also by AMAPAR antagonist (SYM2206), whilst increasing theta power in 

these cases. GABABR antagonist (CGP55845), GABA positive modulators such as 

diazepam, zolpidem, NMDAR antagonist (MK 801) and mGluR antagonists have shown an 

increase in both oscillations (Johnson et al., 2017). Theta and gamma oscillations were 

found to be reliant on gap junctions as the activity was abolished when carbenoxolone, a 

gap junction blocker was bath applied (Johnson et al., 2017) which in consistent with beta 

oscillations in M1 (Yamawaki et al., 2008) and delta oscillations (chapter 4). Dependence 

of oscillatory activity of mAchR in M1 reflects the incidence of oscillatory activity using CCh 

(Johnson et al., 2017) along with KA and was proved by bath application of mAchR 

antagonist. Atropine abolished both theta and gamma oscillations (Johnson et al., 2017) in 

consistent with various studies (Konopacki et al., 1987; Lukatch and MacIver, 1997; Buhl et 

al., 1998; Fisahn et al., 1998). 

 

3.4 M1 and S1 interactions in various types of slice preparations 

3.4.1 Correlation studies 

It is evident that the relation between sensory inputs and movements is facilitated by 

interactions within primary motor and primary sensory cortices. Exploration of environment 

by whisker movements and this feedback from sensory inputs aids further movements as 

seen in rodents (Nguyen and Kleinfeld, 2005) as well as in primates (Murthy and Fetz, 1996) 

suggesting a critical role of sensory motor circuits in integration and synchronising activity. 

Sensorimotor areas also show an association with several other regions like cerebellum 

(Popa et al., 2013), cerebral cortex, spinal cord and basal ganglia in order to aid voluntary 

movements (Wichmann and DeLong, 1999). Anatomical studies have reported that M1 

receives sensory input from S1 and thalamus (Zin-Ka-Leu and Arnault, 1998; Miyachi et al., 

2005).  The reciprocal connections between M1 and S1 have been known to be well 

preserved by optimum plane sensorimotor slice preparation developed by Rocco et al., 

(2007). Auto correlation studies revealed the frequencies of the above described dual 

rhythm to be in theta and gamma range. Theta in between two regions have shown a 
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significant correlation and so did gamma between M1 and S1. However, both theta and 

gamma frequencies have revealed a significant phase delay in M1 to that of S1 suggesting 

S1 to be the possible origin of oscillatory activity of this dual rhythm (theta and gamma). 

This is in accordance with several electrophysiological investigations which suggested that 

neuronal network activity of M1 was regulated by S1 (Kosar et al., 1985; Zarzecki et al., 

1989; Kaneko et al., 1994; Farkas et al., 1999; Kelly et al., 2001). Interestingly, cross-

correlation studies performed in M1 and S1 at beta frequency (Prokic, 2011) has revealed 

near synchrony since there were no significant phase differences. However, there was a 

delay in desynchronising oscillatory activity in M1 suggesting that activity in S1 preceded 

that of M1 based on the fact that sensory information is being transferred to M1 from S1 

(Ferezou et al., 2007) and that the connections from S1 to M1 dominate (Izraeli and Porter, 

1995; Welker et al., 1998). It was found that oscillatory activity in S1 was first abolished 

followed by M1 when zolpidem was bath applied reflecting the dominant projections from 

S1 to M1 and could also mean that S1 sets the rhythm and M1 follows (Prokic, 2011).  

Interestingly, in slice type B, there was absolutely no correlation between M1 and S1 

suggesting the loss of crucial connections between M1 and S1 with the cut made in this 

type of slice between two regions based on the fact that there are direct connections 

between the two regions in rodents and cats (Asunama et al., 1981; Donoghue and Parham, 

1983; Porter and Sakamoto, 1988; Izraeli and Porter, 1995). Although there were intra and 

inter-cortical connections between M1 and S1, those between LVa of S1 to L2/3 and LVa 

of M1 and reciprocal connections to S1 from LVa and LVb are probably the two most 

important connections (Mao et al., 2011) and the cut that was made was is assumed to 

have disrupted these connections. It was suggested that onset of movements have 

occurred upon S1 stimulation, both in healthy and pathological states (Johansson et al., 

1993; Hamdy et al., 1998; Kaelin-Lang et al., 2002) as well as prevention of sensory inputs 

using local anaesthesia has disrupted motor control (Edin and Johansson, 1995) and 

complex motor skills (Sakamoto, 1989). Also, activity in M1 was eliminated upon the 

inactivation of S1 (Anderson, 1995) suggesting that connections between M1 and S1 has 

functional significance. In isolated slice types C (M1 only) and D (S1 only), dual oscillations 

(theta and gamma) have been induced using KA and CCh suggesting the ability of individual 

regions to generate oscillatory activity independent of each other. The local networks seem 

to be sufficient for this dual rhythm generation. However, these slices were intact with 

neighbouring regions and to investigate the role of regions surrounding both M1 and S1, 

slice type E was used. This slice is a segregated micro slice of just M1 and S1 isolated from 

every possible surrounding region, which did not enable any oscillatory activity probably 

due to several cuts made to obtain this slice or the involvement of sub cortical connections 

in generating oscillatory activity, which may need further exploration. 
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3.4.2 Phase-amplitude coupling (PAC) studies 

Interactions between two different types of oscillations is defined as cross-frequency 

coupling (CFC) and has been identified in EEG, ECog and LFP recordings (Bragin et al., 

1995; Lakatos et al., 2005; Canolty et al., 2006; Demiralp et al., 2007; Jensen and Colgin, 

2007; Cohen, 2008; Kramer et al., 2008; Young and Eggermont, 2009). Phase amplitude 

coupling between theta and gamma oscillations, where the phase of low frequency (theta) 

oscillations modulates the amplitude of high frequency (gamma) oscillations has been of a 

particular interest in recent years (Bragin et al., 1995; Canolty et al., 2006; Demiralp et al., 

2007; Hentschke et al., 2007; Jensen and Colgin, 2007; Kramer et al., 2008; Cohen, 2008; 

Cohen et al., 2009a,b; Handel and Haarmeier, 2009; Lakatos et al., 2005, 2008; Schroeder 

and Lakatos, 2009; Tort et al., 2008, 2009; Wulff et al., 2009; Young and Eggermont, 2009; 

Axmacher et al., 2010; McGinn and Valiante, 2014; Lega et al., 2016; Sotero, 2016; 

Chehelcheraghi et al., 2017; Johnson et al., 2017).  

In the current study, PAC was performed between theta and gamma oscillations, with theta 

frequency (3 –14 Hz) as phase and gamma frequency (25-50 Hz) as amplitude that was 

driven by low frequency using a MATLAB script developed by Tort et al., 2010. PAC was 

performed on 60 s epochs of data in various slice types (refer methods section) and was 

represented as Modulation Index (MI) which indicates the degree of coupling that existed 

between two oscillations. It was interesting to note that not every slice has shown a coupling 

and the percentage of slices that exhibited coupling varied according to slice type. High MI 

was found in slice types C and D in which M1 and S1 are isolated along with adjacent 

regions. Low MI was observed intact slice (type A) than in cut slice (type B) suggesting that 

there are connections between two regions in intact slices that are involved in suppression 

of PAC. Although the MI equation was first applied (to our knowledge) to neuroscience 

studies in 1998 (Tass et al., 1998), it was not until 2008 that it was applied to phase-

amplitude coupling analysis (Tort et al., 2008) in which the phase-amplitude distributions 

were analysed. Comodulograms is a bidimensional colour map used to measure coupling 

as described by Tort et al., (2010) and was previously performed by various studies (Canolty 

et al., 2006; Tort et al., 2008; Tort et al., 2009; Colgin et al., 2009). Coupling was found to 

vary with each slice. This could probably mean the biological differences such as viability 

of each slice, receptor expression, interneurons and pyramidal cell expression in each slice 

obtained daily however, the need for further investigations is high to uncover possible 

mechanisms behind the coupling. 

Modulation of gamma oscillations by theta oscillations has been reported previously in 

hippocampus in in vitro (Fisahn et al., 1998) and in vivo studies (Bragain et al., 1995; 

Penttonen et al., 1998; Csicsvari et al., 2003) and this may be due to the contribution of two 

distinct sets of interneurons. A study reported that, during gamma oscillations O-LM cells 
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fire at theta frequency (every 4-5 gamma periods), whereas basket cells fire at each gamma 

cycle (Gloveli et al., 2005b).  

PV+ interneurons could form the basis for high coupling in M1 based on the evidence that 

PV+ interneurons contribute to generation and coupling of theta and gamma oscillations 

since selective removal of fast synaptic inhibition from PV+ cells using transgenic mouse 

protocols (Wulff et al., 2009) effectively abolished theta-gamma rhythmogenesis. This 

suggests fast synaptic inhibition could form the basis for cross frequency coupling (Bragin 

et al., 1995; Buzsaki et al., 2002; Bartos et al., 2002; Gloveli et al., 2005a; Tort et al., 2007). 

Since each subtype fire at distinct patters (phase) each subtype of interneurons probably 

has a unique role in entraining nested rhythms in various regions. 

Moreover, McGinn and Valiante have reported that inter-laminar (deep and superficial 

layers) synchrony within human cortex is linked to the degree of coupling between the theta 

and gamma oscillations (PAC) (MacGinn and Valiante, 2014) which is inconsistent with a 

study in rat cortex and striatum (von Nicolai et al., 2014). Theta frequency displays phase 

differences between deep and superficial layers which are not uniform (Florez et al., 2013) 

and these oscillations are coordinated between layers. To further investigate this, McGinn 

and Valiante performed phase-dependent power correlations, and phase coherence 

(PDPC) studies (Womelsdorf et al., 2007) which revealed that “both theta power and theta 

synchrony are related to one another between [deep and superficial] cortical laminae. At 

the population level, increases in theta power within the LFP may arise from increased 

synchrony and/or number of theta generating elements (i.e., neurons or small circuits; 

Buzsaki et al., 2012) and possibly increased spiking (Reimann et al., 2013)” (MacGinn and 

Valiante, 2014). They have also demonstrated that significant correlation existed between 

PAC and PDPC mostly within theta band (4-12 Hz) and is particularly strong in deep layers 

suggesting PAC increases with increase in theta synchrony between the layers. Given the 

dominance of cortico-cortical projections (Douglas and Martin, 2004) in superficial layers 

and output to subcortical regions in deep layers, theta oscillations may repesent a 

mechanism of coordinating cortical outputs. Inter-laminar synchrony at theta frequency may 

have been well preserved in slices with isolated cortical regions such as M1 and S1 (sub-

cortical connections being cut off) and this could probably reflect high coupling in isolated 

slices compared to intact slices and also providing scope for further investigations. 

Pharmacological agents such as ketamine have been reported to influence PAC (Caixeta 

et al., 2013). In their study, an NMDAR antagonist, ketamine, has shown a dose dependent 

effect on theta and gamma coupling with an increase in PAC at low dose and decrease in 

PAC at high doses. Therefore, it is essential to perform PAC before and after various 

receptor modulators or even throughout the recording to identify how various receptors are 
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contributing to PAC. This is not explpored in our study but gives plenty of room for future 

work.  

Interestingly, human hippocampus and cortex exhibited different properties in that PAC in 

hippocampus was the strongest at the phase of slow theta band (2.5-5 Hz) and both low 

(35-70 Hz) and high gamma (70-130 Hz) whilst, the phase of high theta band (4-9 Hz) was 

preferred with low gamma exhibiting greater coupling in cortex (Lega et al., 2016). This 

observation may prove the difference between hippocampal theta oscillations among 

humans (< 5Hz) and rats (6-12Hz) (Lega et al., 2012; Watrous et al., 2013; Jacobs et al., 

2014). It would be beneficial to apply these frequency specific studies in the PAC data that 

was observed in M1 and S1 of rat slices. 

 

3.5 Final conclusions 

Trans-cardial perfusion, sagittal slice preparation, modified aCSF solution as well as 

addition of neuro-protectants have greatly increased slice viability. Co-application of KA and 

CCh induced persistent theta and gamma oscillations. This dual rhythm was identified to be 

led by S1 in an intact slice but both M1 and S1 have individual rhythm generators. These 

nested oscillations seem to have distinct mechanisms and were identified to be coupled 

from PAC analysis. However, the percentage of coupling varied in various types of slice 

preparations with high modulation index (MI) in M1 only slice followed by S1 only slice when 

compared to intact slice preparations. 
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4 Characterisation of pharmacologically 

induced delta oscillations in LV of primary 

motor cortex (M1) 
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4.1 Introduction  

4.1.1 Neurochemical aspects of the sleep-wake cycle 

The sleep-wake cycle is associated with electrical and chemical changes that enable the 

transition between various sleep and awake states. However, overall orchestrated co-

ordination of these electrical and chemical processes in specific brain regions have yet to 

be explored. We now know that neurons in various regions in the brain such as 

hypothalamus and brain stem undergo transitions between states via regulated release of 

various neuromodulators in cortex and thalamus and these are discussed below: 

Acetylcholine (ACh) has been identified to play a role in both sleep and awake states. 

Cholinergic neurons fire at high frequency in the awake state whilst showing no activity in 

REM sleep. The NREM state has been shown to have an intermediate cholinergic tone 

(Hobson et al., 2003; Espana and Scammell, 2004; Jones, 2005). Interestingly, ACh 

neurons in pedunculopontine (PPN), have been identified to have high firing rates both in 

wake and REM sleep (Wake-ON) more in REM than wake or non-REM sleep (REM-ON) in 

which the increased firing was observed 20-60 s prior to state change. This shift in patterns 

has been suggested to underpin the role of PPN in desynchronizing the cortex during awake 

and REM states (Steriade et al., 1990). 

Dopamine (DA) plays a key role in arousal and sleep states. DA has been implicated in 

awake-associated behaviours such as movement, cognition and arousal as lesioning 

dopaminergic innervations has shown to decrease arousal. In Parkinson’s, a neuro-

degenerative disease with symptoms caused by depletion of DA, sufferers show difficulty 

in active awake-state maintenance. CNS stimulants such as amphetamines and cocaine 

act on dopaminergic systems which enhances arousal, increased vigilance and attention 

either by stimulating DA release or by inhibiting re-uptake. Interestingly, compounds like 

caffeine, that does not act via DA systems, may also influence DA release in the synaptic 

cleft (Schultz and Miller, 2004; Boutrel and Koob, 2004; Espana and Scammell, 2004; 

Wisor, 2005; Jones, 2005). Despite the above evidence that DA is critical for arousal, it has 

not traditionally been grouped with the reticular activating system based on the fact that DA 

neurons fire at equal rates both in awake and sleep states (Trulson et al., 1981). 

Histamine (HA) was found to be wake promoting from the fact that histaminergic neurons 

fire at higher rates in awake state while remaining silent during REM and NREM sleep 

(Takahashi et al., 2006), which was revealed in electrophysiological recordings. 

Furthermore, increased sleepiness is an unwanted side effect of some anti-histamines 

(Hobson et al., 2003; Jones, 2005). 



111 
 

Serotonin (5-HT) also has been implicated in wake promoting since serotonergic cells fire 

at a maximum rate in awake state with progressive decline in activity in NREM sleep and 

no activity in REM sleep.  However, the activity was found to be resumed prior to the end 

of REM episodes (McGinty and Harper, 1976; Trulson and Jacobs, 1979). Although 

evidence supports the role of 5-HT in the awake state, there is controversy over its role in 

sleep (Jones, 2005; Espana and Scammell, 2004). Studies suggest this confusion is 

probably due to many receptor subtypes as well as many activities attributed to 5-HT 

(Espana and Scammell, 2004; Jones, 2005). 

GABA concentration was found to be the highest in cortex during NREM sleep and is 

reduced in REM sleep in comparison to awake state (NREM>awake>REM) (Vanini et al., 

2011). Increased levels of extracellular GABA may indeed enhance synaptic inhibition 

whereby balancing synaptic inhibition and excitation in slow wave sleep (Haider et al., 2006; 

Rudolph et al., 2007). However, several studies have identified co-release of GABA with 

ACh and HA suggesting decreased levels of GABA in NREM sleep (Saunders et al., 2015; 

Yu et al., 2015). 

4.1.2 Significance of delta oscillations 

Delta oscillations have been implicated both in deep sleep state and awake states 

performing cognitive tasks. This apparent contradiction was explained by the existence of 

some type of inhibition during task that would inhibit the non-relevant neuronal activity 

(Vogel et al., 1968) known as behavioural inhibition (Kamarajan et al., 2004; Knyazev, 2007; 

Putman, 2011). Behavioural studies on humans showed that delta oscillations which are 

prevalent in deep sleep may mediate an enhancement in declarative memory (Huber et al., 

2004; Aeschbach, 2009). Rotation adaption tasks on human subjects performed in this 

study showed a greater correlation between increases in the 1-4 frequency range and 

improved task performance after sleeping in EEG of cerebral cortex (Huber et al., 2004). 

Sleep has been suggested to facilitate memory consolidation by strengthening and 

stabilising memories (Gais et al., 2000; Stickgold et al., 2000; Maquet, 2001; Walker and 

Stickgold, 2006; Rasch and Born, 2013). It was demonstrated that better performance was 

observed in a group that were allowed to sleep after learning compared to a group that were 

awake after learning. Besides consolidation of previously acquired memories sleep also 

plays a role in acquisition of new memories (Van Der Werf et al., 2009) which was proved 

in a study where short period of sleep preceding learning has enabled a greater capacity to 

encode information (Mander et al., 2011). Also, it has been reported that the synaptic 

plasticity associated with low frequency oscillations during sleep contribute to memory 

consolidation processes (Steriade and Timofeev, 2003). Interestingly, some studies have 

suggested a role for the phase component of delta oscillations in decision making and signal 

detection (Basar-Eroglu et al., 1992) by rhythmically modulating the rate of sensory 
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information received over time (Wyart et al., 2012) and in many cognitive processes (Basar 

et al., 2001). Delta oscillations are also known to play a critical role in pathological 

conditions: decreased synchronous delta activity was observed in schizophrenic patients 

(Ford et al., 2008), reduced delta amplitude and coherence in Alzheimer’s patients 

(Guntekin et al., 2008; Yener and Basar et al., 2010) increased delta power in Parkinson`s 

patients under medication (Kryzhanovskii et al., 1990) and disrupted delta activity in 

epilepsy (Tao et al., 2011; for review see Harmony, 2013). 

Despite its functional significance, cellular mechanisms of cortical delta rhythmogenesis and 

its mechanistic origin have not yet been explored. There is a hypothesis that the cortical 

delta rhythm was mediated by intrinsically bursting neurons (Amzica and Steriade, 1998) 

however, in that study the usage of depolarising current pulse (intercellular injections) did 

not match with long lasting hyperpolariaation conditions during sleep reported in cortex 

(Steriade et al., 2001; Timofeev et al., 2000). This leads to further discrepancies regarding 

the mechanism underlying cortical delta rhythm. A recent study in slices containing 

secondary somatosensory/parietal area (S2/Par2) has revealed generation of delta 

oscillations in vitro by maintaining neuro-modulatory state equivalent to deep sleep state 

(Carracedo et al., 2013). Our current study performed on LV of M1 demonstrates the 

generation of delta oscillations by pharmacological manipulations and investigates the 

contribution of various receptors involved in the rhythm generation and the pharmacological 

equivalent awake state. Characterisation of delta rhythm in control slice preparations may 

facilitate understanding of the mechanisms underlying various pathological conditions like 

Alzheimer’s disease. 
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4.2. Pharmacology of delta oscillations in M1. 

4.2.1 Pharmacological induction of delta oscillations in M1 

It is evident that there was no spontaneous activity in M1, however, it was possible to induce 

activity by pharmacological manipulations. Theta (6-10 Hz) and gamma (30-37 Hz) 

oscillations were induced by co-application of 150 nM of KA and 10 µM of CCh (see chapter 

3 for details). Delta (2-4 Hz) oscillations were induced by mimicking the neuromodulatory 

state of deep sleep via low dopaminergic and cholinergic tone. KA (150 nM) and CCh (10 

µM) was added half an hour prior to recording as this gave time for slices to settle into 

rhythmic activity. Theta (6-10 Hz) and gamma (30-37 Hz) oscillations emerged after half an 

hour. At this point, a bath solution (aCSF) which contained KA (150 nM) and CCh (10 µM) 

was changed to the one that contained: KA (150 nM), CCh (2 µM), SCH23390 (10 µM) and 

Haloperidol (10 µM). Application of either D1 or D2 antagonist along with low CCh did not 

induce delta oscillations indicating the need for both D1 and D2 receptor antagonists to 

induce delta activity. There was a transition from fast oscillations: Theta (6-10 Hz) and 

gamma (30-37 Hz) to slow oscillations: slow theta (5-7 Hz) and beta oscillations (25-30 Hz) 

before a high amplitude delta oscillation (2-4 Hz, ~400 μV2, n=200) with mean frequency 

3.1 ± 0.2 Hz emerged (figure 4.1, 4.2). 
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Figure 4.1a Pharmacological induction and transition of delta oscillations (2-4 Hz). 

(A) Representative extracellular voltage recordings of activity during development of delta
rhythm in SCH23390 & haloperidol. Gamma (30-40 Hz), beta (25-29 Hz), theta-1 (6-10 Hz),
theta-2 (5-7 Hz) and delta (2-4 Hz) oscillations (scale: 20 μV x 500 ms). (B) Power spectra
of oscillatory activity during application of SCH23390 & haloperidol in 30 min (dotted line),
in 60 min (red line). Note how gamma-theta activity gradually shifted into beta and slow
theta (5-7 Hz) oscillations (dotted), before a high amplitude (20-400 µV2) delta rhythm (red)
emerged.)

Figure 4.1b. Representative typical delta oscillation in LV of M1 (2-4 Hz) 

(A) Raw data of an example typical delta oscillation recorded from LV of M1 (B)
representative power spectrum of pharmacologically induced delta activity in
neuromodulatory state (low dopaminergic and low cholinergic tone).
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At the beginning of this project, low cholinergic and low dopaminergic states were induced 

only after prior induction of theta and gamma oscillations, hence, delta oscillations appeared 

relatively late into experiments. In order to save time and to keep slices viable, later 

experiments were started off by bath application of low CCh, KA, D1 and D2 antagonists 

and this was also found to reliably induce delta oscillations (stable for 2-3 hr) in 73% of 

slices. This approach enabled me to perform pharmacological studies using various 

receptor modulators. In the following report, ‘control’ (normalised to 100%) refers to a period 

where stable delta oscillations were present and there was no change noticed in frequency 

and amplitude over 20 min period. The effect of drug was then measured after 40 min of 

bath application (unless otherwise stated) which was then compared with control. 

4.2.2 Laminar studies of delta oscillations through M1 

Investigations were performed in sagittal slice preparation as it contained intact M1-S1 

connections as well as easily identifiable gross anatomy. All layers except Ll showed delta 

activity however, relative power reduced from deep to superficial layers. To address this, 

simultaneous recordings across the layers (Lll, Llll, LV, LVI) were examined. Figure 4.2 A, 

B shows the power in various layers with LV being normalised to 100%. To further 

investigate if LV was the source of origin for delta oscillatory activity, recordings were made 

by placing a reference electrode in LV and ‘walking’ a second electrode up the layers V to 

ll. The data obtained from each layer were analysed by performing cross-correlation 

analysis with data from LV as reference point. These cross-correlation studies showed that 

oscillatory activity in LII and Lllll was phase delayed to that of LV. The average time lag was 

found to be 2.4 ± 0.4 and 2.3 ± 0.6 ms for Lll and Llll respectively. However, delta oscillatory 

activity in LVI was found to precede to that of LV by 2.1 ± 1 ms. (figure 4.2 C, D, E). Due to 

the difficulty in identifying the exact boundary between LV and LVI, cross correlation 

analysis was performed between deep (LV/LVI) and superficial layers (LII/LIII) in which 

superficial layers showed an average phase lag of 2.6 ± 0.7 ms (figure 4.2 F). This suggests 

the origin of delta oscillations to be deep layers and hence the subsequent recording were 

being made from deep layers especially from LV due to its salient feature of the presence 

of Betz cells.   

 



116 

Figure 4.2 Deep layers are the origin of delta oscillation in M1 

(A) Relative peak power changes in LII, LIII, LVI (grey) with respect to LV (black) activity
(normalised to 100%) (B) Power spectrum of normalised oscillatory activity in each layer,
LII, LIII, LVI, LV (100%) in a single slice. (C) cross-correlation analysis between LII/LV (red)
and LV/LV (black). (D) cross-correlation analysis between LIII/LV (red) and LV/LV (black).
(E) cross-correlation analysis between LVI/LV (red) and LV/LV (black). (F) cross-correlation
analysis between superficial (red) and deep layers (black).



117 

4.2.3 Cholinergic modulation of delta oscillations 

To determine the role of CCh in delta oscillations whether it is via muscarinic acetylcholine 

receptors, general mAChR antagonists, atropine (AT) and pirenzepine (PIR) were bath 

applied. AT (5 µM) significantly desynchronised delta activity and the amplitude was 

decreased to 23.8 ± 5% of control (p< 0.001, n=8). PIR (10 µM) also significantly decreased 

delta power to 21.5 ± 7.5% of control (p< 0.001, n=8) indicating the action of muscarinic 

receptors is M1 specific. PIR showed significant reduction in power within 10 min of bath 

application (figures 4.3A-B) implying delta oscillations are reliant on M1 mAChRs. 

Figure 4.3 Muscarinic receptor block decreases delta oscillatory power 

(A) Effect of atropine (10 µM) on delta oscillations. (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 20 μV vs 1 min). (ii)
Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) AT (iii) Bar graphs showing peak oscillatory power
of oscillations before (grey) and after (red) drug application normalised to control. ** p<0.01,
n=8. (B) Effect of pirenzepine (10 µM) on delta oscillations. (i) Raw data showing the
changes in oscillatory activity before (black) and after (red) drug application (scale: 20 μV
vs 1 min). (ii) Representative power spectra of 60s of extracellular recording demonstrating
peak responses before (black) and after (red) PIR (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control. **
p<0.01, n=8.
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4.2.4 Gap junction modulation of delta oscillations 

To examine the involvement of gap junctions in incidence of delta oscillations, the gap 

junction blocker, carbenoxolone (CBNX) was added. CBNX (200 µM) abolished the 

synchronous activity after two hours of application. Peak power was reduced to 4.5 ± 0.5% 

of control (n=6, P<0.01) suggesting a significant role of gap junctions in delta oscillation 

generation in Layer 5 of M1 (figure 4.4) 

Figure 4.4 Gap junction block decreases delta oscillatory power 

(A) Effect of carbenoxolone (200 µM) on delta oscillations (i) Raw data showing the changes
in oscillatory activity before (black) and after (red) drug application (scale: 50 μV vs 500
ms). (ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) CBNX (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control. **
p<0.01, n=8



119 

4.2.5 GABAAR modulation of delta oscillations 

Contribution of GABAAR on pharmacologically induced delta oscillations in layer V of M1 

was investigated by perfusing GABAAR agonists and antagonists and comparing the activity 

before and after the application of drug.  

Zolpidem, a benzodiazepine site agonist was bath applied at a concentration of 10 nM, 30 

nM and 50 nM. As Fig. 4.5 shows, delta activity is exquisitely sensitive to benzodiazepine 

site modulation. Hence, 10 nM of Zolpidem increased the peak power of delta oscillations 

to 123 ± 9 % of control whilst at 30 and 50 nM peak power of delta activity was reduced to 

44 ± 4% and 11 ± 3% respectively.  

Figure 4.5 GABAAR receptor agonist shows concentration dependent differential 
effects on delta oscillatory power 

(A) Effect of Zolpidem (10 nM, 30 nM and 50 nM) on delta oscillations (i) Raw data showing
the changes in oscillatory activity before (black) and after (red) drug application (scale: 50
μV vs 500 ms). (ii) Representative power spectra of 60s of extracellular recording showing
peak power before (black), after 10 nM (red), 30 nM (dotted line) and 50 nM (solid line) of
Zolpidem. (ii) Bar graphs showing peak oscillatory power of oscillations before (grey) and
after 10 nM (red), 30 nM (lined) and 50 nM (lined) of drug application normalised to control.
*** p<0.001, p<0.01, n=8.

In order to investigate the role of the GABA at the orthosteric binding site of the GABAAR, 

gabazine (GBZ), a competitive GABAAR antagonist was applied at 250nM and 2.5 μM 

concentrations. Both concentrations significantly reduced synchronous delta activity to 
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26.50 ± 5% and 11.7 ± 4% of control respectively (n=8, p<0.001) (figure 4.6A), suggesting 

roles for both synaptic and extra-synaptic receptors. The effect of picrotoxin (PTX), a non-

competitive channel blocker which acts by preventing the entry of Cl- ions into the neuron 

was examined. 5 μM PTX significantly reduced the synchronous activity to 25.50 ± 13% of 

control (n=8, P<0.01) (figure 4.6B). Taken together, these data suggest delta activity 

depends on inhibitory GABAAR receptors in layer V of M1. 

Figure 4.6 GABAA receptor block decreases delta oscillatory power 

(A) Effect of gabazine (250 nM and 2.5 μM) on delta oscillations (i) Raw data showing the
changes in oscillatory activity before (black) and after (red) drug application (scale: 40 μV
vs 500 ms) (ii) Representative power spectra of 60s of extracellular recording showing peak
power before (black) and after 250 nM (red) and 2.5 μM (dotted line) gabazine. (ii) Bar
graphs showing peak oscillatory power of oscillations before (grey) and after (red) drug
application normalised to control. *** p<0.001, n=8.

(B) Effect of picrotoxin (50 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 20 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black red) and after picrotoxin (red) (iii) Bar graphs showing peak
oscillatory power of oscillations before (grey) and after (red) drug application normalised to
control. **p<0.01, n=8.
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4.2.6 GABABR modulation of delta oscillations 

To investigate if pharmacologically induced delta oscillations require the activation of 

GABABR, CGP55845, a competitive GABABR antagonist was bath applied. 5 μM of 

CGP55845 significantly decreased the delta synchronisation to 71.50 ± 14% of control (n=8, 

P<0.01) suggesting a small but significant GABABR contribution to the power of delta 

oscillations (figure 4.7). 

Figure 4.7 GABAB receptor block decreases delta oscillatory power 

(A) Effect of CGP55845 (5 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 30 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after CGP55845 (red) (iii) Bar graphs showing peak
oscillatory power of oscillations before (grey) and after (red) drug application normalised to
control. **p<0.01, n=8.
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4.2.7 iGluR modulation of delta oscillations 

KAR modulation of delta oscillations: To investigate the role of kainate receptors and to 

confirm the action of KA is through kainate receptors, UBP310 (a GluK1/3 antagonist) and 

UBP 304 (a GluK1-selective antagonist) were bath applied. 10 μM of UBP304 and 3 μM of 

UBP310 significantly decreased the power of delta activity to 14.50 ± 4% of control (n=8, 

p<0.01) and 29.0 ± 0.5% of control (n=8, p<0.001) respectively (figures 4.8A-B). These data 

suggest an important role for KAR in delta oscillogenesis given that KA is used to evoke 

oscillations. 

Figure 4.8 Kainate receptor block decreases delta oscillatory power 

(A) Effect of UBP310 (3 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 30 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) UBP310 (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control. ***
p<0.001, n=8. (B) Effect of UBP304 (10 µM) on delta oscillations (i) Raw data showing the
changes in oscillatory activity before (black) and after (red) drug application (scale: 20 μV
vs 1 min). (ii) Representative power spectra of 60s of extracellular recording demonstrating
peak responses before (black) and after (red) UBP304 (iii) Bar graphs showing peak
oscillatory power of oscillations before (grey) and after (red) drug application normalised to
control. **p<0.01, n=8.
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4.2.7.1 AMPAR modulation of delta oscillations 

The dependence of delta oscillations on AMPAR was investigated by using SYM2206, a 

specific AMPAR antagonist. Application of 20 μM of SYM2206 significantly desynchronised 

the delta activity. It reduced the power to 29.50 ± 6% of control (n=8, p<0.01) (figure 4.9A). 

In order to assess the contribution of combined AMPAR/KAR activity, we applied 25 μM 

CNQX, a KAR/AMPAR antagonist. CNQX significantly reduced the synchronous delta 

activity (figure 4.9B) to 15.50 ± 6% of control (n=8, P<0.001) revealing the role of both KA 

and AMPA receptors in generation of delta oscillations but stronger role for KAR. 

Figure 4.9 AMPA receptor block decreases delta oscillatory power 

(A) Effect of SYM2206 (20 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 70 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) SYM2206 (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control.
**p<0.01, n=8.

(B) Effect of CNQX (25 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 40 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) CNQX (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control. ***
p<0.001, n=8
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4.2.7.2 NMDAR modulation of delta oscillations 

The role of NMDA receptors was tested using 2-AP5, a competitive NMDAR antagonist. 50 

μM 2-AP5 did not alter the delta peak (95.5 ± 17 % of control, n=8, P>0.05) (figure 4.10A). 

To confirm this lack of reliance of delta oscillations on NMDAR, a selective non-competitive 

antagonist, MK-801 was bath applied. Application of MK-801 had no significant effect on 

peak delta power (n=8, P>0.05, figure 4.10B) 

 

 

Figure 4.10 NMDA receptor block has no effect on delta oscillatory power 

(A) Effect of 2-AP5 (50 µM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) drug application (scale: 60 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) 2-AP5 (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) drug application normalised to control. ns 
p>0.05, n=8. (B) Effect of MK801 (10 µM) on delta oscillations (i) Raw data showing the 
changes in oscillatory activity before (black) and after (red) drug application (scale: 20 μV 
vs 500 ms). (ii) Representative power spectra of 60s of extracellular recording 
demonstrating peak responses before (black) and after (red) MK801 (iii) Bar graphs 
showing peak oscillatory power of oscillations before (grey) and after (red) drug application 
normalised to control. ns p>0.0, n=8. 
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4.2.8 mGluR modulation of delta oscillations 

The contributions of mGluR to delta activity was investigated by using positive and negative 

receptor modulators of group l, group ll and group lll mGluRs. Agonists generally decreased 

the peak power whilst antagonists increased peak delta power. 

Group I modulation of delta oscillations: Application of the mGluR group l agonist DHPG 

(10 µM) did not show any significant effect (p>0.05, n=8). Consistently, the non-competitive 

mGluR1 antagonist CPCCOet (25 µM) had no effect on delta oscillations (p>0.05, n=8) 

whereas as mGluR5 specific antagonist MPEP (20 µM) and potent mGluR5 antagonist 

MTEP (100 nM) significantly increased the activity to 187 ± 22.5% of control and 189 ± 29% 

(n=8, p<0.01) of control (n=8, p<0.01) respectively (figures 4.11 A-D), suggesting a role for 

mGluR5, rather than mGluR1 in modulation of delta power. 
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Figure 4.11 Effect of group I, mGlu receptor modulators on delta oscillatory power 

(A) Effect of DHPG (10 µM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) drug application (scale: 50 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) DHPG (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) drug application normalised to control. ns 
p>0.05, n=8. 

(B) Effect of cpccoet (25 µM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) drug application (scale: 50 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) cpccoet (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) drug application normalised to control. ns 
p>0.05, n=8. 

(C) Effect of MTEP (100 nM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) drug application (scale: 30 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) MTEP (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) drug application normalised to control. ** 
p<0.01, n=8. 

(D) Effect of MPEP (20 µM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) drug application (scale: 40 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) MPEP (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) drug application normalised to control. ** 
p<0.01, n=8. 
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Group II modulation of delta oscillations: The group ll (mGluR3) agonist, LY379268 (1 μM) 

showed a significant reduction in synchronous delta activity to 41.80 ± 10 % of control 

(p<0.01, n=8). mGluR2 antagonist LY341495 (100 nM) and mGlu-R2/3 antagonist 

LY341495 (1 µM) did not show any significant effect on peak power of delta oscillations 

(p>0.05, n=8) (figure 4.12 A-B). Please note that the figure Aii shows an effect on frequency 

however this effect was not significant when data were pooled. 

 

 

Figure 4.12 Effect of group II, mGlu receptor modulators on delta oscillatory power 

(A) Effect of LY379268 (1 µM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) drug application (scale: 40 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) LY379268 (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) drug application normalised to control. ** 
p<0.01, n=8. 

(B) Effects of LY341495 (100 nM and 1 μM) on delta oscillations (i) Raw data showing the 
changes in oscillatory activity before (black) and after (red) drug application (scale: 100 μV 
vs 500 ms). (ii) Representative power spectra of 60s of extracellular recording showing 
peak power before (black) and after 100 nM (red) and 1 μM (dotted line) LY341495. (ii) Bar 
graphs showing peak oscillatory power of oscillations before (grey) and after (red) drug 
application normalised to control. ns p>0.5, n=8. 
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Group III modulation of delta oscillations: L-AP4 (50 µM), an agonist and an antagonist 

CPPG (10 µM), an antagonist, did not show any significant effect on peak power of delta 

oscillations (p>0.05, n=8) (figures 4.13 A-B). 

Figure 4.13 Effect of group III, mGlu receptor modulators on delta oscillatory power 

(A) Effect of L-AP4 (50 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 40 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) L-AP4 (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey bars) and after (red bars) drug application normalised to
control. ns p>0.05, n=8. (B) Effect of CPPG (10 µM) on delta oscillations (i) Raw data
showing the changes in oscillatory activity before (black) and after (red) drug application
(scale: 30 μV vs 500 ms). (ii) Representative power spectra of 60s of extracellular recording
demonstrating peak responses before (black) and after (red) CPPG (iii) Bar graphs showing
peak oscillatory power of oscillations before (grey) and after (red) drug application
normalised to control. ns p>0.05, n=8.
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4.2.9 Pharmacological equivalent awake state: delta reversal protocol 

Having investigated the pharmacology of persistent delta activity in M1, we determined to 

attempt to mimic the switch to awake-state neurochemistry. This section details the various 

pharmacological equivalent awake state protocols that were used to try and reverse the 

delta which was pharmacologically induced. All the recordings form this section were made 

from LV of M1.  

4.2.9.1 Effect of KA+CCh (wash) on delta oscillations: 

To investigate if delta induced by bath application of KA (150 nM), CCh (2 µM), SCH23390 

(10 µM) and Haloperidol (10 µM), perfusing solution (aCSF) was changed to the one that 

contained KA (150 nM), CCh (10 µM). There was no significant change either in power or 

in frequency. Concentrations of KA and CCh were doubled to observe any change but there 

was not any change confirming the stable and persistent nature of the delta oscillations 

(p>0.05, n=8) (figure 4.14). 

 

 

 

Figure 4.14 No significant change was noticed in frequency and power of delta 
oscillations in wash 

(A) Effect of wash (150 nM KA+10 µM CCh) on delta oscillations (i) Raw data showing the 
changes in oscillatory activity before (black) and after (red) wash (scale: 70 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) wash (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) wash normalised to control. ns p>0.05, 
n=8. 
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4.2.9.2 Effect of high KA on delta oscillations 

To determine the effect of high concentrations of KA on delta oscillations, 250 nM, 350 nM, 

500 nM KA were bath applied. Since all the concentrations showed similar effect, only the 

highest is reported here. KA at 500 nM induced seizure like activity with very high power 

1350 ± 600% of control with frequency range of 0.5-1 Hz (n=8, figure 4.15) which is different 

to that of induced delta oscillations of 2-4 Hz frequency range. However, delta oscillations 

were found to be intact when traces were filtered but were potentially masked by high 

amplitude and low frequency activity. The power of the activity was reduced to 69 ± 4 % of 

control.  

 

 

Figure 4.15 Seizure like activity was induced in the presence of high KA with intact 
delta 

(A) Effect of high KA (500 nM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) high KA (scale: 150 μV vs 500 ms). (ii) 
Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) wash (iii) Bar graphs showing delta oscillatory 
power of oscillations before (grey) and after (red) high KA normalised to control. ns p>0.05. 
The boxed area represents the expanded graph at 2-5Hz. 
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4.2.9.3 Effect of high CCh on delta oscillations 

To investigate if enhancing the cholinergic drive (dominance in awake state) would enable 

the reversal of induced delta oscillation, high concentrations of CCh were bath applied. 

When 100 µM was bath applied, seizure activity was induced with a high power 2150 ± 

300% of control with low frequency of about 0.5-1 Hz, different to actual delta oscillations 

(2-4 Hz) (figure 4.16). Interestingly, delta oscillations were found to be intact but were 

possibly masked by high amplitude and low frequency oscillations similar to that of high KA. 

The power of delta oscillations was significantly reduced to 52 ± 3 % of control.  

Figure 4.16 Seizure like activity was induced in the presence of high CCh with delta 
intact 

(A) Effect of high CCh (100 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) high CCh (scale: 200 μV vs 500 ms). (ii)
Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) wash (iii) Bar graphs showing delta oscillatory
power of oscillations before (grey) and after (red) high CCh normalised to control. ns p>0.05,
n=8. The boxed area represents the expanded graph at 2-5Hz.
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4.2.9.4 Effect of DA on delta oscillations 

To examine if dopaminergic drive would reverse slow oscillations (2-4 Hz) to faster 

oscillations since low dopaminergic state was used to induce delta oscillations. DA was bath 

applied along with 250 µM of ascorbic acid to prevent DA from oxidising (Hastings et al., 

1996) since DA is an unstable molecule (Graham, 1978). 30 µM DA (data not shown) did 

not show any significant effect in terms of amplitude and frequency whilst 50 µM of DA 

slightly enhanced the power of delta oscillations to 110 ± 10% (p<0.05) but showed no effect 

on frequency (figure 4.17). 

 

 

Figure 4.17 DA increases the power of delta oscillations but no effect on frequency 

(A) Effect of DA (50 µM) on delta oscillations (i) Raw data showing the changes in oscillatory 
activity before (black) and after (red) DA (scale: 60 μV vs 500 ms). (ii) Representative power 
spectra of 60s of extracellular recording demonstrating peak responses before (black) and 
after (red) wash (iii) Bar graphs showing peak oscillatory power of oscillations before (grey) 
and after (red) DA normalised to control. ns p<0.05, n=8. 
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4.2.9.5 Effect of HA on delta oscillations 

Histamine (HA) was bath applied to investigate if histaminergic drive (associated with awake 

state) would change the low frequency delta oscillations to faster oscillations. 200 µM of 

HA, when applied to bath, significantly increased the peak power to 116 ± 4% (p<0.05, n=8) 

but frequency range remained the same (figure 4.18). 

 

Figure 4.18 HA increases the power of delta oscillations but no effect on frequency 

(A) Effect of HA (200 µM) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) HA (scale: 70 μV vs 500 ms). (ii) 
Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) wash (iii) Bar graphs showing peak oscillatory 
power of oscillations before (grey) and after (red) HA normalised to control. ns p<0.05, n=8. 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

4.2.9.6 Effect of combined awake-state drugs on delta oscillations 

Neuromodulators (without any dopamine antagonists) (KA (150 nM), CCh (10 µM), GABA 

(1 µM), DA (50 µM), HA (200 µM) and 5-HT (1 µM) that are prevalent in awake state are 

bath applied to examine if this mixture would enable the reversal of pharmacologically 

induced delta oscillations. Ascorbic acid (250 µM) was bath applied along with the mixture 

above to prevent DA oxidation (Hastings et al., 1996). When bath was applied with this 

mixture, delta peak power was increased significantly to 170 ± 9% of control (n=8, p<0.01) 

but again wihtout change in frequency range (figure 4.19). 

 

 

 

Figure 4.19 Awake drug mixture increases the power of delta oscillations but no 
effect on frequency 

(A) Effect of awake drug mixture ((KA (150 nM), CCh (10 µM), GABA (1 µM), DA (50 µM), 
HA (200 µM), 5-HT (1 µM)) on delta oscillations (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) awake mixture (scale: 70 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) awake drug mixture (iii) Bar graphs showing peak 
oscillatory power of oscillations before (grey) and after (red) awake mixture normalised to 
control. ns p<0.001, n=8. 
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4.2.9.7 Effect of waking-state pharmacology before inducing delta oscillations 

To investigate if this drug mixture ((KA (150 nM), CCh (10 µM), GABA (1 µM), DA (50 µM), 

HA (200 µM), 5-HT (1 µM), Ascorbic acid (250 µM)) had any impact on induction of delta 

oscillations, this mixture was bath applied on theta and gamma oscillations which were 

induced when bath applied KA and CCh. This drug mixture significantly increased the power 

of theta and gamma oscillations. These fast oscillations graduated to slow oscillations and 

to delta oscillations upon application of KA (150 nM), CCh (2 µM), SCH23390 (10 µM) and 

Haloperidol (10 µM) (n=8, figure 4.20)  

Figure 4.20 Induction of delta oscillations in the presence of awake drug mixture 

(A) Effect of awake drug mixture ((KA (150 nM), CCh (10 µM), GABA (1 µM), DA (50 µM),
HA (200 µM), 5-HT (1 µM), Ascorbic acid (250 µM)) on induction delta oscillations (i)
Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) awake drug mixture on theta and gamma
oscillations (iii) Representative power spectrum illustrating the transition of fast oscillations
(black) to slow oscillations (dotted line) and to delta oscillations (red)  in the presence of
awake drug mixture (n=8).
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4.2.9.8 Effect of AMPH on delta oscillations 

To investigate if CNS stimulants would change the frequency range, amphetamine sulphate 

(AMPH) was bath applied. Application of 20 µM and 40 µM increased the peak delta power 

to 123 ± 6% of control (n-8, p<0.01) but no effect on frequency range (figure 4.21). 

Figure 4.21 AMPH increases the power of delta oscillations but no effect on frequency 

(A) Effect of AMPH (20 µM) on delta oscillations (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) AMPH (scale: 50 μV vs 500 ms). (ii)
Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) wash (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) AMPH normalised to control. ns p<0.05,
n=8.
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4.2.9.9 Effect of AMPH before inducing delta oscillations 

The effect of AMPH on induction of delta oscillations was examined by bath application of 

AMPH on theta and gamma oscillations. When 20 µM of AMPH was bath applied, there 

was a significant increase in the peak power of theta and gamma oscillations. However, 

there is no transition to delta oscillations upon application of KA (150 nM), CCh (2 µM), 

SCH23390 (10 µM) and Haloperidol (10 µM) even after 2 hours of observation. (n=8, figure 

4.22) but to our surprise it revealed an increase in theta power (mean frequency: 7.9 ± 0.6 

Hz). 

Figure 4.22 Delta was not induced in the presence of AMPH 

(A) Effect of AMPH (20 µM) on induction delta oscillations (i) Representative power spectra
of 60s of extracellular recording demonstrating peak responses before (black) and after
(red) AMPH on theta and gamma oscillations (iii) Representative power spectrum
illustrating the transition of fast oscillations (black) to slow oscillations (dotted line) and to
theta oscillations (red) in the presence of awake drug mixture (n=8). Note: No delta was
induced in the presence of AMPH.
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4.2.10 Summary of results  

Pharmacology of delta oscillations in LV of M1 was summarised in table below. 

Drug (concentration) % Change of 

Control 

 N Signifi 

cance 

atropine (5 µM) [mAch antagonist] 23.8 ± 5 8 ** 

pirenzepine (10 µM) [mAch antagonist] 21.5 ± 7.5 8 ** 

Carbenoxolone (200µM) [Gap junction 

blocker] 

4.5 ± 0.5 8 ** 

zolpidem (10 nM,30 nM,50 nM) [GABAAR 

agonist] 

123±9,41±4,11±3 8 **, ***, *** 

gabazine (250 nM,25 µM) [GABAAR 

antagonist] 

26.6 ± 5, 11.7 ± 4 8 *** 

picrotoxin (5 µM) [GABAAR antagonist] 25.9 ± 13 8 ** 

CGP55845 (5 µM) [GABABR antagonist] 71.48 ± 14 8 ** 

UBP310 (3 µM) [KAR antagonist] 29.27 ± 4 8 *** 

UBP304 (10 µM) [KAR antagonist] 14.5 ± 4 8 ** 

SYM2206 (20 µM) [AMPAR antagonist] 29.15 ± 6 8 ** 

CNQX (25 µM) [KA/AMPAR antagonist] 15.77 ± 6 8 *** 

2-AP5 (50 µM) [NMDAR antagonist] N/A 8 ns 

MK801 (10 µM) [NMDAR antagonist] N/A 8 ns 

DHDG (10 µM) [groupl mGluR agonist] N/A 8 ns 

cpccoet (25 nM) [gl mGluR antagonist] N/A 8 ns 

MTEP (100 µM) [gl mGluR antagonist] 187 ± 23 8 ** 

MPEP (20 µM) [gl mGluR antagonist] 189 ± 29 8 ** 

LY 379268 (1 µM) [groupll mGluR agonist] 41.8 ± 11 8 ** 

LY 341495 (100 nM,1 µM) [gll mGluR 

antagonist] 

N/A 8 ns 

L-AP4 (50 µM) [grouplll mGluR agonist] N/A 8 ns 

CPPG (10 µM) [glll mGluR antagonist] N/A 8 ns 

Table 4.1 Pharmacology of delta oscillations in LV of M1 
Peak power changes after application of various receptor modulators is represented as 
mean ± SEM when compared to control (normalised to 100%). N= number of recordings 
(obtained from 3 different animals), significance: ns p>0.05, * p<0.05, **p<0.01, ***p<0.001. 
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Delta reversal protocol was summarised in table below. Note delta was found to be 

irreversible as there was no change in frequency of the oscillations but there was changes 

in peak power of delta oscillations. 

Drug  (concentration) %Change 

of Control 

N significance 

KA (150 nM)+CCh (10 µM) ns 8 Ns 

high KA (500 nM) ns 8 Ns 

high CCh (50 µM) ns 8 Ns 

dopamine (50 µM) 110 ± 10 8 * 

histamine (200 µM) 116 ± 4 8 * 

amphetamine Sulphate (20 

µM) 

123 ± 6 8 ** 

awake mixture (150 

nMKA+10 µM CCh+1 µM 

GABA+1 µM 5HT+50µM 

DA+200 µM HA+250 µM 

Ascorbic Acid) 

170 ± 9 8 *** 

Table 4.2  Various delta reversal protocols 

Peak power changes after application of various receptor modulators is represented as 
mean ± SEM when compared to control (normalised to 100%). N= number of recordings 
(obtained from 3 different animals), significance: ns p>0.05, * p<0.05, **p<0.01, ***p<0.001. 
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4.3 Discussion 

Initial LFP recordings revealed the absence of spontaneous oscillatory activity in M1 and 

S1 in consistent with previous work (Yamawaki, 2008; Johnson, 2016). Co-application of 

KA and CCh reliably induced beta oscillations (Yamawaki, 2008; Prokic, 2011) in old slice 

preparations whereas, theta and gamma oscillations were identified both in M1 and S1 

(Johnson et al., 2016) with new slice preparation (refer chapter 3 for details). To further 

investigate the low frequency neuronal network activity in M1 and S1, experiments were 

performed to induce delta (2-4 Hz) oscillations which are known to be associated with deep 

sleep stages especially NREM3 and NREM4 stages. Although a number of studies 

demonstrated the origin of delta oscillations (1-4 Hz) in thalamus (Amzica et al., 1992), 

relatively less is known about cortical based delta oscillations. A delta rhythm of purely 

cortical origin has been implicated in in vivo studies (Amzica and steriade, 1998; Fell et al., 

2002) but the mechanisms underlying were not as clear as those in thalamic origin (Pirchio 

et al., 1997; Hughes et al., 1999; 2002). Additionally, it has been suggested that cortical 

delta oscillations are generated in a use-dependent manner, in that the cortical circuits that 

are active during awake states generate these oscillations in the succeeding sleep (Kattler 

et al., 1994; Huber et al., 2004) and in a region specific way, implying a self-organising 

property of local neuronal networks (Krueger and Oba´l, 1993; Vassalli and Dijk, 2009; 

Vyazovskiy et al., 2011). Frontal and parietal cortical regions are known to be delta 

generators in human cortex during sleep with a possibility of local delta generators for each 

region (Mormann et al., 2008; Ioannides et al., 2009). A recent in vitro study has indicated 

delta oscillations in secondary somatosensory cortex/parietal area, S2/Par2 slices prepared 

from male Wistar rats (Carracedo et al., 2013). None of these studies have indicated the 

mechanisms and origin of cortical delta rhythm probably because it is challenging to induce 

delta oscillations unlike gamma oscillations, which can be identified spontaneously or with 

minimal pharmacological manipulations in regions like CA3, M1, S1, V1 etc. A recent study 

has revealed that transition of NREM2 to NREM3&4 stages required the neuromodulatory 

action of cortex itself but not thalamus (Krishnan et al., 2016).  We have assumed that the 

origin of delta oscillations could possibly be primary motor and sensory cortices with these 

regions being primary projection sites for thalamus, hence the term ‘primary’.  

4.3.1 Generation of delta oscillations 

Induction of delta oscillations requires a state that mimics the physiologically equivalent 

deep sleep state. In order to achieve this neuromodulatory state we have tried various 

protocols using sleep related neurochemicals. Initially 150 nM KA and 10 µM CCh was bath 

applied to activate the slices since there is no spontaneous activity observed in M1 and S1. 

Co-application of KA and CCh induced theta and gamma oscillations (see chapter 3). When 
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GABAA positive modulator, pentobarbital (10-30 µM) was bath applied at this stage, the 

oscillations have been desynchronised and very slow oscillations (< 1Hz) were identified 

which was different to what was expected (2-4 Hz) (data not shown). It was not surprising 

to see pentobarbital affect frequency with no change in power based on the fact that it acts 

via phasic inhibition, by opening GABAAR for longer time. Increased IPSC decay has 

enabled the decrease in frequency (Segal and Baker, 1984). The reciprocal interaction 

model suggested that the awake state has aminergic dominance and REM sleep state has 

cholinergic dominance whereas NREM state of sleep has intermediate tone (McCarley and 

Hobson, 1975). To investigate if low cholinergic tone would induce delta oscillations, aCSF 

with standard KA (150 nM) and CCh (10 µM) was replaced to that which contained same 

KA but low concentration of CCh (2 µM – 1/5th of what is generally required for cortical 

activation). Reduction in ACh levels has shown increased excitatory connection strength 

via AMPA conductance, as well as increased leak (K+) currents. This decreased ACh levels 

have proved to be essential for transition to deep sleep stages (Krishnan et al., 2016). There 

has been research that suggests CCh when injected bilaterally promoted sleep in vivo 

(George et al., 1964). This has decreased the power of theta and gamma oscillations but 

did not induce delta oscillations probably because low cholinergic tone alone was not 

enough. Since dopamine plays a critical role in promoting arousal, it was suspected whether 

ambient dopamine in the slices was too high to enable delta induction. This was examined 

by perfusing the slices with D2 antagonist (Haloperidol 10 μM) besides KA and CCh based 

on the evidence that D2 blocking properties has enabled NREM 3 and 4 sleep whilst 

decreasing awake state (Monti and Monti, 2007). This still did not induce delta oscillations 

but reduced the frequency of oscillations. To mimic low cholinergic and low dopaminergic 

state, 150 nM KA, 2 μM of CCh, D2 antagonist; Haloperidol and D1 antagonist; SCH23390 

was bath applied simultaneously. In this condition, it was possible to induce persistent delta 

oscillations at 2-4 Hz frequency. Interestingly, delta oscillations were not generated either 

by blocking D1 receptors or D2 receptors on their own which is contrary to recent in vitro 

work on delta rhythm in rat slices containing secondary somatosensory/parietal area, 

S2/Par2 (Carracedo et al., 2013) suggesting a physiological difference in the origin of M1 

delta rhythm. Changes in power (increase) and frequency (decrease) in the generation of 

delta meant the involvement pre (phasic) and post-synaptic (tonic) currents. Activation of 

D1 receptors disturbs long-term depression and increases (spike time dependent) long-

term potentiation (Xu and Yao et al., 2010). Furthermore, evidence exists that application 

of D1 antagonist (SCH 23390) prevented arousal (Trampus et al., 1993) hence, the 

decrease in D1 tone may be a critical aspect of the current study.  
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4.3.2 Origin of delta oscillations 

All the layers of M1 exhibited delta activity with same mean frequency but Layer V was 

thought to be the source of origin since the power of delta oscillations was found to be 

progressing from deep to superficial layers. This is consistent with human invasive electrode 

in vivo delta studies (Cserca et al., 2010) and also in vitro delta studies that were carried 

out in rat parietal cortex and human frontal cortical tissue (Carracedo et al., 2013). In vivo 

awake and sleep delta have been thought to originate mostly from the deep layers of frontal 

cortex (Knyazev, 2012). Additionally, beta oscillations (Murthy and Fetz, 1996; Donoghue 

et al., 1998; Yamawaki, 2008) have also been reported to have highest power in Layer V 

as well as theta and gamma oscillations (Johnson et al., 2017). Theta oscillations in human 

neocortex slices have shown temporal delays in superficial layers relative to deep layers, 

suggesting deep layers to be the origin of activity (Florez et al., 2013). In accordance with 

the idea that deep layers drive slow oscillations, RS neurons in LV have been found to drive 

pyramidal neurons in superficial layers at low theta range (Carracedo et al., 2013). Initiation 

of activity in LV was proved by local application of tetrodotoxin (TTX) whilst recording from 

Lll/lll and LV. 10 μM of TTX showed no effect on oscillatory activity of LV when locally 

applied to superficial layers whereas the oscillatory activity was abolished in Lll/lll when TTX 

was locally applied in deep layers (LV) (Yamawaki et al., 2008). Correlation studies were 

performed on simultaneous recordings across each layer (ll, lll, V, Vl) with a reference 

electrode in LV. These revealed that delta band oscillatory activity in Lll and Llll was phase-

delayed compared to that of LV however, delta activity in LVI was found to precede to that 

of LV. As the peak power of delta activity is greater in LV than in LVl, it might be assumed 

that LV would drive the activity, however, the fact that LVI leads LV suggest the latter as a 

driver. Unfortunately, it was not possible to isolate deep layers due to experimental 

difficulties in finding the precise boundary and so we could not directly test the ability of LVI 

alone to generate delta oscillations. There could be several possible grounds as to why LV 

may be assumed to drive oscillatory activity. Firstly, the morphological aspects; as it 

contains high density pyramidal cells in deep layers and also the presence of the Betz cells 

that were characteristic feature of LV of M1. Betz cells in M1 have extensive projections 

across all layers up to LI with a huge cell body (Molnar and Cheung, 2006). Secondly, the 

physiological properties of the interneuron populations that are present in LV which are 

responsible for neuronal oscillatory activity at delta frequency (not explored in this study). A 

strong drive onto vasoactive intestinal peptide-positive (VIP+) cells was identified in M1 and 

S1 (Lee et al., 2013) and these cells have been identified to receive greater input from LV 

(Xu and Callaway, 2009) based on the anatomical evidence that layer V projections are 

more widely diffused than that of superficial layers (Markov et al., 2014). Also, as seen in 

up/down states of mice sleep state in vivo and in vitro studies, network activation involves 
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intrinsically bursting (IB) neurons with cell bodies located in LV (Beltramo et al., 2013; 

Carrecedo et al., 2013). IB cells relate to excitatory synapses and gap junctions which could 

form the basis for high oscillatory activity in LV (Mercer et al., 2006; Lefort et al., 2009). 

Current source density studies in human recordings have revealed more synaptic input in 

superficial layers indicating enhancing the excitation onto distal dendrites in deep layers 

(LV) (Csercsa et al., 2010). This excitatory output to deep layers from superficial layers have

indicated in local circuits (Thomson and Morris, 2002). Previous studies on local circuits 

have suggested the existence of strong excitatory inputs to LV from other layers (Weiler et 

al., 2008; Yu et al., 2008; Anderson et al., 2010; Hooks et al., 2011;). Gap junctions between 

interneurons are known to increase network synchronisation (Gibson et al., 1999; Galarreta 

and Hestrin, 1999; Traub et al., 2000, 2001, 2003). Also, gap junctions between pyramidal 

axons have been implicated to enhance output activity of these cells (Schmitz et al., 2001; 

Traub et al., 2003). Moreover, the existence of most common gap junction subunit, 

connexion 36 was identified to be densely expressed in deep layers when compared to 

superficial layers which could be the basis for high amplitude oscillations in LV (Condorelli 

et al., 2000; LeBeau et al., 2003).  

However, LV can not be considered the sole origin of network activity since LVl also 

contains various cell types that may contribute to generation of oscillatory activity. Cells in 

LVI receive direct thalamo-cortical input as well as forms an output layer to many thalamic 

nuclei.  The major types of pyramidal cells that were identified in LVI which are distinguished 

based on shape include: CT (cortico-thalamus) cells that project to thalamus are short, 

narrow and vertically oriented towards LlV and LV. CC (cortico-cortical) cells that are 

present only within cortical regions with different shapes from short upright to bipolar 

neurons (see review Thompson, 2010). But, the functional characterisation of each type 

remains unexplored (Gonchar et al., 2007). Nevertheless, LVl was reported to provide 

significant excitatory input to LV pyramidal cells in a paired recording study (Mercer et al., 

2005) besides the strong reverse connection from LV to LVl. It is challenging to identify the 

boundary between LV and LVl in our experiments, therefore we have recorded from deep 

layers (LV) with it being large area and was easily identified under microscope. A better way 

to delineate between LV and LVl would be beneficial. 
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4.3.3 Muscarinic receptor modulation 

Application of CCh was essential to induce network activity in M1. Gamma oscillations were 

desynchronised when muscarinic receptor antagonists were bath applied (Fisahn et al., 

1998). Action of CCh was proved to be pre-dominantly via M1 receptors (mACh) as the 

delta oscillations were desynchronised when pirenzepine, an M1 receptor antagonist was 

applied to bath which is similar to delta oscillations in in vitro in other brain region like 

secondary somatosensory/parietal area (S2/Par2) (Carracedo et al., 2013). 

4.3.4 Gap junctions 

Neuronal network activity is known to be dependent on electrical coupling via gap junctions 

(Draguhn et al., 1998; Galarreta and Hestrin, 1999; Traub et al., 2000, 2001, 2003) Gap 

junctions also have a critical role in high frequency oscillations generation and 

synchronization (Buhl et al., 2003; Hormuzdi et al., 2001) especially in the gamma 

frequency range (Kopell and Ermentrout, 2004; Hormuzdi et al., 2001). Investigations of 

(Draguhn et al., 1998) axo-axonal (pyramidal-pyramidal) gap junctions has revealed that 

action potentials propagate from one cell to another (Draguhn et al., 1998; Schmitz et al., 

2001); cortex (Grenier et al., 2001). Connexion-36 subunit knockout experiments revealed 

a role of axonal gap junctions in initiation of oscillatory activity whilst dendritic (interneuron-

interneuron) gap junctions contribute to oscillation coherence (Traub and Bibbig, 2000). 

When gap junctions were blocked using carbenoxolone, delta oscillations were abolished 

in M1 after about 2 hours of drug application. The slow action of carbenoxolone is similar to 

that observed during EEG recordings in vivo, where oscillatory activity at theta frequency 

was only abolished after 60 min of perfusion (Konopacki et al., 2004). Various gap junction 

blockers such as octanol (1 mM), CBX (0.2 mM), quinine (0.2 mM) and 18β-glycyrrhetinic 

acid has shown to decrease or abolish delta oscillations in slices containing secondary 

somatosensory/parietal area (S2/Par2) (Carracedo et al., 2013) as well as gamma 

oscillations in other brain regions (Traub and Bibbig, 2000; Cunningham et al., 2004). This 

evidence suggests the role of gap junction in generation and maintenance of delta 

oscillations. However, it is critical to note that gap junction modulators are non-specific and 

could act through mechanisms that are independent of gap junctions (Nakahiro et al., 1991; 

Rouach et al., 2003). Carbenoxolone is highly non-specific and has indicated to act through 

various mechanisms that include (but not limited to): block post synaptic NMDAR, reduce 

IPSCs via GABAAR, suppress action potentials, blocks calcium channels, and reduces 

seizure activity besides blocking gap junctions (Rekling et al., 2000; Rouach et al., 2003; 

Vessey, 2004; Tovar et al., 2009; Connors, 2012) yet still was used in current experiments 

due to its water-soluble nature and the lack of better alternatives (Konopacki et al., 2004). 
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Further specific subunit KO experiments would be essential as well as developing selective 

blockers. 

4.3.5 GABA modulation 

GABAA receptors are ligand gated ion channels. These receptors act by increasing the 

membrane permeability of anions (Cl- and HCO3
- ions) which hyperpolarises the membrane 

resulting in inhibition (Rivera et al., 1999). GABAAR antagonists, GBZ and PTX, reduced 

the power of delta oscillations with no change in frequency range. Dependence of delta 

oscillations on GABAAR implies the requirement of inhibitory currents in M1 like in 

hippocampal brain regions (Whittington et al., 1995). It is known that the competitive 

antagonist, GBZ, at low concentration (250 nM) inhibits phasic synaptic currents but not 

extracellular tonic currents (Farrant & Nusser, 2005) due to the differential affinity of tonic 

(high affinity) and phasic (low affinity) GABAA receptors. Hence, high concentration GBZ 

(2.5 µM) was bath applied to surpass extra-synaptic tonic currents (Stell and Mody, 2002). 

250 nM and 2.5 μM significantly reduced the synaptic synchronous delta activity revealing 

the role of both synaptic and extra-synaptic receptors in delta rhythm generation. Further 

investigations were made using a non-competitive channel blocker. PTX (5 µM) acts by 

binding inside the receptor ionophore which prevents the flow of Cl- (Krishek et al., 1996). 

PTX reduced the power of delta oscillations. Since pharmacological manipulation of IPSC 

kinetics using antagonists has meant the change (reduction) in power, tonic inhibition is 

responsible for delta rhythm initiation (Traub and Whittington, 2010). Surprisingly, these 

results contrasts with that of in rat secondary somatosensory/parietal area whose delta is 

GABAAR insensitive, suggesting a distinct mechanism between two regions (Carracedo et 

al., 2013). This may be due to the subunit expression in various regions that are responsible 

for delta oscillations. 

Zolpidem, a benzodiazepine site agonist showed differential effects at various 

concentrations and was previously demonstrated on beta oscillations in M1 (Prokic et al., 

2015). At beta frequency, Zolpidem stabilises a tonic current in a kinetically-slow state, 

meaning it cannot be desensitised and it therefore acts to hyperpolarise the GABA neurons, 

reducing oscillatory power. At higher concentrations, there is no slow state and zolpidem 

enhances power by augmenting inhibition. Interestingly, delta oscillations have shown an 

increase in delta power at 10 nM and decreased in the power at higher concentrations 

suggesting the GABAAR are not working in the same manner as it they were during beta or 

gamma activity (Prokic et al., 2015). This could depend on the population of cells and 

receptor subtypes with different kinetic properties that are recruited for generation of delta 

oscillations in M1. 
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The GABAB receptors are metabotropic G-protein coupled receptors, which act by inhibiting 

presynaptic calcium release via adenylyl cyclase (Dunlap and Fischbach, 1981; Hill 1985; 

Newberry and Nicoll, 1985). On one hand, a study reported that GABABR do not contribute 

to oscillatory activity induced by CCh (Williams and Kauer, 1997). On the other hand, a 

study by Whittington et al., has revealed the role of these receptors in determining the 

duration of gamma oscillations (Whittington et al., 1995). CGP55845 (5 µM), GABABR 

antagonist reduced the power of synchronous delta oscillations which is in line with 

hippocampal and cortical gamma and beta oscillations (Yamawaki, 2008; Dugladze et al., 

2013) and similar to delta in secondary somatosensory/parietal area (Carracedo et al., 

2013) demonstrating the role of slow acting GABABR in delta rhythm generation. 

4.3.6 Glutamate modulation 

Excitatory currents have been identified to contribute to network oscillatory activity in M1 

including theta, gamma and beta oscillations (Yamawaki, 2008, Prokic, 2011, Nicholas, 

2016). To investigate iGluR involvement in delta rhythm generation, various receptor 

antagonists were bath applied. CNQX desynchronised delta oscillations by blocking both 

KA/AMPAR indicating the requirement of KAR or/and AMPAR. SYM2206, a potent AMPAR 

antagonist reduced the synchronous activity of delta oscillations GluA1-4 (APAMR) subunit 

KO studies revealed decrease in AMPA mediated EPSPs, changes in firing properties 

which in turn disrupted long range synchronisation (Fuchs et al., 2001). KAR antagonists: 

UBP310 (GluK1/3) and UBP304 (GluK1) also blocked the activity. Kainate receptors were 

identified to be critical for rhythm generation as well as stabilisation. However, the delta 

induced in parietal cortex did not show significant effect to AMPA or KA receptors on their 

own but desynchronised the delta power when both receptors were blocked using CNQX 

(KA/AMPA blocker) suggesting a distinct mechanism (Carracedo et al., 2013).  

It is interesting to note that unlike the generation of beta oscillations in LV of M1 (Yamawaki, 

2008), delta oscillations do not require NMDAR, which was in contrast to what was 

demonstrated both in vitro (Carracedo et al., 2013) and in vivo studies (Hunt and Kasicki, 

2013). In vitro studies in rat parietal cortex observed that synchronous delta oscillations 

were reduced when NMDAR antagonist 2-AP5 was added to bath whereas in vivo studies 

on freely moving rats proved that the delta power was increased in various cortical regions 

as demonstrated by various studies in the past (Mattia and Moreton, 1986; Marquis et al., 

1989; Feinberg and Campbell, 1998). These controversial findings imply further 

investigation on NMDAR associated with the delta rhythm. Since 2-AP5 is a competitive 

NMDAR antagonist, MK801 which is a selective non-competitive antagonist was bath 

applied. However, both drugs showed no effect on delta oscillations. There could be several 

reasons as to why pharmacologically induced delta oscillations are NMDA insensitive which 

may include experimental protocol, types of cells expressed in the region recordings were 



148 
 

made, receptor subunit composition and neuronal populations recruited for the rhythm. 

Moreover, Specific subunit KO experiments revealed that GluN1 KO increased firing rate 

thereby altering the synchrony (Belforte et al., 2010), GluN2B (Kelsch et al., 2014) KO 

reduced frequency and amplitude of EPSPs and knocking out GluN2C and D (Von 

Engelhardt et al., 2015) had no change in NMDA mediated EPSPs in hippocampal 

interneurons. Therefore, comparatively greater expression of GluN2C and D subunits in 

layer V of M1 could also form the basis for this. Further investigations however are needed 

to address this by using subunit specific receptor modulators and KO studies. 

 

mGluRs are known to influence rhythmic activity of transient gamma oscillations induced by 

tetanic stimulation as demonstrated by Whittington et al., (1995). It has been reported that 

s activation of group l mGluRs by DHPG induced gamma oscillations in CA3 which are 

different to those induced by KA and CCh in CA3 (Palhalmi et al., 2004). However, these 

receptors showed little contributions to synchronous activity of pharmacologically induced 

delta oscillations in M1. Moreover, they showed no contribution on pharmacologically 

induced beta oscillations in same area (Yamawaki, 2008). Only mGlu-R3, mGlu-R5 amongst 

three groups have been found to contribute to delta rhythm generation. None of the other 

receptors appeared to be involved in delta in M1. Minor but significant reduction in 

synchronous delta oscillations was noticed when mGlu-R3 agonist LY379268 was bath 

applied whilst mGlu-R5 antagonists MTEP and MPEP showed a significant increase in delta 

oscillations.  
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4.3.7 Pharmacological equivalent awake state: delta reversal protocol 

Neurotransmitters play a critical role not only in sleep and awake states but also in transition 

state. It was evident that acetylcholine (ACh), histamine (HA), GABA, serotonin (5-HT), 

dopamine (DA) and nor-epinephrine (NE) are involved in sleep wake mechanisms. High 

levels of ACh, HA, NE are found in NREM2&3 stages whilst GABA was found to be lowest 

in these stages when compared to awake state (Aston-Jones and Bloom, 1981; McCormick, 

1992; Vazquez and Baghdoyan, 2001; Lena et al., 2005; Vanini et al., 2011).  It was 

interesting that, in REM sleep, ACh levels were found to increase but HA, NE and GABA 

were observed to decrease (Baghdoyan and Lydic, 2012). The reciprocal interaction model 

suggested that the awake state has aminergic dominance and REM sleep state has 

cholinergic dominance whereas NREM state of sleep has intermediate tone (McCarley and 

Hobson, 1975). Delta oscillations (2-4 Hz) were reliably induced by mimicking 

neuromodulatory deep sleep (low cholinergic and low dopaminergic) state. This state was 

obtained by pharmacological manipulation by bathing the slices in 150 nM of KA, 2 µM CCh, 

10 µM SCH23390, 10 µM Haloperidol. Subsequent experiments were performed to reverse 

this state to a pharmacologically equivalent awake state. Since theta and gamma 

oscillations were identified upon application of KA and CCh, it was assumed that washing 

the slices in the same would reverse delta oscillations to faster frequency range but no 

change was observed confirming the persistent nature of delta oscillations. Increased ACh 

would mean the decrease in AMPA conductance based on experimental findings (Gil et al., 

1997; Kimura et al., 1999; Hsieh et al., 2000) which would not influence frequency of 

oscillations. High concentrations of KA and CCh were bath applied and both lead to seizure 

like activity which was not surprising as KA and CCh increase the rate of firing whereby 

inducing seizure like activity as observed in various studies (Ben-Ari et al., 1985; Brudzynski 

et al., 1995; Stivers et al., 1998; Ben-Ari and Cossart, 2000). Interestingly, when we 

investigated experiments in high KA and CCh, we found delta intact, but masked by very 

low frequency and high amplitude activity. High levels of DA has shown an increase in 

wakefulness in dopamine transporter (DAT) knock out mice (Wiser et al., 2001). Also, 

application of D1 agonist, SKF38393 increased wakefulness and decreased sleep and a 

simultaneous block of D1 receptors using an antagonist (SCH23390) prevented arousal 

(Trampus et al., 1993). Subsequent experiments were carried out using dopamine and 

histamine assuming the increase in aminergic tone would enable the transition from deep 

sleep state to awake state but both HA and DA showed an increase in power with no effect 

on frequency of delta oscillations.  High levels of HA has led to effect Ih current by positively 

shifting activation curve (McCormick and Williamson, 1991) with no effect on network 

activity. Moreover, awake drug mixture [KA (150 nM), CCh (10 µM), GABA (1 µM), DA (50 

µM), HA (200 µM), 5-HT (1 µM), Ascorbic acid (250 µM)] was used but no change in 
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frequency range was noticed. This mixture contains ascorbic acid as a neuro-protectant 

since DA is an unstable molecule (Graham, 1978) and easily gets oxidised to free radicals 

and reactive quinones (Hastings et al., 1996). However, a massive increase in power of 

delta oscillations was observed suggesting all the above wake promoting compounds have 

strengthened the neuronal network synchronisation in M1. Furthermore, amphetamine 

sulphate, a potent CNS stimulant which is critical for monoamine regulation via trace amine-

associated (G-protein coupled) receptor (TAAR1) was bath applied to investigate if this 

would enable wakeful state (Miller, 2011). 

On an interesting note, both awake drug mixture and amphetamine sulphate, when bath 

applied before delta incidence have shown a significant increase in power of theta and 

gamma oscillations yet, only the former has enabled delta induction whilst the latter did not. 

AMPH reverses the DA transit from cytoplasm to extracellular space via DAT which was 

termed as DA efflux enabling increased locomotion (German et al., 2015; Kopra et al., 2017) 

in accordance with a study suggesting extracellular dopamine levels have indicated to be 

higher after AMPH administration in rats (O`Leary et al., 2016). This hyper dopamine levels 

explains the prevention of delta oscillations which requires low dopaminergic state. 

Reduction in power of gamma oscillations upon subsequent addition of delta drugs could 

account for the cytotoxicity caused due to auto-oxidation of high levels DA upon AMPH 

application (as seen in Carvalho et al., 2012). 

Recently, Krishnan et al., (2016) has developed an in silico model that was sufficient to 

cater the needs to study sleep-wake cycle characteristics which included populations of 

interneurons (IN) and pyramidal cells (PY) in cortex, thalamic reticular nucleus (RE) and 

thalamic relay neurons from thalamus based on the previous evidence from literature 

(Bazhenov et al., 1998, 1999; Timofeev et al., 2000; Bonjean et al., 2011; Chen et al., 2012; 

Wei et al., 2016). In their study, Krishnan et al show transition from NREM2 to deep sleep 

(NREM3 & 4) stages required neuromodulatory actions within cortex itself and thalamus 

was not required. In our own study, we saw delta in slices containing cortex only, confirming 

the in silico results of Krishnan et al., however, it is not possible for transition to awake 

states from sleep stages within cortex in our experiments. We speculate that the role of 

thalamo-cortical connections is critical to reversal of the sleep-like state in our in vitro 

preparation. This may explain why it was possible to induce delta oscillations in M1 and S1 

slices but not possible to reverse it to equivalent awake state. Slice preparations containing 

various regions involved in sleep, including thalamus, would be helpful to address this issue 

however, this was currently not possible due to time limitations.  
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4.3.8 Possible mechanism of delta oscillations in M1 

In the current study, we have shown KA and CCh induced theta and gamma oscillations 

simultaneously which is comparable to previous work in the lab. Delta oscillations are 

pharmacologically induced in layer V of Primary motor cortex (M1) by maintaining low 

cholinergic and low dopaminergic tone which is the characteristic feature in deep sleep 

stages and we have illustrated the transition from fast (gamma and theta) oscillations to 

slow (mu and beta) oscillations before a high amplitude delta rhythm emerged. Delta rhythm 

was characterised using various receptor modulators to determine the role of various 

receptors in the rhythm generation. Current study suggests that these delta oscillations are 

dependent on GABAR, AMPAR, KAR, mAChR and gap junctions but are independent of 

NMDAR. mGluRs do not seem to show much contribution to the generation of delta rhythm 

however mGluR agonists showed a general reduction in the activity whilst the antagonists 

showed an increase in the activity which is significant only in case of group l mGluR 

antagonists (MPEP & MTEP). These suggestions were based on the pharmacology 

performed using various receptor modulators and comparing them with control. 
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4.3.9 Final conclusions 

To our knowledge, this is the first demonstration of motor cortical delta oscillation in vitro 

and was identified to have a distinct mechanism to that of delta in secondary 

somatosensory/parietal area (S2/Par2) (also in vitro) (Carracedo et al., 2013). These 

extracellular studies could prove significant in investigating neuronal network oscillations in 

pathological states such as PD, AD by using animal models that can enable the comparison 

of mechanisms. Delta oscillations were induced by KA, CCh, D1 and D2 antagonists and 

are reliant on both inhibitory and excitatory network activity. AMPAR contribute to overall 

excitation of the cells, CCh to activate the cells and GABAR to the set the frequency similar 

to that of gamma oscillations except delta are found independent of NMDAR both in M1 and 

S1. Based on suggestion that cortical delta oscillations are generated in a use-dependent 

manner, in that the cortical circuits that are active during awake states generate these 

oscillations in the succeeding sleep (Kattler et al., 1994; Huber et al., 2004) and in a region 

specific way, implying a self-organising property of local neuronal networks (Krueger and 

Oba´l, 1993; Vassalli and Dijk, 2009; Vyazovskiy et al., 2011) reflecting previously prevalent 

gamma oscillations then become delta oscillations. Pharmacologically induced delta 

oscillations were found to be irreversible since the frequency of the oscillations had not 

changed when pharmacologically equivalent awake state was maintained possibly due to 

experimental limitations. A slice preparation with both cortex and thalamus preserved and 

also using various wake promoting compounds such as caffeine, adenosine, and orexin 

would probably enable delta reversal. 
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5. Characterisation of delta oscillations in 

S1 and interaction between M1 and S1 at 

delta frequency. 
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5.1 Introduction 

In some studies (Werth et al., 1997; Finelli et al., 2001), the appearance of slow wave 

activity was found to follow an ascending pattern from anterior to posterior regions in 

cerebral cortex, with highest power in frontal areas. This was identified to be promising in 

the first NREM sleep suggesting a role of frontal regions such as M1 and S1 in sleep 

management. This was found to be evident in the vibratory stimulation study performed in 

awake state enhanced the power of delta oscillations in somatosensory cortex during the 

first cycle of sleep (Kattler et al., 1994) and gradually decreased in subsequent cycles. S1 

was chosen based on the fact that it is the primary source of sensory information in rats 

(Burwell et al., 1995). The term ‘primary’ is used to describe sensory cortex that receives 

unimodal input directly from the thalamus.   

Anatomical studies have shown that M1 receives input from S1 and thalamus (Zin-Ka-Leu, 

1998; Miyachi et al., 2005) and the highly reciprocal nature of functional connections 

between M1 and S1 have been demonstrated in an optimum plane sensorimotor slice 

preparation developed by Rocco et al., (2007). Similarly, studies using voltage-sensitive 

dye imaging (VSD) and anterograde and retrograde tracers or viral vectors provide strong 

evidence that sensory input and whisker movement are related in rats (Ferezou et al., 2007) 

and inactivation of S1 results in altered chewing (Lin et al., 1993; Hiraba et al., 2000), 

muscle contractions and motor co-ordination (Rothwell et al., 1982; Hikosaka et al., 1985, 

Johansson and Westling, 1984). These reports suggest the role of sensory input from S1 in 

modulating motor output from M1. Topographical organisation of S1 was found to be similar 

to that of M1 (Huffman and Krubitzer, 2001) and have close association with M1 via 

reciprocal connections. Axonal projections of LIII of S1 (otherwise known as area 3a) have 

been identified to terminate throughout the cortical column of M1 (Porter 1991, 1992, 1996; 

Porter and Sakamoto, 1988) by performing retrograde labelling studies. These studies have 

also revealed Lll and LVI of M1 send projections to S1 (Porter, 1991, 1993).  

Sensorimotor integration has been studied in vivo (Smith et al., 1983; Wannier et al., 1991) 

but this does not enable the full understanding of the pathways. However, sensorimotor 

slice preparation by Rocco et al., enables to investigate further on sensorimotor connections 

in vitro (Rocco et al., 2007). Detailed information and significance of M1 and S1 interactions 

were discussed in chapter 3 (section 3.3). 

This chapter deals with pharmacology of delta oscillations in LV of S1 and compared to 

delta oscillations in M1. To determine the origin of delta oscillations, various sagittal slice 

preparations were made (see Methods section 2.2 for details). Experiments in the first part 

(5.2) of this chapter was performed in LV of a sensorimotor slice (slice type A) with both 

regions and surroundings intact. The following section (5.3) utilised the various types of 
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slice preparation (as seen in Methods 2.2 section) with a view towards identifying whether 

M1 and S1 have their own delta rhythm generator or if one region was leading the other or 

if there was any thalamic dependence for rhythm generation.  

Previous studies on local circuits have suggested the existence of strong excitatory inputs 

to LV from other layers (Weiler et al., 2008; Yu et al., 2008; Anderson et al., 2010; Hooks 

et al., 2011). Based on the fact that high amplitude oscillations were recorded from layer V 

of M1 as shown in laminar studies (section 4.2.2) in 4th chapter as well as structural 

similarities (Huffman and Krubitzer, 2001), all experiments in this chapter were performed 

in deep layer (LV) of either M1 and/or S1.  
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5.2    Pharmacology of delta oscillations in S1 

5.2.1 Pharmacological induction of delta oscillations in LV of S1 

Primary somatosensory cortex (S1) is adjacent to primary motor cortex (M1) and shares 

structural similarities with it. Investigations were made to examine the ability of S1 to 

generate delta oscillations. All recordings in this chapter are made from LV of S1 unless 

otherwise stated. In the presence of KA (150 nM) and (10 µM), theta and gamma oscillations 

were induced (see chapter 3 for details). In the intact sensorimotor slice containing M1, S1 

and surrounding regions, a transition similar to that of in M1 was identified. When perfused 

with aCSF containing KA (150 nM), CCh (2 µM), SCH23390 (10 µM) and Haloperidol (10 

µM), fast oscillations, theta (6-11 Hz) and gamma (30-37 Hz) gradually shifted to slow 

oscillations: slow theta (5-7 Hz) and beta oscillations (25-30 Hz) before high amplitude delta 

oscillations (2-4 Hz, ~300 μV2, n=50) with a mean frequency of 3.2 ± 0.7 Hz emerged 

(figures 5.1, 5.2). 

Figure 5.1 Pharmacological induction and transition of theta-gamma to delta 

oscillations (2-4 Hz) in LV of S1 

(A) Representative extracellular voltage recordings of activity during development of delta
rhythm in SCH23390 & haloperidol. Gamma (30-40 Hz), beta (25-29 Hz), theta-1 (7-14 Hz),
theta-2 (5-7 Hz) and delta (1-4 Hz) oscillations (scale: 20 μV x 250 ms). (B) Power spectra
of oscillatory activity during application of SCH23390 & haloperidol at 30 min (dotted line)
and at 90 min (red line). Note how gamma-theta activity gradually shifted into beta and slow
theta (5-7 Hz) oscillations (dotted), before a high amplitude (20-400 µV2) delta rhythm (red)
emerged.
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Pharmacological studies were performed using various receptor modulators. Control for 

each recording was normalised to 100% and in experiments of this chapter, stable delta 

oscillations were characterised as showing no change noticed in frequency and amplitude 

over 20 min period. The effect of a drug was measured just after 40 min of bath application 

of the drug (unless otherwise stated) which was compared to control. 

 

Figure 5.2 Representative typical delta oscillation in LV of S1 (2-4 Hz) 

(A) Raw data of an example typical delta oscillation recorded from LV of S1 (scale: 50 μV x 
500 ms) (B) representative power spectrum of pharmacologically induced delta activity in 
‘sleep’ neuromodulatory state (low dopaminergic and low cholinergic tone). 
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5.2.2 Cholinergic modulation of delta oscillations in LV of S1 

To examine the effect of CCh was through muscarinic acetylcholine receptors, pirenzepine 

(PIR), an mAch antagonist was bath applied when oscillations were stable for 20 min. 10 

μM of PIR significantly decreased the peak delta power to 23 ± 1% of control (normalised 

to 100%) suggesting a role of mAch receptors in generation of delta oscillations in LV of S1 

as in M1 (n=8, p<0.001) (figure 5.3)   

 

 

Figure 5.3 Muscarinic receptor block decreases delta oscillatory power 

(A) Effect of pirenzepine (10 µM) on delta oscillations. (i) Raw data showing the changes in 
oscillatory activity before (black) and after (red) drug application (scale: 100 μV vs 500 ms). 
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak 
responses before (black) and after (red) PIR (iii) Bar graphs showing peak oscillatory power 
of oscillations before (grey) and after (red) drug application normalised to control. ** p<0.01, 
n=8. 
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5.2.3 GABAR modulation of delta oscillations in LV of S1 

To determine the involvement of inhibitory GABAR, a competitive GABAAR antagonist 

gabazine (GBZ) and a non-competitive channel blocker picrotoxin (PTX) were bath applied. 

Application of GBZ at 250nM and 2.5 μM significantly reduced the synaptic synchronous 

delta activity to 36.50 ± 3% and 22 ± 5% of control respectively (n=8, p<0.001) (figure 5.4A). 

5 μM of PTX significantly reduced the delta synchronous activity to 38 ± 5% of control (n=8, 

P<0.01) (figure 5.4B). 

Figure 5.4 GABAA receptor block decreases delta oscillatory power 

(A) Effect of gabazine (250 nM and 2.5 µM) on delta oscillations. (i) Raw data showing the
changes in oscillatory activity before (black) and after (red) 250 nM, 2.5 µM drug application
(scale: 60 μV vs 500 ms). (ii) Representative power spectra of 60s of extracellular recording
demonstrating peak responses before (black), after GBZ 250 nM (red) and GBZ 2.5 µM
(dashed line) (iii) Bar graphs showing peak oscillatory power of oscillations before (grey)
and after (red) drug application normalised to control. **p<0.01, n=8.

(B) Effect of picrotoxin (5 µM) on delta oscillations. (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 100 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after picrotoxin (red) (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control.
**p<0.01, n=8.
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5.2.4 iGluR modulation of delta oscillations in LV of S1 

5.2.4.1 AMPAR modulation of delta oscillations 

The dependence of delta oscillations on AMPAR was investigated by using SYM2206, a 

specific AMPAR antagonist. Application of 20 μM of SYM2206 significantly desynchronised 

the delta activity. It reduced the power to 49 ± 4% of control (n=8, p<0.01) (figure 5.5A). 

Bath application of 25 μM CNQX, KAR/AMPAR antagonist significantly reduced the 

synchronous delta activity (figure 5.5B) to 40 ± 7% of control (n=8, P<0.01) revealing the 

role of both KA and AMPA receptors in generation of delta oscillations. 

Figure 5.5 AMPA receptor block decreases delta oscillatory power 

(A) Effect of SYM2206 (20 µM) on delta oscillations. (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 20 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) SYM2206 (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control.
**p<0.01, n=8.

AMPA/kainate receptors block decreases delta oscillatory power 

(B) Effect of CNQX (25 µM) on delta oscillations. (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 50 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) CNQX (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control. ***
p<0.001, n=8.
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5.2.4.2 NMDAR modulation of delta oscillations 

The role of NMDA receptors was tested using 2-AP5, a competitive NMDAR antagonist. 50 

μM 2-AP5 did not alter the delta peak (n=8, P>0.05) (figure 5.6) suggesting generation of 

delta oscillations does not require NMDA receptors, as obseverved in M1 (see chapter 4 for 

details). 

Figure 5.6 NMDA receptor block has no effect on delta oscillatory power 

(A) Effect of 2-AP5 (50 µM) on delta oscillations. (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 50 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) DL-AP5 (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control. ns
p>0.05, n=8.

(B) Effect of MK801 (10 µM) on delta oscillations. (i) Raw data showing the changes in
oscillatory activity before (black) and after (red) drug application (scale: 50 μV vs 500 ms).
(ii) Representative power spectra of 60s of extracellular recording demonstrating peak
responses before (black) and after (red) MK801 (iii) Bar graphs showing peak oscillatory
power of oscillations before (grey) and after (red) drug application normalised to control. ns
p>0.05, n=8.
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5.2.5 Summary of results 

Pharmacology of delta oscillations in LV of S1 was summarised in table below 

Table 5.1 Pharmacology of delta oscillations in LV of S1 

Peak power changes after application of various receptor modulators is represented as 
mean ± SEM when compared to control (normalised to 100%). N= number of recordings 
(obtained from 3 different animals), significance: ns p>0.05, * p<0.05, **p<0.01, ***p<0.001. 

Drug  (concentration) % Change of 

Control 

N Significance 

pirenzepine (10 µM) [mAch 

antagonist] 

23 ± 0.5 8 *** 

gabazine (250 nM,2.5 µM) 

[GABAAR antagonist] 

36 ± 3, 22 ± 5 8 **,*** 

picrotoxin (5 µM) [GABAAR 

antagonist] 

38 ± 5 8 ** 

SYM2206 (20 µM) [AMPAR 

antagonist] 

49 ± 4 8 ** 

CNQX (25 µM) [KA/AMPAR 

antagonist] 

40 ± 7 8 ** 

AP-5 (50 µM) [NMDAR 

antagonist] 

N/A 8 ns 

MK 801 (10 µM) [NMDAR 

antagonist] 

N/A 8 ns 
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5.3  M1-S1 interactions at delta frequency 

In order to study interactions between M1 and S1, I used a series of sagittal brain slice 

preparations designated as slice type A-F, detailed in Methods (section 2.2). 

5.3.1 Correlation studies of delta oscillations in slice type A 

It was observed in the experiments of pharmacological induction of delta oscillations in the 

presence of KA (150 nM), CCh (2 µM), SCH23390 (10 µM) and haloperidol (10 µM) in LV 

of M1 and S1 that delta oscillations in S1 were time delayed to that of M1. Mean peak power 

of delta oscillations were plotted against time both in M1 and S1. This revealed a significant 

time delay of 19 ± 3 min in incidence of delta oscillations in S1 (n=8, p<0.01). A linear 

regression graph suggested that intercepts were different when compared M1 with S1 delta 

mean peak suggesting a significant delay in elevation (n=8, p<0.001) (figure 5.7). 

Figure 5.7 Development of delta oscillations in S1 is significantly time delayed with 
respect to delta in M1 in slice type A 

(A) A representative power spectrum representing the transition of fast oscillations (black)

to slow oscillations (dotted line) and to delta (red) oscillations in LV of M1 (B) in S1 (C)

graph comparing the mean delay in incidence of delta oscillations in M1 (black) to that of

S1 (red) (D) a linear regression graph showing significant difference in y-intercept

(elevation) between M1 (black) and S1 (red) with slopes being almost equal (n=8, p<0.01,

p<0.001).
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To further investigate this, correlation analysis was conducted in various slice types (refer 

methods section). In slice type A, Auto-correlation enabled to identify the signal as delta (2-

4 Hz) frequency in a given time (figures 5.8 A-B). Good correlation (correlation coefficient 

=0.5) of delta oscillations also existed between M1 and S1. However, delta oscillations in 

S1 were found to be phase lagged by 2.5 ± 0.6 ms with reference to M1 whilst delta in M1 

was preceded by 2.4 + 0.4 ms with reference to S1 (figures 5.8 C-D) suggesting the origin 

of delta oscillations to be M1. 

Figure 5.8 LV of M1 is the place of origin of the delta frequency activity in slice type 
A 

(A) auto-correlation analysis of delta oscillations in M1 (B) in S1 (C) cross-correlation
between M1/M1 (black) and S1/M1 (red) (D) cross-correlation between M1/M1(black) and
M1/S1 (red). Red dashed line represents the deviation from zero (black dashed line).
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5.3.2 Correlation studies of delta oscillations in slice type B 

To further investigate if the time delay in incidence and phase delay in correlation studies 

of delta in S1 suggested that M1 to be the origin, a cut was made between two regions. In 

slice type B, it was noticed that delta oscillations emerged in M1 but not in S1 in the 

presence of KA (150 nM), CCh (2 µM), SCH23390 (10 µM) and Haloperidol (10 µM). Auto 

correlation revealed the oscillations to be in delta range (2-4 Hz) in M1 but theta range (6-

11 Hz) in S1 suggesting there is no local delta rhythm generator in S1 (figure 5.9 A-D).  

Figure 5.9 M1 drives the oscillatory activity at delta frequency in S1 

(A) A representative power spectrum representing the transition of fast oscillations (black)
to slow oscillations (dotted line) and to delta (red) oscillations in LV of M1 (B) An example
power spectrum showing theta and gamma oscillations in the presence of KA and CCh
(black) and in the presence of SCH+HAL (red) (C) correlation analysis of delta oscillations
within M1 (D) correlation analysis revealed theta oscillations in S1. Note: there is no delta
in S1 in this slice type.
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5.3.3 Correlation studies of delta oscillations in slice type C 

To examine if M1 solely can generate delta oscillations, slice type C was used. In this type 

of slice delta was induced with a high power in the presence of KA (150 nM), CCh (2 µM), 

SCH23390 (10 µM) and Haloperidol (10 µM) which were stable for 2-3hrs. Auto and cross 

correlation suggested that the frequency was in delta range and a good correlation exists 

within two electrodes placed slightly apart in the same slice (correlation coefficient=0.7). 

Figure 5.10 LV of M1 is the place origin of delta oscillations in slice type C 

(A) A representative power spectrum of typical delta oscillation (4 Hz) in LV of M1 (B) auto
and cross correlation analysis of delta oscillations in M1 within LV of single slice.
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5.3.4 Correlation studies of delta oscillations in slice type D 

Experiments were performed on slice type D, however, there was no delta transition in the 

S1 only slice type in the presence KA (150 nM), CCh (2 µM), SCH23390 (10 µM) and 

Haloperidol (10 µM). Correlation analysis revealed theta frequency range (6-11) suggesting 

delta oscillations were driven by M1 in intact slice as shown above (figure 5.11). 

Figure 5.11 No transition to delta oscillations was found in S1 slice without M1 in 
slice type D. 

(A) An example power spectrum showing theta and gamma oscillations in the presence of
KA and CCh (black) and in the presence of SCH+HAL (red). (B) Correlation analysis of
revealed theta oscillations within S1. Note: there is no delta oscillations.
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5.3.5 Correlation studies of delta oscillations in slice type E 

To investigate if adjacent regions (other than M1 and S1) contribution is necessary for 

pharmacological induction of delta oscillations in M1 and S1, experiments were performed 

in slice type E (micro slice) in which both M1 and S1 are collectively isolated from 

neighbouring regions (see Methods section for details). In the presence KA (150 nM), CCh 

(2 µM), SCH23390 (10 µM) and Haloperidol (10 µM) delta oscillations were reliably induced 

both in M1 and S1 with again a slight delay in S1. However, the power and stability (1 hr) 

was much less than that was noticed in intact slices.  This is probably because of the many 

cuts that were made to obtain micro slice. Mean peak power was 40 ± 8 µV2 and 25 ± 10 

µV2 in M1 and S1 respectively. A good correlation existed (correlation coefficient=0.3) 

between two regions with a phase lag of 2.3 ± 0.8 ms in S1 with reference to M1 (figure 

5.12). 
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Figure 5.12 LV of M1 is the origin of delta oscillations and drives the activity in S1 in 
slice type E 

(A) An example power spectrum of delta oscillations in LV of M1 (B) in S1 (C) auto-
correlation analysis of delta oscillations in M1 and in (D) S1. (E) cross-correlation analysis
between M1/M1 (black) and S1/M1 (red) (F) cross correlation analysis between M1/M1
(black) and M1/S1 (red). Red dashed line represents the deviation from zero (black dashed
line).
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5.4 Discussion 

5.4.1 Mechanism of delta oscillations in S1 

No spontaneous activity was observed when recorded in S1 similar to that of in M1 and 

gamma oscillations were induced upon the application of KA and CCh. Interactions between 

M1 and S1 at theta and gamma frequency were detailed in chapter 3. Persistent delta 

oscillations were induced in LV of S1 by maintaining a low cholinergic and low dopaminergic 

tone as this was the precondition to induce delta in M1 (section 4.1). Pharmacology 

performed revealed the dependence of delta oscillations in S1 are dependent on GABAR, 

AMPAR, mAChR and KAR. Similar pharmacological profile to that of M1 was identified in 

S1 probably because M1 drives S1 at this frequency. AMPAR contribute to overall excitation 

of the cells, CCh to activate the cells and GABAR to the set the frequency similar to that of 

gamma oscillations except that delta are found independent of NMDAR both in M1 and S1. 

Based on the suggestion that cortical delta oscillations are generated in a use-dependent 

manner, in that the cortical circuits that are active during awake states generate these 

oscillations in the succeeding sleep (Kattler et al., 1994; Huber et al., 2004) and in a region 

specific way, implying a self-organising property of local neuronal networks (Krueger and 

Oba´l, 1993; Vassalli and Dijk, 2009; Vyazovskiy et al., 2011) reflecting previously prevalent 

gamma oscillations then become delta oscillations. However, delta oscillations in S1 

showed a significant delay in occurrence which lead to further cut/isolated region studies 

(discussed below).  

5.4.2 M1 and S1 interactions 

Functional connectivity between M1 and S1 has been reported.  Intra-cortical micro 

stimulation (ICMS) of S1 resulted in short latency and mono-synaptic EPSPs in cells that 

were present in M1 (Kosar et al., 1985). Experiments described above showed that M1 and 

S1 interactions facilitated the expression of delta in both regions, with M1 providing the drive 

and activity in S1 following, as evidenced by the clear delay between delta induction in S1 

when compared to M1 and the similarity of the S1 pharmacology to that in M1. Auto-

correlation studies in slice type A, reflected a high correlation within the region in a time 

series and revealed the signal obtained to be in delta frequency range. However, cross-

correlation studies revealed a phase lag in S1 when compared to M1 suggesting M1 to be 

a leading signal. This is in contrast to that of theta and gamma oscillations and beta 

oscillations in same regions. In an intact slice (slice type A), S1 seems to be the leading 

signal for both theta and gamma oscillations as there was a lag in M1 with reference to 

S1(section 3.3 for details). Although two signals were in near synchrony at beta frequency 

it was observed that desynchronisation first occurred in S1 and then followed by M1 upon 

the application of zolpidem (Prokic, 2011). It was reported that there were direct connections 
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between the two regions in rodents and cats (Asunama et al., 1982, Donoghue and Parham, 

1983; Porter and Sakamoto, 1988, Izraeli and Porter, 1995). To further explore this, a cut 

was made carefully between two regions and it was evident from the results obtained that 

M1 is be the source of origin of delta rhythm, since there is no occurrence of delta 

oscillations in S1 when separated from M1 by a cut. However, it was suspected that the 

origin of delta oscillations in M1 did involve neighbouring regions. It has been established 

that there are two pathways between S1 and M1 (intra-cortical) with one being direct and 

the other indirect via thalamus (Kaneko, 1994a, 1994b).To address this issue, a slice 

preparation (slice type C) with only M1, isolated from surrounding regions including S1 was 

recorded based on the fact that LTP in M1 of cats is induced by stimulation of M1 alone 

(Keller et al., 1990) independent on S1.  This type of slice has enabled delta induction 

proving M1 as the source of origin. Then recordings were made from slice type D in which 

only S1 was isolated, no activity was identified in contrast to that theta and gamma 

oscillations, as theta and gamma oscillations were induced in slice type C and D reflecting 

individual and independent rhythm generators at these frequencies (section 3.3 for details). 

Furthermore, a micro slice (slice type E) was prepared in which both M1 and S1 are 

collectively isolated from surrounding regions. Recordings from this type of slice has 

induced delta oscillations in both oscillations but the power was observed to be much lower 

compared to slice type A and also they were identified to be not persistent suggesting loss 

or damage of network connectivity due to several cuts made around the regions. It was 

possible to speculate that loss of M2 in this slice type could form the ground for this 

instability as there was evidence that optogenetic inhibition of inputs from M2 to M1/S1 had 

reduced the activity in behaving mice (Manita et al., 2015). The role of M2 in delta oscillation 

generation was not explored in our study due to practical limitations. 

The origin of delta oscillations from deep layers of M1 could mean that the retrograde and 

anterograde connections between two regions do not contribute to initiation of deep sleep 

states because M1 on its own had enabled the generation of delta oscillations. However, 

these connections may have a role in maintenance of delta oscillations since S1 followed 

M1 with a significant delay in intact slices (types A and E). The neuronal populations that 

were recruited for delta rhythm generation might be just resident in M1 and not in S1. For 

instance, betz cells were observed in layer V of M1 (Betz, 1894). These cells are unique in 

their morphology and may appear as both pyramidal and interneurons (Braak, 1976). Also, 

this fits with the idea of increasing power towards frontal parts of the brain (Werth et al., 

1997; Finelli et al., 2001). Based on this it is reasonable to say that M1 is the source of 

origin for delta oscillations. However, S1 seems to be a potential source of theta and gamma 

frequency, although both M1 and S1 have individual rhythm generators. Given that delta 

oscillations are assumed to be sub served by previously active gamma oscillations (Kattler 
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et al., 1994; Huber et al., 2004) in M1 however, this is not the case for S1 as it does not 

enable delta generation on an isolated slice preparation. 

Nevertheless, further histological and immuno-labelling studies to determine the types of 

cells and receptors that were involved in the generation of delta oscillations and functional 

connectivity between two regions would be beneficial to further address this issue. 

Preparing slices in different plane other than sagittal would preserve thalamus and /or M2, 

S2 besides M1 and S1 and would provide an opportunity to investigate the influence of 

thalamus (if any) in delta rhythm generation since cells present across all layers in M1 have 

been implicated in long-range projections (Peter and Jones, 1984). 

 

5.5 Final conclusions 

Delta oscillations in S1 are dependent on both inhibitory and excitatory networks similar to 

that of in M1 and in line with pharmacology of gamma oscillations suggesting previously 

prevalent gamma oscillations then become delta oscillation due to changes in 

concentrations of neuromodulators. A significant time delay in occurrence and phase lag 

that was observed in correlation studies performed in various slice preparations revealed 

M1 as the rhythm generator. Inability of S1 to generate delta oscillations on its own suggests 

that S1 follows M1 at delta frequency in intact slice.  
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6. Dopamine augments an inward current

in fast spiking interneurons in layer V of 

primary motor cortex  
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6.1 Introduction 

6.1.1 Dopamine (DA) 

In the current study, network activity in primary motor cortex (M1) has been shown to be 

powerfully modulated by DAR (see chapter 3) (Alexander et al., 1986; Ozkan et al., 2017; 

Johnson et al., 2017). These actions of dopamine almost certainly depend on DAR present 

within M1 itself. M1 and PFC (pre-frontal cortex) show similar laminar organisation of 

receptors (although M1 has fewer DAR than PFC (Lidow et al., 1989)) and D1-like DR are 

more abundant than D2-like DR in rat cortex (Boyson et al., 1986). The laminar distribution 

of both D1-like and D2-like receptors is found to correspond to the dopaminergic terminals 

in M1 which are predominantly in deep layers (LV and LVl) (Martes et al., 1985; Dawson et 

al., 1986; Descarries et al 1987; Raghanti et al., 2008; Vitrac et al., 2014). Many studies 

have studied the differential effects of DA on firing rate in various regions such as 

ventrobasal thalamus (Munsch et al., 2005; Yague et al., 2013) and was shown that DA did 

not affect action potential firing evoked by somatic current injection (Zhou and Hablitz, 1999; 

Gonzalez-Islas and Hablitz, 2001).  Some studies previously have indicated that in STN, 

firing rate of neurons was augmented upon DA administration (Mintz et al., 1986; Kreiss et 

al., 1996; Tofighy et al., 2003; Cragg et al., 2004; Loucif et al., 2008). While some studies 

suggest that DA mediated depolarisation in STN was via D2-like DR (Zhu et al., 2002; 

Tofighy et al., 2003), others suggest via D1-like DAR (Baufreton et al., 2003). DA regulation 

of various voltage-gated channels may reflect these diverse effects but firing rate has not 

been measured in our study.  

6.1.2 Interneurons (IN) 

Different types of interneurons with distinctive features have been identified in neocortex 

(Deuchars and Thomson, 1996; Thomson et al., 1996; Tamas et al., 1997; Kawaguchi and 

Kubota, 1997; Cauli et al., 1997) and hippocampus (Halasy et al., 1996; Miles et al., 1996; 

Klausberger et al., 2003, 2005). Although IN make up only a subset (10-20%) of the whole 

cell population (Benardo and Wong, 1995), they play a critical role in oscillatory neuronal 

activity in cortex (McBain and Fisahn. 2001). Post-synaptic pyramidal neurons that are 

present in peri-somatic region are the target sites for most FS cells in sensory and primary 

motor cortices (Kawaguchi and Kubota, 1997; Cauli et al., 1997; Yamawaki et al., 2008; 

Prokic et al., 2015). The peri-somatic region is defined as “that part of the plasma membrane 

including the proximal dendrites, the cell body and the axon initial segment” (Szabo et al., 

2010). These FS cells are thought to regulate overall pyramidal activity (Freund and Katona, 

2007) due to their ability to induce IPSCs with faster kinetics in conditions where excitatory 

synaptic inputs are abolished (Miles, 1990; Freund and Katona, 2007). FS cells that are 

characterised by rapid IPSC kinetics are suggested to be crucial for maintaining network 
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activity by regulating coherence and frequency in M1 (Bartos et al., 2001, 2002; Yamawaki 

et al., 2008; Prokic et al., 2015). 

6.1.3 DA and interneurons 

DA effects on FS interneurons have been shown to be mediated by PKA-dependent 

suppression of leak, inward rectifying, and depolarisation-activated K+ channels (Gorelova 

et al., 2002) and amplification of depolarising currents mediated by HCN channels 

(Gorelova et al., 2002; Trantham-Davidson et al., 2008; Wu and Hablitz, 2005). Additionally, 

many reports have indicated that DA modulates GABAAR. Pyramidal neurons localised in 

PFC have shown reduction in IPSCs via downregulation of D4 surface receptors (Seamans 

et al., 2001; Wang et al., 2002; Graziane et al., 2009). Additionally, recent studies have 

indicated that DA modulates tonic currents in various regions of brain (Aman et al., 2007; 

Yague et al., 2013; Liang et al., 2014) and may directly inhibit GABAAR (Hoerbelt et al., 

2015). These novel activities of DA may impel new definitions of dopaminergic signalling in 

the brain. Distinct types of cells express DAR with different combinations across the cortical 

layers (Wang et al., 2006). DA was reported to modulate the intrinsic excitability of both 

pyramidal cells and interneurons (reviews Seamans and Yang, 2004; Tritsch and Sabatini, 

2012). However, the modulatory effects on isolated cells and individual currents mediated 

by DA are often unclear due to complexity of network in which these cells are embedded, 

as well as the various types of receptors and signalling mechanisms.  

Here, we have determined to investigate the effect of DA on pyramidal cells and FS 

interneurons in LV of M1 slices using whole-cell voltage clamp recordings. FS cells were 

identified based on the morphological features as described by Prokic et al., (2015), based 

upon deep layer Betz cell-FS cell pairing.  
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6.2 Results 

All the experiments in this chapter are whole cell, voltage clamp recordings with a holding 

current of -70 mV performed in layer V of M1 unless otherwise indicated. FS interneurons 

and pyramidal neurons were patched and were identified by their shape and size. Slice type 

F (refer methods section) was used in these experiments. With the internal solution used in 

the experiments (see methods section for full composition), the reversal potential of Cl (ECl) 

was 0 mV; therefore, GABAA receptor-mediated currents (IPSCs) appeared inward as 

shown in results below. Tonic/inward current is measured by the change in the baseline 

after the drug application in relation to control. Whereas, phasic current was measured by 

changes in the amplitude and time difference of IPSCs (IEI) before and after drug 

application.  

6.2.1 GABAergic modulation of tonic and phasic currents in FS cells 

To investigate the role of GABAR in tonic and phasic inhibition in FS cells of LV of

bicuculline (Bic, 20 µM) a competitive GABAAR antagonist was bath applied. After drug 

application, both tonic and phasic components of inhibitory activity in FS cells were 

abolished suggesting constitutively active GABAergic inhibition in interneurons of LV of M1.  

Bic significantly decreased the holding current by 36.3 ± 6 pA (n=5, p<0.01).  Mean 

amplitude change was found to be 61.5 ± 2 pA and 1.71 ± 0.1 pA in control and after 

application of Bic respectively, (n=5, p<0.01) whilst the mean inter event interval (IEI) 

increased from 187.3 ± 19 ms to 2511.2 ± 403 ms (n=5, p<0.05) (figures 6.1, 6.2) suggesting 

the reduction in both Itonic and Iphasic. 
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Figure 6.1 Bicuculline (Bic 20 µM) decreases tonic inhibitory current in FS 
interneurons in LV of M1 

(A) Representative voltage clamp recording demonstrating the effect of Bic (scale: 50 pA,
1 min). Black horizontal line indicates the presence of drug in bath and dotted line indicates
the relative current shift from baseline (control). (B) Itonic before and after Bic application of
individual FS cells. (C) Pooled data of Itonic before (grey) and after (red) drug application
(n=5, p<0.01).
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Figure 6.2 Bicuculline (Bic 20 µM) decreases phasic inhibitory current in FS 
interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS cell demonstrating IPSCs before

(left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D) cumulative 

probability plot showing the effect of drug on amplitude (n=5, P<0.001) (E) bar graph (F) 

cumulative probability plot showing the effect of drug on inter event interval (IEI) (n=5, 

p>0.001).
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In order to confirm the actions of Bic were mediated solely by the GABAAR, we next 

examined the effects of picrotoxin (PTX), a non-competitive channel blocker GABAAR which 

acts by preventing the entry of Cl- ions into the neuron. PTX abolished both Itonic and Iphasic 

confirming GABA receptors significant role in this constitutively active tonic and phasic 

currents in FS cells in LV of M1. Mean decrease in holding current by PTX was 20 ± 6 pA 

(n=5, p<0.01). Decrease in the mean amplitude was found to be 46.5 ± 5 pA and 1.81 ± 0.2 

pA (n=5, p<0.01) and mean increase in IEI 137 ± 4 to 1790 ±214 (n=5, p>0.05, p<0.001 in 

control and in the presence of PTX respectively (figures 6.3, 6.4). 

 

 

Figure 6.3 Picrotoxin (PTX 50 µM) decreases tonic inhibitory current in FS 
interneurons in LV of M1 

(A) Representative voltage clamp recording demonstrating the effect of PTX (scale: 100 
pA, 1 min). Black horizontal line indicates the presence of drug in bath and dotted line 
indicates the relative current shift from baseline (control). (B) Itonic before and after PTX 
application of individual FS cells. (C) Pooled data of Itonic before (grey) and after (red) drug 
application (n=5, p<0.01). 
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Figure 6.4 Picrotoxin (PTX 50 µM) decreases phasic inhibitory current in FS 
interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS cell demonstrating IPSCs before
(left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D) cumulative
probability plot showing the effect of drug on amplitude (n=5, P<0.001) (E) bar graph (F)
cumulative probability plot showing the effect of drug on inter event interval (IEI) (n=5,
p>0.001).
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6.2.2 Dopaminergic modulation of currents in FS cells 

To determine the role of dopamine receptors on holding current (-70 mV), dopamine (DA) 

30 µM was bath applied. DA induced a slow inward current (IDA) which was reversed less 

than half upon wash. Mean increase in the holding current was -32 ± 11 pA from the 

baseline (n=5, p<0.05, p<0.01) in the presence of DA and was reduced to -11.5 ± 5 pA in 

wash (n=5, p<0.05). DA has shown no effect on both amplitude (41.7 ± 2 vs 39.4 ± 2) and 

IEI (174.4 ±4 vs 200 ± 5) of IPSCS (figure 6.5, 6.6).  

Figure 6.5 Dopamine (DA 30 µM) induces an inward current (IDA) in FS interneurons 

(A) Representative voltage clamp recording demonstrating the effect of DA (scale: 100 pA,
10 min) black horizontal lines indicates the presence of drug in bath and dotted line indicates
the relative current shift from baseline (control). (B) IDA before and after wash of individual
FS cells. (C) Pooled data of IDA before (grey) and after (red) wash (n=5, p<0.01, p<0.05).
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Figure 6.6 Dopamine (DA 30 µM) has no effect on phasic inhibition in FS interneurons 
in LV of M1 

(A) (B) Representative voltage clamp recording from a FS interneuron demonstrating IPSCs
before (left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D)
cumulative probability plot showing the effect of drug on amplitude (n=5, P>0.05). (E) Bar
graph (F) cumulative probability plot showing the effect of drug on inter event interval (IEI)
(n=5, p>0.05).



183 

To investigate whether IDA was mediated by GABAAR, Bic (20 µM) and PTX (50 µM) were 

bath applied. The holding current was reduced upon application of either Bic or PTX. Mean 

IDA of -34 ± 7 pA was reduced to -21 ± 3 pA and -18 ± 2 pA (when Bic (n=5, p<0.01) and 

PTX (n=5, p<0.05) were bath applied respectively) from baseline (control) (figures 6.7, 6.8). 

Figure 6.7 Bic decreased the holding current of IDA in FS cells 

(A) Representative voltage clamp recording demonstrating the effect of Bic (scale: 100 pA,
10 min) on IDA. Black horizontal lines indicate the presence of drug in bath and dotted line
indicates the relative current shift from baseline (control). (B) IDA before and after Bic of
individual FS cells. (C) Pooled data of IDA before (grey) and after (red) application of Bic
(n=5, p<0.01, p<0.01).
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Figure 6.8 PTX reduced the holding current of IDA in FS cells 

(A) Representative voltage clamp recording demonstrating the effect of PTX (scale: 100 
pA, 10 min) on IDA. Black horizontal lines indicate the presence of drug in bath and dotted 
line indicates the relative current shift from baseline (control). (B) IDA before and after PTX 
of individual FS cells. (C) Pooled data of IDA before (grey) and after (red) application of PTX 
(n=5, p<0.05, p<0.05). 
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The experiments with Bic and PTX suggested a significant component ( 20 pA)  of IDA was 

not mediated by GABAAR. To confirm this, Bic, was applied prior to DA to examine if DA 

still induced inward current or increased the holding current in the presence of the GABAAR 

blockade. It was observed that DA still induced an inward current. Under these conditions, 

Bic reduced the holding current by 26.2 ± 1 pA. From this new baseline, DA induce a current 

(IDA) of 13 ± 1 pA (n=5, p<0.01, p<0.05) confirming there is a non-GABAergic component in 

IDA (figures 6.9). 

 

 

 

Figure 6.9 IDA was induced in FS interneurons in the presence of Bic 

(A) Representative voltage clamp recording demonstrating the effect of IDA in the presence 
of Bic (scale: 100 pA, 10 min) on IDA. Black horizontal lines indicate the presence of drug in 
bath and dotted line indicates the relative current shift from baseline (control). (B) IDA before 
and after DA in the presence of Bic in individual FS cells. (C) Pooled data of IDA before 
(grey) and after (red) application DA in the presence of Bic (n=5, p<0.05, p<0.01). 
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Further investigations were made to uncover the role of D1 receptors IDA. D1 agonist, 

SKF38393 (10 µM) and antagonist, SCH23390, (2 µM) were bath applied. Both SKF38393 

and SCH23390 have no effect on Iphasic, as the amplitude (34 ± 1 vs 36 ± 1; 33.2 ± 0.9 vs 

30.3 ± 1.3) and IEI (227.6 ± 14 vs 231 ± 20; 237± 6.8 vs 250 ± 24) respectively, did not 

show any significant difference (figure 6.10, 6.11, 6.12). Please note that the raw data trace 

below implies a small change in holding current as well as IPSC amplitude but this was not 

found significant when data were pooled (n=5, p>0.05). 

 

 

Figure 6.10 D1 agonist and antagonist does not affect holding current in FS 
interneurons 

(A) Representative voltage clamp recording demonstrating the effect of D1R modulators 
(scale: 100 pA, 10 min) black horizontal lines indicates the presence of drug in bath and 
dotted line indicates the relative current shift from baseline (control). (B) Effect of D1R 
modulators on holding current of individual FS cells. (C) Pooled data of inward current in 
the presence of SKF38393 (grey) and SCH23390 (red) (n=5, p<0.01, p<0.05).  
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Figure 6.11 D1R agonist, SKF38390 has no effect on phasic inhibition in FS 
interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS interneuron demonstrating IPSCs 
before (left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D) 
cumulative probability plot showing the effect of drug on amplitude (n=5, P>0.05). E) Bar 
graph (F) cumulative probability plot showing the effect of drug on inter event interval (IEI) 
(n=5, p>0.05). 
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Figure 6.12 D1R antagonist, SCH23390 has no effect on phasic inhibition in FS 
interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS interneuron demonstrating IPSCs 
before (left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D) 
cumulative probability plot showing the effect of drug on amplitude (n=5, P>0.05). (E) Bar 
graph (F) cumulative probability plot showing the effect of drug on inter event interval (IEI) 
(n=5, p>0.05). 
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Since the role of D1 agonist and antagonist was found to be insignificant, the role of D2 

receptors were investigated. D2 agonist, quinpirole (10 µM) when bath applied induced an 

inward current by increasing holding current by -38 ± 6 pA (n=5, p<0.0.1) whilst D2 

antagonist significantly decreased the holding current by -13 ± 8 of control (n=5, p<0.01). 

Both quinpirole and sulpiride have shown no contributions to Iphasic as the amplitude (38 ± 

0.9 vs 30 ± 1.3; 38 ± 1.8 vs 34.5 ± 5) and IEI (142 ± 4.7 vs 161 ± 5.7; 150 ± 5.4 vs 160 ± 

5.9) respectively, did not show any significant differences (figures 6.13, 6.14, and 6.15). 

Figure 6.13 Quinpirole increased the holding current whilst sulpiride decreased it in 
FS interneurons 

(A) Representative voltage clamp recording demonstrating the effect of D2R modulators
(scale: 100 pA, 10 min) black horizontal lines indicates the presence of drug in bath and
dotted line indicates the relative current shift from baseline (control). (B) Effect of D2R
modulators on holding current of individual FS cells. (C) Pooled data of inward current in
the presence of quinpirole (grey) and sulpiride (red) (n=5, p<0.01, p<0.05).
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Figure 6.14 D2R agonist, quinpirole has shown no effect on phasic inhibition in FS 
interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS interneuron demonstrating IPSCs 
before (left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D) 
cumulative probability plot showing the effect of drug on amplitude (n=5, P>0.05). (E) Bar 
graph (F) cumulative probability plot showing the effect of drug on inter event interval (IEI) 
(n=5, p>0.05). 
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Figure 6.15 D2R antagonist, sulpiride has no effect on phasic inhibition in FS 
interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS interneuron demonstrating IPSCs 
before (left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D) 
cumulative probability plot showing the effect of drug on amplitude (n=5, P>0.05). (E) Bar 
graph (F) cumulative probability plot showing the effect of drug on inter event interval (IEI) 
(n=5, p>0.05). 
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6.2.3 Ih current modulation of IDA in FS cells in LV of M1 

IDA might be due to the activation of several types of ion channel, including TRP channels, 

Ih or tonic NMDAR currents besides D2-like DR. In order to investigate this, we first focused 

on Ih. To investigate if IDA was mediated via hyperpolarising current (Ih) of HCN channels, 

ZD7288 (30 µM), an Ih blocker was bath applied as soon as the slice was placed on the 

recording chamber. In the presence of ZD7288, DA induced inward current by increasing 

the holding current by -48 ± 20 pA. Subsequent addition of Bic decreased the holding 

current (n=5, p<0.05, p<0.01) suggesting IDA was Ih independent (figure 6.16). 

 

Figure 6.16 IDA in FS interneurons was independent of Ih channels 

(A) Representative voltage clamp recording demonstrating the effect of ZD7288 on IDA 
(scale: 100 pA, 10 min). Black horizontal lines indicate the presence of drug in bath and 
dotted line indicates the relative current shift from baseline (control). (B) IDA before and after 
Bic of individual FS cells. (C) Pooled data of IDA before (grey) and after (red) application of 
Bic (n=5, p<0.01, p<0.01) in the presence of Ih channel blocker. 
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6.2.4 TRPC modulation of tonic and phasic currents in FS cells 

Next, to uncover if TRP channels were involved in IDA, TRP channel antagonists 2-APB and 

SKF96365 were bath applied. Both drugs significantly decreased the holding current that 

was increased by DA. Mean amplitude of -26.4 ± 2 pA and -27.2 ± 7 pA were reduced to -

0.65 ± 1.8 pA and 1 ± 0.3 pA in the presence of 2-ABP and SKF96365 respectively, n= 5, 

p<0.01(figures 6.17, 6.19). However, none of them showed significant effect on Iphasic (n=5, 

p>0.05) (figures 6.18, 6.20). Please note that in the presence of TRPC antagonist holding

current was reduced slightly beyond baseline (control). 

Figure 6.17 Blockade of TRP channels by 2-ABP (100 µM) decrease holding current 
slightly beyond control. 

(A) Raw data of representative voltage clamp demonstrating the effect of SKF96365 on IDA 

(scale: 100 pA, 10 min) black horizontal lines indicate the presence of drug in bath and
dotted line indicates the relative shift from baseline (control). (B) Line graph showing the
effect of DA and SKF96365 on holding current of individual FS cells. (C) Bar graph
representing pooled data of IDA in control (black), DA (red), SKF96365 (grey) (n=5, p<0.01).
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Figure 6.18 2-ABP has no effect on phasic inhibition in FS interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS interneuron demonstrating IPSCs 
before (left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D) 
cumulative probability plot showing the effect of drug on amplitude (n=5, P>0.05). (E) Bar 
graph (F) cumulative probability plot showing the effect of drug on inter event interval (IEI) 
(n=5, p>0.05). 
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Figure 6.19 Blockade of TRP channels by SKF96365 (100 µM) decreases holding 
current slightly beyond baseline. 

(A) Raw data of representative voltage clamp demonstrating the effect of SKF96365 on IDA 

(scale: 100 pA, 10 min) black horizontal lines indicate the presence of drug in bath and 
dotted line indicates the relative shift from baseline (control). (B) Line graph showing the 
effect of DA and SKF96365 on holding current of individual FS cells. (C) Bar graph 
representing pooled data of IDA in control (black), DA (red), SKF96365 (grey) (n=5, p<0.01). 
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Figure 6.20 TRPC channel antagonist, SKF96365 has no effect on phasic inhibition in 
FS interneurons in LV of M1 

(A) (B) Representative voltage clamp recording from a FS interneuron demonstrating IPSCs
before (left) and after (right) drug application (scale: 100 pA, 200 ms) (C) bar graph (D)
cumulative probability plot showing the effect of drug on amplitude (n=5, P>0.05). (E) Bar
graph (F) cumulative probability plot showing the effect of drug on inter event interval (IEI)
(n=5, p>0.05).
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As of now, the results above showed that DA induced an inward current in FS cells. IDA was 

induced even in the presence of Bic but much smaller than with DA on its own. On the other 

hand, TRPC channel antagonist have shown a decrease in IDA almost to the level of baseline 

suggesting a significant role in IDA. Further investigation was made to determine if by 

blocking both GABAR and TRPC channels would decrease the holding current beyond 

baseline.  When slices were treated with both SKF96365 (100 µM) and Bic (20 µM), IDA was 

reversed more than 100% (control: -32 ± 9 pA to 33 ± 6 pA) which was significantly beyond 

control (n = 5, p<0.01 figure 6.21). This may suggest that all the tonic currents in FS cells 

are attributed to GABAR and DAR. 

 

 

 

Figure 6.21 SKF96365 and Bic decreases holding current much beyond the baseline 
in FS cells. 

(A) Representative voltage clamp recording demonstrating the effect SKF96365+Bic on IDA. 
Black horizontal lines indicate the presence of drug in bath and dotted line indicates the 
relative current shift from baseline (control). (B) Line graph indicating IDA in presence of 
SKF96365+Bic of individual FS cells. (C) Bar graph representing pooled data of IDA in 
control (black), DA (red), SKF96365+Bic (grey) (n=5, p<0.01) 
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6.2.5 Effect of DA on holding current of pyramidal cells in LV of M1. 

When treated slices with Bic (20 µM), pyramidal cells showed reduction in Itonic and Iphasic.  

Mean Itonic was 15 ± 0.8 pA (n=5, p<0.01). DA, however, did not show any influence on 

holding current in pyramidal cells (n=5, p>0.05) (figure 6.22). 

 

 

Figure 6.22 DA has no effect on holding current in pyramidal neurons in LV of M1 

(A) Representative voltage clamp recording from a pyramidal cell demonstrating the effect 
of DA and Bic (scale: 20 pA, 2 min) black horizontal line indicates the presence of drug in 
bath and dotted line indicates the relative current shift from baseline (control). (B) Effect of 
DA and Bic on holding current of individual pyramidal cells (C) pooled data of change sin 
holding current before (grey) and after (red, black) drugs application (n=5, p>0.05 p<0.01). 
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6.3 Discussion 

6.3.1 Itonic and Iphasic in FS cells and pyramidal cells in LV of M1 

The tonic activation of GABAAR was first reported in the voltage clamp recordings performed 

in cerebellar granule cells of rat (Kaneda et al., 1995). In their study, GABAAR antagonists, 

Bic and GBZ, abolished spontaneous IPSCs as well as decreased the holding current, 

which was used to clamp the cell at a given membrane potential. This holding current 

reduction could reflect the reduction of number of open receptors (Kaneda et al., 1995; 

Brickley et al., 1996; Tia et al., 1996; Wall and Usowicz, 1997). Several studies have shown 

Itonic in several regions of brain such as: granule cells of dentate gyrus (Nusser and Mody, 

2002), pyramidal neurons in LV of somatosensory cortex (Yamada et al., 2004), 

thalamocortical relay neurons of the ventral basal complex (Porcello et al., 2003), pyramidal 

neurons in CA1 (Bai et al., 2001) and certain interneurons in CA1 (Semyanov et al., 2003). 

Phasic receptor activation is the transient mode of GABA exposure to postsynaptic 

receptors which could indicate fast diffusion away from release site (Overstreet et al., 2003). 

Effective functioning of GABAAR requires binding of two GABA molecules (Baumann et al., 

2003) and the short dwell time may imply that not all the postsynaptic receptors are being 

occupied however, postsynaptic GABAR saturation may be observed in certain synapses. 

The occupancy extent varies with different synapses on different neurons and may even 

vary at synapses on a single neuron (Frerking et al., 1996; Nusser et al., 1997; Perrais et 

al., 1999; Hajos et al., 2000; Mozrzyymas et al. 2003). Phasic activation depends on various 

factors such as vesicle size and the amount of GABA in them, vesicle fusion type, synaptic 

cleft geometry, number and arrangement of GABA transporters. Governing time course and 

peak GABA concentration has enabled to study the occupancy as well as the channel 

opening, based on which kinetic properties of phasic receptor activation were established 

(Weiss et al., 1989; Twyman et al., 1990; Jones et al., 1995; Jayaraman et al., 1999; Haas 

et al., 1995; Burkat et al., 2001). 

FS cells in LV of M1 at holding current -70 mV exhibited a constitutively active Itonic and Iphasic 

when GABAAR antagonist, Bic, was bath applied. Since Bic is a competitive antagonist 

(Andrews and Johnston, 1979), PTX, a non-competitive antagonist (Krishek et al., 1996) 

which was known to block the pore of these ligand gated channels (Krishek et al., 1996; 

Thompson et al., 2010) was bath applied and revealed active Itonic and Iphasic similar to that 

of Bic. We found that Itonic in FS cells was found much higher than that was observed in 

pyramidal cells without any externally applied GABA (Scimemi et al., 2005) due to the 

differential regulation of GABA uptake as demonstrated in other studies (Semyanov et al., 

2003; Prokic et al., 2015).  
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6.3.2 DA induces an inward current (IDA) possibly mediated by D2-like receptors 

Bath application of DA has induced an inward current in FS cells. The holding current of IDA 

was reduced to a little extent on wash. 30 µM of DA was used throughout the experiments 

as this concentration has shown a maximum response in previous studies (Tofighy et al., 

2003; Loucif et al., 2008). Initially DA was co-applied with ascorbic acid (AA) to prevent DA 

oxidation.100 µM of AA was used given that this concentration does not affect IPSC kinetics 

(Yague et al., 2013). However, AA often damaged the cell in our study and hence, was not 

applied in subsequent experiments.  Oxidation of DA was identified by discolouration of the 

perfusing aCSF after 50 min of DA application. Since the time periods used in our study 

were less than the time required for DA oxidation, it was assumed that the inward current 

was mediated by DA prior to conversion into quinones and free radicals that causes neuro-

toxicity (Sulzer and Zecca, 2000).  This effect of DA on holding current contrasted with the 

work in ventrobasal thalamus (VB) of Wistar rats in which the D2R agonist quinpirole and 

the selective D4 agonist PD-168,077 strongly decreased GABAAR mediated inward current 

while D1R activation remained ineffective (Yague et al., 2013) which could mean the DA 

action is mediated by distinct mechanisms in various regions of brain. 

Application of Bic showed partial reduction in IDA. It is noteworthy that Itonic revealed by Bic in 

the experiments where DA was pre-applied was significantly smaller than in control 

suggesting the possible involvement of GABAergic as well as non-GABAergic component 

in IDA. Indeed, IDA was induced in the presence of GABAAR antagonist, Bic but IDA was much 

smaller in this case suggesting the involvement of GABAergic component in IDA. Blocking 

GABAergic transmission by GABAAR antagonist and blocking glutamatergic transmission 

by blocking KAR, AMPAR and NMDAR using CNQX and 2-AP5 (data not shown) had no 

effect on IDA reflecting the independency of synaptic transmission but a direct postsynaptic 

effect. IEM 1460 is known to block voltage dependent AMPAR, selective of GluA2 subunit 

lacking which are calcium permeable (Buldakova et al., 1999). This compound has shown 

a selective block on synaptic excitation of FS interneurons but not medium spiny pyramidal 

neuron in mouse striatum (Gittis et al., 2011) suggesting improvement in inhibitory 

functions. Therefore, all experiments were carried out with IEM 1460 in the internal solution 

(see methods for full composition). 

To determine the involvement of receptor subtype mechanisms in IDA, D1- and D2- like DR 

specific agonists and antagonists were bath applied. Interestingly, SKF38393 and 

subsequent application of SCH23390 did not show any significant effect on holding current. 

In contrast, quinpirole, a non-selective D2 like DAR agonist that binds to both D2 and D3 

receptors (Seeman and Van Tol, 1994) mimicked the effect of DA suggesting the actions of 

DA via D2 like receptors. To further confirm this, a non-selective D2 like receptor antagonist, 

sulpiride, which binds equally to both D2 and D3 receptors was administered (Seeman and 
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Van Tol, 1994). Sulpiride showed a significant reversal of Iquinpirole suggesting a major role of 

D2-like DAR in IDA in accordance with previous studies that reported that DA induced a slow 

membrane depolarisation or an inward current mediated via D2-like DAR in several other 

brain regions (Uchimura et al., 1986; Yang et al., 1991; Munsch et al., 2005).  

Several in vitro studies reported that DA enhances the intrinsic excitability of pyramidal 

neurons in PFC by decreasing the resting membrane potential or by elevating a long lasting 

increase in number of action potentials via depolarisation in conditions where synaptic 

contributions were eliminated by pharmacological manipulations (Penit-Soria et al., 1987; 

Yang and Seamans, 1996; Shi et al., 1997; Ceci et al., 1999; Lavin and Grace, 2001;  

Gulledge and Jaffe, 2001; Gao and Goldman-Rakic, 2003; Gulledge and Stuart, 2003; 

Wang and Goldman-Rakic, 2004; Kroener et al., 2009; Moore et al., 2011). One of the 

prominent effects of DA on pyramidal neurons is to increase in the frequency of 

spontaneous IPSCs and IPSPs indicating a net increase in GABAergic interneuron spiking 

activity mainly from PV-expressing FS basket and chandelier cells (Gulledge and Jaffe, 

2001; Kröner et al., 2007; Penit-Soria et al., 1987; Seamans et al., 2001b; Zhou and Hablitz, 

1999). In vitro studies have suggested that D1-like DR induce depolarisation and increased 

excitability of FS interneurons in PFC slices (Gao and Goldman-Rakic, 2003; Gao et al., 

2003; Gorelova et al., 2002; Kröner et al., 2007; Towers and Hestrin, 2008; Trantham-

Davidson et al., 2008; Zhou and Hablitz, 1999). On the other hand, D2-like DR have also 

been shown to promote excitability in FS interneurons (Tseng and O’Donnell, 2004; Wu and 

Hablitz, 2005). DA did not show any effect on IPSC amplitude and IEI in FS cells of LV in 

M1. None of the DR modulators or TRPC antagonists have influenced phasic currents. 

Please note that the traces presented in the results above belong to a single recording and 

the effect of a drug shown in an individual trace might not reflect in pooled data using 

statistical analysis. For example, TRPC antagonist, SKF96365, has shown no effect on 

amplitude and IEI of IPSCs in figure 6.19 but the IEI has seen to be decreased implying 

increases in IPSC events in figure 6.20. This could probably reflect various cell types 

surrounding FS cell that was recorded from and also various receptor subtypes expressed 

on the cell. Further cell type characterisation and interactions with neighbouring cells would 

be beneficial as well as increasing `n` numbers. Exploring IPSC shape and decay time of 

individual recordings would uncover interesting mechanisms. 

Additionally, DA has shown influence neither on holding current nor on IPSC amplitude and 

IEI in pyramidal cells holding at -70 mV in our study. In vivo studies in rats and cats revealed 

that pyramidal neuron activity was decreased upon administration of DA mediated via both 

D1 and D2-like DR (Awenowicz and Porter, 2002; Huda et al., 2001). Pyramidal neurons in 

PFC have displayed a low event frequency (Hajos et al., 2003). Vitrac et al., (2014) have 

reported that DA enhances event rate of pyramidal neurons via D2 –like DRs which is in 
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line with excitation effect pyramidal neuron in LV of adult mice PFC mediated by D2-like DR 

(Gee et al., 2012). However, DA has been reported to exhibit bi-directional modulation on 

PFC pyramidal neurons (Seamans et al., 2001). In their study, DA decreased the IPSC 

amplitude via D2-like DR in 2- 20 min time period with a subsequent increase in IPSC 

amplitude which was mediated via D1-like DR with 20-40 min after DA application. In our 

current study the drug effect was analysed after 20 min of DA application which means 

insufficient time was given to investigate bi-directional effect of DA on FS cells in LV of M1. 

Also, it is presently not known whether DA mediated effects on pyramidal cells are mediated 

by direct actions onto pyramidal cells or via modulations of interneurons. Hence, further 

exploration is required to study the DA effect on pyramidal-interneuron possibly via dual 

patching technique. 

6.3.3 DA mediated inward current (IDA) is independent on Ih in FS cells 

The inwardly rectifying hyperpolariaation-activated current (Ih) is mediated by the flow of 

Na+ and K+ ions via hyperpolarisation activated and cyclic nucleotide-gated channels (HCN), 

which open at potentials more negative than -50 mV and are classified as a non-specific 

cation conducting channels (Pape, 1996; Robinson & Siegelbaum, 2003; Biel et al. 2009; 

Shah et al., 2010). These channels (HCN1-4 subunits) are expressed in thalamic relay 

neurons (McCormick and Pape, 1990a; McCormick and Pape, 1990b), hippocampus, 

neocortex, brain stem (Moosmang et al., 1999; Notomi & Shigemoto, 2004). DA was 

implicated in modulating Ih in rat ventral tegmental neurons (Jiang et al., 1993), in 

interneurons in Ll of neocortex (Wu and Hablitz, 2005), in relay neurons in the dorsal 

geniculate nucleus (dLGN) Govindaiah and Cox, 2005). This is based on the fact that HCN 

channels are regulated by intracellular cyclic nucleotide levels (Chen et al., 2001) and 

dopamine receptor activation is known to alter intracellular cAMP levels (Missale et al., 

1998). To test the possibility of Ih in mediating effect on DA induced inward current, we have 

used a selective hyperpolarisation-activated cyclic nucleotide-gated channel antagonist, 

ZD7288. In the presence of ZD7288, application of DA still induced IDA suggesting IDA

independent of Ih. This finding is in line with study in neurons of subthalamic nucleus (STN) 

(Loucif et al., 2008). 

6.3.4 IDA was fully reversed by TRPC antagonists in FS cells 

The transient receptor potential canonical (TRPC) channels are widely distributed in the 

brain (Strubing et al., 2001; Riccio et al., 2002). TRPC is a family of 7 proteins (TRPC1-

TRPC7) that mediates a diverse group of non-selective cation currents (Harteneck et al., 

2000; Clapham et al., 2001). A study performed in dorsal raphe serotonin neurons has 

revealed the involvement of DA mediated depolarisation or inward current (Aman et al., 

2007). To test the possibility of activation of cation channels via DAR in FS interneurons in 
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LV of M1, we have investigated the effect of TRPC antagonists, 2APB and SKF96365 (Li 

et al., 1999; Clapham et al., 2001) on IDA. Both these drugs strongly reduced the amplitude 

of IDA even beyond the baseline when bath applied. Subsequent bath application of Bic has 

revealed further Itonic leading to further questions for future work. 

Evidence exists that activation of D2-like DAR in accumbens has induced an inward current 

by supressing a potassium conductance (Uchimura et al., 1986; Higashi et al., 1989). This 

may not be true in our case as the IPSC solution contained CsCl which blocks potassium 

channels but could be ruled out by investigating the ability of DA to induce inward current 

by using cesium gluconate based internal solution and in the presence of extracellular 

cesium which block most potassium channels. The current-voltage plots using current 

clamp technique would provide more clues about the relationship before and after DA 

application. The other possible way to confirm that IDA is mediated by cations is by replacing 

sodium chloride extracellular solution with choline chloride as shown in a study by Aman et 

al., 2006. In their study, reducing sodium levels have shown a reduction in amplitude of IDA 

as well as a negative shift of the reversal potential of IDA.  Moreover, the mechanism of IDA 

induction can be investigated by using several second messenger modulators (Gi 

inhibitors).  

There is growing evidence that DA modulates Itonic in various regions of brain like striatal 

medium spiny neurons (Janssen et al., 2009), ventrobasal thalamus (Yague et al., 2013) 

and medium spiny neurons (MSNs) of the nucleus accumbens (Maguire et al., 2014). In 

striatum, D1-like DR expressing MSNs display tonic current mediated by δ subunit 

containing GABAAR (Ade et al., 2008; Kirmse et al., 2008). Recent study has reported that 

DA directly modulates GABAAR that are present both synaptic and extra-synaptic sites 

(Hoerbelt et al., 2015). This could possibly be the case with FS interneurons in M1 in our 

study but further experiments are necessary to prove DA modulation of Itonic.  This could be 

examined by observing if DA induces any inward currents in the presence of both GABAR 

antagonist and TRPC antagonist. Also, there exists a definite need for specific drugs 

targeting subunit specific GABA-DA interactions. Besides examining an constitutively active 

DA currents, another interesting aspect to investigate in order to uncover the mechanisms 

of IDA is to investigate the effect of AMPH on holding current of whole cell recording as well 

as on IDA based on the evidence that DA release is augmented by AMPH (Daberkow et al., 

2013, see review Calipiri and Ferris, 2013). 
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6.3.5 Final conclusions 

Dopamine augmented an inward current in fast spiking interneurons in layer V of primary 

motor cortex via non-selective cation currents mediated by TRPC channels independent of 

Ih current via D2-like DAR. This suggests an absent role of D1-like DAR in IDA and this could 

be further investigated by bath application of DR antagonists to test if there are any 

constitutively active currents.  
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7 General discussions, conclusions 

and future work 
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Initial investigations in the lab (Yamawaki, 2008) using coronal sensorimotor slices that are 

obtained from decapitated animals using standard storage glucose-based aCSF and the 

cutting aCSF was sucrose-based which contained neuro-protectants such as indomethacin, 

a cyclooxygenase inhibitor. There was no spontaneous activity in these slices, however, 

bath application of KA (400 nM) and CCh (50 µM) (as used by Buhl et al., 1998) induced 

beta oscillations consistent with previous in-vivo studies (Murthy and Fetz, 1992; Baker et 

al., 1997; Jensen et al., 2005). Therefore, we have recently developed a novel slice 

preparation method (details in section 3.3) (Prokic et al., 2011) by adding ascorbate, taurine 

and NAC. Also, indomethacin, uric acid and ascorbic acid and aminoguanidine were added 

to modified aCSF as neuro-protectants which aided preservation of inhibitory neurons 

critical for maintenance of rhythmic network activity. We determined to use the same slice 

preparation to induce oscillatory activity and to explore rhythms generated in both M1 and 

S1 at varied frequency ranges, with a view to exploring potential interactions between M1 

and S1 in the functionally connected sagittal cortical slice. However, the mechanisms 

involved the usage of neuro-protectants have not been explored yet. 

Co-application of KA and CCh reliably induced theta and gamma oscillations in both M1 

and S1 which were stable for 3-4 hrs in line with other in vitro studies (Dickinson et al., 

2003). Basic pharmacology performed using various receptor modulators has revealed the 

contributions of GABAAR, NMDAR, AMPAR and DAR. Gamma oscillations were decreased 

by GABAAR antagonists (gabazine and picrotoxin) and also by AMAPAR antagonist 

(SYM2206), whilst increasing theta power in these cases. GABABR antagonist 

(CGP55845), GABA positive modulators such as diazepam, zolpidem, NMDAR antagonist 

(MK 801) and mGluR antagonists have shown an increase in both theta and gamma 

oscillations (Johnson et al., 2017). Theta and gamma oscillations were found reliant on gap 

junctions as the activity was abolished when carbenoxolone, a gap junction blocker was 

bath applied (Johnson et al., 2017) consistent with beta oscillations in M1 (Yamawaki et al., 

2008) and delta oscillations (chapter 4). Dependence of oscillatory activity on mAchR in M1 

is reflected by the fact that the induction of oscillatory activity requires CCh. (Johnson et al., 

2017) along with KA and was further demonstarted by bath application of mAchR 

antagonist. Atropine abolished both theta and gamma oscillations (Johnson et al., 2017) in 

consistent with various studies (Konopacki et al., 1987; Lukatch and MacIver, 1997; Buhl et 

al., 1998; Fisahn et al., 1998). 

Interactions between two different types of oscillations is defined as cross-frequency 

coupling (CFC). In the current study, PAC was performed between theta and gamma 

oscillations, with theta frequency (3 –10 Hz) as phase and gamma frequency (25-50 Hz) as 

amplitude that was driven by low frequency using a MATLAB script developed by Tort et 

al., 2010. PAC was performed on 60 s epochs of data in various slice types (refer methods 
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section) and was represented as Modulation Index (MI) which indicates the degree of 

coupling between the two oscillations. It is interesting to note that isolated M1 slice type 

shows high MI.  The presence of PV+ interneurons in deep layers of M1 could form the 

basis for high coupling in M1 based on the evidence that PV+ interneurons contribute to the 

generation and coupling of theta and gamma oscillations since selective removal of fast 

synaptic inhibition from PV+ cells using transgenic mouse protocols did not induce theta 

and gamma oscillations (Wulff et al., 2009). However, the extent of coupling varied with 

each slice. This is probably caused by biological differences such as viability of each slice, 

receptor expression, interneurons and pyramidal cell expression in each slice obtained 

daily. As each subtype fire at distinct patters (phase) each subtype of interneurons probably 

has a unique role in entraining nested rhythms in various regions. Hence, the need for 

further investigations is high in order to uncover possible mechanisms behind the coupling. 

The interlaminar (deep and superficial layers) synchrony within human cortex is linked to 

the degree of coupling between the theta and gamma oscillations (PAC) (MacGinn and 

Valiante, 2014) which needs further investigation in our slices. Also, pharmacological 

agents such as ketamine have been shown to influence PAC (Caixeta et al., 2013). 

Therefore, it is essential to perform PAC before and after various receptor modulators to 

identify how they are contributing PAC giving plenty of room for future work. Interestingly, 

human hippocampus and cortex exhibited different properties in that PAC in hippocampus 

was the strongest at the phase of slow theta band (2.5-5 Hz) and both low (35-70 Hz) and 

high gamma (70-130 Hz) whilst, the phase of high theta band (4-9 Hz) was preferred with 

low gamma exhibiting greater coupling in cortex (Lega et al., 2016). This observation may 

prove the difference of hippocampal theta oscillations between humans (< 5Hz) and rats (6-

12Hz) (Lega et al., 2012; Watrous et al., 2013; Jacobs et al., 2014) and may reflect the big 

brain size in humans. It would be beneficial to apply these frequency specific studies in the 

PAC data that was obtained in M1 and S1 of rat slices. 

Although much literature is documented the origin of delta oscillations (1-4 Hz) in thalamus 

(Amzica et al., 1992), relatively less is known about cortical based delta oscillations. A delta 

rhythm of purely cortical origin has been implicated in in vivo studies (Amzica and steriade, 

1998; Fell et al., 2002) but the mechanisms underlying were not as clear as those of 

thalamic origin (Pirchio et al., 1997; Hughes et al., 1999; 2002). A study has revealed that 

transition of NREM2 to NREM3&4 stages has required the neuromodulatory action of cortex 

itself but not thalamus (Krishnan et al., 2016).  We have assumed that the origin of delta 

oscillations could possibly be primary motor and sensory cortices with these regions being 

primary projection sites for thalamus, hence the term ‘primary’. A recent in vitro study has 

indicated delta oscillations in secondary somatosensory cortex/parietal area, S2/Par2 slices 

prepared from male Wistar rats (Carracedo et al., 2013). None of these studies have 
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indicated the mechanisms and origin of cortical delta rhythm probably because it is 

challenging to induce delta oscillations unlike gamma oscillations, which can be identified 

spontaneously or with minimal pharmacological manipulations. Anatomical studies have 

shown that M1 receives input from S1 and thalamus (Zin-Ka-Leu, 1998; Miyachi et al., 2005) 

and the highly reciprocal nature of functional connections between M1 and S1 have been 

demonstrated in an optimum plane sensorimotor slice preparation developed by Rocco et 

al., (2007). Sensorimotor integration has been studied in vivo (Smith et al., 1983; Wannier 

et al., 1991) but this does not enable a full understanding of the pathways.  

Delta oscillations are pharmacologically induced in layer V of M1 and S1 by maintaining low 

cholinergic and low dopaminergic tone which is the characteristic in deep sleep stages and 

we have illustrated the transition from fast (gamma and theta) oscillations to slow (mu and 

beta) oscillations before a high amplitude delta rhythm emerged. Delta rhythm was 

characterised using various receptor modulators to determine the role of various receptors 

in rhythm generation. The current study suggests that these delta oscillations in both 

regions are dependent on GABAR, AMPAR, KAR, mAChR and gap junctions but are 

independent of NMDAR. mGluR do not seem to show much contribution in generation of 

delta rhythm however mGluR agonists showed a general reduction in the activity whilst the 

antagonists showed an increase in the activity which is significant only in case of group l 

mGluR antagonists (MPEP & MTEP). These suggestions were based on pharmacology 

performed using various receptor modulators.  

Our current study (chapter 4 and 5) performed in LV of M1 and S1 demonstrates the 

generation of delta oscillations by pharmacological manipulations and investigates the 

contribution of various receptors involved in the rhythm generation and the pharmacological 

equivalent awake state. Characterisation of delta rhythm in control slice preparations may 

facilitate understanding of the mechanisms underlying various pathological conditions like 

Alzheimer’s disease. Further research may be extended to comparing to a disease model 

and also examine delta in other regions such as V1. However, further work on 

characterisation of cell types recruited in generation of delta oscillations using calcium 

imaging and optogenetic techniques, would enable a better understanding of the 

mechanistic origin of the rhythm. Expression of receptors, receptor subtypes and receptor 

subunit could be of a great benefit using immunochemical studies and two-photon 

microscopy studies so that live cells can be imaged for extended time periods in deep 

tissue.   The advantages of using two photon microscopy imaging technique are ther eis 

little damage to the surrounding tissue. Also, the contribution of various receptors could be 

confirmed using KO animal models. Additionally, it was believed LV to be the origin but this 

was not completely ruled out and it was evident that LVl has several cell types that could 
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contribute to rhythm generation. To address this tissue we should find a way to delineate 

LV and LVI and Grainger causality analysis might help address this issue. 

Topographic maps of both M1 and S1 are well established (Brooks et al., 1961, Woolsey 

1952, Li and Waters 1991) and interactions between these two regions are known to play 

critical roles in motor learning and control skills (Asanuma and Arissian, 1984; Asanuma 

and Pavlides, 1997).  The origin of delta oscillations from deep layers of M1 could mean 

that the retrograde and anterograde connections between the two regions do not contribute 

to initiation of deep sleep states. However, these connections may have a role in 

maintenance of delta oscillations since S1 followed M1 with a significant delay in intact slice 

(type A and E). The neuronal populations that were recruited for delta rhythm generation 

might be just resident in M1 and not in S1. For instance, betz cells were implicated in layer 

V of M1 (Betz, 1894). These cells are unique in their morphology and may appear as both 

pyramidal and interneurons (Braak, 1976). Based on this it is logical to say that M1 is the 

source of origin for delta oscillations. However, S1 has been identified to lead M1 at higher 

frequencies but both regions have individual rhythm generators. Nevertheless, further 

histological and immuno-labelling studies to determine the types of cells and receptor types 

that were involved in generation of delta oscillations and functional connectivity studies 

between two regions would be beneficial to further address this issue. Preparing slices in 

different plane other than sagittal would preserve thalamus and /or M2, S2 besides M1 and 

S1 and would provide an opportunity to investigate the influence of thalamus (if any) in 

delta, theta and gamma rhythm generation. Also, characterising cell types involved in each 

oscillation using optogenetic studies would give a better insight. Also, region specific 

stimulation studies may reveal the individual region contribution. Another way to look at is 

multi electrode recording which enables to examine the navigation pattern of oscillations 

between layers as well as between regions (for instance M1 and S1). Our current study is 

limited in terms of making cuts between regions during the experiments but if there is a 

secure way to perform cut, that would demonstrate the interaction between regions. 

In the current study, DA modulated network activity at delta, theta and gamma frequencies. 

D1-like DR are more abundant than D2-like DR in rat cortex. DA effects on FS interneurons 

have been identified to be mediated by PKA-dependent suppression of leak, inward 

rectifying, and depolarisation-activated two pore domain K+ channels (Gorelova et al., 2002) 

and amplification of depolarising currents mediated by HCN channels (via Gs)Gorelova et 

al., 2002; Trantham-Davidson et al., 2008; Wu and Hablitz, 2005). Additionally, many 

reports have indicated that DA modulates GABAAR. Here (chapter 6), we determined the 

effect of DA on pyramidal cells and FS interneurons in LV of M1 slices using voltage clamp, 

whole cell recordings. FS cells were identified as based on the morphological features as 

described by Prokic et al., (2015) and are known to be highly encountered in deep layers 
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forming Betz cell-FS cell pairing. Our investigations revealed that DA induced a slow inward 

current via non-specific cation TRPC channels. Morphological, functional and electrical 

properties of cell types in M1 needs further examination using whole cell voltage clamp as 

well as current clamp techniques. Since, Betz-FS cell pairing was observed in LV of M1, 

dual patch recordings would uncover the mechanistic insights on how one cell interacts with 

the other. Also, stimulation techniques may be incorporated to observe how one cell type 

impacts on another cell type. Additionally, there is growing evidence that DA modulates Itonic 

in various regions of brain. Given the link between Itonic and   delta subunit within extra 

synaptic GABA receptor complexes (Nusser et al., 1998), this can be addressed by using 

the delta subunit-selective agonist, THIP in the experiments. On an interesting note, D2 

mediated IDA could account for vhanges in thet and gamma oscillations when DA and 

amphetamine were bath applied. It will be interesting to see if the oscillations were 

modulated by TRPC antagonists. 

In conclusion, trans-cardial perfusion, sagittal slice preparation, modified aCSF solution as 

well as addition of neuro-protectants has greatly enhanced the slice viability. Co-application 

of KA and CCh induced persistent theta and gamma oscillations. These dual oscillations 

seem to have distinct mechanisms and were identified to be coupled from PAC analysis. 

However, the percentage of coupling varied in various types of slice preparations with high 

modulation index (MI) in M1 only slice followed by S1 only slice when compared to intact 

slice preparations. To our knowledge, this is the first demonstration of motor cortical delta 

oscillation in vitro which was identified to have a distinct mechanism in comparison with that 

of delta in secondary somatosensory/parietal area (S2/Par2) (also in vitro) (Carracedo et 

al., 2013) These extracellular studies could prove significant in investigating neuronal 

network oscillations in pathological states such as PD, AD by using animal models that can 

enable the comparison of mechanisms. Delta oscillations were induced by KA, CCh, D1 

and D2 antagonists and are reliant on both inhibitory and excitatory network activity. 

Pharmacologically induced delta oscillations were identified to be irreversible since the 

frequency of the oscillations had not changed when pharmacologically equivalent awake 

state was maintained possibly due to experimental limitations. This may imply the need 

other inhibitory input to reverse delta such as from thalamus. Therefore, a slice preparation 

with both cortex and thalamus preserved would probably enable delta reversal. Delta 

oscillations in S1 are dependent on both inhibitory and excitatory networks similar to that of 

in M1. A significant time delay in occurrence and phase lag that was observed in correlation 

studies performed in various slice preparations revealed M1 as the rhythm generator. 

Inability of S1 to generate delta oscillations on its own suggests that S1 follows M1 at delta 

frequency However, both M1 and S1 have local generators at nested theta and gamma 

band. Dopamine augmented an inward current in fast spiking interneurons in layer V of 
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primary motor cortex via non-selective cation currents mediated by TRPC channels 

independent on Ih current via D2-like DAR without affecting IPSC amplitude and IEI. 
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